51
|
Hu L, Shen D, Liang D, Shi J, Song C, Jiang K, Du S, Cheng W, Ma J, Li S, Bi X, Barr MP, Fang Z, Xu Q, Li W, Piao H, Meng S. Thyroid receptor-interacting protein 13 and EGFR form a feedforward loop promoting glioblastoma growth. Cancer Lett 2020; 493:156-166. [PMID: 32860853 DOI: 10.1016/j.canlet.2020.08.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/04/2020] [Accepted: 08/20/2020] [Indexed: 11/19/2022]
Abstract
Epidermal growth factor receptor (EGFR) amplification and EGFRvIII mutation drive glioblastoma (GBM) pathogenesis, but their regulation remains elusive. Here we characterized the EGFR/EGFRvIII "interactome" in GBM and identified thyroid receptor-interacting protein 13 (TRIP13), an AAA + ATPase, as an EGFR/EGFRvIII-associated protein independent of its ATPase activity. Functionally, TRIP13 augmented EGFR pathway activation and contributed to EGFR/EGFRvIII-driven GBM growth in GBM spheroids and orthotopic GBM xenograft models. Mechanistically, TRIP13 enhanced EGFR protein abundance in part by preventing Cbl-mediated ubiquitination and proteasomal degradation. Reciprocally, TRIP13 was phosphorylated at tyrosine(Y) 56 by EGFRvIII and EGF-activated EGFR. Abrogating TRIP13 Y56 phosphorylation dramatically attenuated TRIP13 expression-enhanced EGFR signaling and GBM cell growth. Clinically, TRIP13 expression was upregulated in GBM specimens and associated with poor patient outcome. In GBM, TRIP13 localized to cell membrane and cytoplasma and exhibited oncogenic effects in vitro and in vivo, depending on EGFR signaling but not the TRIP13 ATPase activity. Collectively, our findings uncover that TRIP13 and EGFR form a feedforward loop to potentiate EGFR signaling in GBM growth and identify a previously unrecognized ATPase activity-independent mode of action of TRIP13 in GBM biology.
Collapse
Affiliation(s)
- Lulu Hu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, PR China
| | - Dachuan Shen
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, PR China
| | - Dapeng Liang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, PR China
| | - Ji Shi
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, PR China
| | - Chunyan Song
- Department of Neuro-oncology, Neurosurgery Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, PR China
| | - Ke Jiang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, PR China; Department of Medical Oncology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, PR China
| | - Sha Du
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, PR China
| | - Wei Cheng
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, PR China
| | - Jianmei Ma
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, PR China
| | - Shao Li
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, PR China
| | - Xiaolin Bi
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, PR China
| | - Martin P Barr
- Thoracic Oncology Research Group, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, St. James's Hospital & Trinity College, Dublin, Ireland
| | - Zhiyou Fang
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, PR China
| | - Qing Xu
- Department of Medical Oncology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, PR China.
| | - Wenbin Li
- Department of Neuro-oncology, Neurosurgery Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, PR China.
| | - Haozhe Piao
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, PR China.
| | - Songshu Meng
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, PR China.
| |
Collapse
|
52
|
Villar-Fernández MA, Cardoso da Silva R, Firlej M, Pan D, Weir E, Sarembe A, Raina VB, Bange T, Weir JR, Vader G. Biochemical and functional characterization of a meiosis-specific Pch2/ORC AAA+ assembly. Life Sci Alliance 2020; 3:3/11/e201900630. [PMID: 32826290 PMCID: PMC7442955 DOI: 10.26508/lsa.201900630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022] Open
Abstract
The AAA+ protein Pch2 forms a biochemical complex with Orc1/ORC to suppress DNA break formation in the meiotic G2/prophase. Pch2 is a meiosis-specific AAA+ protein that controls several important chromosomal processes. We previously demonstrated that Orc1, a subunit of the ORC, functionally interacts with budding yeast Pch2. The ORC (Orc1-6) AAA+ complex loads the AAA+ MCM helicase to origins of replication, but whether and how ORC collaborates with Pch2 remains unclear. Here, we show that a Pch2 hexamer directly associates with ORC during the meiotic G2/prophase. Biochemical analysis suggests that Pch2 uses its non-enzymatic NH2-terminal domain and AAA+ core and likely engages the interface of ORC that also binds to Cdc6, a factor crucial for ORC-MCM binding. Canonical ORC function requires association with origins, but we show here that despite causing efficient removal of Orc1 from origins, nuclear depletion of Orc2 and Orc5 does not trigger Pch2/Orc1-like meiotic phenotypes. This suggests that the function for Orc1/Pch2 in meiosis can be executed without efficient association of ORC with origins of replication. In conclusion, we uncover distinct functionalities for Orc1/ORC that drive the establishment of a non-canonical, meiosis-specific AAA+ assembly with Pch2.
Collapse
Affiliation(s)
- María Ascensión Villar-Fernández
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany.,International Max Planck Research School in Chemical and Molecular Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Richard Cardoso da Silva
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | | | - Dongqing Pan
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Elisabeth Weir
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Annika Sarembe
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Vivek B Raina
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany.,International Max Planck Research School in Chemical and Molecular Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Tanja Bange
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - John R Weir
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany.,Friedrich Miescher Laboratory, Tübingen, Germany
| | - Gerben Vader
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| |
Collapse
|
53
|
Hofstatter PG, Ribeiro GM, Porfírio‐Sousa AL, Lahr DJG. The Sexual Ancestor of all Eukaryotes: A Defense of the “Meiosis Toolkit”. Bioessays 2020; 42:e2000037. [DOI: 10.1002/bies.202000037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/08/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Paulo G. Hofstatter
- Universidade de São Paulo Instituto de Biociencias, Rua do Matão, travessa 14, A101. São Paulo, CEP.: 05508‐090, Brazil
| | - Giulia M. Ribeiro
- Universidade de São Paulo Instituto de Biociencias, Rua do Matão, travessa 14, A101. São Paulo, CEP.: 05508‐090, Brazil
| | - Alfredo L. Porfírio‐Sousa
- Universidade de São Paulo Instituto de Biociencias, Rua do Matão, travessa 14, A101. São Paulo, CEP.: 05508‐090, Brazil
| | - Daniel J. G. Lahr
- Universidade de São Paulo Instituto de Biociencias, Rua do Matão, travessa 14, A101. São Paulo, CEP.: 05508‐090, Brazil
| |
Collapse
|
54
|
Zhang Z, Li B, Fu J, Li R, Diao F, Li C, Chen B, Du J, Zhou Z, Mu J, Yan Z, Wu L, Liu S, Wang W, Zhao L, Dong J, He L, Liang X, Kuang Y, Sun X, Sang Q, Wang L. Bi-allelic Missense Pathogenic Variants in TRIP13 Cause Female Infertility Characterized by Oocyte Maturation Arrest. Am J Hum Genet 2020; 107:15-23. [PMID: 32473092 DOI: 10.1016/j.ajhg.2020.05.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/30/2020] [Indexed: 12/11/2022] Open
Abstract
Normal oocyte meiosis is a prerequisite for successful human reproduction, and abnormalities in the process will result in infertility. In 2016, we identified mutations in TUBB8 as responsible for human oocyte meiotic arrest. However, the underlying genetic factors for most affected individuals remain unknown. TRIP13, encoding an AAA-ATPase, is a key component of the spindle assembly checkpoint, and recurrent homozygous nonsense variants and a splicing variant in TRIP13 are reported to cause Wilms tumors in children. In this study, we identified homozygous and compound heterozygous missense pathogenic variants in TRIP13 responsible for female infertility mainly characterized by oocyte meiotic arrest in five individuals from four independent families. Individuals from three families suffered from oocyte maturation arrest, whereas the individual from the fourth family had abnormal zygote cleavage. All displayed only the infertility phenotype without Wilms tumors or any other abnormalities. In vitro and in vivo studies showed that the identified variants reduced the protein abundance of TRIP13 and caused its downstream molecule, HORMAD2, to accumulate in HeLa cells and in proband-derived lymphoblastoid cells. The chromosome mis-segregation assay showed that variants did not have any effects on mitosis. Injecting TRIP13 cRNA into oocytes from one affected individual was able to rescue the phenotype, which has implications for future therapeutic treatments. This study reports pathogenic variants in TRIP13 responsible for oocyte meiotic arrest, and it highlights the pivotal but different roles of TRIP13 in meiosis and mitosis. These findings also indicate that different dosage effects of mutant TRIP13 might result in two distinct human diseases.
Collapse
Affiliation(s)
- Zhihua Zhang
- Institute of Pediatrics, Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, the Ministry of Science and Technology, the Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, China
| | - Bin Li
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Jing Fu
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Rong Li
- Reproductive Medicine Center, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Feiyang Diao
- The State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Caihong Li
- Assisted Reproductive Technology Laboratory, Shenyang Jinghua Hospitals, Shenyang, Liaoning 110005, China
| | - Biaobang Chen
- National Health Commission Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai 200032, China
| | - Jing Du
- National Health Commission Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai 200032, China
| | - Zhou Zhou
- Institute of Pediatrics, Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, the Ministry of Science and Technology, the Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, China
| | - Jian Mu
- Institute of Pediatrics, Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, the Ministry of Science and Technology, the Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, China
| | - Zheng Yan
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Ling Wu
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Shuai Liu
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wenjing Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, the Ministry of Science and Technology, the Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, China
| | - Lin Zhao
- Institute of Pediatrics, Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, the Ministry of Science and Technology, the Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, China
| | - Jie Dong
- Institute of Pediatrics, Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, the Ministry of Science and Technology, the Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, China
| | - Lin He
- Bio-X Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xiaozhen Liang
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yanping Kuang
- Reproductive Medicine Center, Shanghai Ninth Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Xiaoxi Sun
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Qing Sang
- Institute of Pediatrics, Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, the Ministry of Science and Technology, the Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, China.
| | - Lei Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, the Ministry of Science and Technology, the Institutes of Biomedical Sciences, and the State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200032, China; Shanghai Center for Women and Children's Health, Shanghai 200062, China.
| |
Collapse
|
55
|
Christophorou N, She W, Long J, Hurel A, Beaubiat S, Idir Y, Tagliaro-Jahns M, Chambon A, Solier V, Vezon D, Grelon M, Feng X, Bouché N, Mézard C. AXR1 affects DNA methylation independently of its role in regulating meiotic crossover localization. PLoS Genet 2020; 16:e1008894. [PMID: 32598340 PMCID: PMC7351236 DOI: 10.1371/journal.pgen.1008894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 07/10/2020] [Accepted: 05/29/2020] [Indexed: 12/17/2022] Open
Abstract
Meiotic crossovers (COs) are important for reshuffling genetic information between homologous chromosomes and they are essential for their correct segregation. COs are unevenly distributed along chromosomes and the underlying mechanisms controlling CO localization are not well understood. We previously showed that meiotic COs are mis-localized in the absence of AXR1, an enzyme involved in the neddylation/rubylation protein modification pathway in Arabidopsis thaliana. Here, we report that in axr1-/-, male meiocytes show a strong defect in chromosome pairing whereas the formation of the telomere bouquet is not affected. COs are also redistributed towards subtelomeric chromosomal ends where they frequently form clusters, in contrast to large central regions depleted in recombination. The CO suppressed regions correlate with DNA hypermethylation of transposable elements (TEs) in the CHH context in axr1-/- meiocytes. Through examining somatic methylomes, we found axr1-/- affects DNA methylation in a plant, causing hypermethylation in all sequence contexts (CG, CHG and CHH) in TEs. Impairment of the main pathways involved in DNA methylation is epistatic over axr1-/- for DNA methylation in somatic cells but does not restore regular chromosome segregation during meiosis. Collectively, our findings reveal that the neddylation pathway not only regulates hormonal perception and CO distribution but is also, directly or indirectly, a major limiting pathway of TE DNA methylation in somatic cells. In sexually reproducing organisms, each parent transmits one and only one copy of each chromosome to their progeny via their packaging in haploid gametes. To ensure the proper transmission of the chromosomes, pairs of homologous chromosomes must associate and exchange genetic information (also called reciprocal recombination) during a special division called meiosis that lead to the formation of the gametes. The recombination process is highly controlled in terms of number and localization of the events along the chromosomes. Disruption of this control may cause an inappropriate transmission of the chromosomes in the gametes leading to abnormal chromosome numbers in the offspring which is usually deleterious. In the plant Arabidopis thaliana, we show that when the pathway modifying proteins through ubiquitination/neddylation is impaired, the number of reciprocal recombination events is maintained but they are delocalized toward the ends of the chromosomes and some chromosomes do not exchange material. We also detected changes of patterns for DNA methylation, an epigenetic modification localised on DNA cytosines. Furthermore, we demonstrate that the methylation of cytosines is not causal to the localization change of meiotic recombination events.
