51
|
Irving-Pease EK, Muktupavela R, Dannemann M, Racimo F. Quantitative Human Paleogenetics: What can Ancient DNA Tell us About Complex Trait Evolution? Front Genet 2021; 12:703541. [PMID: 34422004 PMCID: PMC8371751 DOI: 10.3389/fgene.2021.703541] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
Genetic association data from national biobanks and large-scale association studies have provided new prospects for understanding the genetic evolution of complex traits and diseases in humans. In turn, genomes from ancient human archaeological remains are now easier than ever to obtain, and provide a direct window into changes in frequencies of trait-associated alleles in the past. This has generated a new wave of studies aiming to analyse the genetic component of traits in historic and prehistoric times using ancient DNA, and to determine whether any such traits were subject to natural selection. In humans, however, issues about the portability and robustness of complex trait inference across different populations are particularly concerning when predictions are extended to individuals that died thousands of years ago, and for which little, if any, phenotypic validation is possible. In this review, we discuss the advantages of incorporating ancient genomes into studies of trait-associated variants, the need for models that can better accommodate ancient genomes into quantitative genetic frameworks, and the existing limits to inferences about complex trait evolution, particularly with respect to past populations.
Collapse
Affiliation(s)
- Evan K. Irving-Pease
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Rasa Muktupavela
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Michael Dannemann
- Center for Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Fernando Racimo
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
52
|
McArthur E, Rinker DC, Capra JA. Quantifying the contribution of Neanderthal introgression to the heritability of complex traits. Nat Commun 2021; 12:4481. [PMID: 34294692 PMCID: PMC8298587 DOI: 10.1038/s41467-021-24582-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 06/24/2021] [Indexed: 11/15/2022] Open
Abstract
Eurasians have ~2% Neanderthal ancestry, but we lack a comprehensive understanding of the genome-wide influence of Neanderthal introgression on modern human diseases and traits. Here, we quantify the contribution of introgressed alleles to the heritability of more than 400 diverse traits. We show that genomic regions in which detectable Neanderthal ancestry remains are depleted of heritability for all traits considered, except those related to skin and hair. Introgressed variants themselves are also depleted for contributions to the heritability of most traits. However, introgressed variants shared across multiple Neanderthal populations are enriched for heritability and have consistent directions of effect on several traits with potential relevance to human adaptation to non-African environments, including hair and skin traits, autoimmunity, chronotype, bone density, lung capacity, and menopause age. Integrating our results, we propose a model in which selection against introgressed functional variation was the dominant trend (especially for cognitive traits); however, for a few traits, introgressed variants provided beneficial variation via uni-directional (e.g., lightening skin color) or bi-directional (e.g., modulating immune response) effects.
Collapse
Affiliation(s)
- Evonne McArthur
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, 37235, USA
| | - David C Rinker
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA
| | - John A Capra
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, 37235, USA.
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37235, USA.
- Bakar Computational Health Sciences Institute and Department of Epidemiology and Statistics, University of California San Francisco, San Francisco, CA, 94107, USA.
| |
Collapse
|
53
|
Ahlquist KD, Bañuelos MM, Funk A, Lai J, Rong S, Villanea FA, Witt KE. Our Tangled Family Tree: New Genomic Methods Offer Insight into the Legacy of Archaic Admixture. Genome Biol Evol 2021; 13:evab115. [PMID: 34028527 PMCID: PMC8480178 DOI: 10.1093/gbe/evab115] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/07/2021] [Accepted: 05/22/2021] [Indexed: 11/30/2022] Open
Abstract
The archaic ancestry present in the human genome has captured the imagination of both scientists and the wider public in recent years. This excitement is the result of new studies pushing the envelope of what we can learn from the archaic genetic information that has survived for over 50,000 years in the human genome. Here, we review the most recent ten years of literature on the topic of archaic introgression, including the current state of knowledge on Neanderthal and Denisovan introgression, as well as introgression from other as-yet unidentified archaic populations. We focus this review on four topics: 1) a reimagining of human demographic history, including evidence for multiple admixture events between modern humans, Neanderthals, Denisovans, and other archaic populations; 2) state-of-the-art methods for detecting archaic ancestry in population-level genomic data; 3) how these novel methods can detect archaic introgression in modern African populations; and 4) the functional consequences of archaic gene variants, including how those variants were co-opted into novel function in modern human populations. The goal of this review is to provide a simple-to-access reference for the relevant methods and novel data, which has changed our understanding of the relationship between our species and its siblings. This body of literature reveals the large degree to which the genetic legacy of these extinct hominins has been integrated into the human populations of today.
Collapse
Affiliation(s)
- K D Ahlquist
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Mayra M Bañuelos
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Alyssa Funk
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Jiaying Lai
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, USA
- Brown Center for Biomedical Informatics, Brown University, Providence, Rhode Island, USA
| | - Stephen Rong
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Fernando A Villanea
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, USA
- Department of Anthropology, University of Colorado Boulder, Colorado, USA
| | - Kelsey E Witt
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, USA
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
54
|
Nadachowska-Brzyska K, Dutoit L, Smeds L, Kardos M, Gustafsson L, Ellegren H. Genomic inference of contemporary effective population size in a large island population of collared flycatchers (Ficedula albicollis). Mol Ecol 2021; 30:3965-3973. [PMID: 34145933 DOI: 10.1111/mec.16025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 12/30/2022]
Abstract
Due to its central importance to many aspects of evolutionary biology and population genetics, the long-term effective population size (Ne ) has been estimated for numerous species and populations. However, estimating contemporary Ne is difficult and in practice this parameter is often unknown. In principle, contemporary Ne can be estimated using either analyses of temporal changes in allele frequencies, or the extent of linkage disequilibrium (LD) between unlinked markers. We applied these approaches to estimate contemporary Ne of a relatively recently founded island population of collared flycatchers (Ficedula albicollis). We sequenced the genomes of 85 birds sampled in 1993 and 2015, and applied several temporal methods to estimate Ne at a few thousand (4000-7000). The approach based on LD provided higher estimates of Ne (20,000-32,000) and was associated with high variance, often resulting in infinite Ne . We conclude that whole-genome sequencing data offers new possibilities to estimate high (>1000) contemporary Ne , but also note that such estimates remain challenging, in particular for LD-based methods for contemporary Ne estimation.
Collapse
Affiliation(s)
- Krystyna Nadachowska-Brzyska
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.,Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Ludovic Dutoit
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.,Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Linnéa Smeds
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Martin Kardos
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Lars Gustafsson
- Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Hans Ellegren
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
55
|
Gower G, Picazo PI, Fumagalli M, Racimo F. Detecting adaptive introgression in human evolution using convolutional neural networks. eLife 2021; 10:64669. [PMID: 34032215 PMCID: PMC8192126 DOI: 10.7554/elife.64669] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 05/24/2021] [Indexed: 01/10/2023] Open
Abstract
Studies in a variety of species have shown evidence for positively selected variants introduced into a population via introgression from another, distantly related population—a process known as adaptive introgression. However, there are few explicit frameworks for jointly modelling introgression and positive selection, in order to detect these variants using genomic sequence data. Here, we develop an approach based on convolutional neural networks (CNNs). CNNs do not require the specification of an analytical model of allele frequency dynamics and have outperformed alternative methods for classification and parameter estimation tasks in various areas of population genetics. Thus, they are potentially well suited to the identification of adaptive introgression. Using simulations, we trained CNNs on genotype matrices derived from genomes sampled from the donor population, the recipient population and a related non-introgressed population, in order to distinguish regions of the genome evolving under adaptive introgression from those evolving neutrally or experiencing selective sweeps. Our CNN architecture exhibits 95% accuracy on simulated data, even when the genomes are unphased, and accuracy decreases only moderately in the presence of heterosis. As a proof of concept, we applied our trained CNNs to human genomic datasets—both phased and unphased—to detect candidates for adaptive introgression that shaped our evolutionary history.
Collapse
Affiliation(s)
- Graham Gower
- Lundbeck GeoGenetics Centre, Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pablo Iáñez Picazo
- Lundbeck GeoGenetics Centre, Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matteo Fumagalli
- Department of Life Sciences, Silwood Park Campus, Imperial College London, London, United Kingdom
| | - Fernando Racimo
- Lundbeck GeoGenetics Centre, Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
56
|
Yair S, Lee KM, Coop G. The timing of human adaptation from Neanderthal introgression. Genetics 2021; 218:iyab052. [PMID: 33787889 PMCID: PMC8128397 DOI: 10.1093/genetics/iyab052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/26/2021] [Indexed: 12/26/2022] Open
Abstract
Admixture has the potential to facilitate adaptation by providing alleles that are immediately adaptive in a new environment or by simply increasing the long-term reservoir of genetic diversity for future adaptation. A growing number of cases of adaptive introgression are being identified in species across the tree of life, however the timing of selection, and therefore the importance of the different evolutionary roles of admixture, is typically unknown. Here, we investigate the spatio-temporal history of selection favoring Neanderthal-introgressed alleles in modern human populations. Using both ancient and present-day samples of modern humans, we integrate the known demographic history of populations, namely population divergence and migration, with tests for selection. We model how a sweep placed along different branches of an admixture graph acts to modify the variance and covariance in neutral allele frequencies among populations at linked loci. Using a method based on this model of allele frequencies, we study previously identified cases of adaptive Neanderthal introgression. From these, we identify cases in which Neanderthal-introgressed alleles were quickly beneficial and other cases in which they persisted at low frequency for some time. For some of the alleles that persisted at low frequency, we show that selection likely independently favored them later on in geographically separated populations. Our work highlights how admixture with ancient hominins has contributed to modern human adaptation and contextualizes observed levels of Neanderthal ancestry in present-day and ancient samples.
Collapse
Affiliation(s)
- Sivan Yair
- Center for Population Biology, University of California, Davis, Davis, CA 95616, USA
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| | - Kristin M Lee
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Graham Coop
- Center for Population Biology, University of California, Davis, Davis, CA 95616, USA
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
57
|
Vershinina AO, Heintzman PD, Froese DG, Zazula G, Cassatt-Johnstone M, Dalén L, Der Sarkissian C, Dunn SG, Ermini L, Gamba C, Groves P, Kapp JD, Mann DH, Seguin-Orlando A, Southon J, Stiller M, Wooller MJ, Baryshnikov G, Gimranov D, Scott E, Hall E, Hewitson S, Kirillova I, Kosintsev P, Shidlovsky F, Tong HW, Tiunov MP, Vartanyan S, Orlando L, Corbett-Detig R, MacPhee RD, Shapiro B. Ancient horse genomes reveal the timing and extent of dispersals across the Bering Land Bridge. Mol Ecol 2021; 30:6144-6161. [PMID: 33971056 DOI: 10.1111/mec.15977] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/24/2021] [Accepted: 04/27/2021] [Indexed: 01/02/2023]
Abstract
The Bering Land Bridge (BLB) last connected Eurasia and North America during the Late Pleistocene. Although the BLB would have enabled transfers of terrestrial biota in both directions, it also acted as an ecological filter whose permeability varied considerably over time. Here we explore the possible impacts of this ecological corridor on genetic diversity within, and connectivity among, populations of a once wide-ranging group, the caballine horses (Equus spp.). Using a panel of 187 mitochondrial and eight nuclear genomes recovered from present-day and extinct caballine horses sampled across the Holarctic, we found that Eurasian horse populations initially diverged from those in North America, their ancestral continent, around 1.0-0.8 million years ago. Subsequent to this split our mitochondrial DNA analysis identified two bidirectional long-range dispersals across the BLB ~875-625 and ~200-50 thousand years ago, during the Middle and Late Pleistocene. Whole genome analysis indicated low levels of gene flow between North American and Eurasian horse populations, which probably occurred as a result of these inferred dispersals. Nonetheless, mitochondrial and nuclear diversity of caballine horse populations retained strong phylogeographical structuring. Our results suggest that barriers to gene flow, currently unidentified but possibly related to habitat distribution across Beringia or ongoing evolutionary divergence, played an important role in shaping the early genetic history of caballine horses, including the ancestors of living horses within Equus ferus.
