51
|
Jurczak A, Delay L, Barbier J, Simon N, Krock E, Sandor K, Agalave NM, Rudjito R, Wigerblad G, Rogóż K, Briat A, Miot-Noirault E, Martinez-Martinez A, Brömme D, Grönwall C, Malmström V, Klareskog L, Khoury S, Ferreira T, Labrum B, Deval E, Jiménez-Andrade JM, Marchand F, Svensson CI. Antibody-induced pain-like behavior and bone erosion: links to subclinical inflammation, osteoclast activity, and acid-sensing ion channel 3-dependent sensitization. Pain 2022; 163:1542-1559. [PMID: 34924556 PMCID: PMC9341234 DOI: 10.1097/j.pain.0000000000002543] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 11/27/2022]
Abstract
ABSTRACT Several bone conditions, eg, bone cancer, osteoporosis, and rheumatoid arthritis (RA), are associated with a risk of developing persistent pain. Increased osteoclast activity is often the hallmark of these bony pathologies and not only leads to bone remodeling but is also a source of pronociceptive factors that sensitize the bone-innervating nociceptors. Although historically bone loss in RA has been believed to be a consequence of inflammation, both bone erosion and pain can occur years before the symptom onset. Here, we have addressed the disconnection between inflammation, pain, and bone erosion by using a combination of 2 monoclonal antibodies isolated from B cells of patients with RA. We have found that mice injected with B02/B09 monoclonal antibodies (mAbs) developed a long-lasting mechanical hypersensitivity that was accompanied by bone erosion in the absence of joint edema or synovitis. Intriguingly, we have noted a lack of analgesic effect of naproxen and a moderate elevation of few inflammatory factors in the ankle joints suggesting that B02/B09-induced pain-like behavior does not depend on inflammatory processes. By contrast, we found that inhibiting osteoclast activity and acid-sensing ion channel 3 signaling prevented the development of B02/B09-mediated mechanical hypersensitivity. Moreover, we have identified secretory phospholipase A2 and lysophosphatidylcholine 16:0 as critical components of B02/B09-induced pain-like behavior and shown that treatment with a secretory phospholipase A2 inhibitor reversed B02/B09-induced mechanical hypersensitivity and bone erosion. Taken together, our study suggests a potential link between bone erosion and pain in a state of subclinical inflammation and offers a step forward in understanding the mechanisms of bone pain in diseases such as RA.
Collapse
Affiliation(s)
- Alexandra Jurczak
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lauriane Delay
- Université Clermont Auvergne, Inserm U1107 Neuro-Dol, Pharmacologie Fondamentale et Clinique de la Douleur, Clermont-Ferrand, France
| | - Julie Barbier
- Université Clermont Auvergne, Inserm U1107 Neuro-Dol, Pharmacologie Fondamentale et Clinique de la Douleur, Clermont-Ferrand, France
| | - Nils Simon
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Emerson Krock
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Katalin Sandor
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Nilesh M. Agalave
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Resti Rudjito
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gustaf Wigerblad
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Katarzyna Rogóż
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Arnaud Briat
- Université Clermont Auvergne, Inserm UMR 1240, IMoST, Imagerie Moléculaire et Stratégies Théranostiques, Clermont-Ferrand, France
| | - Elisabeth Miot-Noirault
- Université Clermont Auvergne, Inserm UMR 1240, IMoST, Imagerie Moléculaire et Stratégies Théranostiques, Clermont-Ferrand, France
| | - Arisai Martinez-Martinez
- Unidad Academica Multidisciplinaria Reynosa Aztlan, Universidad Autonoma de Tamaulipas, Reynosa, Tamaulipas, Mexico
| | - Dieter Brömme
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Caroline Grönwall
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Vivianne Malmström
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Klareskog
- Department of Medicine, Division of Rheumatology, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Spiro Khoury
- Lipotoxicity and Channelopathies (LiTch)—ConicMeds, Université de Poitiers, Poitiers, France
| | - Thierry Ferreira
- Lipotoxicity and Channelopathies (LiTch)—ConicMeds, Université de Poitiers, Poitiers, France
| | - Bonnie Labrum
- Université Côte d’Azur, CNRS, IPMC, LabEx ICST, FHU InovPain, France
| | - Emmanuel Deval
- Université Côte d’Azur, CNRS, IPMC, LabEx ICST, FHU InovPain, France
| | - Juan Miguel Jiménez-Andrade
- Unidad Academica Multidisciplinaria Reynosa Aztlan, Universidad Autonoma de Tamaulipas, Reynosa, Tamaulipas, Mexico
| | - Fabien Marchand
- Université Clermont Auvergne, Inserm U1107 Neuro-Dol, Pharmacologie Fondamentale et Clinique de la Douleur, Clermont-Ferrand, France
| | - Camilla I. Svensson
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
52
|
Liang Z, Wang N, Shang L, Wang Y, Feng M, Liu G, Gao C, Luo J. Evaluation of the immune feature of ACPA-negative rheumatoid arthritis and the clinical value of matrix metalloproteinase-3. Front Immunol 2022; 13:939265. [PMID: 35967336 PMCID: PMC9363571 DOI: 10.3389/fimmu.2022.939265] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Anti-citrullinated protein antibodies (ACPAs) are highly specific for the diagnosis of rheumatoid arthritis (RA). However, about one-third of RA patients are negative for ACPAs, which presents a challenge to the early diagnosis of RA. The purpose of this study was to analyze differences in lymphocyte subsets and CD4+ T cell subsets between ACPA+ and ACPA- RA patients, and to evaluate the value of matrix metalloproteinase-3 (MMP-3) as a diagnostic and monitoring marker in ACA- RA patients. A total of 145 ACPA+ RA patients, 145 ACPA- RA patients, and 38 healthy controls (HCs) were included in this study. Peripheral lymphocyte subsets were detected using flow cytometry, and serum MMP-3 was detected using chemiluminescence. Information about joint symptoms, other organ involvement, and related inflammatory markers was also collected. The results showed that, compared to ACPA- RA patients, ACPA+ cases had greater imbalances between peripheral CD4+ T cell subsets, mainly manifested as an increase in T-helper 1 (Th1) cells (p < 0.001) and decrease in regulatory T (Treg) cells (p = 0.029). This makes these patients more prone to inflammatory reactions and joint erosion. MMP-3 levels in ACPA+ and ACPA- RA patients were significantly higher than in HCs (p < 0.001), and MMP-3 could effectively distinguish between ACPA- RA patients and HCs (area under the curve [AUC] = 0.930, sensitivity 84.14%, specificity 92.11%). MMP-3 was also a serum marker for distinguishing between RA patients with low and high disease activities. Further analysis showed that MMP-3 was positively correlated with the levels of inflammatory markers and disease activity, and negatively correlated with the levels of lymphocyte subsets. In addition, with improvements in the disease, MMP-3 levels decreased, and further increased as the patients started to deteriorate. In summary, our research showed that there was a mild imbalance between peripheral CD4+ T cell subsets in ACPA- RA patients. MMP-3 may be used as a potential marker for early diagnosis of ACPA- RA. MMP-3 was an important index for RA disease evaluation, disease activity stratification, and prognosis.
Collapse
Affiliation(s)
- Zhaojun Liang
- Division of Rheumatology, Department of Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, China
| | - Nan Wang
- Division of Rheumatology, Department of Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, China
| | - Lili Shang
- Division of Rheumatology, Department of Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, China
| | - Yanlin Wang
- Division of Rheumatology, Department of Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, China
| | - Min Feng
- Division of Rheumatology, Department of Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, China
| | - Guangying Liu
- Division of Rheumatology, Department of Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chong Gao
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Jing Luo
- Division of Rheumatology, Department of Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory for Immunomicroecology, Taiyuan, China
- *Correspondence: Jing Luo,
| |
Collapse
|
53
|
Kowalski EN, Qian G, Vanni KMM, Sparks JA. A Roadmap for Investigating Preclinical Autoimmunity Using Patient-Oriented and Epidemiologic Study Designs: Example of Rheumatoid Arthritis. Front Immunol 2022; 13:890996. [PMID: 35693829 PMCID: PMC9175569 DOI: 10.3389/fimmu.2022.890996] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/26/2022] [Indexed: 11/26/2022] Open
Abstract
Background & Aims Rheumatoid arthritis (RA) is a prototypic autoimmune disease causing inflammatory polyarthritis that affects nearly 1% of the population. RA can lead to joint destruction and disability along with increased morbidity and mortality. Similar to other autoimmune diseases, RA has distinct preclinical phases corresponding to genetic risk, lifestyle risk factors, autoantibody development, and non-specific symptoms prior to clinical diagnosis. This narrative review will detail observational studies for RA risk and clinical trials for RA prevention as a roadmap to investigating preclinical autoimmunity that could be applied to other diseases. Methods In this narrative review, we summarized previous and ongoing research studies investigating RA risk and prevention, categorizing them related to their design and preclinical phases. Results We detailed the following types of studies investigating RA risk and prevention: retrospective population-based and administrative datasets; prospective studies (case-control and cohort; some enrolling based on genetics, first-degree relative status, elevated biomarkers, or early symptoms/arthritis); and randomized clinical trials. These correspond to all preclinical RA phases (genetic, lifestyle, autoimmunity, early signs/symptoms). Previous and ongoing randomized controlled trials have enrolled individuals at very elevated risk for RA based on biomarkers, symptoms, imaging abnormalities, or early signs/symptoms. Conclusion We detailed the rich variety of study designs that is necessary to investigate distinct preclinical phases of an autoimmune disease such as RA. However, further progress is needed to fully elucidate the pathogenesis of RA that may ultimately lead to prevention or delay of disease onset.
Collapse
Affiliation(s)
- Emily N Kowalski
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA, United States
| | - Grace Qian
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA, United States
| | - Kathleen M M Vanni
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA, United States
| | - Jeffrey A Sparks
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA, United States.,Department of Medicine, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
54
|
From risk to chronicity: evolution of autoreactive B cell and antibody responses in rheumatoid arthritis. Nat Rev Rheumatol 2022; 18:371-383. [PMID: 35606567 DOI: 10.1038/s41584-022-00786-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2022] [Indexed: 02/07/2023]
Abstract
The presence of disease-specific autoantibody responses and the efficacy of B cell-targeting therapies in rheumatoid arthritis (RA) indicate a pivotal role for B cells in disease pathogenesis. Important advances have shaped our understanding of the involvement of autoantibodies and autoreactive B cells in the disease process. In RA, autoantibodies target antigens with a variety of post-translational modifications such as carbamylation, acetylation and citrullination. B cell responses against citrullinated antigens generate anti-citrullinated protein antibodies (ACPAs), which are themselves modified in the variable domains by abundant N-linked glycans. Insights into the induction of autoreactive B cells against antigens with post-translational modifications and the development of autoantibody features such as isotype usage, epitope recognition, avidity and glycosylation reveal their relationship to particular RA risk factors and clinical phenotypes. Glycosylation of the ACPA variable domain, for example, seems to predict RA onset in ACPA+ healthy individuals, possibly because it affects B cell receptor signalling. Moreover, ACPA-expressing B cells show dynamic phenotypic changes and develop a continuously proliferative and activated phenotype that can persist in patients who are in drug-induced clinical remission. Together, these findings can be integrated into a conceptual framework of immunological autoreactivity in RA, delineating how it develops and persists and why disease activity recurs when therapy is tapered or stopped.
Collapse
|
55
|
Akama-Garren EH, Carroll MC. T Cell Help in the Autoreactive Germinal Center. Scand J Immunol 2022; 95:e13192. [PMID: 35587582 DOI: 10.1111/sji.13192] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/29/2022]
Abstract
The germinal center serves as a site of B cell selection and affinity maturation, critical processes for productive adaptive immunity. In autoimmune disease tolerance is broken in the germinal center reaction, leading to production of autoreactive B cells that may propagate disease. Follicular T cells are crucial regulators of this process, providing signals necessary for B cell survival in the germinal center. Here we review the emerging roles of follicular T cells in the autoreactive germinal center. Recent advances in immunological techniques have allowed study of the gene expression profiles and repertoire of follicular T cells at unprecedented resolution. These studies provide insight into the potential role follicular T cells play in preventing or facilitating germinal center loss of tolerance. Improved understanding of the mechanisms of T cell help in autoreactive germinal centers provides novel therapeutic targets for diseases of germinal center dysfunction.
Collapse
Affiliation(s)
- Elliot H Akama-Garren
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Harvard-MIT Health Sciences and Technology, Harvard Medical School, Boston, MA, USA
| | - Michael C Carroll
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
56
|
Abstract
Background: Rheumatoid arthritis (RA) is a highly prevalent, chronic inflammatory condition of the synovial joints that affects approximately 1% of the global population. The pathogenesis of RA is predominantly inflammatory in nature, thereby accelerating the co-occurrence of other immunoinflammatory conditions such as atherosclerosis. Apart from traditional cardiovascular risk factors, RA patients possess a multitude of other factors that predispose them to early atherosclerotic disease. The aim of this systematic review is to assess the prevalence of premature atherosclerosis in RA patients and elucidate the role that proinflammatory cytokines, RA-related autoantibodies, and endothelial dysfunction play in the pathophysiology of RA-mediated atherosclerosis. We also discussed novel biomarkers that can be used to predict early atherosclerosis in RA and current guidelines used to treat RA. Methods: This review followed the PRISMA guidelines to select and analyze relevant articles. A literature search for articles was performed on February 25, 2022, through three research databases including PubMed, ProQuest, and ScienceDirect. The query used to identify relevant publications was "Rheumatoid arthritis and atherosclerosis" and the search duration was set from 2012-2022. Relevant articles were selected based on the inclusion and exclusion criteria. Results: Our initial search generated 21,235 articles. We narrowed our search according to the inclusion and exclusion criteria. After assessing eligibility based on the full content of the articles, 73 articles were ultimately chosen for this review. Conclusion: There is an increased prevalence of accelerated atherosclerosis among RA patients. We found evidence to explain the role of proinflammatory cytokines, RA-related autoantibodies, and endothelial dysfunction in the pathophysiology RA-mediated atherosclerosis. Therapies targeting either the inflammatory load or traditional CV risk-factors seem to improve vascular outcomes in RA patients. Novel markers of atherosclerosis in RA may be useful in predicting premature atherosclerosis and serve as new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Rhea Raj
- St. George's University School of medicine, True Blue, St. George's, Grenada
| | - Sneha Thomas
- University of Maryland Medical Center MTC, Midtown, Baltimore, USA
| | - Vasavi Gorantla
- St. George's University School of medicine, True Blue, St. George's, Grenada
| |
Collapse
|
57
|
Thirugnanasambandham I, Radhakrishnan A, Kuppusamy G, Kumar Singh S, Dua K. PEPTIDYLARGININE DEIMINASE-4: MEDICO-FORMULATIVE STRATEGY TOWARDS MANAGEMENT OF RHEUMATOID ARTHRITIS. Biochem Pharmacol 2022; 200:115040. [DOI: 10.1016/j.bcp.2022.115040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 12/15/2022]
|
58
|
Jabado O, Maldonado MA, Schiff M, Weinblatt ME, Fleischmann R, Robinson WH, He A, Patel V, Greenfield A, Saini J, Galbraith D, Connolly SE. Differential Changes in ACPA Fine Specificity and Gene Expression in a Randomized Trial of Abatacept and Adalimumab in Rheumatoid Arthritis. Rheumatol Ther 2022; 9:391-409. [PMID: 34878629 PMCID: PMC8964842 DOI: 10.1007/s40744-021-00404-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/17/2021] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION The biologics abatacept and adalimumab have different mechanisms of action (MoAs). We analyzed data from patients with rheumatoid arthritis treated in AMPLE (NCT00929864) to explore the pharmacodynamic effects of abatacept or adalimumab on anti-citrullinated protein antibodies (ACPAs) and gene expression. METHODS AMPLE was a phase IIIb, 2-year, randomized, head-to-head trial of abatacept versus adalimumab. Post hoc analyses of baseline anti-cyclic citrullinated peptide-2 (anti-CCP2, an ACPA surrogate) positive (+) status and ACPA fine-specificity profiles over time, as well as transcriptional profiling (peripheral whole blood), were performed. RESULTS Of 646 patients treated (abatacept, n = 318; adalimumab, n = 328), ACPA and gene expression data were available from 508 and 566 patients, respectively. In anti-CCP2+ patients (n = 388), baseline fine specificities for most ACPAs were highly correlated; over 2 years, levels decreased with abatacept but not adalimumab. By year 2, expression of genes associated with T cell co-stimulation and antibody production was lower for abatacept versus adalimumab; expression of genes associated with proinflammatory signaling was lower for adalimumab versus abatacept. Treatment modulated the expression of T- and B-cell gene signatures, with differences in CD8+ T cells, activated T cells, plasma cells, B cells, natural killer cells (all lower with abatacept versus adalimumab), and polymorphonuclear leukocytes (higher with abatacept versus adalimumab). CONCLUSIONS In AMPLE, despite similar clinical outcomes, data showed that pharmacodynamic/genetic changes after 2 years of abatacept or adalimumab were consistent with drug MoAs. Further assessment of the relationship between such changes and clinical outcomes, including prediction of response, is warranted. TRIAL REGISTRATION ClinicalTrials.gov identifier, NCT00929864.
