51
|
Zhang Q. Genetics of Refraction and Myopia. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 134:269-79. [PMID: 26310160 DOI: 10.1016/bs.pmbts.2015.05.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Both genetic and environmental factors play roles in the development of refractive errors. Identification of genes involved in refractive errors may help in elucidating the underlying molecular mechanism related to both genetic defects and environmental pressure. Recent development of techniques for genome wide analysis provides unique opportunity in dissecting the genetic basis related to refractive errors. This chapter tries to give a brief overview on the recent progress of genetic study of refractive errors, especially myopia.
Collapse
Affiliation(s)
- Qingjiong Zhang
- State Key Lab of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
52
|
Tham YC, Liao J, Vithana EN, Khor CC, Teo YY, Tai ES, Wong TY, Aung T, Cheng CY. Aggregate Effects of Intraocular Pressure and Cup-to-Disc Ratio Genetic Variants on Glaucoma in a Multiethnic Asian Population. Ophthalmology 2015; 122:1149-57. [DOI: 10.1016/j.ophtha.2015.01.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 01/28/2015] [Accepted: 01/28/2015] [Indexed: 10/23/2022] Open
|
53
|
Identification of myopia-associated WNT7B polymorphisms provides insights into the mechanism underlying the development of myopia. Nat Commun 2015; 6:6689. [DOI: 10.1038/ncomms7689] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 02/20/2015] [Indexed: 11/08/2022] Open
|
54
|
Klein R, Meuer SM, Myers CE, Buitendijk GHS, Rochtchina E, Choudhury F, de Jong PTVM, McKean-Cowdin R, Iyengar SK, Gao X, Lee KE, Vingerling JR, Mitchell P, Klaver CCW, Wang JJ, Klein BEK. Harmonizing the classification of age-related macular degeneration in the three-continent AMD consortium. Ophthalmic Epidemiol 2014; 21:14-23. [PMID: 24467558 DOI: 10.3109/09286586.2013.867512] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE To describe methods to harmonize the classification of age-related macular degeneration (AMD) phenotypes across four population-based cohort studies: the Beaver Dam Eye Study (BDES), the Blue Mountains Eye Study (BMES), the Los Angeles Latino Eye Study (LALES), and the Rotterdam Study (RS). METHODS AMD grading protocols, definitions of categories, and grading forms from each study were compared to determine whether there were systematic differences in AMD severity definitions and lesion categorization among the three grading centers. Each center graded the same set of 60 images using their respective systems to determine presence and severity of AMD lesions. A common 5-step AMD severity scale and definitions of lesion measurement cutpoints and early and late AMD were developed from this exercise. RESULTS Applying this severity scale changed the age-sex adjusted prevalence of early AMD from 18.7% to 20.3% in BDES, from 4.7% to 14.4% in BMES, from 14.1% to 15.8% in LALES, and from 7.5% to 17.1% in RS. Age-sex adjusted prevalences of late AMD remained unchanged. Comparison of each center's grades of the 60 images converted to the consortium scale showed that exact agreement of AMD severity among centers varied from 61.0-81.4%, and one-step agreement varied from 84.7-98.3%. CONCLUSION Harmonization of AMD classification reduced categorical differences in phenotypic definitions across the studies, resulted in a new 5-step AMD severity scale, and enhanced similarity of AMD prevalence among the four cohorts. Despite harmonization it may still be difficult to remove systematic differences in grading, if present.
Collapse
Affiliation(s)
- Ronald Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health , Madison, Wisconsin , USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Chen P, Miyake M, Fan Q, Liao J, Yamashiro K, Ikram MK, Chew M, Vithana EN, Khor CC, Aung T, Tai ES, Wong TY, Teo YY, Yoshimura N, Saw SM, Cheng CY. CMPK1 and RBP3 are associated with corneal curvature in Asian populations. Hum Mol Genet 2014; 23:6129-36. [PMID: 24963161 DOI: 10.1093/hmg/ddu322] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Corneal curvature (CC) measures the steepness of the cornea and is an important parameter for clinically diseases such as astigmatism and myopia. Despite the high heritability of CC, only two associated genes have been discovered to date. We performed a three-stage genome-wide association study meta-analysis in 12 660 Asian individuals. Our Stage 1 was done in multiethnic cohorts comprising 7440 individuals, followed by a Stage 2 replication in 2473 Chinese and Stage 3 in 2747 Japanese. The SNP array genotype data were imputed up to the 1000 Genomes Project Phase 1 cosmopolitan panel. The SNP association with the radii of CC was investigated in the linear regression model with the adjustment of age, gender and principal components. In addition to the known genes, MTOR (also known as FRAP1) and PDGFRA, we discovered two novel genes associated with CC: CMPK1 (rs17103186, P = 3.3 × 10(-12)) and RBP3 (rs11204213 [Val884Met], P = 1.1 × 10(-13)). The missense RBP3 SNP, rs11204213, was also associated with axial length (AL) (P = 4.2 × 10(-6)) and had larger effects on both CC and AL compared with other SNPs. The index SNPs at the four indicated loci explained 1.9% of CC variance across the Stages 1 and 2 cohorts, while 33.8% of CC variance was explained by the genome-wide imputation data. We identified two novel genes influencing CC, which are related to either corneal shape or eye size. This study provides additional insights into genetic architecture of corneal shape.
Collapse
Affiliation(s)
- Peng Chen
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117597, Singapore
| | - Masahiro Miyake
- Department of Ophthalmology, Kyoto University Graduate School of Medicine, Kyoto 6068507, Japan
| | - Qiao Fan
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117597, Singapore
| | - Jiemin Liao
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 168751, Singapore, Department of Ophthalmology, National University of Singapore and National University Health System, Singapore 119228, Singapore
| | - Kenji Yamashiro
- Department of Ophthalmology, Kyoto University Graduate School of Medicine, Kyoto 6068507, Japan
| | - Mohammad K Ikram
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 168751, Singapore, Department of Ophthalmology, National University of Singapore and National University Health System, Singapore 119228, Singapore, Memory Aging & Cognition Centre, National University Health System, Singapore 117597, Singapore
| | - Merywn Chew
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 168751, Singapore
| | - Eranga N Vithana
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 168751, Singapore, Department of Ophthalmology, National University of Singapore and National University Health System, Singapore 119228, Singapore, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Chiea-Chuen Khor
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117597, Singapore, Department of Ophthalmology, National University of Singapore and National University Health System, Singapore 119228, Singapore, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore, Department of Paediatrics
| | - Tin Aung
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 168751, Singapore, Department of Ophthalmology, National University of Singapore and National University Health System, Singapore 119228, Singapore
| | - E-Shyong Tai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117597, Singapore, Duke-NUS Graduate Medical School, Singapore 169857, Singapore, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Tien-Yin Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 168751, Singapore, Department of Ophthalmology, National University of Singapore and National University Health System, Singapore 119228, Singapore, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Yik-Ying Teo
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117597, Singapore, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore, NUS Graduate School for Integrative Science and Engineering, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore and Department of Statistics and Applied Probability, National University of Singapore, Singapore 117546, Singapore
| | - Nagahisa Yoshimura
- Department of Ophthalmology, Kyoto University Graduate School of Medicine, Kyoto 6068507, Japan
| | - Seang-Mei Saw
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117597, Singapore, Department of Ophthalmology, National University of Singapore and National University Health System, Singapore 119228, Singapore
| | - Ching-Yu Cheng
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117597, Singapore, Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 168751, Singapore, Department of Ophthalmology, National University of Singapore and National University Health System, Singapore 119228, Singapore, Duke-NUS Graduate Medical School, Singapore 169857, Singapore,
| |
Collapse
|
56
|
Liao J, Su X, Chen P, Wang X, Xu L, Li X, Thean L, Tan C, Tan AG, Tay WT, Jun G, Zheng Y, Chew M, Wang YX, Tan QS, Barathi VA, Klein BE, Saw SM, Vithana EN, Tai ES, Iyengar SK, Mitchell P, Khor CC, Aung T, Wang JJ, Jonas JB, Teo YY, Wong TY, Cheng CY. Meta-analysis of genome-wide association studies in multiethnic Asians identifies two loci for age-related nuclear cataract. Hum Mol Genet 2014; 23:6119-28. [DOI: 10.1093/hmg/ddu315] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
57
|
Guo H, Jin X, Zhu T, Wang T, Tong P, Tian L, Peng Y, Sun L, Wan A, Chen J, Liu Y, Li Y, Tian Q, Xia L, Zhang L, Pan Y, Lu L, Liu Q, Shen L, Li Y, Xiong W, Li J, Tang B, Feng Y, Zhang X, Zhang Z, Pan Q, Hu Z, Xia K. SLC39A5 mutations interfering with the BMP/TGF-β pathway in non-syndromic high myopia. J Med Genet 2014; 51:518-25. [PMID: 24891338 PMCID: PMC4112430 DOI: 10.1136/jmedgenet-2014-102351] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background High myopia, with the characteristic feature of refractive error, is one of the leading causes of blindness worldwide. It has a high heritability, but only a few causative genes have been identified and the pathogenesis is still unclear. Methods We used whole genome linkage and exome sequencing to identify the causative mutation in a non-syndromic high myopia family. Direct Sanger sequencing was used to screen the candidate gene in additional sporadic cases or probands. Immunofluorescence was used to evaluate the expression pattern of the candidate gene in the whole process of eye development. Real-time quantitative PCR and immunoblot was used to investigate the functional consequence of the disease-associated mutations. Results We identified a nonsense mutation (c.141C>G:p.Y47*) in SLC39A5 co-segregating with the phenotype in a non-syndromic severe high myopia family. The same nonsense mutation (c.141C>G:p.Y47*) was detected in a sporadic case and a missense mutation (c.911T>C:p.M304T) was identified and co-segregated in another family by screening additional cases. Both disease-associated mutations were not found in 1276 control individuals. SLC39A5 was abundantly expressed in the sclera and retina across different stages of eye development. Furthermore, we found that wild-type, but not disease-associated SLC39A5 inhibited the expression of Smadl, a key phosphate protein in the downstream of the BMP/TGF-β (bone morphogenic protein/transforming growth factor-β) pathway. Conclusions Our study reveals that loss-of-function mutations of SLC39A5 are associated with the autosome dominant non-syndromic high myopia, and interference with the BMP/TGF-β pathway may be one of the molecular mechanisms for high myopia.
