51
|
Petrellis G, Piedfort O, Katsandegwaza B, Dewals BG. Parasitic worms affect virus coinfection: a mechanistic overview. Trends Parasitol 2023; 39:358-372. [PMID: 36935340 DOI: 10.1016/j.pt.2023.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 03/19/2023]
Abstract
Helminths are parasitic worms that coevolve with their host, usually resulting in long-term persistence through modulating host immunity. The multifarious mechanisms altering the immune system induced by helminths have significant implications on the control of coinfecting pathogens such as viruses. Here, we explore the recent literature to highlight the main immune alterations and mechanisms that affect the control of viral coinfection. Insights from these mechanisms are valuable in the understanding of clinical observations in helminth-prevalent areas and in the design of new therapeutic and vaccination strategies to control viral diseases.
Collapse
Affiliation(s)
- Georgios Petrellis
- Laboratory of Parasitology, FARAH, University of Liège, Liège, Belgium; Laboratory of Immunology-Vaccinology, FARAH, University of Liège, Liège, Belgium
| | - Ophélie Piedfort
- Laboratory of Parasitology, FARAH, University of Liège, Liège, Belgium; Laboratory of Immunology-Vaccinology, FARAH, University of Liège, Liège, Belgium
| | - Brunette Katsandegwaza
- Laboratory of Parasitology, FARAH, University of Liège, Liège, Belgium; Laboratory of Immunology-Vaccinology, FARAH, University of Liège, Liège, Belgium
| | - Benjamin G Dewals
- Laboratory of Parasitology, FARAH, University of Liège, Liège, Belgium; Laboratory of Immunology-Vaccinology, FARAH, University of Liège, Liège, Belgium.
| |
Collapse
|
52
|
Towards using 3D cellular cultures to model the activation and diverse functions of macrophages. Biochem Soc Trans 2023; 51:387-401. [PMID: 36744644 PMCID: PMC9987999 DOI: 10.1042/bst20221008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/25/2022] [Accepted: 01/19/2023] [Indexed: 02/07/2023]
Abstract
The advent of 3D cell culture technology promises to enhance understanding of cell biology within tissue microenvironments. Whilst traditional cell culturing methods have been a reliable tool for decades, they inadequately portray the complex environments in which cells inhabit in vivo. The need for better disease models has pushed the development of effective 3D cell models, providing more accurate drug screening assays. There has been great progress in developing 3D tissue models in fields such as cancer research and regenerative medicine, driven by desires to recreate the tumour microenvironment for the discovery of new chemotherapies, or development of artificial tissues or scaffolds for transplantation. Immunology is one field that lacks optimised 3D models and the biology of tissue resident immune cells such as macrophages has yet to be fully explored. This review aims to highlight the benefits of 3D cell culturing for greater understanding of macrophage biology. We review current knowledge of macrophage interactions with their tissue microenvironment and highlight the potential of 3D macrophage models in the development of more effective treatments for disease.
Collapse
|
53
|
Troha K, Vozel D, Arko M, Bedina Zavec A, Dolinar D, Hočevar M, Jan Z, Kisovec M, Kocjančič B, Pađen L, Pajnič M, Penič S, Romolo A, Repar N, Spasovski V, Steiner N, Šuštar V, Iglič A, Drobne D, Kogej K, Battelino S, Kralj-Iglič V. Autologous Platelet and Extracellular Vesicle-Rich Plasma as Therapeutic Fluid: A Review. Int J Mol Sci 2023; 24:3420. [PMID: 36834843 PMCID: PMC9959846 DOI: 10.3390/ijms24043420] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
The preparation of autologous platelet and extracellular vesicle-rich plasma (PVRP) has been explored in many medical fields with the aim to benefit from its healing potential. In parallel, efforts are being invested to understand the function and dynamics of PVRP that is complex in its composition and interactions. Some clinical evidence reveals beneficial effects of PVRP, while some report that there were no effects. To optimize the preparation methods, functions and mechanisms of PVRP, its constituents should be better understood. With the intention to promote further studies of autologous therapeutic PVRP, we performed a review on some topics regarding PVRP composition, harvesting, assessment and preservation, and also on clinical experience following PVRP application in humans and animals. Besides the acknowledged actions of platelets, leukocytes and different molecules, we focus on extracellular vesicles that were found abundant in PVRP.
Collapse
Affiliation(s)
- Kaja Troha
- Department of Otorhinolaryngology and Cervicofacial Surgery, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Domen Vozel
- Department of Otorhinolaryngology and Cervicofacial Surgery, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia
- University of Ljubljana, Faculty of Medicine, SI-1000 Ljubljana, Slovenia
| | - Matevž Arko
- University of Ljubljana, Laboratory of Clinical Biophysics, Faculty of Health Sciences, SI-1000 Ljubljana, Slovenia
| | - Apolonija Bedina Zavec
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, SI-1000 Ljubjana, Slovenia
| | - Drago Dolinar
- Department of Orthopedic Surgery, University Medical Centre, Zaloška 9, SI-1000 Ljubljana, Slovenia
- MD-RI Institute for Materials Research in Medicine, Bohoričeva 5, SI-1000 Ljubljana, Slovenia
| | - Matej Hočevar
- Department of Physics and Chemistry of Materials, Institute of Metals and Technology, SI-1000 Ljubljana, Slovenia
| | - Zala Jan
- University of Ljubljana, Laboratory of Clinical Biophysics, Faculty of Health Sciences, SI-1000 Ljubljana, Slovenia
| | - Matic Kisovec
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, SI-1000 Ljubjana, Slovenia
| | - Boštjan Kocjančič
- Department of Orthopedic Surgery, University Medical Centre, Zaloška 9, SI-1000 Ljubljana, Slovenia
| | - Ljubiša Pađen
- University of Ljubljana, Laboratory of Clinical Biophysics, Faculty of Health Sciences, SI-1000 Ljubljana, Slovenia
| | - Manca Pajnič
- University of Ljubljana, Laboratory of Clinical Biophysics, Faculty of Health Sciences, SI-1000 Ljubljana, Slovenia
| | - Samo Penič
- University of Ljubljana, Laboratory of Physics, Faculty of Electrical Engineering, SI-1000 Ljubljana, Slovenia
| | - Anna Romolo
- University of Ljubljana, Laboratory of Clinical Biophysics, Faculty of Health Sciences, SI-1000 Ljubljana, Slovenia
- University of Ljubljana, Laboratory of Physics, Faculty of Electrical Engineering, SI-1000 Ljubljana, Slovenia
| | - Neža Repar
- University of Ljubljana, Research Group for Nanobiology and Nanotoxicology, Biotechnical Faculty, SI-1000 Ljubljana, Slovenia
| | - Vesna Spasovski
- University of Ljubljana, Laboratory of Clinical Biophysics, Faculty of Health Sciences, SI-1000 Ljubljana, Slovenia
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11000 Belgrade, Serbia
| | - Nejc Steiner
- Department of Otorhinolaryngology and Cervicofacial Surgery, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Vid Šuštar
- University of Ljubljana, Laboratory of Clinical Biophysics, Faculty of Health Sciences, SI-1000 Ljubljana, Slovenia
| | - Aleš Iglič
- University of Ljubljana, Laboratory of Physics, Faculty of Electrical Engineering, SI-1000 Ljubljana, Slovenia
- University of Ljubljana, Laboratory of Clinical Biophysics, Faculty of Medicine, SI-1000 Ljubljana, Slovenia
| | - Damjana Drobne
- University of Ljubljana, Research Group for Nanobiology and Nanotoxicology, Biotechnical Faculty, SI-1000 Ljubljana, Slovenia
| | - Ksenija Kogej
- University of Ljubljana, Chair of Physical Chemistry, Faculty of Chemistry and Chemical Technology, SI-1000 Ljubljana, Slovenia
| | - Saba Battelino
- Department of Otorhinolaryngology and Cervicofacial Surgery, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia
- University of Ljubljana, Faculty of Medicine, SI-1000 Ljubljana, Slovenia
| | - Veronika Kralj-Iglič
- University of Ljubljana, Laboratory of Clinical Biophysics, Faculty of Health Sciences, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
54
|
Federica G, Giuseppina F, Veronica L, Gianpaolo Z, Massimo T, Veronica DM, Giuseppe S, Maria TA. An untargeted metabolomic approach to investigate antiviral defence mechanisms in memory leukocytes secreting anti-SARS-CoV-2 IgG in vitro. Sci Rep 2023; 13:629. [PMID: 36635345 PMCID: PMC9835734 DOI: 10.1038/s41598-022-26156-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 12/12/2022] [Indexed: 01/13/2023] Open
Abstract
Evidence shows that individuals infected by SARS-CoV-2 experience an altered metabolic state in multiple organs. Metabolic activities are directly involved in modulating immune responses against infectious diseases, yet our understanding of how host metabolism relates to inflammatory responses remains limited. To better elucidate the underlying biochemistry of the leukocyte response, we focused our analysis on possible relationships between SARS-CoV-2 post-infection stages and distinct metabolic pathways. Indeed, we observed a significant altered metabolism of tryptophan and urea cycle pathways in cultures of peripheral blood mononuclear cells obtained 60-90 days after infection and showing in vitro IgG antibody memory for spike-S1 antigen (n = 17). This work, for the first time, identifies metabolic routes in cell metabolism possibly related to later stages of immune defence against SARS-CoV-2 infection, namely, when circulating antibodies may be absent but an antibody memory is present. The results suggest reprogramming of leukocyte metabolism after viral pathogenesis through activation of specific amino acid pathways possibly related to protective immunity against SARS-CoV-2.
Collapse
Affiliation(s)
- Gevi Federica
- grid.12597.380000 0001 2298 9743Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Fanelli Giuseppina
- grid.12597.380000 0001 2298 9743Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Lelli Veronica
- grid.12597.380000 0001 2298 9743Department of Ecological and Biological Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Zarletti Gianpaolo
- grid.12597.380000 0001 2298 9743Department of Innovative Biology, Agro-Food and Forestry, University of Tuscia, 01100 Viterbo, Italy
| | - Tiberi Massimo
- grid.12597.380000 0001 2298 9743Department of Innovative Biology, Agro-Food and Forestry, University of Tuscia, 01100 Viterbo, Italy
| | - De Molfetta Veronica
- grid.12597.380000 0001 2298 9743Department of Innovative Biology, Agro-Food and Forestry, University of Tuscia, 01100 Viterbo, Italy
| | - Scapigliati Giuseppe
- Department of Innovative Biology, Agro-Food and Forestry, University of Tuscia, 01100, Viterbo, Italy.
| | - Timperio Anna Maria
- Department of Ecological and Biological Sciences, University of Tuscia, 01100, Viterbo, Italy.
| |
Collapse
|
55
|
Vakrakou AG, Paschalidis N, Pavlos E, Giannouli C, Karathanasis D, Tsipota X, Velonakis G, Stadelmann-Nessler C, Evangelopoulos ME, Stefanis L, Kilidireas C. Specific myeloid signatures in peripheral blood differentiate active and rare clinical phenotypes of multiple sclerosis. Front Immunol 2023; 14:1071623. [PMID: 36761741 PMCID: PMC9905713 DOI: 10.3389/fimmu.2023.1071623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/03/2023] [Indexed: 01/26/2023] Open
Abstract
Current understanding of Multiple Sclerosis (MS) pathophysiology implicates perturbations in adaptive cellular immune responses, predominantly T cells, in Relapsing-Remitting forms (RRMS). Nevertheless, from a clinical perspective MS is a heterogeneous disease reflecting the heterogeneity of involved biological systems. This complexity requires advanced analysis tools at the single-cell level to discover biomarkers for better patient-group stratification. We designed a novel 44-parameter mass cytometry panel to interrogate predominantly the role of effector and regulatory subpopulations of peripheral blood myeloid subsets along with B and T-cells (excluding granulocytes) in MS, assessing three different patient cohorts: RRMS, PPMS (Primary Progressive) and Tumefactive MS patients (TMS) (n=10, 8, 14 respectively). We further subgrouped our cohort into inactive or active disease stages to capture the early underlying events in disease pathophysiology. Peripheral blood analysis showed that TMS cases belonged to the spectrum of RRMS, whereas PPMS cases displayed different features. In particular, TMS patients during a relapse stage were characterized by a specific subset of CD11c+CD14+ CD33+, CD192+, CD172+-myeloid cells with an alternative phenotype of monocyte-derived macrophages (high arginase-1, CD38, HLA-DR-low and endogenous TNF-a production). Moreover, TMS patients in relapse displayed a selective CD4 T-cell lymphopenia of cells with a Th2-like polarised phenotype. PPMS patients did not display substantial differences from healthy controls, apart from a trend toward higher expansion of NK cell subsets. Importantly, we found that myeloid cell populations are reshaped under effective disease-modifying therapy predominantly with glatiramer acetate and to a lesser extent with anti-CD20, suggesting that the identified cell signature represents a specific therapeutic target in TMS. The expanded myeloid signature in TMS patients was also confirmed by flow cytometry. Serum neurofilament light-chain levels confirmed the correlation of this myeloid cell signature with indices of axonal injury. More in-depth analysis of myeloid subsets revealed an increase of a subset of highly cytolytic and terminally differentiated NK cells in PPMS patients with leptomeningeal enhancement (active-PPMS), compared to those without (inactive-PPMS). We have identified previously uncharacterized subsets of circulating myeloid cells and shown them to correlate with distinct disease forms of MS as well as with specific disease states (relapse/remission).
