51
|
Stephenson P, Stacey N, Brüser M, Pullen N, Ilyas M, O'Neill C, Wells R, Østergaard L. The power of model-to-crop translation illustrated by reducing seed loss from pod shatter in oilseed rape. PLANT REPRODUCTION 2019; 32:331-340. [PMID: 31222677 PMCID: PMC6820617 DOI: 10.1007/s00497-019-00374-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/14/2019] [Indexed: 05/17/2023]
Abstract
Elucidation of key regulators in Arabidopsis fruit patterning has facilitated knowledge-translation into crop species to address yield loss caused by premature seed dispersal (pod shatter). In the 1980s, plant scientists descended on a small weed Arabidopsis thaliana (thale cress) and developed it into a powerful model system to study plant biology. The massive advances in genetics and genomics since then have allowed us to obtain incredibly detailed knowledge on specific biological processes of Arabidopsis growth and development, its genome sequence and the function of many of the individual genes. This wealth of information provides immense potential for translation into crops to improve their performance and address issues of global importance such as food security. Here, we describe how fundamental insight into the genetic mechanism by which seed dispersal occurs in members of the Brassicaceae family can be exploited to reduce seed loss in oilseed rape (Brassica napus). We demonstrate that by exploiting data on gene function in model species, it is possible to adjust the pod-opening process in oilseed rape, thereby significantly increasing yield. Specifically, we identified mutations in multiple paralogues of the INDEHISCENT and GA4 genes in B. napus and have overcome genetic redundancy by combining mutant alleles. Finally, we present novel software for the analysis of pod shatter data that is applicable to any crop for which seed dispersal is a serious problem. These findings highlight the tremendous potential of fundamental research in guiding strategies for crop improvement.
Collapse
Affiliation(s)
- Pauline Stephenson
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Nicola Stacey
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Marie Brüser
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
- , London, UK
| | - Nick Pullen
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Muhammad Ilyas
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
- Department of Biological Sciences, Faculty of Basic and Applied Science, International Islamic University, Islamabad, Pakistan
| | - Carmel O'Neill
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Rachel Wells
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Lars Østergaard
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| |
Collapse
|
52
|
Zaman QU, Chu W, Hao M, Shi Y, Sun M, Sang SF, Mei D, Cheng H, Liu J, Li C, Hu Q. CRISPR/Cas9-Mediated Multiplex Genome Editing of JAGGED Gene in Brassica napus L. Biomolecules 2019; 9:biom9110725. [PMID: 31726660 PMCID: PMC6921047 DOI: 10.3390/biom9110725] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 11/07/2019] [Indexed: 11/16/2022] Open
Abstract
Pod shattering resistance is an essential component to achieving a high yield, which is a substantial objective in polyploid rapeseed cultivation. Previous studies have suggested that the Arabidopsis JAGGED (JAG) gene is a key factor implicated in the regulatory web of dehiscence fruit. However, its role in controlling pod shattering resistance in oilseed rape is still unknown. In this study, multiplex genome editing was carried out by the CRISPR/Cas9 system on five homoeologs (BnJAG.A02, BnJAG.C02, BnJAG.C06, BnJAG.A07, and BnJAG.A08) of the JAG gene. Knockout mutagenesis of all homoeologs drastically affected the development of the lateral organs in organizing pod shape and size. The cylindrical body of the pod comprised a number of undifferentiated cells like a callus, without distinctive valves, replum, septum, and valve margins. Pseudoseeds were produced, which were divided into two halves with an incomplete layer of cells (probably septum) that separated the undifferentiated cells. These mutants were not capable of generating any productive seeds for further generations. However, one mutant line was identified in which only a BnJAG.A08-NUB-Like paralog of the JAG gene was mutated. Knockout mutagenesis in BnJAG.A08-NUB gene caused significant changes in the pod dehiscence zone. The replum region of the mutant was increased to a great extent, resulting in enlarged cell size, bumpy fruit, and reduced length compared with the wild type. A higher replum-valve joint area may have increased the resistance to pod shattering by ~2-fold in JAG mutants compared with wild type. Our results offer a basis for understanding variations in Brassica napus fruit by mutating JAG genes and providing a way forward for other Brassicaceae species.
Collapse
Affiliation(s)
- Qamar U Zaman
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, No. 2 Xudong 2nd Road, Wuhan 430062, China; (Q.U.Z.); (W.C.); (M.H.); (Y.S.); (M.S.); (S.-F.S.); (D.M.); (H.C.); (J.L.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wen Chu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, No. 2 Xudong 2nd Road, Wuhan 430062, China; (Q.U.Z.); (W.C.); (M.H.); (Y.S.); (M.S.); (S.-F.S.); (D.M.); (H.C.); (J.L.)
| | - Mengyu Hao
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, No. 2 Xudong 2nd Road, Wuhan 430062, China; (Q.U.Z.); (W.C.); (M.H.); (Y.S.); (M.S.); (S.-F.S.); (D.M.); (H.C.); (J.L.)
| | - Yuqin Shi
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, No. 2 Xudong 2nd Road, Wuhan 430062, China; (Q.U.Z.); (W.C.); (M.H.); (Y.S.); (M.S.); (S.-F.S.); (D.M.); (H.C.); (J.L.)
| | - Mengdan Sun
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, No. 2 Xudong 2nd Road, Wuhan 430062, China; (Q.U.Z.); (W.C.); (M.H.); (Y.S.); (M.S.); (S.-F.S.); (D.M.); (H.C.); (J.L.)
| | - Shi-Fei Sang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, No. 2 Xudong 2nd Road, Wuhan 430062, China; (Q.U.Z.); (W.C.); (M.H.); (Y.S.); (M.S.); (S.-F.S.); (D.M.); (H.C.); (J.L.)
| | - Desheng Mei
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, No. 2 Xudong 2nd Road, Wuhan 430062, China; (Q.U.Z.); (W.C.); (M.H.); (Y.S.); (M.S.); (S.-F.S.); (D.M.); (H.C.); (J.L.)
| | - Hongtao Cheng
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, No. 2 Xudong 2nd Road, Wuhan 430062, China; (Q.U.Z.); (W.C.); (M.H.); (Y.S.); (M.S.); (S.-F.S.); (D.M.); (H.C.); (J.L.)
| | - Jia Liu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, No. 2 Xudong 2nd Road, Wuhan 430062, China; (Q.U.Z.); (W.C.); (M.H.); (Y.S.); (M.S.); (S.-F.S.); (D.M.); (H.C.); (J.L.)
| | - Chao Li
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, No. 2 Xudong 2nd Road, Wuhan 430062, China; (Q.U.Z.); (W.C.); (M.H.); (Y.S.); (M.S.); (S.-F.S.); (D.M.); (H.C.); (J.L.)
- Correspondence: (C.L.); (Q.H.)
| | - Qiong Hu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, No. 2 Xudong 2nd Road, Wuhan 430062, China; (Q.U.Z.); (W.C.); (M.H.); (Y.S.); (M.S.); (S.-F.S.); (D.M.); (H.C.); (J.L.)
- Correspondence: (C.L.); (Q.H.)
| |
Collapse
|
53
|
Tomkowiak A, Bocianowski J, Wolko Ł, Adamczyk J, Mikołajczyk S, Kowalczewski PŁ. Identification of Markers Associated with Yield Traits and Morphological Features in Maize ( Zea mays L.). PLANTS 2019; 8:plants8090330. [PMID: 31491958 PMCID: PMC6783969 DOI: 10.3390/plants8090330] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 12/05/2022]
Abstract
Association mapping is a powerful approach to detect associations between traits of interest and genetic markers based on linkage disequilibrium in molecular plant breeding. The aim of this study was the identification of single nucleotide polymorphisms (SNPs) and SilicoDArT markers associated with yield traits and morphological features in maize. Plant material constituted inbred lines. The field experiment with inbred lines was established on 10 m2 plots in a set of complete random blocks in three replicates. We observed 22 quantitative traits. Association mapping was performed in this study using a method based on the mixed linear model with the population structure estimated by eigenanalysis (principal component analysis applied to all markers) and modeled by random effects. As a result of mapping, 969 markers (346 SNPs and 623 SilocoDArT) were selected from 49,911 identified polymorphic molecular markers, which were significantly associated with the analyzed morphological features and yield structure traits. Markers associated with five or six traits were selected during further analyses, including SilicoDArT 4591115 (anthocyanin coloration of anthers, length of main axis above the highest lateral branch, cob length, number of grains per cob, weight of fresh grains per cob and weight of fresh grains per cob at 15% moisture), SilicoDArT 7059939 (anthocyanin coloration of glumes of cob, time of anthesis—50% of flowering plants, time of silk emergence—50% of flowering plants, anthocyanin coloration of anthers and cob diameter), SilicoDArT 5587991 (anthocyanin coloration of glumes of cob, time of anthesis—50% of flowering plants, anthocyanin coloration of anthers, curvature of lateral branches and number of rows of grain). The two genetic similarity dendrograms between the inbred lines were constructed based on all significant SNPs and SilicoDArT markers. On both dendrograms lines clustered according to the kernel structure (flint, dent) and origin. The selected markers may be useful in predicting hybrid formulas in a heterosis culture. The present study demonstrated that molecular SNP and Silico DArT markers could be used in this species to group lines in terms of origin and lines with incomplete origin data. They can also be useful in maize in predicting the hybrid formula and can find applications in the selection of parental components for heterosis crossings.
Collapse
Affiliation(s)
- Agnieszka Tomkowiak
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, 11 Dojazd St., 60-632 Poznań, Poland.
| | - Jan Bocianowski
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, 28 Wojska Polskiego St., 60-637 Poznań, Poland.
| | - Łukasz Wolko
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, 11 Dojazd St., 60-632 Poznań, Poland.
| | - Józef Adamczyk
- Plant Breeding Smolice Ltd., Co., Smolice 146, 63-740 Kobylin, Poland.
| | - Sylwia Mikołajczyk
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, 11 Dojazd St., 60-632 Poznań, Poland.
| | - Przemysław Łukasz Kowalczewski
- Institute of Food Technology of Plant Origin, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624 Poznań, Poland.
| |
Collapse
|
54
|
Zhu Q, King GJ, Liu X, Shan N, Borpatragohain P, Baten A, Wang P, Luo S, Zhou Q. Identification of SNP loci and candidate genes related to four important fatty acid composition in Brassica napus using genome wide association study. PLoS One 2019; 14:e0221578. [PMID: 31442274 PMCID: PMC6707581 DOI: 10.1371/journal.pone.0221578] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 08/11/2019] [Indexed: 12/16/2022] Open
Abstract
Rapeseed oil (canola, Brassica napus L.) is an important healthy vegetable oil throughout the world, the nutritional and economical value of which largely depends on its seed fatty acid composition. In this study, based on 201,187 SNP markers developed from the SLAF-seq (specific locus amplified fragment sequencing), a genome wide association study of four important fatty acid content traits (erucic acid, oleic acid, linoleic acid and linolenic acid) in a panel of 300 inbred lines of rapeseed in two environments (JXAU and JXRIS) was carried out. A total of 148 SNP loci significantly associated with these traits were detected by MLM model analysis respectively, and 30 SNP loci on A08 and C03 chromosomes were detected in three traits of erucic acid, oleic acid and linoleic acid contents simultaneously. Furthermore, 108 highly favorable alleles for increasing oleic acid and linoleic acid content, also for decreasing erucic acid content simultaneously were observed. By a basic local alignment search tool (BLAST) search with in a distance of 100 Kb around these significantly SNP-trait associations, we identified 20 orthologs of the functional candidate genes related to fatty acid biosynthesis, including the known vital fatty acid biosynthesis genes of BnaA.FAE1 and BnaC. FAE1 on the A08 and C03 chromosomes, and other potential candidate genes involving in the fatty acid biosynthesis pathway, such as the orthologs genes of FAD2, LACS09, KCS17, CER4, TT16 and ACBP5. This study lays a basis for uncovering the genetic variations and the improvement of fatty acid composition in B. napus.
Collapse
Affiliation(s)
- Qianglong Zhu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, China
| | - Graham J. King
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | - Xingyue Liu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, China
| | - Nan Shan
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, China
| | | | - Abdul Baten
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | - Putao Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, China
| | - Sha Luo
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, China
| | - Qinghong Zhou
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, China
- * E-mail:
| |
Collapse
|
55
|
O’Brien DM, Keogh JS, Silla AJ, Byrne PG. Female choice for related males in wild red-backed toadlets (Pseudophryne coriacea). Behav Ecol 2019. [DOI: 10.1093/beheco/arz031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
AbstractMate choice for genetic benefits is assumed to be widespread in nature, yet very few studies have comprehensively examined relationships between female mate choice and male genetic quality in wild populations. Here, we use exhaustive sampling and single nucleotide polymorphisms to provide a partial test of the “good genes as heterozygosity” hypothesis and the “genetic compatibility” hypothesis in an entire population of terrestrial breeding red-backed toadlets, Pseudophryne coriacea. We found that successful males did not display higher heterozygosity, despite a positive relationship between male heterozygosity and offspring heterozygosity. Rather, in the larger of 2 breeding events, we found that successful males were more genetically similar to their mate than expected under random mating, indicating that females can use pre- or post-copulatory mate choice mechanisms to bias paternity toward more related males. These findings provide no support for the good genes as heterozygosity hypothesis but lend support to the genetic compatibility hypothesis. A complete test of this hypothesis will now require evaluating how parental genetic similarity impacts offspring fitness. Terrestrial toadlets show a high degree of site fidelity, high levels of genetic structuring between populations, and frequently hybridize with sister species. As such, female mate choice for related males may be an adaptive strategy to reduce outbreeding depression. Our findings provide the first population-wide evidence for non-random preferential inbreeding in a wild amphibian. We argue that such reproductive patterns may be common in amphibians because extreme genetic differentiation within meta-populations creates an inherently high risk of outbreeding depression.
Collapse
Affiliation(s)
- Daniel M O’Brien
- School of Earth, Atmospheric and Lifesciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - J Scott Keogh
- Ecology & Evolution, Research School of Biology, The Australian National University, Canberra, Australia
| | - Aimee J Silla
- School of Earth, Atmospheric and Lifesciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Phillip G Byrne
- School of Earth, Atmospheric and Lifesciences, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
56
|
Raman H, Raman R, Diffey S, Qiu Y, McVittie B, Barbulescu DM, Salisbury PA, Marcroft S, Delourme R. Stable Quantitative Resistance Loci to Blackleg Disease in Canola ( Brassica napus L.) Over Continents. FRONTIERS IN PLANT SCIENCE 2018; 9:1622. [PMID: 30532758 PMCID: PMC6265502 DOI: 10.3389/fpls.2018.01622] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/18/2018] [Indexed: 05/02/2023]
Abstract
The hemibiotrophic fungus, Leptosphaeria maculans is the most devastating pathogen, causing blackleg disease in canola (Brassica napus L). To study the genomic regions involved in quantitative resistance (QR), 259-276 DH lines from Darmor-bzh/Yudal (DYDH) population were assessed for resistance to blackleg under shade house and field conditions across 3 years. In different experiments, the broad sense heritability varied from 43 to 95%. A total of 27 significant quantitative trait loci (QTL) for QR were detected on 12 chromosomes and explained between 2.14 and 10.13% of the genotypic variance. Of the significant QTL, at least seven were repeatedly detected across different experiments on chromosomes A02, A07, A09, A10, C01, and C09. Resistance alleles were mainly contributed by 'Darmor-bzh' but 'Yudal' also contributed few of them. Our results suggest that plant maturity and plant height may have a pleiotropic effect on QR in our conditions. We confirmed that Rlm9 which is present in 'Darmor-bzh' is not effective to confer resistance in our Australian field conditions. Comparative mapping showed that several R genes coding for nucleotide-binding leucine-rich repeat (LRR) receptors map in close proximity (within 200 Kb) of the significant trait-marker associations on the reference 'Darmor-bzh' genome assembly. More importantly, eight significant QTL regions were detected across diverse growing environments: Australia, France, and United Kingdom. These stable QTL identified herein can be utilized for enhancing QR in elite canola germplasm via marker- assisted or genomic selection strategies.
