51
|
Markman DW, Antolin MF, Bowen RA, Wheat WH, Woods M, Gonzalez-Juarrero M, Jackson M. Yersinia pestis Survival and Replication in Potential Ameba Reservoir. Emerg Infect Dis 2018; 24:294-302. [PMID: 29350155 PMCID: PMC5782900 DOI: 10.3201/eid2402.171065] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Plague ecology is characterized by sporadic epizootics, then periods of dormancy. Building evidence suggests environmentally ubiquitous amebae act as feral macrophages and hosts to many intracellular pathogens. We conducted environmental genetic surveys and laboratory co-culture infection experiments to assess whether plague bacteria were resistant to digestion by 5 environmental ameba species. First, we demonstrated that Yersinia pestis is resistant or transiently resistant to various ameba species. Second, we showed that Y. pestis survives and replicates intracellularly within Dictyostelium discoideum amebae for ˃48 hours postinfection, whereas control bacteria were destroyed in <1 hour. Finally, we found that Y. pestis resides within ameba structures synonymous with those found in infected human macrophages, for which Y. pestis is a competent pathogen. Evidence supporting amebae as potential plague reservoirs stresses the importance of recognizing pathogen-harboring amebae as threats to public health, agriculture, conservation, and biodefense.
Collapse
|
52
|
Arraes MLBDM, Holanda MVD, Lima LNGC, Sabadia JAB, Duarte CR, Almeida RLF, Kendall C, Kerr LRS, Frota CC. Natural environmental water sources in endemic regions of northeastern Brazil are potential reservoirs of viable Mycobacterium leprae. Mem Inst Oswaldo Cruz 2017; 112:805-811. [PMID: 29211240 PMCID: PMC5719548 DOI: 10.1590/0074-02760170117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/30/2017] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The detection of live Mycobacterium leprae in soil and animals other than humans suggests that the environment plays a role in the transmission of leprosy. OBJECTIVE The objective of this study was to investigate the presence of viable M. leprae in natural water sources used by the local population in five municipalities in the state of Ceará, northeastern Brazil. METHODS Samples were collected from 30 different sources. Viable bacilli were identified by reverse transcriptase polymerase chain reaction (PCR) of the M. leprae gyrA gene and sequencing of the PCR products. Physicochemical properties of each water source were also assessed. FINDINGS M. leprae gyrA mRNA was found in 23 (76.7%) of the water sources. No association was found between depth of the water and sample positivity, nor was there any association between the type of water used by the population and sample positivity. An association between viable M. leprae and temperature and pH was found. Georeferencing showed a relation between the residences of leprosy cases and water source containing the bacterium. MAIN CONCLUSIONS The finding of viable M. leprae in natural water sources associated with human contact suggests that the environment plays an important role in maintaining endemic leprosy in the study region.
Collapse
Affiliation(s)
| | - Maísa Viana de Holanda
- Universidade Federal do Ceará, Faculdade de Medicina, Departamento de Patologia e Medicina Legal, Fortaleza, CE, Brasil
| | | | | | | | | | - Carl Kendall
- Tulane University, School of Public Health and Tropical Medicine, Department of Global Community Health and Behavioral Sciences, New Orleans, LA, USA
| | - Ligia Regina Sansigolo Kerr
- Universidade Federal do Ceará, Faculdade de Medicina, Departamento de Saúde Comunitária, Fortaleza, CE, Brasil
| | - Cristiane Cunha Frota
- Universidade Federal do Ceará, Faculdade de Medicina, Departamento de Patologia e Medicina Legal, Fortaleza, CE, Brasil
| |
Collapse
|
53
|
Sanchez-Hidalgo A, Obregón-Henao A, Wheat WH, Jackson M, Gonzalez-Juarrero M. Mycobacterium bovis hosted by free-living-amoebae permits their long-term persistence survival outside of host mammalian cells and remain capable of transmitting disease to mice. Environ Microbiol 2017; 19:4010-4021. [PMID: 28585299 DOI: 10.1111/1462-2920.13810] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 05/03/2017] [Accepted: 05/29/2017] [Indexed: 11/26/2022]
Abstract
Bovine tuberculosis (TB) is a zoonotic disease caused by Mycobacterium bovis. Despite intensive TB control campaigns, there are sporadic outbreaks of bovine TB in regions declared TB free. It is unclear how M. bovis is able to survive in the environment for long periods of time. We hypothesized that Free-living amoebae (FLA), as ubiquitous inhabitants of soil and water, may act as long-term reservoirs of M. bovis in the environment. In our model, M. bovis would be taken up by amoebal trophozoites, which are the actively feeding, replicating and mobile form of FLA. Upon exposure to hostile environmental conditions, infected FLA will encyst and provide an intracellular niche allowing their M. bovis cargo to persist for extended periods of time. Here, we show that five FLA species (Acanthamoeba polyphaga, Acanthamoeba castellanii, Acanthamoeba lenticulata, Vermamoeba vermiformis and Dictyostellium discoideum) are permissive to M. bovis infection and that the M. bovis bacilli may survive within the cysts of four of these species for over 60 days. We further show that exposure of M. bovis-infected trophozoites and cysts to Balb/c mice leads to pulmonary TB. This work describes for the first time that FLA carrying M. bovis can transmit TB.