Collapse
Affiliation(s)
- Hui Guo
- The State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Xuemin Jin
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Tengfei Zhu
- The State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China
| | - Tianyun Wang
- The State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China
| | - Ping Tong
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lei Tian
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yu Peng
- The State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China
| | - Liangdan Sun
- Department of Dermatology, Institute of Dermatology, No. 1 Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Anran Wan
- The State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China
| | - Jingjing Chen
- The State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China
| | - Yanling Liu
- The State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China
| | - Ying Li
- The State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China
| | - Qi Tian
- The State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China
| | - Lu Xia
- The State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China
| | - Lusi Zhang
- The State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China
| | - Yongcheng Pan
- The State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China
| | - Lina Lu
- The State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China
| | - Qiong Liu
- The State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China
| | - Lu Shen
- The State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China
| | - Yunping Li
- The State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiada Li
- The State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Beisha Tang
- The Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong Feng
- The Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xuejun Zhang
- Department of Dermatology, Institute of Dermatology, No. 1 Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Zhuohua Zhang
- The State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China
| | - Qian Pan
- The State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China
| | - Zhengmao Hu
- The State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Kun Xia
- The State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China School of Life Sciences, Central South University, Changsha, Hunan, China Key Laboratory of Medical Information Research, Changsha, Hunan, China
| |
Collapse
|
58
|
Sharmila F, Abinayapriya, Ramprabhu K, Kumaramanickavel G, R R Sudhir, Sripriya S. Genetic analysis of axial length genes in high grade myopia from Indian population. Meta Gene 2014; 2:164-75. [PMID: 25606400 PMCID: PMC4287827 DOI: 10.1016/j.mgene.2014.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 01/09/2014] [Accepted: 01/09/2014] [Indexed: 11/29/2022] Open
Abstract
Purpose To study the putative association of Membrane frizzled related protein (MFRP) and Visual system homeobox protein (VSX2) gene variants with axial length (AL) in myopia. Method A total of 189 samples with (N = 98) and without (N = 91) myopia were genotyped for the MRFP and VSX2 variations in ABI Prism 3100 AVANT genetic analyzer. Genotype/haplotype analysis was performed using PLINK, Haploview and THESIAS softwares. Results Fifteen variations were observed in the MFRP gene of which, rs36015759 (c.492C > T, T164T) in exon 5 was distributed at a high frequency in the controls and significantly associated with a low risk for myopia (P = 4.10 ∗ e− 07 OR < 1.0). An increased frequency for the coding haplotype block [CGTCGG] harboring rs36015759 was observed in controls (31%) than cases (8%) that also correlated with a decreased mean AL (− 1.35085; P = 0.000444) by THESIAS analysis. The ‘T’ allele of rs36015759 was predicted to abolish the binding site for splicing enhancer (SRp40) by FASTSNP analysis. Conclusion Myopia is a complex disorder influenced by genetic and environmental factors. Our work shows evidence of association of a specific MFRP haplotype which was more prevalent in controls with decreased AL. However, replication and functional studies are warranted to confirm these findings.
Collapse
Affiliation(s)
- Ferdinamarie Sharmila
- SN ONGC, Department of Genetics and Molecular Biology, Vision Research Foundation, India ; Birla Institute of Technology & Science (BITS), Pilani, 333 031 Rajasthan, India
| | - Abinayapriya
- Medical Research Foundation, Sankara Nethralaya, Chennai, India
| | - Karthikeyan Ramprabhu
- SN ONGC, Department of Genetics and Molecular Biology, Vision Research Foundation, India
| | | | - R R Sudhir
- Preventive Ophthalmology Department, Sankara Nethralaya, Chennai, India
| | - Sarangapani Sripriya
- SN ONGC, Department of Genetics and Molecular Biology, Vision Research Foundation, India
| |
Collapse
|
59
|
Deng ZJ, Shi KQ, Song YJ, Fang YX, Wu J, Li G, Tang KF, Qu J. Association between a lumican promoter polymorphism and high myopia in the Chinese population: a meta-analysis of case-control studies. Ophthalmologica 2014; 232:110-7. [PMID: 24516061 DOI: 10.1159/000356698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 09/30/2013] [Indexed: 11/19/2022]
Abstract
PURPOSE To evaluate the relationship between lumican polymorphisms and high myopia in Chinese populations. METHODS An electronic search was conducted in Pubmed, Embase, Cochrane Library and the China Biological Medicine Database for articles published prior to September 30, 2012. A meta-analysis was performed to assess heterogeneity, combine results and determine publication bias. RESULTS This meta-analysis, including 1,545 subjects from 5 studies, indicated that Chinese lumican rs3759223 C allele carriers had a decreased risk of high myopia in comparison to T allele carriers (odds ratio: 0.531; 95% confidence interval, CI: 0.304-0.925; p = 0.025). There was some heterogeneity between studies. A metaregression showed that the mean axial length of controls weakens the effect of rs3759223 on high myopia (slope: -0.914; 95% CI: -1.490 to 0.337; p = 0.002). Sensitivity analysis confirmed the reliability and stability of this meta-analysis. CONCLUSION Chinese lumican rs3759223 C allele carriers may be at reduced risk of high myopia.
Collapse
Affiliation(s)
- Zhu-Jun Deng
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, PR China
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Liao J, Li X, Wong TY, Wang JJ, Khor CC, Tai ES, Aung T, Teo YY, Cheng CY. Impact of measurement error on testing genetic association with quantitative traits. PLoS One 2014; 9:e87044. [PMID: 24475218 PMCID: PMC3901720 DOI: 10.1371/journal.pone.0087044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 12/17/2013] [Indexed: 12/23/2022] Open
Abstract
Measurement error of a phenotypic trait reduces the power to detect genetic associations. We examined the impact of sample size, allele frequency and effect size in presence of measurement error for quantitative traits. The statistical power to detect genetic association with phenotype mean and variability was investigated analytically. The non-centrality parameter for a non-central F distribution was derived and verified using computer simulations. We obtained equivalent formulas for the cost of phenotype measurement error. Effects of differences in measurements were examined in a genome-wide association study (GWAS) of two grading scales for cataract and a replication study of genetic variants influencing blood pressure. The mean absolute difference between the analytic power and simulation power for comparison of phenotypic means and variances was less than 0.005, and the absolute difference did not exceed 0.02. To maintain the same power, a one standard deviation (SD) in measurement error of a standard normal distributed trait required a one-fold increase in sample size for comparison of means, and a three-fold increase in sample size for comparison of variances. GWAS results revealed almost no overlap in the significant SNPs (p<10−5) for the two cataract grading scales while replication results in genetic variants of blood pressure displayed no significant differences between averaged blood pressure measurements and single blood pressure measurements. We have developed a framework for researchers to quantify power in the presence of measurement error, which will be applicable to studies of phenotypes in which the measurement is highly variable.