Collapse
Affiliation(s)
| | | | | | | | - Roy Fleischmann
- Metroplex Clinical Research Center and University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Aiqing He
- Bristol Myers Squibb, Princeton, NJ, USA
| | | | | | | | | | - Sean E Connolly
- Bristol Myers Squibb, B4290 3401 Princeton Pike, Lawrenceville, NJ, 08648, USA.
| |
Collapse
|
59
|
Studenic P, Hensvold A, Kleyer A, van der Helm-van Mil A, Pratt AG, Sieghart D, Krönke G, Williams R, de Souza S, Karlfeldt S, Johannesson M, Krogh NS, Klareskog L, Catrina AI. Prospective Studies on the Risk of Rheumatoid Arthritis: The European Risk RA Registry. Front Med (Lausanne) 2022; 9:824501. [PMID: 35273981 PMCID: PMC8901993 DOI: 10.3389/fmed.2022.824501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/28/2022] [Indexed: 12/14/2022] Open
Abstract
Background The accumulation of risk for the development of rheumatoid arthritis (RA) is regarded as a continuum that may start with interacting environmental and genetic factors, proceed with the initiation of autoimmunity, and result in the formation of autoantibodies such as anti-citrullinated peptide antibodies (ACPA). In parallel, at-risk individuals may be asymptomatic or experience joint pain (arthralgia) that is itself non-specific or clinically suspicious for evolving RA, even in the absence of overt arthritis. Optimal strategies for the management of people at-risk of RA, both for symptom control and to delay or prevent progression to classifiable disease, remain poorly understood. Methods To help address this, groups of stakeholders from academia, clinical rheumatology, industry and patient research partners have collaborated to advance understanding, define and study different phases of the at-risk state. In this current report we describe different European initiatives in the field and the successful effort to build a European Registry of at-risk people to facilitate observational and interventional research. Results We outline similarities and differences between cohorts of at-risk individuals at institutions spanning several countries, and how to best combine them within the new database. Over the past 2 years, besides building the technical infrastructure, we have agreed on a core set of variables that all partners should strive to collect for harmonization purposes. Conclusion We emphasize to address this process from different angles and touch on the biologic, epidemiologic, analytic, and regulatory aspects of collaborative studies within a meta-database of people at-risk of RA.
Collapse
Affiliation(s)
- Paul Studenic
- Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, Stockholm, Sweden.,Department of Internal Medicine 3, Division of Rheumatology, Medical University of Vienna, Vienna, Austria
| | - Aase Hensvold
- Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, Stockholm, Sweden.,Academic Specialist Centre-Stockholm Health Care Services, Centre for Rheumatology, Stockholm, Sweden
| | - Arnd Kleyer
- Universitätsklinikum Erlangen, Deutsches Zentrum Immuntherapie, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany.,Department of Internal Medicine 3 - Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Annette van der Helm-van Mil
- Department of Rheumatology, Leids Universitair Medisch Centrum, Leiden, Netherlands.,Department of Rheumatology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Arthur G Pratt
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.,Musculoskeletal Services Directorate, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Daniela Sieghart
- Department of Internal Medicine 3, Division of Rheumatology, Medical University of Vienna, Vienna, Austria
| | - Gerhard Krönke
- Universitätsklinikum Erlangen, Deutsches Zentrum Immuntherapie, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany.,Department of Internal Medicine 3 - Rheumatology and Immunology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Ruth Williams
- Centre for Rheumatic Diseases, King's College London, London, United Kingdom
| | - Savia de Souza
- Centre for Rheumatic Diseases, King's College London, London, United Kingdom
| | - Susanne Karlfeldt
- Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, Stockholm, Sweden.,Academic Specialist Centre-Stockholm Health Care Services, Centre for Rheumatology, Stockholm, Sweden
| | - Martina Johannesson
- Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, Stockholm, Sweden
| | | | - Lars Klareskog
- Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, Stockholm, Sweden.,Rheumatology Section, Theme Inflammation and Infection, Karolinska University Hospital, Stockholm, Sweden
| | - Anca I Catrina
- Department of Medicine Solna, Division of Rheumatology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
60
|
Abstract
Rheumatoid arthritis (RA) is currently diagnosed and treated once an individual displays the clinical findings of inflammatory arthritis (IA). However, growing evidence supports that there is a 'pre-RA' stage that can be identified through factors such as autoantibodies in absence of clinically apparent IA. In particular, biomarkers, including antibodies to citrullinated protein antigens (ACPA), demonstrate a high risk for future IA/RA, and multiple clinical trials have been developed to intervene in individuals in pre-RA to prevent or delay clinically apparent disease. Herein, we will discuss in more depth what is currently known about the natural history of RA, and the emerging possibility that early 'diagnosis' of RA-related autoimmunity followed by an intervention can lead to the delay or prevention of the first onset of clinically apparent RA.
Collapse
|
61
|
Sandhu G, Thelma BK. New Druggable Targets for Rheumatoid Arthritis Based on Insights From Synovial Biology. Front Immunol 2022; 13:834247. [PMID: 35265082 PMCID: PMC8899708 DOI: 10.3389/fimmu.2022.834247] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/31/2022] [Indexed: 12/19/2022] Open
Abstract
Rheumatoid arthritis (RA) is a multifactorial autoimmune disease characterized by chronic inflammation and destruction of multiple small joints which may lead to systemic complications. Altered immunity via pathogenic autoantibodies pre-date clinical symptom development by several years. Incompletely understood range of mechanisms trigger joint-homing, leading to clinically evident articular disease. Advances in therapeutic approaches and understanding pathogenesis have improved prognosis and likely remission. However, partial/non-response to conventional and biologic therapies witnessed in a subset of patients highlights the need for new therapeutics. It is now evident that joint disease chronicity stems from recalcitrant inflammatory synovial environment, majorly maintained by epigenetically and metabolically reprogrammed synoviocytes. Therefore, interference with effector functions of activated cell types seems a rational strategy to reinstate synovial homeostasis and complement existing anti-inflammatory interventions to mitigate chronic RA. Presenting this newer aspect of fibroblast-like synoviocytes and myeloid cells underlying the altered synovial biology in RA and its potential for identification of new druggable targets is attempted in this review. Major leads from i) molecular insights of pathogenic cell types from hypothesis free OMICS approaches; ii) hierarchy of their dysregulated signaling pathways; and iii) knowledge of druggability of molecular nodes in these pathways are highlighted. Development of such synovial biology-directed therapeutics hold promise for an enriched drug repertoire for RA.
Collapse
Affiliation(s)
| | - B. K. Thelma
- Department of Genetics, University of Delhi, New Delhi, India
| |
Collapse
|
62
|
Oka S, Higuchi T, Furukawa H, Shimada K, Okamoto A, Hashimoto A, Komiya A, Saisho K, Yoshikawa N, Katayama M, Matsui T, Fukui N, Migita K, Tohma S. Serum rheumatoid factor IgA, anti-citrullinated peptide antibodies with secretory components, and anti-carbamylated protein antibodies associate with interstitial lung disease in rheumatoid arthritis. BMC Musculoskelet Disord 2022; 23:46. [PMID: 35027028 PMCID: PMC8756729 DOI: 10.1186/s12891-021-04985-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 12/22/2021] [Indexed: 11/21/2022] Open
Abstract
Objective Rheumatoid arthritis (RA) is often complicated with chronic lung diseases (CLD), including interstitial lung disease (ILD) and airway disease, which occur as extra-articular manifestations. CLD in RA have been associated with the production of rheumatoid factor (RF), anti-citrullinated peptide antibody (ACPA), or anti-carbamylated protein (CarP) antibody. However, few validation studies have been performed thus far. In the present study, we investigated the association of RF, ACPA, and anti-CarP antibodies with RA complicated with CLD. Methods Sera from RA patients with or without CLD were collected. The levels of serum RF, RF immunoglobulin A (IgA), ACPA IgG, ACPA IgA, and ACPA secretory component (SC) were measured using enzyme-linked immunosorbent assay. Results The comparison of RA patients with and without CLD showed that RF IgA was associated with ILD (mean ± standard deviation: 206.6 ± 400.5 vs. 95.0 ± 523.1 U/ml, respectively, P = 1.13 × 10− 8), particularly usual interstitial pneumonia (UIP) (263.5 ± 502.0 U/ml, P = 1.00 × 10− 7). ACPA SC was associated with RA complicated with ILD (mean ± standard deviation: 8.6 ± 25.1 vs. 2.3 ± 3.4 U/ml, respectively, P = 0.0003), particularly nonspecific interstitial pneumonia (NSIP) (10.7 ± 31.5 U/ml, P = 0.0017). Anti-CarP antibodies were associated with RA complicated with ILD (0.042 ± 0.285 vs. 0.003 ± 0.011 U/ml, respectively, P = 1.04X10− 11). Conclusion RF IgA and ACPA SC in RA were associated with UIP and NSIP, respectively, suggesting different specificities in patients with RA. Anti-CarP antibodies were associated with ILD in RA. These results may help elucidate the different pathogeneses of UIP and NSIP in RA. Supplementary Information The online version contains supplementary material available at 10.1186/s12891-021-04985-0.
Collapse
Affiliation(s)
- Shomi Oka
- Department of Rheumatology, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose, 204-8585, Japan.,Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, 18-1 Sakuradai, Minami-ku, Sagamihara, 252-0392, Japan
| | - Takashi Higuchi
- Department of Rheumatology, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose, 204-8585, Japan.,Department of Nephrology, Ushiku Aiwa General Hospital, 896 Shishiko-cho, Ushiku, 300-1296, Japan
| | - Hiroshi Furukawa
- Department of Rheumatology, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose, 204-8585, Japan. .,Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, 18-1 Sakuradai, Minami-ku, Sagamihara, 252-0392, Japan.
| | - Kota Shimada
- Department of Rheumatology, National Hospital Organization Sagamihara National Hospital, 18-1 Sakuradai, Minami-ku, Sagamihara, 252-0392, Japan.,Department of Rheumatic Diseases, Tokyo Metropolitan Tama Medical Center, 2-8-29 Musashi-dai, Fuchu, 183-8524, Japan
| | - Akira Okamoto
- Department of Rheumatology, National Hospital Organization Himeji Medical Center, 68 Hon-machi, Himeji, 670-8520, Japan
| | - Atsushi Hashimoto
- Department of Rheumatology, National Hospital Organization Sagamihara National Hospital, 18-1 Sakuradai, Minami-ku, Sagamihara, 252-0392, Japan.,Department of Internal Medicine, Sagami Seikyou Hospital, 6-2-11 Sagamiohno, Minami-ku, Sagamihara, 252-0303, Japan
| | - Akiko Komiya
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, 18-1 Sakuradai, Minami-ku, Sagamihara, 252-0392, Japan.,Department of Clinical Laboratory, National Hospital Organization Sagamihara National Hospital, 18-1 Sakuradai, Minami-ku, Sagamihara, 252-0392, Japan
| | - Koichiro Saisho
- Department of Orthopedics/Rheumatology, National Hospital Organization Miyakonojo Medical Center, 5033-1 Iwayoshi-cho, Miyakonojo, 885-0014, Japan.,Tanimura Hospital, 10-2 Kitakoji, Nobeoka, 882-0041, Japan
| | - Norie Yoshikawa
- Department of Orthopedics/Rheumatology, National Hospital Organization Miyakonojo Medical Center, 5033-1 Iwayoshi-cho, Miyakonojo, 885-0014, Japan
| | - Masao Katayama
- Department of Internal Medicine, National Hospital Organization Nagoya Medical Center, 4-1-1 Sannomaru, Naka-ku, Nagoya, 460-0001, Japan
| | - Toshihiro Matsui
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, 18-1 Sakuradai, Minami-ku, Sagamihara, 252-0392, Japan.,Department of Rheumatology, National Hospital Organization Sagamihara National Hospital, 18-1 Sakuradai, Minami-ku, Sagamihara, 252-0392, Japan
| | - Naoshi Fukui
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, 18-1 Sakuradai, Minami-ku, Sagamihara, 252-0392, Japan
| | - Kiyoshi Migita
- Clinical Research Center, National Hospital Organization Nagasaki Medical Center, 2-1001-1 Kubara, Omura, 856-8562, Japan.,Department of Gastroenterology and Rheumatology, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Shigeto Tohma
- Department of Rheumatology, National Hospital Organization Tokyo National Hospital, 3-1-1 Takeoka, Kiyose, 204-8585, Japan.,Clinical Research Center for Allergy and Rheumatology, National Hospital Organization Sagamihara National Hospital, 18-1 Sakuradai, Minami-ku, Sagamihara, 252-0392, Japan
| |
Collapse
|
63
|
El Shikh MEM, El Sayed R, Aly NAR, Prediletto E, Hands R, Fossati-Jimack L, Bombardieri M, Lewis MJ, Pitzalis C. Follicular dendritic cell differentiation is associated with distinct synovial pathotype signatures in rheumatoid arthritis. Front Med (Lausanne) 2022; 9:1013660. [PMID: 36465908 PMCID: PMC9709129 DOI: 10.3389/fmed.2022.1013660] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
Follicular dendritic cells (FDCs) fundamentally contribute to the formation of synovial ectopic lymphoid-like structures in rheumatoid arthritis (RA) which is associated with poor clinical prognosis. Despite this critical role, regulation of FDC development in the RA synovium and its correlation with synovial pathotype differentiation remained largely unknown. Here, we demonstrate that CNA.42+ FDCs distinctively express the pericyte/fibroblast-associated markers PDGFR-β, NG2, and Thy-1 in the synovial perivascular space but not in established follicles. In addition, synovial RNA-Seq analysis revealed that expression of the perivascular FDC markers was strongly correlated with PDGF-BB and fibroid synovitis, whereas TNF-α/LT-β was significantly associated with lymphoid synovitis and expression of CR1, CR2, and FcγRIIB characteristic of mature FDCs in lymphoid follicles. Moreover, PDGF-BB induced CNA.42+ FDC differentiation and CXCL13 secretion from NG2+ synovial pericytes, and together with TNF-α/LT-β conversely regulated early and late FDC differentiation genes in unsorted RA synovial fibroblasts (RASF) and this was confirmed in flow sorted stromal cell subsets. Furthermore, RASF TNF-αR expression was upregulated by TNF-α/LT-β and PDGF-BB; and TNF-α/LT-β-activated RASF retained ICs and induced B cell activation in in vitro germinal center reactions typical of FDCs. Additionally, FDCs trapped peptidyl citrulline, and strongly correlated with IL-6 expression, and plasma cell, B cell, and T cell infiltration of the RA synovium. Moreover, synovial FDCs were significantly associated with RA disease activity and radiographic features of tissue damage. To the best of our knowledge, this is the first report describing the reciprocal interaction between PDGF-BB and TNF-α/LT-β in synovial FDC development and evolution of RA histological pathotypes. Selective targeting of this interplay could inhibit FDC differentiation and potentially ameliorate RA in clinically severe and drug-resistant patients.