Collapse
Affiliation(s)
- Aigli G Vakrakou
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece.,Department of Neuropathology, University of Göttingen Medical Center, Göttingen, Germany
| | - Nikolaos Paschalidis
- Mass Cytometry-CyTOF Laboratory, Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Eleftherios Pavlos
- Center for Clinical Research, Experimental Surgery and Translational Research Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Division of Basic Sciences, University of Crete Medical School, Heraklion, Greece
| | - Christina Giannouli
- Center for Clinical Research, Experimental Surgery and Translational Research Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Dimitris Karathanasis
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Xristina Tsipota
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Velonakis
- Research Unit of Radiology, 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Maria-Eleftheria Evangelopoulos
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Leonidas Stefanis
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Constantinos Kilidireas
- Demyelinating Diseases Unit, 1st Department of Neurology, School of Medicine, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece.,Department of Neurology, Henry Dunant Hospital Center, Athens, Greece
| |
Collapse
|
56
|
Zhang Y, Li J, Li H, Jiang J, Guo C, Zhou C, Zhou Z, Ming Y. Single-cell RNA sequencing to dissect the immunological network of liver fibrosis in Schistosoma japonicum-infected mice. Front Immunol 2022; 13:980872. [PMID: 36618421 PMCID: PMC9814160 DOI: 10.3389/fimmu.2022.980872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Liver fibrosis is a poor outcome of patients with schistosomiasis, impacting the quality of life and even survival. Eggs deposited in the liver were the main pathogenic factors of hepatic fibrosis in Schistosomiasis japonica. However, the mechanism of hepatic fibrosis in schistosomiasis remains not well defined and there is no effective measure to prevent and treat schistosome-induced hepatic fibrosis. Methods In this study, we applied single-cell sequencing to primarily explore the mechanism of hepatic fibrosis in murine schistosomiasis japonica (n=1) and normal mouse was served as control (n=1). Results A total of 10,403 cells were included in our analysis and grouped into 18 major cell clusters. Th2 cells and NKT cells were obviously increased and there was a close communication between NKT cells and FASLG signaling pathway. Flow cytometry analysis indicated that the expression of Fasl in NKT cells, CD8+ T cell and NK cell were higher in SJ groups. Arg1, Retnla and Chil3, marker genes of alternatively activated macrophages (M2), were mainly expressed in mononuclear phagocyte(1) (MP(1)), suggesting that Kupffer cells might undergo M2-like polarization in fibrotic liver of schistosomiasis. CXCL and CCL signaling pathway analysis with CellChat showed that Cxcl16-Cxcr6, Ccl6-Ccr2 and Ccl5-Ccr5 were the most dominant L-R and there were close interactions between T cells and MPs. Conclusion Our research profiled a preliminary immunological network of hepatic fibrosis in murine schistosomiasis japonica, which might contribute to a better understanding of the mechanisms of liver fibrosis in schistosomiasis. NKT cells and CXCL and CCL signaling pathway such as Cxcl16-Cxcr6, Ccl6-Ccr2 and Ccl5-Ccr5 might be potential targets to alleviate hepatic fibrosis of schistosomiasis.
Collapse
Affiliation(s)
- Yu Zhang
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China,Engineering and Technology Research Center for Transplantation Medicine of National Health Comission, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Junhui Li
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China,Engineering and Technology Research Center for Transplantation Medicine of National Health Comission, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao Li
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China,Engineering and Technology Research Center for Transplantation Medicine of National Health Comission, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Jiang
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China,Engineering and Technology Research Center for Transplantation Medicine of National Health Comission, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chen Guo
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China,Engineering and Technology Research Center for Transplantation Medicine of National Health Comission, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chen Zhou
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China,Engineering and Technology Research Center for Transplantation Medicine of National Health Comission, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoqin Zhou
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China,Engineering and Technology Research Center for Transplantation Medicine of National Health Comission, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yingzi Ming
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China,Engineering and Technology Research Center for Transplantation Medicine of National Health Comission, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China,*Correspondence: Yingzi Ming,
| |
Collapse
|
57
|
Souza MA, Gonçalves-Santos E, Gonçalves RV, Santos EC, Campos CC, Marques MJ, Souza RL, Novaes RD. Doxycycline hyclate stimulates inducible nitric oxide synthase and arginase imbalance, potentiating inflammatory and oxidative lung damage in schistosomiasis. Biomed J 2022; 45:857-869. [PMID: 34971826 PMCID: PMC9795368 DOI: 10.1016/j.bj.2021.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 11/19/2021] [Accepted: 12/21/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND We investigated the relationship between inducible nitric oxide synthase (iNOS) and arginase pathways, cytokines, macrophages, oxidative damage and lung granulomatous inflammation in S. mansoni-infected and doxycycline-treated mice. METHODS Swiss mice were randomized in four groups: (i) uninfected, (ii) infected with S. mansoni, (iii) infected + 200 mg/kg praziquantel (Pzt), (iv) and (v) infected + 5 and 50 mg/kg doxycycline. Pzt (reference drug) was administered in a single dose and doxycycline for 60 days. RESULTS S. mansoni-infection determined extensive lung inflammation, marked recruitment of M2 macrophages, cytokines (IL-4, IL-5, IFN-γ, TNF-α) upregulation, intense eosinophil peroxidase (EPO) levels, arginase expression and activity, reduced iNOS expression and nitric oxide (NO) production. The higher dose of doxycycline aggravated lung granulomatous inflammation, downregulating IL-4 levels and M2 macrophages recruitment, and upregulating iNOS expression, EPO, NO, IFN-γ, TNF-α, M1 macrophages, protein carbonyl and malondialdehyde tissue levels. The number and size of granulomas in doxycycline-treated animals was higher than untreated and Pzt-treated mice. Exudative/productive granulomas were predominant in untreated and doxycycline-treated animals, while fibrotic/involutive granulomas were more frequent in Pzt-treated mice. The reference treatment with Pzt attenuated all these parameters. CONCLUSION Our findings indicated that doxycycline aggravated lung granulomatous inflammation in a dose-dependent way. Although Th1 effectors are protective against several intracellular pathogens, effective schistosomicidal responses are dependent of the Th2 phenotype. Thus, doxycycline contributes to the worsening of lung granulomatous inflammation by potentiating eosinophils influx and downregulating Th2 effectors, reinforcing lipid and protein oxidative damage in chronic S. mansoni infection.
Collapse
Affiliation(s)
- Matheus Augusto Souza
- Institute of Biomedical Sciences, Department of Structural Biology, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Elda Gonçalves-Santos
- Institute of Biomedical Sciences, Department of Structural Biology, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Reggiani V. Gonçalves
- Department of Animal Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Eliziária C. Santos
- School of Medicine, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais, Brazil
| | - Camila C. Campos
- Institute of Biomedical Sciences, Department of Structural Biology, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Marcos J. Marques
- Institute of Biomedical Sciences, Department of Pathology and Parasitology, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Raquel L.M. Souza
- Institute of Biomedical Sciences, Department of Pathology and Parasitology, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Rômulo D. Novaes
- Institute of Biomedical Sciences, Department of Structural Biology, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil,Corresponding author. Institute of Biomedical Sciences, Federal University of Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas, 37130-000, Minas Gerais, Brazil. Tel.: +55 31 3299 1300.
| |
Collapse
|
58
|
Qu W, Qiao S, Liu L, Chen Y, Peng C, Hou Y, Xu Z, Lv M, Wang T. Dectin3 protects against hepatocellular carcinoma by regulating glycolysis of macrophages. Int Immunopharmacol 2022; 113:109384. [DOI: 10.1016/j.intimp.2022.109384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/10/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
|
59
|
Liu J, Gong W, Liu P, Li Y, Jiang H, Wu X, Zhao Y, Ren J. Macrophages-microenvironment crosstalk in fibrostenotic inflammatory bowel disease: from basic mechanisms to clinical applications. Expert Opin Ther Targets 2022; 26:1011-1026. [PMID: 36573664 DOI: 10.1080/14728222.2022.2161889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Intestinal fibrosis is a common complication of Inflammatory Bowel Disease (IBD) with no available drugs. The current therapeutic principle is surgical intervention as the core. Intestinal macrophages contribute to both the progression of inflammation and fibrosis. Understanding the role of macrophages in the intestinal microenvironment could bring new hope for fibrosis prevention or even reversal. AREAS COVERED This article reviewed the most relevant reports on macrophage in the field of intestinal fibrosis. The authors discussed current opinions about how intestinal macrophages function and interact with surrounding mediators during inflammation resolution and fibrostenotic IBD. Based on biological mechanisms findings, authors summarized related clinical trial outcomes. EXPERT OPINION The plasticity of intestinal macrophages allows them to undergo dramatic alterations in their phenotypes or functions when exposed to gastrointestinal environmental stimuli. They exhibit distinct metabolic characteristics, secrete various cytokines, express unique surface markers, and transmit different signals. Nevertheless, the specific mechanism through which the intestinal macrophages contribute to intestinal fibrosis remains unclear. It should further elucidate a novel therapeutic approach by targeting macrophages, especially distinct mechanisms in specific subgroups of macrophages involved in the progression of fibrogenesis in IBD.