Collapse
Affiliation(s)
- Jiemin Liao
- Department of Ophthalmology, National University of Singapore and National University Health System, Singapore, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Xiang Li
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Department of Statistics and Applied Probability, National University of Singapore, Singapore, Singapore
| | - Tien-Yin Wong
- Department of Ophthalmology, National University of Singapore and National University Health System, Singapore, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University Health System, National University of Singapore, Singapore, Singapore
| | - Jie Jin Wang
- Centre for Vision Research, University of Sydney, Sydney, Australia
| | - Chiea Chuen Khor
- Department of Ophthalmology, National University of Singapore and National University Health System, Singapore, Singapore
- Division of Human Genetics, Genome Institute of Singapore, Singapore, Singapore
| | - E. Shyong Tai
- Saw Swee Hock School of Public Health, National University Health System, National University of Singapore, Singapore, Singapore
- Department of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
- Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Tin Aung
- Department of Ophthalmology, National University of Singapore and National University Health System, Singapore, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Yik-Ying Teo
- Department of Statistics and Applied Probability, National University of Singapore, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University Health System, National University of Singapore, Singapore, Singapore
| | - Ching-Yu Cheng
- Department of Ophthalmology, National University of Singapore and National University Health System, Singapore, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University Health System, National University of Singapore, Singapore, Singapore
- Duke-NUS Graduate Medical School, Singapore, Singapore
- * E-mail:
| |
Collapse
|
61
|
Fan Q, Wojciechowski R, Kamran Ikram M, Cheng CY, Chen P, Zhou X, Pan CW, Khor CC, Tai ES, Aung T, Wong TY, Teo YY, Saw SM. Education influences the association between genetic variants and refractive error: a meta-analysis of five Singapore studies. Hum Mol Genet 2014; 23:546-54. [PMID: 24014484 PMCID: PMC3869359 DOI: 10.1093/hmg/ddt431] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 09/03/2013] [Accepted: 09/03/2013] [Indexed: 02/06/2023] Open
Abstract
Refractive error is a complex ocular trait governed by both genetic and environmental factors and possibly their interplay. Thus far, data on the interaction between genetic variants and environmental risk factors for refractive errors are largely lacking. By using findings from recent genome-wide association studies, we investigated whether the main environmental factor, education, modifies the effect of 40 single nucleotide polymorphisms on refractive error among 8461 adults from five studies including ethnic Chinese, Malay and Indian residents of Singapore. Three genetic loci SHISA6-DNAH9, GJD2 and ZMAT4-SFRP1 exhibited a strong association with myopic refractive error in individuals with higher secondary or university education (SHISA6-DNAH9: rs2969180 A allele, β = -0.33 D, P = 3.6 × 10(-6); GJD2: rs524952 A allele, β = -0.31 D, P = 1.68 × 10(-5); ZMAT4-SFRP1: rs2137277 A allele, β = -0.47 D, P = 1.68 × 10(-4)), whereas the association at these loci was non-significant or of borderline significance in those with lower secondary education or below (P for interaction: 3.82 × 10(-3)-4.78 × 10(-4)). The evidence for interaction was strengthened when combining the genetic effects of these three loci (P for interaction = 4.40 × 10(-8)), and significant interactions with education were also observed for axial length and myopia. Our study shows that low level of education may attenuate the effect of risk alleles on myopia. These findings further underline the role of gene-environment interactions in the pathophysiology of myopia.
Collapse
Affiliation(s)
- Qiao Fan
- Saw Swee Hock School of Public Health
| | - Robert Wojciechowski
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - M. Kamran Ikram
- Saw Swee Hock School of Public Health
- Department of Ophthalmology
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Duke-National University of Singapore Graduate Medical School, Singapore, Singapore
| | - Ching-Yu Cheng
- Saw Swee Hock School of Public Health
- Department of Ophthalmology
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Peng Chen
- Saw Swee Hock School of Public Health
| | - Xin Zhou
- Saw Swee Hock School of Public Health
| | - Chen-Wei Pan
- Saw Swee Hock School of Public Health
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Chiea-Chuen Khor
- Saw Swee Hock School of Public Health
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | | | - Tin Aung
- Saw Swee Hock School of Public Health
- Department of Ophthalmology
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Tien-Yin Wong
- Saw Swee Hock School of Public Health
- Department of Ophthalmology
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
| | - Yik-Ying Teo
- Saw Swee Hock School of Public Health
- Department of Statistics and Applied Probability, National University of Singapore, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Seang-Mei Saw
- Saw Swee Hock School of Public Health
- Department of Ophthalmology
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Duke-National University of Singapore Graduate Medical School, Singapore, Singapore
| |
Collapse
|
62
|
Sherwin JC, Mackey DA. Update on the epidemiology and genetics of myopic refractive error. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/eop.12.81] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
63
|
Guo H, Tong P, Peng Y, Wang T, Liu Y, Chen J, Li Y, Tian Q, Hu Y, Zheng Y, Xiao L, Xiong W, Pan Q, Hu Z, Xia K. Homozygous loss-of-function mutation of the LEPREL1 gene causes severe non-syndromic high myopia with early-onset cataract. Clin Genet 2013; 86:575-9. [PMID: 24172257 DOI: 10.1111/cge.12309] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 10/11/2013] [Accepted: 10/28/2013] [Indexed: 11/28/2022]
Abstract
High myopia is a severe visual impairment which can increase the risk of retinal degeneration, subretinal hemorrhage, choroidal neovascularization, cataract and retinal detachment. We recruited an autosomal-recessive high myopia family, with affected subjects who also present early-onset cataract, retinal degeneration and other complications. Using targeted capturing and whole exome sequencing, we identified a homozygous non-sense mutation in the LEPREL1 gene which causes premature termination of the translation at the fifth amino acid (c.13C>T; p.Q5X), co-segregating with the phenotypes. LEPREL1 encodes a proline hydroxylase called prolyl 3-hydroxylase 2 (P3H2), a 2-oxoglutarate-dependent dioxygenase that hydroxylates collagens. The results show that LEPREL1 plays an important role in eye development and homozygous loss-of-function mutation of this gene can cause severely high myopia and early-onset cataract. Our study also strongly suggests that the disruption of collagen modification is one of the pathogenic mechanisms of high myopia and cataract.
Collapse
Affiliation(s)
- H Guo
- State Key Laboratory of Medical Genetics, Changsha, Hunan, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Yoshida M, Meguro A, Okada E, Nomura N, Mizuki N. Association study of fibroblast growth factor 10 (FGF10) polymorphisms with susceptibility to extreme myopia in a Japanese population. Mol Vis 2013; 19:2321-9. [PMID: 24265547 PMCID: PMC3834595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 11/15/2013] [Indexed: 10/29/2022] Open
Abstract
PURPOSE The fibroblast growth factor 10 (FGF10) gene polymorphism rs339501 was previously reported to be associated with high myopia in a Chinese population. In the present study, we investigated whether FGF10 polymorphisms are associated with extreme myopia in a Japanese population as well. METHODS A total of 433 Japanese patients with extreme myopia (≤ -10.00 diopters) and 542 Japanese healthy controls (+1.50 to -1.50 diopters) were recruited. We genotyped seven tagging single-nucleotide polymorphisms (SNPs), including rs339501, in FGF10. We also performed an imputation analysis to evaluate the potential association of ungenotyped FGF10 SNPs, and 34 SNPs were imputed. RESULTS It was found that rs339501 and rs12517396 exhibited the strongest association with extreme myopia (p=3.9 × 10⁻⁴, corrected p [Pc]=0.0030). A significant association was also observed for rs10462070 (p=6.5 × 10⁻⁴, Pc=0.0059). These three SNPs were in strong linkage disequilibrium (D' ≥0.99, r² ≥0.96). However, the frequency of the A allele of rs339501 was increased in cases compared to controls, which differs from the increased frequency of the G allele in cases in the previous Chinese population. CONCLUSIONS Three FGF10 SNPs in complete linkage disequilibrium--rs339501, rs12517396, and rs10462070--were associated with extreme myopia in the Japanese population, and the risk allele of rs339501 differed from the previous Chinese population. Therefore, these three SNPs may not be an important risk factor for susceptibility to extreme myopia. Further studies are needed to elucidate the possible contribution of the FGF10 region in the development of extreme myopia.
Collapse
Affiliation(s)
- Masao Yoshida
- Department of Public Health, Kyorin University School of Medicine, Tokyo, Japan
| | - Akira Meguro
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | | | - Naoko Nomura
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Nobuhisa Mizuki
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| |
Collapse
|
65
|
Yoshida M, Meguro A, Yoshino A, Nomura N, Okada E, Mizuki N. Association study of IGF1 polymorphisms with susceptibility to high myopia in a Japanese population. Clin Ophthalmol 2013; 7:2057-62. [PMID: 24204106 PMCID: PMC3804590 DOI: 10.2147/opth.s52726] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Polymorphisms in the insulin-like growth factor 1 (IGF1) gene were previously associated with high or extreme myopia in Caucasian and Chinese populations. In the present study, we investigated whether IGF1 polymorphisms are associated with high myopia in a Japanese population. METHODS A total of 446 Japanese patients with high myopia (≤-9.00 diopters) and 481 Japanese healthy controls (+1.50 diopters to -1.50 diopters) were recruited. We genotyped seven tagging single-nucleotide polymorphisms (SNPs) in IGF1 and assessed allelic and haplotypic diversity in cases and controls. RESULTS There were no statistically significant differences in the allele frequencies of IGF1 SNPs and genotypes between cases and controls (P>0.05). However, the A allele of rs5742629 and the G allele of rs12423791 were associated with a moderately increased risk of high myopia (odds ratio [OR] =1.20 and OR =1.21, respectively) with borderline statistical significance (P=0.0502, corrected P (Pc) =0.21 and P=0.064, Pc=0.29, respectively). The haplotype consisting of the A allele of rs5742629 and the G allele of rs12423791 was marginally associated with the risk of high myopia (P=0.041; OR =1.21); this association was not significant after correction (Pc=0.19). CONCLUSION We found that the IGF1 SNPs are not significantly associated with high myopia in our Japanese population. Our results are in contrast to a previous study in which extreme myopia cases had significantly higher frequencies of the G allele of rs5742629 and the C allele of rs12423791 than controls. Therefore, the IGF1 SNPs may not be important factors for susceptibility to high myopia in all populations. Further genetic studies are needed to elucidate the possible contributions of the IGF1 region to the development of high myopia.