Collapse
|
64
|
Sokolova MV, Schett G, Steffen U. Autoantibodies in Rheumatoid Arthritis: Historical Background and Novel Findings. Clin Rev Allergy Immunol 2022; 63:138-151. [PMID: 34495490 PMCID: PMC9464122 DOI: 10.1007/s12016-021-08890-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 01/13/2023]
Abstract
Autoantibodies represent a hallmark of rheumatoid arthritis (RA), with the rheumatoid factor (RF) and antibodies against citrullinated proteins (ACPA) being the most acknowledged ones. RA patients who are positive for RF and/or ACPA ("seropositive") in general display a different etiology and disease course compared to so-called "seronegative" patients. Still, the seronegative patient population is very heterogeneous and not well characterized. Due to the identification of new autoantibodies and advancements in the diagnosis of rheumatic diseases in the last years, the group of seronegative patients is constantly shrinking. Aside from antibodies towards various post-translational modifications, recent studies describe autoantibodies targeting some native proteins, further broadening the spectrum of recognized antigens. Next to the detection of new autoantibody groups, much research has been done to answer the question if and how autoantibodies contribute to the pathogenesis of RA. Since autoantibodies can be detected years prior to RA onset, it is a matter of debate whether their presence alone is sufficient to trigger the disease. Nevertheless, there is gathering evidence of direct autoantibody effector functions, such as stimulation of osteoclastogenesis and synovial fibroblast migration in in vitro experiments. In addition, autoantibody positive patients display a worse clinical course and stronger radiographic progression. In this review, we discuss current findings regarding different autoantibody types, the underlying disease-driving mechanisms, the role of Fab and Fc glycosylation and clinical implications.
Collapse
Affiliation(s)
- Maria V. Sokolova
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Universitätstrasse 25a, 91054 Erlangen, Germany ,Deutsches Zentrum Für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Universitätstrasse 25a, 91054 Erlangen, Germany ,Deutsches Zentrum Für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ulrike Steffen
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Universitätstrasse 25a, 91054 Erlangen, Germany ,Deutsches Zentrum Für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
65
|
Volkov M, Kampstra ASB, van Schie KA, Kawakami A, Tamai M, Kawashiri S, Maeda T, Huizinga TWJ, Toes REM, van der Woude D. Evolution of anti-modified protein antibody responses can be driven by consecutive exposure to different post-translational modifications. Arthritis Res Ther 2021; 23:298. [PMID: 34876234 PMCID: PMC8653599 DOI: 10.1186/s13075-021-02687-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 11/28/2021] [Indexed: 11/22/2022] Open
Abstract
Background Besides anti-citrullinated protein antibodies (ACPA), rheumatoid arthritis patients (RA) often display autoantibody reactivities against other post-translationally modified (PTM) proteins, more specifically carbamylated and acetylated proteins. Immunizing mice with one particular PTM results in an anti-modified protein antibody (AMPA) response recognizing different PTM-antigens. Furthermore, human AMPA, isolated based on their reactivity to one PTM, cross-react with other PTMs. However, it is unclear whether the AMPA-reactivity profile is “fixed” in time or whether consecutive exposure to different PTMs can shape the evolving AMPA response towards a particular PTM. Methods Longitudinally collected serum samples of 8 human individuals at risk of RA and 5 with early RA were tested with ELISA, and titers were analyzed to investigate the evolution of the AMPA responses over time. Mice (13 per immunization group in total) were immunized with acetylated (or carbamylated) protein (ovalbumin) twice or cross-immunized with an acetylated and then a carbamylated protein (or vice versa) and their serum was analyzed for AMPA responses. Results Human data illustrated dynamic changes in AMPA-reactivity profiles in both individuals at risk of RA and in early RA patients. Mice immunized with either solely acetylated or carbamylated ovalbumin (AcOVA or CaOVA) developed reactivity against both acetylated and carbamylated antigens. Irrespective of the PTM-antigen used for the first immunization, a booster immunization with an antigen bearing the other PTM resulted in increased titers to the second/booster PTM. Furthermore, cross-immunization skewed the overall AMPA-response profile towards a relatively higher reactivity against the “booster” PTM. Conclusions The relationship between different reactivities within the AMPA response is dynamic. The initial exposure to a PTM-antigen induces cross-reactive responses that can be boosted by an antigen bearing this or other PTMs, indicating the formation of cross-reactive immunological memory. Upon subsequent exposure to an antigen bearing another type of PTM, the overall reactivity pattern can be skewed towards better recognition of the later encountered PTM. These data might explain temporal differences in the AMPA-response profile and point to the possibility that the PTM responsible for the initiation of the AMPA response may differ from the PTM predominantly recognized later in time. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-021-02687-5.
Collapse
Affiliation(s)
- M Volkov
- Department of Rheumatology, Leiden University Medical Center, PO Box 9600, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
| | - A S B Kampstra
- Department of Rheumatology, Leiden University Medical Center, PO Box 9600, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - K A van Schie
- Department of Rheumatology, Leiden University Medical Center, PO Box 9600, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - A Kawakami
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - M Tamai
- Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - S Kawashiri
- Department of Community Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - T Maeda
- Department of General Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - T W J Huizinga
- Department of Rheumatology, Leiden University Medical Center, PO Box 9600, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - R E M Toes
- Department of Rheumatology, Leiden University Medical Center, PO Box 9600, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - D van der Woude
- Department of Rheumatology, Leiden University Medical Center, PO Box 9600, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| |
Collapse
|
66
|
He J, Ju J, Wang X. The current status of anti-citrullinated protein antibodies and citrullinated protein-reactive B cells in the pathogenesis of rheumatoid arthritis. Mol Biol Rep 2021; 49:2475-2485. [PMID: 34855107 DOI: 10.1007/s11033-021-07034-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/26/2021] [Indexed: 11/26/2022]
Abstract
Anti-citrullinated protein antibodies are a hallmark of rheumatoid arthritis. It is widely acknowledged that the presence of ACPAs is the result of the interaction of genes, the environment and epigenetic modifications. The mechanism by which the factors, especially citrullination and ACPA glycosylation, affect ACPAs is still unclear. In this article, we review the presence of the ACPAs in RA and their relationship with clinical manifestations. The pathogenicity of ACPAs and B cells in RA was also summarized. A growing body of evidence has shown that ACPA-positive patients have more serious bone erosion and destruction and poor clinical prognosis than ACPA-negative patients. Recently, with the direct study of citrullinated protein-reactive B cells, their role in the development of rheumatoid arthritis has been further understood. It indicates that further understanding of the mechanism of ACPAs and CP-reactive B cells would beneficial in the prevention and treatment of RA.
Collapse
Affiliation(s)
- Jia He
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - JiYu Ju
- Department of Immunology, Weifang Medical University, Weifang, China
| | - XiaoDong Wang
- Department of Rheumatology and Immunology, Affiliated Hospital of Weifang Medical University, Weifang, China.
| |
Collapse
|
67
|
Ghosh N, Tiongson MD, Stewart C, Chan KK, Jivanelli B, Cappelli L, Bass AR. Checkpoint Inhibitor-Associated Arthritis: A Systematic Review of Case Reports and Case Series. J Clin Rheumatol 2021; 27:e317-e322. [PMID: 32345841 PMCID: PMC7606361 DOI: 10.1097/rhu.0000000000001370] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE We performed a systematic literature review to identify all reports of immune checkpoint inhibitor-associated inflammatory arthritis to describe it phenotypically and serologically. METHODS PubMed, Embase, and Cochrane databases were searched for reports of musculoskeletal immune-related adverse events secondary to ICI treatment. Publications were included if they provided individual patient level data regarding the pattern of joint involvement. Descriptive statistics were used to summarize results. RESULTS A total of 4339 articles were screened, of which 67 were included, encompassing 372 patients. The majority of patients had metastatic melanoma (57%), and they were treated with anti-PD1 or anti-PDL1 therapy (78%). Median time to onset of arthritis was 4 months (range, 1 day to 53 months). Forty-nine percent had polyarthritis, 17% oligoarthritis, 3% monoarthritis, 10% arthralgia, and 21% polymyalgia rheumatica. More than half of patients were described as having a "rheumatoid arthritis-like" presentation. Nine percent tested positive for rheumatoid factor or anti-cyclic citrullinated peptide antibodies. Seventy-four percent required corticosteroids, and 45% required additional medications. Sixty-three percent achieved arthritis control, and 32% were ultimately able to discontinue antirheumatic treatments. Immune checkpoint inhibitors were continued in 49%, transiently withheld in 11%, and permanently discontinued due to musculoskeletal immune-related adverse events in 13%. CONCLUSIONS Half of reported immune checkpoint inhibitor-associated arthritis cases present with polyarthritis (often RA-like), but only 9% are seropositive. Polymyalgia rheumatica is also common. Most patients respond to steroids alone, but about half require additional medications. Further studies are needed to determine long-term musculoskeletal outcomes in these patients, and the impact of arthritis treatment on cancer survival.
Collapse
Affiliation(s)
- Nilasha Ghosh
- Hospital for Special Surgery, New York, NY
- Weill Cornell Medicine, New York, NY
| | | | | | - Karmela K. Chan
- Hospital for Special Surgery, New York, NY
- Weill Cornell Medicine, New York, NY
| | | | - Laura Cappelli
- Johns Hopkins University School of Medicine, Baltimore, MD
| | - Anne R. Bass
- Hospital for Special Surgery, New York, NY
- Weill Cornell Medicine, New York, NY
| |
Collapse
|
68
|
Wiens D, Smolik I, Meng X, Anaparti V, El-Gabalawy HS, O'Neil LJ. Functional disability to evaluate the risk of arthritis in First-degree relatives of Rheumatoid Arthritis patients. J Rheumatol 2021; 49:244-250. [PMID: 34725176 DOI: 10.3899/jrheum.210614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVE The events that occur prior to the onset of rheumatoid arthritis (RA) continue to be delineated. We examined the relationship between self-reported joint symptoms, functional disability, and anticitrullinated protein antibody (ACPA) status in a cohort of first-degree relatives (FDR) of RA patients who are at risk of future disease development. METHODS We studied a cohort of 607 FDR of First Nations (FN) RA patients who are at increased risk for future RA development, and analyzed data collected at their enrollment study visit. In parallel, we analyzed data from 279 FN People with no family history of RA. A subset of FDR developed inflammatory arthritis and we analyzed longitudinal data in this group. RESULTS The prevalence of joint symptoms and functional disability was higher in FDR compared to non- FDR (all p<0.001). Difficulty walking (37.3% vs 18.0%) and mHAQ were higher in ACPA positive FDR compared to ACPA negative FDR, and mHAQ was independently associated with ACPA seropositivity (OR: 2.79, 1.56-5.00). Longitudinally, in individuals who developed ACPA+ RA, ACPA level and mHAQ score were significantly associated (R = 0.43, p< 0.001) in the preclinical period. CONCLUSION Compared to population-based controls, FDR have a high burden of joint symptoms and functional disability. Functional disability was most closely associated with ACPA seropositivity in the FDR, suggesting a direct role for ACPA outside of the context of clinically detectable synovitis. mHAQ appears to be particularly valuable in the assessment of individuals at risk for future RA development.
Collapse
Affiliation(s)
- Dana Wiens
- Department of Internal Medicine, Manitoba Centre for Proteomics and Systems Biology, University of Manitoba and Health Sciences Centre, Winnipeg, MB, Canada; Department of Internal Medicine, Rheumatology, University of Manitoba, Rady Faculty of Health Sciences, Winnipeg, MB, Canada. The authors above have no relevant financial disclosures or benefits from commercial sources that could create a potential conflict of interest. The entirety of this work was funded by a grant obtained by HS El-Gabalawy through the Canadian Institutes of Health Research (MOP 77700). All study participants provided informed consent in accordance with the Declaration of Helsinki. The Biomedical Research Ethics Board of the University of Manitoba approved all aspects of the study (Board approval number HS14453). Address correspondence to Liam J O'Neil University of Manitoba Department of Internal Medicine and Immunology Division of Rheumatology
| | - Irene Smolik
- Department of Internal Medicine, Manitoba Centre for Proteomics and Systems Biology, University of Manitoba and Health Sciences Centre, Winnipeg, MB, Canada; Department of Internal Medicine, Rheumatology, University of Manitoba, Rady Faculty of Health Sciences, Winnipeg, MB, Canada. The authors above have no relevant financial disclosures or benefits from commercial sources that could create a potential conflict of interest. The entirety of this work was funded by a grant obtained by HS El-Gabalawy through the Canadian Institutes of Health Research (MOP 77700). All study participants provided informed consent in accordance with the Declaration of Helsinki. The Biomedical Research Ethics Board of the University of Manitoba approved all aspects of the study (Board approval number HS14453). Address correspondence to Liam J O'Neil University of Manitoba Department of Internal Medicine and Immunology Division of Rheumatology
| | - Xiaobo Meng
- Department of Internal Medicine, Manitoba Centre for Proteomics and Systems Biology, University of Manitoba and Health Sciences Centre, Winnipeg, MB, Canada; Department of Internal Medicine, Rheumatology, University of Manitoba, Rady Faculty of Health Sciences, Winnipeg, MB, Canada. The authors above have no relevant financial disclosures or benefits from commercial sources that could create a potential conflict of interest. The entirety of this work was funded by a grant obtained by HS El-Gabalawy through the Canadian Institutes of Health Research (MOP 77700). All study participants provided informed consent in accordance with the Declaration of Helsinki. The Biomedical Research Ethics Board of the University of Manitoba approved all aspects of the study (Board approval number HS14453). Address correspondence to Liam J O'Neil University of Manitoba Department of Internal Medicine and Immunology Division of Rheumatology
| | - Vidyanand Anaparti
- Department of Internal Medicine, Manitoba Centre for Proteomics and Systems Biology, University of Manitoba and Health Sciences Centre, Winnipeg, MB, Canada; Department of Internal Medicine, Rheumatology, University of Manitoba, Rady Faculty of Health Sciences, Winnipeg, MB, Canada. The authors above have no relevant financial disclosures or benefits from commercial sources that could create a potential conflict of interest. The entirety of this work was funded by a grant obtained by HS El-Gabalawy through the Canadian Institutes of Health Research (MOP 77700). All study participants provided informed consent in accordance with the Declaration of Helsinki. The Biomedical Research Ethics Board of the University of Manitoba approved all aspects of the study (Board approval number HS14453). Address correspondence to Liam J O'Neil University of Manitoba Department of Internal Medicine and Immunology Division of Rheumatology
| | - Hani S El-Gabalawy
- Department of Internal Medicine, Manitoba Centre for Proteomics and Systems Biology, University of Manitoba and Health Sciences Centre, Winnipeg, MB, Canada; Department of Internal Medicine, Rheumatology, University of Manitoba, Rady Faculty of Health Sciences, Winnipeg, MB, Canada. The authors above have no relevant financial disclosures or benefits from commercial sources that could create a potential conflict of interest. The entirety of this work was funded by a grant obtained by HS El-Gabalawy through the Canadian Institutes of Health Research (MOP 77700). All study participants provided informed consent in accordance with the Declaration of Helsinki. The Biomedical Research Ethics Board of the University of Manitoba approved all aspects of the study (Board approval number HS14453). Address correspondence to Liam J O'Neil University of Manitoba Department of Internal Medicine and Immunology Division of Rheumatology
| | - Liam J O'Neil
- Department of Internal Medicine, Manitoba Centre for Proteomics and Systems Biology, University of Manitoba and Health Sciences Centre, Winnipeg, MB, Canada; Department of Internal Medicine, Rheumatology, University of Manitoba, Rady Faculty of Health Sciences, Winnipeg, MB, Canada. The authors above have no relevant financial disclosures or benefits from commercial sources that could create a potential conflict of interest. The entirety of this work was funded by a grant obtained by HS El-Gabalawy through the Canadian Institutes of Health Research (MOP 77700). All study participants provided informed consent in accordance with the Declaration of Helsinki. The Biomedical Research Ethics Board of the University of Manitoba approved all aspects of the study (Board approval number HS14453). Address correspondence to Liam J O'Neil University of Manitoba Department of Internal Medicine and Immunology Division of Rheumatology
| |
Collapse
|
69
|
Bason C, Barbieri A, Martinelli N, Olivieri B, Argentino G, Bartoloni E, Beri R, Jadav G, Puccetti A, Tinazzi E, Lunardi C. Identification of a Novel Serological Marker in Seronegative Rheumatoid Arthritis Using the Peptide Library Approach. Front Immunol 2021; 12:753400. [PMID: 34675934 PMCID: PMC8525329 DOI: 10.3389/fimmu.2021.753400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/17/2021] [Indexed: 11/16/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by chronic inflammation mainly affecting the joints leading to cartilage and bone destruction. The definition of seropositive or seronegative RA is based on the presence or absence of rheumatoid factor (RF) and anti-citrullinated peptide antibodies (ACPAs). Other autoantibodies have been identified in the last decade such as antibodies directed against carbamylated antigens, peptidyl-arginine deiminase type 4 and v-Raf murine sarcoma viral oncogene homologue B. In order to identify relevant autoantigens, we screened a random peptide library (RPL) with pooled IgGs obtained from 50 patients with seronegative RA. Patients’ sera were then used in an ELISA test to identify the most frequently recognized peptide among those obtained by screening the RPL. Sera from age- and sex-matched healthy subjects were used as controls. We identified a specific peptide (RA-peptide) recognized by RA patients’ sera, but not by healthy subjects or by patients with other immune-mediated diseases. The majority of sera from seronegative and seropositive RA patients (73.8% and 63.6% respectively) contained IgG antibodies directed against the RA-peptide. Interestingly, this peptide shares homology with some self-antigens, such as Protein-tyrosine kinase 2 beta, B cell scaffold protein, Liprin-alfa1 and Cytotoxic T lymphocyte protein 4. Affinity purified anti-RA-peptide antibodies were able to cross react with these autoantigens. In conclusion, we identified a peptide that is recognized by seropositive and, most importantly, by seronegative RA patients’ sera, but not by healthy subjects, conferring to this epitope a high degree of specificity. This peptide shares also homology with other autoantigens which can be recognized by autoantibodies present in seronegative RA sera. These newly identified autoantibodies, although present also in a percentage of seropositive RA patients, may be considered as novel serum biomarkers for seronegative RA, which lacks the presence of RF and/or ACPAs.