Collapse
Affiliation(s)
- Juanhan Liu
- Department of General Surgery, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, 210002, Nanjing, P. R. China
| | - Wenbin Gong
- Department of General Surgery, Southeast University, 210096, Nanjing, P. R. China
| | - Peizhao Liu
- Department of General Surgery, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, 210002, Nanjing, P. R. China
| | - Yangguang Li
- Department of General Surgery, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, 210002, Nanjing, P. R. China
| | - Haiyang Jiang
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, 210019, Nanjing, P. R. China
| | - Xiuwen Wu
- Department of General Surgery, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, 210002, Nanjing, P. R. China
| | - Yun Zhao
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, 210019, Nanjing, P. R. China
| | - Jianan Ren
- Department of General Surgery, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, 210002, Nanjing, P. R. China
| |
Collapse
|
60
|
Giordano G, Teresa Bochicchio M, Niro G, Lucchesi A, Napolitano M. Genetic regulation of iron homeostasis in sideropenic patients with mild COVID-19 disease under a new oral iron formulation: Lessons from a different perspective. Immunobiology 2022; 227:152297. [PMID: 36327544 PMCID: PMC9597571 DOI: 10.1016/j.imbio.2022.152297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/04/2022] [Accepted: 10/21/2022] [Indexed: 11/05/2022]
Abstract
Background Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) needs iron to replicate itself. Coronaviruses are able to upregulate Chop/Gadd153 and Arg1 genes, consequently leading to CD8 lymphocytes decrease, degradation of asparagine and decreased nitric oxide (NO), thus impairing immune response and antithrombotic functions. Little is known about regulation of genes involved in iron metabolism in paucisymptomatic patients with COVID-19 disease or in patients with iron deficiency treated with sucrosomial iron. Methods Whole blood was taken from the COVID-19 patients and from patients with sideropenic anemia, treated or not (control group) with iron supplementations. Enrolled patients were: affected by COVID19 under sucrosomal iron support (group A), affected by COVID-19 not under oral iron support (group B), iron deficiency not under treatment, not affected by COVID19 (control group). After RNA extraction and complementary DNA (cDNA) synthesis of Arg1, Hepcidin and Chop/Gadd153, gene expression from the 3 groups was measured by qRT-PCR. M2 macrophages were detected by cytofluorimetry using CD163 and CD14 markers. Results Forty patients with COVID-19 (group A), 20 patients with iron deficiency treated with sucrosomial iron (group B) and 20 patients with iron deficiency not under treatment (control group) were enrolled. In all the patients supported with oral sucrosomial iron, the gene expression of Chop, Arg1 and Hepcidin genes was lower than in sideropenic patients not supported with iron, M1 macrophages polarization and functional iron deficiency was also lower in group A and B, than observed in the control group. Conclusions New oral iron formulations, as sucrosomial iron, are able to influence the expression of genes like Chop and Arg1 and to influence M2 macrophage polarization mainly in the early phase of COVID-19 disease.
Collapse
Affiliation(s)
- Giulio Giordano
- Division of Internal Medicine, Hematology Service, Regional Hospital “A. Cardarelli”, 86100 Campobasso, Italy
| | - Maria Teresa Bochicchio
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Giovanna Niro
- Division of Laboratory Medicine, Regional Hospital “A. Cardarelli”, 86100 Campobasso, Italy
| | - Alessandro Lucchesi
- Hematology Unit, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) “Dino Amadori”, Meldola (FC), Italy,Corresponding author
| | - Mariasanta Napolitano
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), Haematology Unit, University Hospital “P. Giaccone”, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
61
|
Shan X, Hu P, Ni L, Shen L, Zhang Y, Ji Z, Cui Y, Guo M, Wang H, Ran L, Yang K, Wang T, Wang L, Chen B, Yao Z, Wu Y, Yu Q. Serine metabolism orchestrates macrophage polarization by regulating the IGF1-p38 axis. Cell Mol Immunol 2022; 19:1263-1278. [PMID: 36180780 PMCID: PMC9622887 DOI: 10.1038/s41423-022-00925-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 09/05/2022] [Indexed: 01/27/2023] Open
Abstract
Serine metabolism is reportedly involved in immune cell functions, but whether and how serine metabolism regulates macrophage polarization remain largely unknown. Here, we show that suppressing serine metabolism, either by inhibiting the activity of the key enzyme phosphoglycerate dehydrogenase in the serine biosynthesis pathway or by exogenous serine and glycine restriction, robustly enhances the polarization of interferon-γ-activated macrophages (M(IFN-γ)) but suppresses that of interleukin-4-activated macrophages (M(IL-4)) both in vitro and in vivo. Mechanistically, serine metabolism deficiency increases the expression of IGF1 by reducing the promoter abundance of S-adenosyl methionine-dependent histone H3 lysine 27 trimethylation. IGF1 then activates the p38-dependent JAK-STAT1 axis to promote M(IFN-γ) polarization and suppress STAT6-mediated M(IL-4) activation. This study reveals a new mechanism by which serine metabolism orchestrates macrophage polarization and suggests the manipulation of serine metabolism as a therapeutic strategy for macrophage-mediated immune diseases.
Collapse
Affiliation(s)
- Xiao Shan
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammation Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University; Division of Infectious Disease, Second Hospital of Tianjin Medical University, Tianjin, 300070, China
| | - Penghui Hu
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammation Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University; Division of Infectious Disease, Second Hospital of Tianjin Medical University, Tianjin, 300070, China
| | - Lina Ni
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammation Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University; Division of Infectious Disease, Second Hospital of Tianjin Medical University, Tianjin, 300070, China
| | - Long Shen
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammation Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University; Division of Infectious Disease, Second Hospital of Tianjin Medical University, Tianjin, 300070, China
| | - Yanan Zhang
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammation Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University; Division of Infectious Disease, Second Hospital of Tianjin Medical University, Tianjin, 300070, China
| | - Zemin Ji
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammation Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University; Division of Infectious Disease, Second Hospital of Tianjin Medical University, Tianjin, 300070, China
| | - Yan Cui
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammation Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University; Division of Infectious Disease, Second Hospital of Tianjin Medical University, Tianjin, 300070, China
| | - Meihua Guo
- Institute for Genome Engineered Animal Models of Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Haoan Wang
- Institute for Genome Engineered Animal Models of Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Liyuan Ran
- Institute for Genome Engineered Animal Models of Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Dalian, 116044, Liaoning, China
- Shandong Provincial Hospital, School of Laboratory Animal and Shandong Laboratory Animal Center, Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250021, Shandong, China
| | - Kun Yang
- Shandong Provincial Hospital, School of Laboratory Animal and Shandong Laboratory Animal Center, Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250021, Shandong, China
| | - Ting Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Lei Wang
- Division of Infectious Disease, Second Hospital of Tianjin Medical University, Tianjin, 300070, China
| | - Bin Chen
- Division of Infectious Disease, Second Hospital of Tianjin Medical University, Tianjin, 300070, China
| | - Zhi Yao
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| | - Yingjie Wu
- Institute for Genome Engineered Animal Models of Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Dalian, 116044, Liaoning, China.
- Shandong Provincial Hospital, School of Laboratory Animal and Shandong Laboratory Animal Center, Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250021, Shandong, China.
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA.
| | - Qiujing Yu
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammation Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University; Division of Infectious Disease, Second Hospital of Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
62
|
Malmir A, Farivar S, Rezaei R, Tokhanbigli S, Hatami B, Mazhari S, Baghaei K. The effect of mesenchymal stem cells and imatinib on macrophage polarization in rat model of liver fibrosis. Cell Biol Int 2022; 47:135-143. [PMID: 36183364 DOI: 10.1002/cbin.11916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/12/2022]
Abstract
Liver fibrosis is a disorder in which inflammatory reactions play an important role, and central to the progression and pathogenesis of this disease are the immune-specific cells known as macrophages. Macrophage types are distinguished from each other by the expression of a series of surface markers. STAT6 and Arg1 play an important role in the polarization of macrophages, so these two factors are downstream of interleukin 4 (IL-4) and IL-13 cytokines and cause to differentiate M2. Therefore, this study aimed to compare the independent effects of imatinib and mesenchymal cell treatment on the polarization of macrophages in rat models of liver fibrosis. The liver fibrosis was induced by the injection of CCL4 for 6 weeks in Sprague-Dawley rats. Then, rats were divided into four different groups, and the effects of imatinib and mesenchymal cells on the expression of Arg1, Ly6c, and STAT6 were evaluated. Histopathology experiments considered the amelioration effect of treatments. Our results showed that Arg1 expression was significantly increased in the groups treated with mesenchymal cells and imatinib compared to the control group. On the other hand, expression of STAT6 was significantly increased in the imatinib-treated mice compared to mesenchymal and control groups. Moreover, the expression of LY6C significantly decreased in imatinib and mesenchymal treated groups compared to the control group. Therefore, our data showed that mesenchymal stem cells and imatinib significantly modulate the fibrotic process in rat models of fibrosis, probably by polarizing macrophages towards an anti-inflammatory profile and increasing the frequency of these cells in liver tissue.
Collapse
Affiliation(s)
- Ali Malmir
- Department of Molecular and Cell Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Shirin Farivar
- Department of Molecular and Cell Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Ramazan Rezaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Tokhanbigli
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behzad Hatami
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sogol Mazhari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
63
|
Monteiro NO, Casanova MR, Quinteira R, Fangueiro JF, Reis RL, Neves NM. Biomimetic surface topography as a potential modulator of macrophages inflammatory response to biomaterials. BIOMATERIALS ADVANCES 2022; 141:213128. [PMID: 36179494 DOI: 10.1016/j.bioadv.2022.213128] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
The implantation of biomaterial devices can negatively impact the local microenvironment through several processes including the injury incurred during the implantation process and the associated host inflammatory response. Immune cell responses to implantable biomaterial devices mediate host-material interactions. Indeed, the immune system plays a central role in several biological processes required for the integration of biomaterials such as wound healing, tissue integration, inflammation, and foreign body reactions. The implant physicochemical properties such as size, shape, surface area, topography, and chemistry have been shown to provide cues to the immune system. Its induced immune-modulatory responses towards inflammatory or wound healing phenotypes can determine the success of the implant. In this work, we aim to evaluate the impact of some biomimetic surface topographies on macrophages' acute inflammatory response. For that, we selected 4 different biological surfaces to replicate through soft lithography on spin casting PCL membranes. Those topographies were: the surface of E. coli, S.eppidermidis and L929 cells cultured in polystyrene tissue culture disks, and an Eggshell membrane. We selected a model based on THP-1-derived macrophages to study the analysis of the expression of both pro-inflammatory and anti-inflammatory markers. Our results revealed that depending on the surface where these cells are seeded, they present different phenotypes. Macrophages present a M1-like phenotype when they are cultured on top of PCL membranes with the surface topography of E. coli and S. epidermidis. When cultured on membranes with L929 monolayers or Eggshell membrane surface topography, the macrophages present a M2-like phenotype. These results can be a significant advance in the development of new implantable biomaterial devices since they can help to modulate the inflammatory responses to implanted biomaterials by controlling their surface topography.
Collapse
Affiliation(s)
- N O Monteiro
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - M R Casanova
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - R Quinteira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - J F Fangueiro
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - R L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - N M Neves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
64
|
Abstract
The identification and characterization of tumor antigens are central objectives in developing anti-cancer immunotherapy. Traditionally, tumor-associated antigens (TAAs) are considered relatively restricted to tumor cells (i.e., overexpressed proteins in tumor cells), whereas tumor-specific antigens (TSAs) are considered unique to tumor cells. Recent studies have focused on identifying patient-specific neoantigens, which might be highly immunogenic because they are not expressed in normal tissues. The opposite strategy has emerged with the discovery of anti-regulatory T cells (anti-Tregs) that recognize and attack many cell types in the tumor microenvironment, such as regulatory immune cells, in addition to tumor cells. The term proposed in this review is "tumor microenvironment antigens" (TMAs) to describe the antigens that draw this attack. As therapeutic targets, TMAs offer several advantages that differentiate them from more traditional tumor antigens. Targeting TMAs leads not only to a direct attack on tumor cells but also to modulation of the tumor microenvironment, rendering it immunocompetent and tumor-hostile. Of note, in contrast to TAAs and TSAs, TMAs also are expressed in non-transformed cells with consistent human leukocyte antigen (HLA) expression. Inflammation often induces HLA expression in malignant cells, so that targeting TMAs could additionally affect tumors with no or very low levels of surface HLA expression. This review defines the characteristics, differences, and advantages of TMAs compared with traditional tumor antigens and discusses the use of these antigens in immune modulatory vaccines as an attractive approach to immunotherapy. Different TMAs are expressed by different cells and could be combined in anti-cancer immunotherapies to attack tumor cells directly and modulate local immune cells to create a tumor-hostile microenvironment and inhibit tumor angiogenesis. Immune modulatory vaccines offer an approach for combinatorial therapy with additional immunotherapy including checkpoint blockade, cellular therapy, or traditional cancer vaccines. These combinations would increase the number of patients who can benefit from such therapeutic measures, which all have optimal efficiency in inflamed tumors.