Collapse
Affiliation(s)
- Masao Yoshida
- Department of Public Health, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
66
|
Khor CC, Miyake M, Chen LJ, Shi Y, Barathi VA, Qiao F, Nakata I, Yamashiro K, Zhou X, Tam POS, Cheng CY, Tai ES, Vithana EN, Aung T, Teo YY, Wong TY, Moriyama M, Ohno-Matsui K, Mochizuki M, Matsuda F, Yong RYY, Yap EPH, Yang Z, Pang CP, Saw SM, Yoshimura N. Genome-wide association study identifies ZFHX1B as a susceptibility locus for severe myopia. Hum Mol Genet 2013; 22:5288-94. [PMID: 23933737 DOI: 10.1093/hmg/ddt385] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Severe myopia (defined as spherical equivalent < -6.0 D) is a predominant problem in Asian countries, resulting in substantial morbidity. We performed a meta-analysis of four genome-wide association studies (GWAS), all of East Asian descent totaling 1603 cases and 3427 controls. Two single nucleotide polymorphisms (SNPs) (rs13382811 from ZFHX1B [encoding for ZEB2] and rs6469937 from SNTB1) showed highly suggestive evidence of association with disease (P < 1 × 10(-7)) and were brought forward for replication analysis in a further 1241 severe myopia cases and 3559 controls from a further three independent sample collections. Significant evidence of replication was observed, and both SNP markers surpassed the formal threshold for genome-wide significance upon meta-analysis of both discovery and replication stages (P = 5.79 × 10(-10), per-allele odds ratio (OR) = 1.26 for rs13382811 and P = 2.01 × 10(-9), per-allele OR = 0.79 for rs6469937). The observation at SNTB1 is confirmatory of a very recent GWAS on severe myopia. Both genes were expressed in the human retina, sclera, as well as the retinal pigmented epithelium. In an experimental mouse model for myopia, we observed significant alterations to gene and protein expression in the retina and sclera of the unilateral induced myopic eyes for Zfhx1b and Sntb1. These new data advance our understanding of the molecular pathogenesis of severe myopia.
Collapse
Affiliation(s)
- Chiea Chuen Khor
- Division of Human Genetics, Genome Institute of Singapore, Singapore, Singapore
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Cheng CY, Schache M, Ikram M, Young T, Guggenheim J, Vitart V, MacGregor S, Verhoeven V, Barathi V, Liao J, Hysi P, Bailey-Wilson J, St. Pourcain B, Kemp J, McMahon G, Timpson N, Evans D, Montgomery G, Mishra A, Wang Y, Wang J, Rochtchina E, Polasek O, Wright A, Amin N, van Leeuwen E, Wilson J, Pennell C, van Duijn C, de Jong P, Vingerling J, Zhou X, Chen P, Li R, Tay WT, Zheng Y, Chew M, Burdon KP, Craig JE, Iyengar SK, Igo RP, Lass JH, Chew EY, Haller T, Mihailov E, Metspalu A, Wedenoja J, Simpson CL, Wojciechowski R, Höhn R, Mirshahi A, Zeller T, Pfeiffer N, Lackner KJ, Bettecken T, Meitinger T, Oexle K, Pirastu M, Portas L, Nag A, Williams KM, Yonova-Doing E, Klein R, Klein BE, Hosseini SM, Paterson AD, Makela KM, Lehtimaki T, Kahonen M, Raitakari O, Yoshimura N, Matsuda F, Chen LJ, Pang CP, Yip SP, Yap MK, Meguro A, Mizuki N, Inoko H, Foster PJ, Zhao JH, Vithana E, Tai ES, Fan Q, Xu L, Campbell H, Fleck B, Rudan I, Aung T, Hofman A, Uitterlinden AG, Bencic G, Khor CC, Forward H, Pärssinen O, Mitchell P, Rivadeneira F, Hewitt AW, Williams C, Oostra BA, Teo YY, Hammond CJ, Stambolian D, Mackey DA, Klaver CC, Wong TY, Saw SM, Baird PN. Nine loci for ocular axial length identified through genome-wide association studies, including shared loci with refractive error. Am J Hum Genet 2013; 93:264-77. [PMID: 24144296 PMCID: PMC3772747 DOI: 10.1016/j.ajhg.2013.06.016] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 04/17/2013] [Accepted: 06/12/2013] [Indexed: 01/15/2023] Open
Abstract
Refractive errors are common eye disorders of public health importance worldwide. Ocular axial length (AL) is the major determinant of refraction and thus of myopia and hyperopia. We conducted a meta-analysis of genome-wide association studies for AL, combining 12,531 Europeans and 8,216 Asians. We identified eight genome-wide significant loci for AL (RSPO1, C3orf26, LAMA2, GJD2, ZNRF3, CD55, MIP, and ALPPL2) and confirmed one previously reported AL locus (ZC3H11B). Of the nine loci, five (LAMA2, GJD2, CD55, ALPPL2, and ZC3H11B) were associated with refraction in 18 independent cohorts (n = 23,591). Differential gene expression was observed for these loci in minus-lens-induced myopia mouse experiments and human ocular tissues. Two of the AL genes, RSPO1 and ZNRF3, are involved in Wnt signaling, a pathway playing a major role in the regulation of eyeball size. This study provides evidence of shared genes between AL and refraction, but importantly also suggests that these traits may have unique pathways.
Collapse
Affiliation(s)
- Ching-Yu Cheng
- Department of Ophthalmology, National University of Singapore and National University Health System, Singapore 119228, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117597, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 168751, Singapore
- Centre for Quantitative Medicine, Office of Clinical Sciences, Duke-National University of Singapore Graduate Medical School, Singapore 169857, Singapore
| | - Maria Schache
- Centre for Eye Research Australia (CERA), University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, VIC 3002, Australia
| | - M. Kamran Ikram
- Department of Ophthalmology, National University of Singapore and National University Health System, Singapore 119228, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 168751, Singapore
- Centre for Quantitative Medicine, Office of Clinical Sciences, Duke-National University of Singapore Graduate Medical School, Singapore 169857, Singapore
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam 3000 CA, the Netherlands
| | - Terri L. Young
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
- Division of Neuroscience and Behavioural Disorders, Duke-National University of Singapore, Graduate Medical School, Singapore 169857, Singapore
| | - Jeremy A. Guggenheim
- Centre for Myopia Research, School of Optometry, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Veronique Vitart
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Stuart MacGregor
- Queensland Institute of Medical Research, Brisbane, QLD 4029, Australia
| | - Virginie J.M. Verhoeven
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam 3000 CA, the Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam 3000 CA, the Netherlands
| | - Veluchamy A. Barathi
- Department of Ophthalmology, National University of Singapore and National University Health System, Singapore 119228, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 168751, Singapore
- Duke-National University of Singapore Graduate Medical School, Singapore 169857, Singapore
| | - Jiemin Liao
- Department of Ophthalmology, National University of Singapore and National University Health System, Singapore 119228, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 168751, Singapore
| | - Pirro G. Hysi
- Department of Twin Research and Genetic Epidemiology, King’s College London School of Medicine, London SE1 7EH, UK
| | - Joan E. Bailey-Wilson
- Inherited Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, MD 21224, USA
| | - Beate St. Pourcain
- MRC Centre for Causal Analyses in Translational Epidemiology, School of Social and Community Medicine, University of Bristol, Bristol BS8 2BN, UK
- School of Social and Community Medicine, University of Bristol, Bristol BS8 2BN, UK
| | - John P. Kemp
- MRC Centre for Causal Analyses in Translational Epidemiology, School of Social and Community Medicine, University of Bristol, Bristol BS8 2BN, UK
- School of Social and Community Medicine, University of Bristol, Bristol BS8 2BN, UK
| | - George McMahon
- MRC Centre for Causal Analyses in Translational Epidemiology, School of Social and Community Medicine, University of Bristol, Bristol BS8 2BN, UK
- School of Social and Community Medicine, University of Bristol, Bristol BS8 2BN, UK
| | - Nicholas J. Timpson
- MRC Centre for Causal Analyses in Translational Epidemiology, School of Social and Community Medicine, University of Bristol, Bristol BS8 2BN, UK
- School of Social and Community Medicine, University of Bristol, Bristol BS8 2BN, UK
| | - David M. Evans
- MRC Centre for Causal Analyses in Translational Epidemiology, School of Social and Community Medicine, University of Bristol, Bristol BS8 2BN, UK
- School of Social and Community Medicine, University of Bristol, Bristol BS8 2BN, UK
| | | | - Aniket Mishra
- Queensland Institute of Medical Research, Brisbane, QLD 4029, Australia
| | - Ya Xing Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital University of Medical Science, Beijing 100730, China
| | - Jie Jin Wang
- Centre for Eye Research Australia (CERA), University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, VIC 3002, Australia
- Department of Ophthalmology, Centre for Vision Research, Westmead Millennium Institute, University of Sydney, Sydney, NSW 2145, Australia
| | - Elena Rochtchina
- Department of Ophthalmology, Centre for Vision Research, Westmead Millennium Institute, University of Sydney, Sydney, NSW 2145, Australia
| | - Ozren Polasek
- Faculty of Medicine, University of Split, Croatia, Split 21000, Croatia
| | - Alan F. Wright
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Najaf Amin
- Department of Epidemiology, Erasmus Medical Center, Rotterdam 3000 CA, the Netherlands
| | | | - James F. Wilson
- Centre for Population Health Sciences, University of Edinburgh, Edinburgh EH8 9AG, UK
| | - Craig E. Pennell
- School of Women’s and Infants’ Health, The University of Western Australia, Perth, WA 6009, Australia
| | - Cornelia M. van Duijn
- Department of Epidemiology, Erasmus Medical Center, Rotterdam 3000 CA, the Netherlands
| | - Paulus T.V.M. de Jong
- Netherlands Institute of Neuroscience (NIN), An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam 1105 BA, the Netherlands
- Department of Ophthalmology, Academisch Medisch Centrum, Amsterdam 1105 AZ, the Netherlands and Leids Universitair Medisch Centrum, Leiden 2300 RC, the Netherlands