Collapse
Affiliation(s)
- Alisa O Vershinina
- Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Peter D Heintzman
- The Arctic University Museum of Norway, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Duane G Froese
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, Canada
| | - Grant Zazula
- Collections and Research, Canadian Museum of Nature, Station D, Ottawa, ON, Canada.,Government of Yukon, Department of Tourism and Culture, Palaeontology Program, Whitehorse, YT, Canada
| | | | - Love Dalén
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.,Centre for Palaeogenetics, Stockholm, Sweden
| | - Clio Der Sarkissian
- Centre d'Anthropobiologie et de Génomique de Toulouse UMR5288, Faculté de Médecine Purpan, Université Paul Sabatier, Toulouse, France
| | - Shelby G Dunn
- Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Luca Ermini
- Lundbeck Foundation GeoGenetics Center, University of Copenhagen, Copenhagen, Denmark
| | - Cristina Gamba
- Lundbeck Foundation GeoGenetics Center, University of Copenhagen, Copenhagen, Denmark
| | - Pamela Groves
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, CA, USA
| | - Joshua D Kapp
- Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Daniel H Mann
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, CA, USA
| | - Andaine Seguin-Orlando
- Centre d'Anthropobiologie et de Génomique de Toulouse UMR5288, Faculté de Médecine Purpan, Université Paul Sabatier, Toulouse, France
| | - John Southon
- Keck-CCAMS Group, Earth System Science Department, University of California, Irvine, CA, USA
| | - Mathias Stiller
- Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA.,Division Molecular Pathology, Institute of Pathology, University Hospital Leipzig, Leipzig, Germany
| | - Matthew J Wooller
- Alaska Stable Isotope Facility, Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, AK, USA.,Department of Marine Biology, College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Gennady Baryshnikov
- Laboratory of Theriology, Zoological Institute of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Dmitry Gimranov
- Institute of Plant & Animal Ecology of the Russian Academy of Sciences, Ural Branch, Ekaterinburg, Russia.,Ural Federal University named after the first President of Russia B. N. Yeltsin, Ekaterinburg, Russia
| | - Eric Scott
- California State University, San Bernardino, CA, USA
| | - Elizabeth Hall
- Government of Yukon, Department of Tourism and Culture, Palaeontology Program, Whitehorse, YT, Canada
| | - Susan Hewitson
- Government of Yukon, Department of Tourism and Culture, Palaeontology Program, Whitehorse, YT, Canada
| | - Irina Kirillova
- Institute of Geography, Russian Academy of Sciences, Moscow, Russia
| | - Pavel Kosintsev
- Institute of Plant & Animal Ecology of the Russian Academy of Sciences, Ural Branch, Ekaterinburg, Russia
| | | | - Hao-Wen Tong
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
| | - Mikhail P Tiunov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia
| | - Sergey Vartanyan
- North-East Interdisciplinary Scientific Research Institute N.A. Shilo, Far East Branch, Russian Academy of Sciences, Magadan, Russia
| | - Ludovic Orlando
- Centre d'Anthropobiologie et de Génomique de Toulouse UMR5288, Faculté de Médecine Purpan, Université Paul Sabatier, Toulouse, France
| | | | | | - Beth Shapiro
- Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA.,Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| |
Collapse
|
58
|
Gopalan S, Atkinson EG, Buck LT, Weaver TD, Henn BM. Inferring archaic introgression from hominin genetic data. Evol Anthropol 2021; 30:199-220. [PMID: 33951239 PMCID: PMC8360192 DOI: 10.1002/evan.21895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 08/03/2020] [Accepted: 03/29/2021] [Indexed: 01/05/2023]
Abstract
Questions surrounding the timing, extent, and evolutionary consequences of archaic admixture into human populations have a long history in evolutionary anthropology. More recently, advances in human genetics, particularly in the field of ancient DNA, have shed new light on the question of whether or not Homo sapiens interbred with other hominin groups. By the late 1990s, published genetic work had largely concluded that archaic groups made no lasting genetic contribution to modern humans; less than a decade later, this conclusion was reversed following the successful DNA sequencing of an ancient Neanderthal. This reversal of consensus is noteworthy, but the reasoning behind it is not widely understood across all academic communities. There remains a communication gap between population geneticists and paleoanthropologists. In this review, we endeavor to bridge this gap by outlining how technological advancements, new statistical methods, and notable controversies ultimately led to the current consensus.
Collapse
Affiliation(s)
- Shyamalika Gopalan
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, USA.,Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA
| | - Elizabeth G Atkinson
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, USA.,Analytic and Translational Genetics Unit, Massachusetts General Hospital and Stanley Center for Psychiatric Research, Broad Institute, Boston, Massachusetts, USA
| | - Laura T Buck
- Research Centre in Evolutionary Anthropology and Palaeoecology, Liverpool John Moores University, Liverpool, UK
| | - Timothy D Weaver
- Department of Anthropology, University of California, Davis, California, USA
| | - Brenna M Henn
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, USA.,Department of Anthropology, University of California, Davis, California, USA.,UC Davis Genome Center, University of California, Davis, California, USA
| |
Collapse
|
59
|
Takou M, Hämälä T, Koch EM, Steige KA, Dittberner H, Yant L, Genete M, Sunyaev S, Castric V, Vekemans X, Savolainen O, de Meaux J. Maintenance of Adaptive Dynamics and No Detectable Load in a Range-Edge Outcrossing Plant Population. Mol Biol Evol 2021; 38:1820-1836. [PMID: 33480994 PMCID: PMC8097302 DOI: 10.1093/molbev/msaa322] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
During range expansion, edge populations are expected to face increased genetic drift, which in turn can alter and potentially compromise adaptive dynamics, preventing the removal of deleterious mutations and slowing down adaptation. Here, we contrast populations of the European subspecies Arabidopsis lyrata ssp. petraea, which expanded its Northern range after the last glaciation. We document a sharp decline in effective population size in the range-edge population and observe that nonsynonymous variants segregate at higher frequencies. We detect a 4.9% excess of derived nonsynonymous variants per individual in the range-edge population, suggesting an increase of the genomic burden of deleterious mutations. Inference of the fitness effects of mutations and modeling of allele frequencies under the explicit demographic history of each population predicts a depletion of rare deleterious variants in the range-edge population, but an enrichment for fixed ones, consistent with the bottleneck effect. However, the demographic history of the range-edge population predicts a small net decrease in per-individual fitness. Consistent with this prediction, the range-edge population is not impaired in its growth and survival measured in a common garden experiment. We further observe that the allelic diversity at the self-incompatibility locus, which ensures strict outcrossing and evolves under negative frequency-dependent selection, has remained unchanged. Genomic footprints indicative of selective sweeps are broader in the Northern population but not less frequent. We conclude that the outcrossing species A. lyrata ssp. petraea shows a strong resilience to the effect of range expansion.
Collapse
Affiliation(s)
- Margarita Takou
- Institute of Botany, University of Cologne, Cologne, Germany
| | - Tuomas Hämälä
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA
| | - Evan M Koch
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Kim A Steige
- Institute of Botany, University of Cologne, Cologne, Germany
| | | | - Levi Yant
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Mathieu Genete
- CNRS, UMR 8198 – Evo-Eco-Paleo, University of Lille, Lille, France
| | - Shamil Sunyaev
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Vincent Castric
- CNRS, UMR 8198 – Evo-Eco-Paleo, University of Lille, Lille, France
| | - Xavier Vekemans
- CNRS, UMR 8198 – Evo-Eco-Paleo, University of Lille, Lille, France
| | - Outi Savolainen
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | | |
Collapse
|
60
|
Benton ML, Abraham A, LaBella AL, Abbot P, Rokas A, Capra JA. The influence of evolutionary history on human health and disease. Nat Rev Genet 2021; 22:269-283. [PMID: 33408383 PMCID: PMC7787134 DOI: 10.1038/s41576-020-00305-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2020] [Indexed: 01/29/2023]
Abstract
Nearly all genetic variants that influence disease risk have human-specific origins; however, the systems they influence have ancient roots that often trace back to evolutionary events long before the origin of humans. Here, we review how advances in our understanding of the genetic architectures of diseases, recent human evolution and deep evolutionary history can help explain how and why humans in modern environments become ill. Human populations exhibit differences in the prevalence of many common and rare genetic diseases. These differences are largely the result of the diverse environmental, cultural, demographic and genetic histories of modern human populations. Synthesizing our growing knowledge of evolutionary history with genetic medicine, while accounting for environmental and social factors, will help to achieve the promise of personalized genomics and realize the potential hidden in an individual's DNA sequence to guide clinical decisions. In short, precision medicine is fundamentally evolutionary medicine, and integration of evolutionary perspectives into the clinic will support the realization of its full potential.
Collapse
Affiliation(s)
- Mary Lauren Benton
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Computer Science, Baylor University, Waco, TX, USA
| | - Abin Abraham
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
- Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN, USA
| | - Abigail L LaBella
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Patrick Abbot
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Antonis Rokas
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - John A Capra
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
- Bakar Computational Health Sciences Institute and Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA.
| |
Collapse
|
61
|
Villanea FA, Huerta-Sanchez E, Fox K. ABO Genetic Variation in Neanderthals and Denisovans. Mol Biol Evol 2021; 38:3373-3382. [PMID: 33892510 PMCID: PMC8321519 DOI: 10.1093/molbev/msab109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Variation at the ABO locus was one of the earliest sources of data in the study of human population identity and history, and to this day remains widely genotyped due to its importance in blood and tissue transfusions. Here, we look at ABO blood type variants in our archaic relatives: Neanderthals and Denisovans. Our goal is to understand the genetic landscape of the ABO gene in archaic humans, and how it relates to modern human ABO variation. We found two Neanderthal variants of the O allele in the Siberian Neanderthals (O1 and O2), one of these variants is shared with an European Neanderthal, who is a heterozygote for this O1 variant and a rare cis-AB variant. The Denisovan individual is heterozygous for two variants of the O1 allele, functionally similar to variants found widely in modern humans. Perhaps more surprisingly, the O2 allele variant found in Siberian Neanderthals can be found at low frequencies in modern Europeans and Southeast Asians, and the O1 allele variant found in Siberian and European Neanderthal is also found at very low frequency in modern East Asians. Our genetic distance analyses suggest both alleles survive in modern humans due to inbreeding with Neanderthals. We find that the sequence backgrounds of the surviving Neanderthal-like O alleles in modern humans retain a higher sequence divergence than other surviving Neanderthal genome fragments, supporting a view of balancing selection operating in the Neanderthal ABO alleles by retaining highly diverse haplotypes compared with portions of the genome evolving neutrally.