Collapse
Affiliation(s)
- Nicolas Christophorou
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Wenjing She
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Jincheng Long
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Aurélie Hurel
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Sébastien Beaubiat
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Yassir Idir
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Marina Tagliaro-Jahns
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Aurélie Chambon
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Victor Solier
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Daniel Vezon
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Mathilde Grelon
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Xiaoqi Feng
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Nicolas Bouché
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Université Paris-Saclay, Versailles, France
- * E-mail: (NB); (CM)
| | - Christine Mézard
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Université Paris-Saclay, Versailles, France
- * E-mail: (NB); (CM)
| |
Collapse
|
56
|
Cardoso da Silva R, Villar-Fernández MA, Vader G. Active transcription and Orc1 drive chromatin association of the AAA+ ATPase Pch2 during meiotic G2/prophase. PLoS Genet 2020; 16:e1008905. [PMID: 32569318 PMCID: PMC7332104 DOI: 10.1371/journal.pgen.1008905] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 07/02/2020] [Accepted: 06/03/2020] [Indexed: 01/26/2023] Open
Abstract
Pch2 is an AAA+ protein that controls DNA break formation, recombination and checkpoint signaling during meiotic G2/prophase. Chromosomal association of Pch2 is linked to these processes, and several factors influence the association of Pch2 to euchromatin and the specialized chromatin of the ribosomal (r)DNA array of budding yeast. Here, we describe a comprehensive mapping of Pch2 localization across the budding yeast genome during meiotic G2/prophase. Within non-rDNA chromatin, Pch2 associates with a subset of actively RNA Polymerase II (RNAPII)-dependent transcribed genes. Chromatin immunoprecipitation (ChIP)- and microscopy-based analysis reveals that active transcription is required for chromosomal recruitment of Pch2. Similar to what was previously established for association of Pch2 with rDNA chromatin, we find that Orc1, a component of the Origin Recognition Complex (ORC), is required for the association of Pch2 to these euchromatic, transcribed regions, revealing a broad connection between chromosomal association of Pch2 and Orc1/ORC function. Ectopic mitotic expression is insufficient to drive recruitment of Pch2, despite the presence of active transcription and Orc1/ORC in mitotic cells. This suggests meiosis-specific ‘licensing’ of Pch2 recruitment to sites of transcription, and accordingly, we find that the synaptonemal complex (SC) component Zip1 is required for the recruitment of Pch2 to transcription-associated binding regions. Interestingly, Pch2 binding patterns are distinct from meiotic axis enrichment sites (as defined by Red1, Hop1, and Rec8). Inactivating RNAPII-dependent transcription/Orc1 does not lead to effects on the chromosomal abundance of Hop1, a known chromosomal client of Pch2, suggesting a complex relationship between SC formation, Pch2 recruitment and Hop1 chromosomal association. We thus report characteristics and dependencies for Pch2 recruitment to meiotic chromosomes, and reveal an unexpected link between Pch2, SC formation, chromatin and active transcription. Meiosis is a specialized cellular division program that is required to produce haploid reproductive cells, also known as gametes. To allow meiosis to occur faithfully, several processes centred around DNA breakage and recombination are needed. Pch2, an AAA+ ATPase enzyme is important to coordinate several of these processes. Here, we analyze the genome-wide association of Pch2 to budding yeast meiotic chromosomes. Our results show that Pch2 is recruited to a subset of actively transcribed genes, and we find that active RNAPII transcription contributes to Pch2 chromosomal association. In addition, we reveal a general contribution of Orc1, a subunit of the ORC assembly, to Pch2 chromosomal recruitment. These findings thus reveal a connection between Pch2, Orc1 and RNAPII activity during meiosis.
Collapse
Affiliation(s)
- Richard Cardoso da Silva
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - María Ascensión Villar-Fernández
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- International Max Planck Research School (IMPRS) in Chemical and Molecular Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Gerben Vader
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- * E-mail:
| |
Collapse
|
57
|
Guan Y, Leu NA, Ma J, Chmátal L, Ruthel G, Bloom JC, Lampson MA, Schimenti JC, Luo M, Wang PJ. SKP1 drives the prophase I to metaphase I transition during male meiosis. SCIENCE ADVANCES 2020; 6:eaaz2129. [PMID: 32232159 PMCID: PMC7096161 DOI: 10.1126/sciadv.aaz2129] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/03/2020] [Indexed: 06/01/2023]
Abstract
The meiotic prophase I to metaphase I (PI/MI) transition requires chromosome desynapsis and metaphase competence acquisition. However, control of these major meiotic events is poorly understood. Here, we identify an essential role for SKP1, a core subunit of the SKP1-Cullin-F-box (SCF) ubiquitin E3 ligase, in the PI/MI transition. SKP1 localizes to synapsed chromosome axes and evicts HORMAD proteins from these regions in meiotic spermatocytes. SKP1-deficient spermatocytes display premature desynapsis, precocious pachytene exit, loss of PLK1 and BUB1 at centromeres, but persistence of HORMAD, γH2AX, RPA2, and MLH1 in diplonema. Strikingly, SKP1-deficient spermatocytes show sharply reduced MPF activity and fail to enter MI despite treatment with okadaic acid. SKP1-deficient oocytes exhibit desynapsis, chromosome misalignment, and progressive postnatal loss. Therefore, SKP1 maintains synapsis in meiosis of both sexes. Furthermore, our results support a model where SKP1 functions as the long-sought intrinsic metaphase competence factor to orchestrate MI entry during male meiosis.
Collapse
Affiliation(s)
- Yongjuan Guan
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - N. Adrian Leu
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Jun Ma
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
- Department of Biology, University of Pennsylvania, 433 South University Avenue, Philadelphia, PA, USA
| | - Lukáš Chmátal
- Department of Biology, University of Pennsylvania, 433 South University Avenue, Philadelphia, PA, USA
- Whitehead Institute, Cambridge, MA, USA
| | - Gordon Ruthel
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Jordana C. Bloom
- Center for Vertebrate Genomics, Cornell University, Ithaca, NY, USA
| | - Michael A. Lampson
- Department of Biology, University of Pennsylvania, 433 South University Avenue, Philadelphia, PA, USA
| | | | - Mengcheng Luo
- Department of Tissue and Embryology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei Province, China
| | - P. Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| |
Collapse
|
58
|
The Initiation of Meiotic Sex Chromosome Inactivation Sequesters DNA Damage Signaling from Autosomes in Mouse Spermatogenesis. Curr Biol 2020; 30:408-420.e5. [PMID: 31902729 PMCID: PMC7076562 DOI: 10.1016/j.cub.2019.11.064] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/04/2019] [Accepted: 11/21/2019] [Indexed: 11/20/2022]
Abstract
Meiotic sex chromosome inactivation (MSCI) is an essential event in the mammalian male germline. MSCI is directed by a DNA damage response (DDR) pathway centered on the phosphorylation of histone variant H2AX at serine 139 (termed γH2AX). The failure to initiate MSCI is linked to complete meiotic arrest and elimination of germ cells; however, the mechanisms underlying this arrest and elimination remain unknown. To address this question, we established a new separation-of-function mouse model for H2ax that shows specific and complete defects in MSCI. The genetic change is a point mutation in which another H2AX amino acid residue important in the DDR, tyrosine 142 (Y142), is converted to alanine (H2ax-Y142A). In H2ax-Y142A meiosis, the establishment of DDR signals on the chromosome-wide domain of the sex chromosomes is impaired. The initiation of MSCI is required for stage progression, which enables crossover formation, suggesting that the establishment of MSCI permits the timely progression of male meiosis. Our results suggest that normal meiotic progression requires the removal of ATR-mediated DDR signaling from autosomes. We propose a novel biological function for MSCI: the initiation of MSCI sequesters DDR factors from autosomes to the sex chromosomes at the onset of the pachytene stage, and the subsequent formation of an isolated XY nuclear compartment-the XY body-sequesters DDR factors to permit meiotic progression from the mid-pachytene stage onward. VIDEO ABSTRACT.
Collapse
|
59
|
Clairmont CS, Sarangi P, Ponnienselvan K, Galli LD, Csete I, Moreau L, Adelmant G, Chowdhury D, Marto JA, D'Andrea AD. TRIP13 regulates DNA repair pathway choice through REV7 conformational change. Nat Cell Biol 2020; 22:87-96. [PMID: 31915374 PMCID: PMC7336368 DOI: 10.1038/s41556-019-0442-y] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 11/25/2019] [Indexed: 01/21/2023]
Abstract
DNA double-strand breaks (DSBs) are repaired through homology-directed repair (HDR) or non-homologous end joining (NHEJ). BRCA1/2-deficient cancer cells cannot perform HDR, conferring sensitivity to poly(ADP-ribose) polymerase inhibitors (PARPi). However, concomitant loss of the pro-NHEJ factors 53BP1, RIF1, REV7-Shieldin (SHLD1-3) or CST-DNA polymerase alpha (Pol-α) in BRCA1-deficient cells restores HDR and PARPi resistance. Here, we identify the TRIP13 ATPase as a negative regulator of REV7. We show that REV7 exists in active 'closed' and inactive 'open' conformations, and TRIP13 catalyses the inactivating conformational change, thereby dissociating REV7-Shieldin to promote HDR. TRIP13 similarly disassembles the REV7-REV3 translesion synthesis (TLS) complex, a component of the Fanconi anaemia pathway, inhibiting error-prone replicative lesion bypass and interstrand crosslink repair. Importantly, TRIP13 overexpression is common in BRCA1-deficient cancers, confers PARPi resistance and correlates with poor prognosis. Thus, TRIP13 emerges as an important regulator of DNA repair pathway choice-promoting HDR, while suppressing NHEJ and TLS.
Collapse
Affiliation(s)
- Connor S Clairmont
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Prabha Sarangi
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Lucas D Galli
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Isabelle Csete
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Lisa Moreau
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Guillaume Adelmant
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Dipanjan Chowdhury
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jarrod A Marto
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alan D D'Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
60
|
TRIP13 interference inhibits the proliferation and metastasis of thyroid cancer cells through regulating TTC5/p53 pathway and epithelial-mesenchymal transition related genes expression. Biomed Pharmacother 2019; 120:109508. [DOI: 10.1016/j.biopha.2019.109508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 09/30/2019] [Indexed: 12/31/2022] Open
|
61
|
Zhang G, Zhu Q, Fu G, Hou J, Hu X, Cao J, Peng W, Wang X, Chen F, Cui H. TRIP13 promotes the cell proliferation, migration and invasion of glioblastoma through the FBXW7/c-MYC axis. Br J Cancer 2019; 121:1069-1078. [PMID: 31740732 PMCID: PMC6964669 DOI: 10.1038/s41416-019-0633-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/21/2019] [Accepted: 10/23/2019] [Indexed: 11/25/2022] Open
Abstract
Background Thyroid hormone receptor interactor 13 (TRIP13) is an AAA + ATPase that plays an important role in the mitotic checkpoint. TRIP13 is highly expressed in various human tumours and promotes tumorigenesis. However, the biological effect of TRIP13 in GBM cells remains unclear. Methods We generated GBM cell models with overexpressed or silenced TRIP13 via lentivirus-mediated overexpression and RNAi methods. The biological role of TRIP13 in the proliferation, migration and invasion of GBM cells has been further explored. Results Our research indicated that TRIP13 was highly expressed in GBM tissues and cells. We found that the proliferation, migration and invasion abilities were inhibited in TRIP13-knockdown GBM cells. These results indicated that TRIP13 plays an important role in the tumorigenesis of GBM. Moreover, we found that TRIP13 first stabilised c-MYC by inhibiting the transcription of FBXW7, which is an E3 ubiquitin ligase of c-MYC, by directly binding to the promoter region of FBXW7. Therefore, our study indicated that the TRIP13/FBXW7/c-MYC pathway might provide a prospective therapeutic target in the treatment of GBM. Conclusions These results indicated that TRIP13 plays an oncogenic role in GBM. The TRIP13/FBXW7/c-MYC pathway might act as a prospective therapeutic target for GBM patients.
Collapse
Affiliation(s)
- Guanghui Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, 400715, China.,Engineering Research Centre for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Qingzong Zhu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, 400715, China.,Engineering Research Centre for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Gang Fu
- Dental Hospital Affiliated to Chongqing Medical University, Chongqing, 400016, China
| | - Jianbing Hou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, 400715, China.,Engineering Research Centre for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Xiaosong Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, 400715, China.,Engineering Research Centre for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Jiangjun Cao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, 400715, China.,Engineering Research Centre for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Wen Peng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, 400715, China.,Engineering Research Centre for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Xiaowen Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, 400715, China.,Engineering Research Centre for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Fei Chen
- Department of Pharmaceutical Sciences EACPHS, Wayne State University 259 Mack Avenue, Detroit, MI, 48201, USA
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China. .,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, 400715, China. .,Engineering Research Centre for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China. .,Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
62
|
Wang Y, Huang J, Li B, Xue H, Tricot G, Hu L, Xu Z, Sun X, Chang S, Gao L, Tao Y, Xu H, Xie Y, Xiao W, Yu D, Kong Y, Chen G, Sun X, Lian F, Zhang N, Wu X, Mao Z, Zhan F, Zhu W, Shi J. A Small-Molecule Inhibitor Targeting TRIP13 Suppresses Multiple Myeloma Progression. Cancer Res 2019; 80:536-548. [PMID: 31732653 DOI: 10.1158/0008-5472.can-18-3987] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 07/30/2019] [Accepted: 11/11/2019] [Indexed: 11/16/2022]
Abstract
The AAA-ATPase TRIP13 drives multiple myeloma progression. Here, we present the crystal structure of wild-type human TRIP13 at a resolution of 2.6 Å. A small-molecule inhibitor targeting TRIP13 was identified on the basis of the crystal structure. The inhibitor, designated DCZ0415, was confirmed to bind TRIP13 using pull-down, nuclear magnetic resonance spectroscopy, and surface plasmon resonance-binding assays. DCZ0415 induced antimyeloma activity in vitro, in vivo, and in primary cells derived from drug-resistant patients with myeloma. The inhibitor impaired nonhomologous end joining repair and inhibited NF-κB activity. Moreover, combining DCZ0415 with the multiple myeloma chemotherapeutic melphalan or the HDAC inhibitor panobinostat induced synergistic antimyeloma activity. Therefore, targeting TRIP13 may be an effective therapeutic strategy for multiple myeloma, particularly refractory or relapsed multiple myeloma. SIGNIFICANCE: These findings identify TRIP13 as a potentially new therapeutic target in multiple myeloma.