| | - Johannes R. Vingerling
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam 3000 CA, the Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam 3000 CA, the Netherlands
| | - Xin Zhou
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117597, Singapore
| | - Peng Chen
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117597, Singapore
| | - Ruoying Li
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117597, Singapore
| | - Wan-Ting Tay
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 168751, Singapore
| | - Yingfeng Zheng
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 168751, Singapore
| | - Merwyn Chew
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 168751, Singapore
| | - Kathryn P. Burdon
- Department of Ophthalmology, Flinders University, Adelaide, SA 5001, Australia
| | - Jamie E. Craig
- Department of Ophthalmology, Flinders University, Adelaide, SA 5001, Australia
| | - Sudha K. Iyengar
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University and University Hospitals Eye Institute, Cleveland, OH 44106, USA
- Department of Genetics, Case Western Reserve University, Cleveland, OH 44106, USA
- Center for Clinical Investigation, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Robert P. Igo
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jonathan H. Lass
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University and University Hospitals Eye Institute, Cleveland, OH 44106, USA
| | - Emily Y. Chew
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Toomas Haller
- Estonian Genome Center, University of Tartu, Tartu 51010, Estonia
| | - Evelin Mihailov
- Estonian Genome Center, University of Tartu, Tartu 51010, Estonia
- Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia
| | - Andres Metspalu
- Estonian Genome Center, University of Tartu, Tartu 51010, Estonia
| | - Juho Wedenoja
- Department of Public Health, Hjelt Institute, University of Helsinki, Helsinki 00014, Finland
| | - Claire L. Simpson
- Inherited Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, MD 21224, USA
| | - Robert Wojciechowski
- Inherited Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, MD 21224, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - René Höhn
- Department of Ophthalmology, University Medical Center Mainz, Mainz 55131, Germany
| | - Alireza Mirshahi
- Department of Ophthalmology, University Medical Center Mainz, Mainz 55131, Germany
| | - Tanja Zeller
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Hamburg 20246, Germany
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center Mainz, Mainz 55131, Germany
| | - Karl J. Lackner
- Department of Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Mainz 55131, Germany
| | - Thomas Bettecken
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg 85764, Germany
- Institute of Human Genetics, Technical University Munich, Munich 81675, Germany
| | - Konrad Oexle
- Institute of Human Genetics, Technical University Munich, Munich 81675, Germany
| | - Mario Pirastu
- Institute of Population Genetics, National Research Council of Italy, Sassari 07100, Italy
| | - Laura Portas
- Institute of Population Genetics, National Research Council of Italy, Sassari 07100, Italy
| | - Abhishek Nag
- Department of Twin Research and Genetic Epidemiology, King’s College London School of Medicine, London SE1 7EH, UK
| | - Katie M. Williams
- Department of Twin Research and Genetic Epidemiology, King’s College London School of Medicine, London SE1 7EH, UK
| | - Ekaterina Yonova-Doing
- Department of Twin Research and Genetic Epidemiology, King’s College London School of Medicine, London SE1 7EH, UK
| | - Ronald Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Barbara E. Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - S. Mohsen Hosseini
- Program in Genetics and Genome Biology, The Hospital for Sick Children and Institute for Medical Sciences, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Andrew D. Paterson
- Program in Genetics and Genome Biology, The Hospital for Sick Children and Institute for Medical Sciences, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Kari-Matti Makela
- Department of Clinical Chemistry, Filmlab Laboratories, Tampere University Hospital and School of Medicine, University of Tampere, Tampere 33520, Finland
| | - Terho Lehtimaki
- Department of Clinical Chemistry, Filmlab Laboratories, Tampere University Hospital and School of Medicine, University of Tampere, Tampere 33520, Finland
| | - Mika Kahonen
- Department of Clinical Physiology, Tampere University Hospital and School of Medicine, University of Tampere, Tampere 33521, Finland
| | - Olli Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, and Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku 20041, Finland
| | - Nagahisa Yoshimura
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Fumihiko Matsuda
- Department of Human Disease Genomics, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Li Jia Chen
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong Eye Hospital, Kowloon, Hong Kong
| | - Shea Ping Yip
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong
| | - Maurice K.H. Yap
- Centre for Myopia Research, School of Optometry, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Akira Meguro
- Department of Ophthalmology and Visual Sciences, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Nobuhisa Mizuki
- Department of Ophthalmology and Visual Sciences, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Hidetoshi Inoko
- Department of Genetic Information, Division of Molecular Life Science, Tokai University School of Medicine, Kanagawa 259-1193, Japan
| | - Paul J. Foster
- NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London EC1V 2PD, UK
| | - Jing Hua Zhao
- MRC Epidemiology Unit, Institute of Metabolic Sciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Eranga Vithana
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 168751, Singapore
| | - E-Shyong Tai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117597, Singapore
- Duke-National University of Singapore Graduate Medical School, Singapore 169857, Singapore
- Department of Medicine, National University of Singapore and National University Health System, Singapore 119228, Singapore
| | - Qiao Fan
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117597, Singapore
| | - Liang Xu
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital University of Medical Science, Beijing 100730, China
| | - Harry Campbell
- Centre for Population Health Sciences, University of Edinburgh, Edinburgh EH8 9AG, UK
| | - Brian Fleck
- Princess Alexandra Eye Pavilion, Edinburgh EH3 9HA, UK
| | - Igor Rudan
- Centre for Population Health Sciences, University of Edinburgh, Edinburgh EH8 9AG, UK
| | - Tin Aung
- Department of Ophthalmology, National University of Singapore and National University Health System, Singapore 119228, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 168751, Singapore
| | - Albert Hofman
- Department of Epidemiology, Erasmus Medical Center, Rotterdam 3000 CA, the Netherlands
| | - André G. Uitterlinden
- Department of Epidemiology, Erasmus Medical Center, Rotterdam 3000 CA, the Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam 3000 CA, the Netherlands
| | - Goran Bencic
- Department of Ophthalmology, Sisters of Mercy University Hospital, Zagreb 10000, Croatia
| | - Chiea-Chuen Khor
- Department of Ophthalmology, National University of Singapore and National University Health System, Singapore 119228, Singapore
- Division of Human Genetics, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Hannah Forward
- School of Women’s and Infants’ Health, The University of Western Australia, Perth, WA 6009, Australia
| | - Olavi Pärssinen
- Department of Health Sciences and Gerontology Research Center, University of Jyväskylä, Jyväskylä 40014, Finland
- Department of Ophthalmology, Central Hospital of Central Finland, Jyväskylä 40620, Finland
| | - Paul Mitchell
- Department of Ophthalmology, Centre for Vision Research, Westmead Millennium Institute, University of Sydney, Sydney, NSW 2145, Australia
| | - Fernando Rivadeneira
- Department of Epidemiology, Erasmus Medical Center, Rotterdam 3000 CA, the Netherlands
| | - Alex W. Hewitt
- Centre for Eye Research Australia (CERA), University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, VIC 3002, Australia
- Centre for Ophthalmology and Visual Science, Lions Eye Institute, University of Western Australia, Perth, WA 6009, Australia
| | - Cathy Williams
- School of Social and Community Medicine, University of Bristol, Bristol BS8 2BN, UK
| | - Ben A. Oostra
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam 3000 CA, the Netherlands
| | - Yik-Ying Teo
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117597, Singapore
- Department of Statistics and Applied Probability, National University of Singapore, Singapore 117546, Singapore
| | - Christopher J. Hammond
- Department of Twin Research and Genetic Epidemiology, King’s College London School of Medicine, London SE1 7EH, UK
| | - Dwight Stambolian
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David A. Mackey
- Centre for Eye Research Australia (CERA), University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, VIC 3002, Australia
- Centre for Ophthalmology and Visual Science, Lions Eye Institute, University of Western Australia, Perth, WA 6009, Australia
| | - Caroline C.W. Klaver
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam 3000 CA, the Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam 3000 CA, the Netherlands
| | - Tien-Yin Wong
- Department of Ophthalmology, National University of Singapore and National University Health System, Singapore 119228, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117597, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 168751, Singapore
| | - Seang-Mei Saw
- Department of Ophthalmology, National University of Singapore and National University Health System, Singapore 119228, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117597, Singapore