Collapse
Affiliation(s)
- Caterina Bason
- Department of Medicine, University of Verona, Verona, Italy
| | - Alessandro Barbieri
- Department of Laboratory Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | | | | | | | - Elena Bartoloni
- Division of Rheumatology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Ruggero Beri
- Department of Medicine, University of Verona, Verona, Italy
| | | | - Antonio Puccetti
- Department of Experimental Medicine, Section of Histology, University of Genova, Genova, Italy
| | - Elisa Tinazzi
- Department of Medicine, University of Verona, Verona, Italy
| | | |
Collapse
|
70
|
Fechtner S, Berens H, Bemis E, Johnson RL, Guthridge CJ, Carlson NE, Demoruelle MK, Harley JB, Edison JD, Norris JA, Robinson WH, Deane KD, James JA, Holers VM. Antibody Responses to Epstein-Barr Virus in the Preclinical Period of Rheumatoid Arthritis Suggest the Presence of Increased Viral Reactivation Cycles. Arthritis Rheumatol 2021; 74:597-603. [PMID: 34605217 DOI: 10.1002/art.41994] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/16/2021] [Accepted: 09/15/2021] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Patients with established rheumatoid arthritis (RA) demonstrate altered immune responses to Epstein-Barr virus (EBV), but the presence and role(s) of EBV have not been fully explored in the preclinical period. We hypothesized that EBV infection, as evidenced by an altered anti-EBV antibody response, could either play an important role in driving the development or be a result of expanded RA-related autoimmunity. METHODS 83 subjects with RA based on 1987 ACR criteria and 83 matched controls were evaluated. Subject and matched control sera from the pre and post- RA diagnosis periods were tested for 5 anti-EBV antibodies (EBNA-1-IgG, VCA-IgG, EA-IgG, VCA-IgA, and EA-IgA), 7 RA-related autoantibodies (RF-neph, RF-IgA, RF-IgM, RF-IgG, CCP2, CCP3, CCP3.1), 22 cytokine/chemokine, 36 individual APCAs, and CMV-IgG antibodies. Random forest classification, mixed and joint mixed modelling were used to determine differences in anti-EBV antibodies between RA cases and controls. RESULTS Random Forest analysis identified preclinical EBV antibodies that differentiate RA subjects from controls. Specifically, EA-IgG antibody levels are higher in RA cases (0.82 ± 0.72) compared to controls (0.49 ± 0.28). Elevations in EA-IgG levels significantly correlated with increasing RF-IgM levels in future RA cases (p = 0.007) but not in controls (p = 0.150). CMV-IgG antibody levels did not differ between groups. CONCLUSION Subjects who eventually develop classified RA demonstrate elevated EA-IgG antibody levels in the preclinical period, which suggests the presence of increased EBV re-activation cycles. A combination of RF and EBV reactivation may play an important role in the development of RA.
Collapse
Affiliation(s)
- Sabrina Fechtner
- University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Heather Berens
- University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Elizabeth Bemis
- Colorado School of Public Health, Anschutz Medical Campus, Aurora, CO, USA
| | - Rachel L Johnson
- Colorado School of Public Health, Anschutz Medical Campus, Aurora, CO, USA
| | - Carla J Guthridge
- University of Oklahoma Health Sciences Center, Department of Medicine, University of Oklahoma Health Sciences Center, Edmond, OK, USA
| | - Nichole E Carlson
- Colorado School of Public Health, Anschutz Medical Campus, Aurora, CO, USA
| | | | - John B Harley
- US Department of Veterans Affairs Medical Center, Cincinnati, OH, USA
| | - Jess D Edison
- Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Jill A Norris
- Colorado School of Public Health, Anschutz Medical Campus, Aurora, CO, USA
| | - William H Robinson
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA.,VA Palo Alto Health Care System, Palo Alto, California, USA
| | - Kevin D Deane
- University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Judith A James
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - V Michael Holers
- University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
71
|
Lamamy J, Boulard P, Brachet G, Tourlet S, Gouilleux-Gruart V, Ramdani Y. "Ways in which the neonatal Fc-receptor is involved in autoimmunity". J Transl Autoimmun 2021; 4:100122. [PMID: 34568803 PMCID: PMC8449123 DOI: 10.1016/j.jtauto.2021.100122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/06/2021] [Indexed: 11/18/2022] Open
Abstract
Since the neonatal IgG Fc receptor (FcRn) was discovered, its role has evolved from immunoglobulin recycling and biodistribution to antigen presentation and immune complex routing, bringing it to the center of both humoral and cellular immune responses. FcRn is thus involved in the pathophysiology of immune-related diseases such as cancer, infection, and autoimmune disorders. This review focuses on the role of FcRn in autoimmunity, based on the available data from both animal models and human studies. The knowledge concerning ways in which FcRn is involved in autoimmune response has led to the development of inhibitors for the treatment of autoimmune diseases, also described here. Up to date, the literature remains scarce, shedding light on the need for further studies to fully understand the various pathophysiological roles of this unique receptor. FcRn is an intracellular receptor with a key role in IgG and immune complex management. FcRn-targeting therapies are a promising way of treatment in antibodies mediated diseases.
Collapse
Affiliation(s)
- Juliette Lamamy
- EA7501, GICC, Université François Rabelais de Tours, F-37032, Tours, France
| | - Pierre Boulard
- Laboratoire d'immunologie, CHU Tours, F-37032, Tours, France
| | | | | | | | - Yanis Ramdani
- Service de Médecine Interne, CHU Tours, F-37032, Tours, France
| |
Collapse
|
72
|
Guzmán-Guzmán IP, Ramírez-Vélez CI, Falfán-Valencia R, Navarro-Zarza JE, Gutiérrez-Pérez IA, Zaragoza-García O, Ramírez M, Castro-Alarcón N, Parra-Rojas I. PADI2 Polymorphisms Are Significantly Associated With Rheumatoid Arthritis, Autoantibodies Serologic Status and Joint Damage in Women from Southern Mexico. Front Immunol 2021; 12:718246. [PMID: 34421923 PMCID: PMC8371707 DOI: 10.3389/fimmu.2021.718246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/19/2021] [Indexed: 12/29/2022] Open
Abstract
The enzymes of the family peptidylarginine deiminases (PADs) have an important role in the pathogenesis of rheumatoid arthritis (RA) due to their association with the anti-citrullinated protein antibodies (ACPA) production. To evaluate the association between single-nucleotide polymorphisms (SNPs) in the PADI2 gene and RA susceptibility, related clinical parameters, and the serologic status of autoantibodies in a women population with RA from southern Mexico, a case-control study was conducted (case n=229; control n=333). Sociodemographic characteristics were evaluated, along with clinical parameters, inflammation markers, the levels of ACPAs as anti-cyclic citrullinated peptides (anti-CCPs), anti-modified citrullinated vimentin (anti-MCV), and rheumatoid factor (RF). Genomic DNA was extracted from peripheral blood, and three SNPs of the PADI2 gene (rs1005753, rs2057094, and rs2235926) were performed by qPCR using TaqMan probes. The data analysis reveals that the carriers of the T allele for rs2057094 and rs2235926 presented an earlier onset of the disease (β= -3.26; p = 0.03 and β = -4.13; p = 0.015, respectively) while the carriers of the T allele for rs1005753 presented higher levels of anti-CCPs (β= 68.3; p = 0.015). Additionally, the T allele of rs2235926 was associated with a positive RF (OR = 2.90; p = 0.04), anti-MCV (OR = 2.92; p = 0.05), and with the serologic status anti-CCP+/anti-MCV+ (OR = 3.02; p = 0.03), and anti-CCP+/anti-MCV+/RF+ (OR = 3.79; p = 0.004). The haplotypes GTT (OR =1.52; p = 0.027) and TTT (OR = 1.32; p = 0.025) were associated with the presence of RA. In addition, in this study the haplotype TTT is linked to the presence of radiographic joint damage defined by a Sharp-van der Heijde score (SHS) ≥2 (OR = 1.97; p = 0.0021) and SHS ≥3 (OR = 1.94; p = 0.011). The haplotype TTT of SNPs rs1005753, rs2057094, and rs2235926 of the PADI2 gene confers genetic susceptibility to RA and radiographic joint damage in women from southern Mexico. The evidence reveals that SNPs of the PADI2 gene favors the presence of a positive serologic status in multiple autoantibodies and the clinical manifestations of RA at an early onset age.
Collapse
Affiliation(s)
| | | | - Ramcés Falfán-Valencia
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - José Eduardo Navarro-Zarza
- Department of Rheumatology and Internal Medicine, Hospital General de Chilpancingo Dr. Raymundo Abarca Alarcón, Guerrero, Mexico
| | | | - Oscar Zaragoza-García
- Faculty of Chemical-Biological Sciences, Universidad Autónoma de Guerrero, Chilpancingo, Mexico
| | - Mónica Ramírez
- Consejo Nacional de Ciencia y Tecnología, Universidad Autónoma de Guerrero, Chilpancingo, Mexico
| | | | - Isela Parra-Rojas
- Faculty of Chemical-Biological Sciences, Universidad Autónoma de Guerrero, Chilpancingo, Mexico
| |
Collapse
|
73
|
Sokolove J. Lung inflammation, NETosis and the pulmonary initiation of ACPA response: What came first, the chicken or the egg? Arthritis Rheumatol 2021; 74:10-12. [PMID: 34369664 DOI: 10.1002/art.41947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/03/2021] [Indexed: 11/12/2022]
Abstract
Multiple recent lines of evidence suggest that, at least in some patients, RA-associated autoimmunity and inflammation may originate in the lung (1, 2). However, what exactly is/are the initiating event(s), and the sequence of subsequent events, is not fully defined. In this issue of A&R, Okumoto et al (insert new reference), make the intriguing finding that individuals at risk of developing RA have an increased spontaneous neutrophil extracellular trap (NET) formation in sputum, in particular NETs containing citH3, and that these levels associate with presence of IgA ACPA. Such evidence has previously been reported, but the new data presented begins to paint a somewhat revised and enhanced storyline by investigating the pathway of mediation underlying these associations.
Collapse
Affiliation(s)
- Jeremy Sokolove
- GlaxoSmithKine, Collegeville, Division of Immunology/Rheumatology, Stanford University, Palo Alto, CA, USA
| |
Collapse
|
74
|
Hensvold A, Klareskog L. Towards prevention of autoimmune diseases: The example of rheumatoid arthritis. Eur J Immunol 2021; 51:1921-1933. [PMID: 34110013 DOI: 10.1002/eji.202048952] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/18/2021] [Indexed: 12/16/2022]
Abstract
Prevention is the ultimate aim for clinicians and scientists concerned with severe diseases, like many immune-mediated conditions. Here, we describe recent progress in the understanding of etiology and molecular pathogenesis of rheumatoid arthritis (RA), which make this disease a potential prototype for prevention that may include both public health measures and targeted and personalized approaches that we call "personalized prevention." Critical components of this knowledge are (i) better understanding of the dynamics of the RA-associated autoimmunity that may begin many years before onset of joint inflammation; (ii) insights into how this immunity may be triggered at mucosal surfaces after distinct environmental challenges; (iii) better understanding of which features of the pre-existing immunity may cause symptoms that precede joint inflammation and predict a high risk for imminent arthritis development; and (iv) how molecular events occurring before onset of inflammation might be targeted by existing or future therapies, ultimately by specific targeting of Major histocompatibility complex (MHC) class II restricted and RA-specific immunity. Our main conclusion is that studies and interventions in the phase of autoimmunity preceding RA offer new opportunities to prevent the disease and thereby also understand the molecular pathogenesis of its different variants.
Collapse
Affiliation(s)
- Aase Hensvold
- Division of Rheumatology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital (Solna), Stockholm, Sweden.,Center for Rheumatology, Academic Specialist Center, Stockholm, Sweden
| | - Lars Klareskog
- Division of Rheumatology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital (Solna), Stockholm, Sweden.,Center for Rheumatology, Academic Specialist Center, Stockholm, Sweden.,Rheumatology Section, Theme inflammation and Infection, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
75
|
Joshua V, Hensvold AH, Reynisdottir G, Hansson M, Cornillet M, Nogueira L, Serre G, Nyren S, Karimi R, Eklund A, Sköld M, Grunewald J, Chatzidionysiou K, Catrina A. Association between number and type of different ACPA fine specificities with lung abnormalities in early, untreated rheumatoid arthritis. RMD Open 2021; 6:rmdopen-2020-001278. [PMID: 32917833 PMCID: PMC7520701 DOI: 10.1136/rmdopen-2020-001278] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/16/2020] [Accepted: 08/21/2020] [Indexed: 01/16/2023] Open
Abstract
Background Rheumatoid arthritis (RA)-associated anticitrullinated protein/peptide antibodies (ACPA) might originate at mucosal sites such as the lungs. We aimed to examine the relationship between the ACPA repertoire and lung abnormalities on high-resolution CT (HRCT) in patients with earlyuntreated RA. Methods 106 patients with newly diagnosed untreated RA were examined with HRCT of the lungs. Blood samples were analysed for presence of rheumatoid factor (RF) and ACPA using either a CCP2 detection kit or an immunochip containing 10 different citrullinated peptides. Association between HRCT findings and the antibody repertoire was assessed by logistic regression analysis. Results The number (%) of patients with HRCT abnormalities was 58 (54.7%) for parenchymal abnormalities and 68 (64.2%) for airway abnormalities. CCP2 IgG, RF IgA and antibodies against citrullinated fibrinogen were associated with the presence of parenchymal lung abnormalities. Interestingly, a high number of ACPA fine specificities gave a high risk of having parenchymal lung abnormalities at the time of RA diagnosis. No significant signals were identified between ACPA specificities and risk for airway abnormalities. Conclusions The presence of RF and ACPAs (especially against citrullinated fibrinogen peptides) as well as high number of ACPAs fine specificities are associated with parenchymal lung abnormalities in patients with early, untreated RA. This provides further support for an important pathogenic link between the lung and systemic autoimmunity, contributing to RA development.