Collapse
Affiliation(s)
- Yingcong Wang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jing Huang
- Shanghai Institute of Precision Medicine, The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Li
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Shanghai, China
| | - Han Xue
- Shanghai Institute of Precision Medicine, The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guido Tricot
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Liangning Hu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhijian Xu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaoxiang Sun
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shuaikang Chang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lu Gao
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi Tao
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hongwei Xu
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Yongsheng Xie
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenqin Xiao
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dandan Yu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuanyuan Kong
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Gege Chen
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xi Sun
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fulin Lian
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Shanghai, China
| | - Naixia Zhang
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaosong Wu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhiyong Mao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Fenghuang Zhan
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Weiliang Zhu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Shanghai, China.
| | - Jumei Shi
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
- Tongji University Cancer Center, Tongji University, Shanghai, China
| |
Collapse
|
63
|
Stafuzza NB, Costa E Silva EVD, Silva RMDO, Costa Filho LCCD, Barbosa FB, Macedo GG, Lobo RB, Baldi F. Genome-wide association study for age at puberty in young Nelore bulls. J Anim Breed Genet 2019; 137:234-244. [PMID: 31515857 DOI: 10.1111/jbg.12438] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 12/25/2022]
Abstract
Selection for bulls that would reach puberty early reduces the generation interval and increases fertility and herd productivity. Despite its economic importance, there are few QTL associated with age at puberty described in the literature. In this study, a weighted single-step genome-wide association study was performed to detect genomic regions and putative candidate genes related to age at puberty in young Nelore bulls. Several protein-coding genes related to spermatogenesis functions were identified within the genomic regions that explain more than 0.5% of the additive genetic variance for age at puberty in Nelore bulls, such as ADAM11, BRCA1, CSNK2A, CREBBP, MEIOC, NDRG2, NECTIN3, PARP2, PARP9, PRSS21, RAD51C, RNASE4, SLX4, SPA17, TEX14, TIMP2 and TRIP13 gene. Enrichment analysis by DAVID also revealed several GO terms related to spermatogenesis such as DNA replication (GO:0006260), male meiosis I (GO:0007141), double-strand break repair (GO:0006302), base excision repair (GO:0006284), apoptotic process (GO:0006915), cell-cell adhesion (GO: 0098609) and focal adhesion (GO:0005925). The heritability for age at puberty shows that this trait can be improved based on traditional EBV selection. Adding genomic information to the system helps to elucidate genes and molecular mechanisms controlling the sexual precocity and could help to predict sexual precocity in Nelore bulls with greater accuracy at younger age, which would speed up the breeding programme for this breed.
Collapse
Affiliation(s)
| | - Eliane Vianna da Costa E Silva
- Laboratório de Reprodução Animal, Faculdade de Medicina Veterinária e Zootecnia (FAMEZ), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Brazil
| | | | - Luiz Carlos Cesar da Costa Filho
- Laboratório de Reprodução Animal, Faculdade de Medicina Veterinária e Zootecnia (FAMEZ), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Brazil.,PROCRIAR Assistência Veterinária, Campo Grande, Brazil
| | - Fernanda Battistotti Barbosa
- Laboratório de Reprodução Animal, Faculdade de Medicina Veterinária e Zootecnia (FAMEZ), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Brazil.,PROCRIAR Assistência Veterinária, Campo Grande, Brazil
| | - Gustavo Guerino Macedo
- Laboratório de Reprodução Animal, Faculdade de Medicina Veterinária e Zootecnia (FAMEZ), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Brazil
| | - Raysildo B Lobo
- Associação Nacional dos Criadores e Pesquisadores (ANCP), Ribeirão Preto, Brazil
| | - Fernando Baldi
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Jaboticabal, Brazil
| |
Collapse
|
64
|
Zhang Q, Dong Y, Hao S, Tong Y, Luo Q, Aerxiding P. The oncogenic role of TRIP13 in regulating proliferation, invasion, and cell cycle checkpoint in NSCLC cells. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:3357-3366. [PMID: 31934178 PMCID: PMC6949856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 06/24/2019] [Indexed: 06/10/2023]
Abstract
TRIP13 (thyroid hormone receptor interacting protein 13) AAA-ATPase has been reported to be involved in the metaphase checkpoint in human breast cancer, prostate cancer, and cervical cancer. However, the expression pattern and biologic role of TRIP13 in non-small cell lung cancer (NSCLC) remained unknown. In our present study, real-time PCR and western blot were used to detect the expression level of TRIP13 in NSCLC tissues and cell lines. We found that the expression levels of TRIP13 mRNA and protein were significantly upregulated in cell lines and lung tissues. Knockdown of TRIP13 by lentivirus inhibited cell proliferation and invasion in both A549 and H1299 cells. Furthermore, flow cytometry, western blot and immunoprecipitation showed that the MCC complex was disassembled and cells became arrested in metaphase, when TRIP13 was inhibited. In conclusion, here we first report that TRIP13 acts as a tumor promoter in regulating cell proliferation, invasion, and cell cycle checkpoint in NSCLC cells and may be a clinically useful marker for the diagnosis and treatment of lung cancer.
Collapse
Affiliation(s)
- Qiao Zhang
- Department of Thoraciconcology, The Third Affiliated Hospital of Xinjiang Medical University, Tumor Hospital Affiliated to Xinjiang Medical UniversityUrumqi 830011, Xinjiang, China
| | - Yan Dong
- Department of Critical Care Medicine, The Third Affiliated Hospital of Xinjiang Medical University, Tumor Hospital Affiliated to Xinjiang Medical UniversityUrumqi 830011, Xinjiang, China
| | - Shaohuan Hao
- Department of Medical Oncology, The First People’s Hospital of KashgarKashgar 844000, Xinjiang, China
| | - Ying Tong
- Department of Daytime Inpatient Ward, The Third Affiliated Hospital of Xinjiang Medical UniversityUrumqi 830011, Xinjiang, China
| | - Qin Luo
- General Department (Area1), The Third Affiliated Hospital of Xinjiang Medical UniversityUrumqi 830011, Xinjiang, China
| | - Patiguli Aerxiding
- Department of Thoraciconcology, The Third Affiliated Hospital of Xinjiang Medical University, Tumor Hospital Affiliated to Xinjiang Medical UniversityUrumqi 830011, Xinjiang, China
| |
Collapse
|
65
|
Cyclin B3 is dispensable for mouse spermatogenesis. Chromosoma 2019; 128:473-487. [PMID: 31446450 DOI: 10.1007/s00412-019-00725-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 10/26/2022]
Abstract
Cyclins, as regulatory partners of cyclin-dependent kinases (CDKs), control the switch-like cell cycle transitions that orchestrate orderly duplication and segregation of genomes. Compared to mitosis, relatively little is known about how cyclin-CDK complexes control meiosis, the specialized cell division that generates gametes for sexual production. Mouse cyclin B3 was previously shown to have expression restricted to the beginning of meiosis, making it a candidate to regulate meiotic events. Indeed, female mice lacking cyclin B3 are sterile because oocytes arrest at the metaphase-to-anaphase transition of meiosis I. However, whether cyclin B3 functions during spermatogenesis was untested. Here, we found that males lacking cyclin B3 are fertile and show no detectable defects in spermatogenesis based on histological analysis of seminiferous tubules. Cytological analysis further showed no detectable defects in homologous chromosome synapsis or meiotic progression, and suggested that recombination is initiated and completed efficiently. Moreover, absence of cyclin B3 did not exacerbate previously described meiotic defects in mutants deficient for cyclin E2, suggesting a lack of redundancy between these cyclins. Thus, unlike in females, cyclin B3 is not essential for meiosis in males despite its prominent meiosis-specific expression.
Collapse
|
66
|
Molecular organization of mammalian meiotic chromosome axis revealed by expansion STORM microscopy. Proc Natl Acad Sci U S A 2019; 116:18423-18428. [PMID: 31444302 DOI: 10.1073/pnas.1902440116] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
During prophase I of meiosis, chromosomes become organized as loop arrays around the proteinaceous chromosome axis. As homologous chromosomes physically pair and recombine, the chromosome axis is integrated into the tripartite synaptonemal complex (SC) as this structure's lateral elements (LEs). While the components of the mammalian chromosome axis/LE-including meiosis-specific cohesin complexes, the axial element proteins SYCP3 and SYCP2, and the HORMA domain proteins HORMAD1 and HORMAD2-are known, the molecular organization of these components within the axis is poorly understood. Here, using expansion microscopy coupled with 2-color stochastic optical reconstruction microscopy (STORM) imaging (ExSTORM), we address these issues in mouse spermatocytes at a resolution of 10 to 20 nm. Our data show that SYCP3 and the SYCP2 C terminus, which are known to form filaments in vitro, form a compact core around which cohesin complexes, HORMADs, and the N terminus of SYCP2 are arrayed. Overall, our study provides a detailed structural view of the meiotic chromosome axis, a key organizational and regulatory component of meiotic chromosomes.
Collapse
|
67
|
The PSMA8 subunit of the spermatoproteasome is essential for proper meiotic exit and mouse fertility. PLoS Genet 2019; 15:e1008316. [PMID: 31437213 PMCID: PMC6726247 DOI: 10.1371/journal.pgen.1008316] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 09/04/2019] [Accepted: 07/17/2019] [Indexed: 01/01/2023] Open
Abstract
The ubiquitin proteasome system regulates meiotic recombination in yeast through its association with the synaptonemal complex, a ‘zipper’-like structure that holds homologous chromosome pairs in synapsis during meiotic prophase I. In mammals, the proteasome activator subunit PA200 targets acetylated histones for degradation during somatic DNA double strand break repair and during histone replacement during spermiogenesis. We investigated the role of the testis-specific proteasomal subunit α4s (PSMA8) during spermatogenesis, and found that PSMA8 was localized to and dependent on the central region of the synaptonemal complex. Accordingly, synapsis-deficient mice show delocalization of PSMA8. Moreover, though Psma8-deficient mice are proficient in meiotic homologous recombination, there are alterations in the proteostasis of several key meiotic players that, in addition to the known substrate acetylated histones, have been shown by a proteomic approach to interact with PSMA8, such as SYCP3, SYCP1, CDK1 and TRIP13. These alterations lead to an accumulation of spermatocytes in metaphase I and II which either enter massively into apoptosis or give rise to a low number of aberrant round spermatids that apoptose before histone replacement takes place. Proteins within the cells that are unnecessary or damaged are degraded by a large protein complex named the proteasome. The proteins to be degraded are marked by a small protein called ubiquitin. The addition of a small modification (acetyl group) to some proteins also promotes their degradation by the proteasome. Proteasomal degradation of proteins is an essential mechanism for many developmental programs including gametogenesis, a process whereby a diploid cell produces a haploid cell or gamete (sperm or egg). The mechanism by which this genome reduction occurs is called meiosis. Here, we report the study of a protein, named PSMA8 that is specific for the testis proteasome in vertebrates. Using the mouse as a model, we show that loss of PSMA8 leads to infertility in males. By co-immunoprecipitation-coupled mass spectroscopy we identified a large list of novel PSMA8 interacting proteins. We focused our functional analysis on several key meiotic proteins which were accumulated such as SYCP3, SYCP1, CDK1 and TRIP13 in addition to the known substrate of the spermatoproteasome, the acetylated histones. We suggest that the altered accumulation of these important proteins causes a disequilibrium of the meiotic division that produces apoptotic spermatocytes in metaphase I and II and also early spermatids that die soon after reaching this stage.
Collapse
|
68
|
West AMV, Komives EA, Corbett KD. Conformational dynamics of the Hop1 HORMA domain reveal a common mechanism with the spindle checkpoint protein Mad2. Nucleic Acids Res 2019; 46:279-292. [PMID: 29186573 PMCID: PMC5758881 DOI: 10.1093/nar/gkx1196] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/16/2017] [Indexed: 12/19/2022] Open
Abstract
The HORMA domain is a highly conserved protein–protein interaction module found in eukaryotic signaling proteins including the spindle assembly checkpoint protein Mad2 and the meiotic HORMAD proteins. HORMA domain proteins interact with short ‘closure motifs’ in partner proteins by wrapping their C-terminal ‘safety belt’ region entirely around these motifs, forming topologically-closed complexes. Closure motif binding and release requires large-scale conformational changes in the HORMA domain, but such changes have only been observed in Mad2. Here, we show that Saccharomyces cerevisiae Hop1, a master regulator of meiotic recombination, possesses conformational dynamics similar to Mad2. We identify closure motifs in the Hop1 binding partner Red1 and in Hop1 itself, revealing that HORMA domain–closure motif interactions underlie both Hop1’s initial recruitment to the chromosome axis and its self-assembly on the axis. We further show that Hop1 adopts two distinct folded states in solution, one corresponding to the previously-observed ‘closed’ conformation, and a second more extended state in which the safety belt region has disengaged from the HORMA domain core. These data reveal strong mechanistic similarities between meiotic HORMADs and Mad2, and provide a mechanistic basis for understanding both meiotic chromosome axis assembly and its remodeling by the AAA+ ATPase Pch2/TRIP13.