Collapse
Affiliation(s)
- Andrea Sanchez-Hidalgo
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, CO, USA
| | - Andrés Obregón-Henao
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, CO, USA
| | - William H Wheat
- Department of Clinical Sciences, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, Colorado, USA
| | - Mary Jackson
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, CO, USA
| | - Mercedes Gonzalez-Juarrero
- Department of Microbiology, Immunology and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
54
|
Holanda MVD, Marques LEC, Macedo MLBD, Pontes MADA, Sabadia JAB, Kerr LRFS, Almeida RLF, Frota CC. Presence of Mycobacterium leprae genotype 4 in environmental waters in Northeast Brazil. Rev Soc Bras Med Trop 2017; 50:216-222. [PMID: 28562758 DOI: 10.1590/0037-8682-0424-2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 03/23/2017] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION: This study quantified Mycobacterium leprae bacilli in environmental water samples from five municipalities in the State of Ceará by quantitative polymerase chain reaction (qPCR) and compared the identified genotypes with those obtained from leprosy patient biopsies. METHODS: We collected five replicas from each of the 30 selected reservoirs and skin lesion biopsies from 25 new leprosy cases treated at a reference center in Fortaleza, Ceará from 2010 to 2013. The 16S rRNA gene region of M. leprae was amplified by qPCR and a standard curve was created with the pIDTBlue 16SrRNAMlep plasmid. The Juazeiro do Norte water samples and the biopsies were genotyped (single nucleotide polymorphism [SNP] 1 to 4) and the SNP 4 genotypes were subtyped. RESULTS: Of the 149 water samples analyzed, 54.4% were positive for the M. leprae DNA. The M. leprae bacilli copy number ranged from 1.42 × 10 -1 to 1.44 × 10 + 2 . Most biopsies showed SNP type 4 (64%), while all samples from Juazeiro do Norte were SNP type 4, with subtype 4-N appearing at the highest frequency. CONCLUSIONS: We suggest that environmental waters containing M. leprae bacilli play an important role in disease transmission, justifying PGL-1 seropositivity in individuals living in areas where there is no reported case, and in leprosy cases individuals who report no previous contact with other case. Therefore, further investigation is needed to clarify disease transmission in this region and to explore the role of the environment. We also suggest that in this area surveillance for leprosy cases should be intensified.
Collapse
Affiliation(s)
- Maísa Viana de Holanda
- Departamento de Patologia e Medicina Legal, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - Livia Erika Carlos Marques
- Departamento de Patologia e Medicina Legal, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - Maria Luisa Bezerra de Macedo
- Departamento de Patologia e Medicina Legal, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | | | | | | | | | - Cristiane Cunha Frota
- Departamento de Patologia e Medicina Legal, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| |
Collapse
|
55
|
Mycobacterium llatzerense, a waterborne Mycobacterium, that resists phagocytosis by Acanthamoeba castellanii. Sci Rep 2017; 7:46270. [PMID: 28393860 PMCID: PMC5385496 DOI: 10.1038/srep46270] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/10/2017] [Indexed: 12/20/2022] Open
Abstract
Nontuberculous mycobacteria (NTM) are environmental bacteria increasingly associated to public health problems. In water systems, free-living amoebae (FLA) feed on bacteria by phagocytosis, but several bacteria, including many NTM, are resistant to this predation. Thus, FLA can be seen as a training ground for pathogenic bacteria. Mycobacterium llatzerense was previously described as frequently associated with FLA in a drinking water network. The present study aimed to characterize the interactions between M. llatzerense and FLA. M. llatzerense was internalised by phagocytosis and featured lipid inclusions, suggesting a subversion of host resources. Moreover, M. llatzerense survived and even multiplied in presence of A. castellanii. Using a genomic-based comparative approach, twelve genes involved in phagocytosis interference, described in M. tuberculosis, were identified in the M. llatzerense genome sequenced in this study. Transcriptomic analyses showed that ten genes were significantly upregulated during the first hours of the infection, which could partly explain M. llatzerense resistance. Additionally, M. llatzerense was shown to actively inhibit phagosome acidification. In conclusion, M. llatzerense presents a high degree of resistance to phagocytosis, likely explaining its frequent occurrence within FLA in drinking water networks. It underscores that NTM should be carefully monitored in water networks to prevent human health concerns.