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 168751, Singapore
- Centre for Quantitative Medicine, Office of Clinical Sciences, Duke-National University of Singapore Graduate Medical School, Singapore 169857, Singapore
| | - Paul N. Baird
- Centre for Eye Research Australia (CERA), University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, VIC 3002, Australia
| |
Collapse
|
68
|
Stambolian D, Wojciechowski R, Oexle K, Pirastu M, Li X, Raffel LJ, Cotch MF, Chew EY, Klein B, Klein R, Wong TY, Simpson CL, Klaver CC, van Duijn CM, Verhoeven VJ, Baird PN, Vitart V, Paterson AD, Mitchell P, Saw SM, Fossarello M, Kazmierkiewicz K, Murgia F, Portas L, Schache M, Richardson A, Xie J, Wang JJ, Rochtchina E, Viswanathan AC, Hayward C, Wright AF, Polašek O, Campbell H, Rudan I, Oostra BA, Uitterlinden AG, Hofman A, Rivadeneira F, Amin N, Karssen LC, Vingerling JR, Hosseini S, Döring A, Bettecken T, Vatavuk Z, Gieger C, Wichmann HE, Wilson JF, Fleck B, Foster PJ, Topouzis F, McGuffin P, Sim X, Inouye M, Holliday EG, Attia J, Scott RJ, Rotter JI, Meitinger T, Bailey-Wilson JE. Meta-analysis of genome-wide association studies in five cohorts reveals common variants in RBFOX1, a regulator of tissue-specific splicing, associated with refractive error. Hum Mol Genet 2013; 22:2754-64. [PMID: 23474815 PMCID: PMC3674806 DOI: 10.1093/hmg/ddt116] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 02/28/2013] [Accepted: 03/04/2013] [Indexed: 01/22/2023] Open
Abstract
Visual refractive errors (REs) are complex genetic traits with a largely unknown etiology. To date, genome-wide association studies (GWASs) of moderate size have identified several novel risk markers for RE, measured here as mean spherical equivalent (MSE). We performed a GWAS using a total of 7280 samples from five cohorts: the Age-Related Eye Disease Study (AREDS); the KORA study ('Cooperative Health Research in the Region of Augsburg'); the Framingham Eye Study (FES); the Ogliastra Genetic Park-Talana (OGP-Talana) Study and the Multiethnic Study of Atherosclerosis (MESA). Genotyping was performed on Illumina and Affymetrix platforms with additional markers imputed to the HapMap II reference panel. We identified a new genome-wide significant locus on chromosome 16 (rs10500355, P = 3.9 × 10(-9)) in a combined discovery and replication set (26 953 samples). This single nucleotide polymorphism (SNP) is located within the RBFOX1 gene which is a neuron-specific splicing factor regulating a wide range of alternative splicing events implicated in neuronal development and maturation, including transcription factors, other splicing factors and synaptic proteins.
Collapse
Affiliation(s)
- Dwight Stambolian
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert Wojciechowski
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health
- National Human Genome Research Institute
| | - Konrad Oexle
- Institute of Human Genetics, Technische Universität München, Munich, Germany
| | - Mario Pirastu
- Institute of Population Genetics, National Research Council of Italy, Sassari, Italy
| | - Xiaohui Li
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Leslie J. Raffel
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mary Frances Cotch
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Emily Y. Chew
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Barbara Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Ronald Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Tien Y. Wong
- Singapore Eye Research Institute, National University of Singapore, Singapore
- Centre for Eye Research Australia, University of Melbourne, Victoria, Australia
| | | | | | | | | | - Paul N. Baird
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | | | - Andrew D. Paterson
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Paul Mitchell
- Centre for Vision Research, Department of Ophthalmology and Westmead Millennium Institute, University of Sydney, NSW, Australia
| | - Seang Mei Saw
- Department of Epidemiology and Public Health, Yong Loo Lin School of Medicine and
| | - Maurizio Fossarello
- Dipartimento di Scienze Chirurgiche, Clinica Oculistica Universita` degli studi di Cagliari, Cagliari, Italy
| | | | - Federico Murgia
- Institute of Population Genetics, National Research Council of Italy, Sassari, Italy
| | - Laura Portas
- Institute of Population Genetics, National Research Council of Italy, Sassari, Italy
| | - Maria Schache
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Andrea Richardson
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Jing Xie
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
| | - Jie Jin Wang
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Australia
- Centre for Vision Research, Department of Ophthalmology and Westmead Millennium Institute, University of Sydney, NSW, Australia
| | - Elena Rochtchina
- Centre for Vision Research, Department of Ophthalmology and Westmead Millennium Institute, University of Sydney, NSW, Australia
| | | | - Ananth C. Viswanathan
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and
- UCL Institute of Ophthalmology, London EC1V 2PD, UK
| | | | | | - Ozren Polašek
- Croatian Centre for Global Health, University of Split Medical School, Split, Croatia
| | - Harry Campbell
- Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK
| | - Igor Rudan
- Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK
| | | | - André G. Uitterlinden
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Albert Hofman
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Fernando Rivadeneira
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Najaf Amin
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Lennart C. Karssen
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - S.M. Hosseini
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | | | - Thomas Bettecken
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Zoran Vatavuk
- Dept of Ophthalmology, Hospital ‘Sestre Milosrdnice’, Zagreb, Croatia
| | | | | | - James F. Wilson
- Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK
| | - Brian Fleck
- Princess Alexandra Eye Pavilion, Edinburgh, UK
| | - Paul J. Foster
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and
- UCL Institute of Ophthalmology, London EC1V 2PD, UK
| | - Fotis Topouzis
- Department of Ophthalmology, School of Medicine, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece
| | - Peter McGuffin
- MRC Social Genetic and Developmental Psychiatry Research Centre, Institute of Psychiatry, King's College, London, UK
| | - Xueling Sim
- Centre for Molecular Epidemiology, National University of Singapore, Singapore, Singapore
| | - Michael Inouye
- Medical Systems Biology, Department of Pathology and Department of Microbiology & Immunology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Elizabeth G. Holliday
- School of Medicine and Public Health, University of Newcastle, Newcastle, Australia
- Hunter Medical Research Institute, Newcastle, Australia
| | - John Attia
- School of Medicine and Public Health, University of Newcastle, Newcastle, Australia
- Hunter Medical Research Institute, Newcastle, Australia
| | - Rodney J. Scott
- School of Medicine and Public Health, University of Newcastle, Newcastle, Australia
- Hunter Medical Research Institute, Newcastle, Australia
- The Centre for Information Based Medicine and the School of Biomedical Sciences and Pharmacy University of Newcastle, Newcastle, Australia
- The Division of Genetics, Hunter Area Pathology Service, John Hunter Hospital, Newcastle, Australia
| | - Jerome I. Rotter
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Thomas Meitinger
- Institute of Human Genetics, Technische Universität München, Munich, Germany
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | | |
Collapse
|
69
|
Zhang Z, Xu Y, Liu J, Wong DWK, Kwoh CK, Saw SM, Wong TY. Automatic diagnosis of pathological myopia from heterogeneous biomedical data. PLoS One 2013; 8:e65736. [PMID: 23799040 PMCID: PMC3683061 DOI: 10.1371/journal.pone.0065736] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 04/26/2013] [Indexed: 11/21/2022] Open
Abstract
Pathological myopia is one of the leading causes of blindness worldwide. The condition is particularly prevalent in Asia. Unlike myopia, pathological myopia is accompanied by degenerative changes in the retina, which if left untreated can lead to irrecoverable vision loss. The accurate diagnosis of pathological myopia will enable timely intervention and facilitate better disease management to slow down the progression of the disease. Current methods of assessment typically consider only one type of data, such as that from retinal imaging. However, different kinds of data, including that of genetic, demographic and clinical information, may contain different and independent information, which can provide different perspectives on the visually observable, genetic or environmental mechanisms for the disease. The combination of these potentially complementary pieces of information can enhance the understanding of the disease, providing a holistic appreciation of the multiple risks factors as well as improving the detection outcomes. In this study, we propose a computer-aided diagnosis framework for Pathological Myopia diagnosis through Biomedical and Image Informatics(PM-BMII). Through the use of multiple kernel learning (MKL) methods, PM-BMII intelligently fuses heterogeneous biomedical information to improve the accuracy of disease diagnosis. Data from 2,258 subjects of a population-based study, in which demographic and clinical information, retinal fundus imaging data and genotyping data were collected, are used to evaluate the proposed framework. The experimental results show that PM-BMII achieves an AUC of 0.888, outperforming the detection results from the use of demographic and clinical information 0.607 (increase , ), genotyping data 0.774 (increase , ) or imaging data 0.852 (increase , ) alone. The accuracy of the results obtained demonstrates the feasibility of using heterogeneous data for improved disease diagnosis through our proposed PM-BMII framework.