Collapse
Affiliation(s)
- Fernando A Villanea
- Anthropology, University of Colorado Boulder, Boulder, CO, USA.,Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
| | | | - Keolu Fox
- Anthropology and Global Health, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
62
|
Christmas MJ, Jones JC, Olsson A, Wallerman O, Bunikis I, Kierczak M, Peona V, Whitley KM, Larva T, Suh A, Miller-Struttmann NE, Geib JC, Webster MT. Genetic Barriers to Historical Gene Flow between Cryptic Species of Alpine Bumblebees Revealed by Comparative Population Genomics. Mol Biol Evol 2021; 38:3126-3143. [PMID: 33823537 PMCID: PMC8321533 DOI: 10.1093/molbev/msab086] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Evidence is accumulating that gene flow commonly occurs between recently diverged species, despite the existence of barriers to gene flow in their genomes. However, we still know little about what regions of the genome become barriers to gene flow and how such barriers form. Here, we compare genetic differentiation across the genomes of bumblebee species living in sympatry and allopatry to reveal the potential impact of gene flow during species divergence and uncover genetic barrier loci. We first compared the genomes of the alpine bumblebee Bombus sylvicola and a previously unidentified sister species living in sympatry in the Rocky Mountains, revealing prominent islands of elevated genetic divergence in the genome that colocalize with centromeres and regions of low recombination. This same pattern is observed between the genomes of another pair of closely related species living in allopatry (B. bifarius and B. vancouverensis). Strikingly however, the genomic islands exhibit significantly elevated absolute divergence (dXY) in the sympatric, but not the allopatric, comparison indicating that they contain loci that have acted as barriers to historical gene flow in sympatry. Our results suggest that intrinsic barriers to gene flow between species may often accumulate in regions of low recombination and near centromeres through processes such as genetic hitchhiking, and that divergence in these regions is accentuated in the presence of gene flow.
Collapse
Affiliation(s)
- Matthew J Christmas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Julia C Jones
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Anna Olsson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ola Wallerman
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ignas Bunikis
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Marcin Kierczak
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Valentina Peona
- Department of Organismal Biology-Systematic Biology, Uppsala University, Uppsala, Sweden
| | - Kaitlyn M Whitley
- Department of Biology, Appalachian State University, Boone, NC, USA.,U.S. Department of Agriculture, Agriculture Research Service, Charleston, SC, USA
| | - Tuuli Larva
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Alexander Suh
- Department of Organismal Biology-Systematic Biology, Uppsala University, Uppsala, Sweden.,School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | | | - Jennifer C Geib
- Department of Biology, Appalachian State University, Boone, NC, USA
| | - Matthew T Webster
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
63
|
Chiou KL, Bergey CM, Burrell AS, Disotell TR, Rogers J, Jolly CJ, Phillips-Conroy JE. Genome-wide ancestry and introgression in a Zambian baboon hybrid zone. Mol Ecol 2021; 30:1907-1920. [PMID: 33624366 DOI: 10.1111/mec.15858] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 02/15/2021] [Accepted: 02/19/2021] [Indexed: 10/22/2022]
Abstract
Hybridization in nature offers unique insights into the process of natural selection in incipient species and their hybrids. In order to evaluate the patterns and targets of selection, we examine a recently discovered baboon hybrid zone in the Kafue River Valley of Zambia, where Kinda baboons (Papio kindae) and grey-footed chacma baboons (P. ursinus griseipes) coexist with hybridization. We genotyped baboons at 14,962 variable genome-wide autosomal markers using double-digest RADseq. We compared ancestry patterns from this genome-wide data set to previously reported ancestry from mitochondrial-DNA and Y-chromosome sources. We also fit a Bayesian genomic cline model to scan for genes with extreme patterns of introgression. We show that the Kinda baboon Y chromosome has penetrated the species boundary to a greater extent than either mitochondrial DNA or the autosomal chromosomes. We also find evidence for overall restricted introgression in the JAK/STAT signalling pathway. Echoing results in other species including humans, we find evidence for enhanced and/or directional introgression of immune-related genes or pathways including the toll-like receptor pathway, the blood coagulation pathway, and the LY96 gene. Finally we show enhanced introgression and excess chacma baboon ancestry in the sperm tail gene ODF2. Together, our results elucidate the dynamics of introgressive hybridization in a primate system while identifying genes and pathways possibly under selection.
Collapse
Affiliation(s)
- Kenneth L Chiou
- Department of Anthropology, Washington University, St. Louis, MO, USA.,Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
| | - Christina M Bergey
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Department of Anthropology, New York University, New York, NY, USA
| | - Andrew S Burrell
- Department of Anthropology, New York University, New York, NY, USA
| | - Todd R Disotell
- Department of Anthropology, New York University, New York, NY, USA.,New York Consortium in Evolutionary Primatology, New York, NY, USA.,Department of Anthropology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Jeffrey Rogers
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Clifford J Jolly
- Department of Anthropology, New York University, New York, NY, USA.,New York Consortium in Evolutionary Primatology, New York, NY, USA
| | - Jane E Phillips-Conroy
- Department of Anthropology, Washington University, St. Louis, MO, USA.,Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
64
|
Abstract
Throughout human history, large-scale migrations have facilitated the formation of populations with ancestry from multiple previously separated populations. This process leads to subsequent shuffling of genetic ancestry through recombination, producing variation in ancestry between populations, among individuals in a population, and along the genome within an individual. Recent methodological and empirical developments have elucidated the genomic signatures of this admixture process, bringing previously understudied admixed populations to the forefront of population and medical genetics. Under this theme, we present a collection of recent PLOS Genetics publications that exemplify recent progress in human genetic admixture studies, and we discuss potential areas for future work.
Collapse
Affiliation(s)
- Katharine L. Korunes
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, United States of America
| | - Amy Goldberg
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
65
|
Trujillo CA, Rice ES, Schaefer NK, Chaim IA, Wheeler EC, Madrigal AA, Buchanan J, Preissl S, Wang A, Negraes PD, Szeto RA, Herai RH, Huseynov A, Ferraz MSA, Borges FS, Kihara AH, Byrne A, Marin M, Vollmers C, Brooks AN, Lautz JD, Semendeferi K, Shapiro B, Yeo GW, Smith SEP, Green RE, Muotri AR. Reintroduction of the archaic variant of NOVA1 in cortical organoids alters neurodevelopment. Science 2021; 371:371/6530/eaax2537. [PMID: 33574182 DOI: 10.1126/science.aax2537] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/27/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022]
Abstract
The evolutionarily conserved splicing regulator neuro-oncological ventral antigen 1 (NOVA1) plays a key role in neural development and function. NOVA1 also includes a protein-coding difference between the modern human genome and Neanderthal and Denisovan genomes. To investigate the functional importance of an amino acid change in humans, we reintroduced the archaic allele into human induced pluripotent cells using genome editing and then followed their neural development through cortical organoids. This modification promoted slower development and higher surface complexity in cortical organoids with the archaic version of NOVA1 Moreover, levels of synaptic markers and synaptic protein coassociations correlated with altered electrophysiological properties in organoids expressing the archaic variant. Our results suggest that the human-specific substitution in NOVA1, which is exclusive to modern humans since divergence from Neanderthals, may have had functional consequences for our species' evolution.
Collapse
Affiliation(s)
- Cleber A Trujillo
- Department of Pediatrics and Department of Cellular & Molecular Medicine, School of Medicine, Center for Academic Research and Training in Anthropogeny (CARTA), Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA 92037, USA
| | - Edward S Rice
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Nathan K Schaefer
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Isaac A Chaim
- Department of Cellular & Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Emily C Wheeler
- Department of Cellular & Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Assael A Madrigal
- Department of Cellular & Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Justin Buchanan
- Department of Cellular & Molecular Medicine, Center for Epigenomics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sebastian Preissl
- Department of Cellular & Molecular Medicine, Center for Epigenomics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Allen Wang
- Department of Cellular & Molecular Medicine, Center for Epigenomics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Priscilla D Negraes
- Department of Pediatrics and Department of Cellular & Molecular Medicine, School of Medicine, Center for Academic Research and Training in Anthropogeny (CARTA), Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA 92037, USA
| | - Ryan A Szeto
- Department of Pediatrics and Department of Cellular & Molecular Medicine, School of Medicine, Center for Academic Research and Training in Anthropogeny (CARTA), Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA 92037, USA
| | - Roberto H Herai
- Experimental Multiuser Laboratory (LEM), Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, PR 80215-901, Brazil
| | - Alik Huseynov
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Mariana S A Ferraz
- Laboratório de Neurogenética, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP 09606-070, Brazil
| | - Fernando S Borges
- Laboratório de Neurogenética, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP 09606-070, Brazil
| | - Alexandre H Kihara
- Laboratório de Neurogenética, Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Bernardo do Campo, SP 09606-070, Brazil
| | - Ashley Byrne
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Maximillian Marin
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Christopher Vollmers
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Angela N Brooks
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Jonathan D Lautz
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA.,Department of Pediatrics and Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195, USA
| | - Katerina Semendeferi
- Department of Anthropology, Center for Academic Research and Training in Anthropogeny (CARTA), Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA 92037, USA
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.,Howard Hughes Medical Institute, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Gene W Yeo
- Department of Cellular & Molecular Medicine, Center for Epigenomics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stephen E P Smith
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA.,Department of Pediatrics and Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195, USA
| | - Richard E Green
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Alysson R Muotri
- Department of Pediatrics and Department of Cellular & Molecular Medicine, School of Medicine, Center for Academic Research and Training in Anthropogeny (CARTA), Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
66
|
Dannemann M. The Population-Specific Impact of Neandertal Introgression on Human Disease. Genome Biol Evol 2021; 13:6008690. [PMID: 33247712 PMCID: PMC7851588 DOI: 10.1093/gbe/evaa250] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2020] [Indexed: 12/20/2022] Open
Abstract
Since the discovery of admixture between modern humans and Neandertals, multiple studies investigated the effect of Neandertal-derived DNA on human disease and nondisease phenotypes. These studies have linked Neandertal ancestry to skin- and hair-related phenotypes, immunity, neurological, and behavioral traits. However, these inferences have so far been limited to cohorts with participants of European ancestry. Here, I analyze summary statistics from 40 disease GWAS (genome-wide association study) cohorts of ∼212,000 individuals provided by the Biobank Japan Project for phenotypic effects of Neandertal DNA. I show that Neandertal DNA is associated with autoimmune diseases, prostate cancer and type 2 diabetes. Many of these disease associations are linked to population-specific Neandertal DNA, highlighting the importance of studying a wider range of ancestries to characterize the phenotypic legacy of Neandertals in people today.