Collapse
|
56
|
Dynamics of leprosy in nine-banded armadillos: Net reproductive number and effects on host population dynamics. Ecol Modell 2017. [DOI: 10.1016/j.ecolmodel.2017.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
57
|
Azumah BK, Addo PG, Dodoo A, Awandare G, Mosi L, Boakye DA, Wilson MD. Experimental demonstration of the possible role of Acanthamoeba polyphaga in the infection and disease progression in Buruli Ulcer (BU) using ICR mice. PLoS One 2017; 12:e0172843. [PMID: 28329001 PMCID: PMC5362167 DOI: 10.1371/journal.pone.0172843] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 02/10/2017] [Indexed: 11/18/2022] Open
Abstract
The transmission of Buruli ulcer (BU), caused by Mycobacterium ulcerans (MU), remains puzzling although a number of hypothesis including through bites of infected aquatic insects have been proposed. We report the results of experiments using ICR mice that give credence to our hypothesis that Acanthamoeba species may play a role in BU transmission. We cocultured MU N2 and MU 1615 which expresses red fluorescent protein (RFP) and Acanthamoeba polyphaga (AP), and confirmed infected AP by Ziehl-Neelsen (ZN) staining. We tested for viability of MU inside AP and observed strong RFP signals inside both trophozoites and cysts after 3 and 42 days of coculturing respectively. ICR mice were topically treated, either on shaved intact or shaved pinpricked rumps, with one of the following; MU N2 only (2.25 x 106 colony forming units [CFU] / ml), MU N2:AP coculture (2.96 x 104 CFU: 1.6 x 106 cells/ml), AP only (1.6 x 106 cells/ml), PYG medium and sterile distilled water. Both MU N2 only and MU N2:AP elicited reddening on day (D) 31; edema on D 45 and D 44 respectively, and ulcers on D 49 at pinpricked sites only. To ascertain infectivity and pathogenicity of MU N2 only and MU N2:AP, and compare their virulence, the standard mouse footpad inoculation method was used. MU N2:AP elicited reddening in footpads by D 3 compared to D 14 with MU N2 only of the same dose of MU N2 (2.96 x 104 CFU). ZN-stained MU were observed in both thin sectioned and homogenized lesions, and aspirates from infected sites. Viable MU N2 were recovered from cultures of the homogenates and aspirates. This study demonstrates in ICR mice MU transmission via passive infection, and shows that punctures in the skin are prerequisite for infection, and that coculturing of MU with AP enhances pathogenesis.
Collapse
Affiliation(s)
- Bright K. Azumah
- Department of Animal Experimentation, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Phyllis G. Addo
- Department of Animal Experimentation, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
- * E-mail: (PGA); (MDW)
| | - Alfred Dodoo
- Department of Electron Microscopy and Histopathology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Gordon Awandare
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Lydia Mosi
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Daniel A. Boakye
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Michael D. Wilson
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
- * E-mail: (PGA); (MDW)
| |
Collapse
|
58
|
Fonseca ABDL, Simon MDV, Cazzaniga RA, de Moura TR, de Almeida RP, Duthie MS, Reed SG, de Jesus AR. The influence of innate and adaptative immune responses on the differential clinical outcomes of leprosy. Infect Dis Poverty 2017; 6:5. [PMID: 28162092 PMCID: PMC5292790 DOI: 10.1186/s40249-016-0229-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 12/20/2016] [Indexed: 12/22/2022] Open
Abstract
Leprosy is a chronic infectious disease caused by Mycobacterium leprae. According to official reports from 121 countries across five WHO regions, there were 213 899 newly diagnosed cases in 2014. Although leprosy affects the skin and peripheral nerves, it can present across a spectrum of clinical and histopathological forms that are strongly influenced by the immune response of the infected individuals. These forms comprise the extremes of tuberculoid leprosy (TT), with a M. leprae-specific Th1, but also a Th17, response that limits M. leprae multiplication, through to lepromatous leprosy (LL), with M. leprae-specific Th2 and T regulatory responses that do not control M. leprae replication but rather allow bacterial dissemination. The interpolar borderline clinical forms present with similar, but less extreme, immune biases. Acute inflammatory episodes, known as leprosy reactions, are complications that may occur before, during or after treatment, and cause further neurological damages that can cause irreversible chronic disabilities. This review discusses the innate and adaptive immune responses, and their interactions, that are known to affect pathogenesis and influence the clinical outcome of leprosy.
Collapse
Affiliation(s)
- Adriana Barbosa de Lima Fonseca
- Department of Medicine, Molecular Biology Laboratory, University Hospital, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil
| | - Marise do Vale Simon
- Department of Medicine, Molecular Biology Laboratory, University Hospital, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil
| | - Rodrigo Anselmo Cazzaniga
- Department of Medicine, Molecular Biology Laboratory, University Hospital, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil
| | - Tatiana Rodrigues de Moura
- Department of Medicine, Molecular Biology Laboratory, University Hospital, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil
| | - Roque Pacheco de Almeida
- Department of Medicine, Molecular Biology Laboratory, University Hospital, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil.,Instituto de Investigação em Imunologia, Institutos Nacionais de Ciência e Tecnologia, CNPq, São Paulo, SP, Brazil
| | | | | | - Amelia Ribeiro de Jesus
- Department of Medicine, Molecular Biology Laboratory, University Hospital, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil. .,Instituto de Investigação em Imunologia, Institutos Nacionais de Ciência e Tecnologia, CNPq, São Paulo, SP, Brazil.