Collapse
Affiliation(s)
- Harsh Raman
- Graham Centre for Agricultural Innovation, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| | - Rosy Raman
- Graham Centre for Agricultural Innovation, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| | - Simon Diffey
- Centre for Bioinformatics and Biometrics, University of Wollongong, Wollongong, NSW, Australia
| | - Yu Qiu
- Graham Centre for Agricultural Innovation, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| | - Brett McVittie
- Graham Centre for Agricultural Innovation, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| | | | - Phil Anthony Salisbury
- Agriculture Victoria, Grains Innovation Park, Horsham, VIC, Australia
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | | | - Regine Delourme
- IGEPP, INRA, Agrocampus Ouest, Université Rennes, Le Rheu, France
| |
Collapse
|
57
|
Trněný O, Brus J, Hradilová I, Rathore A, Das RR, Kopecký P, Coyne CJ, Reeves P, Richards C, Smýkal P. Molecular Evidence for Two Domestication Events in the Pea Crop. Genes (Basel) 2018; 9:genes9110535. [PMID: 30404223 PMCID: PMC6265838 DOI: 10.3390/genes9110535] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 10/25/2018] [Accepted: 10/29/2018] [Indexed: 12/02/2022] Open
Abstract
Pea, one of the founder crops from the Near East, has two wild species: Pisum sativum subsp. elatius, with a wide distribution centered in the Mediterranean, and P. fulvum, which is restricted to Syria, Lebanon, Israel, Palestine and Jordan. Using genome wide analysis of 11,343 polymorphic single nucleotide polymorphisms (SNPs) on a set of wild P. elatius (134) and P. fulvum (20) and 74 domesticated accessions (64 P. sativum landraces and 10 P. abyssinicum), we demonstrated that domesticated P. sativum and the Ethiopian pea (P. abyssinicum) were derived from different P. elatius genepools. Therefore, pea has at least two domestication events. The analysis does not support a hybrid origin of P. abyssinicum, which was likely introduced into Ethiopia and Yemen followed by eco-geographic adaptation. Both P. sativum and P. abyssinicum share traits that are typical of domestication, such as non-dormant seeds. Non-dormant seeds were also found in several wild P. elatius accessions which could be the result of crop to wild introgression or natural variation that may have been present during pea domestication. A sub-group of P. elatius overlaps with P. sativum landraces. This may be a consequence of bidirectional gene-flow or may suggest that this group of P. elatius is the closest extant wild relative of P. sativum.
Collapse
Affiliation(s)
- Oldřich Trněný
- Agricultural Research Ltd., 66441 Troubsko, Czech Republic.
| | - Jan Brus
- Department of Geoinformatics, Palacký University, 783 71 Olomouc, Czech Republic.
| | - Iveta Hradilová
- Department of Botany, Palacký University, 783 71 Olomouc, Czech Republic.
| | - Abhishek Rathore
- The International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, Telangana 502324, India.
| | - Roma R Das
- The International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, Telangana 502324, India.
| | - Pavel Kopecký
- Crop Research Institute, The Centre of the Region Haná for biotechnological and Agricultural Research, 783 71 Olomouc, Czech Republic.
| | - Clarice J Coyne
- United States Department of Agriculture, Washington State University, Pullman, WA 99164-6402, USA.
| | - Patrick Reeves
- United States Department of Agriculture, National Laboratory for Genetic Resources Preservation, Fort Collins, CO 80521, USA.
| | - Christopher Richards
- United States Department of Agriculture, National Laboratory for Genetic Resources Preservation, Fort Collins, CO 80521, USA.
| | - Petr Smýkal
- Department of Botany, Palacký University, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
58
|
Plich J, Przetakiewicz J, Śliwka J, Flis B, Wasilewicz-Flis I, Zimnoch-Guzowska E. Novel gene Sen2 conferring broad-spectrum resistance to Synchytrium endobioticum mapped to potato chromosome XI. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2321-2331. [PMID: 30094457 PMCID: PMC6208938 DOI: 10.1007/s00122-018-3154-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/30/2018] [Indexed: 05/09/2023]
Abstract
Key message Sen2 gene for potato wart resistance, located on chromosome XI in a locus distinct from Sen1 , provides resistance against eight wart pathotypes, including the virulent ones important in Europe. Synchytrium endobioticum causes potato wart disease imposing severe losses in potato production, and as a quarantine pathogen in many countries, it results in lost trade markets and land for potato cultivation. The resistance to S. endobioticum pathotype 1(D1) is widespread in potato cultivars but new virulent pathotypes appear and the problem re-emerges. To characterize and map a new gene for resistance to potato wart, we used diploid F1 potato population from a cross of potato clone resistant to S. endobioticum pathotype 1(D1) and virulent pathotypes: 2(G1), 6(O1), 8(F1), 18(T1), 2(Ch1), 3(M1) and 39(P1) with a potato clone resistant to pathotype 1(D1) only. The 176 progeny clones were tested for resistance to eight wart pathotypes with a modified Glynne-Lemmerzahl method. Bimodal distributions and co-segregation of resistance in the population show that a single resistance gene, Sen2, underlies the resistance to eight pathotypes. Resistance to pathotype 1(D1) was additionally conferred by the locus Sen1 inherited from both parents. Sen2 was mapped to chromosome XI using DArTseq markers. The genetic and physical distances between Sen1 and Sen2 loci were indirectly estimated at 63 cM and 32 Mbp, respectively. We developed PCR markers co-segregating with the Sen2 locus that can be applied in marker-assisted selection of potatoes resistant to eight important pathotypes of S. endobioticum. Wide spectrum of the Sen2 resistance may be an indication of durability which can be enhanced by the pyramiding of the Sen2 and Sen1 loci as in 61 clones selected within this study.
Collapse
Affiliation(s)
- Jarosław Plich
- Plant Breeding and Acclimatization Institute - National Research Institute (IHAR-PIB), Młochów Research Center, Platanowa 19, 05-831, Młochów, Poland.
| | - Jarosław Przetakiewicz
- Plant Breeding and Acclimatization Institute - National Research Institute (IHAR-PIB), 05-870, Radzików, Błonie, Poland
| | - Jadwiga Śliwka
- Plant Breeding and Acclimatization Institute - National Research Institute (IHAR-PIB), Młochów Research Center, Platanowa 19, 05-831, Młochów, Poland
| | - Bogdan Flis
- Plant Breeding and Acclimatization Institute - National Research Institute (IHAR-PIB), Młochów Research Center, Platanowa 19, 05-831, Młochów, Poland
| | - Iwona Wasilewicz-Flis
- Plant Breeding and Acclimatization Institute - National Research Institute (IHAR-PIB), Młochów Research Center, Platanowa 19, 05-831, Młochów, Poland
| | - Ewa Zimnoch-Guzowska
- Plant Breeding and Acclimatization Institute - National Research Institute (IHAR-PIB), Młochów Research Center, Platanowa 19, 05-831, Młochów, Poland
| |
Collapse
|
59
|
Ferretti L, Ribeca P, Ramos-Onsins SE. The Site Frequency/Dosage Spectrum of Autopolyploid Populations. Front Genet 2018; 9:480. [PMID: 30405691 PMCID: PMC6207136 DOI: 10.3389/fgene.2018.00480] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 09/28/2018] [Indexed: 01/15/2023] Open
Abstract
The Site Frequency Spectrum (SFS) and the heterozygosity of allelic variants are among the most important summary statistics for population genetic analysis of diploid organisms. We discuss the generalization of these statistics to populations of autopolyploid organisms in terms of the joint Site Frequency/Dosage Spectrum and its expected value for autopolyploid populations that follow the standard neutral model. Based on these results, we present estimators of nucleotide variability from High-Throughput Sequencing (HTS) data of autopolyploids and discuss potential issues related to sequencing errors and variant calling. We use these estimators to generalize Tajima's D and other SFS-based neutrality tests to HTS data from autopolyploid organisms. Finally, we discuss how these approaches fail when the number of individuals is small. In fact, in autopolyploids there are many possible deviations from the Hardy–Weinberg equilibrium, each reflected in a different shape of the individual dosage distribution. The SFS from small samples is often dominated by the shape of these deviations of the dosage distribution from its Hardy–Weinberg expectations.
Collapse
|
60
|
Nadeem MA, Habyarimana E, Çiftçi V, Nawaz MA, Karaköy T, Comertpay G, Shahid MQ, Hatipoğlu R, Yeken MZ, Ali F, Ercişli S, Chung G, Baloch FS. Characterization of genetic diversity in Turkish common bean gene pool using phenotypic and whole-genome DArTseq-generated silicoDArT marker information. PLoS One 2018; 13:e0205363. [PMID: 30308006 PMCID: PMC6181364 DOI: 10.1371/journal.pone.0205363] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 09/20/2018] [Indexed: 12/31/2022] Open
Abstract
Turkey presents a great diversity of common bean landraces in farmers' fields. We collected 183 common bean accessions from 19 different Turkish geographic regions and 5 scarlet runner bean accessions to investigate their genetic diversity and population structure using phenotypic information (growth habit, and seed weight, flower color, bracteole shape and size, pod shape and leaf shape and color), geographic provenance and 12,557 silicoDArT markers. A total of 24.14% markers were found novel. For the entire population (188 accessions), the expected heterozygosity was 0.078 and overall gene diversity, Fst and Fis were 0.14, 0.55 and 1, respectively. Using marker information, model-based structure, principal coordinate analysis (PCoA) and unweighted pair-group method with arithmetic means (UPGMA) algorithms clustered the 188 accessions into two main populations A (predominant) and B, and 5 unclassified genotypes, representing 3 meaningful heterotic groups for breeding purposes. Phenotypic information clearly distinguished these populations; population A and B, respectively, were bigger (>40g/100 seeds) and smaller (<40g/100 seeds) seed-sized. The unclassified population was pure and only contained climbing genotypes with 100 seed weight 2-3 times greater than populations A and B. Clustering was mainly based on A: seed weight, B: growth habit, C: geographical provinces and D: flower color. Mean kinship was generally low, but population B was more diverse than population A. Overall, a useful level of gene and genotypic diversity was observed in this work and can be used by the scientific community in breeding efforts to develop superior common bean strains.
Collapse
Affiliation(s)
- Muhammad Azhar Nadeem
- Department of field crops, Faculty of Agricultural and Natural Science, Abant Izzet Baysal University, Bolu, Turkey
| | - Ephrem Habyarimana
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria–Centro di ricerca cerealicoltura e colture industriali, Bologna, Italy
| | - Vahdettin Çiftçi
- Department of field crops, Faculty of Agricultural and Natural Science, Abant Izzet Baysal University, Bolu, Turkey
| | - Muhammad Amjad Nawaz
- Department of Biotechnology, Chonnam National University, Chonnam, Republic of Korea
| | - Tolga Karaköy
- Organic Agriculture Program, Vocational School of Sivas, University of Cumhuriyet, Sivas, Turkey
| | - Gonul Comertpay
- Eastern Mediterranean Agricultural Research Institute, Turkey
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bio resources, South China Agricultural University, Guangzhou, China
| | - Rüştü Hatipoğlu
- Department of Field Crops, Faculty of Agricultural, University of Cukurova, Adana, Turkey
| | - Mehmet Zahit Yeken
- Department of field crops, Faculty of Agricultural and Natural Science, Abant Izzet Baysal University, Bolu, Turkey
| | - Fawad Ali
- Department of field crops, Faculty of Agricultural and Natural Science, Abant Izzet Baysal University, Bolu, Turkey
| | - Sezai Ercişli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Chonnam, Republic of Korea
| | - Faheem Shehzad Baloch
- Department of field crops, Faculty of Agricultural and Natural Science, Abant Izzet Baysal University, Bolu, Turkey
| |
Collapse
|
61
|
Wells SJ, Dale J. Contrasting gene flow at different spatial scales revealed by genotyping-by-sequencing in Isocladus armatus, a massively colour polymorphic New Zealand marine isopod. PeerJ 2018; 6:e5462. [PMID: 30155361 PMCID: PMC6109376 DOI: 10.7717/peerj.5462] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/29/2018] [Indexed: 11/21/2022] Open
Abstract
Understanding how genetic diversity is maintained within populations is central to evolutionary biology. Research on colour polymorphism (CP), which typically has a genetic basis, can shed light on this issue. However, because gene flow can homogenise genetic variation, understanding population connectivity is critical in examining the maintenance of polymorphisms. In this study we assess the utility of genotyping-by-sequencing to resolve gene flow, and provide a preliminary investigation into the genetic basis of CP in Isocladus armatus, an endemic New Zealand marine isopod. Analysis of the genetic variation in 4,000 single nucleotide polymorphisms (SNPs) within and among populations and colour morphs revealed large differences in gene flow across two spatial scales. Marine isopods, which lack a pelagic larval phase, are typically assumed to exhibit greater population structuring than marine invertebrates possessing a biphasic life cycle. However, we found high gene flow rates and no genetic subdivision between two North Island populations situated 8 km apart. This suggests that I. armatus is capable of substantial dispersal along coastlines. In contrast, we identified a strong genetic disjunction between North and South Island populations. This result is similar to those reported in other New Zealand marine species, and is congruent with the presence of a geophysical barrier to dispersal down the east coast of New Zealand. We also found some support for a genetic basis to colouration evidenced by positive FST outlier tests, with two SNPs in particular showing strong association to the expression of a striped morph. Our study provides one of the first population genomic studies of a marine organism in New Zealand, and suggests that genotyping-by-sequencing can be a good alternative to more traditional investigations based on traditional markers such as microsatellites. Our study provides a foundation for further development of a highly tractable system for research on the evolutionary maintenance of CP.
Collapse
Affiliation(s)
- Sarah J. Wells
- Evolutionary Ecology Group, Institute of Natural and Mathematical Sciences, Massey University, Albany, Auckland, New Zealand
| | - James Dale
- Evolutionary Ecology Group, Institute of Natural and Mathematical Sciences, Massey University, Albany, Auckland, New Zealand
| |
Collapse
|
62
|
Li Q, Guo J, Chao K, Yang J, Yue W, Ma D, Wang B. High-Density Mapping of an Adult-Plant Stripe Rust Resistance Gene YrBai in Wheat Landrace Baidatou Using the Whole Genome DArTseq and SNP Analysis. FRONTIERS IN PLANT SCIENCE 2018; 9:1120. [PMID: 30116253 PMCID: PMC6083057 DOI: 10.3389/fpls.2018.01120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 07/11/2018] [Indexed: 05/26/2023]
Abstract
Stripe rust, caused by the biotrophic fungus Puccinia striiformis f. sp. tritici (Pst), is one of the most widespread and destructive wheat diseases worldwide. Growing resistant cultivars is an effective approach for controlling this disease. However, because host resistance genes were easily overcome by new virulent Pst races, there is a continuous demand for identifying new effective wheat stripe rust resistance genes and develop closely linked markers for marker-assisted selection (MAS). Baidatou, an old Chinese wheat landrace, has been grown for several decades in Longnan region, Gansu Province, where stripe rust epidemics are frequent and severe. In our previous study, a single dominant gene YrBai in Baidatou was identified to control the adult-plant resistance (APR) to Chinese prevalent Pst race CYR33. And the gene was located on wheat chromosome 6DS by four polymorphic simple sequence repeat (SSR) and two sequence-related amplified polymorphism (SRAP) markers, with the genetic distances of two closely linked markers 3.6 and 5.4 cM, respectively. To further confirm the APR gene in Baidatou and construct the high-density map for the resistance gene, adult plants of F1, F2, F3, and F5:6 populations derived from the cross Mingxian169/Baidatou and two parents were inoculated with CYR33 at Yangling field, Shaanxi Province during 2014-2015, 2015-2016, and 2016-2017 crop seasons, respectively. The field evaluation results indicated that a single dominant gene confers the APR to Pst race CYR33 in Baidatou. 92 F3 lines and parents were sequenced using DArTseq technology based on wheat GBS1.0 platform, and 31 genetic maps consisted of 2,131 polymorphic SilicoDArT and 952 SNP markers spanning 4,293.94 cM were constructed. Using polymorphic SilicoDArT, SNP markers and infection types (ITs) data of F3 lines, the gene YrBai was further located in 0.8 cM region on wheat chromosome 6D. These closely linked markers developed in this study should be useful for MAS for Baidatou in crop improvement and map-based clone this gene.