Collapse
Affiliation(s)
- Mads Hald Andersen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, Borgmester Ib Juuls Vej 25C, 5th floor, DK-2730, Herlev, Denmark.
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
65
|
Zhang Z, Ernst PB, Kiyono H, Kurashima Y. Utilizing mast cells in a positive manner to overcome inflammatory and allergic diseases. Front Immunol 2022; 13:937120. [PMID: 36189267 PMCID: PMC9518231 DOI: 10.3389/fimmu.2022.937120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/26/2022] [Indexed: 01/10/2023] Open
Abstract
Mast cells (MCs) are immune cells widely distributed in the body, accompanied by diverse phenotypes and functions. Committed mast cell precursors (MCPs) leave the bone marrow and enter the blood circulation, homing to peripheral sites under the control of various molecules from different microenvironments, where they eventually differentiate and mature. Partly attributable to the unique maturation mechanism, MCs display high functional heterogeneity and potentially plastic phenotypes. High plasticity also means that MCs can exhibit different subtypes to cope with different microenvironments, which we call “the peripheral immune education system”. Under the peripheral immune education system, MCs showed a new character from previous cognition in some cases, namely regulation of allergy and inflammation. In this review, we focus on the mucosal tissues, such as the gastrointestinal tract, to gain insights into the mechanism underlying the migration of MCs to the gut or other organs and their heterogeneity, which is driven by different microenvironments. In particular, the immunosuppressive properties of MCs let us consider that positively utilizing MCs may be a new way to overcome inflammatory and allergic disorders.
Collapse
Affiliation(s)
- Zhongwei Zhang
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Peter B Ernst
- Division of Comparative Pathology and Medicine, Department of Pathology, University of California, San Diego, San Diego, CA, United States
- Center for Veterinary Sciences and Comparative Medicine, University of California, San Diego, San Diego, CA, United States
- Department of Medicine, School of Medicine and Chiba University-University of California San Diego Center for Mucosal Immunology, Allergy and Vaccine (CU-UCSD), University of California, San Diego, San Diego, CA, United States
| | - Hiroshi Kiyono
- Department of Medicine, School of Medicine and Chiba University-University of California San Diego Center for Mucosal Immunology, Allergy and Vaccine (CU-UCSD), University of California, San Diego, San Diego, CA, United States
- Future Medicine Education and Research Organization, Chiba University, Chiba, Japan
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Human Mucosal Vaccinology, Chiba University Hospital, Chiba, Japan
- HanaVax Inc., Tokyo, Japan
- Mucosal Immunology and Allergy Therapeutics, Institute for Global Prominent Research, Chiba University, Chiba, Japan
- Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
| | - Yosuke Kurashima
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Division of Mucosal Immunology, IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Mucosal Immunology and Allergy Therapeutics, Institute for Global Prominent Research, Chiba University, Chiba, Japan
- Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
- Institute for Advanced Academic Research, Chiba University, Chiba, Japan
- Empowering Next Generation Allergist/immunologist toward Global Excellence Task Force toward 2030 (ENGAGE)-Task Force, Tokyo, Japan
| |
Collapse
|
66
|
Spatiotemporal dynamics of the cellular components involved in glial scar formation following spinal cord injury. Biomed Pharmacother 2022; 153:113500. [DOI: 10.1016/j.biopha.2022.113500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/19/2022] [Accepted: 07/30/2022] [Indexed: 11/30/2022] Open
|
67
|
Maternal IL-33 critically regulates tissue remodeling and type 2 immune responses in the uterus during early pregnancy in mice. Proc Natl Acad Sci U S A 2022; 119:e2123267119. [PMID: 35994660 PMCID: PMC9436313 DOI: 10.1073/pnas.2123267119] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The pregnant uterus is an immunologically rich organ, with dynamic changes in the inflammatory milieu and immune cell function underlying key stages of pregnancy. Recent studies have implicated dysregulated expression of the interleukin-1 (IL-1) family cytokine, IL-33, and its receptor, ST2, in poor pregnancy outcomes in women, including recurrent pregnancy loss, preeclampsia, and preterm labor. How IL-33 supports pregnancy progression in vivo is not well understood. Here, we demonstrate that maternal IL-33 signaling critically regulates uterine tissue remodeling and immune cell function during early pregnancy in mice. IL-33-deficient dams exhibit defects in implantation chamber formation and decidualization, and abnormal vascular remodeling during early pregnancy. These defects coincide with delays in early embryogenesis, increased resorptions, and impaired fetal and placental growth by late pregnancy. At a cellular level, myometrial fibroblasts, and decidual endothelial and stromal cells, are the main IL-33+ cell types in the uterus during decidualization and early placentation, whereas ST2 is expressed by uterine immune populations associated with type 2 immune responses, including ILC2s, Tregs, CD4+ T cells, M2- and cDC2-like myeloid cells, and mast cells. Early pregnancy defects in IL-33-deficient dams are associated with impaired type 2 cytokine responses by uterine lymphocytes and fewer Arginase-1+ macrophages in the uterine microenvironment. Collectively, our data highlight a regulatory network, involving crosstalk between IL-33-producing nonimmune cells and ST2+ immune cells at the maternal-fetal interface, that critically supports pregnancy progression in mice. This work has the potential to advance our understanding of how IL-33 signaling may support optimal pregnancy outcomes in women.
Collapse
|
68
|
Kokubo K, Onodera A, Kiuchi M, Tsuji K, Hirahara K, Nakayama T. Conventional and pathogenic Th2 cells in inflammation, tissue repair, and fibrosis. Front Immunol 2022; 13:945063. [PMID: 36016937 PMCID: PMC9395650 DOI: 10.3389/fimmu.2022.945063] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/18/2022] [Indexed: 12/15/2022] Open
Abstract
Type 2 helper T (Th2) cells, a subset of CD4+ T cells, play an important role in the host defense against pathogens and allergens by producing Th2 cytokines, such as interleukin-4 (IL-4), IL-5, and IL-13, to trigger inflammatory responses. Emerging evidence reveals that Th2 cells also contribute to the repair of injured tissues after inflammatory reactions. However, when the tissue repair process becomes chronic, excessive, or uncontrolled, pathological fibrosis is induced, leading to organ failure and death. Thus, proper control of Th2 cells is needed for complete tissue repair without the induction of fibrosis. Recently, the existence of pathogenic Th2 (Tpath2) cells has been revealed. Tpath2 cells produce large amounts of Th2 cytokines and induce type 2 inflammation when activated by antigen exposure or tissue injury. In recent studies, Tpath2 cells are suggested to play a central role in the induction of type 2 inflammation whereas the role of Tpath2 cells in tissue repair and fibrosis has been less reported in comparison to conventional Th2 cells. In this review, we discuss the roles of conventional Th2 cells and pathogenic Th2 cells in the sequence of tissue inflammation, repair, and fibrosis.
Collapse
Affiliation(s)
- Kota Kokubo
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Onodera
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Institute for Advanced Academic Research, Chiba University, Chiba, Japan
| | - Masahiro Kiuchi
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kaori Tsuji
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kiyoshi Hirahara
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
- *Correspondence: Kiyoshi Hirahara, ; Toshinori Nakayama,
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
- AMED-CREST, AMED, Chiba, Japan
- *Correspondence: Kiyoshi Hirahara, ; Toshinori Nakayama,
| |
Collapse
|
69
|
Muramyl Dipeptide Administration Delays Alzheimer’s Disease Physiopathology via NOD2 Receptors. Cells 2022; 11:cells11142241. [PMID: 35883683 PMCID: PMC9321587 DOI: 10.3390/cells11142241] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 01/27/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia in the world. The prevalence is steadily increasing due to an aging population and the lack of effective treatments. However, modulation of innate immune cells is a new therapeutic avenue, which is quite effective at delaying disease onset and improving cognitive decline. Methods: We studied the effect of the NOD2 receptor ligand muramyl dipeptide (MDP) on the modulation of the innate immune cells, namely patrolling monocytes and microglia. We administrated MDP once a week for 3 months in an APPswe/PS1 mouse model in both sexes. We started the treatment at 3 months before plaque formation and evaluated its effects at 6 months. Results: We showed that the MDP injections delay cognitive decline in both sexes via different mechanisms and protect the blood brain barrier (BBB). In males, MDP triggers the sink effect from the BBB, leading to a diminution in the amyloid load in the brain. This phenomenon is underlined by the increased expression of phagocytosis markers such as TREM2, CD68, and LAMP2 and a higher expression of ABCB1 and LRP1 at the BBB level. The beneficial effect seems more restricted to the brain in females treated with MDP, where microglia surround amyloid plaques and prevent the spreading of amyloid peptides. This phenomenon is also associated with an increase in TREM2 expression. Interestingly, both treated groups showed an increase in Arg-1 expression compared to controls, suggesting that MDP modulates the inflammatory response. Conclusion: These results indicate that stimulation of the NOD2 receptor in innate immune cells is a promising therapeutic avenue with potential different mechanisms between males and females.
Collapse
|
70
|
Luo Z, Soläng C, Larsson R, Singh K. Interleukin-35 Prevents the Elevation of the M1/M2 Ratio of Macrophages in Experimental Type 1 Diabetes. Int J Mol Sci 2022; 23:ijms23147970. [PMID: 35887317 PMCID: PMC9320761 DOI: 10.3390/ijms23147970] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 01/03/2023] Open
Abstract
Macrophages play an important role in the early development of type 1 diabetes (T1D). Based on the phenotype, macrophages can be classified into pro-inflammatory (M1) and anti-inflammatory (M2) macrophages. Despite intensive research in the field of macrophages and T1D, the kinetic response of M1/M2 ratio has not been studied in T1D. Thus, herein, we studied the M1 and M2 macrophages in the early development of T1D using the multiple low dose streptozotocin (MLDSTZ) mouse model. We determined the proportions of M1 and M2 macrophages in thymic glands, pancreatic lymph nodes and spleens on days 3, 7 and 10 after the first injection of STZ. In addition, we investigated the effect of IL-35 in vivo on the M1/M2 ratio and IL-35+ plasmacytoid dendritic cells in diabetic mice and in vitro on the sorted macrophages. Our results revealed that the M1/M2 ratio is higher in STZ-treated mice but this was lowered upon the treatment with IL-35. Furthermore, IL-35 treated mice had lower blood glucose levels and a higher proportion of IL-35+ cells among pDCs. Macrophages treated with IL-35 in vitro also had a higher proportion of M2 macrophages. Together, our data indicate that, under diabetic conditions, pro-inflammatory macrophages increased, but IL-35 treatment decreased the pro-inflammatory macrophages and increased anti-inflammatory macrophages, further suggesting that IL-35 prevents hyperglycemia by maintaining the anti-inflammatory phenotype of macrophages and other immune cells. Thus, IL-35 should be further investigated for the treatment of T1D and other autoimmune disorders.
Collapse
|
71
|
Abdel Aziz N, Musaigwa F, Mosala P, Berkiks I, Brombacher F. Type 2 immunity: a two-edged sword in schistosomiasis immunopathology. Trends Immunol 2022; 43:657-673. [PMID: 35835714 DOI: 10.1016/j.it.2022.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 12/14/2022]
Abstract
Schistosomiasis is the second most debilitating neglected tropical disease globally after malaria, with no available therapy to control disease-driven immunopathology. Although schistosomiasis induces a markedly heterogenous immune response, type 2 immunity is the dominating immune response following oviposition. While type 2 immunity has a crucial role in granuloma formation and host survival during the acute stage of disease, its chronic activation can result in tissue scarring, fibrosis, and organ impairment. Here, we discuss recent advances in schistosomiasis, demonstrating how different immune and non-immune cells and signaling pathways are involved in the induction, maintenance, and regulation of type 2 immunity. A better understanding of these immune responses during schistosomiasis is essential to inform the potential development of candidate therapeutic strategies that fine-tune type 2 immunity to ideally modulate schistosomiasis immunopathology.