| |
Collapse
|
59
|
Noinarin P, Chareonsudjai P, Wangsomnuk P, Wongratanacheewin S, Chareonsudjai S. Environmental Free-Living Amoebae Isolated from Soil in Khon Kaen, Thailand, Antagonize Burkholderia pseudomallei. PLoS One 2016; 11:e0167355. [PMID: 27898739 PMCID: PMC5127566 DOI: 10.1371/journal.pone.0167355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 11/11/2016] [Indexed: 11/18/2022] Open
Abstract
Presence of Burkholderia pseudomallei in soil and water is correlated with endemicity of melioidosis in Southeast Asia and northern Australia. Several biological and physico-chemical factors have been shown to influence persistence of B. pseudomallei in the environment of endemic areas. This study was the first to evaluate the interaction of B. pseudomallei with soil amoebae isolated from B. pseudomallei-positive soil site in Khon Kaen, Thailand. Four species of amoebae, Paravahlkampfia ustiana, Acanthamoeba sp., Naegleria pagei, and isolate A-ST39-E1, were isolated, cultured and identified based on morphology, movement and 18S rRNA gene sequence. Co-cultivation combined with a kanamycin-protection assay of B. pseudomallei with these amoebae at MOI 20 at 30°C were evaluated during 0–6 h using the plate count technique on Ashdown’s agar. The fate of intracellular B. pseudomallei in these amoebae was also monitored by confocal laser scanning microscopy (CLSM) observation of the CellTracker™ Orange-B. pseudomallei stained cells. The results demonstrated the ability of P. ustiana, Acanthamoeba sp. and isolate A-ST39-E1 to graze B. pseudomallei. However, the number of internalized B. pseudomallei substantially decreased and the bacterial cells disappeared during the observation period, suggesting they had been digested. We found that B. pseudomallei promoted the growth of Acanthamoeba sp. and isolate A-ST39-E1 in co-cultures at MOI 100 at 30°C, 24 h. These findings indicated that P. ustiana, Acanthamoeba sp. and isolate A-ST39-E1 may prey upon B. pseudomallei rather than representing potential environmental reservoirs in which the bacteria can persist.
Collapse
Affiliation(s)
- Parumon Noinarin
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Melioidosis Research Center, Khon Kaen University, Khon Kaen, Thailand
| | - Pisit Chareonsudjai
- Department of Environmental Science, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
- Melioidosis Research Center, Khon Kaen University, Khon Kaen, Thailand
- Biofilm Research Group, Khon Kaen University, Khon Kaen, Thailand
| | - Pinich Wangsomnuk
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Surasak Wongratanacheewin
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Melioidosis Research Center, Khon Kaen University, Khon Kaen, Thailand
| | - Sorujsiri Chareonsudjai
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Melioidosis Research Center, Khon Kaen University, Khon Kaen, Thailand
- Biofilm Research Group, Khon Kaen University, Khon Kaen, Thailand
- * E-mail:
| |
Collapse
|
60
|
Freitas LRS, Duarte EC, Garcia LP. Trends of main indicators of leprosy in Brazilian municipalities with high risk of leprosy transmission, 2001-2012. BMC Infect Dis 2016; 16:472. [PMID: 27595751 PMCID: PMC5011946 DOI: 10.1186/s12879-016-1798-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 08/23/2016] [Indexed: 11/26/2022] Open
Abstract
Background Leprosy incidence has reduced in recent years in Brazil, although the disease still persists as a public health problem in some regions. To investigate the trends of selected leprosy indicators in Brazilian municipalities with high risk of transmission is essential to provide effective control of the disease, yet this area has not been investigated. Methods This is an ecological time-series study with multiple groups using Notifiable Diseases Information System (SINAN) data. All 692 municipalities of the states of Mato Grosso, Tocantins, Rondônia, Pará and Maranhão were included. The incidence rates of leprosy were calculated, as well as incidence rates in children under 15 years per 100,000 inhabitants and rates of new cases presenting grade-2 disabilities per 100,000 inhabitants. Joinpoint Regression was used to analyse the time trends of the different indicators studied. The spatial distribution of temporal variations of the indicators in the period was presented. Results Between 2001 and 2012, 176,929 leprosy cases were notified in the area studied, this being equivalent to 34.6 % of total cases in Brazil. In the aggregate of municipalities, there was a reduction in incidence rate of leprosy from 89.10 to 56.98 new cases per 100,000 inhabitants between 2001 and 2012, with a significant reduction between 2003 and 2012 (APC: − 6.2 %, 95 % CI: −7.2 % to −5.2 %). The incidence rate in <15 years also reduced significantly between 2003 and 2012 (APC: −5.6 %; 95 % CI: −7.2 % to −4.1 %). The rate of new cases with grade 2 disability remained stable between 2001 and 2012 (APC: −1.3 %; 95 % CI: −2.6 % to 0.1 %). Conclusion Despite the reduction in the leprosy incidence rate, strategies for controlling this disease need to be enhanced to enable early case detection, especially in hyperendemic municipalities, in order to prevent disability.
Collapse
Affiliation(s)
- Lucia R S Freitas
- Programa de Pós-Graduação em Medicina Tropical, Núcleo de Medicina Tropical, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil.