Collapse
Affiliation(s)
- Qiang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Juan Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Kaixiang Chao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jinye Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Weiyun Yue
- Tianshui Institute of Agricultural Sciences, Tianshui, China
| | - Dongfang Ma
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Baotong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
63
|
O'Brien DM, Keogh JS, Silla AJ, Byrne PG. The unexpected genetic mating system of the red‐backed toadlet (
Pseudophryne coriacea
): A species with prolonged terrestrial breeding and cryptic reproductive behaviour. Mol Ecol 2018; 27:3001-3015. [DOI: 10.1111/mec.14737] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/26/2018] [Accepted: 05/18/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Daniel M. O'Brien
- Centre for Sustainable Ecosystem Solutions School of Earth, Atmospheric and Life Sciences University of Wollongong Wollongong NSW Australia
| | - J. Scott Keogh
- Ecology and Evolution Research School of Biology The Australian National University Canberra ACT Australia
| | - Aimee J. Silla
- Centre for Sustainable Ecosystem Solutions School of Earth, Atmospheric and Life Sciences University of Wollongong Wollongong NSW Australia
| | - Phillip G. Byrne
- Centre for Sustainable Ecosystem Solutions School of Earth, Atmospheric and Life Sciences University of Wollongong Wollongong NSW Australia
| |
Collapse
|
64
|
Chen L, Wan H, Qian J, Guo J, Sun C, Wen J, Yi B, Ma C, Tu J, Song L, Fu T, Shen J. Genome-Wide Association Study of Cadmium Accumulation at the Seedling Stage in Rapeseed ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2018; 9:375. [PMID: 29725340 PMCID: PMC5917214 DOI: 10.3389/fpls.2018.00375] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 03/06/2018] [Indexed: 05/26/2023]
Abstract
Cadmium is a potentially toxic heavy metal to human health. Rapeseed (Brassica napus L.), a vegetable and oilseed crop, might also be a Cd hyperaccumulator, but there is little information on this trait in rapeseed. We evaluated Cd accumulation in different oilseed accessions and employed a genome-wide association study to identify quantitative trait loci (QTLs) related to Cd accumulation. A total of 419 B. napus accessions and inbred lines were genotyped with a 60K Illumina Infinium SNP array of Brassica. Wide genotypic variations in Cd concentration and translocation were found. Twenty-five QTLs integrated with 98 single-nucleotide polymorphisms (SNPs) located at 15 chromosomes were associated with Cd accumulation traits. These QTLs explained 3.49-7.57% of the phenotypic variation observed. Thirty-two candidate genes were identified in these genomic regions, and they were 0.33-497.97 kb away from the SNPs. We found orthologs of Arabidopsis thaliana located near the significant SNPs on the B. napus genome, including NRAMP6 (natural resistance-associated macrophage protein 6), IRT1 (iron-regulated transporter 1), CAD1 (cadmium-sensitive 1), and PCS2 (phytochelatin synthase 2). Of them, four candidate genes were verified by qRT-PCR, the expression levels of which were significantly higher after exposure to Cd than in the controls. Our results might facilitate the study of the genetic basis of Cd accumulation and the cloning of candidate Cd accumulation genes, which could be used to help reduce Cd levels in edible plant parts and/or create more efficient hyperaccumulators.
Collapse
Affiliation(s)
- Lunlin Chen
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center for Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Nanchang Branch of National Center of Oilcrops Improvement, Jiangxi Province Key Laboratory of Oil Crops Biology, Crops Research Institute of Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Heping Wan
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center for Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiali Qian
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center for Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jianbin Guo
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center for Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chengming Sun
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center for Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center for Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center for Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center for Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center for Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Laiqiang Song
- Nanchang Branch of National Center of Oilcrops Improvement, Jiangxi Province Key Laboratory of Oil Crops Biology, Crops Research Institute of Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center for Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Engineering Research Center for Rapeseed, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
65
|
Braatz J, Harloff HJ, Emrani N, Elisha C, Heepe L, Gorb SN, Jung C. The effect of INDEHISCENT point mutations on silique shatter resistance in oilseed rape (Brassica napus). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:959-971. [PMID: 29340752 DOI: 10.1007/s00122-018-3051-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/04/2018] [Indexed: 05/24/2023]
Abstract
This study elucidates the influence of indehiscent mutations on rapeseed silique shatter resistance. A phenotype with enlarged replum-valve joint area and altered cell dimensions in the dehiscence zone is described. Silique shattering is a major factor reducing the yield stability of oilseed rape (Brassica napus). Attempts to improve shatter resistance often include the use of mutations in target genes identified from Arabidopsis (Arabidopsis thaliana). A variety of phenotyping methods assessing the level of shatter resistance were previously described. However, a comparative and comprehensive evaluation of the methods has not yet been undertaken. We verified the increase of shatter resistance in indehiscent double knock-down mutants obtained by TILLING with a systematic approach comparing three independent phenotyping methods. A positive correlation of silique length and shatter resistance was observed and accounted for in the analyses. Microscopic studies ruled out the influence of different lignification patterns. Instead, we propose a model to explain increased shattering resistance of indehiscent rapeseed mutants by altered cell shapes and sizes within the contact surfaces of replum and valves.
Collapse
Affiliation(s)
- Janina Braatz
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Am Botanischen Garten 1-9, 24098, Kiel, Germany
| | - Hans-Joachim Harloff
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Am Botanischen Garten 1-9, 24098, Kiel, Germany
| | - Nazgol Emrani
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Am Botanischen Garten 1-9, 24098, Kiel, Germany
| | - Chirlon Elisha
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Am Botanischen Garten 1-9, 24098, Kiel, Germany
| | - Lars Heepe
- Zoological Institute, Functional Morphology and Biomechanics, Christian-Albrechts-University of Kiel, Am Botanischen Garten 1-9, 24098, Kiel, Germany
| | - Stanislav N Gorb
- Zoological Institute, Functional Morphology and Biomechanics, Christian-Albrechts-University of Kiel, Am Botanischen Garten 1-9, 24098, Kiel, Germany
| | - Christian Jung
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Am Botanischen Garten 1-9, 24098, Kiel, Germany.
| |
Collapse
|
66
|
Tyrka M, Oleszczuk S, Rabiza-Swider J, Wos H, Wedzony M, Zimny J, Ponitka A, Ślusarkiewicz-Jarzina A, Metzger RJ, Baenziger PS, Lukaszewski AJ. Populations of doubled haploids for genetic mapping in hexaploid winter triticale. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2018; 38:46. [PMID: 29623004 PMCID: PMC5878199 DOI: 10.1007/s11032-018-0804-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 03/13/2018] [Indexed: 06/08/2023]
Abstract
To create a framework for genetic dissection of hexaploid triticale, six populations of doubled haploid (DH) lines were developed from pairwise hybrids of high-yielding winter triticale cultivars. The six populations comprise between 97 and 231 genotyped DH lines each, totaling 957 DH lines. A consensus genetic map spans 4593.9 cM is composed of 1576 unique DArT markers. The maps reveal several structural rearrangements in triticale genomes. In preliminary tests of the populations and maps, markers specific to wheat segments of the engineered rye chromosome 1R (RM1B) were identified. Example QTL mapping of days to heading in cv. Krakowiak revealed loci on chromosomes 2BL and 2R responsible for extended vernalization requirement, and candidate genes were identified. The material is available to all parties interested in triticale genetics.
Collapse
Affiliation(s)
- M. Tyrka
- Department of Biotechnology and Bioinformatics, Rzeszow University of Technology, Rzeszow, Poland
| | - S. Oleszczuk
- Institute of Plant Breeding and Acclimatization, National Research Institute, Radzikow, Poland
| | - J. Rabiza-Swider
- Department of Ornamental Plants, Warsaw University of Life Sciences, Warsaw, Poland
| | - H. Wos
- Plant Breeding Strzelce Ltd., Co. - IHAR-PIB Group, Strzelce, Poland
| | - M. Wedzony
- Department of Cell Biology and Genetics, Pedagogical University of Cracow, Kraków, Poland
| | - J. Zimny
- Institute of Plant Breeding and Acclimatization, National Research Institute, Radzikow, Poland
| | - A. Ponitka
- Institute of Plant Genetics, Poznan, Poland
| | | | - R. J. Metzger
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331-3002 USA
| | - P. S. Baenziger
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE USA
| | - A. J. Lukaszewski
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521 USA
| |
Collapse
|
67
|
KOSMOWSKI FRÉDÉRIC, ARAGAW ABIYOT, KILIAN ANDRZEJ, AMBEL ALEMAYEHU, ILUKOR JOHN, YIGEZU BIRATU, STEVENSON JAMES. VARIETAL IDENTIFICATION IN HOUSEHOLD SURVEYS: RESULTS FROM THREE HOUSEHOLD-BASED METHODS AGAINST THE BENCHMARK OF DNA FINGERPRINTING IN SOUTHERN ETHIOPIA. EXPERIMENTAL AGRICULTURE 2018; 55:371-385. [PMID: 33311720 PMCID: PMC7680950 DOI: 10.1017/s0014479718000030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/05/2018] [Indexed: 05/30/2023]
Abstract
Accurate crop varietal identification is the backbone of any high-quality assessment of outcomes and impacts. Sweetpotato (Ipomoea batatas) varieties have important nutritional differences, and there is a strong interest to identify nutritionally superior varieties for dissemination. In agricultural household surveys, such information is often collected based on the farmer's self-report. In this article, we present the results of a data capture experiment on sweet potato varietal identification in southern Ethiopia. Three household-based methods of identifying varietal adoption are tested against the benchmark of DNA fingerprinting: (A) Elicitation from farmers with basic questions for the most widely planted variety; (B) Farmer elicitation on five sweet potato phenotypic attributes by showing a visual-aid protocol; and (C) Enumerator recording observations on five sweet potato phenotypic attributes using a visual-aid protocol and visiting the field. In total, 20% of farmers identified a variety as improved when in fact it was local and 19% identified a variety as local when it was in fact improved. The variety names given by farmers delivered inconsistent and inaccurate varietal identities. Visual-aid protocols employed in methods B and C were better than those in method A, but greatly underestimated the adoption estimates given by the DNA fingerprinting method. Our results suggest that estimating the adoption of improved varieties with methods based on farmer self-reports is questionable and point towards a wider use of DNA fingerprinting in adoption and impact assessments.
Collapse
Affiliation(s)
- FRÉDÉRIC KOSMOWSKI
- CGIAR Standing Panel on Impact Assessment, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00153 Roma RM, Italie
| | - ABIYOT ARAGAW
- International Potato Center (CIP), PO Box 10059, Addis Ababa, Ethiopia
| | - ANDRZEJ KILIAN
- Diversity Arrays Technology Pty. Ltd., Building 3, Level D, University of Canberra, Kirinari St. Bruce, ACT2617 (LPO Box 5067), Australia
| | | | - JOHN ILUKOR
- CGIAR Standing Panel on Impact Assessment, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00153 Roma RM, Italie
| | - BIRATU YIGEZU
- Central Statistical Agency of Ethiopia, Piassa, Addis Ababa, Ethiopia
| | - JAMES STEVENSON
- CGIAR Standing Panel on Impact Assessment, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00153 Roma RM, Italie
| |
Collapse
|
68
|
Schultz AJ, Cristescu RH, Littleford-Colquhoun BL, Jaccoud D, Frère CH. Fresh is best: Accurate SNP genotyping from koala scats. Ecol Evol 2018; 8:3139-3151. [PMID: 29607013 PMCID: PMC5869377 DOI: 10.1002/ece3.3765] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/29/2017] [Accepted: 12/07/2017] [Indexed: 12/25/2022] Open
Abstract
Maintaining genetic diversity is a crucial component in conserving threatened species. For the iconic Australian koala, there is little genetic information on wild populations that is not either skewed by biased sampling methods (e.g., sampling effort skewed toward urban areas) or of limited usefulness due to low numbers of microsatellites used. The ability to genotype DNA extracted from koala scats using next‐generation sequencing technology will not only help resolve location sample bias but also improve the accuracy and scope of genetic analyses (e.g., neutral vs. adaptive genetic diversity, inbreeding, and effective population size). Here, we present the successful SNP genotyping (1272 SNP loci) of koala DNA extracted from scat, using a proprietary DArTseq™ protocol. We compare genotype results from two‐day‐old scat DNA and 14‐day‐old scat DNA to a blood DNA template, to test accuracy of scat genotyping. We find that DNA from fresher scat results in fewer loci with missing information than DNA from older scat; however, 14‐day‐old scat can still provide useful genetic information, depending on the research question. We also find that a subset of 209 conserved loci can accurately identify individual koalas, even from older scat samples. In addition, we find that DNA sequences identified from scat samples through the DArTseq™ process can provide genetic identification of koala diet species, bacterial and viral pathogens, and parasitic organisms.
Collapse
Affiliation(s)
- Anthony J Schultz
- GeneCology Research Centre University of the Sunshine Coast Maroochydore DC Qld Australia.,Global Change Ecology Research Centre University of the Sunshine Coast Maroochydore DC Qld Australia
| | - Romane H Cristescu
- Global Change Ecology Research Centre University of the Sunshine Coast Maroochydore DC Qld Australia
| | - Bethan L Littleford-Colquhoun
- GeneCology Research Centre University of the Sunshine Coast Maroochydore DC Qld Australia.,Global Change Ecology Research Centre University of the Sunshine Coast Maroochydore DC Qld Australia
| | - Damian Jaccoud
- Diversity Arrays Technology University of Canberra Bruce ACT Australia
| | - Céline H Frère
- Global Change Ecology Research Centre University of the Sunshine Coast Maroochydore DC Qld Australia
| |
Collapse
|
69
|
Nguyen NH, Premachandra HKA, Kilian A, Knibb W. Genomic prediction using DArT-Seq technology for yellowtail kingfish Seriola lalandi. BMC Genomics 2018; 19:107. [PMID: 29382299 PMCID: PMC5791361 DOI: 10.1186/s12864-018-4493-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 01/23/2018] [Indexed: 01/21/2023] Open
Abstract
Background Genomic prediction using Diversity Arrays Technology (DArT) genotype by sequencing platform has not been reported in yellowtail kingfish (Seriola lalandi). The principal aim of this study was to address this knowledge gap and to assess predictive ability of genomic Best Linear Unbiased Prediction (gBLUP) for traits of commercial importance in a yellowtail kingfish population comprising 752 individuals that had DNA sequence and phenotypic records for growth traits (body weight, fork length and condition index). The gBLUP method was used due to its computational efficiency and it showed similar predictive performance to other approaches, especially for traits whose variation is of polygenic nature, such as body traits analysed in this study. The accuracy or predictive ability of the gBLUP model was estimated for three growth traits: body weight, folk length and condition index. Results The prediction accuracy was moderate to high (0.44 to 0.69) for growth-related traits. The predictive ability for body weight increased by 17.0% (from 0.69 to 0.83) when missing genotype was imputed. Within population prediction using five-fold across validation approach showed that the gBLUP model performed well for growth traits (weight, length and condition factor), with the coefficient of determination (R2) from linear regression analysis ranging from 0.49 to 0.71. Conclusions Collectively our results demonstrated, for the first time in yellowtail kingfish, the potential application of genomic selection for growth-related traits in the future breeding program for this species, S. lalandi. Electronic supplementary material The online version of this article (10.1186/s12864-018-4493-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nguyen H Nguyen
- The University of the Sunshine Coast, Maroochydore DC, QLD, 4558, Australia.
| | - H K A Premachandra
- The University of the Sunshine Coast, Maroochydore DC, QLD, 4558, Australia
| | - Andrzej Kilian
- Diversity Arrays Technology Pty Ltd, Kirinari St, Bruce, ACT, 2617, Australia
| | - Wayne Knibb
- The University of the Sunshine Coast, Maroochydore DC, QLD, 4558, Australia
| |
Collapse
|
70
|
Watson A, Ghosh S, Williams MJ, Cuddy WS, Simmonds J, Rey MD, Asyraf Md Hatta M, Hinchliffe A, Steed A, Reynolds D, Adamski NM, Breakspear A, Korolev A, Rayner T, Dixon LE, Riaz A, Martin W, Ryan M, Edwards D, Batley J, Raman H, Carter J, Rogers C, Domoney C, Moore G, Harwood W, Nicholson P, Dieters MJ, DeLacy IH, Zhou J, Uauy C, Boden SA, Park RF, Wulff BBH, Hickey LT. Speed breeding is a powerful tool to accelerate crop research and breeding. NATURE PLANTS 2018; 4:23-29. [PMID: 29292376 DOI: 10.1038/s41477-017-0083-8] [Citation(s) in RCA: 398] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/28/2017] [Indexed: 05/18/2023]
Abstract
The growing human population and a changing environment have raised significant concern for global food security, with the current improvement rate of several important crops inadequate to meet future demand 1 . This slow improvement rate is attributed partly to the long generation times of crop plants. Here, we present a method called 'speed breeding', which greatly shortens generation time and accelerates breeding and research programmes. Speed breeding can be used to achieve up to 6 generations per year for spring wheat (Triticum aestivum), durum wheat (T. durum), barley (Hordeum vulgare), chickpea (Cicer arietinum) and pea (Pisum sativum), and 4 generations for canola (Brassica napus), instead of 2-3 under normal glasshouse conditions. We demonstrate that speed breeding in fully enclosed, controlled-environment growth chambers can accelerate plant development for research purposes, including phenotyping of adult plant traits, mutant studies and transformation. The use of supplemental lighting in a glasshouse environment allows rapid generation cycling through single seed descent (SSD) and potential for adaptation to larger-scale crop improvement programs. Cost saving through light-emitting diode (LED) supplemental lighting is also outlined. We envisage great potential for integrating speed breeding with other modern crop breeding technologies, including high-throughput genotyping, genome editing and genomic selection, accelerating the rate of crop improvement.