Collapse
Affiliation(s)
- Alan M V West
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA 92093, USA.,Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kevin D Corbett
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA 92093, USA.,Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.,Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
69
|
Lu S, Qian J, Guo M, Gu C, Yang Y. Insights into a Crucial Role of TRIP13 in Human Cancer. Comput Struct Biotechnol J 2019; 17:854-861. [PMID: 31321001 PMCID: PMC6612527 DOI: 10.1016/j.csbj.2019.06.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 06/05/2019] [Accepted: 06/08/2019] [Indexed: 01/06/2023] Open
Abstract
Thyroid Hormone Receptor Interacting Protein 13 (TRIP13) plays a key role in regulating mitotic processes, including spindle assembly checkpoint and DNA repair pathways, which may account for Chromosome instability (CIN). As CIN is a predominant hallmark of cancer, TRIP13 may act as a tumor susceptibility locus. Amplification of TRIP13 has been observed in various human cancers and implicated in several aspects of malignant transformation, including cancer cell proliferation, drug resistance and tumor progression. Here, we discussed the functional significance of TRIP13 in cell progression, highlighted the recent findings on the aberrant expression in human cancers and emphasized its significance for the therapeutic potential.
Collapse
Affiliation(s)
- S Lu
- The Third Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing 210023, China.,School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - J Qian
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - M Guo
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - C Gu
- The Third Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing 210023, China.,School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Y Yang
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing 210023, China.,School of Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 210023 0Nanjing, China
| |
Collapse
|
70
|
Noncanonical Contributions of MutLγ to VDE-Initiated Crossovers During Saccharomyces cerevisiae Meiosis. G3-GENES GENOMES GENETICS 2019; 9:1647-1654. [PMID: 30902890 PMCID: PMC6505156 DOI: 10.1534/g3.119.400150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In Saccharomyces cerevisiae, the meiosis-specific axis proteins Hop1 and Red1 are present nonuniformly across the genome. In a previous study, the meiosis-specific VMA1-derived endonuclease (VDE) was used to examine Spo11-independent recombination in a recombination reporter inserted in a Hop1/Red1-enriched region (HIS4) and in a Hop1/Red1-poor region (URA3). VDE-initiated crossovers at HIS4 were mostly dependent on Mlh3, a component of the MutLγ meiotic recombination intermediate resolvase, while VDE-initiated crossovers at URA3 were mostly Mlh3-independent. These differences were abolished in the absence of the chromosome axis remodeler Pch2, and crossovers at both loci became partly Mlh3-dependent. To test the generality of these observations, we examined inserts at six additional loci that differed in terms of Hop1/Red1 enrichment, chromosome size, and distance from centromeres and telomeres. All six loci behaved similarly to URA3: the vast majority of VDE-initiated crossovers were Mlh3-independent. This indicates that, counter to previous suggestions, levels of meiotic chromosome axis protein enrichment alone do not determine which recombination pathway gives rise to crossovers during VDE-initiated meiotic recombination. In pch2∆ mutants, the fraction of VDE-induced crossovers that were Mlh3-dependent increased to levels previously observed for Spo11-initiated crossovers in pch2∆, indicating that Pch2-dependent processes play an important role in controlling the balance between MutLγ-dependent and MutLγ-independent crossovers.
Collapse
|
71
|
Characterization of Pch2 localization determinants reveals a nucleolar-independent role in the meiotic recombination checkpoint. Chromosoma 2019; 128:297-316. [PMID: 30859296 DOI: 10.1007/s00412-019-00696-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/05/2019] [Accepted: 02/20/2019] [Indexed: 10/27/2022]
Abstract
The meiotic recombination checkpoint blocks meiotic cell cycle progression in response to synapsis and/or recombination defects to prevent aberrant chromosome segregation. The evolutionarily conserved budding yeast Pch2TRIP13 AAA+ ATPase participates in this pathway by supporting phosphorylation of the Hop1HORMAD adaptor at T318. In the wild type, Pch2 localizes to synapsed chromosomes and to the unsynapsed rDNA region (nucleolus), excluding Hop1. In contrast, in synaptonemal complex (SC)-defective zip1Δ mutants, which undergo checkpoint activation, Pch2 is detected only on the nucleolus. Alterations in some epigenetic marks that lead to Pch2 dispersion from the nucleolus suppress zip1Δ-induced checkpoint arrest. These observations have led to the notion that Pch2 nucleolar localization could be important for the meiotic recombination checkpoint. Here we investigate how Pch2 chromosomal distribution impacts checkpoint function. We have generated and characterized several mutations that alter Pch2 localization pattern resulting in aberrant Hop1 distribution and compromised meiotic checkpoint response. Besides the AAA+ signature, we have identified a basic motif in the extended N-terminal domain critical for Pch2's checkpoint function and localization. We have also examined the functional relevance of the described Orc1-Pch2 interaction. Both proteins colocalize in the rDNA, and Orc1 depletion during meiotic prophase prevents Pch2 targeting to the rDNA allowing unwanted Hop1 accumulation on this region. However, Pch2 association with SC components remains intact in the absence of Orc1. We finally show that checkpoint activation is not affected by the lack of Orc1 demonstrating that, in contrast to previous hypotheses, nucleolar localization of Pch2 is actually dispensable for the meiotic checkpoint.
Collapse
|
72
|
Subramanian VV, Zhu X, Markowitz TE, Vale-Silva LA, San-Segundo PA, Hollingsworth NM, Keeney S, Hochwagen A. Persistent DNA-break potential near telomeres increases initiation of meiotic recombination on short chromosomes. Nat Commun 2019; 10:970. [PMID: 30814509 PMCID: PMC6393486 DOI: 10.1038/s41467-019-08875-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 02/05/2019] [Indexed: 11/09/2022] Open
Abstract
Faithful meiotic chromosome inheritance and fertility rely on the stimulation of meiotic crossover recombination by potentially genotoxic DNA double-strand breaks (DSBs). To avoid excessive damage, feedback mechanisms down-regulate DSBs, likely in response to initiation of crossover repair. In Saccharomyces cerevisiae, this regulation requires the removal of the conserved DSB-promoting protein Hop1/HORMAD during chromosome synapsis. Here, we identify privileged end-adjacent regions (EARs) spanning roughly 100 kb near all telomeres that escape DSB down-regulation. These regions retain Hop1 and continue to break in pachynema despite normal synaptonemal complex deposition. Differential retention of Hop1 requires the disassemblase Pch2/TRIP13, which preferentially removes Hop1 from telomere-distant sequences, and is modulated by the histone deacetylase Sir2 and the nucleoporin Nup2. Importantly, the uniform size of EARs among chromosomes contributes to disproportionately high DSB and repair signals on short chromosomes in pachynema, suggesting that EARs partially underlie the curiously high recombination rate of short chromosomes.
Collapse
Affiliation(s)
| | - Xuan Zhu
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.,Amazon AI, Seattle, WA, 98101, USA
| | - Tovah E Markowitz
- Department of Biology, New York University, New York, NY, 10003, USA.,Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
| | - Luis A Vale-Silva
- Department of Biology, New York University, New York, NY, 10003, USA.,BioQuant Center, Heidelberg University, 69120, Heidelberg, Germany
| | - Pedro A San-Segundo
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, University of Salamanca, 37007, Salamanca, Spain
| | - Nancy M Hollingsworth
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.,Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Andreas Hochwagen
- Department of Biology, New York University, New York, NY, 10003, USA.
| |
Collapse
|
73
|
Transition from a meiotic to a somatic-like DNA damage response during the pachytene stage in mouse meiosis. PLoS Genet 2019; 15:e1007439. [PMID: 30668564 PMCID: PMC6358097 DOI: 10.1371/journal.pgen.1007439] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 02/01/2019] [Accepted: 11/28/2018] [Indexed: 11/24/2022] Open
Abstract
Homologous recombination (HR) is the principal mechanism of DNA repair acting during meiosis and is fundamental for the segregation of chromosomes and the increase of genetic diversity. Nevertheless, non-homologous end joining (NHEJ) mechanisms can also act during meiosis, mainly in response to exogenously-induced DNA damage in late stages of first meiotic prophase. In order to better understand the relationship between these two repair pathways, we studied the response to DNA damage during male mouse meiosis after gamma radiation. We clearly discerned two types of responses immediately after treatment. From leptotene to early pachytene, exogenous damage triggered the massive presence of γH2AX throughout the nucleus, which was associated with DNA repair mediated by HR components (DMC1 and RAD51). This early pathway finished with the sequential removal of DMC1 and RAD51 and was no longer inducible at mid pachytene. However, from mid-pachytene to diplotene, γH2AX appeared as large discrete foci. This late repair pattern was mediated initially by NHEJ, involving Ku70 and XRCC4, which were constitutively present, and 53BP1, which appeared at sites of damage soon after irradiation. Nevertheless, 24 hours after irradiation, a HR pathway involving RAD51 but not DMC1 mostly replaced NHEJ. Additionally, we observed the occurrence of synaptonemal complex bridges between bivalents, most likely representing chromosome translocation events that may involve DMC1, RAD51 or 53BP1. Our results reinforce the idea that the early “meiotic” repair pathway that acts by default at the beginning of meiosis is replaced from mid-pachytene onwards by a “somatic-like” repair pattern. This shift might be important to resolve DNA damage (either endogenous or exogenous) that could not be repaired by the early meiotic mechanisms, for instance those in the sex chromosomes, which lack a homologous chromosome to repair with. This transition represents another layer of functional changes that occur in meiotic cells during mid pachytene, in addition to epigenetic reprograming, reactivation of transcription, changes in the gene expression profile and acquisition of competence to proceed to metaphase. DNA repair is critical for both somatic and meiotic cells. During meiosis, hundreds of DNA double strand breaks (DSBs) are introduced endogenously. To repair this damage, meiotic cells use a specialized version of the homologous recombination (HR) pathway that uses specific meiotic recombinases, such as DMC1, to promote repair with the homologous chromosome instead of the sister chromatid. This process is important to ensure chromosome segregation during meiosis and, as a side consequence, increases the genetic diversity of offspring. Nevertheless, under specific circumstances, meiotic cells can use other DNA repair mechanisms such as non-homologous end joining (NHEJ), which is error-prone. We investigated the response of mouse spermatocytes to increased DNA damage caused by gamma radiation, which is commonly used in cancer therapy. We found that the excess of DSBs produced by irradiation is processed by the meiotic HR recombination pathway in spermatocytes at the early stages of first meiotic prophase. However, this response is not inducible from the mid-pachytene stage onwards. From this point on, spermatocytes rely on a response that shares many features with that of somatic cells. In this response, the NHEJ pathway is first used to repair DNA damage but is subsequently replaced by a HR mechanism that does not use DMC1. Instead, it relies only on RAD51, which is known to function in both somatic and meiosis cells and, contrary to DMC1, has a preference for the sister chromatid. This switch from a meiotic to a somatic-like response is accompanied by a conspicuous change in the epigenetic response to DNA damage, reinforcing the idea that a functional transition occurs in meiotic cells during the mid-pachytene stage.
Collapse
|
74
|
West AMV, Rosenberg SC, Ur SN, Lehmer MK, Ye Q, Hagemann G, Caballero I, Usón I, MacQueen AJ, Herzog F, Corbett KD. A conserved filamentous assembly underlies the structure of the meiotic chromosome axis. eLife 2019; 8:e40372. [PMID: 30657449 PMCID: PMC6349405 DOI: 10.7554/elife.40372] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 01/18/2019] [Indexed: 11/30/2022] Open
Abstract
The meiotic chromosome axis plays key roles in meiotic chromosome organization and recombination, yet the underlying protein components of this structure are highly diverged. Here, we show that 'axis core proteins' from budding yeast (Red1), mammals (SYCP2/SYCP3), and plants (ASY3/ASY4) are evolutionarily related and play equivalent roles in chromosome axis assembly. We first identify 'closure motifs' in each complex that recruit meiotic HORMADs, the master regulators of meiotic recombination. We next find that axis core proteins form homotetrameric (Red1) or heterotetrameric (SYCP2:SYCP3 and ASY3:ASY4) coiled-coil assemblies that further oligomerize into micron-length filaments. Thus, the meiotic chromosome axis core in fungi, mammals, and plants shares a common molecular architecture, and likely also plays conserved roles in meiotic chromosome axis assembly and recombination control.