Collapse
|
67
|
Bergström A, Stringer C, Hajdinjak M, Scerri EML, Skoglund P. Origins of modern human ancestry. Nature 2021; 590:229-237. [PMID: 33568824 DOI: 10.1038/s41586-021-03244-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/14/2020] [Indexed: 01/30/2023]
Abstract
New finds in the palaeoanthropological and genomic records have changed our view of the origins of modern human ancestry. Here we review our current understanding of how the ancestry of modern humans around the globe can be traced into the deep past, and which ancestors it passes through during our journey back in time. We identify three key phases that are surrounded by major questions, and which will be at the frontiers of future research. The most recent phase comprises the worldwide expansion of modern humans between 40 and 60 thousand years ago (ka) and their last known contacts with archaic groups such as Neanderthals and Denisovans. The second phase is associated with a broadly construed African origin of modern human diversity between 60 and 300 ka. The oldest phase comprises the complex separation of modern human ancestors from archaic human groups from 0.3 to 1 million years ago. We argue that no specific point in time can currently be identified at which modern human ancestry was confined to a limited birthplace, and that patterns of the first appearance of anatomical or behavioural traits that are used to define Homo sapiens are consistent with a range of evolutionary histories.
Collapse
Affiliation(s)
- Anders Bergström
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK
| | - Chris Stringer
- Department of Earth Sciences, Natural History Museum, London, UK.
| | - Mateja Hajdinjak
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK
| | - Eleanor M L Scerri
- Pan-African Evolution Research Group, Max Planck Institute for Science of Human History, Jena, Germany.,Department of Classics and Archaeology, University of Malta, Msida, Malta.,Institute of Prehistoric Archaeology, University of Cologne, Cologne, Germany
| | - Pontus Skoglund
- Ancient Genomics Laboratory, Francis Crick Institute, London, UK.
| |
Collapse
|
68
|
Rosinger HS, Geraldes A, Nurkowski KA, Battlay P, Cousens RD, Rieseberg LH, Hodgins KA. The tip of the iceberg: Genome wide marker analysis reveals hidden hybridization during invasion. Mol Ecol 2021; 30:810-825. [PMID: 33296112 DOI: 10.1111/mec.15768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/29/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022]
Abstract
Biological invasions are accelerating, and invasive species can have large economic impacts as well as severe consequences for biodiversity. During invasions, species can interact, potentially resulting in hybridization. Here, we examined two Cakile species, C. edentula and C. maritima (Brassicaceae), that co-occur and may hybridize during range expansion in separate regions of the globe. Cakile edentula invaded each location first, while C. maritima established later, apparently replacing the former. We assessed the evidence for hybridization in western North America and Australia, where both species have been introduced, and identified source populations with 4561 SNPs using Genotype-by-Sequencing. Our results indicate that C. edentula in Australia originated from one region of eastern North America while in western North America it is probably from multiple sources. Cakile maritima in Australia is derived from at least two different parts of Europe while the introduction in western North America is from one. Although morphological evidence of hybridization is generally limited to mixed species populations in Australia and virtually absent elsewhere, our genetic analysis revealed relatively high levels of hybridization in Australia (58% hybrids using Admixture) and supported the presence of hybrids in western North America (16% hybrids using Admixture) and New Zealand. Hybrids might be commonly overlooked in invaders, as identification based solely on morphological traits may represent only the tip of the iceberg. Our study reveals a repeated pattern of invasion, hybridization and apparent replacement of one species by another, which offers an opportunity to investigate the role of hybridization and introgression during invasion.
Collapse
Affiliation(s)
- Hanna S Rosinger
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - Armando Geraldes
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada.,Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Kristin A Nurkowski
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia.,Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Paul Battlay
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - Roger D Cousens
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Kathryn A Hodgins
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
69
|
Mavengere H, Mattox K, Teixeira MM, Sepúlveda VE, Gomez OM, Hernandez O, McEwen J, Matute DR. Paracoccidioides Genomes Reflect High Levels of Species Divergence and Little Interspecific Gene Flow. mBio 2020; 11:e01999-20. [PMID: 33443110 PMCID: PMC8534288 DOI: 10.1128/mbio.01999-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/27/2020] [Indexed: 12/30/2022] Open
Abstract
The fungus Paracoccidioides is a prevalent human pathogen endemic to South America. The genus is composed of five species. In this report, we use 37 whole-genome sequences to study the allocation of genetic variation in Paracoccidioides We tested three genome-wide predictions of advanced speciation, namely, that all species should be reciprocally monophyletic, that species pairs should be highly differentiated along the whole genome, and that there should be low rates of interspecific gene exchange. We find support for these three hypotheses. Species pairs with older divergences show no evidence of gene exchange, while more recently diverged species pairs show evidence of modest rates of introgression. Our results indicate that as divergence progresses, species boundaries become less porous among Paracoccidioides species. Our results suggest that species in Paracoccidioides are at different stages along the divergence continuum.IMPORTANCEParacoccidioides is the causal agent of a systemic mycosis in Latin America. Most of the inference of the evolutionary history of Paracoccidioides has used only a few molecular markers. In this report, we evaluate the extent of genome divergence among Paracoccidioides species and study the possibility of interspecific gene exchange. We find that all species are highly differentiated. We also find that the amount of gene flow between species is low and in some cases is even completely absent in spite of geographic overlap. Our study constitutes a systematic effort to identify species boundaries in fungal pathogens and to determine the extent of gene exchange among fungal species.
Collapse
Affiliation(s)
- Heidi Mavengere
- Biology Department, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Kathleen Mattox
- Biology Department, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Marcus M Teixeira
- Núcleo de Medicina Tropical, Faculdade de Medicina, University of Brasília, Brasília, Brazil
| | - Victoria E Sepúlveda
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Oscar M Gomez
- Cellular and Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia
| | - Orville Hernandez
- Cellular and Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia
- MICROBA Research Group, School of Microbiology, Universidad de Antioquia, Medellín, Colombia
| | - Juan McEwen
- Cellular and Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia
- School of Medicine, Universidad de Antioquia, Medellín, Colombia
| | - Daniel R Matute
- Biology Department, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
70
|
Biddanda A, Rice DP, Novembre J. A variant-centric perspective on geographic patterns of human allele frequency variation. eLife 2020; 9:60107. [PMID: 33350384 PMCID: PMC7755386 DOI: 10.7554/elife.60107] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/12/2020] [Indexed: 12/14/2022] Open
Abstract
A key challenge in human genetics is to understand the geographic distribution of human genetic variation. Often genetic variation is described by showing relationships among populations or individuals, drawing inferences over many variants. Here, we introduce an alternative representation of genetic variation that reveals the relative abundance of different allele frequency patterns. This approach allows viewers to easily see several features of human genetic structure: (1) most variants are rare and geographically localized, (2) variants that are common in a single geographic region are more likely to be shared across the globe than to be private to that region, and (3) where two individuals differ, it is most often due to variants that are found globally, regardless of whether the individuals are from the same region or different regions. Our variant-centric visualization clarifies the geographic patterns of human variation and can help address misconceptions about genetic differentiation among populations.
Collapse
Affiliation(s)
- Arjun Biddanda
- Department of Human Genetics, University of Chicago, Chicago, United States
| | - Daniel P Rice
- Department of Human Genetics, University of Chicago, Chicago, United States
| | - John Novembre
- Department of Human Genetics, University of Chicago, Chicago, United States
| |
Collapse
|
71
|
Garcia-Erill G, Kjaer MM, Albrechtsen A, Siegismund HR, Heller R. Vicariance followed by secondary gene flow in a young gazelle species complex. Mol Ecol 2020; 30:528-544. [PMID: 33226701 PMCID: PMC7898927 DOI: 10.1111/mec.15738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 11/03/2020] [Accepted: 11/11/2020] [Indexed: 01/03/2023]
Abstract
Grant's gazelles have recently been proposed to be a species complex comprising three highly divergent mtDNA lineages (Nanger granti, N. notata and N. petersii). The three lineages have nonoverlapping distributions in East Africa, but without any obvious geographical divisions, making them an interesting model for studying the early‐stage evolutionary dynamics of allopatric speciation in detail. Here, we use genomic data obtained by restriction site‐associated (RAD) sequencing of 106 gazelle individuals to shed light on the evolutionary processes underlying Grant's gazelle divergence, to characterize their genetic structure and to assess the presence of gene flow between the main lineages in the species complex. We date the species divergence to 134,000 years ago, which is recent in evolutionary terms. We find population subdivision within N. granti, which coincides with the previously suggested two subspecies, N. g. granti and N. g. robertsii. Moreover, these two lineages seem to have hybridized in Masai Mara. Perhaps more surprisingly given their extreme genetic differentiation, N. granti and N. petersii also show signs of prolonged admixture in Mkomazi, which we identified as a hybrid population most likely founded by allopatric lineages coming into secondary contact. Despite the admixed composition of this population, elevated X chromosomal differentiation suggests that selection may be shaping the outcome of hybridization in this population. Our results therefore provide detailed insights into the processes of allopatric speciation and secondary contact in a recently radiated species complex.
Collapse
Affiliation(s)
- Genís Garcia-Erill
- Department of Biology, Section for Computational and RNA Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Michael Munkholm Kjaer
- Department of Biology, Section for Computational and RNA Biology, University of Copenhagen, Copenhagen N, Denmark.,Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Anders Albrechtsen
- Department of Biology, Section for Computational and RNA Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Hans Redlef Siegismund
- Department of Biology, Section for Computational and RNA Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Rasmus Heller
- Department of Biology, Section for Computational and RNA Biology, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
72
|
Petr M, Hajdinjak M, Fu Q, Essel E, Rougier H, Crevecoeur I, Semal P, Golovanova LV, Doronichev VB, Lalueza-Fox C, de la Rasilla M, Rosas A, Shunkov MV, Kozlikin MB, Derevianko AP, Vernot B, Meyer M, Kelso J. The evolutionary history of Neanderthal and Denisovan Y chromosomes. Science 2020; 369:1653-1656. [PMID: 32973032 DOI: 10.1126/science.abb6460] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/06/2020] [Indexed: 12/31/2022]
Abstract
Ancient DNA has provided new insights into many aspects of human history. However, we lack comprehensive studies of the Y chromosomes of Denisovans and Neanderthals because the majority of specimens that have been sequenced to sufficient coverage are female. Sequencing Y chromosomes from two Denisovans and three Neanderthals shows that the Y chromosomes of Denisovans split around 700 thousand years ago from a lineage shared by Neanderthals and modern human Y chromosomes, which diverged from each other around 370 thousand years ago. The phylogenetic relationships of archaic and modern human Y chromosomes differ from the population relationships inferred from the autosomal genomes and mirror mitochondrial DNA phylogenies, indicating replacement of both the mitochondrial and Y chromosomal gene pools in late Neanderthals. This replacement is plausible if the low effective population size of Neanderthals resulted in an increased genetic load in Neanderthals relative to modern humans.