Collapse
Affiliation(s)
- Amy Watson
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, Queensland, Australia
| | - Sreya Ghosh
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Matthew J Williams
- Plant Breeding Institute, University of Sydney, Cobbitty, New South Wales, Australia
| | - William S Cuddy
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, New South Wales, Australia
| | | | | | - M Asyraf Md Hatta
- John Innes Centre, Norwich Research Park, Norwich, UK
- Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
| | | | - Andrew Steed
- John Innes Centre, Norwich Research Park, Norwich, UK
| | | | | | | | | | - Tracey Rayner
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Laura E Dixon
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Adnan Riaz
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, Queensland, Australia
| | - William Martin
- Department of Agriculture and Fisheries, Hermitage Research Facility, Warwick, Queensland, Australia
| | - Merrill Ryan
- Department of Agriculture and Fisheries, Hermitage Research Facility, Warwick, Queensland, Australia
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Crawley, Western Australia, Australia
| | - Jacqueline Batley
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Crawley, Western Australia, Australia
| | - Harsh Raman
- Wagga Wagga Agricultural Institute, NSW Department of Primary Industries, Wagga Wagga, New South Wales, Australia
| | - Jeremy Carter
- John Innes Centre, Norwich Research Park, Norwich, UK
| | | | | | - Graham Moore
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Wendy Harwood
- John Innes Centre, Norwich Research Park, Norwich, UK
| | | | - Mark J Dieters
- School of Agriculture and Food Sciences, University of Queensland, St Lucia, Queensland, Australia
| | - Ian H DeLacy
- School of Agriculture and Food Sciences, University of Queensland, St Lucia, Queensland, Australia
| | - Ji Zhou
- John Innes Centre, Norwich Research Park, Norwich, UK
- Earlham Institute, Norwich Research Park, Norwich, UK
| | | | - Scott A Boden
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Robert F Park
- Plant Breeding Institute, University of Sydney, Cobbitty, New South Wales, Australia
| | | | - Lee T Hickey
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, Queensland, Australia.
| |
Collapse
|
71
|
Barilli E, Cobos MJ, Carrillo E, Kilian A, Carling J, Rubiales D. A High-Density Integrated DArTseq SNP-Based Genetic Map of Pisum fulvum and Identification of QTLs Controlling Rust Resistance. FRONTIERS IN PLANT SCIENCE 2018; 9:167. [PMID: 29497430 PMCID: PMC5818415 DOI: 10.3389/fpls.2018.00167] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/30/2018] [Indexed: 05/05/2023]
Abstract
Pisum fulvum, a wild relative of pea is an important source of allelic diversity to improve the genetic resistance of cultivated species against fungal diseases of economic importance like the pea rust caused by Uromyces pisi. To unravel the genetic control underlying resistance to this fungal disease, a recombinant inbred line (RIL) population was generated from a cross between two P. fulvum accessions, IFPI3260 and IFPI3251, and genotyped using Diversity Arrays Technology. A total of 9,569 high-quality DArT-Seq and 8,514 SNPs markers were generated. Finally, a total of 12,058 markers were assembled into seven linkage groups, equivalent to the number of haploid chromosomes of P. fulvum and P. sativum. The newly constructed integrated genetic linkage map of P. fulvum covered an accumulated distance of 1,877.45 cM, an average density of 1.19 markers cM-1 and an average distance between adjacent markers of 1.85 cM. The composite interval mapping revealed three QTLs distributed over two linkage groups that were associated with the percentage of rust disease severity (DS%). QTLs UpDSII and UpDSIV were located in the LGs II and IV respectively and were consistently identified both in adult plants over 3 years at the field (Córdoba, Spain) and in seedling plants under controlled conditions. Whenever they were detected, their contribution to the total phenotypic variance varied between 19.8 and 29.2. A third QTL (UpDSIV.2) was also located in the LGIVand was environmentally specific as was only detected for DS % in seedlings under controlled conditions. It accounted more than 14% of the phenotypic variation studied. Taking together the data obtained in the study, it could be concluded that the expression of resistance to fungal diseases in P. fulvum originates from the resistant parent IFPI3260.
Collapse
Affiliation(s)
| | - María J Cobos
- Institute for Sustainable Agriculture, CSIC, Córdoba, Spain
| | | | - Andrzej Kilian
- Diversity Arrays Technology Pty Ltd, University of Canberra, Canberra, ACT, Australia
| | - Jason Carling
- Diversity Arrays Technology Pty Ltd, University of Canberra, Canberra, ACT, Australia
| | - Diego Rubiales
- Institute for Sustainable Agriculture, CSIC, Córdoba, Spain
| |
Collapse
|
72
|
Unver T, Wu Z, Sterck L, Turktas M, Lohaus R, Li Z, Yang M, He L, Deng T, Escalante FJ, Llorens C, Roig FJ, Parmaksiz I, Dundar E, Xie F, Zhang B, Ipek A, Uranbey S, Erayman M, Ilhan E, Badad O, Ghazal H, Lightfoot DA, Kasarla P, Colantonio V, Tombuloglu H, Hernandez P, Mete N, Cetin O, Van Montagu M, Yang H, Gao Q, Dorado G, Van de Peer Y. Genome of wild olive and the evolution of oil biosynthesis. Proc Natl Acad Sci U S A 2017; 114:E9413-E9422. [PMID: 29078332 PMCID: PMC5676908 DOI: 10.1073/pnas.1708621114] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Here we present the genome sequence and annotation of the wild olive tree (Olea europaea var. sylvestris), called oleaster, which is considered an ancestor of cultivated olive trees. More than 50,000 protein-coding genes were predicted, a majority of which could be anchored to 23 pseudochromosomes obtained through a newly constructed genetic map. The oleaster genome contains signatures of two Oleaceae lineage-specific paleopolyploidy events, dated at ∼28 and ∼59 Mya. These events contributed to the expansion and neofunctionalization of genes and gene families that play important roles in oil biosynthesis. The functional divergence of oil biosynthesis pathway genes, such as FAD2, SACPD, EAR, and ACPTE, following duplication, has been responsible for the differential accumulation of oleic and linoleic acids produced in olive compared with sesame, a closely related oil crop. Duplicated oleaster FAD2 genes are regulated by an siRNA derived from a transposable element-rich region, leading to suppressed levels of FAD2 gene expression. Additionally, neofunctionalization of members of the SACPD gene family has led to increased expression of SACPD2, 3, 5, and 7, consequently resulting in an increased desaturation of steric acid. Taken together, decreased FAD2 expression and increased SACPD expression likely explain the accumulation of exceptionally high levels of oleic acid in olive. The oleaster genome thus provides important insights into the evolution of oil biosynthesis and will be a valuable resource for oil crop genomics.
Collapse
Affiliation(s)
- Turgay Unver
- İzmir International Biomedicine and Genome Institute, Dokuz Eylül University, 35340 İzmir, Turkey;
| | | | - Lieven Sterck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Mine Turktas
- Department of Biology, Faculty of Science, Cankiri Karatekin University, 18100 Cankiri, Turkey
| | - Rolf Lohaus
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Ming Yang
- BGI Shenzhen, 518038 Shenzhen, China
| | - Lijuan He
- BGI Shenzhen, 518038 Shenzhen, China
| | | | | | | | | | - Iskender Parmaksiz
- Department of Molecular Biology and Genetics, Faculty of Science, Gaziosmanpasa University, 60250 Tokat, Turkey
| | - Ekrem Dundar
- Department of Molecular Biology and Genetics, Faculty of Science, Balikesir University, 10145 Balikesir, Turkey
| | - Fuliang Xie
- Department of Biology, East Carolina University, Greenville, NC 27858
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858
| | - Arif Ipek
- Department of Biology, Faculty of Science, Cankiri Karatekin University, 18100 Cankiri, Turkey
| | - Serkan Uranbey
- Department of Field Crops, Faculty of Agriculture, Ankara University, 06120 Ankara, Turkey
| | - Mustafa Erayman
- Department of Biology, Faculty of Arts and Science, Mustafa Kemal University, 31060 Hatay, Turkey
| | - Emre Ilhan
- Department of Biology, Faculty of Arts and Science, Mustafa Kemal University, 31060 Hatay, Turkey
| | - Oussama Badad
- Laboratory of Plant Physiology, University Mohamed V, 10102 Rabat, Morocco
| | - Hassan Ghazal
- Polydisciplinary Faculty of Nador, University Mohamed Premier, 62700 Nador, Morocco
| | - David A Lightfoot
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901
| | - Pavan Kasarla
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901
| | - Vincent Colantonio
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901
| | - Huseyin Tombuloglu
- Institute for Research and Medical Consultation, University of Dammam, 34212 Dammam, Saudi Arabia
| | - Pilar Hernandez
- Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas, 14004 Córdoba, Spain
| | - Nurengin Mete
- Olive Research Institute of Bornova, 35100 Izmir, Turkey
| | - Oznur Cetin
- Olive Research Institute of Bornova, 35100 Izmir, Turkey
| | - Marc Van Montagu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | | | - Qiang Gao
- BGI Shenzhen, 518038 Shenzhen, China
| | - Gabriel Dorado
- Departamento Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Genetics, Genomics Research Institute, University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
73
|
Marsh JN, Vega-Trejo R, Jennions MD, Head ML. Why does inbreeding reduce male paternity? Effects on sexually selected traits. Evolution 2017; 71:2728-2737. [PMID: 28857148 DOI: 10.1111/evo.13339] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 08/16/2017] [Indexed: 01/17/2023]
Abstract
Mating with relatives has often been shown to negatively affect offspring fitness (inbreeding depression). There is considerable evidence for inbreeding depression due to effects on naturally selected traits, particularly those expressed early in life, but there is less evidence of it for sexually selected traits. This is surprising because sexually selected traits are expected to exhibit strong inbreeding depression. Here, we experimentally created inbred and outbred male mosquitofish (Gambusia holbrooki). Inbred males were the offspring of matings between full siblings. We then investigated how inbreeding influenced a number of sexually selected male traits, specifically: attractiveness, sperm number and velocity, as well as sperm competitiveness based on a male's share of paternity. We found no inbreeding depression for male attractiveness or sperm traits. There was, however, evidence that lower heterozygosity decreased paternity due to reduced sperm competitiveness. Our results add to the growing evidence that competitive interactions exacerbate the negative effects of the increased homozygosity that arises when there is inbreeding.
Collapse
Affiliation(s)
- Jason N Marsh
- Division of Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Regina Vega-Trejo
- Division of Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Michael D Jennions
- Division of Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia.,Wissenschaftskolleg zu Berlin, Wallotstaße 19, 14193 Berlin, Germany
| | - Megan L Head
- Division of Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
74
|
Pan L, Wang N, Wu Z, Guo R, Yu X, Zheng Y, Xia Q, Gui S, Chen C. A High Density Genetic Map Derived from RAD Sequencing and Its Application in QTL Analysis of Yield-Related Traits in Vigna unguiculata. FRONTIERS IN PLANT SCIENCE 2017; 8:1544. [PMID: 28936219 PMCID: PMC5594218 DOI: 10.3389/fpls.2017.01544] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 08/23/2017] [Indexed: 05/29/2023]
Abstract
Cowpea [Vigna unguiculata (L.) Walp.] is an annual legume of economic importance and widely grown in the semi-arid tropics. However, high-density genetic maps of cowpea are still lacking. Here, we identified 34,868 SNPs (single nucleotide polymorphisms) that were distributed in the cowpea genome based on the RAD sequencing (restriction-site associated DNA sequencing) technique using a population of 170 individuals (two cowpea parents and 168 F2:3 progenies). Of these, 17,996 reliable SNPs were allotted to 11 consensus linkage groups (LGs). The length of the genetic map was 1,194.25 cM in total with a mean distance of 0.066 cM/SNP marker locus. Using this map and the F2:3 population, combined with the CIM (composite interval mapping) method, eleven quantitative trait loci (QTL) of yield-related trait were detected on seven LGs (LG4, 5, 6, 7, 9, 10, and 11) in cowpea. These QTL explained 0.05-17.32% of the total phenotypic variation. Among these, four QTL were for pod length, four QTL for thousand-grain weight (TGW), two QTL for grain number per pod, and one QTL for carpopodium length. Our results will provide a foundation for understanding genes related to grain yield in the cowpea and genus Vigna.
Collapse
Affiliation(s)
- Lei Pan
- Hubei Province Engineering Research Centre of Legume Plants, College of Life Sciences, Jianghan UniversityWuhan, China
| | - Nian Wang
- Department of Forestry, College of Horticulture and Forest, Huazhong Agriculture UniversityWuhan, China
| | - Zhihua Wu
- National Key Laboratory of Crop Genetic Improvement, Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Rui Guo
- Hubei Province Engineering Research Centre of Legume Plants, College of Life Sciences, Jianghan UniversityWuhan, China
| | - Xiaolu Yu
- Hubei Province Engineering Research Centre of Legume Plants, College of Life Sciences, Jianghan UniversityWuhan, China
| | - Yu Zheng
- Institute for Interdisciplinary Research, Jianghan UniversityWuhan, China
| | | | - Songtao Gui
- Department of Genetics, State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan UniversityWuhan, China
| | - Chanyou Chen
- Hubei Province Engineering Research Centre of Legume Plants, College of Life Sciences, Jianghan UniversityWuhan, China
| |
Collapse
|
75
|
Saastamoinen M, Bocedi G, Cote J, Legrand D, Guillaume F, Wheat CW, Fronhofer EA, Garcia C, Henry R, Husby A, Baguette M, Bonte D, Coulon A, Kokko H, Matthysen E, Niitepõld K, Nonaka E, Stevens VM, Travis JMJ, Donohue K, Bullock JM, Del Mar Delgado M. Genetics of dispersal. Biol Rev Camb Philos Soc 2017; 93:574-599. [PMID: 28776950 PMCID: PMC5811798 DOI: 10.1111/brv.12356] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/03/2017] [Accepted: 07/05/2017] [Indexed: 12/12/2022]
Abstract
Dispersal is a process of central importance for the ecological and evolutionary dynamics of populations and communities, because of its diverse consequences for gene flow and demography. It is subject to evolutionary change, which begs the question, what is the genetic basis of this potentially complex trait? To address this question, we (i) review the empirical literature on the genetic basis of dispersal, (ii) explore how theoretical investigations of the evolution of dispersal have represented the genetics of dispersal, and (iii) discuss how the genetic basis of dispersal influences theoretical predictions of the evolution of dispersal and potential consequences. Dispersal has a detectable genetic basis in many organisms, from bacteria to plants and animals. Generally, there is evidence for significant genetic variation for dispersal or dispersal‐related phenotypes or evidence for the micro‐evolution of dispersal in natural populations. Dispersal is typically the outcome of several interacting traits, and this complexity is reflected in its genetic architecture: while some genes of moderate to large effect can influence certain aspects of dispersal, dispersal traits are typically polygenic. Correlations among dispersal traits as well as between dispersal traits and other traits under selection are common, and the genetic basis of dispersal can be highly environment‐dependent. By contrast, models have historically considered a highly simplified genetic architecture of dispersal. It is only recently that models have started to consider multiple loci influencing dispersal, as well as non‐additive effects such as dominance and epistasis, showing that the genetic basis of dispersal can influence evolutionary rates and outcomes, especially under non‐equilibrium conditions. For example, the number of loci controlling dispersal can influence projected rates of dispersal evolution during range shifts and corresponding demographic impacts. Incorporating more realism in the genetic architecture of dispersal is thus necessary to enable models to move beyond the purely theoretical towards making more useful predictions of evolutionary and ecological dynamics under current and future environmental conditions. To inform these advances, empirical studies need to answer outstanding questions concerning whether specific genes underlie dispersal variation, the genetic architecture of context‐dependent dispersal phenotypes and behaviours, and correlations among dispersal and other traits.