| | - Elisabeth C Duarte
- Núcleo de Medicina Tropical, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil
| | - Leila P Garcia
- Instituto de Pesquisa Econômica Aplicada, Brasília, Brazil
| |
Collapse
|
61
|
Delafont V, Bouchon D, Héchard Y, Moulin L. Environmental factors shaping cultured free-living amoebae and their associated bacterial community within drinking water network. WATER RESEARCH 2016; 100:382-392. [PMID: 27219048 DOI: 10.1016/j.watres.2016.05.044] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/10/2016] [Accepted: 05/13/2016] [Indexed: 05/08/2023]
Abstract
Free-living amoebae (FLA) constitute an important part of eukaryotic populations colonising drinking water networks. However, little is known about the factors influencing their ecology in such environments. Because of their status as reservoir of potentially pathogenic bacteria, understanding environmental factors impacting FLA populations and their associated bacterial community is crucial. Through sampling of a large drinking water network, the diversity of cultivable FLA and their bacterial community were investigated by an amplicon sequencing approach, and their correlation with physicochemical parameters was studied. While FLA ubiquitously colonised the water network all year long, significant changes in population composition were observed. These changes were partially explained by several environmental parameters, namely water origin, temperature, pH and chlorine concentration. The characterisation of FLA associated bacterial community reflected a diverse but rather stable consortium composed of nearly 1400 OTUs. The definition of a core community highlighted the predominance of only few genera, majorly dominated by Pseudomonas and Stenotrophomonas. Co-occurrence analysis also showed significant patterns of FLA-bacteria association, and allowed uncovering potentially new FLA - bacteria interactions. From our knowledge, this study is the first that combines a large sampling scheme with high-throughput identification of FLA together with associated bacteria, along with their influencing environmental parameters. Our results demonstrate the importance of physicochemical parameters in the ecology of FLA and their bacterial community in water networks.
Collapse
Affiliation(s)
- Vincent Delafont
- Université de Poitiers, Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Equipes Microbiologie de l'Eau & Ecologie, Evolution, Symbiose, France; Eau de Paris, Direction de la Recherche et du Développement pour la Qualité de l'Eau, R&D Biologie, 33, Avenue Jean Jaurès, 94200 Ivry sur Seine, France
| | - Didier Bouchon
- Université de Poitiers, Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Equipes Microbiologie de l'Eau & Ecologie, Evolution, Symbiose, France
| | - Yann Héchard
- Université de Poitiers, Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Equipes Microbiologie de l'Eau & Ecologie, Evolution, Symbiose, France
| | - Laurent Moulin
- Eau de Paris, Direction de la Recherche et du Développement pour la Qualité de l'Eau, R&D Biologie, 33, Avenue Jean Jaurès, 94200 Ivry sur Seine, France.
| |
Collapse
|
62
|
Sharma R, Singh P, Loughry WJ, Lockhart JM, Inman WB, Duthie MS, Pena MT, Marcos LA, Scollard DM, Cole ST, Truman RW. Zoonotic Leprosy in the Southeastern United States. Emerg Infect Dis 2016; 21:2127-34. [PMID: 26583204 PMCID: PMC4672434 DOI: 10.3201/eid2112.150501] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The geographic range and complexity of this disease are increasing. Nine-banded armadillos (Dasypus novemcinctus) are naturally infected
with Mycobacterium leprae and have been implicated in zoonotic
transmission of leprosy. Early studies found this disease mainly in Texas and
Louisiana, but armadillos in the southeastern United States appeared to be free of
infection. We screened 645 armadillos from 8 locations in the southeastern United
States not known to harbor enzootic leprosy for M. leprae DNA and
antibodies. We found M. leprae–infected armadillos at each
location, and 106 (16.4%) animals had serologic/PCR evidence of infection. Using
single-nucleotide polymorphism variable number tandem repeat genotyping/genome
sequencing, we detected M. leprae genotype 3I-2-v1 among 35
armadillos. Seven armadillos harbored a newly identified genotype (3I-2-v15). In
comparison, 52 human patients from the same region were infected with 31 M.
leprae types. However, 42.3% (22/52) of patients were infected with 1 of
the 2 M. leprae genotype strains associated with armadillos. The
geographic range and complexity of zoonotic leprosy is expanding.
Collapse
|
63
|
Franco-Paredes C, Rodriguez-Morales AJ. Unsolved matters in leprosy: a descriptive review and call for further research. Ann Clin Microbiol Antimicrob 2016; 15:33. [PMID: 27209077 PMCID: PMC4875741 DOI: 10.1186/s12941-016-0149-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/11/2016] [Indexed: 10/25/2022] Open
Abstract
Leprosy, a chronic mycobacterial infection caused by Mycobacterium leprae, is an infectious disease that has ravaged human societies throughout millennia. This ancestral pathogen causes disfiguring cutaneous lesions, peripheral nerve injury, ostearticular deformity, limb loss and dysfunction, blindness and stigma. Despite ongoing efforts in interrupting leprosy transmission, large numbers of new cases are persistently identified in many endemic areas. Moreover, at the time of diagnosis, most newly identified cases have considerable neurologic disability. Many challenges remain in our understanding of the epidemiology of leprosy including: (a) the precise mode and route of transmission; (b) the socioeconomic, environmental, and behavioral factors that promote its transmission; and
Collapse
Affiliation(s)
- Carlos Franco-Paredes
- Infectious Diseases Clinic, Phoebe Putney Memorial Hospital, 507 3rd Avenue, Albany, GA, 31721, USA. .,Hospital Infantil de México, Federico Gómez, Mexico D.F., Mexico.