Collapse
Affiliation(s)
- Vijay Joshua
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Aase Haj Hensvold
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Gudrun Reynisdottir
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Monica Hansson
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Martin Cornillet
- Unité Différenciation Épithéliale et Autoimmunité Rhumatoïde, Unité Mixte de Recherche 1056, INSERM - Université de Toulouse, Toulouse, France
| | - Leonor Nogueira
- Unité Différenciation Épithéliale et Autoimmunité Rhumatoïde, Unité Mixte de Recherche 1056, INSERM - Université de Toulouse, Toulouse, France
| | - Guy Serre
- Unité Différenciation Épithéliale et Autoimmunité Rhumatoïde, Unité Mixte de Recherche 1056, INSERM - Université de Toulouse, Toulouse, France
| | - Sven Nyren
- Department of Radiology, Karolinska University Hospital, Stockholm, Sweden
| | - Reza Karimi
- Division of Respiratory Medicine, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Anders Eklund
- Division of Respiratory Medicine, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Sköld
- Division of Respiratory Medicine, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Johan Grunewald
- Division of Respiratory Medicine, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Katerina Chatzidionysiou
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Anca Catrina
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
76
|
Novella-Navarro M, Plasencia-Rodríguez C, Nuño L, Balsa A. Risk Factors for Developing Rheumatoid Arthritis in Patients With Undifferentiated Arthritis and Inflammatory Arthralgia. Front Med (Lausanne) 2021; 8:668898. [PMID: 34211986 PMCID: PMC8239127 DOI: 10.3389/fmed.2021.668898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/24/2021] [Indexed: 12/18/2022] Open
Abstract
Currently, there is an increasing interest in treating patients at risk of rheumatoid arthritis (RA) to prevent the development of this chronic disease. In this sense, research has focused attention on the early identification of predictive factors of this disease. Autoantibodies and markers of systemic inflammation can be present before clinical arthritis and RA development. So, the phase of inflammatory arthralgia preceding clinical arthritis is an important part of the window of opportunity and, starting treatment might prevent progression to chronic arthritis. Additionally, the early diagnosis and treatment initiation, in patients with inflammatory arthritis at risk of persistence and/or erosive progression, are fundamental because may allow optimal clinical responses, better chances of achieving sustained remission, preventing irreversible organ damage and optimizing long-term outcomes. This review aims to give an overview of clinical risk factors for developing RA, both in suspected arthralgia and in undifferentiated arthritis. Besides taking into consideration the role of serological markers (immunological and acute phase reactants) and clinical features assessed at consultation such as: articular affection and patient's clinical perception. Other features as sociodemographic and environmental factors (lifestyle habits, microbiota, periodontal disease among others), have been included in this revision to give an insight on strategies to prevent development of RA and/or to treat it in early stages.
Collapse
Affiliation(s)
| | | | - Laura Nuño
- Rheumatology Department Hospital Universitario La Paz, Madrid, Spain
| | - Alejandro Balsa
- Rheumatology Department Hospital Universitario La Paz, Madrid, Spain
| |
Collapse
|
77
|
Giles JT, Rist PM, Liao KP, Tawakol A, Fayad ZA, Mani V, Paynter NP, Ridker PM, Glynn RJ, Lu F, Broderick R, Murray M, Vanni KMM, Solomon DH, Bathon JM. Testing the Effects of Disease-Modifying Antirheumatic Drugs on Vascular Inflammation in Rheumatoid Arthritis: Rationale and Design of the TARGET Trial. ACR Open Rheumatol 2021; 3:371-380. [PMID: 33932148 PMCID: PMC8207684 DOI: 10.1002/acr2.11256] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/10/2020] [Indexed: 11/24/2022] Open
Abstract
Individuals with rheumatoid arthritis (RA) are at increased risk for atherosclerotic cardiovascular disease (ASCVD) events relative to the general population, potentially mediated by atherosclerotic plaques that are more inflamed and rupture prone. We sought to address whether RA immunomodulators reduce vascular inflammation, thereby reducing ASCVD risk, and whether such reduction depends on the type of immunomodulator. The TARGET (Treatments Against RA and Effect on 18-Fluorodeoxyglucose [18 F-FDG] Positron Emission Tomography [PET]/Computed Tomography [CT]) trial (NCT02374021) will enroll 150 patients with RA with active disease and an inadequate response to methotrexate. Participants will be randomized to add either a tumor necrosis factor (TNF) inhibitor (etanercept or adalimumab) or sulfasalazine and hydroxychloroquine to their background methotrexate. Participants will undergo full-body 18 F-FDG-labelled PET scanning at baseline and after 6 months. Efficacy and safety evaluations will occur every 6 weeks, with therapy modified in a treat-to-target approach. The primary outcome is the comparison of change in arterial inflammation in the wall of the aorta and carotid arteries between the randomized treatment groups, specifically, the change in the mean of the maximum target-to-background ratio of arterial 18 F-FDG uptake in the most diseased segment of either the aorta and carotid arteries. A secondary analysis will compare the effects of achieving low disease activity or remission with those of moderate to high disease activity on vascular inflammation. The TARGET trial will test, for the first time, whether RA treatments reduce arterial inflammation and whether such reduction differs according to treatment strategy with either TNF inhibitors or a combination of nonbiologic disease-modifying antirheumatic drugs.
Collapse
Affiliation(s)
- Jon T. Giles
- Columbia UniversityVagelos College of Physicians & SurgeonsNew YorkNew York
| | - Pamela M. Rist
- Brigham and Women's Hospital and Harvard Medical SchoolBostonMassachusetts
| | - Katherine P. Liao
- Brigham and Women's Hospital and Harvard Medical SchoolBostonMassachusetts
| | - Ahmed Tawakol
- Massachusetts General Hospital and Harvard Medical SchoolBoston
| | - Zahi A. Fayad
- Translational and Molecular Imaging InstituteIcahn School of Medicine at Mount SinaiNew York
| | - Venkatesh Mani
- Translational and Molecular Imaging InstituteIcahn School of Medicine at Mount SinaiNew York
| | - Nina P. Paynter
- Brigham and Women's Hospital and Harvard Medical SchoolBostonMassachusetts
| | - Paul M. Ridker
- Brigham and Women's Hospital and Harvard Medical SchoolBostonMassachusetts
| | - Robert J. Glynn
- Brigham and Women's Hospital and Harvard Medical SchoolBostonMassachusetts
| | - Fengxin Lu
- Brigham and Women's HospitalBostonMassachusetts
| | - Rachel Broderick
- Columbia UniversityVagelos College of Physicians & SurgeonsNew YorkNew York
| | | | | | - Daniel H. Solomon
- Brigham and Women's Hospital and Harvard Medical SchoolBostonMassachusetts
| | - Joan M. Bathon
- Columbia UniversityVagelos College of Physicians & SurgeonsNew YorkNew York
| |
Collapse
|
78
|
Tsai CY, Hsieh SC, Liu CW, Lu CH, Liao HT, Chen MH, Li KJ, Wu CH, Shen CY, Kuo YM, Yu CL. The Expression of Non-Coding RNAs and Their Target Molecules in Rheumatoid Arthritis: A Molecular Basis for Rheumatoid Pathogenesis and Its Potential Clinical Applications. Int J Mol Sci 2021; 22:ijms22115689. [PMID: 34073629 PMCID: PMC8198764 DOI: 10.3390/ijms22115689] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is a typical autoimmune-mediated rheumatic disease presenting as a chronic synovitis in the joint. The chronic synovial inflammation is characterized by hyper-vascularity and extravasation of various immune-related cells to form lymphoid aggregates where an intimate cross-talk among innate and adaptive immune cells takes place. These interactions facilitate production of abundant proinflammatory cytokines, chemokines and growth factors for the proliferation/maturation/differentiation of B lymphocytes to become plasma cells. Finally, the autoantibodies against denatured immunoglobulin G (rheumatoid factors), EB virus nuclear antigens (EBNAs) and citrullinated protein (ACPAs) are produced to trigger the development of RA. Furthermore, it is documented that gene mutations, abnormal epigenetic regulation of peptidylarginine deiminase genes 2 and 4 (PADI2 and PADI4), and thereby the induced autoantibodies against PAD2 and PAD4 are implicated in ACPA production in RA patients. The aberrant expressions of non-coding RNAs (ncRNAs) including microRNAs (miRs) and long non-coding RNAs (lncRNAs) in the immune system undoubtedly derange the mRNA expressions of cytokines/chemokines/growth factors. In the present review, we will discuss in detail the expression of these ncRNAs and their target molecules participating in developing RA, and the potential biomarkers for the disease, its diagnosis, cardiovascular complications and therapeutic response. Finally, we propose some prospective investigations for unraveling the conundrums of rheumatoid pathogenesis.
Collapse
Affiliation(s)
- Chang-Youh Tsai
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital, National Yang-Ming Chiao-Tung University, Taipei 11217, Taiwan; (C.-W.L.); (H.-T.L.); (M.-H.C.)
- Correspondence: (C.-Y.T.); (C.-L.Y.)
| | - Song-Chou Hsieh
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (K.-J.L.); (C.-H.W.); (C.-Y.S.); (Y.-M.K.)
| | - Chih-Wei Liu
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital, National Yang-Ming Chiao-Tung University, Taipei 11217, Taiwan; (C.-W.L.); (H.-T.L.); (M.-H.C.)
| | - Cheng-Hsun Lu
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (K.-J.L.); (C.-H.W.); (C.-Y.S.); (Y.-M.K.)
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan
| | - Hsien-Tzung Liao
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital, National Yang-Ming Chiao-Tung University, Taipei 11217, Taiwan; (C.-W.L.); (H.-T.L.); (M.-H.C.)
| | - Ming-Han Chen
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital, National Yang-Ming Chiao-Tung University, Taipei 11217, Taiwan; (C.-W.L.); (H.-T.L.); (M.-H.C.)
| | - Ko-Jen Li
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (K.-J.L.); (C.-H.W.); (C.-Y.S.); (Y.-M.K.)
| | - Cheng-Han Wu
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (K.-J.L.); (C.-H.W.); (C.-Y.S.); (Y.-M.K.)
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan
| | - Cheih-Yu Shen
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (K.-J.L.); (C.-H.W.); (C.-Y.S.); (Y.-M.K.)
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan
| | - Yu-Min Kuo
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (K.-J.L.); (C.-H.W.); (C.-Y.S.); (Y.-M.K.)
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei 10002, Taiwan
| | - Chia-Li Yu
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan; (S.-C.H.); (C.-H.L.); (K.-J.L.); (C.-H.W.); (C.-Y.S.); (Y.-M.K.)
- Correspondence: (C.-Y.T.); (C.-L.Y.)
| |
Collapse
|
79
|
Morales-Primo AU, Becker I, Zamora-Chimal J. Neutrophil extracellular trap-associated molecules: a review on their immunophysiological and inflammatory roles. Int Rev Immunol 2021; 41:253-274. [PMID: 34036897 DOI: 10.1080/08830185.2021.1921174] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neutrophil extracellular traps (NETs) are a defense mechanism against pathogens. They are composed of DNA and various proteins and have the ability to hinder microbial spreading and survival. However, NETs are not only related to infections but also participate in sterile inflammatory events. In addition to DNA, NETs contain histones, serine proteases, cytoskeletal proteins and antimicrobial peptides, all of which have immunomodulatory properties that can augment or decrease the inflammatory response. Extracellular localization of these molecules alerts the immune system of cellular damage, which is triggered by recognition of damage-associated molecular patterns (DAMPs) through specific pattern recognition receptors. However, not all of these molecules are DAMPs and may have other immunophysiological properties in the extracellular space. The release of NETs can lead to production of pro-inflammatory cytokines (due to TLR2/4/9 and inflammasome activation), the destruction of the extracellular matrix, activation of serine proteases and of matrix metallopeptidases (MMPs), modulation of cellular proliferation, induction of cellular migration and adhesion, promotion of thrombogenesis and angiogenesis and disruption of epithelial and endothelial permeability. Understanding the dynamics of NET-associated molecules, either individually or synergically, will help to unravel their role in inflammatory events and open novel perspectives for potential therapeutic targets. We here review molecules contained within NETS and their immunophysiological roles.
Collapse
Affiliation(s)
- Abraham U Morales-Primo
- Laboratory of Immunoparasitology, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Mexico City, Mexico
| | - Ingeborg Becker
- Laboratory of Immunoparasitology, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Mexico City, Mexico
| | - Jaime Zamora-Chimal
- Laboratory of Immunoparasitology, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Mexico City, Mexico
| |
Collapse
|
80
|
Torres W, Chávez-Castillo M, Peréz-Vicuña JL, Carrasquero R, Díaz MP, Gomez Y, Ramírez P, Cano C, Rojas-Quintero J, Chacín M, Velasco M, de Sanctis JB, Bermudez V. Potential role of bioactive lipids in rheumatoid arthritis. Curr Pharm Des 2021; 27:4434-4451. [PMID: 34036919 DOI: 10.2174/1381612827666210525164734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 04/08/2021] [Indexed: 11/22/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease, which involves a pathological inflammatory response against articular cartilage in multiple joints throughout the body. It is a complex disorder associated with comorbidities such as depression, lymphoma, osteoporosis and cardiovascular disease (CVD), which significantly deteriorate patients' quality of life and prognosis. This has ignited a large initiative to elucidate the physiopathology of RA, aiming to identify new therapeutic targets and approaches in its multidisciplinary management. Recently, various lipid bioactive products have been proposed to have an essential role in this process; including eicosanoids, specialized pro-resolving mediators, phospholipids/sphingolipids, and endocannabinoids. Dietary interventions using omega-3 polyunsaturated fatty acids or treatment with synthetic endocannabinoids agonists have been shown to significantly ameliorate RA symptoms. Indeed, the modulation of lipid metabolism may be crucial in the pathophysiology and treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Wheeler Torres
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo. Venezuela
| | - Mervin Chávez-Castillo
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo. Venezuela
| | - José L Peréz-Vicuña
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo. Venezuela
| | - Rubén Carrasquero
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo. Venezuela
| | - María P Díaz
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo. Venezuela
| | - Yosselin Gomez
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo. Venezuela
| | - Paola Ramírez
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo. Venezuela
| | - Clímaco Cano
- Endocrine and Metabolic Diseases Research Center. School of Medicine. University of Zulia. Maracaibo. Venezuela
| | - Joselyn Rojas-Quintero
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston. 0
| | - Maricarmen Chacín
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla. Colombia
| | - Manuel Velasco
- Universidad Central de Venezuela, Escuela de Medicina José María Vargas, Caracas. Venezuela
| | - Juan Bautista de Sanctis
- Institute of Molecular and Translational Medicine. Faculty of Medicine and Dentistry. Palacky University. Czech Republic
| | - Valmore Bermudez
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla. Colombia
| |
Collapse
|
81
|
Grönwall C, Liljefors L, Bang H, Hensvold AH, Hansson M, Mathsson-Alm L, Israelsson L, Joshua V, Svärd A, Stålesen R, Titcombe PJ, Steen J, Piccoli L, Sherina N, Clavel C, Svenungsson E, Gunnarsson I, Saevarsdottir S, Kastbom A, Serre G, Alfredsson L, Malmström V, Rönnelid J, Catrina AI, Lundberg K, Klareskog L. A Comprehensive Evaluation of the Relationship Between Different IgG and IgA Anti-Modified Protein Autoantibodies in Rheumatoid Arthritis. Front Immunol 2021; 12:627986. [PMID: 34093522 PMCID: PMC8173192 DOI: 10.3389/fimmu.2021.627986] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/26/2021] [Indexed: 12/25/2022] Open
Abstract
Seropositive rheumatoid arthritis (RA) is characterized by the presence of rheumatoid factor (RF) and anti-citrullinated protein autoantibodies (ACPA) with different fine-specificities. Yet, other serum anti-modified protein autoantibodies (AMPA), e.g. anti-carbamylated (Carb), -acetylated (KAc), and malondialdehyde acetaldehyde (MAA) modified protein antibodies, have been described. In this comprehensive study, we analyze 30 different IgG and IgA AMPA reactivities to Cit, Carb, KAc, and MAA antigens detected by ELISA and autoantigen arrays in N=1985 newly diagnosed RA patients. Association with patient characteristics such as smoking and disease activity were explored. Carb and KAc reactivities by different assays were primarily seen in patients also positive for anti-citrulline reactivity. Modified vimentin (mod-Vim) peptides were used for direct comparison of different AMPA reactivities, revealing that IgA AMPA recognizing mod-Vim was mainly detected in subsets of patients with high IgG anti-Cit-Vim levels and a history of smoking. IgG reactivity to acetylation was mainly detected in a subset of patients with Cit and Carb reactivity. Anti-acetylated histone reactivity was RA-specific and associated with high anti-CCP2 IgG levels, multiple ACPA fine-specificities, and smoking status. This reactivity was also found to be present in CCP2+ RA-risk individuals without arthritis. Our data further demonstrate that IgG autoreactivity to MAA was increased in RA compared to controls with highest levels in CCP2+ RA, but was not RA-specific, and showed low correlation with other AMPA. Anti-MAA was instead associated with disease activity and was not significantly increased in CCP2+ individuals at risk of RA. Notably, RA patients could be subdivided into four different subsets based on their AMPA IgG and IgA reactivity profiles. Our serology results were complemented by screening of monoclonal antibodies derived from single B cells from RA patients for the same antigens as the RA cohort. Certain CCP2+ clones had Carb or Carb+KAc+ multireactivity, while such reactivities were not found in CCP2- clones. We conclude that autoantibodies exhibiting different patterns of ACPA fine-specificities as well as Carb and KAc reactivity are present in RA and may be derived from multireactive B-cell clones. Carb and KAc could be considered reactivities within the "Cit-umbrella" similar to ACPA fine-specificities, while MAA reactivity is distinctly different.