Collapse
Affiliation(s)
- Martin Petr
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany.
| | - Mateja Hajdinjak
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany.,The Francis Crick Institute, NW1 1AT London, UK
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, IVPP, CAS, Beijing 100044, China.,CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Elena Essel
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Hélène Rougier
- Department of Anthropology, California State University, Northridge, Northridge, CA 91330-8244, USA
| | | | - Patrick Semal
- Royal Belgian Institute of Natural Sciences, 1000 Brussels, Belgium
| | | | | | - Carles Lalueza-Fox
- Institute of Evolutionary Biology, Consejo Superior de Investigaciones Científicas, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Marco de la Rasilla
- Área de Prehistoria, Departamento de Historia, Universidad de Oviedo, 33011 Oviedo, Spain
| | - Antonio Rosas
- Departamento de Paleobiología, Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
| | - Michael V Shunkov
- Institute of Archaeology and Ethnography, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Maxim B Kozlikin
- Institute of Archaeology and Ethnography, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Anatoli P Derevianko
- Institute of Archaeology and Ethnography, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Benjamin Vernot
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Matthias Meyer
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany
| | - Janet Kelso
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany.
| |
Collapse
|
73
|
Dreissig S, Maurer A, Sharma R, Milne L, Flavell AJ, Schmutzer T, Pillen K. Natural variation in meiotic recombination rate shapes introgression patterns in intraspecific hybrids between wild and domesticated barley. THE NEW PHYTOLOGIST 2020; 228:1852-1863. [PMID: 32659029 DOI: 10.1111/nph.16810] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
Meiotic recombination rates vary considerably between species, populations and individuals. The genetic exchange between homologous chromosomes plays a major role in evolution by breaking linkage between advantageous and deleterious alleles in the case of introgressions. Identifying recombination rate modifiers is thus of both fundamental and practical interest to understand and utilize variation in meiotic recombination rates. We investigated recombination rate variation in a large intraspecific hybrid population (named HEB-25) derived from a cross between domesticated barley and 25 wild barley accessions. We observed quantitative variation in total crossover number with a maximum of a 1.4-fold difference between subpopulations and increased recombination rates across pericentromeric regions. The meiosis-specific α-kleisin cohesin subunit REC8 was identified as a candidate gene influencing crossover number and patterning. Furthermore, we quantified wild barley introgression patterns and revealed how local and genome-wide recombination rate variation shapes patterns of introgression. The identification of allelic variation in REC8 in combination with the observed changes in crossover patterning suggest a difference in how chromatin loops are tethered to the chromosome axis, resulting in reduced crossover suppression across pericentromeric regions. Local and genome-wide recombination rate variation is shaping patterns of introgressions and thereby directly influences the consequences of linkage drag.
Collapse
Affiliation(s)
- Steven Dreissig
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Straße 3, Halle (Saale), 06120, Germany
| | - Andreas Maurer
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Straße 3, Halle (Saale), 06120, Germany
| | - Rajiv Sharma
- Division of Plant Sciences, University of Dundee at JHI, Invergowrie Dundee, DD2 5DA, Scotland, UK
| | - Linda Milne
- The James Hutton Institute (JHI), Invergowrie Dundee, DD2 5DA, Scotland, UK
| | - Andrew John Flavell
- Division of Plant Sciences, University of Dundee at JHI, Invergowrie Dundee, DD2 5DA, Scotland, UK
| | - Thomas Schmutzer
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Straße 3, Halle (Saale), 06120, Germany
| | - Klaus Pillen
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Straße 3, Halle (Saale), 06120, Germany
| |
Collapse
|
74
|
Simon A, Fraïsse C, El Ayari T, Liautard-Haag C, Strelkov P, Welch JJ, Bierne N. How do species barriers decay? Concordance and local introgression in mosaic hybrid zones of mussels. J Evol Biol 2020; 34:208-223. [PMID: 33045123 DOI: 10.1111/jeb.13709] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 08/20/2020] [Accepted: 09/16/2020] [Indexed: 12/19/2022]
Abstract
The Mytilus complex of marine mussel species forms a mosaic of hybrid zones, found across temperate regions of the globe. This allows us to study 'replicated' instances of secondary contact between closely related species. Previous work on this complex has shown that local introgression is both widespread and highly heterogeneous, and has identified SNPs that are outliers of differentiation between lineages. Here, we developed an ancestry-informative panel of such SNPs. We then compared their frequencies in newly sampled populations, including samples from within the hybrid zones, and parental populations at different distances from the contact. Results show that close to the hybrid zones, some outlier loci are near to fixation for the heterospecific allele, suggesting enhanced local introgression, or the local sweep of a shared ancestral allele. Conversely, genomic cline analyses, treating local parental populations as the reference, reveal a globally high concordance among loci, albeit with a few signals of asymmetric introgression. Enhanced local introgression at specific loci is consistent with the early transfer of adaptive variants after contact, possibly including asymmetric bi-stable variants (Dobzhansky-Muller incompatibilities), or haplotypes loaded with fewer deleterious mutations. Having escaped one barrier, however, these variants can be trapped or delayed at the next barrier, confining the introgression locally. These results shed light on the decay of species barriers during phases of contact.
Collapse
Affiliation(s)
- Alexis Simon
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Christelle Fraïsse
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France.,Institute of Science and Technology Austria, Klosterneuburg, Austria, Austria
| | - Tahani El Ayari
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | | | - Petr Strelkov
- St. Petersburg State University, St. Petersburg, Russia.,Laboratory of Monitoring and Conservation of Natural Arctic Ecosystems, Murmansk Arctic State University, Murmansk, Russia
| | - John J Welch
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Nicolas Bierne
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
75
|
Guo X, Wang ZC, Wang S, Li HF, Suwannapoom C, Wang JX, Zhang C, Shao Y, Wang MS, Jiang RS. Genetic signature of hybridization between Chinese spot-billed ducks and domesticated ducks. Anim Genet 2020; 51:866-875. [PMID: 33020910 DOI: 10.1111/age.13002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 08/17/2020] [Accepted: 08/24/2020] [Indexed: 12/27/2022]
Abstract
In this study, we analyzed 93 whole genomes from Chinese spot-billed ducks (CSB), meat-type ducks (MET), and egg and dual purpose-type ducks (EDT) to characterize the genetic material flowing between the CSB and modern ducks. Using a frequency of shared identical-by-descent method, approximately 10.9 Mb introgression segments containing 140 genes were identified showing the signatures of introgression between CSB and EDT. Meanwhile, nearly 10.6 M introgression regions containing 149 genes were identified between CSB and MET. Based on the haplotypes tree of each segment, we found that the introgression between CSB and domesticated ducks was asymmetric with a high level of gene flow from domestic to CSB and a low level of migration in the opposite direction. Moreover, we identified several genes that were introgressions from CSB and showed the signature of positive selection, which may contribute to the breeding of modern ducks. Our results provide new insight into the evolution and breeding history of domestic ducks and may be useful for the future management of wild and domestic duck populations.
Collapse
Affiliation(s)
- X Guo
- College of Animal Science and Technology, Anhui Agricultural University, 130, Changjiang West Road, Hefei, Anhui, 230036, China
| | - Z-C Wang
- College of Animal Science and Technology, Anhui Agricultural University, 130, Changjiang West Road, Hefei, Anhui, 230036, China
| | - S Wang
- State Key Laboratory of Genetic Resources and Evolution and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiaochang Dong Road, Kunming, Yunnan, 650223, China
| | - H-F Li
- Jiangsu Institute of Poultry Science, Chinese Academy of Agriculture Science, 58 cangjie Rode, Yangzhou, Jiangsu, 225125, China
| | - C Suwannapoom
- School of Agriculture and Natural Resources, University of Phayao, 19 Moo 2 Tambon Maeka, Amphur Muang, Phayao, 56000, Thailand
| | - J-X Wang
- College of Animal Science and Technology, Anhui Agricultural University, 130, Changjiang West Road, Hefei, Anhui, 230036, China
| | - C Zhang
- College of Animal Science and Technology, Anhui Agricultural University, 130, Changjiang West Road, Hefei, Anhui, 230036, China
| | - Y Shao
- State Key Laboratory of Genetic Resources and Evolution and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 Jiaochang Dong Road, Kunming, Yunnan, 650223, China
| | - M-S Wang
- Howard Hughes Medical Institute, University of California Santa Cruz, 1156 High St, Santa Cruz, CA, 95064, USA.,Department of Ecology and Evolutionary Biology, University of California Santa Cruz, 1156 High St, Santa Cruz, CA, 95064, USA
| | - R-S Jiang
- College of Animal Science and Technology, Anhui Agricultural University, 130, Changjiang West Road, Hefei, Anhui, 230036, China
| |
Collapse
|
76
|
Rinker DC, Simonti CN, McArthur E, Shaw D, Hodges E, Capra JA. Neanderthal introgression reintroduced functional ancestral alleles lost in Eurasian populations. Nat Ecol Evol 2020; 4:1332-1341. [PMID: 32719451 PMCID: PMC7529911 DOI: 10.1038/s41559-020-1261-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 06/29/2020] [Indexed: 12/31/2022]
Abstract
Neanderthal ancestry remains across modern Eurasian genomes and introgressed sequences influence diverse phenotypes. Here, we demonstrate that introgressed sequences reintroduced thousands of ancestral alleles that were lost in Eurasian populations before introgression. Our simulations and variant effect predictions argue that these reintroduced alleles (RAs) are more likely to be tolerated by modern humans than are introgressed Neanderthal-derived alleles (NDAs) due to their distinct evolutionary histories. Consistent with this, we show enrichment for RAs and depletion for NDAs on introgressed haplotypes with expression quantitative trait loci (eQTL) and phenotype associations. Analysis of available cross-population eQTLs and massively parallel reporter assay data show that RAs commonly influence gene expression independent of linked NDAs. We further validate these independent effects for one RA in vitro. Finally, we demonstrate that NDAs are depleted for regulatory activity compared to RAs, while RAs have activity levels similar to non-introgressed variants. In summary, our study reveals that Neanderthal introgression reintroduced thousands of lost ancestral variants with gene regulatory activity and that these RAs were more tolerated than NDAs. Thus, RAs and their distinct evolutionary histories must be considered when evaluating the effects of introgression.
Collapse
Affiliation(s)
- David C Rinker
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Corinne N Simonti
- Department of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Evonne McArthur
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | - Douglas Shaw
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
| | - Emily Hodges
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
| | - John A Capra
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA.
- Departments of Biomedical Informatics and Computer Science, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
77
|
Breyl M. Triangulating Neanderthal cognition: A tale of not seeing the forest for the trees. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2020; 12:e1545. [PMID: 32918796 DOI: 10.1002/wcs.1545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/09/2020] [Accepted: 08/13/2020] [Indexed: 01/20/2023]
Abstract
The inference of Neanderthal cognition, including their cultural and linguistic capabilities, has persisted as a fiercely debated research topic for decades. This lack of consensus is substantially based on inherent uncertainties in reconstructing prehistory out of indirect evidence as well as other methodological limitations. Further factors include systemic difficulties within interdisciplinary discourse, data artifacts, historic research biases, and the sheer scope of the relevant research. Given the degrees of freedom in interpretation ensuing from these complications, any attempt to find approximate answers to the yet unsettled pertinent discourse may not rest on single studies, but instead a careful and comprehensive interdisciplinary synthesis of findings. Triangulating Neanderthals' cognition by considering the plethora of data, diverse perspectives and aforementioned complexities present within the literature constitutes the currently most reliable pathway to tentative conclusions. While some uncertainties remain, such an approach paints the picture of an extensive shared humanity between anatomically modern humans and Neanderthals. This article is categorized under: Cognitive Biology > Evolutionary Roots of Cognition Linguistics > Evolution of Language.