Collapse
Affiliation(s)
- Alan MV West
- Biomedical Sciences Graduate ProgramUniversity of California, San DiegoLa JollaUnited States
- Department of Cellular and Molecular MedicineUniversity of California, San DiegoLa JollaUnited States
| | - Scott C Rosenberg
- Department of ChemistryUniversity of California, San DiegoLa JollaUnited States
| | - Sarah N Ur
- Biomedical Sciences Graduate ProgramUniversity of California, San DiegoLa JollaUnited States
| | - Madison K Lehmer
- Department of Cellular and Molecular MedicineUniversity of California, San DiegoLa JollaUnited States
| | - Qiaozhen Ye
- Department of Cellular and Molecular MedicineUniversity of California, San DiegoLa JollaUnited States
| | - Götz Hagemann
- Gene Center and Department of BiochemistryLudwig-Maximilians-Universität MünchenMunichGermany
| | - Iracema Caballero
- Crystallographic MethodsInstitute of Molecular Biology of Barcelona (IBMB-CSIC)BarcelonaSpain
| | - Isabel Usón
- Crystallographic MethodsInstitute of Molecular Biology of Barcelona (IBMB-CSIC)BarcelonaSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| | - Amy J MacQueen
- Department of Molecular Biology and BiochemistryWesleyan UniversityMiddletownUnited States
| | - Franz Herzog
- Gene Center and Department of BiochemistryLudwig-Maximilians-Universität MünchenMunichGermany
| | - Kevin D Corbett
- Department of Cellular and Molecular MedicineUniversity of California, San DiegoLa JollaUnited States
- Department of ChemistryUniversity of California, San DiegoLa JollaUnited States
- Ludwig Institute for Cancer ResearchLa JollaUnited States
| |
Collapse
|
75
|
Shu complex SWS1-SWSAP1 promotes early steps in mouse meiotic recombination. Nat Commun 2018; 9:3961. [PMID: 30305635 PMCID: PMC6180034 DOI: 10.1038/s41467-018-06384-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 08/24/2018] [Indexed: 12/25/2022] Open
Abstract
The DNA-damage repair pathway homologous recombination (HR) requires factors that promote the activity of strand-exchange protein RAD51 and its meiosis-specific homolog DMC1. Here we show that the Shu complex SWS1-SWSAP1, a candidate for one such HR regulator, is dispensable for mouse viability but essential for male and female fertility, promoting the assembly of RAD51 and DMC1 on early meiotic HR intermediates. Only a fraction of mutant meiocytes progress to form crossovers, which are crucial for chromosome segregation, demonstrating crossover homeostasis. Remarkably, loss of the DNA damage checkpoint kinase CHK2 rescues fertility in females without rescuing crossover numbers. Concomitant loss of the BRCA2 C terminus aggravates the meiotic defects in Swsap1 mutant spermatocytes, suggesting an overlapping role with the Shu complex during meiotic HR. These results demonstrate an essential role for SWS1-SWSAP1 in meiotic progression and emphasize the complex interplay of factors that ensure recombinase function. Homologous recombination ensures genome integrity during meiotic recombination. Here the authors reveal that factors SWS1 and SWSAP1 are critical for meiotic homologues recombination, particularly in promoting assembly of RAD51 and DMC1 on early recombination intermediates.
Collapse
|
76
|
Qiao H, Rao HBDP, Yun Y, Sandhu S, Fong JH, Sapre M, Nguyen M, Tham A, Van BW, Chng TYH, Lee A, Hunter N. Impeding DNA Break Repair Enables Oocyte Quality Control. Mol Cell 2018; 72:211-221.e3. [PMID: 30270110 DOI: 10.1016/j.molcel.2018.08.031] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/31/2018] [Accepted: 08/20/2018] [Indexed: 12/18/2022]
Abstract
Oocyte quality control culls eggs with defects in meiosis. In mouse, oocyte death can be triggered by defects in chromosome synapsis and recombination, which involve repair of DNA double-strand breaks (DSBs) between homologous chromosomes. We show that RNF212, a SUMO ligase required for crossing over, also mediates oocyte quality control. Both physiological apoptosis and wholesale oocyte elimination in meiotic mutants require RNF212. RNF212 sensitizes oocytes to DSB-induced apoptosis within a narrow window as chromosomes desynapse and cells transition into quiescence. Analysis of DNA damage during this transition implies that RNF212 impedes DSB repair. Consistently, RNF212 is required for HORMAD1, a negative regulator of inter-sister recombination, to associate with desynapsing chromosomes. We infer that oocytes impede repair of residual DSBs to retain a "memory" of meiotic defects that enables quality-control processes. These results define the logic of oocyte quality control and suggest RNF212 variants may influence transmission of defective genomes.
Collapse
Affiliation(s)
- Huanyu Qiao
- Howard Hughes Medical Institute, University of California, Davis, Davis, CA, USA; Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA.
| | - H B D Prasada Rao
- Howard Hughes Medical Institute, University of California, Davis, Davis, CA, USA; Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Yan Yun
- Howard Hughes Medical Institute, University of California, Davis, Davis, CA, USA; Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Sumit Sandhu
- Howard Hughes Medical Institute, University of California, Davis, Davis, CA, USA; Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Jared H Fong
- Howard Hughes Medical Institute, University of California, Davis, Davis, CA, USA; Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Manali Sapre
- Howard Hughes Medical Institute, University of California, Davis, Davis, CA, USA; Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Michael Nguyen
- Howard Hughes Medical Institute, University of California, Davis, Davis, CA, USA; Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Addy Tham
- Howard Hughes Medical Institute, University of California, Davis, Davis, CA, USA; Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Benjamin W Van
- Howard Hughes Medical Institute, University of California, Davis, Davis, CA, USA; Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Tiffany Y H Chng
- Howard Hughes Medical Institute, University of California, Davis, Davis, CA, USA; Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Amy Lee
- Howard Hughes Medical Institute, University of California, Davis, Davis, CA, USA; Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Neil Hunter
- Howard Hughes Medical Institute, University of California, Davis, Davis, CA, USA; Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA, USA; Department of Molecular & Cellular Biology, University of California, Davis, Davis, CA, USA; Department of Cell Biology & Human Anatomy, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
77
|
Structured illumination microscopy imaging reveals localization of replication protein A between chromosome lateral elements during mammalian meiosis. Exp Mol Med 2018; 50:1-12. [PMID: 30154456 PMCID: PMC6113238 DOI: 10.1038/s12276-018-0139-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 11/08/2022] Open
Abstract
An important event enabling meiotic prophase I to proceed is the close juxtaposition of conjoined chromosome axes of homologs and their assembly via an array of transverse filaments and meiosis-specific axial elements into the synaptonemal complex (SC). During meiosis, recombination requires the establishment of a platform for recombinational interactions between the chromosome axes and their subsequent stabilization. This is essential for ensuring crossover recombination and proper segregation of homologous chromosomes. Thus, well-established SCs are essential for supporting these processes. The regulation of recombination intermediates on the chromosome axis/SC and dynamic positioning of double-strand breaks are not well understood. Here, using super-resolution microscopy (structured illumination microscopy), we determined the localization of the replication protein A (RPA) complex on the chromosome axes in the early phase of leptonema/zygonema and within the CEs of SC in the pachynema during meiotic prophase in mouse spermatocytes. RPA, which marks the intermediate steps of pairing and recombination, appears in large numbers and is positioned on the chromosome axes at the zygonema. In the pachynema, RPA foci are reduced but do not completely disappear; instead, they are placed between lateral elements. Our results reveal the precise structure of SC and localization dynamics of recombination intermediates on meiocyte chromosomes undergoing homolog pairing and meiotic recombination.
Collapse
|
78
|
Pacheco S, Maldonado-Linares A, Marcet-Ortega M, Rojas C, Martínez-Marchal A, Fuentes-Lazaro J, Lange J, Jasin M, Keeney S, Fernández-Capetillo O, Garcia-Caldés M, Roig I. ATR is required to complete meiotic recombination in mice. Nat Commun 2018; 9:2622. [PMID: 29977027 PMCID: PMC6033890 DOI: 10.1038/s41467-018-04851-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 05/24/2018] [Indexed: 01/08/2023] Open
Abstract
Precise execution of recombination during meiosis is essential for forming chromosomally-balanced gametes. Meiotic recombination initiates with the formation and resection of DNA double-strand breaks (DSBs). Cellular responses to meiotic DSBs are critical for efficient repair and quality control, but molecular features of these remain poorly understood, particularly in mammals. Here we report that the DNA damage response protein kinase ATR is crucial for meiotic recombination and completion of meiotic prophase in mice. Using a hypomorphic Atr mutation and pharmacological inhibition of ATR in vivo and in cultured spermatocytes, we show that ATR, through its effector kinase CHK1, promotes efficient RAD51 and DMC1 assembly at RPA-coated resected DSB sites and establishment of interhomolog connections during meiosis. Furthermore, our findings suggest that ATR promotes local accumulation of recombination markers on unsynapsed axes during meiotic prophase to favor homologous chromosome synapsis. These data reveal that ATR plays multiple roles in mammalian meiotic recombination.
Collapse
Affiliation(s)
- Sarai Pacheco
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
| | - Andros Maldonado-Linares
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
| | - Marina Marcet-Ortega
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
| | - Cristina Rojas
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
| | - Ana Martínez-Marchal
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
| | - Judit Fuentes-Lazaro
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
| | - Julian Lange
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | | | - Montserrat Garcia-Caldés
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
| | - Ignasi Roig
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain.
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain.
| |
Collapse
|
79
|
Crichton JH, Read D, Adams IR. Defects in meiotic recombination delay progression through pachytene in Tex19.1 -/- mouse spermatocytes. Chromosoma 2018; 127:437-459. [PMID: 29907896 PMCID: PMC6208735 DOI: 10.1007/s00412-018-0674-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 04/21/2018] [Accepted: 06/01/2018] [Indexed: 02/08/2023]
Abstract
Recombination, synapsis, chromosome segregation and gene expression are co-ordinately regulated during meiosis to ensure successful execution of this specialised cell division. Studies with multiple mutant mouse lines have shown that mouse spermatocytes possess quality control checkpoints that eliminate cells with persistent defects in chromosome synapsis. In addition, studies on Trip13mod/mod mice suggest that pachytene spermatocytes that successfully complete chromosome synapsis can undergo meiotic arrest in response to defects in recombination. Here, we present additional support for a meiotic recombination-dependent checkpoint using a different mutant mouse line, Tex19.1-/-. The appearance of early recombination foci is delayed in Tex19.1-/- spermatocytes during leptotene/zygotene, but some Tex19.1-/- spermatocytes still successfully synapse their chromosomes and we show that these spermatocytes are enriched for early recombination foci. Furthermore, we show that patterns of axis elongation, chromatin modifications and histone H1t expression are also all co-ordinately skewed towards earlier substages of pachytene in these autosomally synapsed Tex19.1-/- spermatocytes. We also show that this skew towards earlier pachytene substages occurs in the absence of elevated spermatocyte death in the population, that spermatocytes with features of early pachytene are present in late stage Tex19.1-/- testis tubules and that the delay in histone H1t expression in response to loss of Tex19.1 does not occur in a Spo11 mutant background. Taken together, these data suggest that a recombination-dependent checkpoint may be able to modulate pachytene progression in mouse spermatocytes to accommodate some types of recombination defect.
Collapse
Affiliation(s)
- James H Crichton
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - David Read
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Ian R Adams
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK.
| |
Collapse
|
80
|
Hunter N. Oocyte Quality Control: Causes, Mechanisms, and Consequences. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2018; 82:235-247. [PMID: 29743337 DOI: 10.1101/sqb.2017.82.035394] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Oocyte quality and number are key determinants of reproductive life span and success. These variables are shaped in part by the elimination of oocytes that experience problems during the early stages of meiosis. Meiotic prophase-I marks an extended period of genome vulnerability in which epigenetic reprogramming unleashes retroelements and hundreds of DNA double-strand breaks (DSBs) are inflicted to initiate the programmed recombination required for accurate chromosome segregation at the first meiotic division. Expression of LINE-1 retroelements perturbs several aspects of meiotic prophase and is associated with oocyte death during the early stages of meiotic prophase I. Defects in chromosome synapsis and recombination also trigger oocyte loss, but typically at a later stage, as cells transition into quiescence and form primordial follicles. Interrelated pathways that signal defects in DSB repair and chromosome synapsis mediate this late oocyte attrition. Here, I review our current understanding of early and late oocyte attrition based on studies in mouse and describe how these processes appear to be both distinct and overlapping and how they help balance the quality and size of oocyte reserves to maximize fecundity.
Collapse
Affiliation(s)
- Neil Hunter
- Howard Hughes Medical Institute, University of California, Davis, Davis, California 95616.,Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California 95616.,Department of Molecular and Cellular Biology, University of California, Davis, Davis, California 95616.,Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, California 95616
| |
Collapse
|
81
|
Marks DH, Thomas R, Chin Y, Shah R, Khoo C, Benezra R. Mad2 Overexpression Uncovers a Critical Role for TRIP13 in Mitotic Exit. Cell Rep 2018; 19:1832-1845. [PMID: 28564602 DOI: 10.1016/j.celrep.2017.05.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 04/25/2017] [Accepted: 05/04/2017] [Indexed: 12/15/2022] Open
Abstract
The mitotic checkpoint ensures proper segregation of chromosomes by delaying anaphase until all kinetochores are bound to microtubules. This inhibitory signal is composed of a complex containing Mad2, which inhibits anaphase progression. The complex can be disassembled by p31comet and TRIP13; however, TRIP13 knockdown has been shown to cause only a mild mitotic delay. Overexpression of checkpoint genes, as well as TRIP13, is correlated with chromosomal instability (CIN) in cancer, but the initial effects of Mad2 overexpression are prolonged mitosis and decreased proliferation. Here, we show that TRIP13 overexpression significantly reduced, and TRIP13 reduction significantly exacerbated, the mitotic delay associated with Mad2 overexpression, but not that induced by microtubule depolymerization. The combination of Mad2 overexpression and TRIP13 loss reduced the ability of checkpoint complexes to disassemble and significantly inhibited the proliferation of cells in culture and tumor xenografts. These results identify an unexpected dependency on TRIP13 in cells overexpressing Mad2.