Collapse
Affiliation(s)
- Marjo Saastamoinen
- Department of Biosciences, Metapopulation Research Centre, University of Helsinki, P.O. Box 65, 00014 Helsinki, Finland
| | - Greta Bocedi
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, U.K
| | - Julien Cote
- Laboratoire Évolution & Diversité Biologique UMR5174, CNRS, Université Toulouse III Paul Sabatier, 31062 Toulouse, France
| | - Delphine Legrand
- Centre National de la Recherche Scientifique and Université Paul Sabatier Toulouse III, SETE Station d'Ecologie Théorique et Expérimentale, UMR 5321, 09200 Moulis, France
| | - Frédéric Guillaume
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, CH-8057 Zurich, Switzerland
| | - Christopher W Wheat
- Population Genetics, Department of Zoology, Stockholm University, S-10691 Stockholm, Sweden
| | - Emanuel A Fronhofer
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, CH-8057 Zurich, Switzerland.,Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dubendorf, Switzerland
| | - Cristina Garcia
- CIBIO-InBIO, Universidade do Porto, 4485-661 Vairão, Portugal
| | - Roslyn Henry
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, U.K.,School of GeoSciences, University of Edinburgh, Edinburgh EH89XP, U.K
| | - Arild Husby
- Department of Biosciences, Metapopulation Research Centre, University of Helsinki, P.O. Box 65, 00014 Helsinki, Finland
| | - Michel Baguette
- Centre National de la Recherche Scientifique and Université Paul Sabatier Toulouse III, SETE Station d'Ecologie Théorique et Expérimentale, UMR 5321, 09200 Moulis, France.,Museum National d'Histoire Naturelle, Institut Systématique, Evolution, Biodiversité, UMR 7205, F-75005 Paris, France
| | - Dries Bonte
- Department of Biology, Ghent University, B-9000 Ghent, Belgium
| | - Aurélie Coulon
- PSL Research University, CEFE UMR 5175, CNRS, Université de Montpellier, Université Paul-Valéry Montpellier, EPHE, Biogéographie et Ecologie des Vertébrés, 34293 Montpellier, France.,CESCO UMR 7204, Bases écologiques de la conservation, Muséum national d'Histoire naturelle, 75005 Paris, France
| | - Hanna Kokko
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, CH-8057 Zurich, Switzerland
| | - Erik Matthysen
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Kristjan Niitepõld
- Department of Biosciences, Metapopulation Research Centre, University of Helsinki, P.O. Box 65, 00014 Helsinki, Finland
| | - Etsuko Nonaka
- Department of Biosciences, Metapopulation Research Centre, University of Helsinki, P.O. Box 65, 00014 Helsinki, Finland
| | - Virginie M Stevens
- Centre National de la Recherche Scientifique and Université Paul Sabatier Toulouse III, SETE Station d'Ecologie Théorique et Expérimentale, UMR 5321, 09200 Moulis, France
| | - Justin M J Travis
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, U.K
| | | | - James M Bullock
- NERC Centre for Ecology & Hydrology, Wallingford OX10 8BB, U.K
| | | |
Collapse
|
76
|
Egea LA, Mérida-García R, Kilian A, Hernandez P, Dorado G. Assessment of Genetic Diversity and Structure of Large Garlic ( Allium sativum) Germplasm Bank, by Diversity Arrays Technology "Genotyping-by-Sequencing" Platform (DArTseq). Front Genet 2017; 8:98. [PMID: 28775737 PMCID: PMC5517412 DOI: 10.3389/fgene.2017.00098] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/30/2017] [Indexed: 12/20/2022] Open
Abstract
Garlic (Allium sativum) is used worldwide in cooking and industry, including pharmacology/medicine and cosmetics, for its interesting properties. Identifying redundancies in germplasm blanks to generate core collections is a major concern, mostly in large stocks, in order to reduce space and maintenance costs. Yet, similar appearance and phenotypic plasticity of garlic varieties hinder their morphological classification. Molecular studies are challenging, due to the large and expected complex genome of this species, with asexual reproduction. Classical molecular markers, like isozymes, RAPD, SSR, or AFLP, are not convenient to generate germplasm core-collections for this species. The recent emergence of high-throughput genotyping-by-sequencing (GBS) approaches, like DArTseq, allow to overcome such limitations to characterize and protect genetic diversity. Therefore, such technology was used in this work to: (i) assess genetic diversity and structure of a large garlic-germplasm bank (417 accessions); (ii) create a core collection; (iii) relate genotype to agronomical features; and (iv) describe a cost-effective method to manage genetic diversity in garlic-germplasm banks. Hierarchical-cluster analysis, principal-coordinates analysis and STRUCTURE showed general consistency, generating three main garlic-groups, mostly determined by variety and geographical origin. In addition, high-resolution genotyping identified 286 unique and 131 redundant accessions, used to select a reduced size germplasm-bank core collection. This demonstrates that DArTseq is a cost-effective method to analyze species with large and expected complex genomes, like garlic. To the best of our knowledge, this is the first report of high-throughput genotyping of a large garlic germplasm. This is particularly interesting for garlic adaptation and improvement, to fight biotic and abiotic stresses, in the current context of climate change and global warming.
Collapse
Affiliation(s)
- Leticia A. Egea
- Departamento de Bioquímica y Biología Molecular, Campus Rabanales (C6-1-E17), Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de CórdobaCórdoba, Spain
- Instituto de Agricultura Sostenible (IAS-CSIC), Campus Alameda del ObispoCórdoba, Spain
| | - Rosa Mérida-García
- Instituto de Agricultura Sostenible (IAS-CSIC), Campus Alameda del ObispoCórdoba, Spain
| | - Andrzej Kilian
- Diversity Arrays Technology Pty. Ltd., CanberraACT, Australia
| | - Pilar Hernandez
- Instituto de Agricultura Sostenible (IAS-CSIC), Campus Alameda del ObispoCórdoba, Spain
| | - Gabriel Dorado
- Departamento de Bioquímica y Biología Molecular, Campus Rabanales (C6-1-E17), Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de CórdobaCórdoba, Spain
| |
Collapse
|
77
|
Holušová K, Vrána J, Šafář J, Šimková H, Balcárková B, Frenkel Z, Darrier B, Paux E, Cattonaro F, Berges H, Letellier T, Alaux M, Doležel J, Bartoš J. Physical Map of the Short Arm of Bread Wheat Chromosome 3D. THE PLANT GENOME 2017; 10. [PMID: 28724077 DOI: 10.3835/plantgenome2017.03.0021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Bread wheat ( L.) is one of the most important crops worldwide. Although a reference genome sequence would represent a valuable resource for wheat improvement through genomics-assisted breeding and gene cloning, its generation has long been hampered by its allohexaploidy, high repeat content, and large size. As a part of a project coordinated by the International Wheat Genome Sequencing Consortium (IWGSC), a physical map of the short arm of wheat chromosome 3D (3DS) was prepared to facilitate reference genome assembly and positional gene cloning. It comprises 869 contigs with a cumulative length of 274.5 Mbp and represents 85.5% of the estimated chromosome arm size. Eighty-six Mbp of survey sequences from chromosome arm 3DS were assigned in silico to physical map contigs via next-generation sequencing of bacterial artificial chromosome pools, thus providing a high-density framework for physical map ordering along the chromosome arm. About 60% of the physical map was anchored in this single experiment. Finally, 1393 high-confidence genes were anchored to the physical map. Comparisons of gene space of the chromosome arm 3DS with genomes of closely related species [ (L.) P.Beauv., rice ( L.), and sorghum [ (L.) Moench] and homeologous wheat chromosomes provided information about gene movement on the chromosome arm.
Collapse
|
78
|
Valdisser PAMR, Pereira WJ, Almeida Filho JE, Müller BSF, Coelho GRC, de Menezes IPP, Vianna JPG, Zucchi MI, Lanna AC, Coelho ASG, de Oliveira JP, Moraes ADC, Brondani C, Vianello RP. In-depth genome characterization of a Brazilian common bean core collection using DArTseq high-density SNP genotyping. BMC Genomics 2017; 18:423. [PMID: 28558696 PMCID: PMC5450071 DOI: 10.1186/s12864-017-3805-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/17/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Common bean is a legume of social and nutritional importance as a food crop, cultivated worldwide especially in developing countries, accounting for an important source of income for small farmers. The availability of the complete sequences of the two common bean genomes has dramatically accelerated and has enabled new experimental strategies to be applied for genetic research. DArTseq has been widely used as a method of SNP genotyping allowing comprehensive genome coverage with genetic applications in common bean breeding programs. RESULTS Using this technology, 6286 SNPs (1 SNP/86.5 Kbp) were genotyped in genic (43.3%) and non-genic regions (56.7%). Genetic subdivision associated to the common bean gene pools (K = 2) and related to grain types (K = 3 and K = 5) were reported. A total of 83% and 91% of all SNPs were polymorphic within the Andean and Mesoamerican gene pools, respectively, and 26% were able to differentiate the gene pools. Genetic diversity analysis revealed an average H E of 0.442 for the whole collection, 0.102 for Andean and 0.168 for Mesoamerican gene pools (F ST = 0.747 between gene pools), 0.440 for the group of cultivars and lines, and 0.448 for the group of landrace accessions (F ST = 0.002 between cultivar/line and landrace groups). The SNP effects were predicted with predominance of impact on non-coding regions (77.8%). SNPs under selection were identified within gene pools comparing landrace and cultivar/line germplasm groups (Andean: 18; Mesoamerican: 69) and between the gene pools (59 SNPs), predominantly on chromosomes 1 and 9. The LD extension estimate corrected for population structure and relatedness (r2SV) was ~ 88 kbp, while for the Andean gene pool was ~ 395 kbp, and for the Mesoamerican was ~ 130 kbp. CONCLUSIONS For common bean, DArTseq provides an efficient and cost-effective strategy of generating SNPs for large-scale genome-wide studies. The DArTseq resulted in an operational panel of 560 polymorphic SNPs in linkage equilibrium, providing high genome coverage. This SNP set could be used in genotyping platforms with many applications, such as population genetics, phylogeny relation between common bean varieties and support to molecular breeding approaches.
Collapse
Affiliation(s)
- Paula A. M. R. Valdisser
- Embrapa Arroz e Feijão (CNPAF), Santo Antônio de Goiás, Goiânia, GO Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Estadual de Campinas (UNICAMP), Campinas, SP Brazil
| | - Wendell J. Pereira
- Programa de Pós-Graduação em Biologia Molecular, Universidade de Brasília (UnB), Brasília, DF Brazil
| | - Jâneo E. Almeida Filho
- Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, RJ Brazil
| | - Bárbara S. F. Müller
- Programa de Pós-Graduação em Biologia Molecular, Universidade de Brasília (UnB), Brasília, DF Brazil
| | | | - Ivandilson P. P. de Menezes
- Laboratório de Genética e Biologia Molecular, Departamento de Biologia, Instituto Federal Goiano (IF Goiano), Urutaí, GO Brazil
| | - João P. G. Vianna
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Estadual de Campinas (UNICAMP), Campinas, SP Brazil
| | - Maria I. Zucchi
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Estadual de Campinas (UNICAMP), Campinas, SP Brazil
| | - Anna C. Lanna
- Embrapa Arroz e Feijão (CNPAF), Santo Antônio de Goiás, Goiânia, GO Brazil
| | | | | | | | - Claudio Brondani
- Embrapa Arroz e Feijão (CNPAF), Santo Antônio de Goiás, Goiânia, GO Brazil
| | - Rosana P. Vianello
- Embrapa Arroz e Feijão (CNPAF), Santo Antônio de Goiás, Goiânia, GO Brazil
| |
Collapse
|
79
|
Zhou Q, Zhou C, Zheng W, Mason AS, Fan S, Wu C, Fu D, Huang Y. Genome-Wide SNP Markers Based on SLAF-Seq Uncover Breeding Traces in Rapeseed ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2017; 8:648. [PMID: 28503182 DOI: 10.3389/fpls.2015.0648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/10/2017] [Indexed: 05/26/2023]
Abstract
Single Nucleotide Polymorphisms (SNPs) are the most abundant and richest form of genomic polymorphism, and hence make highly favorable markers for genetic map construction and genome-wide association studies. In this study, a total of 300 rapeseed accessions (278 representative of Chinese germplasm, plus 22 outgroup accessions of different origins and ecotypes) were collected and sequenced using Specific-Locus Amplified Fragment Sequencing (SLAF-seq) technology, obtaining 660.25M reads with an average sequencing depth of 6.27 × and a mean Q30 of 85.96%. Based on the 238,711 polymorphic SLAF tags a total of 1,197,282 SNPs were discovered, and a subset of 201,817 SNPs with minor allele frequency >0.05 and integrity >0.8 were selected. Of these, 30,877 were designated SNP "hotspots," and 41 SNP-rich genomic regions could be delineated, with 100 genes associated with plant resistance, vernalization response, and signal transduction detected in these regions. Subsequent analysis of genetic diversity, linkage disequilibrium (LD), and population structure in the 300 accessions was carried out based on the 201,817 SNPs. Nine subpopulations were observed based on the population structure analysis. Hierarchical clustering and principal component analysis divided the 300 varieties roughly in accordance with their ecotype origins. However, spring-type varieties were intermingled with semi-winter type varieties, indicating frequent hybridization between spring and semi-winter ecotypes in China. In addition, LD decay across the whole genome averaged 299 kb when r2 = 0.1, but the LD decay in the A genome (43 kb) was much shorter than in the C genome (1,455 kb), supporting the targeted introgression of the A genome from progenitor species B. rapa into Chinese rapeseed. This study also lays the foundation for genetic analysis of important agronomic traits using this rapeseed population.
Collapse
Affiliation(s)
- Qinghong Zhou
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural UniversityNanchang, China
| | - Can Zhou
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural UniversityNanchang, China
| | - Wei Zheng
- Jiangxi Institute of Red SoilJinxian, China
| | - Annaliese S Mason
- Plant Breeding Department, iFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig UniversityGiessen, Germany
| | - Shuying Fan
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural UniversityNanchang, China
| | - Caijun Wu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural UniversityNanchang, China
| | - Donghui Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural UniversityNanchang, China
| | - Yingjin Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural UniversityNanchang, China
| |
Collapse
|
80
|
Zhang W, Hu D, Raman R, Guo S, Wei Z, Shen X, Meng J, Raman H, Zou J. Investigation of the Genetic Diversity and Quantitative Trait Loci Accounting for Important Agronomic and Seed Quality Traits in Brassica carinata. FRONTIERS IN PLANT SCIENCE 2017; 8:615. [PMID: 28484482 PMCID: PMC5401912 DOI: 10.3389/fpls.2017.00615] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 04/04/2017] [Indexed: 05/21/2023]
Abstract
Brassica carinata (BBCC) is an allotetraploid in Brassicas with unique alleles for agronomic traits and has huge potential as source for biodiesel production. To investigate the genome-wide molecular diversity, population structure and linkage disequilibrium (LD) pattern in this species, we genotyped a panel of 81 accessions of B. carinata with genotyping by sequencing approach DArTseq, generating a total of 54,510 polymorphic markers. Two subpopulations were exhibited in the B. carinata accessions. The average distance of LD decay (r2 = 0.1) in B subgenome (0.25 Mb) was shorter than that of C subgenome (0.40 Mb). Genome-wide association analysis (GWAS) identified a total of seven markers significantly associated with five seed quality traits in two experiments. To further identify the quantitative trait loci (QTL) for important agronomic and seed quality traits, we phenotyped a doubled haploid (DH) mapping population derived from the "YW" cross between two parents (Y-BcDH64 and W-BcDH76) representing from the two subpopulations. The YW DH population and its parents were grown in three contrasting environments; spring (Hezheng and Xining, China), semi-winter (Wuhan, China), and spring (Wagga Wagga, Australia) across 5 years for QTL mapping. Genetic bases of phenotypic variation in seed yield and its seven related traits, and six seed quality traits were determined. A total of 282 consensus QTL accounting for these traits were identified including nine major QTL for flowering time, oleic acid, linolenic acid, pod number of main inflorescence, and seed weight. Of these, 109 and 134 QTL were specific to spring and semi-winter environment, respectively, while 39 consensus QTL were identified in both contrasting environments. Two QTL identified for linolenic acid (B3) and erucic acid (C7) were validated in the diverse lines used for GWAS. A total of 25 QTL accounting for flowering time, erucic acid, and oleic acid were aligned to the homologous QTL or candidate gene regions in the C genome of B. napus. These results would not only provide insights for genetic improvement of this species, but will also identify useful genetic variation hidden in the Cc subgenome of B. carinata to improve canola cultivars.