Collapse
Affiliation(s)
- Nada Abdel Aziz
- Cytokines and Diseases Group, International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Biotechnology/Biomolecular Chemistry Program, Biotechnology Department, Faculty of Science, Cairo University, Cairo, Egypt; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa.
| | - Fungai Musaigwa
- Cytokines and Diseases Group, International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Paballo Mosala
- Cytokines and Diseases Group, International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Inssaf Berkiks
- Cytokines and Diseases Group, International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Frank Brombacher
- Cytokines and Diseases Group, International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa.
| |
Collapse
|
72
|
Xu J, Chen P, Luan X, Yuan X, Wei S, Li Y, Guo C, Wu X, Di G. The NLRP3 Activation in Infiltrating Macrophages Contributes to Corneal Fibrosis by Inducing TGF-β1 Expression in the Corneal Epithelium. Invest Ophthalmol Vis Sci 2022; 63:15. [PMID: 35838447 PMCID: PMC9296889 DOI: 10.1167/iovs.63.8.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Purpose To explore the effect and mechanism of NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasomes on corneal fibrosis. Methods The wild-type, NLRP3 knockout (KO), and myeloid cell-specific NLRP3 KO (NLRP3 Lyz-KO) C57 mice were used to establish a corneal scarring model. NLRP3 inhibitor, IL-1β neutralizing antibody, and an IL-1R antagonist were used to investigate the role of NLRP3 and IL-1β in corneal fibrosis. The expression of the NLRP3 signaling pathway related proteins, alpha-smooth muscle actin, TGF-β was determined by quantitative real-time polymerase chain reaction, Western blotting, and immunofluorescence staining. Flow cytometry was used to detect the infiltration of macrophages during corneal fibrosis. Results The components of the NLRP3 inflammasomes were elevated and activated during corneal scarring. Additionally, genetic or chemical-mediated blocking of NLRP3 as well as IL-1β significantly alleviated corneal fibrosis. Moreover, neutrophil (CD45+Ly6G+) and macrophage (CD45+ F4/80+) accumulation increased in the cornea during the progression of corneal fibrosis. Intriguingly, the increased concentrations of NLRP3 and IL-1β were prominently colocalized with the infiltrating F4/80+ macrophages. Expectedly, NLRP3 Lyz-KO mice exhibited a marked decrease in their corneal fibrosis symptoms. Mechanistically, the activation of IL-1β or macrophage NLRP3 stimulated the expression of TGF-β1 in the corneal epithelial cells, whereas an NLRP3 deficiency decreased its expression in the corneal epithelium. Conclusions These observations revealed that the NLRP3 inflammasome activation in infiltrating macrophages contributes to corneal fibrosis by regulating corneal epithelial TGF-β1 expression. Targeting the NLRP3 inflammasome might be a promising strategy for the treatment of corneal scarring.
Collapse
Affiliation(s)
- Jing Xu
- School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Peng Chen
- School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Xiaoyu Luan
- School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Xinying Yuan
- School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Susu Wei
- School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Yaxin Li
- School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Chuanlong Guo
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Xianggen Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Guohu Di
- School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
73
|
Austermann J, Roth J, Barczyk-Kahlert K. The Good and the Bad: Monocytes' and Macrophages' Diverse Functions in Inflammation. Cells 2022; 11:cells11121979. [PMID: 35741108 PMCID: PMC9222172 DOI: 10.3390/cells11121979] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/08/2022] [Accepted: 06/16/2022] [Indexed: 02/06/2023] Open
Abstract
Monocytes and macrophages are central players of the innate immune response and play a pivotal role in the regulation of inflammation. Thereby, they actively participate in all phases of the immune response, from initiating inflammation and triggering the adaptive immune response, through to the clearance of cell debris and resolution of inflammation. In this review, we described the mechanisms of monocyte and macrophage adaptation to rapidly changing microenvironmental conditions and discussed different forms of macrophage polarization depending on the environmental cues or pathophysiological condition. Therefore, special focus was placed on the tight regulation of the pro- and anti-inflammatory immune response, and the diverse functions of S100A8/S100A9 proteins and the scavenger receptor CD163 were highlighted, respectively. We paid special attention to the function of pro- and anti-inflammatory macrophages under pathological conditions.
Collapse
|
74
|
Wang J, Jiang M, Xiong A, Zhang L, Luo L, Liu Y, Liu S, Ran Q, Wu D, Xiong Y, He X, Leung ELH, Li G. Integrated analysis of single-cell and bulk RNA sequencing reveals pro-fibrotic PLA2G7 high macrophages in pulmonary fibrosis. Pharmacol Res 2022; 182:106286. [PMID: 35662628 DOI: 10.1016/j.phrs.2022.106286] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/09/2022] [Accepted: 05/29/2022] [Indexed: 10/18/2022]
Abstract
Pulmonary fibrosis (PF) is the pathological change of end-stage interstitial lung diseases with high mortality and limited therapeutic options. Lung macrophages have distinct subsets with divergent functions, and play critical roles in the pathogenesis of PF. In this study, integrative analysis of lung single-cell and bulk RNA-seq data from patients with fibrotic hypersensitivity pneumonitis and idiopathic pulmonary fibrosis was utilized to identify particular macrophage subsets during the development of PF. We find a specific macrophage subpopulation highly expressing PLA2G7 in fibrotic lungs. We performed additional single-cell RNA-seq analysis to identify analogous macrophage population in bleomycin (BLM)-induced mouse pulmonary fibrosis models. By in vitro and in vivo experiments, we further reveal the pro-fibrotic role for this PLA2G7high macrophage subset in fibroblast-to-myofibroblast transition (FMT) during pulmonary fibrosis. PLA2G7 promotes FMT via LPC/ATX/LPA/LPA2 axis in macrophages. Moreover, PLA2G7 is regulated by STAT1, and pharmacological inhibition of PLA2G7 by Darapladib ameliorates pulmonary fibrosis in BLM-induced mice. The results of this study support the view that PLA2G7high macrophage subpopulation contributes importantly to the pathogenesis of PF, which provides a potential way for targeted therapy.
Collapse
Affiliation(s)
- Junyi Wang
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China; Department of Pulmonary and Critical Care Medicine, Chengdu Institute of Respiratory Health, Chengdu Third People's Hospital Branch of National Clinical Research Center for Respiratory Disease, Chengdu, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science & Technology, Taipa, Macao Special Administrative Region of China
| | - Manling Jiang
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China; Department of Pulmonary and Critical Care Medicine, Chengdu Institute of Respiratory Health, Chengdu Third People's Hospital Branch of National Clinical Research Center for Respiratory Disease, Chengdu, China
| | - Anying Xiong
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China; Department of Pulmonary and Critical Care Medicine, Chengdu Institute of Respiratory Health, Chengdu Third People's Hospital Branch of National Clinical Research Center for Respiratory Disease, Chengdu, China
| | - Lei Zhang
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China; Department of Pulmonary and Critical Care Medicine, Chengdu Institute of Respiratory Health, Chengdu Third People's Hospital Branch of National Clinical Research Center for Respiratory Disease, Chengdu, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science & Technology, Taipa, Macao Special Administrative Region of China
| | - Li Luo
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Yao Liu
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Shengbin Liu
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Qin Ran
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China; Department of Pulmonary and Critical Care Medicine, Chengdu Institute of Respiratory Health, Chengdu Third People's Hospital Branch of National Clinical Research Center for Respiratory Disease, Chengdu, China
| | - Dehong Wu
- Department of Pulmonary and Critical Care Medicine, Chengdu Institute of Respiratory Health, Chengdu Third People's Hospital Branch of National Clinical Research Center for Respiratory Disease, Chengdu, China
| | - Ying Xiong
- Department of Pulmonary and Critical Care Medicine, Sichuan Friendship Hospital, Chengdu, China
| | - Xiang He
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China; Department of Pulmonary and Critical Care Medicine, Chengdu Institute of Respiratory Health, Chengdu Third People's Hospital Branch of National Clinical Research Center for Respiratory Disease, Chengdu, China.
| | - Elaine Lai-Han Leung
- Faculty of Health Sciences, University of Macau, Taipa, Macao Special Administrative Region of China.
| | - Guoping Li
- Laboratory of Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China; Department of Pulmonary and Critical Care Medicine, Chengdu Institute of Respiratory Health, Chengdu Third People's Hospital Branch of National Clinical Research Center for Respiratory Disease, Chengdu, China.
| |
Collapse
|
75
|
Zarlenga D, Thompson P, Mitreva M, Rosa BA, Hoberg E. Horizontal gene transfer provides insights into the deep evolutionary history and biology of Trichinella. Food Waterborne Parasitol 2022; 27:e00155. [PMID: 35542181 PMCID: PMC9079694 DOI: 10.1016/j.fawpar.2022.e00155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 12/03/2022] Open
Abstract
Evolution involves temporal changes in the characteristics of a species that are subsequently propagated or rejected through natural selection. In the case of parasites, host switching also plays a prominent role in the evolutionary process. These changes are rooted in genetic variation and gene flow where genes may be deleted, mutated (sequence), duplicated, rearranged and/or translocated and then transmitted through vertical gene transfer. However, the introduction of new genes is not driven only by Mendelian inheritance and mutation but also by the introduction of DNA from outside a lineage in the form of horizontal gene transfer between donor and recipient organisms. Once introduced and integrated into the biology of the recipient, vertical inheritance then perpetuates the newly acquired genetic factor, where further functionality may involve co-option of what has become a pre-existing physiological capacity. Upon sequencing the Trichinella spiralis (Clade I) genome, a cyanate hydratase (cyanase) gene was identified that is common among bacteria, fungi, and plants, but rarely observed among other eukaryotes. The sequence of the Trichinella cyanase gene clusters with those derived from the Kingdom Plantae in contrast to the genes found in some Clade III and IV nematodes that cluster with cyanases of bacterial origin. Phylogenetic analyses suggest that the Trichinella cyanase was acquired during the Devonian period and independently from those of other nematodes. These data may help inform us of the deep evolutionary history and ecological connectivity of early ancestors within the lineage of contemporary Trichinella. Further, in many extant organisms, cyanate detoxification has been largely superseded by energy requirements for metabolism. Thus, deciphering the function of Trichinella cyanase may provide new avenues for treatment and control.
Collapse
Affiliation(s)
- Dante Zarlenga
- U.S. Department of Agriculture, Agricultural Research Service, Animal Parasitic Diseases Laboratory, B1180 BARC-East Beltsville, MD 20705, USA
| | - Peter Thompson
- U.S. Department of Agriculture, Agricultural Research Service, Animal Parasitic Diseases Laboratory, B1180 BARC-East Beltsville, MD 20705, USA
| | - Makedonka Mitreva
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- McDonnel Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Bruce A. Rosa
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- McDonnel Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Eric Hoberg
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM 87131, USA
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
76
|
Baik JE, Park HJ, Kataru RP, Savetsky IL, Ly CL, Shin J, Encarnacion EM, Cavali MR, Klang MG, Riedel E, Coriddi M, Dayan JH, Mehrara BJ. TGF-β1 mediates pathologic changes of secondary lymphedema by promoting fibrosis and inflammation. Clin Transl Med 2022; 12:e758. [PMID: 35652284 PMCID: PMC9160979 DOI: 10.1002/ctm2.758] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 11/15/2022] Open
Abstract
Background Secondary lymphedema is a common complication of cancer treatment, and previous studies have shown that the expression of transforming growth factor‐beta 1 (TGF‐β1), a pro‐fibrotic and anti‐lymphangiogenic growth factor, is increased in this disease. Inhibition of TGF‐β1 decreases the severity of the disease in mouse models; however, the mechanisms that regulate this improvement remain unknown. Methods Expression of TGF‐β1 and extracellular matrix molecules (ECM) was assessed in biopsy specimens from patients with unilateral breast cancer‐related lymphedema (BCRL). The effects of TGF‐β1 inhibition using neutralizing antibodies or a topical formulation of pirfenidone (PFD) were analyzed in mouse models of lymphedema. We also assessed the direct effects of TGF‐β1 on lymphatic endothelial cells (LECs) using transgenic mice that expressed a dominant‐negative TGF‐β receptor selectively on LECs (LECDN‐RII). Results The expression of TGF‐β1 and ECM molecules is significantly increased in BCRL skin biopsies. Inhibition of TGF‐β1 in mouse models of lymphedema using neutralizing antibodies or with topical PFD decreased ECM deposition, increased the formation of collateral lymphatics, and inhibited infiltration of T cells. In vitro studies showed that TGF‐β1 in lymphedematous tissues increases fibroblast, lymphatic endothelial cell (LEC), and lymphatic smooth muscle cell stiffness. Knockdown of TGF‐β1 responsiveness in LECDN‐RII resulted in increased lymphangiogenesis and collateral lymphatic formation; however, ECM deposition and fibrosis persisted, and the severity of lymphedema was indistinguishable from controls. Conclusions Our results show that TGF‐β1 is an essential regulator of ECM deposition in secondary lymphedema and that inhibition of this response is a promising means of treating lymphedema.