Collapse
Affiliation(s)
- Zhuo Zhang
- Institute for Infocomm Research, Agency for Science, Technology and Research, Singapore, Singapore.
| | | | | | | | | | | | | |
Collapse
|
70
|
Stambolian D. Genetic susceptibility and mechanisms for refractive error. Clin Genet 2013; 84:102-8. [PMID: 23647423 DOI: 10.1111/cge.12180] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 04/29/2013] [Accepted: 04/29/2013] [Indexed: 12/19/2022]
Abstract
Refractive errors, myopia and hyperopia, are the most common causes of visual impairment worldwide. Recent advances in genetics have been utilized to identify a wealth of genetic loci believed to contain susceptibility genes for refractive error (RE). The current genetic evidence confirms that RE is influenced by both common and rare variants with a significant environmental component. These studies argue that only by combining genetic and environmental knowledge with in vivo measurements of biological states will it be possible to understand the underlying biology of RE that will lead to novel therapeutic targets and accurate genetic predictions.
Collapse
Affiliation(s)
- D Stambolian
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
71
|
Whigham BT, Allingham RR. Developments in Ocular Genetics: Annual Review. ASIA-PACIFIC JOURNAL OF OPHTHALMOLOGY (PHILADELPHIA, PA.) 2013; 2:177-86. [PMID: 26108111 DOI: 10.1097/apo.0b013e318294b837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE The purpose of this study was to summarize major developments in ocular genetics over the past year. DESIGN A literature review was performed for articles relating to the genetics of eye diseases and morphology. The search focused on articles published between September 15, 2011, and September 15, 2012. METHODS PubMed and Google Scholar search tools were used to search for ocular genetics articles in the desired date range. RESULTS Major advances have been reported in numerous areas including glaucoma, age-related macular degeneration, and keratoconus. Numerous novel associations have been identified through large genome-wide association studies. In addition, numerous disease genes have been identified through next-generation sequencing technologies. CONCLUSIONS Ocular genetics continues to advance at a rapid pace and benefit from new technologies. Numerous discoveries in the past year point toward areas for continued research.
Collapse
Affiliation(s)
- Benjamin T Whigham
- From the Department of Ophthalmology, Duke University Eye Center, Durham, NC
| | | |
Collapse
|
72
|
Yiu WC, Yap MKH, Fung WY, Ng PW, Yip SP. Genetic susceptibility to refractive error: association of vasoactive intestinal peptide receptor 2 (VIPR2) with high myopia in Chinese. PLoS One 2013; 8:e61805. [PMID: 23637909 PMCID: PMC3630195 DOI: 10.1371/journal.pone.0061805] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 03/14/2013] [Indexed: 11/26/2022] Open
Abstract
Myopia is the most common ocular disease worldwide. We investigated the association of high myopia with the common single nucleotide polymorphisms (SNPs) of five candidate genes – early growth response 1 (EGR1), v-fos FBJ murine osteosarcoma viral oncogene homolog (FOS), jun oncogene (JUN), vasoactive intestinal peptide (VIP), and vasoactive intestinal peptide receptor 2 (VIPR2). We recruited 1200 unrelated Chinese subjects with 600 cases (spherical equivalent ≤−8.00 diopters) and 600 controls (spherical equivalent within ±1.00 diopter). A discovery sample set was formed from 300 cases and 300 controls, and a replication sample set from the remaining samples. Tag SNPs were genotyped for the discovery sample set, and the most significant haplotypes and their constituent SNPs were followed up with the replication sample set. The allele and haplotype frequencies in cases and controls were compared by logistic regression adjusted for sex and age to give Pa values, and multiple comparisons were corrected by permutation test to give Paemp values. Odd ratios (OR) were calculated accordingly. In the discovery phase, EGR1, JUN and VIP did not show any significant association while FOS and VIPR2 demonstrated significant haplotype association with high myopia. In the replication phase, the haplotype association for VIPR2 was successfully replicated, but not FOS. In analysis combining both sample sets, the most significant association signals of VIPR2 were the single marker rs2071625 (Pa = 0.0008, Paemp = 0.0046 and OR = 0.75) and the 4-SNP haplotype window rs2071623-rs2071625-rs2730220-rs885863 (omnibus test, Pa = 9.10e-10 and Paemp = 0.0001) with one protective haplotype (GGGG: Paemp = 0.0002 and OR = 0.52) and one high-risk haplotype (GAGA: Paemp = 0.0027 and OR = 4.68). This 4-SNP haplotype window was the most significant in all sample sets examined. This is the first study to suggest a role of VIPR2 in the genetic susceptibility to high myopia. EGR1, JUN, FOS and VIP are unlikely to be important in predisposing humans to high myopia.
Collapse
Affiliation(s)
- Wai Chi Yiu
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | | | | | | | | |
Collapse
|
73
|
Zhao F, Wu J, Xue A, Su Y, Wang X, Lu X, Zhou Z, Qu J, Zhou X. Exome sequencing reveals CCDC111 mutation associated with high myopia. Hum Genet 2013; 132:913-21. [DOI: 10.1007/s00439-013-1303-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 04/02/2013] [Indexed: 11/28/2022]
|
74
|
Guggenheim JA, Zhou X, Evans DM, Timpson NJ, McMahon G, Kemp JP, St Pourcain B, Northstone K, Ring SM, Fan Q, Wong TY, Cheng CY, Khor CC, Aung T, Saw SM, Williams C. Coordinated genetic scaling of the human eye: shared determination of axial eye length and corneal curvature. Invest Ophthalmol Vis Sci 2013; 54:1715-21. [PMID: 23385790 DOI: 10.1167/iovs.12-10560] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
PURPOSE To examine the extent to which the two major determinants of refractive error, corneal curvature and axial length, are scaled relative to one another by shared genetic variants, along with their relationship to the genetic scaling of height. METHODS Corneal curvature, axial length, and height were measured in unrelated 14- to 17-year-old white European participants of the Avon Longitudinal Study of Parents and Children (ALSPAC; n = 1915) and in unrelated 40- to 80-year-old participants of the Singapore Chinese Eye Study (SCES; n = 1642). Univariate and bivariate heritability analyses were performed with methods that avoid confounding by common family environment, using information solely from genome-wide high-density genotypes. RESULTS IN ALSPAC SUBJECTS, AXIAL LENGTH, CORNEAL CURVATURE, AND HEIGHT HAD SIMILAR LOWER-BOUND HERITABILITY ESTIMATES: axial length, h(2) = 0.46 (SE = 0.16, P = 0.002); corneal curvature, h(2) = 0.42 (SE = 0.16, P = 0.004); height, h(2) = 0.48 (SE = 0.17, P = 0.002). The corresponding estimates in the SCES were 0.79 (SE = 0.18, P < 0.001), 0.35 (SE = 0.20, P = 0.036), and 0.31 (SE = 0.20, P = 0.061), respectively. The genetic correlation between corneal curvature and axial length was 0.69 (SE = 0.17, P = 0.019) for ALSPAC participants and 0.64 (SE = 0.22, P = 0.003) for SCES participants. In the subset of 1478 emmetropic ALSPAC individuals, the genetic correlation was 0.85 (SE = 0.12, P = 0.008). CONCLUSIONS These results imply that coordinated scaling of ocular component dimensions is largely achieved by hundreds to thousands of common genetic variants, each with a small pleiotropic effect. Furthermore, genome-wide association studies (GWAS) for either axial length or corneal curvature are likely to identify variants controlling overall eye size when using discovery cohorts dominated by emmetropes, but trait-specific variants in discovery cohorts dominated by ametropes.