Collapse
Affiliation(s)
- Daniel Henry Marks
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Rozario Thomas
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Yvette Chin
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Riddhi Shah
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Christine Khoo
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Robert Benezra
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA; Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA.
| |
Collapse
|
82
|
[Study on the expression of TRIP13 mRNA in chronic lymphocytic leukemia B lymphocyte and the molecular mechanism of TRIP13 mediated JVM-2 cell proliferation and apoptosis]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2017; 38:618-622. [PMID: 28810332 PMCID: PMC7342273 DOI: 10.3760/cma.j.issn.0253-2727.2017.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Objective: To investigate the clinical significance of expression level of thyroid hormone receptor interactors 13 (TRIP13) gene to probe its function and downstream molecular mechanism in chronic lymphocytic leukemia (CLL) . Methods: Real-time quantitative PCR method was used to detect the expression levels of TRIP13 mRNA of CD19(+) B lymphocytes in 30 cases of patients with CLL and 12 cases of peripheral blood hematopoietic stem cell donors (normal control group) . Lentivirus mediated shRNA was used to interference the mRNA and TRIP13 protein in CLL cells JVM-2. Scramble sequence was used as control. Methyl thiazolyl tetrazolium colorimetric assay (MTT) and flow cytometry was used to detect the cell proliferation and apoptosis in TRIP13 knocked-down and negative control JVM-2 cells. Results: TRIP13 mRNA level was significantly higher in 30 cases of CLL patients (2(-△Ct)= 0.014 89) compared with 12 healthy donors (2(-△Ct)= 0.000 19) (P<0.001) . Validated TRIP13 shRNA target was achieved in JVM2 cell. Compared with the control group, down-regulation of TRIP13 expression could significantly inhibit the proliferation of JVM-2 cells and induce apoptosis. The expressions of Myc and Bcl-2 protein in JVM-2 cells decreased significantly after interference with TRIP13 (P<0.001) , and the expressions of Bax, caspase 3 and Bad protein increased significantly (P<0.001) . Conclusion: TRIP13 mRNA significantly over-expressed in CLL patients CD19(+) B lymphocytes. TRIP13 could influence JVM2 cell proliferation and apoptosis through proliferation- and apoptosis-related proteins.
Collapse
|
83
|
Ye Q, Kim DH, Dereli I, Rosenberg SC, Hagemann G, Herzog F, Tóth A, Cleveland DW, Corbett KD. The AAA+ ATPase TRIP13 remodels HORMA domains through N-terminal engagement and unfolding. EMBO J 2017; 36:2419-2434. [PMID: 28659378 DOI: 10.15252/embj.201797291] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 05/30/2017] [Accepted: 06/06/2017] [Indexed: 12/22/2022] Open
Abstract
Proteins of the conserved HORMA domain family, including the spindle assembly checkpoint protein MAD2 and the meiotic HORMADs, assemble into signaling complexes by binding short peptides termed "closure motifs". The AAA+ ATPase TRIP13 regulates both MAD2 and meiotic HORMADs by disassembling these HORMA domain-closure motif complexes, but its mechanisms of substrate recognition and remodeling are unknown. Here, we combine X-ray crystallography and crosslinking mass spectrometry to outline how TRIP13 recognizes MAD2 with the help of the adapter protein p31comet We show that p31comet binding to the TRIP13 N-terminal domain positions the disordered MAD2 N-terminus for engagement by the TRIP13 "pore loops", which then unfold MAD2 in the presence of ATP N-terminal truncation of MAD2 renders it refractory to TRIP13 action in vitro, and in cells causes spindle assembly checkpoint defects consistent with loss of TRIP13 function. Similar truncation of HORMAD1 in mouse spermatocytes compromises its TRIP13-mediated removal from meiotic chromosomes, highlighting a conserved mechanism for recognition and disassembly of HORMA domain-closure motif complexes by TRIP13.
Collapse
Affiliation(s)
- Qiaozhen Ye
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA, USA
| | - Dong Hyun Kim
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA, USA
| | - Ihsan Dereli
- Institute of Physiological Chemistry, Faculty of Medicine at the TU Dresden, Dresden, Germany
| | - Scott C Rosenberg
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA, USA.,Department of Chemistry, University of California, San Diego, La Jolla, CA, USA
| | - Goetz Hagemann
- Gene Center Munich and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Franz Herzog
- Gene Center Munich and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Attila Tóth
- Institute of Physiological Chemistry, Faculty of Medicine at the TU Dresden, Dresden, Germany
| | - Don W Cleveland
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA, USA.,Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Kevin D Corbett
- Ludwig Institute for Cancer Research, San Diego Branch, La Jolla, CA, USA .,Department of Chemistry, University of California, San Diego, La Jolla, CA, USA.,Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
84
|
Marcet-Ortega M, Pacheco S, Martínez-Marchal A, Castillo H, Flores E, Jasin M, Keeney S, Roig I. p53 and TAp63 participate in the recombination-dependent pachytene arrest in mouse spermatocytes. PLoS Genet 2017; 13:e1006845. [PMID: 28617799 PMCID: PMC5491309 DOI: 10.1371/journal.pgen.1006845] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 06/29/2017] [Accepted: 06/01/2017] [Indexed: 01/09/2023] Open
Abstract
To protect germ cells from genomic instability, surveillance mechanisms ensure meiosis occurs properly. In mammals, spermatocytes that display recombination defects experience a so-called recombination-dependent arrest at the pachytene stage, which relies on the MRE11 complex—ATM—CHK2 pathway responding to unrepaired DNA double-strand breaks (DSBs). Here, we asked if p53 family members—targets of ATM and CHK2—participate in this arrest. We bred double-mutant mice combining a mutation of a member of the p53 family (p53, TAp63, or p73) with a Trip13 mutation. Trip13 deficiency triggers a recombination-dependent response that arrests spermatocytes in pachynema before they have incorporated the testis-specific histone variant H1t into their chromatin. We find that deficiency for either p53 or TAp63, but not p73, allowed spermatocytes to progress further into meiotic prophase despite the presence of numerous unrepaired DSBs. Even so, the double mutant spermatocytes apoptosed at late pachynema because of sex body deficiency; thus p53 and TAp63 are dispensable for arrest caused by sex body defects. These data affirm that recombination-dependent and sex body-deficient arrests occur via genetically separable mechanisms. Meiosis is a specialized cell division that generates haploid gametes by halving chromosome content through two consecutive rounds of chromosome segregation. At the onset of the first meiotic division, SPO11 protein introduces double-strand breaks (DSBs) throughout the genome. These DSBs are repaired through homologous recombination, which promotes pairing and synapsis of the homologous chromosomes. Some DSBs will become repaired as crossovers, providing a physical connection between the homologous chromosomes which promotes correct chromosome segregation. In fact, recombination defects can lead to formation of aneuploid gametes, one of the major causes of miscarriages and chromosome abnormalities in humans. To protect germ cells from genomic instability and to produce balanced gametes, surveillance mechanisms ensure that meiosis occurs properly. It is known that in the presence of unrepaired DSBs a control mechanism promotes a spermatogenic block at the pachytene stage. Here we describe that, downstream MRE11-ATM-CHK2 pathway, p53 and TAp63 are the effectors responsible for activating recombination-dependent arrest in mouse spermatocytes.
Collapse
Affiliation(s)
- Marina Marcet-Ortega
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Cytology and Histology Unit, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Sarai Pacheco
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Cytology and Histology Unit, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Ana Martínez-Marchal
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Cytology and Histology Unit, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Helena Castillo
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Cytology and Histology Unit, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Elsa Flores
- Department of Biochemistry and Molecular Biology, Graduate School of Biomedical Sciences, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Ignasi Roig
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Cytology and Histology Unit, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- * E-mail:
| |
Collapse
|
85
|
Vernet N, Mahadevaiah SK, de Rooij DG, Burgoyne PS, Ellis PJI. Zfy genes are required for efficient meiotic sex chromosome inactivation (MSCI) in spermatocytes. Hum Mol Genet 2017; 25:5300-5310. [PMID: 27742779 PMCID: PMC5418838 DOI: 10.1093/hmg/ddw344] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/28/2016] [Indexed: 12/11/2022] Open
Abstract
During spermatogenesis, germ cells that fail to synapse their chromosomes or fail to undergo meiotic sex chromosome inactivation (MSCI) are eliminated via apoptosis during mid-pachytene. Previous work showed that Y-linked genes Zfy1 and Zfy2 act as ‘executioners’ for this checkpoint, and that wrongful expression of either gene during pachytene triggers germ cell death. Here, we show that in mice, Zfy genes are also necessary for efficient MSCI and the sex chromosomes are not correctly silenced in Zfy-deficient spermatocytes. This unexpectedly reveals a triple role for Zfy at the mid-pachytene checkpoint in which Zfy genes first promote MSCI, then monitor its progress (since if MSCI is achieved, Zfy genes will be silenced), and finally execute cells with MSCI failure. This potentially constitutes a negative feedback loop governing this critical checkpoint mechanism.
Collapse
Affiliation(s)
- Nadège Vernet
- Division of Stem Cell Biology and Developmental Genetics, MRC National Institute for Medical Research, Mill Hill, London, UK.,Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch Cedex, France
| | - Shantha K Mahadevaiah
- Division of Stem Cell Biology and Developmental Genetics, MRC National Institute for Medical Research, Mill Hill, London, UK.,Division of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London, UK
| | - Dirk G de Rooij
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Paul S Burgoyne
- Division of Stem Cell Biology and Developmental Genetics, MRC National Institute for Medical Research, Mill Hill, London, UK.,Division of Stem Cell Biology and Developmental Genetics, The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London, UK
| | - Peter J I Ellis
- Department of Pathology, University of Cambridge, Cambridge, UK.,School of Biosciences, University of Kent, Canterbury CT2 7NZ, UK
| |
Collapse
|
86
|
Li YC, Kavalali ET. Synaptic Vesicle-Recycling Machinery Components as Potential Therapeutic Targets. Pharmacol Rev 2017; 69:141-160. [PMID: 28265000 DOI: 10.1124/pr.116.013342] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Presynaptic nerve terminals are highly specialized vesicle-trafficking machines. Neurotransmitter release from these terminals is sustained by constant local recycling of synaptic vesicles independent from the neuronal cell body. This independence places significant constraints on maintenance of synaptic protein complexes and scaffolds. Key events during the synaptic vesicle cycle-such as exocytosis and endocytosis-require formation and disassembly of protein complexes. This extremely dynamic environment poses unique challenges for proteostasis at synaptic terminals. Therefore, it is not surprising that subtle alterations in synaptic vesicle cycle-associated proteins directly or indirectly contribute to pathophysiology seen in several neurologic and psychiatric diseases. In contrast to the increasing number of examples in which presynaptic dysfunction causes neurologic symptoms or cognitive deficits associated with multiple brain disorders, synaptic vesicle-recycling machinery remains an underexplored drug target. In addition, irrespective of the involvement of presynaptic function in the disease process, presynaptic machinery may also prove to be a viable therapeutic target because subtle alterations in the neurotransmitter release may counter disease mechanisms, correct, or compensate for synaptic communication deficits without the need to interfere with postsynaptic receptor signaling. In this article, we will overview critical properties of presynaptic release machinery to help elucidate novel presynaptic avenues for the development of therapeutic strategies against neurologic and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ying C Li
- Departments of Neuroscience (Y.C.L., E.T.K.) and Physiology (E.T.K.), University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ege T Kavalali
- Departments of Neuroscience (Y.C.L., E.T.K.) and Physiology (E.T.K.), University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
87
|
Faisal I, Kauppi L. Reduced MAD2 levels dampen the apoptotic response to non-exchange sex chromosomes and lead to sperm aneuploidy. Development 2017; 144:1988-1996. [PMID: 28506992 DOI: 10.1242/dev.149492] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/21/2017] [Indexed: 12/15/2022]
Abstract
In meiosis, non-exchange homologous chromosomes are at risk for mis-segregation and should be monitored by the spindle assembly checkpoint (SAC) to avoid formation of aneuploid gametes. Sex chromosome mis-segregation is particularly common and can lead to sterility or to aneuploid offspring (e.g. individuals with Turner or Klinefelter syndrome). Despite major implications for health and reproduction, modifiers of meiotic SAC robustness and the subsequent apoptotic response in male mammals remain obscure. Levels of SAC proteins, e.g. MAD2, are crucial for normal checkpoint function in many experimental systems, but surprisingly, apparently not in male meiosis, as indicated by the lack of chromosome segregation defects reported earlier in Mad2+/- spermatocytes. To directly test whether MAD2 levels impact the meiotic response to mis-segregating chromosomes, we used Spo11β-onlymb mice that are prone to non-exchange X-Y chromosomes. We show that reduced MAD2 levels attenuate the apoptotic response to mis-segregating sex chromosomes and allow the formation of aneuploid sperm. These findings demonstrate that SAC protein levels are crucial for the efficient elimination of aberrant spermatocytes.