| | - Alfonso J Rodriguez-Morales
- Public Health and Infection Research Group, Faculty of Health Sciences, Universidad Tecnológica de Pereira, Pereira, Risaralda, Colombia
| |
Collapse
|
64
|
Neumann ADS, Dias FDA, Ferreira JDS, Fontes ANB, Rosa PS, Macedo RE, Oliveira JH, Teixeira RLDF, Pessolani MCV, Moraes MO, Suffys PN, Oliveira PL, Sorgine MHF, Lara FA. Experimental Infection of Rhodnius prolixus (Hemiptera, Triatominae) with Mycobacterium leprae Indicates Potential for Leprosy Transmission. PLoS One 2016; 11:e0156037. [PMID: 27203082 PMCID: PMC4874629 DOI: 10.1371/journal.pone.0156037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/09/2016] [Indexed: 11/16/2022] Open
Abstract
Leprosy is a chronic dermato-neurological disease caused by infection with Mycobacterium leprae. In 2013 almost 200,000 new cases of leprosy were detected around the world. Since the first symptoms take from years to decades to appear, the total number of asymptomatic patients is impossible to predict. Although leprosy is one of the oldest records of human disease, the mechanisms involved with its transmission and epidemiology are still not completely understood. In the present work, we experimentally investigated the hypothesis that the mosquitoes Aedes aegypti and Culex quinquefasciatus and the hemiptera Rhodnius prolixus act as leprosy vectors. By means of real-time PCR quantification of M. leprae 16SrRNA, we found that M. leprae remained viable inside the digestive tract of Rhodnius prolixus for 20 days after oral infection. In contrast, in the gut of both mosquito species tested, we were not able to detect M. leprae RNA after a similar period of time. Inside the kissing bug Rhodnius prolixus digestive tract, M. leprae was initially restricted to the anterior midgut, but gradually moved towards the hindgut, in a time course reminiscent of the life cycle of Trypanosoma cruzi, a well-known pathogen transmitted by this insect. The maintenance of M. leprae infectivity inside the digestive tract of this kissing bug is further supported by successful mice footpad inoculation with feces collected 20 days after infection. We conclude that Rhodnius prolixus defecate infective M. leprae, justifying the evaluation of the presence of M. leprae among sylvatic and domestic kissing bugs in countries endemic for leprosy.
Collapse
Affiliation(s)
- Arthur da Silva Neumann
- Laboratório de Microbiologia Celular, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Felipe de Almeida Dias
- Laboratório de Bioquímica de Artrópodes Hematófagos, Federal University of Rio de Janeiro, Rio de Janiero, Brazil
| | - Jéssica da Silva Ferreira
- Laboratório de Microbiologia Celular, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Amanda Nogueira Brum Fontes
- Laboratório de Biologia Molecular Aplicada a Micobactérias, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Rafael Enrique Macedo
- Laboratório de Microbiologia Celular, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - José Henrique Oliveira
- Laboratório de Bioquímica de Artrópodes Hematófagos, Federal University of Rio de Janeiro, Rio de Janiero, Brazil
| | | | | | - Milton Ozório Moraes
- Laboratório de Hanseníase, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Philip Noel Suffys
- Laboratório de Biologia Molecular Aplicada a Micobactérias, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Pedro L. Oliveira
- Laboratório de Bioquímica de Artrópodes Hematófagos, Federal University of Rio de Janeiro, Rio de Janiero, Brazil
| | | | - Flavio Alves Lara
- Laboratório de Microbiologia Celular, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
65
|
PATTERNS OF MYCOBACTERIUM LEPRAE INFECTION IN WILD NINE-BANDED ARMADILLOS (DASYPUS NOVEMCINCTUS) IN MISSISSIPPI, USA. J Wildl Dis 2016; 52:524-32. [PMID: 27195687 DOI: 10.7589/2015-03-066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The nine-banded armadillo ( Dasypus novemcinctus ) is the only known nonhuman reservoir of Mycobacterium leprae , the causative agent of Hansen's disease or leprosy. We conducted a 6-yr study on a wild population of armadillos in western Mississippi that was exposed to M. leprae to evaluate the importance of demographic and spatial risk factors on individual antibody status. We found that spatially derived covariates were not predictive of antibody status. Furthermore, analyses revealed no evidence of clustering by antibody-positive individuals. Lactating females and adult males had higher odds of being antibody positive than did nonlactating females. No juveniles or yearlings were antibody positive. Results of these analyses support the hypothesis that M. leprae infection patterns are spatially homogeneous within this armadillo population. Further research related to movement patterns, contact among individuals, antibody status, and environmental factors could help address hypotheses related to the role of environmental transmission on M. leprae infection and the mechanisms underlying the differential infection patterns among demographic groups.
Collapse
|
66
|
de Sousa JR, de Sousa RPM, de Souza Aarão TL, Dias LB, Carneiro FRO, Fuzii HT, Quaresma JAS. In situ expression of M2 macrophage subpopulation in leprosy skin lesions. Acta Trop 2016; 157:108-14. [PMID: 26827741 DOI: 10.1016/j.actatropica.2016.01.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 12/12/2015] [Accepted: 01/07/2016] [Indexed: 02/08/2023]
Abstract
The clinical manifestations of the leprosy depend on host immune response and the macrophages are the primary cells involved in this process. M1 and M2 cells exhibited distinct morphology, distinct surface marker profiles, as well as different cytokine and chemokine secretion. Macrophages express receptors such as CD163, CD68, CD206, and costimulatory molecules such as CD80 and CD86, and cytokines that trigger a suppressive or inflammatory response. Thirty-three untreated patients were selected, 17 patients had the tuberculoid leprosy (TT) and 16 had the lepromatous leprosy (LL). We performed immunohistochemistry to detect IL-13, IL-10, TGF-β, FGF-β, CD163, CD68, arginase 1. M2 macrophages showed significant differences between the groups studied with increase in the expression of costimulatory molecules (CD68 and CD163), arginase 1 and cytokines (IL-10, IL-13, TGF-β and FGF-b) in the LL form. Response of M2 macrophages emerge as an alternative for a better understanding of the innate immunity in the polar forms of leprosy, highlighting the role of cytokines, arginase 1 and costimulatory molecules in the repair and suppressive responses in the lepromatous form of the disease.