Collapse
Affiliation(s)
- Wenshan Zhang
- National Key Laboratory of Crop Genetic Improvement, Key Laboratory of Rapeseed Genetic Improvement, Ministry of Agriculture China, Huazhong Agricultural UniversityWuhan, China
| | - Dandan Hu
- National Key Laboratory of Crop Genetic Improvement, Key Laboratory of Rapeseed Genetic Improvement, Ministry of Agriculture China, Huazhong Agricultural UniversityWuhan, China
| | - Rosy Raman
- Graham Centre for Agricultural Innovation (an Alliance between the Charles Sturt University and NSW Department of Primary Industries), Wagga Wagga Agricultural InstituteWagga Wagga, NSW, Australia
| | - Shaomin Guo
- National Key Laboratory of Crop Genetic Improvement, Key Laboratory of Rapeseed Genetic Improvement, Ministry of Agriculture China, Huazhong Agricultural UniversityWuhan, China
| | - Zili Wei
- National Key Laboratory of Crop Genetic Improvement, Key Laboratory of Rapeseed Genetic Improvement, Ministry of Agriculture China, Huazhong Agricultural UniversityWuhan, China
| | - Xueqi Shen
- National Key Laboratory of Crop Genetic Improvement, Key Laboratory of Rapeseed Genetic Improvement, Ministry of Agriculture China, Huazhong Agricultural UniversityWuhan, China
| | - Jinling Meng
- National Key Laboratory of Crop Genetic Improvement, Key Laboratory of Rapeseed Genetic Improvement, Ministry of Agriculture China, Huazhong Agricultural UniversityWuhan, China
| | - Harsh Raman
- Graham Centre for Agricultural Innovation (an Alliance between the Charles Sturt University and NSW Department of Primary Industries), Wagga Wagga Agricultural InstituteWagga Wagga, NSW, Australia
| | - Jun Zou
- National Key Laboratory of Crop Genetic Improvement, Key Laboratory of Rapeseed Genetic Improvement, Ministry of Agriculture China, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
81
|
Ren Y, Singh RP, Basnet BR, Lan CX, Huerta-Espino J, Lagudah ES, Ponce-Molina LJ. Identification and Mapping of Adult Plant Resistance Loci to Leaf Rust and Stripe Rust in Common Wheat Cultivar Kundan. PLANT DISEASE 2017; 101:456-463. [PMID: 30677352 DOI: 10.1094/pdis-06-16-0890-re] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Leaf rust (LR) and stripe rust (YR) are important diseases of wheat worldwide. We used 148 recombinant inbred lines (RIL) from the cross of Avocet × Kundan for determining and mapping the genetic basis of adult plant resistance (APR) loci. The population was phenotyped LR and YR for three seasons in field trials conducted in Mexico and genotyped with the diversity arrays technology sequencing (DArT-Seq) and simple sequence repeat markers. The final genetic map was constructed using 2,937 polymorphic markers with an average distance of 1.29 centimorgans between markers. Inclusive composite interval mapping identified two co-located APR quantitative trait loci (QTL) for LR and YR, two LR QTL, and three YR QTL. The co-located resistance QTL on chromosome 1BL corresponded to the pleiotropic APR gene Lr46/Yr29. QLr.cim-2BL, QYr.cim-2AL, and QYr.cim-5AS could be identified as new resistance loci in this population. Lr46/Yr29 contributed 49.5 to 65.1 and 49.2 to 66.1% of LR and YR variations, respectively. The additive interaction between detected QTL showed that LR severities for RIL combining four QTL ranged between 5.3 and 25.8%, whereas the lowest YR severities were for RIL carrying QTL on chromosomes 1BL + 2AL + 6AL. The high-density DArT-Seq markers across chromosomes can be used in fine mapping of the targeted loci and development SNP markers.
Collapse
Affiliation(s)
- Y Ren
- Mianyang Institute of Agricultural Science/Mianyang Branch of National Wheat Improvement Center, Mianyang 621023, Sichuan, China
| | - R P Singh
- International Maize and Wheat Improvement Center (CIMMYT), 06600 México D.F., Mexico
| | - B R Basnet
- International Maize and Wheat Improvement Center (CIMMYT), 06600 México D.F., Mexico
| | - C X Lan
- International Maize and Wheat Improvement Center (CIMMYT), 06600 México D.F., Mexico
| | - J Huerta-Espino
- Campo Experimental Valle de México INIFAP, 56230 Chapingo, Edo. de México, Mexico
| | - E S Lagudah
- CSIRO Agriculture, Canberra, ACT 2601, Australia
| | - L J Ponce-Molina
- National Institute of Agricultural and Livestock Researches (INIAP-Ecuador), Santa Catalina Experimental Station, Quito, Ecuador
| |
Collapse
|
82
|
Abrouk M, Balcárková B, Šimková H, Komínkova E, Martis MM, Jakobson I, Timofejeva L, Rey E, Vrána J, Kilian A, Järve K, Doležel J, Valárik M. The in silico identification and characterization of a bread wheat/Triticum militinae introgression line. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:249-256. [PMID: 27510270 PMCID: PMC5259550 DOI: 10.1111/pbi.12610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 07/21/2016] [Accepted: 08/08/2016] [Indexed: 05/23/2023]
Abstract
The capacity of the bread wheat (Triticum aestivum) genome to tolerate introgression from related genomes can be exploited for wheat improvement. A resistance to powdery mildew expressed by a derivative of the cross-bread wheat cv. Tähti × T. militinae (Tm) is known to be due to the incorporation of a Tm segment into the long arm of chromosome 4A. Here, a newly developed in silico method termed rearrangement identification and characterization (RICh) has been applied to characterize the introgression. A virtual gene order, assembled using the GenomeZipper approach, was obtained for the native copy of chromosome 4A; it incorporated 570 4A DArTseq markers to produce a zipper comprising 2132 loci. A comparison between the native and introgressed forms of the 4AL chromosome arm showed that the introgressed region is located at the distal part of the arm. The Tm segment, derived from chromosome 7G, harbours 131 homoeologs of the 357 genes present on the corresponding region of Chinese Spring 4AL. The estimated number of Tm genes transferred along with the disease resistance gene was 169. Characterizing the introgression's position, gene content and internal gene order should not only facilitate gene isolation, but may also be informative with respect to chromatin structure and behaviour studies.
Collapse
Affiliation(s)
- Michael Abrouk
- Institute of Experimental BotanyCentre of the Region Haná for Biotechnological and Agricultural ResearchOlomoucCzech Republic
| | - Barbora Balcárková
- Institute of Experimental BotanyCentre of the Region Haná for Biotechnological and Agricultural ResearchOlomoucCzech Republic
| | - Hana Šimková
- Institute of Experimental BotanyCentre of the Region Haná for Biotechnological and Agricultural ResearchOlomoucCzech Republic
| | - Eva Komínkova
- Institute of Experimental BotanyCentre of the Region Haná for Biotechnological and Agricultural ResearchOlomoucCzech Republic
| | - Mihaela M. Martis
- Munich Information Center for Protein Sequences/Institute of Bioinformatics and Systems BiologyInstitute for Bioinformatics and Systems BiologyHelmholtz Center MunichNeuherbergGermany
- Division of Cell BiologyDepartment of Clinical and Experimental Medicine, Bioinformatics Infrastructure for Life SciencesLinköping UniversityLinköpingSweden
| | - Irena Jakobson
- Department of Gene TechnologyTallinn University of TechnologyTallinnEstonia
| | | | - Elodie Rey
- Institute of Experimental BotanyCentre of the Region Haná for Biotechnological and Agricultural ResearchOlomoucCzech Republic
| | - Jan Vrána
- Institute of Experimental BotanyCentre of the Region Haná for Biotechnological and Agricultural ResearchOlomoucCzech Republic
| | | | - Kadri Järve
- Department of Gene TechnologyTallinn University of TechnologyTallinnEstonia
| | - Jaroslav Doležel
- Institute of Experimental BotanyCentre of the Region Haná for Biotechnological and Agricultural ResearchOlomoucCzech Republic
| | - Miroslav Valárik
- Institute of Experimental BotanyCentre of the Region Haná for Biotechnological and Agricultural ResearchOlomoucCzech Republic
| |
Collapse
|
83
|
Abstract
Genotyping-by-sequencing (GBS) has emerged as a useful genomic approach for sampling genome-wide genetic variation, performing genome-wide association mapping, and conducting genomic selection. It is a combined one-step process of SNP marker discovery and genotyping through genome reduction with restriction enzymes and SNP calling with or without a sequenced genome. This approach has the advantage of being rapid, high throughput, cost effective, and applicable to organisms without sequenced genomes. It has been increasingly applied to generate SNP genotype data for plant genetic and genomic studies. To facilitate a wider GBS application, particularly in oat genetic and genomic research, we describe the GBS approach, review the current applications of GBS in plant species, and highlight some applications of GBS to oat research. We also discuss issues in various applications of GBS and provide some perspectives in GBS research. Recent developments of bioinformatics pipelines in high-quality SNP discovery for polyploid crops will enhance the application of GBS to oat genetic and genomic research.
Collapse
Affiliation(s)
- Yong-Bi Fu
- Plant Gene Resources of Canada, Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, Canada, S7N 0X2.
| | - Mo-Hua Yang
- Plant Gene Resources of Canada, Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, Canada, S7N 0X2
- College of Forestry, Central South University of Forestry and Technology, Changsha, Hunan, China
| |
Collapse
|
84
|
Zhou Q, Zhou C, Zheng W, Mason AS, Fan S, Wu C, Fu D, Huang Y. Genome-Wide SNP Markers Based on SLAF-Seq Uncover Breeding Traces in Rapeseed ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2017; 8:648. [PMID: 28503182 PMCID: PMC5409215 DOI: 10.3389/fpls.2017.00648] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/10/2017] [Indexed: 05/18/2023]
Abstract
Single Nucleotide Polymorphisms (SNPs) are the most abundant and richest form of genomic polymorphism, and hence make highly favorable markers for genetic map construction and genome-wide association studies. In this study, a total of 300 rapeseed accessions (278 representative of Chinese germplasm, plus 22 outgroup accessions of different origins and ecotypes) were collected and sequenced using Specific-Locus Amplified Fragment Sequencing (SLAF-seq) technology, obtaining 660.25M reads with an average sequencing depth of 6.27 × and a mean Q30 of 85.96%. Based on the 238,711 polymorphic SLAF tags a total of 1,197,282 SNPs were discovered, and a subset of 201,817 SNPs with minor allele frequency >0.05 and integrity >0.8 were selected. Of these, 30,877 were designated SNP "hotspots," and 41 SNP-rich genomic regions could be delineated, with 100 genes associated with plant resistance, vernalization response, and signal transduction detected in these regions. Subsequent analysis of genetic diversity, linkage disequilibrium (LD), and population structure in the 300 accessions was carried out based on the 201,817 SNPs. Nine subpopulations were observed based on the population structure analysis. Hierarchical clustering and principal component analysis divided the 300 varieties roughly in accordance with their ecotype origins. However, spring-type varieties were intermingled with semi-winter type varieties, indicating frequent hybridization between spring and semi-winter ecotypes in China. In addition, LD decay across the whole genome averaged 299 kb when r2 = 0.1, but the LD decay in the A genome (43 kb) was much shorter than in the C genome (1,455 kb), supporting the targeted introgression of the A genome from progenitor species B. rapa into Chinese rapeseed. This study also lays the foundation for genetic analysis of important agronomic traits using this rapeseed population.
Collapse
Affiliation(s)
- Qinghong Zhou
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural UniversityNanchang, China
| | - Can Zhou
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural UniversityNanchang, China
| | - Wei Zheng
- Jiangxi Institute of Red SoilJinxian, China
| | - Annaliese S. Mason
- Plant Breeding Department, iFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig UniversityGiessen, Germany
| | - Shuying Fan
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural UniversityNanchang, China
| | - Caijun Wu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural UniversityNanchang, China
| | - Donghui Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural UniversityNanchang, China
- *Correspondence: Donghui Fu
| | - Yingjin Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural UniversityNanchang, China
- Yingjin Huang
| |
Collapse
|
85
|
Raman H, Raman R, McVittie B, Orchard B, Qiu Y, Delourme R. A Major Locus for Manganese Tolerance Maps on Chromosome A09 in a Doubled Haploid Population of Brassica napus L. FRONTIERS IN PLANT SCIENCE 2017; 8:1952. [PMID: 29312361 PMCID: PMC5733045 DOI: 10.3389/fpls.2017.01952] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 10/30/2017] [Indexed: 05/09/2023]
Abstract
Soil acidity poses a major threat to productivity of several crops; mainly due to the prevalence of toxic levels of Al3+ and Mn2+. Crop productivity could be harnessed on acid soils via the development of plant varieties tolerant to phytotoxic levels of these cations. In this study, we investigated the extent of natural variation for Mn2+ tolerance among ten parental lines of the Australian and International canola mapping populations. Response to Mn2+ toxicity was measured on the bases of cotyledon chlorosis, shoot biomass, and leaf area in nutrient solution under control (9 μM of MnCl2⋅4H2O) and Mn treatment (125 μM of MnCl2⋅4H2O). Among parental lines, we selected Darmor-bzh and Yudal that showed significant and contrasting variation in Mn2+ tolerance to understand genetic control and identify the quantitative trait loci (QTL) underlying Mn2+ tolerance. We evaluated parental lines and their doubled haploid (DH) progenies (196 lines) derived from an F1 cross, Darmor-bzh/Yudal for Mn2+ tolerance. Mn2+-tolerant genotypes had significantly higher shoot biomass and leaf area compared to Mn2+-sensitive genotypes. A genetic linkage map based on 7,805 DArTseq markers corresponding to 2,094 unique loci was constructed and further utilized for QTL identification. A major locus, BnMn2+.A09 was further mapped with a SNP marker, Bn-A09-p29012402 (LOD score of 34.6) accounting for most of the variation in Mn2+ tolerance on chromosome A09. This is the first report on the genomic localization of a Mn2+ tolerance locus in B. napus. Additionally, an ortholog of A. thaliana encoding for cation efflux facilitator transporter was located within 3,991 bp from significant SNP marker associated with BnMn2+.A09. A suite of genome sequence based markers (DArTseq and Illumina Infinium SNPs) flanking the BnMn2+.A09 locus would provide an invaluable tool for various molecular breeding applications to improve canola production and profitability on Mn2+ toxic soils.
Collapse
Affiliation(s)
- Harsh Raman
- New South Wales Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
- *Correspondence: Harsh Raman,
| | - Rosy Raman
- New South Wales Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| | - Brett McVittie
- New South Wales Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| | - Beverley Orchard
- New South Wales Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| | - Yu Qiu
- New South Wales Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| | - Regine Delourme
- INRA, Agrocampus Ouest, Université de Rennes 1, UMR1349 Institut de Génétique, Environnement et de Protection des Plantes, Le Rheu, France
| |
Collapse
|
86
|
Dong R, Dong D, Luo D, Zhou Q, Chai X, Zhang J, Xie W, Liu W, Dong Y, Wang Y, Liu Z. Transcriptome Analyses Reveal Candidate Pod Shattering-Associated Genes Involved in the Pod Ventral Sutures of Common Vetch ( Vicia sativa L.). FRONTIERS IN PLANT SCIENCE 2017; 8:649. [PMID: 28496452 PMCID: PMC5406471 DOI: 10.3389/fpls.2017.00649] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 04/10/2017] [Indexed: 05/19/2023]
Abstract
The seed dispersion caused by pod shattering is a form of propagation used by many wild species. Loss of seeds from pod shattering is frequent in the common vetch (Vicia sativa L.), an important self-pollinating annual forage legume. However, pod shattering is one of the most important defects that limits the reproduction of the vetch in the field and the usage as a leguminous forage crop. To better understand the vetch pod shattering mechanism, we used high-throughput RNA sequencing to assess the global changes in the transcriptomes of the pod ventral sutures of shattering-susceptible and shattering-resistant vetch accessions screened from 541 vetch germplasms. A total of 1,285 significantly differentially expressed unigenes (DEGs) were detected, including 575 up-regulated unigenes and 710 down-regulated unigenes. Analyses of Gene Ontology and KEGG metabolic enrichment pathways of 1,285 DEGs indicated that 22 DEGs encoding cell wall modifications and hydrolases associated with pod shattering were highly expressed in shattering-susceptible accessions. These genes were mainly enriched in "hydrolase activity," "cytoplasm," and "carbohydrate metabolic process" systems. These cell wall modifications and hydrolases genes included β-glucosidase and endo-polygalacturonase, which work together to break down the glycosidic bonds of pectin and cellulose, and to promote the dissolution and disappearance of the cell wall in the ventral suture of the pod and make the pod more susceptible to shattering. We demonstrated the differences in gene transcription levels between the shattering-susceptible and shattering-resistant vetch accessions for the first time and our results provided valuable information for the identifying and characterizing of pod shattering regulation networks in vetch. This information may facilitate the future identification of pod shattering-related genes and their underlying molecular mechanisms in the common vetch.