Collapse
Affiliation(s)
- Imrul Faisal
- Genome-Scale Biology Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki FI-00290, Finland.,Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki FI-00290, Finland
| | - Liisa Kauppi
- Genome-Scale Biology Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki FI-00290, Finland .,Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki FI-00290, Finland
| |
Collapse
|
88
|
Pressly JD, Hama T, Brien SO, Regner KR, Park F. TRIP13-deficient tubular epithelial cells are susceptible to apoptosis following acute kidney injury. Sci Rep 2017; 7:43196. [PMID: 28256593 PMCID: PMC5335694 DOI: 10.1038/srep43196] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 01/13/2017] [Indexed: 01/05/2023] Open
Abstract
Damage to renal tubular epithelial cells by genetic, environmental, or biological insults can initiate complex signaling mechanisms that promote kidney repair and functional recovery. In this study, we demonstrated that thyroid receptor interacting protein 13 (TRIP13) is a critical modulator of tubular epithelial cell repair following ischemia‐reperfusion injury (IRI), a common type of renal stressor. In Trip13Gt/Gthypomorph mice treated with unilateral renal IRI, persistent tubular epithelial cell damage was determined in the IRI-treated kidney throughout the 168 hours of experimental period compared to the contralateral kidneys. The damaged epithelial cells were associated with increased levels of DNA damage (ɣH2AX) and apoptotic markers (p53, cleaved caspase-7, and TUNEL-positive cells). Correspondingly, TRIP13 was found to directly interact with Tetratricopeptide Repeat Domain 5 (TTC5), a p53 co‐factor, and genetic knockdown of TRIP13 in murine inner medullary collecting duct cells in the presence of hydrogen peroxide showed increased activity of p53 at Serine 15. In all, these studies suggest that insufficient TRIP13 increased the susceptibility of damaged tubular epithelial cells to progress towards apoptotic cell death.
Collapse
Affiliation(s)
- Jeffrey D Pressly
- The University of Tennessee Health Science Center, College of Pharmacy, Department of Pharmaceutical Sciences, Memphis, TN, USA
| | - Taketsugu Hama
- The University of Tennessee Health Science Center, College of Pharmacy, Department of Pharmaceutical Sciences, Memphis, TN, USA
| | - Shannon O' Brien
- The University of Tennessee Health Science Center, College of Pharmacy, Department of Pharmaceutical Sciences, Memphis, TN, USA
| | - Kevin R Regner
- Medical College of Wisconsin, Department of Medicine, Division of Nephrology, Milwaukee, WI, USA
| | - Frank Park
- The University of Tennessee Health Science Center, College of Pharmacy, Department of Pharmaceutical Sciences, Memphis, TN, USA
| |
Collapse
|
89
|
Pressly JD, Park F. DNA repair in ischemic acute kidney injury. Am J Physiol Renal Physiol 2016; 312:F551-F555. [PMID: 27927651 DOI: 10.1152/ajprenal.00492.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/05/2016] [Accepted: 12/05/2016] [Indexed: 12/11/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) is a common cause of acute kidney injury leading to an induction of oxidative stress, cellular dysfunction, and loss of renal function. DNA damage, including oxidative base modifications and physical DNA strand breaks, is a consequence of renal IRI. Like many other organs in the body, a redundant and highly conserved set of endogenous repair pathways have evolved to selectively recognize the various types of cellular DNA damage and combat its negative effects on cell viability. Severe damage to the DNA, however, can trigger cell death and elimination of the injured tubular epithelial cells. In this minireview, we summarize the state of the current field of DNA damage and repair in the kidney and provide some expected and, in some cases, unexpected effects of IRI on DNA damage and repair in the kidney. These findings may be applicable to other forms of acute kidney injury and could provide new opportunities for renal research.
Collapse
Affiliation(s)
- Jeffrey D Pressly
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Frank Park
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
90
|
TRIP13 is expressed in colorectal cancer and promotes cancer cell invasion. Oncol Lett 2016; 12:5240-5246. [PMID: 28105232 DOI: 10.3892/ol.2016.5332] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 08/19/2016] [Indexed: 01/07/2023] Open
Abstract
Thyroid hormone receptor interactor 13 (TRIP13) is a member of the ATPases associated with various cellular activities family of proteins and is highly conserved in a wide range of species. Recent studies have demonstrated that TRIP13 is critical for the inactivation of the spindle assembly checkpoint and is associated with the progression of certain cancers. In the present study, the role of TRIP13 in colorectal cancer (CRC) was examined. Reverse transcription-quantitative polymerase chain reaction analysis revealed that TRIP13 messenger RNA was highly expressed in multiple CRC tissues. The depletion of TRIP13 in CRC cells suppressed cell proliferation, migration and invasion. To determine whether the catalytic activity of TRIP13 was critical for cancer progression, an inactive mutant of TRIP13 was expressed in CRC cells. The invasion of cancer cells that expressed the mutant TRIP13 was significantly reduced compared with that of the wild type TRIP13-expressing cancer cells. These results indicate that TRIP13 could be a potential target for CRC treatment.
Collapse
|
91
|
Lima AC, Jung M, Rusch J, Usmani A, Lopes AM, Conrad DF. Multispecies Purification of Testicular Germ Cells. Biol Reprod 2016; 95:85. [PMID: 27557646 PMCID: PMC5176363 DOI: 10.1095/biolreprod.116.140566] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 08/18/2016] [Indexed: 12/14/2022] Open
Abstract
Advanced methods of cellular purification are required to apply genome technology to the study of spermatogenesis. One approach, based on flow cytometry of murine testicular cells stained with Hoechst-33342 (Ho-FACS), has been extensively optimized and currently allows the isolation of nine germ cell types. This staining technique is straightforward to implement, is highly effective at purifying specific germ cell types, and yields sufficient cell numbers for high-throughput studies. Ho-FACS is a technique that does not require species-specific markers, but whose applicability to other species is largely unexplored. We hypothesized that, because of the similar cell physiology of spermatogenesis across mammals, Ho-FACS could be used to produce highly purified subpopulations of germ cells in mammals other than mouse. To test this hypothesis, we applied Ho-FACS to four mammalian species that are widely used in testis research: Rattus norvegicus, Cavia porcellus, Canis familiaris, and Sus scrofadomesticus. We successfully isolated four germ cell populations from these species with average purity of 79% for spermatocytes, 90% for spermatids, and 66% for spermatogonia. Additionally, we compare the performance of mechanical and chemical dissociation for each species, and propose an optimized gating strategy to better discriminate round and elongating spermatids in the mouse, which can potentially be applied to other species. Our work indicates that spermatogenesis may be uniquely accessible among mammalian developmental systems, as a single set of reagents may be sufficient to isolate germ cell populations from many different mammalian species, opening new avenues in the fields of development and male reproductive biology.
Collapse
Affiliation(s)
- Ana C. Lima
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
- Graduate Program in Areas of Basic and Applied Biology (GABBA), Abel Salazar Institute of Biomedical Sciences, University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal–IPATIMUP, Porto, Portugal
| | - Min Jung
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
| | - Jannette Rusch
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
| | - Abul Usmani
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
| | - Alexandra M. Lopes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal–IPATIMUP, Porto, Portugal
| | - Donald F. Conrad
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri
- Correspondence: Donald F. Conrad, Department of Genetics, Washington University School of Medicine, Campus Box 8232, St. Louis, MO 63110. E-mail:
| |
Collapse
|
92
|
Herruzo E, Ontoso D, González-Arranz S, Cavero S, Lechuga A, San-Segundo PA. The Pch2 AAA+ ATPase promotes phosphorylation of the Hop1 meiotic checkpoint adaptor in response to synaptonemal complex defects. Nucleic Acids Res 2016; 44:7722-41. [PMID: 27257060 PMCID: PMC5027488 DOI: 10.1093/nar/gkw506] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/26/2016] [Indexed: 12/14/2022] Open
Abstract
Meiotic cells possess surveillance mechanisms that monitor critical events such as recombination and chromosome synapsis. Meiotic defects resulting from the absence of the synaptonemal complex component Zip1 activate a meiosis-specific checkpoint network resulting in delayed or arrested meiotic progression. Pch2 is an evolutionarily conserved AAA+ ATPase required for the checkpoint-induced meiotic block in the zip1 mutant, where Pch2 is only detectable at the ribosomal DNA array (nucleolus). We describe here that high levels of the Hop1 protein, a checkpoint adaptor that localizes to chromosome axes, suppress the checkpoint defect of a zip1 pch2 mutant restoring Mek1 activity and meiotic cell cycle delay. We demonstrate that the critical role of Pch2 in this synapsis checkpoint is to sustain Mec1-dependent phosphorylation of Hop1 at threonine 318. We also show that the ATPase activity of Pch2 is essential for its checkpoint function and that ATP binding to Pch2 is required for its localization. Previous work has shown that Pch2 negatively regulates Hop1 chromosome abundance during unchallenged meiosis. Based on our results, we propose that, under checkpoint-inducing conditions, Pch2 also possesses a positive action on Hop1 promoting its phosphorylation and its proper distribution on unsynapsed chromosome axes.
Collapse
Affiliation(s)
- Esther Herruzo
- Instituto de Biología Funcional y Genómica. Consejo Superior de Investigaciones Científicas and University of Salamanca, 37007 Salamanca, Spain
| | - David Ontoso
- Instituto de Biología Funcional y Genómica. Consejo Superior de Investigaciones Científicas and University of Salamanca, 37007 Salamanca, Spain
| | - Sara González-Arranz
- Instituto de Biología Funcional y Genómica. Consejo Superior de Investigaciones Científicas and University of Salamanca, 37007 Salamanca, Spain
| | - Santiago Cavero
- Instituto de Biología Funcional y Genómica. Consejo Superior de Investigaciones Científicas and University of Salamanca, 37007 Salamanca, Spain
| | - Ana Lechuga
- Instituto de Biología Funcional y Genómica. Consejo Superior de Investigaciones Científicas and University of Salamanca, 37007 Salamanca, Spain
| | - Pedro A San-Segundo
- Instituto de Biología Funcional y Genómica. Consejo Superior de Investigaciones Científicas and University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
93
|
Meiotic recombination and the crossover assurance checkpoint in Caenorhabditis elegans. Semin Cell Dev Biol 2016; 54:106-16. [PMID: 27013114 DOI: 10.1016/j.semcdb.2016.03.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/16/2016] [Indexed: 12/13/2022]
Abstract
During meiotic prophase, chromosomes pair and synapse with their homologs and undergo programmed DNA double-strand break (DSB) formation to initiate meiotic recombination. These DSBs are processed to generate a limited number of crossover recombination products on each chromosome, which are essential to ensure faithful segregation of homologous chromosomes. The nematode Caenorhabditis elegans has served as an excellent model organism to investigate the mechanisms that drive and coordinate these chromosome dynamics during meiosis. Here we focus on our current understanding of the regulation of DSB induction in C. elegans. We also review evidence that feedback regulation of crossover formation prolongs the early stages of meiotic prophase, and discuss evidence that this can alter the recombination pattern, most likely by shifting the genome-wide distribution of DSBs.
Collapse
|
94
|
Kim Y, Kostow N, Dernburg AF. The Chromosome Axis Mediates Feedback Control of CHK-2 to Ensure Crossover Formation in C. elegans. Dev Cell 2016; 35:247-61. [PMID: 26506311 DOI: 10.1016/j.devcel.2015.09.021] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/06/2015] [Accepted: 09/23/2015] [Indexed: 11/18/2022]
Abstract
CHK-2 kinase is a master regulator of meiosis in C. elegans. Its activity is required for homolog pairing and synapsis and for double-strand break formation, but how it drives and coordinates these pathways to ensure crossover formation remains unknown. Here we show that CHK-2 promotes pairing and synapsis by phosphorylating a family of zinc finger proteins that bind to specialized regions on each chromosome known as pairing centers, priming their recruitment of the Polo-like kinase PLK-2. This knowledge enabled the development of a phospho-specific antibody as a tool to monitor CHK-2 activity. When either synapsis or crossover formation is impaired, CHK-2 activity is prolonged, and meiotic progression is delayed. We show that this common feedback circuit is mediated by interactions among a network of HORMA domain proteins within the chromosome axis and generates a graded signal. These findings reveal conserved regulatory mechanisms that ensure faithful meiotic chromosome segregation in diverse species.