Collapse
Affiliation(s)
- Michael Breyl
- Germanistik, Komparatistik, Nordistik, Deutsch als Fremdsprache, Ludwig-Maximilians-University of Munich (LMU), Munich, Germany
| |
Collapse
|
78
|
Selection against archaic hominin genetic variation in regulatory regions. Nat Ecol Evol 2020; 4:1558-1566. [PMID: 32839541 DOI: 10.1038/s41559-020-01284-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 07/21/2020] [Indexed: 01/20/2023]
Abstract
Traces of Neandertal and Denisovan DNA persist in the modern human gene pool, but have been systematically purged by natural selection from genes and other functionally important regions. This implies that many archaic alleles harmed the fitness of hybrid individuals, but the nature of this harm is poorly understood. Here, we show that enhancers contain less Neandertal and Denisovan variation than expected given the background selection they experience, suggesting that selection acted to purge these regions of archaic alleles that disrupted their gene regulatory functions. We infer that selection acted mainly on young archaic variation that arose in Neandertals or Denisovans shortly before their contact with humans; enhancers are not depleted of older variants found in both archaic species. Some types of enhancer appear to have tolerated introgression better than others; compared with tissue-specific enhancers, pleiotropic enhancers show stronger depletion of archaic single-nucleotide polymorphisms. To some extent, evolutionary constraint is predictive of introgression depletion, but certain tissues' enhancers are more depleted of Neandertal and Denisovan alleles than expected given their comparative tolerance to new mutations. Foetal brain and muscle are the tissues whose enhancers show the strongest depletion of archaic alleles, but only brain enhancers show evidence of unusually stringent purifying selection. We conclude that epistatic incompatibilities between human and archaic alleles are needed to explain the degree of archaic variant depletion from foetal muscle enhancers, perhaps due to divergent selection for higher muscle mass in archaic hominins compared with humans.
Collapse
|
79
|
Changes in life history and population size can explain the relative neutral diversity levels on X and autosomes in extant human populations. Proc Natl Acad Sci U S A 2020; 117:20063-20069. [PMID: 32747577 DOI: 10.1073/pnas.1915664117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In human populations, the relative levels of neutral diversity on the X and autosomes differ markedly from each other and from the naïve theoretical expectation of 3/4. Here we propose an explanation for these differences based on new theory about the effects of sex-specific life history and given pedigree-based estimates of the dependence of human mutation rates on sex and age. We demonstrate that life history effects, particularly longer generation times in males than in females, are expected to have had multiple effects on human X-to-autosome (X:A) diversity ratios, as a result of male-biased mutation rates, the equilibrium X:A ratio of effective population sizes, and the differential responses to changes in population size. We also show that the standard approach of using divergence between species to correct for male mutation bias results in biased estimates of X:A effective population size ratios. We obtain alternative estimates using pedigree-based estimates of the male mutation bias, which reveal that X:A ratios of effective population sizes are considerably greater than previously appreciated. Finally, we find that the joint effects of historical changes in life history and population size can explain the observed X:A diversity ratios in extant human populations. Our results suggest that ancestral human populations were highly polygynous, that non-African populations experienced a substantial reduction in polygyny and/or increase in the male-to-female ratio of generation times around the Out-of-Africa bottleneck, and that current diversity levels were affected by fairly recent changes in sex-specific life history.
Collapse
|
80
|
Ravinet M, Kume M, Ishikawa A, Kitano J. Patterns of genomic divergence and introgression between Japanese stickleback species with overlapping breeding habitats. J Evol Biol 2020; 34:114-127. [PMID: 32557887 DOI: 10.1111/jeb.13664] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/29/2020] [Accepted: 06/05/2020] [Indexed: 11/26/2022]
Abstract
With only a few absolute geographic barriers in marine environments, the factors maintaining reproductive isolation among marine organisms remain elusive. However, spatial structuring in breeding habitat can contribute to reproductive isolation. This is particularly important for marine organisms that migrate to use fresh- or brackish water environments to breed. The Japanese Gasterosteus stickleback species, the Pacific Ocean three-spined stickleback (G. aculeatus) and the Japan Sea stickleback (G. nipponicus) overwinter in the sea, but migrate to rivers for spawning. Although they co-occur at several locations across the Japanese islands, they are reproductively isolated. Our previous studies in Bekanbeushi River showed that the Japan Sea stickleback spawns in the estuary, while the Pacific Ocean stickleback mainly spawns further upstream in freshwater. Overall genomic divergence was very high with many interspersed regions of introgression. Here, we investigated genomic divergence and introgression between the sympatric species in the much shorter Tokotan River, where they share spawning sites. The levels of genome-wide divergence were reduced and introgression was increased, suggesting that habitat isolation substantially contributes to a reduction in gene flow. We also found that genomic regions of introgression were largely shared between the two systems. Furthermore, some regions of introgression were located near loci with a heterozygote advantage for juvenile survival. Taken together, introgression may be partially driven by adaptation in this system. Although, the two species remain clearly genetically differentiated. Regions with low recombination rates showed especially low introgression. Speciation reversal is therefore likely prevented by barriers other than habitat isolation.
Collapse
Affiliation(s)
- Mark Ravinet
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Manabu Kume
- Kyoto University Field Science Education and Research Center, Kyoto, Japan
| | - Asano Ishikawa
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Japan
| |
Collapse
|
81
|
Tonzo V, Papadopoulou A, Ortego J. Genomic footprints of an old affair: Single nucleotide polymorphism data reveal historical hybridization and the subsequent evolution of reproductive barriers in two recently diverged grasshoppers with partly overlapping distributions. Mol Ecol 2020; 29:2254-2268. [DOI: 10.1111/mec.15475] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Vanina Tonzo
- Department of Integrative Ecology Estación Biológica de Doñana (EBD‐CSIC) Seville Spain
| | - Anna Papadopoulou
- Department of Biological Sciences University of Cyprus Nicosia Cyprus
| | - Joaquín Ortego
- Department of Integrative Ecology Estación Biológica de Doñana (EBD‐CSIC) Seville Spain
| |
Collapse
|
82
|
The Impact of Recessive Deleterious Variation on Signals of Adaptive Introgression in Human Populations. Genetics 2020; 215:799-812. [PMID: 32487519 PMCID: PMC7337073 DOI: 10.1534/genetics.120.303081] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/01/2020] [Indexed: 12/19/2022] Open
Abstract
Admixture with archaic hominins has altered the landscape of genomic variation in modern human populations. Several gene regions have been identified previously as candidates of adaptive introgression (AI) that facilitated human adaptation to specific environments. However, simulation-based studies have suggested that population genetic processes other than adaptive mutations, such as heterosis from recessive deleterious variants private to populations before admixture, can also lead to patterns in genomic data that resemble AI. The extent to which the presence of deleterious variants affect the false-positive rate and the power of current methods to detect AI has not been fully assessed. Here, we used extensive simulations under parameters relevant for human evolution to show that recessive deleterious mutations can increase the false positive rates of tests for AI compared to models without deleterious variants, especially when the recombination rates are low. We next examined candidates of AI in modern humans identified from previous studies, and show that 24 out of 26 candidate regions remain significant, even when deleterious variants are included in the null model. However, two AI candidate genes, HYAL2 and HLA, are particularly susceptible to high false positive signals of AI due to recessive deleterious mutations. These genes are located in regions of the human genome with high exon density together with low recombination rate, factors that we show increase the rate of false-positives due to recessive deleterious mutations. Although the combination of such parameters is rare in the human genome, caution is warranted in such regions, as well as in other species with more compact genomes and/or lower recombination rates. In sum, our results suggest that recessive deleterious mutations cannot account for the signals of AI in most, but not all, of the top candidates for AI in humans, suggesting they may be genuine signals of adaptation.
Collapse
|
83
|
Sankararaman S. Methods for detecting introgressed archaic sequences. Curr Opin Genet Dev 2020; 62:85-90. [PMID: 32717667 PMCID: PMC7484293 DOI: 10.1016/j.gde.2020.05.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/12/2020] [Accepted: 05/22/2020] [Indexed: 11/16/2022]
Abstract
Analysis of genome sequences from archaic and modern humans have revealed multiple episodes of admixture between highly-diverged population groups. Statistical methods that attempt to localize DNA segments introduced by these events offer a powerful tool to investigate recent human evolution. We review recent advances in methods for detecting introgressed sequences.
Collapse
Affiliation(s)
- Sriram Sankararaman
- Department of Computer Science, University of California, Los Angeles, CA 90095, United States; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, United States; Department of Computational Medicine, University of California, Los Angeles, CA 90095, United States.
| |
Collapse
|
84
|
Rees JS, Castellano S, Andrés AM. The Genomics of Human Local Adaptation. Trends Genet 2020; 36:415-428. [DOI: 10.1016/j.tig.2020.03.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 01/23/2023]
|
85
|
Yan SM, McCoy RC. Archaic hominin genomics provides a window into gene expression evolution. Curr Opin Genet Dev 2020; 62:44-49. [PMID: 32615344 PMCID: PMC7483639 DOI: 10.1016/j.gde.2020.05.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 02/08/2023]
Abstract
Differences in gene expression are thought to account for most phenotypic differences within and between species. Consequently, gene expression is a powerful lens through which to study divergence between modern humans and our closest evolutionary relatives, the Neanderthals and Denisovans. Such insights complement biological knowledge gleaned from the fossil record, while also revealing general features of the mode and tempo of regulatory evolution. Because of the degradation of ancient RNA, gene expression profiles of archaic hominins must be studied by indirect means. As such, conclusions drawn from these studies are often laden with assumptions about the genetic architecture of gene expression, the complexity of which is increasingly apparent. Despite these challenges, rapid technical and conceptual advances in the fields of ancient genomics, functional genomics, statistical genomics, and genome engineering are revolutionizing understanding of hominin gene expression evolution.
Collapse
Affiliation(s)
- Stephanie M Yan
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Rajiv C McCoy
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
86
|
Mathieson I. Human adaptation over the past 40,000 years. Curr Opin Genet Dev 2020; 62:97-104. [PMID: 32745952 PMCID: PMC7484260 DOI: 10.1016/j.gde.2020.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/10/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023]
Abstract
Over the past few years several methodological and data-driven advances have greatly improved our ability to robustly detect genomic signatures of selection in humans. New methods applied to large samples of present-day genomes provide increased power, while ancient DNA allows precise estimation of timing and tempo. However, despite these advances, we are still limited in our ability to translate these signatures into understanding about which traits were actually under selection, and why. Combining information from different populations and timescales may allow interpretation of selective sweeps. Other modes of selection have proved more difficult to detect. In particular, despite strong evidence of the polygenicity of most human traits, evidence for polygenic selection is weak, and its importance in recent human evolution remains unclear. Balancing selection and archaic introgression seem important for the maintenance of potentially adaptive immune diversity, but perhaps less so for other traits.
Collapse
Affiliation(s)
- Iain Mathieson
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, United States.
| |
Collapse
|
87
|
Should Autism Spectrum Conditions Be Characterised in a More Positive Way in Our Modern World? ACTA ACUST UNITED AC 2020; 56:medicina56050233. [PMID: 32413984 PMCID: PMC7279498 DOI: 10.3390/medicina56050233] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/04/2020] [Indexed: 01/18/2023]
Abstract
In a special issue that focuses on complex presentations related to Autism, we ask the question in this editorial whether an Autism Spectrum Condition without complexity is a disorder, or whether it represents human diversity? Much research into Autism Spectrum Conditions (ASCs) over the years has focused on comparisons between neuro-typical people and people with Autism Spectrum Conditions. These comparisons have tended to draw attention to ‘deficits’ in cognitive abilities and descriptions of behaviours that are characterised as unwanted. Not surprisingly, this is reflected in the classification systems from the World Health Organisation and the American Psychiatric Association. Public opinion about ASC may be influenced by presentations in the media of those with ASC who also have intellectual disability. Given that diagnostic systems are intended to help us better understand conditions in order to seek improved outcomes, we propose a more constructive approach to descriptions that uses more positive language, and balances descriptions of deficits with research finding of strengths and differences. We propose that this will be more helpful to individuals on the Autism Spectrum, both in terms of individual self-view, but also in terms of how society views Autism Spectrum Conditions more positively. Commentary has also been made on guidance that has been adjusted for people with ASC in relation to the current COVID-19 pandemic.