Collapse
Affiliation(s)
- Jung Eun Baik
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hyeung Ju Park
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Raghu P Kataru
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ira L Savetsky
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Catherine L Ly
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jinyeon Shin
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elizabeth M Encarnacion
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michele R Cavali
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mark G Klang
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elyn Riedel
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michelle Coriddi
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joseph H Dayan
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Babak J Mehrara
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
77
|
von Vietinghoff S, Schmitt R. More than a Marker: Arginase-1 in Kidney Repair. J Am Soc Nephrol 2022; 33:1051-1053. [PMID: 35577557 PMCID: PMC9161802 DOI: 10.1681/asn.2022020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
| | - Roland Schmitt
- Department of Nephrology and Hypertension, Medical School Hannover, Hannover, Germany
| |
Collapse
|
78
|
Xie C, Luo M, Chen M, Wang M, Qu X, Lei B. Bioactive Poly(octanediol-citrate-polyglycol) Accelerates Skin Regeneration through M2 Polarization Immunomodulating and Early Angiogenesis. Adv Healthc Mater 2022; 11:e2101931. [PMID: 35108457 DOI: 10.1002/adhm.202101931] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 01/06/2022] [Indexed: 12/17/2022]
Abstract
The inhibition of inflammation and the promotion of early angiogenesis are paid much attention in skin tissue engineering. Citric acid-based biomaterials are widely used in tissue engineering due to their bioactive structure and biocompatibility, but there are few studies on investigating their role and mechanism in wound repair and skin regeneration. Herein, the potential anti-inflammation mechanism of poly(octanediol-citrate-polyglycol) (POCG) copolymer is reported in regulating skin wound repair. It is found that POCG can modulate macrophages phenotype through downregulating the expression of proinflammatory cytokines (tumor necrosis facor-α (Tnf-α), Interleukin-1β (IL-1β), and Interleukin-6 (IL-6) and polarizing macrophages to anti-inflammatory (M2) phenotype. POCG can promote endothelial cell vascularization by increasing the expression of angiogenesis factors (vascular endothelial growth factor (Vegf) and cluster of differentiation 31CD31) mediated by the macrophage polarization. The in vivo study shows that POCG can accelerate skin wound repair through suppressing the acute inflammation and inducing early angiogenesis through the polarization modulation. Furthermore, the POCG polymer has good biocompatibility for both immune cells and tissue cells. This study may provide the important theoretical support on the bioactivity of citrate-based biomaterials and expanding their applications in tissue engineering.
Collapse
Affiliation(s)
- Chenxi Xie
- Frontier Institute of Science and Technology Instrument Analysis Center Xi'an Jiaotong University Xi'an 710054 P. R. China
| | - Meng Luo
- Frontier Institute of Science and Technology Instrument Analysis Center Xi'an Jiaotong University Xi'an 710054 P. R. China
| | - Mi Chen
- Frontier Institute of Science and Technology Instrument Analysis Center Xi'an Jiaotong University Xi'an 710054 P. R. China
| | - Min Wang
- Frontier Institute of Science and Technology Instrument Analysis Center Xi'an Jiaotong University Xi'an 710054 P. R. China
- Department of Joint Surgery Xi'an Hong Hui Hospital Xi'an Jiaotong University Xi'an 710054 China
| | - Xiaoyan Qu
- Frontier Institute of Science and Technology Instrument Analysis Center Xi'an Jiaotong University Xi'an 710054 P. R. China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research College of Stomatology Xi'an Jiaotong University Xi'an 710054 China
| | - Bo Lei
- Frontier Institute of Science and Technology Instrument Analysis Center Xi'an Jiaotong University Xi'an 710054 P. R. China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research College of Stomatology Xi'an Jiaotong University Xi'an 710054 China
- Department of Orthopedics The First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710061 P. R. China
- State Key Laboratory for Manufacturing Systems Engineering Xi'an Jiaotong University Xi'an 710054 China
| |
Collapse
|
79
|
Pashaei S, Yarani R, Mohammadi P, Emami Aleagha MS. The potential roles of amino acids and their major derivatives in the management of multiple sclerosis. Amino Acids 2022; 54:841-858. [PMID: 35471671 DOI: 10.1007/s00726-022-03162-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 04/05/2022] [Indexed: 11/29/2022]
Abstract
Recently, we reviewed the important role of carbohydrates and lipids metabolism in different clinical aspects of multiple sclerosis (MS) disease. In the current paper, we aimed to review the contribution of amino acids and their major derivatives to different clinical outcomes of the disease, including etiology, pathogenesis, diagnosis, prognosis, and treatment. In this line, Thr (threonine), Phe (phenylalanine), Glu (glutamate), Trp (tryptophan), and Sero (serotonin) are the main examples of biomolecules that have been suggested for MS therapy. It has been concluded that different amino acids and their derivatives might be considered prominent tools for the clinical management of MS disease.
Collapse
Affiliation(s)
- Somayeh Pashaei
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Sorkhe-Ligeh Street, Kermanshah, Iran
| | - Reza Yarani
- Translational Type 1 Diabetes Biology, Department of Clinical Research, Steno Diabetes Center Copenhagen, Copenhagen, Denmark.,Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Pantea Mohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Sajad Emami Aleagha
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Sorkhe-Ligeh Street, Kermanshah, Iran.
| |
Collapse
|
80
|
Effects of Erchen Decoction on Oxidative Stress-Related Cytochrome P450 Metabolites of Arachidonic Acid in Dyslipidemic Mice with Phlegm-Dampness Retention Syndrome: A Randomized, Controlled Trial on the Correspondence between Prescription and Syndrome. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1079803. [PMID: 35392646 PMCID: PMC8983189 DOI: 10.1155/2022/1079803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/28/2022] [Indexed: 12/24/2022]
Abstract
Phlegm-dampness retention (PDR) syndrome is one of the main syndromes of dyslipidemia. This study investigated the effects of Erchen decoction (ECD) on concentrations of two oxidative stress-related cytochrome P450 (CYP450) metabolites of arachidonic acid—14,15-dihydroxyeicosatrienoic acid (14,15-DHET) and 20-hydroxyeicosatetraenoic acid (20-HETE)—in mice with dyslipidemia and phlegm-dampness retention (PDR) syndrome (n = 5 C57BL/6J mice and n = 30 apolipoprotein E knockout mice). Murine models of the disease and syndrome were established using multifactor stimulation. Then, all mice were assigned to normal, model, low- (L-), medium- (M-), or high- (H-) dose ECD groups or to a control or an unmatched prescription-syndrome (unmatched P-S) group; five mice were included in each group. Dose formulations were administered by oral gavage for 30 days to animals in the corresponding groups. We detected and analyzed hematoxylin and eosin (HE) staining characteristics of the mouse aorta and serum total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), peroxynitrite (ONOO−), 14,15-DHET, and 20-HETE concentrations in each group. TC and LDL-C concentrations significantly decreased in the M-ECD versus control group (P < 0.05); however, the TC and LDL-C concentrations were not significantly different in the unmatched P-S versus model group (P > 0.05). After treatment in the P-S correspondence groups (L-ECD, M-ECD, and H-ECD groups), the concentration of ONOO− decreased to different degrees in each group. Among these groups, the concentration of ONOO− significantly decreased in the L-ECD, M-ECD, and H-ECD groups versus the model group (P < 0.05). However, the concentration of ONOO− was not significantly different in the unmatched P-S versus the model group (P > 0.05). From the perspective of aortic HE staining, the P-S group experienced an improved endothelium structure after treatment. 14,15-DHET concentrations significantly increased in the normal, M-ECD, and H-ECD groups versus the model group; in the H-ECD versus the L-ECD group; and in the H-ECD versus the control group (all P < 0.05) to various extents after different doses of the prescription. 20-HETE concentrations pronouncedly decreased in the M-ECD versus normal group; in the M- and H-ECD groups versus the model group; in the M-ECD versus the L-ECD group; in the M-ECD versus the control group; and in the M-ECD versus the unmatched P-S (P < 0.05). However, the concentrations of 14,15-DHET and 20-HETE in the model group were not significantly different from those of the unmatched P-S (P > 0.05). In this study, ECD reversed blood lipid indexes and ameliorated oxidative stress-related metabolites, elevating serum 14,15-DHET and lowering serum 20-HETE in mice with dyslipidemia and PDR syndrome via CYP450 pathways of arachidonic acid metabolism. The efficacy of ECD relies on correspondence between the prescription and the syndrome. These findings scientifically validate the treatment according to traditional Chinese medicine syndrome differentiation. ECD can strengthen the protective effect on the vascular endothelium by driving out pathogenic factors and strengthening healthy resistance. Its efficacy may be related to the adjustment of the polarization state of macrophages.
Collapse
|
81
|
Huang Y, Gao X, Yang E, Yue K, Cao Y, Zhao B, Zhang H, Dai S, Zhang L, Luo P, Jiang X. Top-down stepwise refinement identifies coding and noncoding RNA-associated epigenetic regulatory maps in malignant glioma. J Cell Mol Med 2022; 26:2230-2250. [PMID: 35194922 PMCID: PMC8995455 DOI: 10.1111/jcmm.17244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/20/2021] [Accepted: 01/21/2022] [Indexed: 11/28/2022] Open
Abstract
With the emergence of the molecular era and retreat of the histology epoch in malignant glioma, it is becoming increasingly necessary to research diagnostic/prognostic/therapeutic biomarkers and their related regulatory mechanisms. While accumulating studies have investigated coding gene-associated biomarkers in malignant glioma, research on comprehensive coding and noncoding RNA-associated biomarkers is lacking. Furthermore, few studies have illustrated the cross-talk signalling pathways among these biomarkers and mechanisms in detail. Here, we identified DEGs and ceRNA networks in malignant glioma and then constructed Cox/Lasso regression models to further identify the most valuable genes through stepwise refinement. Top-down comprehensive integrated analysis, including functional enrichment, SNV, immune infiltration, transcription factor binding site, and molecular docking analyses, further revealed the regulatory maps among these genes. The results revealed a novel and accurate model (AUC of 0.91 and C-index of 0.84 in the whole malignant gliomas, AUC of 0.90 and C-index of 0.86 in LGG, and AUC of 0.75 and C-index of 0.69 in GBM) that includes twelve ncRNAs, 1 miRNA and 6 coding genes. Stepwise logical reasoning based on top-down comprehensive integrated analysis and references revealed cross-talk signalling pathways among these genes that were correlated with the circadian rhythm, tumour immune microenvironment and cellular senescence pathways. In conclusion, our work reveals a novel model where the newly identified biomarkers may contribute to a precise diagnosis/prognosis and subclassification of malignant glioma, and the identified cross-talk signalling pathways would help to illustrate the noncoding RNA-associated epigenetic regulatory mechanisms of glioma tumorigenesis and aid in targeted therapy.