Collapse
Affiliation(s)
- Caroline Grönwall
- Department of Medicine Solna, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lisa Liljefors
- Department of Medicine Solna, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | - Aase H. Hensvold
- Department of Medicine Solna, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Center for Rheumatology, Academic Specialist Center, Stockholm Health Region, Stockholm, Sweden
- Rheumatology Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Monika Hansson
- Department of Medicine Solna, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Linda Mathsson-Alm
- Thermo Fisher Scientific, Immuno Diagnostics Division, Uppsala, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Lena Israelsson
- Department of Medicine Solna, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Vijay Joshua
- Department of Medicine Solna, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Svärd
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Center for Clinical Research Dalarna, Uppsala University, Uppsala, Sweden
| | - Ragnhild Stålesen
- Department of Medicine Solna, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Philip J. Titcombe
- Department of Medicine Solna, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- The Center for Immunology and Division of Rheumatic and Autoimmune Diseases, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Johanna Steen
- Department of Medicine Solna, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Luca Piccoli
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Natalia Sherina
- Department of Medicine Solna, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Cyril Clavel
- Unité Différenciation Épithéliale et Autoimmunité Rhumatoïde, INSERM - Université de Toulouse, Toulouse, France
| | - Elisabet Svenungsson
- Department of Medicine Solna, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Rheumatology Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Iva Gunnarsson
- Department of Medicine Solna, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Rheumatology Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Saedis Saevarsdottir
- Department of Medicine Solna, Division of Clinical Epidemiology, Karolinska Institutet, Stockholm, Sweden
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Alf Kastbom
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Guy Serre
- Unité Différenciation Épithéliale et Autoimmunité Rhumatoïde, INSERM - Université de Toulouse, Toulouse, France
| | - Lars Alfredsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Centre for Occupational and Environmental Medicine, Stockholm Health Region, Stockholm, Sweden
| | - Vivianne Malmström
- Department of Medicine Solna, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Johan Rönnelid
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Anca I. Catrina
- Department of Medicine Solna, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Center for Rheumatology, Academic Specialist Center, Stockholm Health Region, Stockholm, Sweden
- Rheumatology Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Karin Lundberg
- Department of Medicine Solna, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Klareskog
- Department of Medicine Solna, Division of Rheumatology, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Center for Rheumatology, Academic Specialist Center, Stockholm Health Region, Stockholm, Sweden
- Rheumatology Clinic, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
82
|
Lu H, Yao Y, Yang J, Zhang H, Li L. Microbiome-miRNA interactions in the progress from undifferentiated arthritis to rheumatoid arthritis: evidence, hypotheses, and opportunities. Rheumatol Int 2021; 41:1567-1575. [PMID: 33856544 PMCID: PMC8316166 DOI: 10.1007/s00296-021-04798-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/20/2021] [Indexed: 02/05/2023]
Abstract
The human microbiome has attracted attention for its potential utility in precision medicine. Increasingly, more researchers are recognizing changes in intestinal microbiome can upset the balance between pro- and anti-inflammatory factors of host immune system, potentially contributing to arthritis immunopathogenesis. Patients who develop rheumatoid arthritis from undifferentiated arthritis can face multiple irreversible joint lesions and even deformities. Strategies for identifying undifferentiated arthritis patients who have a tendency to develop rheumatoid arthritis and interventions to prevent rheumatoid arthritis development are urgently needed. Intestinal microbiome dysbiosis and shifts in the miRNA profile affect undifferentiated arthritis progression, and may play an important role in rheumatoid arthritis pathophysiologic process via stimulating inflammatory cytokines and disturbing host and microbial metabolic functions. However, a causal relationship between microbiome–miRNA interactions and rheumatoid arthritis development from undifferentiated arthritis has not been uncovered yet. Changes in the intestinal microbiome and miRNA profiles of undifferentiated arthritis patients with different disease outcomes should be studied together to uncover the role of the intestinal microbiome in rheumatoid arthritis development and to identify potential prognostic indicators of rheumatoid arthritis in undifferentiated arthritis patients. Herein, we discuss the possibility of microbiome–miRNA interactions contributing to rheumatoid arthritis development and describe the gaps in knowledge regarding their influence on undifferentiated arthritis prognosis that should be addressed by future studies.
Collapse
Affiliation(s)
- Haifeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 Zhejiang People’s Republic of China
| | - Yujun Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 Zhejiang People’s Republic of China
| | - Jiezuan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 Zhejiang People’s Republic of China
| | - Hua Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 Zhejiang People’s Republic of China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 Zhejiang People’s Republic of China
| |
Collapse
|
83
|
Zaccardelli A, Liu X, Ford JA, Cui J, Lu B, Chu SH, Schur PH, Speyer CB, Costenbader KH, Robinson WH, Sokolove J, Karlson EW, Camargo CA, Sparks JA. Elevated Anti-Citrullinated Protein Antibodies Prior to Rheumatoid Arthritis Diagnosis and Risks for Chronic Obstructive Pulmonary Disease or Asthma. Arthritis Care Res (Hoboken) 2021; 73:498-509. [PMID: 31961487 PMCID: PMC7371499 DOI: 10.1002/acr.24140] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/07/2020] [Indexed: 01/04/2023]
Abstract
OBJECTIVE To investigate elevation of anti-citrullinated protein antibodies (ACPAs) before diagnosis of rheumatoid arthritis (RA) and risks for chronic obstructive pulmonary disease (COPD) or asthma. METHODS We performed a matched cohort study nested within the Nurses' Health Studies among women who donated blood. Women with incident RA after blood draw (self-reported, then confirmed by medical records) were each matched to 3 controls by age, cohort, year, and menopausal factors. Pre-RA ACPA positivity was defined as >99th percentile of control distribution by a research assay or by cyclic citrullinated peptide in a subset. Incident COPD and asthma after index date (date of blood draw) were identified by questionnaires. Cox regression estimated hazard ratios (HRs) for incident COPD or asthma (in separate analyses) associated with pre-RA, pre-RA ACPA+, or pre-RA ACPA- phenotypes each compared to their matched non-RA controls. RESULTS We analyzed 283 women who were pre-RA and 842 controls; blood was donated a mean ± SD of 9.7 ± 5.8 years before RA diagnosis. Fifty-nine women (20.8%) were pre-RA ACPA+. There were 107 cases of incident COPD and 105 incident asthma cases during 21,489 person-years of follow-up. Pre-RA ACPA+ was associated with increased COPD risk (HR 3.04 [95% confidence interval (95% CI) 1.33-7.00]) after adjusting for covariates including smoking pack-years. Pre-RA ACPA+ had an HR for asthma of 1.74 (multivariable 95% CI 0.72-4.24), similar to the risk of asthma for pre-RA ACPA- (HR 1.65 [95% CI 1.11-2.46]). CONCLUSION Women with elevated ACPA before RA diagnosis had increased risk for developing COPD compared to controls. Women who later developed RA were more likely to develop asthma than controls, regardless of pre-RA ACPA status.
Collapse
Affiliation(s)
| | - Xinyi Liu
- Brigham and Women’s Hospital, Boston, MA, USA
| | - Julia A. Ford
- Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jing Cui
- Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Bing Lu
- Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Su H. Chu
- Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Peter H. Schur
- Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Karen H. Costenbader
- Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - William H. Robinson
- Stanford University School of Medicine, Palo Alto, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Jeremy Sokolove
- Stanford University School of Medicine, Palo Alto, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- GlaxoSmithKline
| | - Elizabeth W. Karlson
- Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Carlos A. Camargo
- Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Jeffrey A. Sparks
- Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
84
|
Roos Ljungberg K, Martinsson K, Wetterö J, Svärd A, Kastbom A. Circulating anti-citrullinated protein antibodies containing secretory component are prognostic for arthritis onset in at-risk patients. Clin Exp Immunol 2021; 204:344-351. [PMID: 33675063 PMCID: PMC8119868 DOI: 10.1111/cei.13591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/15/2022] Open
Abstract
Autoantibodies related to rheumatoid arthritis (RA), such as anti‐citrullinated protein antibodies (ACPA), are often detectable in the preclinical period years before arthritis onset. However, events triggering arthritis development remain incompletely known. We aimed to determine whether ACPA isotype levels are prognostic for arthritis development in patients presenting with immunoglobulin (Ig)G ACPA and musculoskeletal pain. Study participants (n = 82) had musculoskeletal pain of any sort and duration and a positive IgG ACPA test. None of the patients had arthritis upon clinical examination at baseline, but during follow‐up (mean = 6 years), 48% developed at least one arthritic joint. IgG, IgA, IgM and secretory component (SC)‐containing ACPA was measured in longitudinally collected serum samples. Cox regression analysis was performed to test the prognostic value of baseline antibody levels and changes over time. All analysed ACPA isotype levels were associated with arthritis development in univariable Cox regression analysis. In multivariable analysis, baseline SC ACPA levels were independently prognostic for arthritis development in multivariable analysis [hazard ratio (HR) = 1·006, 95% confidence interval (CI) = 1·001–1·010, P = 0·012]. There were no significant changes in ACPA isotype levels over time, and no significant association between changes over time and arthritis development. In this prospective longitudinal study, baseline serum SC ACPA levels, but neither IgG, IgA nor IgM ACPA are prognostic for future arthritis development. Repeated measurement of ACPA isotypes do not bring additional prognostic value. The results reinforce a mucosal connection in RA development and encourage further exploration of the mechanisms underlying secretory ACPA formation as a trigger for arthritis development.
Collapse
Affiliation(s)
- K Roos Ljungberg
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.,Center for Clinical Research Dalarna, Uppsala University, Uppsala, Sweden
| | - K Martinsson
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - J Wetterö
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - A Svärd
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.,Center for Clinical Research Dalarna, Uppsala University, Uppsala, Sweden
| | - A Kastbom
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.,Department of Rheumatology in Östergötland, Linköping University Hospital, Linköping, Sweden
| |
Collapse
|
85
|
Schett G, Tanaka Y, Isaacs JD. Why remission is not enough: underlying disease mechanisms in RA that prevent cure. Nat Rev Rheumatol 2021; 17:135-144. [PMID: 33303993 DOI: 10.1038/s41584-020-00543-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2020] [Indexed: 01/04/2023]
Abstract
Cure is the aspirational aim for the treatment of all diseases, including chronic inflammatory conditions such as rheumatoid arthritis (RA); however, it has only been during the twenty-first century that remission, let alone cure, has been a regularly achievable target in RA. Little research has been carried out on how to cure RA, and the term 'cure' still requires definition for this disease. Even now, achieving a cure seems to be a rare occurrence among individuals with RA. Therefore, this Review is aimed at addressing the obstacles to the achievement of cure in RA. The differences between remission and cure in RA are first defined, followed by a discussion of the underlying factors (referred to as drivers) that prevent the achievement of cure in RA by triggering sustained immune activation and effector cytokine production. Such drivers include adaptive immune system activation, mesenchymal tissue priming and so-called 'remote' (non-immune and non-articular) factors. Strategies to target these drivers are also presented, with an emphasis on the development of strategies that could complement currently used cytokine inhibition and thereby improve the likelihood of curing RA.
Collapse
Affiliation(s)
- Georg Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University (FAU) Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany.
- Deutsches Zentrum fur Immuntherapie, FAU Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany.
| | - Yoshiya Tanaka
- The First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - John D Isaacs
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
86
|
Abstract
Hypertrophy of the ligamentum flavum (LF) is a major cause of lumbar spinal stenosis (LSS), and the pathology involves disruption of elastic fibers, fibrosis with increased cellularity and collagens, and/or calcification. Previous studies have implicated the increased expression of the proteoglycan family in hypertrophied LF. Furthermore, the gene expression profile in a rabbit experimental model of LF hypertrophy revealed that biglycan (BGN) is upregulated in hypertrophied LF by mechanical stress. However, the expression and function of BGN in human LF has not been well elucidated. To investigate the involvement of BGN in the pathomechanism of human ligamentum hypertrophy, first we confirmed increased expression of BGN by immunohistochemistry in the extracellular matrix of hypertrophied LF of LSS patients compared to LF without hypertrophy. Experiments using primary cell cultures revealed that BGN promoted cell proliferation. Furthermore, BGN induces changes in cell morphology and promotes myofibroblastic differentiation and cell migration. These effects are observed for both cells from hypertrophied and non-hypertrophied LF. The present study revealed hyper-expression of BGN in hypertrophied LF and function of increased proteoglycan in LF cells. BGN may play a crucial role in the pathophysiology of LF hypertrophy through cell proliferation, myofibroblastic differentiation, and cell migration.