Collapse
Affiliation(s)
- Rui Dong
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
| | - Deke Dong
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
| | - Dong Luo
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
| | - Qiang Zhou
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
| | - Xutian Chai
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
| | - Jiyu Zhang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
| | - Wengang Xie
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
| | - Wenxian Liu
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
| | - Yang Dong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Yanrong Wang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
- *Correspondence: Yanrong Wang
| | - Zhipeng Liu
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
- Zhipeng Liu
| |
Collapse
|
87
|
Raman R, Qiu Y, Coombes N, Song J, Kilian A, Raman H. Molecular Diversity Analysis and Genetic Mapping of Pod Shatter Resistance Loci in Brassica carinata L. FRONTIERS IN PLANT SCIENCE 2017; 8:1765. [PMID: 29250080 PMCID: PMC5716317 DOI: 10.3389/fpls.2017.01765] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/27/2017] [Indexed: 05/05/2023]
Abstract
Seed lost due to easy pod dehiscence at maturity (pod shatter) is a major problem in several members of Brassicaceae family. We investigated the level of pod shatter resistance in Ethiopian mustard (Brassica carinata) and identified quantitative trait loci (QTL) for targeted introgression of this trait in Ethiopian mustard and its close relatives of the genus Brassica. A set of 83 accessions of B. carinata, collected from the Australian Grains Genebank, was evaluated for pod shatter resistance based on pod rupture energy (RE). In comparison to B. napus (RE = 2.16 mJ), B. carinata accessions had higher RE values (2.53 to 20.82 mJ). A genetic linkage map of an F2 population from two contrasting B. carinata selections, BC73526 (shatter resistant with high RE) and BC73524 (shatter prone with low RE) comprising 300 individuals, was constructed using a set of 6,464 high quality DArTseq markers and subsequently used for QTL analysis. Genetic analysis of the F2 and F2:3 derived lines revealed five statistically significant QTL (LOD ≥ 3) that are linked with pod shatter resistance on chromosomes B1, B3, B8, and C5. Herein, we report for the first time, identification of genetic loci associated with pod shatter resistance in B. carinata. These characterized accessions would be useful in Brassica breeding programs for introgression of pod shatter resistance alleles in to elite breeding lines. Molecular markers would assist marker-assisted selection for tracing the introgression of resistant alleles. Our results suggest that the value of the germplasm collections can be harnessed through genetic and genomics tools.
Collapse
Affiliation(s)
- Rosy Raman
- Graham Centre for Agricultural Innovation (an alliance between NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
- Wagga Wagga Agricultural Institute, NSW Department of Primary Industries, Wagga Wagga, NSW, Australia
- *Correspondence: Rosy Raman,
| | - Yu Qiu
- Wagga Wagga Agricultural Institute, NSW Department of Primary Industries, Wagga Wagga, NSW, Australia
| | - Neil Coombes
- Wagga Wagga Agricultural Institute, NSW Department of Primary Industries, Wagga Wagga, NSW, Australia
| | - Jie Song
- Diversity Arrays Technology Pty. Ltd., University of Canberra, Canberra, ACT, Australia
| | - Andrzej Kilian
- Diversity Arrays Technology Pty. Ltd., University of Canberra, Canberra, ACT, Australia
| | - Harsh Raman
- Graham Centre for Agricultural Innovation (an alliance between NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| |
Collapse
|
88
|
Wang H, Cheng H, Wang W, Liu J, Hao M, Mei D, Zhou R, Fu L, Hu Q. Identification of BnaYUCCA6 as a candidate gene for branch angle in Brassica napus by QTL-seq. Sci Rep 2016; 6:38493. [PMID: 27922076 PMCID: PMC5138835 DOI: 10.1038/srep38493] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 11/11/2016] [Indexed: 11/12/2022] Open
Abstract
Oilseed rape (Brassica napus L.) is one of the most important oil crops in China as well as worldwide. Branch angle as a plant architecture component trait plays an important role for high density planting and yield performance. In this study, bulked segregant analysis (BSA) combined with next generation sequencing technology was used to fine map QTL for branch angle. A major QTL, designated as branch angle 1 (ba1) was identified on A06 and further validated by Indel marker-based classical QTL mapping in an F2 population. Eighty-two genes were identified in the ba1 region. Among these genes, BnaA0639380D is a homolog of AtYUCCA6. Sequence comparison of BnaA0639380D from small- and big-branch angle oilseed rape lines identified six SNPs and four amino acid variation in the promoter and coding region, respectively. The expression level of BnaA0639380D is significantly higher in the small branch angle line Purler than in the big branch angle line Huyou19, suggesting that the genomic mutations may result in reduced activity of BnaA0639380D in Huyou19. Phytohormone determination showed that the IAA content in Purler was also obviously increased. Taken together, our results suggested BnaA0639380D is a possible candidate gene for branch angle in oilseed rape.
Collapse
Affiliation(s)
- Hui Wang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, No. 2 Xudong 2nd Road, Wuhan 430062, P.R. China
| | - Hongtao Cheng
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, No. 2 Xudong 2nd Road, Wuhan 430062, P.R. China
| | - Wenxiang Wang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, No. 2 Xudong 2nd Road, Wuhan 430062, P.R. China
| | - Jia Liu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, No. 2 Xudong 2nd Road, Wuhan 430062, P.R. China
| | - Mengyu Hao
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, No. 2 Xudong 2nd Road, Wuhan 430062, P.R. China
| | - Desheng Mei
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, No. 2 Xudong 2nd Road, Wuhan 430062, P.R. China
| | - Rijin Zhou
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, No. 2 Xudong 2nd Road, Wuhan 430062, P.R. China
| | - Li Fu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, No. 2 Xudong 2nd Road, Wuhan 430062, P.R. China
| | - Qiong Hu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture, No. 2 Xudong 2nd Road, Wuhan 430062, P.R. China
| |
Collapse
|
89
|
Lambert MR, Skelly DK, Ezaz T. Sex-linked markers in the North American green frog (Rana clamitans) developed using DArTseq provide early insight into sex chromosome evolution. BMC Genomics 2016; 17:844. [PMID: 27793086 PMCID: PMC5084323 DOI: 10.1186/s12864-016-3209-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 10/25/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The extent to which sex reversal is associated with transitions in sex determining systems (XX-XY, ZZ-ZW, etc.) or abnormal sexual differentiation is predominantly unexplored in amphibians. This is in large part because most amphibian taxa have homomorphic sex chromosomes, which has traditionally made it challenging to identify discordance between phenotypic and genetic sex in amphibians, despite all amphibians having a genetic component to sex determination. Recent advances in molecular techniques such as genome complexity reduction and high throughput sequencing present a valuable avenue for furthering our understanding of sex determination in amphibians and other taxa with homomorphic sex chromosomes like many fish and reptiles. RESULTS We use DArTseq as a novel approach to identify sex-linked markers in the North American green frog (Rana clamitans melanota) using lab-reared tadpoles as well as wild-caught adults from seven ponds either in undeveloped, forested habitats or suburban ponds known to be subject to contamination by anthropogenic chemicals. The DArTseq methodology identified 13 sex-linked SNP loci and eight presence-absence loci associated with males, indicating an XX-XY system. Both alleles from a single locus show partial high sequence homology to Dmrt1, a gene linked to sex determination and differentiation throughout Metazoa. Two other loci have sequence similarities to regions of the chimpanzee and human X-chromosome as well as the chicken Z-chromosome. Several loci also show geographic variation in sex-linkage, possibly indicating sex chromosome recombination. While all loci are statistically sex-linked, they show varying degrees of female heterozygosity and male homozygosity, providing further evidence that some markers are on regions of the sex chromosomes undergoing higher rates of recombination and therefore further apart from the putative sex determining locus. CONCLUSION The ease of the DArTseq platform provides a useful avenue for future research on sex reversal and sex chromosome evolution in vertebrates, particularly for non-model species with homomorphic or cryptic or nascent sex chromosomes.
Collapse
Affiliation(s)
- Max R Lambert
- School of Forestry and Environmental Studies, Yale University, Greeley Memorial Lab, 370 Prospect St, New Haven, CT, 06511, USA.
| | - David K Skelly
- School of Forestry and Environmental Studies, Yale University, Greeley Memorial Lab, 370 Prospect St, New Haven, CT, 06511, USA
| | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, Australia
| |
Collapse
|
90
|
Couch AJ, Unmack PJ, Dyer FJ, Lintermans M. Who's your mama? Riverine hybridisation of threatened freshwater Trout Cod and Murray Cod. PeerJ 2016; 4:e2593. [PMID: 27812407 PMCID: PMC5088581 DOI: 10.7717/peerj.2593] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/20/2016] [Indexed: 01/06/2023] Open
Abstract
Rates of hybridization and introgression are increasing dramatically worldwide because of translocations, restocking of organisms and habitat modifications; thus, determining whether hybridization is occuring after reintroducing extirpated congeneric species is commensurately important for conservation. Restocking programs are sometimes criticized because of the genetic consequences of hatchery-bred fish breeding with wild populations. These concerns are important to conservation restocking programs, including those from the Australian freshwater fish family, Percichthyidae. Two of the better known Australian Percichthyidae are the Murray Cod, Maccullochella peelii and Trout Cod, Maccullochella macquariensis which were formerly widespread over the Murray Darling Basin. In much of the Murrumbidgee River, Trout Cod and Murray Cod were sympatric until the late 1970s when Trout Cod were extirpated. Here we use genetic single nucleotide polymorphism (SNP) data together with mitochondrial sequences to examine hybridization and introgression between Murray Cod and Trout Cod in the upper Murrumbidgee River and consider implications for restocking programs. We have confirmed restocked riverine Trout Cod reproducing, but only as inter-specific matings, in the wild. We detected hybrid Trout Cod-Murray Cod in the Upper Murrumbidgee, recording the first hybrid larvae in the wild. Although hybrid larvae, juveniles and adults have been recorded in hatcheries and impoundments, and hybrid adults have been recorded in rivers previously, this is the first time fertile F1 have been recorded in a wild riverine population. The F1 backcrosses with Murray cod have also been found to be fertile. All backcrosses noted were with pure Murray Cod. Such introgression has not been recorded previously in these two species, and the imbalance in hybridization direction may have important implications for restocking programs.
Collapse
Affiliation(s)
- Alan J. Couch
- Institute for Applied Ecology, University of Canberra, Bruce, ACT, Australia
| | - Peter J. Unmack
- Institute for Applied Ecology, University of Canberra, Bruce, ACT, Australia
| | - Fiona J. Dyer
- Institute for Applied Ecology, University of Canberra, Bruce, ACT, Australia
| | - Mark Lintermans
- Institute for Applied Ecology, University of Canberra, Bruce, ACT, Australia
| |
Collapse
|
91
|
Raman H, Raman R, Coombes N, Song J, Diffey S, Kilian A, Lindbeck K, Barbulescu DM, Batley J, Edwards D, Salisbury PA, Marcroft S. Genome-wide Association Study Identifies New Loci for Resistance to Leptosphaeria maculans in Canola. FRONTIERS IN PLANT SCIENCE 2016; 7:1513. [PMID: 27822217 PMCID: PMC5075532 DOI: 10.3389/fpls.2016.01513] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 09/23/2016] [Indexed: 05/18/2023]
Abstract
Key message "We identified both quantitative and quantitative resistance loci to Leptosphaeria maculans, a fungal pathogen, causing blackleg disease in canola. Several genome-wide significant associations were detected at known and new loci for blackleg resistance. We further validated statistically significant associations in four genetic mapping populations, demonstrating that GWAS marker loci are indeed associated with resistance to L. maculans. One of the novel loci identified for the first time, Rlm12, conveys adult plant resistance in canola." Blackleg, caused by Leptosphaeria maculans, is a significant disease which affects the sustainable production of canola (Brassica napus). This study reports a genome-wide association study based on 18,804 polymorphic SNPs to identify loci associated with qualitative and quantitative resistance to L. maculans. Genomic regions delimited with 694 significant SNP markers, that are associated with resistance evaluated using 12 single spore isolates and pathotypes from four canola stubble were identified. Several significant associations were detected at known disease resistance loci including in the vicinity of recently cloned Rlm2/LepR3 genes, and at new loci on chromosomes A01/C01, A02/C02, A03/C03, A05/C05, A06, A08, and A09. In addition, we validated statistically significant associations on A01, A07, and A10 in four genetic mapping populations, demonstrating that GWAS marker loci are indeed associated with resistance to L. maculans. One of the novel loci identified for the first time, Rlm12, conveys adult plant resistance and mapped within 13.2 kb from Arabidopsis R gene of TIR-NBS class. We showed that resistance loci are located in the vicinity of R genes of Arabidopsis thaliana and Brassica napus on the sequenced genome of B. napus cv. Darmor-bzh. Significantly associated SNP markers provide a valuable tool to enrich germplasm for favorable alleles in order to improve the level of resistance to L. maculans in canola.
Collapse
Affiliation(s)
- Harsh Raman
- Graham Centre for Agricultural Innovation (an alliance between NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga Agricultural Institute, Wagga WaggaNSW, Australia
| | - Rosy Raman
- Graham Centre for Agricultural Innovation (an alliance between NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga Agricultural Institute, Wagga WaggaNSW, Australia
| | - Neil Coombes
- Graham Centre for Agricultural Innovation (an alliance between NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga Agricultural Institute, Wagga WaggaNSW, Australia
| | - Jie Song
- Diversity Array Technology P/L, University of Canberra, CanberraACT, Australia
| | - Simon Diffey
- Centre for Bioinformatics and Biometrics, University of Wollongong, WollongongNSW, Australia
| | - Andrzej Kilian
- Diversity Array Technology P/L, University of Canberra, CanberraACT, Australia
| | - Kurt Lindbeck
- Graham Centre for Agricultural Innovation (an alliance between NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga Agricultural Institute, Wagga WaggaNSW, Australia
| | - Denise M. Barbulescu
- Department of Economic Development, Jobs, Transport and Resources, HorshamVIC, Australia
| | - Jacqueline Batley
- School of Plant Biology, University of Western Australia, CrawleyWA, Australia
| | - David Edwards
- School of Plant Biology, University of Western Australia, CrawleyWA, Australia
- Institute of Agriculture, University of Western Australia, CrawleyWA, Australia
| | - Phil A. Salisbury
- Department of Economic Development, Jobs, Transport and Resources, HorshamVIC, Australia
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, ParkvilleVIC, Australia
| | | |
Collapse
|
92
|
Li L, Luo Y, Chen B, Xu K, Zhang F, Li H, Huang Q, Xiao X, Zhang T, Hu J, Li F, Wu X. A Genome-Wide Association Study Reveals New Loci for Resistance to Clubroot Disease in Brassica napus. FRONTIERS IN PLANT SCIENCE 2016; 7:1483. [PMID: 27746804 PMCID: PMC5044777 DOI: 10.3389/fpls.2016.01483] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/20/2016] [Indexed: 05/19/2023]
Abstract
Rapeseed (Brassica napus L.) is one of the most important oil crops in the world. However, the yield and quality of rapeseed were largely decreased by clubroot (Plasmodiophora brassicae Woronin). Therefore, it is of great importance for screening more resistant germplasms or genes and improving the resistance to P. brassicae in rapeseed breeding. In this study, a massive resistant identification for a natural global population was conducted in two environments with race/pathotype 4 of P. brassicae which was the most predominant in China, and a wide range of phenotypic variation was found in the population. In addition, a genome-wide association study of 472 accessions for clubroot resistance (CR) was performed with 60K Brassica Infinium SNP arrays for the first time. In total, nine QTLs were detected, seven of which were novel through integrative analysis. Furthermore, additive effects in genetic control of CR in rapeseed among the above loci were found. By bioinformatic analyses, the candidate genes of these loci were predicted, which indicated that TIR-NBS gene family might play an important role in CR. It is believable that the results presented in our study could provide valuable information for understanding the genetic mechanism and molecular regulation of CR.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Xiaoming Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crop Research Institute – Chinese Academy of Agricultural SciencesWuhan, China
| |
Collapse
|
93
|
Li L, Luo Y, Chen B, Xu K, Zhang F, Li H, Huang Q, Xiao X, Zhang T, Hu J, Li F, Wu X. A Genome-Wide Association Study Reveals New Loci for Resistance to Clubroot Disease in Brassica napus. FRONTIERS IN PLANT SCIENCE 2016; 7:1483. [PMID: 27746804 DOI: 10.3389/fpls.2015.01483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/20/2016] [Indexed: 05/26/2023]
Abstract
Rapeseed (Brassica napus L.) is one of the most important oil crops in the world. However, the yield and quality of rapeseed were largely decreased by clubroot (Plasmodiophora brassicae Woronin). Therefore, it is of great importance for screening more resistant germplasms or genes and improving the resistance to P. brassicae in rapeseed breeding. In this study, a massive resistant identification for a natural global population was conducted in two environments with race/pathotype 4 of P. brassicae which was the most predominant in China, and a wide range of phenotypic variation was found in the population. In addition, a genome-wide association study of 472 accessions for clubroot resistance (CR) was performed with 60K Brassica Infinium SNP arrays for the first time. In total, nine QTLs were detected, seven of which were novel through integrative analysis. Furthermore, additive effects in genetic control of CR in rapeseed among the above loci were found. By bioinformatic analyses, the candidate genes of these loci were predicted, which indicated that TIR-NBS gene family might play an important role in CR. It is believable that the results presented in our study could provide valuable information for understanding the genetic mechanism and molecular regulation of CR.