Collapse
|
67
|
Asmar S, Sassi M, Phelippeau M, Drancourt M. Inverse correlation between salt tolerance and host-adaptation in mycobacteria. BMC Res Notes 2016; 9:249. [PMID: 27129386 PMCID: PMC4850692 DOI: 10.1186/s13104-016-2054-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 04/20/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The genus Mycobacterium includes host-adapted organisms regarded as obligate and opportunistic pathogens and environmental organisms. Factors contributing to this wide range of adaptations are poorly known. RESULTS We studied the salt tolerance of 46 Mycobacterium species of medical interest. Representative strains of the Mycobacterium tuberculosis complex, Mycobacterium avium complex, Mycobacterium chelonae-abscessus complex, Mycobacterium ulcerans, Mycobacterium marinum, Mycobacterium lentiflavum, Mycobacterium fortuitum and Mycobacterium conceptionense were inoculated on Middlebrook 7H10 medium supplemented with 0-10% sodium chloride. Colonies were counted after 2-4 week incubation at the appropriate 30-37 °C temperature depending on the tested strain. Further comparative genomics was done on 15 Mycobacterium strains representing the spectrum of salt-tolerance of mycobacteria. Based on the results the different species were grouped according to their salt tolerance into a "salt-sensitive" group (growth up to ≤3% salt) containing the M. tuberculosis complex, Mycobacterium chelonae, Mycobacterium lentiflavum, Mycobacterium ulcerans and Mycobacterium marinum; a "salt-intermediate" group (growth between 4 and 6% salt) comprising Mycobacterium avium, Mycobacterium intracellulare, Mycobacterium chimaera and a "salt-resistant" group (growth up to >6%) comprising Mycobacterium homonissuis, Mycobacterium bolettii, Mycobacterium fortuitum and Mycobacterium conceptionense. Genomic analysis revealed that 290 genes were unique to species belonging to the salt-sensitive group; and that 15% were annotated as being functionally associated with the ESX secretion systems Pro-Glu and Pro-Pro-Glu family proteins. CONCLUSIONS In this work we found an inverse correlation between salt tolerance and host adaptation. We thus propose that salinity is one of the multiple factors determining the ecological niches of mycobacteria.
Collapse
Affiliation(s)
- Shady Asmar
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, CNRS, UMR 7278, IRD 198, Faculté de Médecine, Aix-Marseille Université, 27, Boulevard Jean Moulin, 13385, Marseille Cedex 5, France
| | | | - Michael Phelippeau
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, CNRS, UMR 7278, IRD 198, Faculté de Médecine, Aix-Marseille Université, 27, Boulevard Jean Moulin, 13385, Marseille Cedex 5, France
| | - Michel Drancourt
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, CNRS, UMR 7278, IRD 198, Faculté de Médecine, Aix-Marseille Université, 27, Boulevard Jean Moulin, 13385, Marseille Cedex 5, France.
| |
Collapse
|
68
|
Rodrigues RAL, Abrahão JS, Drumond BP, Kroon EG. Giants among larges: how gigantism impacts giant virus entry into amoebae. Curr Opin Microbiol 2016; 31:88-93. [PMID: 27039270 DOI: 10.1016/j.mib.2016.03.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 03/22/2016] [Accepted: 03/22/2016] [Indexed: 11/29/2022]
Abstract
The proposed order Megavirales comprises the nucleocytoplasmic large DNA viruses (NCLDV), infecting a wide range of hosts. Over time, they co-evolved with different host cells, developing various strategies to penetrate them. Mimiviruses and other giant viruses enter cells through phagocytosis, while Marseillevirus and other large viruses explore endocytosis and macropinocytosis. These differing strategies might reflect the evolution of those viruses. Various scenarios have been proposed for the origin and evolution of these viruses, presenting one of the most enigmatic issues to surround these microorganisms. In this context, we believe that giant viruses evolved independently by massive gene/size gain, exploring the phagocytic pathway of entry into amoebas. In response to gigantism, hosts developed mechanisms to evade these parasites.