Collapse
|
87
|
Ebel AV, Lutt G, Poole JA, Thiele GM, Baker JF, Cannon GW, Gaffo A, Kerr GS, Reimold A, Schwab P, Singh N, Richards JS, Ascherman DP, Mikuls TR, England BR. Association of Agricultural, Occupational, and Military Inhalants With Autoantibodies and Disease Features in US Veterans With Rheumatoid Arthritis. Arthritis Rheumatol 2021; 73:392-400. [PMID: 33058561 PMCID: PMC8236239 DOI: 10.1002/art.41559] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/02/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To determine the association of inhalant exposures with rheumatoid arthritis (RA)-related autoantibodies and severity in US veterans. METHODS Participants in the Veterans Affairs Rheumatoid Arthritis (VARA) registry were mailed surveys assessing occupational, agricultural, and military inhalant exposures. Demographic characteristics, disease activity, functional status, and extraarticular features were obtained from the VARA registry, while HLA-DRB1 shared epitope (SE) status, anti-cyclic citrullinated peptide (anti-CCP) antibodies, and rheumatoid factor (RF) were measured using banked DNA/serum from enrollment. Associations between inhalant exposures and RA-related factors (autoantibodies, severity, and extraarticular features) were assessed using multivariable linear and logistic regression models adjusted for age, sex, race, and tobacco use and stratified by SE status. Adjusted odds ratios (ORs) and 95% confidence intervals (95% CIs) were calculated. RESULTS Questionnaires were returned by 797 of 1,566 participants (50.9%). Survey respondents were older, more often White or male, and less frequently smokers, and had lower disease activity compared to nonrespondents. Anti-CCP positivity was more common among veterans exposed to burn pits (OR 1.66 [95% CI 1.02, 2.69]) and military waste disposal (OR 1.74 [95% CI 1.04, 2.93]) independent of other factors. Among participants who were positive for SE alleles, burn pit exposure (OR 5.69 [95% CI 2.73, 11.87]) and military waste disposal exposure (OR 5.05 [95% CI 2.42, 10.54]) were numerically more strongly associated with anti-CCP positivity. Several inhalant exposures were associated with the presence of chronic lung disease, but not with the presence of RF or the level of disease activity. CONCLUSION Military burn pit exposure and military waste disposal exposure were independently associated with the presence of anti-CCP antibodies in RA patients. These findings are consistent with emerging evidence that various inhalant exposures influence autoantibody expression and RA risk.
Collapse
Affiliation(s)
- Ariadne V. Ebel
- Ariadne V. Ebel, DO, Jill A. Poole, MD, Geoffrey M. Thiele, PhD, Ted R. Mikuls, MD, MSPH, Bryant R. England, MD, PhD: VA Nebraska–Western Iowa Health Care System and University of Nebraska Medical Center, Omaha
| | - Gabrielle Lutt
- Gabrielle Lutt: VA Nebraska–Western Iowa Health Care System and University of Nebraska Medical Center, Omaha, and University of Nebraska Lincoln
| | - Jill A. Poole
- Ariadne V. Ebel, DO, Jill A. Poole, MD, Geoffrey M. Thiele, PhD, Ted R. Mikuls, MD, MSPH, Bryant R. England, MD, PhD: VA Nebraska–Western Iowa Health Care System and University of Nebraska Medical Center, Omaha
| | - Geoffrey M. Thiele
- Ariadne V. Ebel, DO, Jill A. Poole, MD, Geoffrey M. Thiele, PhD, Ted R. Mikuls, MD, MSPH, Bryant R. England, MD, PhD: VA Nebraska–Western Iowa Health Care System and University of Nebraska Medical Center, Omaha
| | - Joshua F. Baker
- Joshua F. Baker, MD, MSCE: Philadelphia VA Medical Center and University of Pennsylvania, Philadelphia
| | - Grant W. Cannon
- Grant W. Cannon, MD: VA Salt Lake City Health Care System and University of Utah, Salt Lake City
| | - Angelo Gaffo
- Angelo Gaffo, MD, MSPH: Birmingham VA Medical Center and University of Alabama at Birmingham
| | - Gail S. Kerr
- Gail S. Kerr, MD: Washington, DC VA Medical Center, Georgetown University, and Howard University, Washington, DC
| | - Andreas Reimold
- Andreas Reimold, MD: Dallas VA Medical Center and University of Texas Southwestern, Dallas
| | - Pascale Schwab
- Pascale Schwab, MD: VA Portland Healthcare System and Oregon Health & Science University, Portland
| | - Namrata Singh
- Namrata Singh, MD, MSCI: University of Washington, Seattle
| | - J. Steuart Richards
- J. Steuart Richards, MBBS, Dana P. Ascherman, MD: VA Pittsburgh Health Care and University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Dana P. Ascherman
- J. Steuart Richards, MBBS, Dana P. Ascherman, MD: VA Pittsburgh Health Care and University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ted R. Mikuls
- Ariadne V. Ebel, DO, Jill A. Poole, MD, Geoffrey M. Thiele, PhD, Ted R. Mikuls, MD, MSPH, Bryant R. England, MD, PhD: VA Nebraska–Western Iowa Health Care System and University of Nebraska Medical Center, Omaha
| | - Bryant R. England
- Ariadne V. Ebel, DO, Jill A. Poole, MD, Geoffrey M. Thiele, PhD, Ted R. Mikuls, MD, MSPH, Bryant R. England, MD, PhD: VA Nebraska–Western Iowa Health Care System and University of Nebraska Medical Center, Omaha
| |
Collapse
|
88
|
Abstract
Rheumatoid arthritis is a chronic, autoimmune connective tissue disease. In addition to joint involvement, extra-articular changes and organ complications also occur in the course of the disease. Untreated disease leads to disability and premature death. Therefore, it is important to recognise and begin treatment early. Based on the presence of rheumatoid factor and antibodies against citrullinated peptides, we can distinguish two forms of the disease: seropositive and seronegative. Research continues to elucidate the mechanisms of the onset of the disease, as well as to uncover factors that induce and influence the activity of the disease. The presence of markers that initially appear and affect the course of the disease can potentially aid in patient treatment. In this article, we have collected biomarkers of rheumatoid arthritis that are well understood as well as those that have been recently described.
Collapse
Affiliation(s)
- Bogdan Kolarz
- Department of Internal Medicine, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszow, Poland
| | - Dominika Podgorska
- Department of Internal Medicine, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszow, Poland
| | - Rafal Podgorski
- Department of Biochemistry, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszow, Poland.,Centre for Innovative Research in Medical and Natural Sciences, University of Rzeszow, Rzeszow, Poland
| |
Collapse
|
89
|
Anaparti V, Smolik I, Meng X, O'Neil L, Jantz MA, Fritzler MJ, El-Gabalawy H. Expansion of Alternative Autoantibodies Does Not Follow the Evolution of Anti-Citrullinated Protein Antibodies in Preclinical Rheumatoid Arthritis: An Analysis in At-Risk First Degree Relatives. Arthritis Rheumatol 2021; 73:740-749. [PMID: 33538122 DOI: 10.1002/art.41675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 01/28/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Co-occurrence of autoantibodies specific for ≥1 autoimmune disease is widely prevalent in rheumatoid arthritis (RA) patients. To understand the prevalence of polyautoimmunity in preclinical RA, we performed a comprehensive autoantibody assessment in a First Nations cohort of at-risk first-degree relatives (FDR) of RA patients, a subset of whom subsequently developed RA (progressors). METHODS Venous blood was collected from all study participants (n = 50 RA patients and 64 FDR) at scheduled visits, and serum was stored at -20°C. High-sensitivity C-reactive protein level, anti-citrullinated protein antibody (ACPA) status, and autoantibody status were determined using commercially available enzyme-linked immunosorbent assay kits. Rheumatoid factor (RF) was detected by nephelometry. Antinuclear autoantibodies (ANA) were identified using Hep-2 indirect immunofluorescence assay (IFA) and classified according to international consensus nomenclature as various anti-cell (AC) patterns. RESULTS Of our study cohort, 78.9% had positive ANA reactivity (≥1:80), which was either a homogenous, fine-speckled (AC-1 and AC-4) or mixed IFA pattern. Importantly, the AC-4 and mixed ANA patterns were also observed in progressors at the time of disease onset. While all of the RA patients showed a high prevalence of arthritis-associated autoantibodies, they also had a high prevalence of extractable nuclear antigen-positive autoantibodies to other autoantigens. In FDR, we did not observe any increase in serum autoreactivity to nonarthritis autoantigens, either cross-sectionally or in samples collected longitudinally from progressors prior to RA onset. CONCLUSION While alternative autoimmunity and ANA positivity are widely prevalent in First Nations populations, including asymptomatic, seronegative FDR, expansion of alternative autoimmunity does not occur in parallel with ACPA expansion in FDR and is restricted to patients with established RA.
Collapse
Affiliation(s)
| | - Irene Smolik
- University of Manitoba, Winnipeg, Manitoba, Canada
| | - Xiaobo Meng
- University of Manitoba, Winnipeg, Manitoba, Canada
| | - Liam O'Neil
- University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | |
Collapse
|
90
|
Silverman GJ. Could Compensatory Autoantibody Production Affect Rheumatoid Arthritis Etiopathogenesis? Arthritis Rheumatol 2021; 73:728-730. [PMID: 33538128 DOI: 10.1002/art.41673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/28/2021] [Indexed: 11/10/2022]
|
91
|
Okamato Y, Ghosh T, Okamoto T, Schuyler RP, Seifert J, Charry LL, Visser A, Feser M, Fleischer C, Pedrick C, August J, Moss L, Bemis EA, Norris JM, Kuhn KA, Demoruelle MK, Deane KD, Ghosh D, Holers VM, Hsieh EWY. Subjects at-risk for future development of rheumatoid arthritis demonstrate a PAD4-and TLR-dependent enhanced histone H3 citrullination and proinflammatory cytokine production in CD14 hi monocytes. J Autoimmun 2021; 117:102581. [PMID: 33310262 PMCID: PMC7855988 DOI: 10.1016/j.jaut.2020.102581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022]
Abstract
The presence of anti-citrullinated protein/peptide antibodies (ACPA) and epitope spreading across the target autoantigens is a unique feature of rheumatoid arthritis (RA). ACPA are present in the peripheral blood for several years prior to the onset of arthritis and clinical classification of RA. ACPA recognize multiple citrullinated proteins, including histone H3 (H3). Intracellular citrullination of H3 in neutrophils and T cells is known to regulate immune cell function by promoting neutrophil extracellular trap formation and citrullinated autoantigen release as well as regulating the Th2/Th17 T cell phenotypic balance. However, the roles of H3 citrullination in other immune cells are not fully elucidated. We aimed to explore H3 citrullination and cytokine/metabolomic signatures in peripheral blood immune cells from subjects prior to and after the onset of RA, at baseline and in response to ex vivo toll-like receptor (TLR) stimulation. Here, we analyzed 13 ACPA (+) subjects without arthritis but at-risk for future development of RA, 14 early RA patients, and 13 healthy controls. We found significantly elevated H3 citrullination in CD14hi monocytes, as well as CD1c+ dendritic cells and CD66+ granulocytes. Unsupervised analysis identified two distinct subsets in CD14hi monocytes characterized by H3 modification and unique cytokine/metabolomic signatures. CD14hi monocytes with elevated TLR-stimulated H3 citrullination were significantly increased in ACPA (+) at-risk subjects. These cells were skewed to produce TNFα, MIP1β, IFNα, and partially IL-12. Additionally, they demonstrate peptidyl arginine deiminase 4 (PAD4) mediated upregulation of the glycolytic enzyme PFKFB3. These CD14hi monocytes with elevated H3 citrullination morphologically formed monocyte extracellular traps (METs). Taken together, dysregulated PAD4-driven cytokine production as well as MET formation in CD14hi monocytes in ACPA (+) at-risk subjects likely plays an important role in the development of RA via promoting and perpetuating inflammation and generation of citrullinated autoantigens.
Collapse
Affiliation(s)
- Yuko Okamato
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA; Tokyo Women's Medical University School of Medicine, Department of Rheumatology, Tokyo, Japan.
| | - Tusharkanti Ghosh
- Colorado School of Public Health, Department of Biostatistics and Informatics, Aurora, CO, USA
| | - Tsukasa Okamoto
- University of Colorado Denver, Department of Medicine, Aurora, CO, USA
| | - Ronald P Schuyler
- University of Colorado School of Medicine, Department of Immunology and Microbiology, Aurora, CO, USA
| | - Jennifer Seifert
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | - Laura Lenis Charry
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | - Ashley Visser
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | - Marie Feser
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | - Chelsie Fleischer
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | - Chong Pedrick
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | - Justin August
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | - Laurakay Moss
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | - Elizabeth A Bemis
- Colorado School of Public Health, Department of Epidemiology, Aurora, CO, USA
| | - Jill M Norris
- Colorado School of Public Health, Department of Epidemiology, Aurora, CO, USA
| | - Kristine A Kuhn
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | | | - Kevin D Deane
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | - Debashis Ghosh
- Colorado School of Public Health, Department of Biostatistics and Informatics, Aurora, CO, USA
| | - V Michael Holers
- University of Colorado Denver, Division of Rheumatology, Aurora, CO, USA
| | - Elena W Y Hsieh
- University of Colorado School of Medicine, Department of Immunology and Microbiology, Aurora, CO, USA; University of Colorado School of Medicine, Children's Hospital Colorado, Department of Pediatrics, Section of Allergy & Immunology, Aurora, CO, USA
| |
Collapse
|
92
|
Deane KD, Holers VM. Rheumatoid Arthritis Pathogenesis, Prediction, and Prevention: An Emerging Paradigm Shift. Arthritis Rheumatol 2021; 73:181-193. [PMID: 32602263 PMCID: PMC7772259 DOI: 10.1002/art.41417] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022]
Abstract
Rheumatoid arthritis (RA) is currently diagnosed and treated when an individual presents with signs and symptoms of inflammatory arthritis (IA) as well as other features, such as autoantibodies and/or imaging findings, that provide sufficient confidence that the individual has RA-like IA (e.g., meeting established classification criteria) that warrants therapeutic intervention. However, it is now known that there is a stage of seropositive RA during which circulating biomarkers and other factors (e.g., joint symptoms) can be used to predict if and when an individual who does not currently have IA may develop future clinically apparent IA and classifiable RA. Indeed, the discovery of the "pre-RA" stage of seropositive disease has led to the development of several clinical trials in which individuals are studied to identify ways to delay or prevent the onset of clinically apparent IA/RA. This review focuses on several issues pertinent to understanding the prevention of RA. These include discussion of the pathogenesis of pre-RA development, prediction of the likelihood and timing of future classifiable RA, and a review of completed and ongoing clinical trials in RA prevention. Furthermore, this review discusses challenges and opportunities to be addressed to effect a paradigm shift in RA, where in the near future, proactive risk assessment focused on prevention of RA will become a public health strategy in much the same manner as cardiovascular disease is managed today.
Collapse
Affiliation(s)
- Kevin D. Deane
- Division of Rheumatology, University of Colorado Denver School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - V. Michael Holers
- Division of Rheumatology, University of Colorado Denver School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
93
|
Bemis EA, Demoruelle MK, Seifert JA, Polinski KJ, Weisman MH, Buckner JH, Gregersen PK, Mikuls TR, ODell JR, Keating RM, Deane KD, Holers VM, Norris JM. Factors associated with progression to inflammatory arthritis in first-degree relatives of individuals with RA following autoantibody positive screening in a non-clinical setting. Ann Rheum Dis 2021; 80:154-161. [PMID: 32928740 PMCID: PMC7855648 DOI: 10.1136/annrheumdis-2020-217066] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Little is known about the likelihood of developing inflammatory arthritis (IA) in individuals who screen autoantibody positive (aAb+) in a non-clinical research setting. METHODS We screened for serum cyclic citrullinated peptide antibody (anti-CCP) and rheumatoid factor isotype aAbs in subjects who were at increased risk for rheumatoid arthritis (RA) because they are a first-degree relative of an individual with classified RA (n=1780). We evaluated combinations of aAbs and high titre aAbs, as defined by 2-times (2 x) the standard cut-off and an optimal cut-off, as predictors of our two outcomes, aAb+ persistence and incident IA. RESULTS 304 subjects (17.1%) tested aAb+; of those, 131 were IA-free and had at least one follow-up visit. Sixty-four per cent of these tested aAb+ again on their next visit. Anti-CCP+ at levels ≥2 x the standard cut-off was associated with 13-fold higher likelihood of aAb +persistence. During a median of 4.4 years (IQR: 2.2-7.2), 20 subjects (15.3%) developed IA. Among subjects that screened anti-CCP+ at ≥ 2 x or ≥an optimal cut-off, 32% and 26% had developed IA within 5 years, respectively. Both anti-CCP cut-offs conferred an approximate fourfold increased risk of future IA (HR 4.09 and HR 3.95, p<0.01). CONCLUSIONS These findings support that aAb screening in a non-clinical setting can identify RA-related aAb+ individuals, as well as levels and combinations of aAbs that are associated with higher risk for future IA. Monitoring for the development of IA in aAb+ individuals and similar aAb testing approaches in at-risk populations may identify candidates for prevention studies in RA.