Collapse
|
88
|
Harris AM, DeGiorgio M. Identifying and Classifying Shared Selective Sweeps from Multilocus Data. Genetics 2020; 215:143-171. [PMID: 32152048 PMCID: PMC7198270 DOI: 10.1534/genetics.120.303137] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/29/2020] [Indexed: 11/18/2022] Open
Abstract
Positive selection causes beneficial alleles to rise to high frequency, resulting in a selective sweep of the diversity surrounding the selected sites. Accordingly, the signature of a selective sweep in an ancestral population may still remain in its descendants. Identifying signatures of selection in the ancestor that are shared among its descendants is important to contextualize the timing of a sweep, but few methods exist for this purpose. We introduce the statistic SS-H12, which can identify genomic regions under shared positive selection across populations and is based on the theory of the expected haplotype homozygosity statistic H12, which detects recent hard and soft sweeps from the presence of high-frequency haplotypes. SS-H12 is distinct from comparable statistics because it requires a minimum of only two populations, and properly identifies and differentiates between independent convergent sweeps and true ancestral sweeps, with high power and robustness to a variety of demographic models. Furthermore, we can apply SS-H12 in conjunction with the ratio of statistics we term [Formula: see text] and [Formula: see text] to further classify identified shared sweeps as hard or soft. Finally, we identified both previously reported and novel shared sweep candidates from human whole-genome sequences. Previously reported candidates include the well-characterized ancestral sweeps at LCT and SLC24A5 in Indo-Europeans, as well as GPHN worldwide. Novel candidates include an ancestral sweep at RGS18 in sub-Saharan Africans involved in regulating the platelet response and implicated in sudden cardiac death, and a convergent sweep at C2CD5 between European and East Asian populations that may explain their different insulin responses.
Collapse
Affiliation(s)
- Alexandre M Harris
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802
- Molecular, Cellular, and Integrative Biosciences at the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Michael DeGiorgio
- Department of Computer and Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, Florida 33431
| |
Collapse
|
89
|
Leroy T, Rougemont Q, Dupouey JL, Bodénès C, Lalanne C, Belser C, Labadie K, Le Provost G, Aury JM, Kremer A, Plomion C. Massive postglacial gene flow between European white oaks uncovered genes underlying species barriers. THE NEW PHYTOLOGIST 2020; 226:1183-1197. [PMID: 31264219 PMCID: PMC7166129 DOI: 10.1111/nph.16039] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 06/23/2019] [Indexed: 05/10/2023]
Abstract
Oaks are dominant forest tree species widely distributed across the Northern Hemisphere, where they constitute natural resources of economic, ecological, social and historical value. Hybridisation and adaptive introgression have long been thought to be major drivers of their ecological success. Therefore, the maintenance of species barriers remains a key question, given the extent of interspecific gene flow. In this study, we made use of the tremendous genetic variation among four European white oak species (31 million single nucleotide polymorphisms (SNPs)) to infer the evolutionary history of these species, study patterns of genetic differentiation and identify reproductive barriers. We first analysed the ecological and historical relationships among these species and inferred a long-term strict isolation followed by a recent and extensive postglacial contact using approximate Bayesian computation. Assuming this demographic scenario, we then performed backward simulations to generate the expected distributions of differentiation under neutrality to scan their genomes for reproductive barriers. We finally identified important intrinsic and ecological functions driving the reproductive isolation. We discussed the importance of identifying the genetic basis for the ecological preferences between these oak species and its implications for the renewal of European forests under global warming.
Collapse
Affiliation(s)
| | - Quentin Rougemont
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, G1V 0A6, Québec, Canada
| | - Jean-Luc Dupouey
- INRA Université de Lorraine UMR 1137 ‘Ecologie et Ecophysiologie Forestières’, route d’Amance, 54280 Champenoux, France
| | | | | | - Caroline Belser
- CEA - Institut de Biologie François Jacob, Genoscope, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Karine Labadie
- CEA - Institut de Biologie François Jacob, Genoscope, 2 rue Gaston Crémieux, 91057 Evry, France
| | | | - Jean-Marc Aury
- CEA - Institut de Biologie François Jacob, Genoscope, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Antoine Kremer
- BIOGECO, INRA, Univ. Bordeaux, 33610 Cestas, France
- Corresponding author: Antoine Kremer, INRA, UMR1202 BIOGECO, F-33610 Cestas, France, Phone number: +33(0)5 57 12 28 32,
| | | |
Collapse
|
90
|
Chaturvedi S, Lucas LK, Buerkle CA, Fordyce JA, Forister ML, Nice CC, Gompert Z. Recent hybrids recapitulate ancient hybrid outcomes. Nat Commun 2020; 11:2179. [PMID: 32358487 PMCID: PMC7195404 DOI: 10.1038/s41467-020-15641-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/20/2020] [Indexed: 02/07/2023] Open
Abstract
Genomic outcomes of hybridization depend on selection and recombination in hybrids. Whether these processes have similar effects on hybrid genome composition in contemporary hybrid zones versus ancient hybrid lineages is unknown. Here we show that patterns of introgression in a contemporary hybrid zone in Lycaeides butterflies predict patterns of ancestry in geographically adjacent, older hybrid populations. We find a particularly striking lack of ancestry from one of the hybridizing taxa, Lycaeides melissa, on the Z chromosome in both the old and contemporary hybrids. The same pattern of reduced L. melissa ancestry on the Z chromosome is seen in two other ancient hybrid lineages. More generally, we find that patterns of ancestry in old or ancient hybrids are remarkably predictable from contemporary hybrids, which suggests selection and recombination affect hybrid genomes in a similar way across disparate time scales and during distinct stages of speciation and species breakdown.
Collapse
Affiliation(s)
- Samridhi Chaturvedi
- Department of Biology, Utah State University, Logan, UT, 84322, USA
- Ecology Center, Utah State University, Logan, UT, 84322, USA
- Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Lauren K Lucas
- Department of Biology, Utah State University, Logan, UT, 84322, USA
| | - C Alex Buerkle
- Department of Botany, University of Wyoming, Laramie, WY, 82071, USA
| | - James A Fordyce
- Department of Ecology & Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | | | - Chris C Nice
- Department of Biology, Texas State University, San Marcos, TX, 78666, USA
| | - Zachariah Gompert
- Department of Biology, Utah State University, Logan, UT, 84322, USA.
- Ecology Center, Utah State University, Logan, UT, 84322, USA.
| |
Collapse
|
91
|
Skov L, Coll Macià M, Sveinbjörnsson G, Mafessoni F, Lucotte EA, Einarsdóttir MS, Jonsson H, Halldorsson B, Gudbjartsson DF, Helgason A, Schierup MH, Stefansson K. The nature of Neanderthal introgression revealed by 27,566 Icelandic genomes. Nature 2020; 582:78-83. [DOI: 10.1038/s41586-020-2225-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 02/21/2020] [Indexed: 01/08/2023]
|
92
|
Duranton M, Allal F, Valière S, Bouchez O, Bonhomme F, Gagnaire PA. The contribution of ancient admixture to reproductive isolation between European sea bass lineages. Evol Lett 2020; 4:226-242. [PMID: 32547783 PMCID: PMC7293100 DOI: 10.1002/evl3.169] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 01/02/2020] [Accepted: 03/05/2020] [Indexed: 12/20/2022] Open
Abstract
Understanding how new species arise through the progressive establishment of reproductive isolation (RI) barriers between diverging populations is a major goal in Evolutionary Biology. An important result of speciation genomics studies is that genomic regions involved in RI frequently harbor anciently diverged haplotypes that predate the reconstructed history of species divergence. The possible origins of these old alleles remain much debated, as they relate to contrasting mechanisms of speciation that are not yet fully understood. In the European sea bass (Dicentrarchus labrax), the genomic regions involved in RI between Atlantic and Mediterranean lineages are enriched for anciently diverged alleles of unknown origin. Here, we used haplotype-resolved whole-genome sequences to test whether divergent haplotypes could have originated from a closely related species, the spotted sea bass (Dicentrarchus punctatus). We found that an ancient admixture event between D. labrax and D. punctatus is responsible for the presence of shared derived alleles that segregate at low frequencies in both lineages of D. labrax. An exception to this was found within regions involved in RI between the two D. labrax lineages. In those regions, archaic tracts originating from D. punctatus locally reached high frequencies or even fixation in Atlantic genomes but were almost absent in the Mediterranean. We showed that the ancient admixture event most likely occurred between D. punctatus and the D. labrax Atlantic lineage, while Atlantic and Mediterranean D. labrax lineages were experiencing allopatric isolation. Our results suggest that local adaptive introgression and/or the resolution of genomic conflicts provoked by ancient admixture have probably contributed to the establishment of RI between the two D. labrax lineages.
Collapse
Affiliation(s)
- Maud Duranton
- ISEM Univ Montpellier, CNRS, EPHE, IRD Montpellier France
| | - François Allal
- MARBEC Université de Montpellier, Ifremer-CNRS-IRD-UM Palavas-les-Flots 34250 France
| | - Sophie Valière
- INRA, US 1426, GeT-PlaGe Genotoul Castanet-Tolosan 31326 France
| | - Olivier Bouchez
- INRA, US 1426, GeT-PlaGe Genotoul Castanet-Tolosan 31326 France
| | | | | |
Collapse
|
93
|
Wilder AP, Navarro AY, King SND, Miller WB, Thomas SM, Steiner CC, Ryder OA, Shier DM. Fitness costs associated with ancestry to isolated populations of an endangered species. CONSERV GENET 2020. [DOI: 10.1007/s10592-020-01272-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
94
|
Barth JMI, Gubili C, Matschiner M, Tørresen OK, Watanabe S, Egger B, Han YS, Feunteun E, Sommaruga R, Jehle R, Schabetsberger R. Stable species boundaries despite ten million years of hybridization in tropical eels. Nat Commun 2020; 11:1433. [PMID: 32188850 PMCID: PMC7080837 DOI: 10.1038/s41467-020-15099-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 02/07/2020] [Indexed: 02/01/2023] Open
Abstract
Genomic evidence is increasingly underpinning that hybridization between taxa is commonplace, challenging our views on the mechanisms that maintain their boundaries. Here, we focus on seven catadromous eel species (genus Anguilla) and use genome-wide sequence data from more than 450 individuals sampled across the tropical Indo-Pacific, morphological information, and three newly assembled draft genomes to compare contemporary patterns of hybridization with signatures of past introgression across a time-calibrated phylogeny. We show that the seven species have remained distinct for up to 10 million years and find that the current frequencies of hybridization across species pairs contrast with genomic signatures of past introgression. Based on near-complete asymmetry in the directionality of hybridization and decreasing frequencies of later-generation hybrids, we suggest cytonuclear incompatibilities, hybrid breakdown, and purifying selection as mechanisms that can support species cohesion even when hybridization has been pervasive throughout the evolutionary history of clades.