Collapse
Affiliation(s)
- Yutao Huang
- Department of NeurosurgeryXijing HospitalFourth Military Medical UniversityXi’anChina
| | - Xiangyu Gao
- Department of NeurosurgeryXijing HospitalFourth Military Medical UniversityXi’anChina
- State Key Laboratory of Cancer BiologyFourth Military Medical UniversityXi’anChina
| | - Erwan Yang
- Department of NeurosurgeryXijing HospitalFourth Military Medical UniversityXi’anChina
| | - Kangyi Yue
- Department of NeurosurgeryXijing HospitalFourth Military Medical UniversityXi’anChina
- State Key Laboratory of Cancer BiologyFourth Military Medical UniversityXi’anChina
| | - Yuan Cao
- Department of NeurosurgeryXijing HospitalFourth Military Medical UniversityXi’anChina
| | - Boyan Zhao
- Department of NeurosurgeryXijing HospitalFourth Military Medical UniversityXi’anChina
| | - Haofuzi Zhang
- Department of NeurosurgeryXijing HospitalFourth Military Medical UniversityXi’anChina
| | - Shuhui Dai
- Department of NeurosurgeryXijing HospitalFourth Military Medical UniversityXi’anChina
| | - Lei Zhang
- Department of NeurosurgeryXijing HospitalFourth Military Medical UniversityXi’anChina
| | - Peng Luo
- Department of NeurosurgeryXijing HospitalFourth Military Medical UniversityXi’anChina
| | - Xiaofan Jiang
- Department of NeurosurgeryXijing HospitalFourth Military Medical UniversityXi’anChina
| |
Collapse
|
82
|
Li Z, Zhu Y, Kang Y, Qin S, Chai J. Neuroinflammation as the Underlying Mechanism of Postoperative Cognitive Dysfunction and Therapeutic Strategies. Front Cell Neurosci 2022; 16:843069. [PMID: 35418837 PMCID: PMC8995749 DOI: 10.3389/fncel.2022.843069] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a common neurological complication following surgery and general anesthesia, especially in elderly patients. Severe cases delay patient discharge, affect the patient’s quality of life after surgery, and are heavy burdens to society. In addition, as the population ages, surgery is increasingly used for older patients and those with higher prevalences of complications. This trend presents a huge challenge to the current healthcare system. Although studies on POCD are ongoing, the underlying pathogenesis is still unclear due to conflicting results and lack of evidence. According to existing studies, the occurrence and development of POCD are related to multiple factors. Among them, the pathogenesis of neuroinflammation in POCD has become a focus of research in recent years, and many clinical and preclinical studies have confirmed the correlation between neuroinflammation and POCD. In this article, we reviewed how central nervous system inflammation occurred, and how it could lead to POCD with changes in peripheral circulation and the pathological pathways between peripheral circulation and the central nervous system (CNS). Furthermore, we proposed some potential therapeutic targets, diagnosis and treatment strategies at the cellular and molecular levels, and clinical applications. The goal of this article was to provide a better perspective for understanding the occurrence of POCD, its development, and preventive strategies to help manage these vulnerable geriatric patients.
Collapse
Affiliation(s)
- Zhichao Li
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Youzhuang Zhu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yihan Kang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shangyuan Qin
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun Chai
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Jun Chai,
| |
Collapse
|
83
|
Peng Y, Wu W, Li X, Shangguan H, Diao L, Ma H, Wang G, Jia S, Zheng C. Effects of leukocyte-rich platelet-rich plasma and leukocyte-poor platelet-rich plasma on the healing of bone-tendon interface of rotator cuff in a mice model. Platelets 2022; 33:1075-1082. [PMID: 35257633 DOI: 10.1080/09537104.2022.2044462] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Platelet-rich plasma (PRP) is widely used clinically to treat tendon injuries, and often contains leukocytes. However, the debate regarding the concentration of leukocytes in PRP is still ongoing. This study aimed to evaluate the therapeutic effects of leukocyte-rich platelet-rich plasma (LR-PRP) and leukocyte-poor platelet-rich plasma (LP-PRP) on the healing of the bone-tendon interface (BTI) of the rotator cuff. A total of 102 C57BL/6 mice were used. Thirty mice were used to prepare the PRP, while 72 underwent acute supraspinatus tendon injury repair. The animals were then randomly assigned to three groups: LR-PRP, LP-PRP and control groups. The mice were euthanized at 4 and 8 weeks postoperatively, and histological, immunological and biomechanical analyses were performed. The histological results showed that the fusion effect at the bone-tendon interface at 4 and 8 weeks after surgery was greater in the PRP groups and significantly increased at 4 weeks; however, at 8 weeks, the area of the fibrocartilage layer in the LP-PRP group increased significantly. M2 macrophages were observed at the repaired insertion for all the groups at 4 weeks. At 8 weeks, M2 macrophages withdrew back to the tendon in the control group, but some M2 macrophages were retained at the repaired site in the LR-PRP and LP-PRP groups. Enzyme-linked immunoassay results showed that the concentrations of IL-1β and TNF-α in the LR-PRP group were significantly higher than those in the other groups at 4 and 8 weeks, while the concentrations of IL-1β and TNF-α in the LP-PRP group were significantly lower than those in the control group. The biomechanical properties of the BTI were significantly improved in the PRP group. Significantly higher failure load and ultimate strength were seen in the LR-PRP and LP-PRP groups than in the control group at 4 and 8 weeks postoperatively. Thus, LR-RPR can effectively enhance the early stage of bone-tendon interface healing after rotator cuff repair, and LP-PRP could enhance the later stages of healing after rotator cuff injury.
Collapse
Affiliation(s)
- Yundong Peng
- College of Health Science, Wuhan Sports University, Wuhan, China
| | - Wenxia Wu
- College of Health Science, Wuhan Sports University, Wuhan, China.,Department of Rehabilitation Therapy, Jinci College of Shanxi Medical University, Jinzhong, China
| | - Xiaomei Li
- College of Health Science, Wuhan Sports University, Wuhan, China.,Medical College, Huainan Union University, Anhui, China
| | - Hengyi Shangguan
- College of Health Science, Wuhan Sports University, Wuhan, China
| | - Luyu Diao
- College of Health Science, Wuhan Sports University, Wuhan, China
| | - Haozhe Ma
- College of International Education, Wuhan Sports University, Wuhan, China
| | - Guanglan Wang
- College of Health Science, Wuhan Sports University, Wuhan, China
| | - Shaohui Jia
- College of Health Science, Hubei Provincial Collaborative Innovation Center for Exercise and Health Promotion, Wuhan Sports University, Wuhan, China
| | - Cheng Zheng
- Department of Sports Medicine, Affiliated Hospital, Wuhan Sports University, Wuhan, China
| |
Collapse
|
84
|
Protecting tissue integrity and enteric function: the case for type 2 inflammation and macrophages. Trends Parasitol 2022; 38:191-192. [PMID: 35078723 DOI: 10.1016/j.pt.2021.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 12/23/2021] [Indexed: 01/21/2023]
Abstract
Type 2 inflammation (T2I) accompanies many inflammatory diseases. In a recent issue of Cell, Ahrends et al. demonstrate that helminth-elicited T2I preserves excitatory neurons and enteric function through the expansion of Arginase-1 (Arg-1)-expressing macrophages, thereby extending our understanding of the protective functions that T2I can orchestrate in inflamed barrier tissue.
Collapse
|
85
|
Vanderstichele S, Vranckx JJ. Anti-fibrotic effect of adipose-derived stem cells on fibrotic scars. World J Stem Cells 2022; 14:200-213. [PMID: 35432731 PMCID: PMC8963379 DOI: 10.4252/wjsc.v14.i2.200] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/01/2021] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Sustained injury, through radiotherapy, burns or surgical trauma, can result in fibrosis, displaying an excessive deposition of extracellular matrix (ECM), persisting inflammatory reaction, and reduced vascularization. The increasing recognition of fibrosis as a cause for disease and mortality, and increasing use of radiotherapy causing fibrosis, stresses the importance of a decent anti-fibrotic treatment.
AIM To obtain an in-depth understanding of the complex mechanisms underlying fibrosis, and more specifically, the potential mechanisms-of-action of adipose-derived stomal cells (ADSCs) in realizing their anti-fibrotic effect.
METHODS A systematic review of the literature using PubMed, Embase and Web of Science was performed by two independent reviewers.
RESULTS The injection of fat grafts into fibrotic tissue, releases ADSC into the environment. ADSCs’ capacity to directly differentiate into key cell types (e.g., ECs, fibroblasts), as well as to secrete multiple paracrine factors (e.g., hepatocyte growth factor, basis fibroblast growth factor, IL-10), allows them to alter different mechanisms underlying fibrosis in a combined approach. ADSCs favor ECM degradation by impacting the fibroblast-to-myofibroblast differentiation, favoring matrix metalloproteinases over tissue inhibitors of metalloproteinases, positively influencing collagen organization, and inhibiting the pro-fibrotic effects of transforming growth factor-β1. Furthermore, they impact elements of both the innate and adaptive immune response system, and stimulate angiogenesis on the site of injury (through secretion of pro-angiogenic cytokines like stromal cell-derived factor-1 and vascular endothelial growth factor).
CONCLUSION This review shows that understanding the complex interactions of ECM accumulation, immune response and vascularization, is vital to fibrosis treatments’ effectiveness like fat grafting. It details how ADSCs intelligently steer this complex system in an anti-fibrotic or pro-angiogenic direction, without falling into extreme dilation or stimulation of a single aspect. Detailing this combined approach, has brought fat grafting one step closer to unlocking its full potential as a non-anecdotal treatment for fibrosis.
Collapse
Affiliation(s)
| | - Jan Jeroen Vranckx
- Department of Plastic, Reconstructive Surgery, KU-Leuven University Hospitals, Leuven 3000, Belgium
| |
Collapse
|
86
|
Fu Y, Wang J, Zhou B, Pajulas A, Gao H, Ramdas B, Koh B, Ulrich BJ, Yang S, Kapur R, Renauld JC, Paczesny S, Liu Y, Tighe RM, Licona-Limón P, Flavell RA, Takatsuka S, Kitamura D, Tepper RS, Sun J, Kaplan MH. An IL-9-pulmonary macrophage axis defines the allergic lung inflammatory environment. Sci Immunol 2022; 7:eabi9768. [PMID: 35179949 PMCID: PMC8991419 DOI: 10.1126/sciimmunol.abi9768] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite IL-9 functioning as a pleiotropic cytokine in mucosal environments, the IL-9-responsive cell repertoire is still not well defined. Here, we found that IL-9 mediates proallergic activities in the lungs by targeting lung macrophages. IL-9 inhibits alveolar macrophage expansion and promotes recruitment of monocytes that develop into CD11c+ and CD11c- interstitial macrophage populations. Interstitial macrophages were required for IL-9-dependent allergic responses. Mechanistically, IL-9 affected the function of lung macrophages by inducing Arg1 activity. Compared with Arg1-deficient lung macrophages, Arg1-expressing macrophages expressed greater amounts of CCL5. Adoptive transfer of Arg1+ lung macrophages but not Arg1- lung macrophages promoted allergic inflammation that Il9r-/- mice were protected against. In parallel, the elevated expression of IL-9, IL-9R, Arg1, and CCL5 was correlated with disease in patients with asthma. Thus, our study uncovers an IL-9/macrophage/Arg1 axis as a potential therapeutic target for allergic airway inflammation.