Collapse
Affiliation(s)
- Elizabeth A Bemis
- Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado, USA
| | - M Kristen Demoruelle
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Denver, Colorado, USA
| | - Jennifer A Seifert
- Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado, USA
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Denver, Colorado, USA
| | - Kristen J Polinski
- Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado, USA
| | - Michael H Weisman
- Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jane H Buckner
- Department of Immunology, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Peter K Gregersen
- Robert S. Boas Center for Genomics and Human Genetics, The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, New York, USA
| | - Ted R Mikuls
- Division of Rheumatology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Division of Rheumatology, Veterans Affairs (VA) Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA
| | - James R ODell
- Division of Rheumatology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Division of Rheumatology, Veterans Affairs (VA) Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA
| | - Richard M Keating
- Division of Rheumatology, Scripps Clinic/Scripps Green Hospital, San Diego, California, USA
| | - Kevin D Deane
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Denver, Colorado, USA
| | - V Michael Holers
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Denver, Colorado, USA
| | - Jill M Norris
- Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado, USA
| |
Collapse
|
94
|
Hemshekhar M, Anaparti V, El-Gabalawy H, Mookherjee N. A bioavailable form of curcumin, in combination with vitamin-D- and omega-3-enriched diet, modifies disease onset and outcomes in a murine model of collagen-induced arthritis. Arthritis Res Ther 2021; 23:39. [PMID: 33494792 PMCID: PMC7836561 DOI: 10.1186/s13075-021-02423-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/11/2021] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Curcumin (CUR), vitamin D3 (D3), and omega-3-fatty acids (O3FA) individually modulate inflammation and pain in arthritis. Although these supplements are widely used, their combinatorial effects have not been defined. In this study, we examined the effects of a D3 and O3FA (VO)-enriched diet in conjunction with a highly bioavailable form of CUR (Cureit/Acumin™) in a collagen-induced arthritis (CIA) murine model. METHODS Male DBA/1J mice were acclimatized to VO-enriched diet and challenged with bovine collagen II (CII). Bioavailable CUR was administered daily by oral gavage from the onset of CII challenge. Disease severity was determined by monitoring joint thickness and standardized clinical score. Cellular infiltration and cartilage degradation in the joints were assessed by histology, serum cytokines profiled by Meso Scale Discovery multiplex assay, and joint matrix metalloproteinases examined by western blots. RESULTS CUR by itself significantly decreased disease severity by ~ 60%. Administration of CUR in CIA mice taking a VO-enriched diet decreased disease severity by > 80% and maximally delayed disease onset and progression. Some of the disease-modifying effects was mediated by CUR alone, e.g., suppression of serum anti-collagen antibodies and decrease of cellular infiltration and MMP abundance in the joints of CIA mice. Although CUR alone suppressed inflammatory cytokines in serum of CIA mice, the combination of CUR and VO diet significantly enhanced the suppression (> 2-fold compared to CUR) of TNF, IFN-γ, and MCP-1, all known to be associated with RA pathogenesis. CONCLUSION This study provides proof-of-concept that the combination of bioavailable CUR, vitamin D3, and O3FA substantially delays the development and severity of CIA. These findings provide a rationale for systematically evaluating these widely available supplements in individuals at risk for developing future RA.
Collapse
Affiliation(s)
- Mahadevappa Hemshekhar
- Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, 799 John Buhler Research Centre, 715 McDermot Ave, Winnipeg, MB, Canada
| | - Vidyanand Anaparti
- Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, 799 John Buhler Research Centre, 715 McDermot Ave, Winnipeg, MB, Canada
| | - Hani El-Gabalawy
- Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, 799 John Buhler Research Centre, 715 McDermot Ave, Winnipeg, MB, Canada.,Division of Rheumatology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada.,Department of Immunology, University of Manitoba, Winnipeg, MB, R3E3P4, Canada
| | - Neeloffer Mookherjee
- Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, 799 John Buhler Research Centre, 715 McDermot Ave, Winnipeg, MB, Canada. .,Department of Immunology, University of Manitoba, Winnipeg, MB, R3E3P4, Canada.
| |
Collapse
|
95
|
Böröcz K, Simon D, Erdő‐Bonyár S, Kovács KT, Tuba É, Czirják L, Németh P, Berki T. Relationship between natural and infection-induced antibodies in systemic autoimmune diseases (SAD): SLE, SSc and RA. Clin Exp Immunol 2021; 203:32-40. [PMID: 32959462 PMCID: PMC7744489 DOI: 10.1111/cei.13521] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/06/2020] [Accepted: 08/21/2020] [Indexed: 12/19/2022] Open
Abstract
Infection or vaccine-induced T cell-dependent immune response and the subsequent high-affinity neutralizing antibody production have been extensively studied, while the connection between natural autoantibodies (nAAbs) and disease-specific antibodies has not been thoroughly investigated. Our goal was to find the relationship between immunoglobulin (Ig)M and IgG isotype nAAbs and infection or vaccine-induced and disease-related autoantibody levels in systemic autoimmune diseases (SAD). A previously described indirect enzyme-linked immunosorbent assay (ELISA) test was used for detection of IgM/IgG nAAbs against citrate synthase (anti-CS) and F4 fragment (anti-F4) of DNA topoisomerase I in 374 SAD samples, with a special focus on systemic lupus erythematosus (SLE) (n = 92), rheumatoid arthritis (n = 73) and systemic sclerosis (n = 157) disease groups. Anti-measles IgG and anti-dsDNA IgG/IgM autoantibodies were measured using commercial and in-house indirect ELISA tests. In all SAD groups the anti-measles IgG-seropositive cases showed significantly higher anti-CS IgG titers (P = 0·011). In anti-dsDNA IgG-positive SLE patients, we detected significantly higher levels of anti-CS and anti-F4 IgG nAAbs (P = 0·001 and < 0·001, respectively). Additionally, we found increased levels of IgM isotypes of anti-CS and anti-F4 nAAbs in anti-dsDNA IgM-positive SLE patients (P = 0·002 and 0·016, respectively). The association between IgG isotypes of pathogen- or autoimmune disease-related antibodies and the IgG nAAbs may underscore the immune response-inducible nature of the diseases investigated. The relationship between protective anti-dsDNA IgM and the IgM isotype of anti-F4 and anti-CS may provide immunoserological evidence for the beneficial roles of nAAbs in SLE patients.
Collapse
Affiliation(s)
- K. Böröcz
- Department of Immunology and BiotechnologyUniversity of Pécs Medical SchoolPécsHungary
| | - D. Simon
- Department of Immunology and BiotechnologyUniversity of Pécs Medical SchoolPécsHungary
| | - S. Erdő‐Bonyár
- Department of Immunology and BiotechnologyUniversity of Pécs Medical SchoolPécsHungary
- Department of Rheumatology and ImmunologyUniversity of PécsMedical SchoolPécsHungary
| | - K. T. Kovács
- Department of Rheumatology and ImmunologyUniversity of PécsMedical SchoolPécsHungary
| | - É. Tuba
- Department of Rheumatology and ImmunologyUniversity of PécsMedical SchoolPécsHungary
| | - L. Czirják
- Department of Rheumatology and ImmunologyUniversity of PécsMedical SchoolPécsHungary
| | - P. Németh
- Department of Immunology and BiotechnologyUniversity of Pécs Medical SchoolPécsHungary
| | - T. Berki
- Department of Immunology and BiotechnologyUniversity of Pécs Medical SchoolPécsHungary
| |
Collapse
|
96
|
O'Neil LJ, Spicer V, Smolik I, Meng X, Goel RR, Anaparti V, Wilkins J, El-Gabalawy HS. Association of a Serum Protein Signature With Rheumatoid Arthritis Development. Arthritis Rheumatol 2021; 73:78-88. [PMID: 32770634 DOI: 10.1002/art.41483] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 06/02/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The pathophysiologic events that precede the onset of rheumatoid arthritis (RA) remain incompletely understood. This study was undertaken to identify changes in the serum proteome that precede the onset of RA, with the aim of providing new insights into the pathogenic mechanisms that lead to its development. METHODS In a cohort of first-degree relatives of Indigenous North American RA patients, the SomaScan proteomics platform was used to determine the levels of 1,307 proteins in multiple longitudinal serum samples from 17 individuals who were followed up prospectively to the time of disease onset. Proteomic signatures from this group of individuals (designated the progressor group) were compared to those in a group of individuals who were considered at risk of developing RA, stratified as either positive (n = 63) or negative (n = 47) for anti-citrullinated protein antibodies (ACPAs) (designated the at-risk group). Machine learning was used to identify a protein signature that could accurately classify those individuals at highest risk of future RA development. RESULTS A preclinical proteomic signature that differentiated RA progressors from at-risk individuals, irrespective of ACPA status, was identified (area under the curve 0.913, accuracy 91.2%). Importantly, the predictive preclinical proteomic signature was present not only in serum samples obtained close to the onset of RA, but also in serum samples obtained a median of 30.9 months prior to onset. Network analysis implicated the activation of Toll-like receptor 2 and production of tumor necrosis factor and interleukin-1 as key events that precede RA progression. CONCLUSION Alterations in the serum proteome in the preclinical phase of RA can emerge years prior to the onset of disease. Our findings suggest that the serum proteome provides a rich source of proteins serving both to classify at-risk individuals and to identify molecular pathways involved in the development of clinically detectable RA.
Collapse
Affiliation(s)
| | | | - Irene Smolik
- University of Manitoba, Winnipeg, Manitoba, Canada
| | - Xiaobo Meng
- University of Manitoba, Winnipeg, Manitoba, Canada
| | - Rishi R Goel
- University of Pennsylvania Perelman School of Medicine, Philadelphia
| | | | - John Wilkins
- University of Manitoba, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
97
|
Polinski KJ, Bemis EA, Yang F, Crume T, Demoruelle MK, Feser M, Seifert J, O'Dell JR, Mikuls TR, Weisman MH, Gregersen PK, Keating RM, Buckner J, Reisdorph N, Deane KD, Clare-Salzler M, Holers VM, Norris JM. Association of Lipid Mediators With Development of Future Incident Inflammatory Arthritis in an Anti-Citrullinated Protein Antibody-Positive Population. Arthritis Rheumatol 2021; 73:955-962. [PMID: 33381911 DOI: 10.1002/art.41631] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 12/23/2020] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To determine the association of polyunsaturated fatty acid (PUFA)-derived lipid mediators with progression from rheumatoid arthritis (RA)-related autoimmunity to inflammatory arthritis (IA). METHODS We conducted a prospective cohort study using data from the Studies of the Etiology of Rheumatoid Arthritis (SERA). SERA enrolled first-degree relatives (FDRs) of individuals with RA (FDR cohort) and individuals who screened positive for RA-related autoantibodies at health fairs (screened cohort). We followed up 133 anti-cyclic citrullinated peptide 3.1 (anti-CCP3.1)-positive participants, 29 of whom developed IA. Lipid mediators selected a priori were quantified from stored plasma samples using liquid chromatography tandem mass spectrometry. We fit multivariable Cox proportional hazards models for each lipid mediator as a time-varying variable. For lipid mediators found to be significantly associated with IA, we then examined interleukin-1β (IL-1β), IL-6, IL-8, and tumor necrosis factor (TNF) as potential statistical mediators. RESULTS For every 1 natural log pg/ml increase in the circulating plasma levels of proinflammatory 5-HETE, the risk of developing IA increased by 241% (hazard ratio 2.41 [95% confidence interval 1.43-4.07]) after adjusting for age at baseline, cohort (FDR or screened), and shared epitope status. The models examining 15-HETE and 17-HDHA had the same trend but did not reach significance. We did not find evidence that the association between 5-HETE and IA risk was influenced by the proinflammatory cytokines tested. CONCLUSION In a prospective cohort of anti-CCP-positive individuals, higher levels of 5-HETE, an important precursor to proinflammatory leukotrienes, is associated with subsequent IA. Our findings highlight the potential significance of these PUFA metabolites in pre-RA populations.
Collapse
Affiliation(s)
| | | | - Fan Yang
- Colorado School of Public Health, Aurora
| | | | | | - Marie Feser
- University of Colorado School of Medicine, Aurora
| | | | | | | | | | | | | | - Jane Buckner
- Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Nichole Reisdorph
- University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora
| | | | | | | | | |
Collapse
|
98
|
Holers VM. Challenges and Opportunities: Using Omics to Generate Testable Insights Into Pathogenic Mechanisms in Preclinical Seropositive Rheumatoid Arthritis. Arthritis Rheumatol 2020; 73:1-4. [DOI: 10.1002/art.41479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/04/2020] [Indexed: 12/19/2022]
|
99
|
Murata K, Ito H, Hashimoto M, Murakami K, Watanabe R, Tanaka M, Yamamoto W, Matsuda S. Fluctuation in anti-cyclic citrullinated protein antibody level predicts relapse from remission in rheumatoid arthritis: KURAMA cohort. Arthritis Res Ther 2020; 22:268. [PMID: 33183344 PMCID: PMC7664066 DOI: 10.1186/s13075-020-02366-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/03/2020] [Indexed: 12/23/2022] Open
Abstract
Background The positivity of anti-citrullinated protein/peptide antibodies (ACPAs) is a clinically useful diagnostic and prognostic marker in rheumatoid arthritis (RA). However, the significance of ACPA titer and its fluctuation remain unclear. This study aimed to assess the role of ACPA titer and its fluctuation on disease activity and the prognosis of RA. Methods Data obtained from the Kyoto University Rheumatoid Arthritis Management Alliance (KURAMA) cohort was analyzed. Patients whose ACPA was measured at least twice between 2011 and 2019 and whose ACPA was positive at least once were included in this study. The association between the clinical variable and ACPA titer or its change was investigated. Results ACPA titer was measured in a total of 3286 patients, 1806 of whom were ACPA-positive at least once. Among them, the ACPA titer level was measured more than once in 1355 patients. Very weak correlation was observed between the ACPA titer level and disease activity. Additionally, there was no trend in the fluctuation of ACPA titer level in each patient; ACPA titer level fluctuated in some patients, but not in others. Patients with high variable levels of ACPA titer were more likely to relapse from remission. In the analysis of two consecutive ACPA measurements, the titer changes predicted the relapse from remission within a year of the second measurement. Conclusions The ACPA titer level fluctuated in some patients. Very weak correlation was observed between the ACPA titer level and disease activity. Fluctuation in ACPA titer level predicted relapse from remission in patients with RA. Supplementary information The online version contains supplementary material available at 10.1186/s13075-020-02366-x.
Collapse
Affiliation(s)
- Koichi Murata
- Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo, Kyoto, 606-8507, Japan. .,Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, Japan.
| | - Hiromu Ito
- Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo, Kyoto, 606-8507, Japan.,Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, Japan
| | - Motomu Hashimoto
- Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo, Kyoto, 606-8507, Japan
| | - Kosaku Murakami
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, Japan
| | - Ryu Watanabe
- Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo, Kyoto, 606-8507, Japan
| | - Masao Tanaka
- Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo, Kyoto, 606-8507, Japan
| | - Wataru Yamamoto
- Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo, Kyoto, 606-8507, Japan.,Department of Health Information Management, Kurashiki Sweet Hospital, Nakasho, Kurashiki, Japan
| | - Shuichi Matsuda
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Sakyo, Kyoto, Japan
| |
Collapse
|
100
|
Demoruelle MK. Improving the Prediction of Rheumatoid Arthritis Using Multiple Anti–Cyclic Citrullinated Peptide Assays. Arthritis Rheumatol 2020; 72:1789-1790. [DOI: 10.1002/art.41471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/15/2020] [Indexed: 11/11/2022]
|