Collapse
Affiliation(s)
- Lixia Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crop Research Institute - Chinese Academy of Agricultural Sciences Wuhan, China
| | - Yujie Luo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crop Research Institute - Chinese Academy of Agricultural Sciences Wuhan, China
| | - Biyun Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crop Research Institute - Chinese Academy of Agricultural Sciences Wuhan, China
| | - Kun Xu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crop Research Institute - Chinese Academy of Agricultural Sciences Wuhan, China
| | - Fugui Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crop Research Institute - Chinese Academy of Agricultural Sciences Wuhan, China
| | - Hao Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crop Research Institute - Chinese Academy of Agricultural Sciences Wuhan, China
| | - Qian Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crop Research Institute - Chinese Academy of Agricultural Sciences Wuhan, China
| | - Xin Xiao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crop Research Institute - Chinese Academy of Agricultural Sciences Wuhan, China
| | - Tianyao Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crop Research Institute - Chinese Academy of Agricultural Sciences Wuhan, China
| | - Jihong Hu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crop Research Institute - Chinese Academy of Agricultural Sciences Wuhan, China
| | - Feng Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crop Research Institute - Chinese Academy of Agricultural Sciences Wuhan, China
| | - Xiaoming Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crop Research Institute - Chinese Academy of Agricultural Sciences Wuhan, China
| |
Collapse
|
94
|
Genome-Wide Association Study Dissecting the Genetic Architecture Underlying the Branch Angle Trait in Rapeseed (Brassica napus L.). Sci Rep 2016; 6:33673. [PMID: 27646167 PMCID: PMC5028734 DOI: 10.1038/srep33673] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 08/31/2016] [Indexed: 12/04/2022] Open
Abstract
The rapeseed branch angle is an important morphological trait because an adequate branch angle enables more efficient light capture under high planting densities. Here, we report that the average angle of the five top branches provides a reliable representation of the average angle of all branches. Statistical analyses revealed a significantly positive correlation between the branch angle and multiple plant-type and yield-related traits. The 60 K Brassica Infinium® single nucleotide polymorphism (SNP) array was utilized to genotype an association panel with 520 diverse accessions. A genome-wide association study was performed to determine the genetic architecture of branch angle, and 56 loci were identified as being significantly associated with the branch angle trait via three models, including a robust, novel, nonparametric Anderson-Darling (A-D) test. Moreover, these loci explained 51.1% of the phenotypic variation when a simple additive model was applied. Within the linkage disequilibrium (LD) decay ranges of 53 loci, we observed plausible candidates orthologous to documented Arabidopsis genes, such as LAZY1, SGR2, SGR4, SGR8, SGR9, PIN3, PIN7, CRK5, TIR1, and APD7. These results provide insight into the genetic basis of the branch angle trait in rapeseed and might facilitate marker-based breeding for improvements in plant architecture.
Collapse
|
95
|
Espeland EK, Emery NC, Mercer KL, Woolbright SA, Kettenring KM, Gepts P, Etterson JR. Evolution of plant materials for ecological restoration: insights from the applied and basic literature. J Appl Ecol 2016. [DOI: 10.1111/1365-2664.12739] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Erin K. Espeland
- USDA-ARS Pest Management Research Unit; 1500 N. Central Avenue Sidney MT 59270 USA
| | - Nancy C. Emery
- Department of Ecology and Evolutionary Biology; RAMY 0334, University of Colorado; Boulder CO 80309 USA
| | - Kristin L. Mercer
- Department of Horticulture and Crop Science; 2021 Coffey Road, Ohio State University; Columbus OH 43210 USA
| | - Scott A. Woolbright
- Department of Biological Sciences; University of Arkansas at Little Rock 2801 S. University Avenue; Little Rock AR 72204 USA
| | - Karin M. Kettenring
- Ecology Center and Department of Watershed Sciences; 5210 Old Main Hill, Utah State University; Logan UT 84322 USA
| | - Paul Gepts
- Department of Plant Sciences/MS1; University of California; 1 Shields Avenue, Davis CA 95616 USA
| | - Julie R. Etterson
- Department of Biology; University of Minnesota Duluth; 1049 University Drive Duluth MN 55812 USA
| |
Collapse
|
96
|
dos Santos JPR, Pires LPM, de Castro Vasconcellos RC, Pereira GS, Von Pinho RG, Balestre M. Genomic selection to resistance to Stenocarpella maydis in maize lines using DArTseq markers. BMC Genet 2016; 17:86. [PMID: 27316946 PMCID: PMC4912722 DOI: 10.1186/s12863-016-0392-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/07/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The identification of lines resistant to ear diseases is of great importance in maize breeding because such diseases directly interfere with kernel quality and yield. Among these diseases, ear rot disease is widely relevant due to significant decrease in grain yield. Ear rot may be caused by the fungus Stenocarpella maydi; however, little information about genetic resistance to this pathogen is available in maize, mainly related to candidate genes in genome. In order to exploit this genome information we used 23.154 Dart-seq markers in 238 lines and apply genome-wide selection to select resistance genotypes. We divide the lines into clusters to identify groups related to resistance to Stenocarpella maydi and use Bayesian stochastic search variable approach and rr-BLUP methods to comparate their selection results. RESULTS Through a principal component analysis (PCA) and hierarchical clustering, it was observed that the three main genetic groups (Stiff Stalk Synthetic, Non-Stiff Stalk Synthetic and Tropical) were clustered in a consistent manner, and information on the resistance sources could be obtained according to the line of origin where populations derived from genetic subgroup Suwan presenting higher levels of resistance. The ridge regression best linear unbiased prediction (rr-BLUP) and Bayesian stochastic search variable (BSSV) models presented equivalent abilities regarding predictive processes. CONCLUSION Our work showed that is possible to select maize lines presenting a high resistance to Stenocarpella maydis. This claim is based on the acceptable level of predictive accuracy obtained by Genome-wide Selection (GWS) using different models. Furthermore, the lines related to background Suwan present a higher level of resistance than lines related to other groups.
Collapse
Affiliation(s)
| | | | | | | | | | - Marcio Balestre
- />Department of Exact Science, Federal University of Lavras, Lavras, MG CP 3037 Brazil
| |
Collapse
|
97
|
Gupta M, Mason AS, Batley J, Bharti S, Banga S, Banga SS. Molecular-cytogenetic characterization of C-genome chromosome substitution lines in Brassica juncea (L.) Czern and Coss. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:1153-66. [PMID: 26913722 DOI: 10.1007/s00122-016-2692-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/08/2016] [Indexed: 05/25/2023]
Abstract
C genome chromosome substitution lines of B. juncea constitute a key genetic resource for increased genetic diversity and hybrid performance. C genome chromosome substitution lines were found in the progenies of derived B. juncea (2n = 36; AABB), synthesized through hybridization between B. napus and B. carinata. These were originally recognized based on the morphology and genomic in situ hybridization. Genotyping using the Brassica Illumina 60K Infinium SNP array confirmed the presence of C genome chromosomes in a large number of derived B. juncea genotypes. Three whole chromosome substitutions and 13 major C genome fragment substitutions were identified. Fragment substitutions were primarily terminal, but intercalary substitution(s) involving chromosome C1 and C2 were identified in three genotypes. The size of substituted C genome fragments varied from 0.04 Mbp (C1) to 64.85 Mbp (C3). In terms of proportions, these ranged from 0.10 % (C1) to 100 % (C1, C3 and C7) of the substituted chromosome. SSR genotyping with B genome specific primers suggested that substituting C genome chromosome(s) are likely to have replaced B genome chromosome(s). C1 was the most common substituting chromosome while substituted B chromosome seemed random. Study of the phenotypic traits underlined the importance of the substitution lines (especially of chromosome C1) for conferring superior trait performance (main shoot length and pods on the main shoot). High heterosis was also indicated in hybrid combinations of substitution lines with natural B. juncea. These substitution genotypes constituted a valuable resource for targeted gene transfer and QTL identification.
Collapse
Affiliation(s)
- Mehak Gupta
- Department of Plant Breeding and Genetics, DBT Centre of Excellence on Brassicas, Punjab Agricultural University, Ludhiana, 141001, India
| | - Annaliese S Mason
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Plant Breeding, Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Jacqueline Batley
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
- School of Plant Biology, University of Western Australia, Crawley, WA, 6009, Australia
| | - Sakshi Bharti
- Department of Plant Breeding and Genetics, DBT Centre of Excellence on Brassicas, Punjab Agricultural University, Ludhiana, 141001, India
| | - Shashi Banga
- Department of Plant Breeding and Genetics, DBT Centre of Excellence on Brassicas, Punjab Agricultural University, Ludhiana, 141001, India
| | - Surinder S Banga
- Department of Plant Breeding and Genetics, DBT Centre of Excellence on Brassicas, Punjab Agricultural University, Ludhiana, 141001, India.
| |
Collapse
|
98
|
Raman H, Raman R, Coombes N, Song J, Prangnell R, Bandaranayake C, Tahira R, Sundaramoorthi V, Killian A, Meng J, Dennis ES, Balasubramanian S. Genome-wide association analyses reveal complex genetic architecture underlying natural variation for flowering time in canola. PLANT, CELL & ENVIRONMENT 2016; 39:1228-39. [PMID: 26428711 DOI: 10.1111/pce.12644] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/17/2015] [Accepted: 09/20/2015] [Indexed: 05/17/2023]
Abstract
Optimum flowering time is the key to maximize canola production in order to meet global demand of vegetable oil, biodiesel and canola-meal. We reveal extensive variation in flowering time across diverse genotypes of canola under field, glasshouse and controlled environmental conditions. We conduct a genome-wide association study and identify 69 single nucleotide polymorphism (SNP) markers associated with flowering time, which are repeatedly detected across experiments. Several associated SNPs occur in clusters across the canola genome; seven of them were detected within 20 Kb regions of a priori candidate genes; FLOWERING LOCUS T, FRUITFUL, FLOWERING LOCUS C, CONSTANS, FRIGIDA, PHYTOCHROME B and an additional five SNPs were localized within 14 Kb of a previously identified quantitative trait loci for flowering time. Expression analyses showed that among FLC paralogs, BnFLC.A2 accounts for ~23% of natural variation in diverse accessions. Genome-wide association analysis for FLC expression levels mapped not only BnFLC.C2 but also other loci that contribute to variation in FLC expression. In addition to revealing the complex genetic architecture of flowering time variation, we demonstrate that the identified SNPs can be modelled to predict flowering time in diverse canola germplasm accurately and hence are suitable for genomic selection of adaptative traits in canola improvement programmes.
Collapse
Affiliation(s)
- H Raman
- Graham Centre for Agricultural Innovation (an alliance between NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, 2650, Australia
| | - R Raman
- Graham Centre for Agricultural Innovation (an alliance between NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, 2650, Australia
| | - N Coombes
- Graham Centre for Agricultural Innovation (an alliance between NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, 2650, Australia
| | - J Song
- Diversity Arrays Technology P/L, University of Canberra, Canberra, ACT, 2601, Australia
| | - R Prangnell
- Graham Centre for Agricultural Innovation (an alliance between NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, 2650, Australia
| | - C Bandaranayake
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - R Tahira
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - V Sundaramoorthi
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - A Killian
- Diversity Arrays Technology P/L, University of Canberra, Canberra, ACT, 2601, Australia
| | - J Meng
- National Key Laboratory of Crop Improvement, Huazhong Agricultural University, Wuhan, China
| | - E S Dennis
- CSIRO Division of Plant Industry, Canberra, ACT, 2601, Australia
| | - S Balasubramanian
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
99
|
Li LF, Olsen KM. To Have and to Hold: Selection for Seed and Fruit Retention During Crop Domestication. Curr Top Dev Biol 2016; 119:63-109. [PMID: 27282024 DOI: 10.1016/bs.ctdb.2016.02.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Crop domestication provides a useful model system to characterize the molecular and developmental bases of morphological variation in plants. Among the most universal changes resulting from selection during crop domestication is the loss of seed and fruit dispersal mechanisms, which greatly facilitates harvesting efficiency. In this review, we consider the molecular genetic and developmental bases of the loss of seed shattering and fruit dispersal in six major crop plant families, three of which are primarily associated with seed crops (Poaceae, Brassicaceae, Fabaceae) and three of which are associated with fleshy-fruited crops (Solanaceae, Rosaceae, Rutaceae). We find that the developmental basis of the loss of seed/fruit dispersal is conserved in a number of independently domesticated crops, indicating the widespread occurrence of developmentally convergent evolution in response to human selection. With regard to the molecular genetic approaches used to characterize the basis of this trait, traditional biparental quantitative trait loci mapping remains the most commonly used strategy; however, recent advances in next-generation sequencing technologies are now providing new avenues to map and characterize loss of shattering/dispersal alleles. We anticipate that continued application of these approaches, together with candidate gene analyses informed by known shattering candidate genes from other crops, will lead to a rapid expansion of our understanding of this critical domestication trait.
Collapse
Affiliation(s)
- L-F Li
- Washington University in St. Louis, St. Louis, MO, United States; Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, PR China.
| | - K M Olsen
- Washington University in St. Louis, St. Louis, MO, United States.
| |
Collapse
|
100
|
Ates D, Sever T, Aldemir S, Yagmur B, Temel HY, Kaya HB, Alsaleh A, Kahraman A, Ozkan H, Vandenberg A, Tanyolac B. Identification QTLs Controlling Genes for Se Uptake in Lentil Seeds. PLoS One 2016; 11:e0149210. [PMID: 26978666 PMCID: PMC4792374 DOI: 10.1371/journal.pone.0149210] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 01/28/2016] [Indexed: 01/03/2023] Open
Abstract
Lentil (Lens culinaris Medik.) is an excellent source of protein and carbohydrates and is also rich in essential trace elements for the human diet. Selenium (Se) is an essential micronutrient for human health and nutrition, providing protection against several diseases and regulating important biological systems. Dietary intake of 55 μg of Se per day is recommended for adults, with inadequate Se intake causing significant health problems. The objective of this study was to identify and map quantitative trait loci (QTL) of genes controlling Se accumulation in lentil seeds using a population of 96 recombinant inbred lines (RILs) developed from the cross “PI 320937” × “Eston” grown in three different environments for two years (2012 and 2013). Se concentration in seed varied between 119 and 883 μg/kg. A linkage map consisting of 1,784 markers (4 SSRs, and 1,780 SNPs) was developed. The map spanned a total length of 4,060.6 cM, consisting of 7 linkage groups (LGs) with an average distance of 2.3 cM between adjacent markers. Four QTL regions and 36 putative QTL markers, with LOD scores ranging from 3.00 to 4.97, distributed across two linkage groups (LG2 and LG5) were associated with seed Se concentration, explaining 6.3–16.9% of the phenotypic variation.
Collapse
Affiliation(s)
- Duygu Ates
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Izmir, Turkey
| | - Tugce Sever
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Izmir, Turkey
| | - Secil Aldemir
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Izmir, Turkey
| | - Bulent Yagmur
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Izmir, Turkey
| | - Hulya Yilmaz Temel
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Izmir, Turkey
| | - Hilal Betul Kaya
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Izmir, Turkey
| | - Ahmad Alsaleh
- Department of Field Crops, Faculty of Agriculture, Cukurova University, Adana, Turkey
| | - Abdullah Kahraman
- Department of Field Crops, Faculty of Agriculture, Harran University, Sanlı Urfa, Turkey
| | - Hakan Ozkan
- Department of Field Crops, Faculty of Agriculture, Cukurova University, Adana, Turkey
| | - Albert Vandenberg
- Crop Development Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Bahattin Tanyolac
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Izmir, Turkey
- * E-mail:
| |
Collapse
|