Collapse
Affiliation(s)
- Rodrigo Araújo Lima Rodrigues
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Brasil (UFMG), Postal code 486, Belo Horizonte, Minas Gerais, Brazil
| | - Jônatas Santos Abrahão
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Brasil (UFMG), Postal code 486, Belo Horizonte, Minas Gerais, Brazil
| | - Betânia Paiva Drumond
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Brasil (UFMG), Postal code 486, Belo Horizonte, Minas Gerais, Brazil
| | - Erna Geessien Kroon
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Brasil (UFMG), Postal code 486, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
69
|
Aarão TLDS, de Sousa JR, Botelho BS, Fuzii HT, Quaresma JAS. Correlation between nerve growth factor and tissue expression of IL-17 in leprosy. Microb Pathog 2015; 90:64-8. [PMID: 26616164 DOI: 10.1016/j.micpath.2015.11.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/11/2015] [Accepted: 11/19/2015] [Indexed: 11/15/2022]
Abstract
Leprosy is a serious public health problem in peripheral and developing countries. Leprosy is a chronic infectious-contagious disease caused by the intracellular, bacillus Mycobacterium leprae, which causes tissue damage and demyelination of peripheral nerves. Recent studies have demonstrated the participation of new subtype's cytokines profile in the inflammatory response of leprosy. Since nerve functions are affected by inflammatory response during the course of leprosy, changes in the production of NGF and its receptor (NGF R) may be directly associated with disability and sensory loss. Skin biopsies were collected and submitted to immunohistochemistry using specific antibodies to IL-17, NGF and NGF R. Quantitative analysis of NGF, NGFR and IL-17 immunostaining showed a significant difference between the clinical forms, with higher expression of NGF and NGFR in lepromatous leprosy and IL-17 in tuberculoid leprosy. The present study showed that IL-17, in addition to stimulating an inflammatory response, negatively regulates the action of NGF and NGF R in the polar forms of the disease.
Collapse
Affiliation(s)
| | | | - Beatriz Santos Botelho
- Centro de Ciencias Biologicas e da Saude, Universidade do Estado do Para, Belem, Para, Brazil
| | - Hellen Thais Fuzii
- Nucleo de Medicina Tropical, Universidade Federal do Para, Belem, Para, Brazil
| | - Juarez Antonio Simões Quaresma
- Centro de Ciencias Biologicas e da Saude, Universidade do Estado do Para, Belem, Para, Brazil; Nucleo de Medicina Tropical, Universidade Federal do Para, Belem, Para, Brazil.
| |
Collapse
|
70
|
Ablordey AS, Vandelannoote K, Frimpong IA, Ahortor EK, Amissah NA, Eddyani M, Durnez L, Portaels F, de Jong BC, Leirs H, Porter JL, Mangas KM, Lam MMC, Buultjens A, Seemann T, Tobias NJ, Stinear TP. Whole genome comparisons suggest random distribution of Mycobacterium ulcerans genotypes in a Buruli ulcer endemic region of Ghana. PLoS Negl Trop Dis 2015; 9:e0003681. [PMID: 25826332 PMCID: PMC4380315 DOI: 10.1371/journal.pntd.0003681] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 03/06/2015] [Indexed: 12/01/2022] Open
Abstract
Efforts to control the spread of Buruli ulcer – an emerging ulcerative skin infection caused by Mycobacterium ulcerans - have been hampered by our poor understanding of reservoirs and transmission. To help address this issue, we compared whole genomes from 18 clinical M. ulcerans isolates from a 30km2 region within the Asante Akim North District, Ashanti region, Ghana, with 15 other M. ulcerans isolates from elsewhere in Ghana and the surrounding countries of Ivory Coast, Togo, Benin and Nigeria. Contrary to our expectations of finding minor DNA sequence variations among isolates representing a single M. ulcerans circulating genotype, we found instead two distinct genotypes. One genotype was closely related to isolates from neighbouring regions of Amansie West and Densu, consistent with the predicted local endemic clone, but the second genotype (separated by 138 single nucleotide polymorphisms [SNPs] from other Ghanaian strains) most closely matched M. ulcerans from Nigeria, suggesting another introduction of M. ulcerans to Ghana, perhaps from that country. Both the exotic genotype and the local Ghanaian genotype displayed highly restricted intra-strain genetic variation, with less than 50 SNP differences across a 5.2Mbp core genome within each genotype. Interestingly, there was no discernible spatial clustering of genotypes at the local village scale. Interviews revealed no obvious epidemiological links among BU patients who had been infected with identical M. ulcerans genotypes but lived in geographically separate villages. We conclude that M. ulcerans is spread widely across the region, with multiple genotypes present in any one area. These data give us new perspectives on the behaviour of possible reservoirs and subsequent transmission mechanisms of M. ulcerans. These observations also show for the first time that M. ulcerans can be mobilized, introduced to a new area and then spread within a population. Potential reservoirs of M. ulcerans thus might include humans, or perhaps M. ulcerans-infected animals such as livestock that move regularly between countries. In this study we use the power of whole genome sequence comparisons to track the spread of Mycobacterium ulcerans, the causative agent of Buruli ulcer, through several villages in the Ashanti region of Ghana, providing new insights on the behaviour of this enigmatic and emerging pathogen.
Collapse
Affiliation(s)
- Anthony S. Ablordey
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- * E-mail: (ASA); (TPS)
| | - Koen Vandelannoote
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Isaac A. Frimpong
- Department of Animal Biology and Conservation Science, University of Ghana, Accra, Ghana
| | - Evans K. Ahortor
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Nana Ama Amissah
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Miriam Eddyani
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Lies Durnez
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Françoise Portaels
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Bouke C. de Jong
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Herwig Leirs
- Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Jessica L. Porter
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia
| | - Kirstie M. Mangas
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia
| | - Margaret M. C. Lam
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia
| | - Andrew Buultjens
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia
| | - Torsten Seemann
- Life Sciences Computation Centre, Victorian Life Sciences Computation Initiative, Carlton, Victoria, Australia
| | - Nicholas J. Tobias
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia
- * E-mail: (ASA); (TPS)
| |
Collapse
|