Collapse
Affiliation(s)
- Julia M I Barth
- Department of Environmental Sciences, Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland
| | - Chrysoula Gubili
- Fisheries Research Institute, Hellenic Agricultural Organisation-DEMETER, Nea Peramos, 64 007, Kavala, Greece
| | - Michael Matschiner
- Department of Palaeontology and Museum, University of Zurich, Karl-Schmid-Strasse 4, 8006, Zurich, Switzerland.
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316, Oslo, Norway.
| | - Ole K Tørresen
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316, Oslo, Norway
| | - Shun Watanabe
- Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara, 631-8505, Japan
| | - Bernd Egger
- Department of Environmental Sciences, Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland
| | - Yu-San Han
- Institute of Fisheries Science, College of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Eric Feunteun
- Laboratoire Biologie des Organismes et Écosystèmes Aquatiques (BOREA), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, Université de Caen Normandie, Université des Antilles, IRD, 61 Rue Buffon, CP 53, 75231, Paris Cedex 05, France
- MNHN-Station Marine de Dinard, Centre de Recherche et d'Enseignement Sur les Systèmes Côtiers (CRESCO), 38 Rue du Port Blanc, 35800, Dinard, France
| | - Ruben Sommaruga
- Department of Ecology, University of Innsbruck, Technikerstr. 25, 6020, Innsbruck, Austria
| | - Robert Jehle
- School of Science, Engineering and Environment, University of Salford, Salford Crescent, Salford, M5 4WT, UK.
| | - Robert Schabetsberger
- Department of Biosciences, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria.
| |
Collapse
|
95
|
Hamlin JAP, Hibbins MS, Moyle LC. Assessing biological factors affecting postspeciation introgression. Evol Lett 2020; 4:137-154. [PMID: 32313689 PMCID: PMC7156103 DOI: 10.1002/evl3.159] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 11/26/2019] [Accepted: 01/12/2020] [Indexed: 12/14/2022] Open
Abstract
An increasing number of phylogenomic studies have documented a clear “footprint” of postspeciation introgression among closely related species. Nonetheless, systematic genome‐wide studies of factors that determine the likelihood of introgression remain rare. Here, we propose an a priori hypothesis‐testing framework that uses introgression statistics—including a new metric of estimated introgression, Dp—to evaluate general patterns of introgression prevalence and direction across multiple closely related species. We demonstrate this approach using whole genome sequences from 32 lineages in 11 wild tomato species to assess the effect of three factors on introgression—genetic relatedness, geographical proximity, and mating system differences—based on multiple trios within the “ABBA–BABA” test. Our analyses suggest each factor affects the prevalence of introgression, although our power to detect these is limited by the number of comparisons currently available. We find that of 14 species pairs with geographically “proximate” versus “distant” population comparisons, 13 showed evidence of introgression; in 10 of these cases, this was more prevalent between geographically closer populations. We also find modest evidence that introgression declines with increasing genetic divergence between lineages, is more prevalent between lineages that share the same mating system, and—when it does occur between mating systems—tends to involve gene flow from more inbreeding to more outbreeding lineages. Although our analysis indicates that recent postspeciation introgression is frequent in this group—detected in 15 of 17 tested trios—estimated levels of genetic exchange are modest (0.2–2.5% of the genome), so the relative importance of hybridization in shaping the evolutionary trajectories of these species could be limited. Regardless, similar clade‐wide analyses of genomic introgression would be valuable for disentangling the major ecological, reproductive, and historical determinants of postspeciation gene flow, and for assessing the relative contribution of introgression as a source of genetic variation.
Collapse
Affiliation(s)
| | - Mark S Hibbins
- Department of Biology Indiana University Bloomington Indiana 47405
| | - Leonie C Moyle
- Department of Biology Indiana University Bloomington Indiana 47405
| |
Collapse
|
96
|
Aris-Brosou S. Direct Evidence of an Increasing Mutational Load in Humans. Mol Biol Evol 2020; 36:2823-2829. [PMID: 31424543 DOI: 10.1093/molbev/msz192] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The extent to which selection has shaped present-day human populations has attracted intense scrutiny, and examples of local adaptations abound. However, the evolutionary trajectory of alleles that, today, are deleterious has received much less attention. To address this question, the genomes of 2,062 individuals, including 1,179 ancient humans, were reanalyzed to assess how frequencies of risk alleles and their homozygosity changed through space and time in Europe over the past 45,000 years. Although the overall deleterious homozygosity has consistently decreased, risk alleles have steadily increased in frequency over that period of time. Those that increased most are associated with diseases such as asthma, Crohn disease, diabetes, and obesity, which are highly prevalent in present-day populations. These findings may not run against the existence of local adaptations but highlight the limitations imposed by drift and population dynamics on the strength of selection in purging deleterious mutations from human populations.
Collapse
Affiliation(s)
- Stéphane Aris-Brosou
- Department of Biology, University of Ottawa, Ottawa, ON, Canada.,Department of Mathematics and Statistics, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
97
|
Abstract
Sex differences in overall recombination rates are well known, but little theoretical or empirical attention has been given to how and why sexes differ in their recombination landscapes: the patterns of recombination along chromosomes. In the first scientific review of this phenomenon, we find that recombination is biased toward telomeres in males and more uniformly distributed in females in most vertebrates and many other eukaryotes. Notable exceptions to this pattern exist, however. Fine-scale recombination patterns also frequently differ between males and females. The molecular mechanisms responsible for sex differences remain unclear, but chromatin landscapes play a role. Why these sex differences evolve also is unclear. Hypotheses suggest that they may result from sexually antagonistic selection acting on coding genes and their regulatory elements, meiotic drive in females, selection during the haploid phase of the life cycle, selection against aneuploidy, or mechanistic constraints. No single hypothesis, however, can adequately explain the evolution of sex differences in all cases. Sex-specific recombination landscapes have important consequences for population differentiation and sex chromosome evolution.
Collapse
Affiliation(s)
- Jason M. Sardell
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712
| | - Mark Kirkpatrick
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
98
|
Identifying and Interpreting Apparent Neanderthal Ancestry in African Individuals. Cell 2020; 180:677-687.e16. [PMID: 32004458 DOI: 10.1016/j.cell.2020.01.012] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 11/13/2019] [Accepted: 01/07/2020] [Indexed: 01/27/2023]
Abstract
Admixture has played a prominent role in shaping patterns of human genomic variation, including gene flow with now-extinct hominins like Neanderthals and Denisovans. Here, we describe a novel probabilistic method called IBDmix to identify introgressed hominin sequences, which, unlike existing approaches, does not use a modern reference population. We applied IBDmix to 2,504 individuals from geographically diverse populations to identify and analyze Neanderthal sequences segregating in modern humans. Strikingly, we find that African individuals carry a stronger signal of Neanderthal ancestry than previously thought. We show that this can be explained by genuine Neanderthal ancestry due to migrations back to Africa, predominately from ancestral Europeans, and gene flow into Neanderthals from an early dispersing group of humans out of Africa. Our results refine our understanding of Neanderthal ancestry in African and non-African populations and demonstrate that remnants of Neanderthal genomes survive in every modern human population studied to date.
Collapse
|
99
|
Gouy A, Excoffier L. Polygenic Patterns of Adaptive Introgression in Modern Humans Are Mainly Shaped by Response to Pathogens. Mol Biol Evol 2020; 37:1420-1433. [DOI: 10.1093/molbev/msz306] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AbstractAnatomically modern humans carry many introgressed variants from other hominins in their genomes. Some of them affect their phenotype and can thus be negatively or positively selected. Several individual genes have been proposed to be the subject of adaptive introgression, but the possibility of polygenic adaptive introgression has not been extensively investigated yet. In this study, we analyze archaic introgression maps with refined functional enrichment methods to find signals of polygenic adaptation of introgressed variants. We first apply a method to detect sets of connected genes (subnetworks) within biological pathways that present higher-than-expected levels of archaic introgression. We then introduce and apply a new statistical test to distinguish between epistatic and independent selection in gene sets of present-day humans. We identify several known targets of adaptive introgression, and we show that they belong to larger networks of introgressed genes. After correction for genetic linkage, we find that signals of polygenic adaptation are mostly explained by independent and potentially sequential selection episodes. However, we also find some gene sets where introgressed variants present significant signals of epistatic selection. Our results confirm that archaic introgression has facilitated local adaptation, especially in immunity related and metabolic functions and highlight its involvement in a coordinated response to pathogens out of Africa.
Collapse
Affiliation(s)
- Alexandre Gouy
- Institute of Ecology and Evolution, University of Berne, Berne 3012, Switzerland
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Laurent Excoffier
- Institute of Ecology and Evolution, University of Berne, Berne 3012, Switzerland
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| |
Collapse
|
100
|
Matute DR, Comeault AA, Earley E, Serrato-Capuchina A, Peede D, Monroy-Eklund A, Huang W, Jones CD, Mackay TFC, Coyne JA. Rapid and Predictable Evolution of Admixed Populations Between Two Drosophila Species Pairs. Genetics 2020; 214:211-230. [PMID: 31767631 PMCID: PMC6944414 DOI: 10.1534/genetics.119.302685] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/18/2019] [Indexed: 12/30/2022] Open
Abstract
The consequences of hybridization are varied, ranging from the origin of new lineages, introgression of some genes between species, to the extinction of one of the hybridizing species. We generated replicate admixed populations between two pairs of sister species of Drosophila: D. simulans and D. mauritiana; and D. yakuba and D. santomea Each pair consisted of a continental species and an island endemic. The admixed populations were maintained by random mating in discrete generations for over 20 generations. We assessed morphological, behavioral, and fitness-related traits from each replicate population periodically, and sequenced genomic DNA from the populations at generation 20. For both pairs of species, species-specific traits and their genomes regressed to those of the continental species. A few alleles from the island species persisted, but they tended to be proportionally rare among all sites in the genome and were rarely fixed within the populations. This paucity of alleles from the island species was particularly pronounced on the X-chromosome. These results indicate that nearly all foreign genes were quickly eliminated after hybridization and that selection against the minor species genome might be similar across experimental replicates.
Collapse
Affiliation(s)
- Daniel R Matute
- Biology Department, University of North Carolina, Chapel Hill, North Carolina
| | - Aaron A Comeault
- School of Natural Sciences, Bangor University, Wales, UK LL57 2EN
| | - Eric Earley
- Biology Department, University of North Carolina, Chapel Hill, North Carolina
| | | | - David Peede
- Biology Department, University of North Carolina, Chapel Hill, North Carolina
| | - Anaïs Monroy-Eklund
- Biology Department, University of North Carolina, Chapel Hill, North Carolina
| | - Wen Huang
- Program in Genetics and Department of Biological Science, North Carolina State University, Raleigh, North Carolina 27695
| | - Corbin D Jones
- Biology Department, University of North Carolina, Chapel Hill, North Carolina
| | - Trudy F C Mackay
- Program in Genetics and Department of Biological Science, North Carolina State University, Raleigh, North Carolina 27695
| | - Jerry A Coyne
- Ecology and Evolution, University of Chicago, Illinois 60637
| |
Collapse
|