Collapse
Affiliation(s)
- Jeremy A Guggenheim
- Centre for Myopia Research, School of Optometry, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Verhoeven VJM, Hysi PG, Wojciechowski R, Fan Q, Guggenheim JA, Höhn R, MacGregor S, Hewitt AW, Nag A, Cheng CY, Yonova-Doing E, Zhou X, Ikram MK, Buitendijk GHS, McMahon G, Kemp JP, Pourcain BS, Simpson CL, Mäkelä KM, Lehtimäki T, Kähönen M, Paterson AD, Hosseini SM, Wong HS, Xu L, Jonas JB, Pärssinen O, Wedenoja J, Yip SP, Ho DWH, Pang CP, Chen LJ, Burdon KP, Craig JE, Klein BEK, Klein R, Haller T, Metspalu A, Khor CC, Tai ES, Aung T, Vithana E, Tay WT, Barathi VA, Chen P, Li R, Liao J, Zheng Y, Ong RT, Döring A, Evans DM, Timpson NJ, Verkerk AJMH, Meitinger T, Raitakari O, Hawthorne F, Spector TD, Karssen LC, Pirastu M, Murgia F, Ang W, Mishra A, Montgomery GW, Pennell CE, Cumberland PM, Cotlarciuc I, Mitchell P, Wang JJ, Schache M, Janmahasatian S, Janmahasathian S, Igo RP, Lass JH, Chew E, Iyengar SK, Gorgels TGMF, Rudan I, Hayward C, Wright AF, Polasek O, Vatavuk Z, Wilson JF, Fleck B, Zeller T, Mirshahi A, Müller C, Uitterlinden AG, Rivadeneira F, Vingerling JR, Hofman A, Oostra BA, Amin N, Bergen AAB, Teo YY, Rahi JS, Vitart V, Williams C, Baird PN, Wong TY, Oexle K, Pfeiffer N, Mackey DA, Young TL, van Duijn CM, Saw SM, Bailey-Wilson JE, Stambolian D, Klaver CC, Hammond CJ. Genome-wide meta-analyses of multiancestry cohorts identify multiple new susceptibility loci for refractive error and myopia. Nat Genet 2013; 45:314-8. [PMID: 23396134 PMCID: PMC3740568 DOI: 10.1038/ng.2554] [Citation(s) in RCA: 337] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 01/16/2013] [Indexed: 02/06/2023]
Abstract
Refractive error is the most common eye disorder worldwide and is a prominent cause of blindness. Myopia affects over 30% of Western populations and up to 80% of Asians. The CREAM consortium conducted genome-wide meta-analyses, including 37,382 individuals from 27 studies of European ancestry and 8,376 from 5 Asian cohorts. We identified 16 new loci for refractive error in individuals of European ancestry, of which 8 were shared with Asians. Combined analysis identified 8 additional associated loci. The new loci include candidate genes with functions in neurotransmission (GRIA4), ion transport (KCNQ5), retinoic acid metabolism (RDH5), extracellular matrix remodeling (LAMA2 and BMP2) and eye development (SIX6 and PRSS56). We also confirmed previously reported associations with GJD2 and RASGRF1. Risk score analysis using associated SNPs showed a tenfold increased risk of myopia for individuals carrying the highest genetic load. Our results, based on a large meta-analysis across independent multiancestry studies, considerably advance understanding of the mechanisms involved in refractive error and myopia.
Collapse
|
76
|
Kiefer AK, Tung JY, Do CB, Hinds DA, Mountain JL, Francke U, Eriksson N. Genome-wide analysis points to roles for extracellular matrix remodeling, the visual cycle, and neuronal development in myopia. PLoS Genet 2013; 9:e1003299. [PMID: 23468642 PMCID: PMC3585144 DOI: 10.1371/journal.pgen.1003299] [Citation(s) in RCA: 219] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 12/18/2012] [Indexed: 11/18/2022] Open
Abstract
Myopia, or nearsightedness, is the most common eye disorder, resulting primarily from excess elongation of the eye. The etiology of myopia, although known to be complex, is poorly understood. Here we report the largest ever genome-wide association study (45,771 participants) on myopia in Europeans. We performed a survival analysis on age of myopia onset and identified 22 significant associations (), two of which are replications of earlier associations with refractive error. Ten of the 20 novel associations identified replicate in a separate cohort of 8,323 participants who reported if they had developed myopia before age 10. These 22 associations in total explain 2.9% of the variance in myopia age of onset and point toward a number of different mechanisms behind the development of myopia. One association is in the gene PRSS56, which has previously been linked to abnormally small eyes; one is in a gene that forms part of the extracellular matrix (LAMA2); two are in or near genes involved in the regeneration of 11-cis-retinal (RGR and RDH5); two are near genes known to be involved in the growth and guidance of retinal ganglion cells (ZIC2, SFRP1); and five are in or near genes involved in neuronal signaling or development. These novel findings point toward multiple genetic factors involved in the development of myopia and suggest that complex interactions between extracellular matrix remodeling, neuronal development, and visual signals from the retina may underlie the development of myopia in humans. The genetic basis of myopia, or nearsightedness, is believed to be complex and affected by multiple genes. Two genetic association studies have each identified a single genetic region associated with myopia in European populations. Here we report the results of the largest ever genetic association study on myopia in over 45,000 people of European ancestry. We identified 22 genetic regions significantly associated with myopia age of onset. Two are replications of the previously identified associations, and 20 are novel. Ten of the novel associations replicate in a small separate cohort. Sixteen of the novel associations are in or near genes implicated in eye development, neuronal development and signaling, the visual cycle of the retina, and general morphology: BMP3, BMP4, DLG2, DLX1, KCNMA1, KCNQ5, LAMA2, LRRC4C, PRSS56, RBFOX1, RDH5, RGR, SFRP1, TJP2, ZBTB38, and ZIC2. These findings point to numerous biological pathways involved in the development of myopia and, in particular, suggest that early eye and neuronal development may lead to the eventual development of myopia in humans.
Collapse
Affiliation(s)
- Amy K. Kiefer
- 23andMe, Mountain View, California, United States of America
| | - Joyce Y. Tung
- 23andMe, Mountain View, California, United States of America
| | - Chuong B. Do
- 23andMe, Mountain View, California, United States of America
| | - David A. Hinds
- 23andMe, Mountain View, California, United States of America
| | | | - Uta Francke
- 23andMe, Mountain View, California, United States of America
| | - Nicholas Eriksson
- 23andMe, Mountain View, California, United States of America
- * E-mail:
| |
Collapse
|
77
|
Hawthorne FA, Young TL. Genetic contributions to myopic refractive error: Insights from human studies and supporting evidence from animal models. Exp Eye Res 2013; 114:141-9. [PMID: 23379998 DOI: 10.1016/j.exer.2012.12.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 12/13/2012] [Accepted: 12/14/2012] [Indexed: 12/28/2022]
Abstract
Genetic studies of both population-based and recruited affected patient cohorts have identified a number of genomic regions and candidate genes that may contribute to myopic development. Scientists have developed animal models of myopia, as collection of affected tissues from patents is impractical. Recent advances in whole exome sequencing technology show promise for further elucidation of disease causing variants as in the recent identification of rare variants within ZNF644 segregating with pathological myopia. We present a review of the current research trends and findings on genetic contributions to myopic refraction including candidate loci for myopic development and their genomic convergence with expression studies of animal models inducing myopic development.
Collapse
|
78
|
Deep whole-genome sequencing of 100 southeast Asian Malays. Am J Hum Genet 2013; 92:52-66. [PMID: 23290073 DOI: 10.1016/j.ajhg.2012.12.005] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 11/12/2012] [Accepted: 12/06/2012] [Indexed: 12/19/2022] Open
Abstract
Whole-genome sequencing across multiple samples in a population provides an unprecedented opportunity for comprehensively characterizing the polymorphic variants in the population. Although the 1000 Genomes Project (1KGP) has offered brief insights into the value of population-level sequencing, the low coverage has compromised the ability to confidently detect rare and low-frequency variants. In addition, the composition of populations in the 1KGP is not complete, despite the fact that the study design has been extended to more than 2,500 samples from more than 20 population groups. The Malays are one of the Austronesian groups predominantly present in Southeast Asia and Oceania, and the Singapore Sequencing Malay Project (SSMP) aims to perform deep whole-genome sequencing of 100 healthy Malays. By sequencing at a minimum of 30× coverage, we have illustrated the higher sensitivity at detecting low-frequency and rare variants and the ability to investigate the presence of hotspots of functional mutations. Compared to the low-pass sequencing in the 1KGP, the deeper coverage allows more functional variants to be identified for each person. A comparison of the fidelity of genotype imputation of Malays indicated that a population-specific reference panel, such as the SSMP, outperforms a cosmopolitan panel with larger number of individuals for common SNPs. For lower-frequency (<5%) markers, a larger number of individuals might have to be whole-genome sequenced so that the accuracy currently afforded by the 1KGP can be achieved. The SSMP data are expected to be the benchmark for evaluating the value of deep population-level sequencing versus low-pass sequencing, especially in populations that are poorly represented in population-genetics studies.
Collapse
|