Collapse
Affiliation(s)
- Yumi Kim
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3220, USA; Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815, USA
| | - Nora Kostow
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3220, USA; Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815, USA
| | - Abby F Dernburg
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3220, USA; Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815, USA; Department of Genome Dynamics, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, Berkeley, CA 94720, USA.
| |
Collapse
|
95
|
Maurizio E, Wiśniewski JR, Ciani Y, Amato A, Arnoldo L, Penzo C, Pegoraro S, Giancotti V, Zambelli A, Piazza S, Manfioletti G, Sgarra R. Translating Proteomic Into Functional Data: An High Mobility Group A1 (HMGA1) Proteomic Signature Has Prognostic Value in Breast Cancer. Mol Cell Proteomics 2015; 15:109-23. [PMID: 26527623 PMCID: PMC4762532 DOI: 10.1074/mcp.m115.050401] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Indexed: 12/11/2022] Open
Abstract
Cancer is a very heterogeneous disease, and biological variability adds a further level of complexity, thus limiting the ability to identify new genes involved in cancer development. Oncogenes whose expression levels control cell aggressiveness are very useful for developing cellular models that permit differential expression screenings in isogenic contexts. HMGA1 protein has this unique property because it is a master regulator in breast cancer cells that control the transition from a nontumorigenic epithelial-like phenotype toward a highly aggressive mesenchymal-like one. The proteins extracted from HMGA1-silenced and control MDA-MB-231 cells were analyzed using label-free shotgun mass spectrometry. The differentially expressed proteins were cross-referenced with DNA microarray data obtained using the same cellular model and the overlapping genes were filtered for factors linked to poor prognosis in breast cancer gene expression meta-data sets, resulting in an HMGA1 protein signature composed of 21 members (HRS, HMGA1 reduced signature). This signature had a prognostic value (overall survival, relapse-free survival, and distant metastasis-free survival) in breast cancer. qRT-PCR, Western blot, and immunohistochemistry analyses validated the link of three members of this signature (KIFC1, LRRC59, and TRIP13) with HMGA1 expression levels both in vitro and in vivo and wound healing assays demonstrated that these three proteins are involved in modulating tumor cell motility. Combining proteomic and genomic data with the aid of bioinformatic tools, our results highlight the potential involvement in neoplastic transformation of a restricted list of factors with an as-yet-unexplored role in cancer. These factors are druggable targets that could be exploited for the development of new, targeted therapeutic approaches in triple-negative breast cancer.
Collapse
Affiliation(s)
- Elisa Maurizio
- From the ‡Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Jacek R Wiśniewski
- §Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Yari Ciani
- ¶Laboratorio Nazionale CIB, (LNCIB), Area Science Park, 34149 Trieste, Italy
| | - Angela Amato
- ¶¶Laboratory of Experimental Oncology and Pharmacogenomics IRCCS - Salvatore Maugeri Foundation, 27100 Pavia, Italy
| | - Laura Arnoldo
- From the ‡Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Carlotta Penzo
- From the ‡Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Silvia Pegoraro
- From the ‡Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Vincenzo Giancotti
- From the ‡Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Alberto Zambelli
- ‖Department of Medical Oncology, Hospital Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Silvano Piazza
- ¶Laboratorio Nazionale CIB, (LNCIB), Area Science Park, 34149 Trieste, Italy
| | | | - Riccardo Sgarra
- From the ‡Department of Life Sciences, University of Trieste, 34127 Trieste, Italy;
| |
Collapse
|
96
|
Nelson CR, Hwang T, Chen PH, Bhalla N. TRIP13PCH-2 promotes Mad2 localization to unattached kinetochores in the spindle checkpoint response. J Cell Biol 2015; 211:503-16. [PMID: 26527744 PMCID: PMC4639874 DOI: 10.1083/jcb.201505114] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/24/2015] [Indexed: 12/19/2022] Open
Abstract
The ability of the conserved ATPase TRIP13PCH-2 to disassemble a Mad2-containing complex is critical to promote the spindle checkpoint response by contributing to the robust localization of Mad2 to unattached kinetochores. The spindle checkpoint acts during cell division to prevent aneuploidy, a hallmark of cancer. During checkpoint activation, Mad1 recruits Mad2 to kinetochores to generate a signal that delays anaphase onset. Yet, whether additional factors contribute to Mad2’s kinetochore localization remains unclear. Here, we report that the conserved AAA+ ATPase TRIP13PCH-2 localizes to unattached kinetochores and is required for spindle checkpoint activation in Caenorhabditis elegans. pch-2 mutants effectively localized Mad1 to unattached kinetochores, but Mad2 recruitment was significantly reduced. Furthermore, we show that the C. elegans orthologue of the Mad2 inhibitor p31(comet)CMT-1 interacts with TRIP13PCH-2 and is required for its localization to unattached kinetochores. These factors also genetically interact, as loss of p31(comet)CMT-1 partially suppressed the requirement for TRIP13PCH-2 in Mad2 localization and spindle checkpoint signaling. These data support a model in which the ability of TRIP13PCH-2 to disassemble a p31(comet)/Mad2 complex, which has been well characterized in the context of checkpoint silencing, is also critical for spindle checkpoint activation.
Collapse
Affiliation(s)
- Christian R Nelson
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Tom Hwang
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Pin-Hsi Chen
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| | - Needhi Bhalla
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064
| |
Collapse
|
97
|
MacLennan M, Crichton JH, Playfoot CJ, Adams IR. Oocyte development, meiosis and aneuploidy. Semin Cell Dev Biol 2015; 45:68-76. [PMID: 26454098 PMCID: PMC4828587 DOI: 10.1016/j.semcdb.2015.10.005] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/14/2015] [Accepted: 10/05/2015] [Indexed: 01/15/2023]
Abstract
Meiosis is one of the defining events in gametogenesis. Male and female germ cells both undergo one round of meiotic cell division during their development in order to reduce the ploidy of the gametes, and thereby maintain the ploidy of the species after fertilisation. However, there are some aspects of meiosis in the female germline, such as the prolonged arrest in dictyate, that appear to predispose oocytes to missegregate their chromosomes and transmit aneuploidies to the next generation. These maternally-derived aneuploidies are particularly problematic in humans where they are major contributors to miscarriage, age-related infertility, and the high incidence of Down's syndrome in human conceptions. This review will discuss how events that occur in foetal oocyte development and during the oocytes' prolonged dictyate arrest can influence meiotic chromosome segregation and the incidence of aneuploidy in adult oocytes.
Collapse
Affiliation(s)
- Marie MacLennan
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK.
| | - James H Crichton
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK.
| | - Christopher J Playfoot
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK.
| | - Ian R Adams
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK.
| |
Collapse
|
98
|
Faieta M, Di Cecca S, de Rooij DG, Luchetti A, Murdocca M, Di Giacomo M, Di Siena S, Pellegrini M, Rossi P, Barchi M. A surge of late-occurring meiotic double-strand breaks rescues synapsis abnormalities in spermatocytes of mice with hypomorphic expression of SPO11. Chromosoma 2015; 125:189-203. [PMID: 26440409 PMCID: PMC4830894 DOI: 10.1007/s00412-015-0544-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 09/18/2015] [Accepted: 09/23/2015] [Indexed: 11/25/2022]
Abstract
Meiosis is the biological process that, after a cycle of DNA replication, halves the cellular chromosome complement, leading to the formation of haploid gametes. Haploidization is achieved via two successive rounds of chromosome segregation, meiosis I and II. In mammals, during prophase of meiosis I, homologous chromosomes align and synapse through a recombination-mediated mechanism initiated by the introduction of DNA double-strand breaks (DSBs) by the SPO11 protein. In male mice, if SPO11 expression and DSB number are reduced below heterozygosity levels, chromosome synapsis is delayed, chromosome tangles form at pachynema, and defective cells are eliminated by apoptosis at epithelial stage IV at a spermatogenesis-specific endpoint. Whether DSB levels produced in Spo11+/− spermatocytes represent, or approximate, the threshold level required to guarantee successful homologous chromosome pairing is unknown. Using a mouse model that expresses Spo11 from a bacterial artificial chromosome, within a Spo11−/− background, we demonstrate that when SPO11 expression is reduced and DSBs at zygonema are decreased (approximately 40 % below wild-type level), meiotic chromosome pairing is normal. Conversely, DMC1 foci number is increased at pachynema, suggesting that under these experimental conditions, DSBs are likely made with delayed kinetics at zygonema. In addition, we provide evidences that when zygotene-like cells receive enough DSBs before chromosome tangles develop, chromosome synapsis can be completed in most cells, preventing their apoptotic elimination.
Collapse
Affiliation(s)
- Monica Faieta
- Department of Biomedicine and Prevention, Section of Anatomy, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Stefano Di Cecca
- Department of Biomedicine and Prevention, Section of Anatomy, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Dirk G de Rooij
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands.,Center for Reproductive Medicine, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Andrea Luchetti
- Department of Biomedicine and Prevention, Section of Genetics, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Michela Murdocca
- Department of Biomedicine and Prevention, Section of Genetics, University of Rome Tor Vergata, 00133, Rome, Italy
| | | | | | - Manuela Pellegrini
- Department of Medicine and Health Science "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Pellegrino Rossi
- Department of Biomedicine and Prevention, Section of Anatomy, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Marco Barchi
- Department of Biomedicine and Prevention, Section of Anatomy, University of Rome Tor Vergata, 00133, Rome, Italy.
| |
Collapse
|
99
|
Abstract
Components or downstream targets of many signaling pathways such as Insulin/IGF-1 and TOR, as well as genes involved in cellular metabolism and bioenergetics can extend worm lifespan 20% or more. The C. elegans gene pch-2 and its homologs, including TRIP13 in humans, have been studied for their functions in cell mitosis and meiosis, but have never been implicated in lifespan regulation. Here we show that over-expression of TRIP13 in human fibroblasts confers resistance to environmental stressors such as UV radiation and oxidative stress. Furthermore, pch-2 overexpression in C. elegans extends worm lifespan, and enhances worm survival in response to various stressors. Conversely, reducing pch-2 expression with RNAi shortens worm lifespan. Additional genetic epistasis analysis indicates that the molecular mechanism of pch-2 in worm longevity is tied to functions of the sirtuin family, implying that pch-2 is another chromatin regulator for worm longevity. These findings suggest a novel function of the pch-2 gene involved in lifespan determination.
Collapse
|
100
|
Lambing C, Osman K, Nuntasoontorn K, West A, Higgins JD, Copenhaver GP, Yang J, Armstrong SJ, Mechtler K, Roitinger E, Franklin FCH. Arabidopsis PCH2 Mediates Meiotic Chromosome Remodeling and Maturation of Crossovers. PLoS Genet 2015; 11:e1005372. [PMID: 26182244 PMCID: PMC4504720 DOI: 10.1371/journal.pgen.1005372] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 06/19/2015] [Indexed: 11/30/2022] Open
Abstract
Meiotic chromosomes are organized into linear looped chromatin arrays by a protein axis localized along the loop-bases. Programmed remodelling of the axis occurs during prophase I of meiosis. Structured illumination microscopy (SIM) has revealed dynamic changes in the chromosome axis in Arabidopsis thaliana and Brassica oleracea. We show that the axis associated protein ASY1 is depleted during zygotene concomitant with synaptonemal complex (SC) formation. Study of an Atpch2 mutant demonstrates this requires the conserved AAA+ ATPase, PCH2, which localizes to the sites of axis remodelling. Loss of PCH2 leads to a failure to deplete ASY1 from the axes and compromizes SC polymerisation. Immunolocalization of recombination proteins in Atpch2 indicates that recombination initiation and CO designation during early prophase I occur normally. Evidence suggests that CO interference is initially functional in the mutant but there is a defect in CO maturation following designation. This leads to a reduction in COs and a failure to form COs between some homologous chromosome pairs leading to univalent chromosomes at metaphase I. Genetic analysis reveals that CO distribution is also affected in some chromosome regions. Together these data indicate that the axis remodelling defect in Atpch2 disrupts normal patterned formation of COs. In the reproductive cells of many eukaryotes, a process called meiosis generates haploid gametes. During meiosis, homologous parental chromosomes (homologs) recombine forming crossovers (CO) that provide genetic variation. CO formation generates physical links called chiasmata, which are essential for accurate homolog segregation. CO control designates a sub-set of recombination precursors that will mature to form at least one chiasma between each homolog pair. Recombination is accompanied by extensive chromosome reorganization. Formation of a proteinaceous axis organizes the pairs of sister chromatids of each homolog into conjoined linear looped chromatin arrays. Pairs of homologs then align and synapse becoming closely associated along their length by a protein structure, the synaptonemal complex (SC). The SC is disassembled at the end of prophase I and recombination is completed. We have investigated the link between recombination and chromosome remodelling by analysing the role of a protein, PCH2, which we show is required for remodelling of the chromosome axis during SC formation. In wild type, immunolocalization reveals depletion of the axis-associated signal of the axis component, ASY1, along synapsed regions of the chromosomes. In the absence of PCH2, the ASY1 signal is not depleted from the chromosome axis and the SC does not form normally. Although this defect in chromosome remodelling has no obvious effect on CO designation, CO maturation is perturbed such that the formation of at least one CO per homolog pair no longer occurs.
Collapse
Affiliation(s)
- Christophe Lambing
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Kim Osman
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Komsun Nuntasoontorn
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Allan West
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - James D. Higgins
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Gregory P. Copenhaver
- Department of Biology and Carolina Center for Genome Scientists, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jianhua Yang
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Susan J. Armstrong
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | | | | | - F. Chris H. Franklin
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- * E-mail:
| |
Collapse
|