Collapse
Affiliation(s)
- Yongyao Fu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jocelyn Wang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Baohua Zhou
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Abigail Pajulas
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Hongyu Gao
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Baskar Ramdas
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Byunghee Koh
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Benjamin J Ulrich
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Shuangshuang Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Reuben Kapur
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jean-Christophe Renauld
- Ludwig Institute for Cancer Research, Experimental Medicine Unit, Université Catholique de Louvain, Brussels, 1200 Belgium
| | - Sophie Paczesny
- Department of Microbiology and Immunology, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Robert M Tighe
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, NC 27710, United States
| | - Paula Licona-Limón
- Departamento de Biologia Celular y del Desarrollo, Instituto de Fisiologia Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Richard A. Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Shogo Takatsuka
- Division of Molecular Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| | - Daisuke Kitamura
- Division of Molecular Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| | - Robert S. Tepper
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jie Sun
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Mark H Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| |
Collapse
|
87
|
Qiao G, Ji W, Sun Z, Wang X, Li P, Jia H, Duan L, Qi F. Isosteviol reduces the acute inflammatory response after burns by upregulating MMP9 in macrophages leading to M2 polarization. Int Immunopharmacol 2022; 106:108609. [PMID: 35176589 DOI: 10.1016/j.intimp.2022.108609] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/30/2022] [Accepted: 02/02/2022] [Indexed: 11/25/2022]
Abstract
Isosteviol is a widely known sweetener isolated from the herb Stevia rebaudiana. It is well documented that isosteviol, a derivative of stevioside, has a variety of biological activities, including anti-inflammatory, anti-hypertensive, and cardioprotective effects and alleviation of ischaemia-reperfusion injury. However, the protective mechanism of isosteviol in burn injuryis still unclear. This work aimed to screen and identify the role of macrophage-related genes after burn injury through bioinformatic analysis and biological experiments and to detect the effect of isosteviol on burn inflammation. The results showed that two days after burn injury was considered the acute inflammatory response node, which was when the expression levels of CCL3, CCL4, MMP9, and CD86 in macrophages were significantly changed. Monitoring and regulating these sensitive indicators may help to evaluate the severity of burns and reduce the inflammatory impact of burns on the body. After treatment with isosteviol, during the acute inflammatory phase, the expression of MMP9 was increased, the polarization of macrophages towards the alternatively activated (M2) phenotype was increased, and IL-6 and TNF-α levels were significantly decreased. Our study provides evidence thatisosteviol can reduce inflammation after burn injury by promoting an increase in the M2-classically activated (M1) macrophage ratio and increasing the expression of MMP9 in burn wound tissue during acute inflammation.
Collapse
Affiliation(s)
- Gangjie Qiao
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China
| | - Wenbin Ji
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China
| | - Zhaonan Sun
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China
| | - Xiulan Wang
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China.
| | - Peiyuan Li
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China
| | - Haowen Jia
- General Surgery Department, Tianjin Medical University General Hospital, Airport Hospital, 85 East Sixth Road, Dongli District, Tianjin 300300, China.
| | - Lingling Duan
- General Surgery Department, Tianjin Medical University General Hospital, Airport Hospital, 85 East Sixth Road, Dongli District, Tianjin 300300, China
| | - Feng Qi
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China.
| |
Collapse
|
88
|
Moretti L, Stalfort J, Barker TH, Abebayehu D. The interplay of fibroblasts, the extracellular matrix, and inflammation in scar formation. J Biol Chem 2022; 298:101530. [PMID: 34953859 PMCID: PMC8784641 DOI: 10.1016/j.jbc.2021.101530] [Citation(s) in RCA: 135] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 02/06/2023] Open
Abstract
Various forms of fibrosis, comprising tissue thickening and scarring, are involved in 40% of deaths across the world. Since the discovery of scarless functional healing in fetuses prior to a certain stage of development, scientists have attempted to replicate scarless wound healing in adults with little success. While the extracellular matrix (ECM), fibroblasts, and inflammatory mediators have been historically investigated as separate branches of biology, it has become increasingly necessary to consider them as parts of a complex and tightly regulated system that becomes dysregulated in fibrosis. With this new paradigm, revisiting fetal scarless wound healing provides a unique opportunity to better understand how this highly regulated system operates mechanistically. In the following review, we navigate the four stages of wound healing (hemostasis, inflammation, repair, and remodeling) against the backdrop of adult versus fetal wound healing, while also exploring the relationships between the ECM, effector cells, and signaling molecules. We conclude by singling out recent findings that offer promising leads to alter the dynamics between the ECM, fibroblasts, and inflammation to promote scarless healing. One factor that promises to be significant is fibroblast heterogeneity and how certain fibroblast subpopulations might be predisposed to scarless healing. Altogether, reconsidering fetal wound healing by examining the interplay of the various factors contributing to fibrosis provides new research directions that will hopefully help us better understand and address fibroproliferative diseases, such as idiopathic pulmonary fibrosis, liver cirrhosis, systemic sclerosis, progressive kidney disease, and cardiovascular fibrosis.
Collapse
Affiliation(s)
- Leandro Moretti
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Jack Stalfort
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Thomas Harrison Barker
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Daniel Abebayehu
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA.
| |
Collapse
|
89
|
Papadimitriou TI, van Caam A, van der Kraan PM, Thurlings RM. Therapeutic Options for Systemic Sclerosis: Current and Future Perspectives in Tackling Immune-Mediated Fibrosis. Biomedicines 2022; 10:316. [PMID: 35203525 PMCID: PMC8869277 DOI: 10.3390/biomedicines10020316] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 02/01/2023] Open
Abstract
Systemic sclerosis (SSc) is a severe auto-immune, rheumatic disease, characterized by excessive fibrosis of the skin and visceral organs. SSc is accompanied by high morbidity and mortality rates, and unfortunately, few disease-modifying therapies are currently available. Inflammation, vasculopathy, and fibrosis are the key hallmarks of SSc pathology. In this narrative review, we examine the relationship between inflammation and fibrosis and provide an overview of the efficacy of current and novel treatment options in diminishing SSc-related fibrosis based on selected clinical trials. To do this, we first discuss inflammatory pathways of both the innate and acquired immune systems that are associated with SSc pathophysiology. Secondly, we review evidence supporting the use of first-line therapies in SSc patients. In addition, T cell-, B cell-, and cytokine-specific treatments that have been utilized in SSc are explored. Finally, the potential effectiveness of tyrosine kinase inhibitors and other novel therapeutic approaches in reducing fibrosis is highlighted.
Collapse
Affiliation(s)
- Theodoros-Ioannis Papadimitriou
- Department of Rheumatic Diseases, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (A.v.C.); (P.M.v.d.K.); (R.M.T.)
| | | | | | | |
Collapse
|
90
|
Dichtl S, Sanin DE, Koss CK, Willenborg S, Petzold A, Tanzer MC, Dahl A, Kabat AM, Lindenthal L, Zeitler L, Satzinger S, Strasser A, Mann M, Roers A, Eming SA, El Kasmi KC, Pearce EJ, Murray PJ. Gene-selective transcription promotes the inhibition of tissue reparative macrophages by TNF. Life Sci Alliance 2022; 5:5/4/e202101315. [PMID: 35027468 PMCID: PMC8761491 DOI: 10.26508/lsa.202101315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/24/2022] Open
Abstract
Pro-inflammatory TNF is a highly gene-selective inhibitor of the gene expression program of tissue repair and wound healing macrophages. Anti-TNF therapies are a core anti-inflammatory approach for chronic diseases such as rheumatoid arthritis and Crohn’s Disease. Previously, we and others found that TNF blocks the emergence and function of alternative-activated or M2 macrophages involved in wound healing and tissue-reparative functions. Conceivably, anti-TNF drugs could mediate their protective effects in part by an altered balance of macrophage activity. To understand the mechanistic basis of how TNF regulates tissue-reparative macrophages, we used RNAseq, scRNAseq, ATACseq, time-resolved phospho-proteomics, gene-specific approaches, metabolic analysis, and signaling pathway deconvolution. We found that TNF controls tissue-reparative macrophage gene expression in a highly gene-specific way, dependent on JNK signaling via the type 1 TNF receptor on specific populations of alternative-activated macrophages. We further determined that JNK signaling has a profound and broad effect on activated macrophage gene expression. Our findings suggest that TNF’s anti-M2 effects evolved to specifically modulate components of tissue and reparative M2 macrophages and TNF is therefore a context-specific modulator of M2 macrophages rather than a pan-M2 inhibitor.
Collapse
Affiliation(s)
| | - David E Sanin
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany.,The Bloomberg∼Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Johns Hopkins University, Baltimore, MD, USA
| | - Carolin K Koss
- Boehringer Ingelheim Pharma GmbH and Co KG, Biberach, Germany
| | | | - Andreas Petzold
- Deep Sequencing Group, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Maria C Tanzer
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Andreas Dahl
- Deep Sequencing Group, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Agnieszka M Kabat
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany.,The Bloomberg∼Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Johns Hopkins University, Baltimore, MD, USA
| | | | - Leonie Zeitler
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | | | - Matthias Mann
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Axel Roers
- Institute for Immunology, Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Sabine A Eming
- Department of Dermatology, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany.,Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany
| | | | - Edward J Pearce
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany.,The Bloomberg∼Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Johns Hopkins University, Baltimore, MD, USA
| | - Peter J Murray
- Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
91
|
Abstract
Viral infections are often studied in model mammalian organisms under specific pathogen-free conditions. However, in nature, coinfections are common, and infection with one organism can alter host susceptibility to infection with another. Helminth parasites share a long coevolutionary history with mammalian hosts and have shaped host physiology, metabolism, immunity, and the composition of the microbiome. Published studies suggest that helminth infection can either be beneficial or detrimental during viral infection. Here, we discuss coinfection studies in mouse models and use them to define key determinants that impact outcomes, including the type of antiviral immunity, the tissue tropism of both the helminth and the virus, and the timing of viral infection in relation to the helminth lifecycle. We also explore the current mechanistic understanding of how helminth-virus coinfection impacts host immunity and viral pathogenesis. While much attention has been placed on the impact of the gut bacterial microbiome on immunity to infection, we suggest that enteric helminths, as a part of the eukaryotic macrobiome, also represent an important modulator of disease pathogenesis and severity following virus infection.
Collapse
Affiliation(s)
- Pritesh Desai
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States,Pathology & Immunology, Washington University School of Medicine, Saint Louis, MO, United States,Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, United States,The Andrew M. And Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, United States
| | - Larissa B. Thackray
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States,CONTACT Larissa B. Thackray Department of Medicine, Washington University School of Medicine, Saint Louis, MO63110, United States
| |
Collapse
|
92
|
Chen F, El-Naccache DW, Ponessa JJ, Lemenze A, Espinosa V, Wu W, Lothstein K, Jin L, Antao O, Weinstein JS, Damani-Yokota P, Khanna K, Murray PJ, Rivera A, Siracusa MC, Gause WC. Helminth resistance is mediated by differential activation of recruited monocyte-derived alveolar macrophages and arginine depletion. Cell Rep 2022; 38:110215. [PMID: 35021079 PMCID: PMC9403845 DOI: 10.1016/j.celrep.2021.110215] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/16/2021] [Accepted: 12/14/2021] [Indexed: 12/11/2022] Open
Abstract
Macrophages are known to mediate anti-helminth responses, but it remains uncertain which subsets are involved or how macrophages actually kill helminths. Here, we show rapid monocyte recruitment to the lung after infection with the nematode parasite Nippostrongylus brasiliensis. In this inflamed tissue microenvironment, these monocytes differentiate into an alveolar macrophage (AM)-like phenotype, expressing both SiglecF and CD11c, surround invading parasitic larvae, and preferentially kill parasites in vitro. Monocyte-derived AMs (Mo-AMs) express type 2-associated markers and show a distinct remodeling of the chromatin landscape relative to tissue-derived AMs (TD-AMs). In particular, they express high amounts of arginase-1 (Arg1), which we demonstrate mediates helminth killing through L-arginine depletion. These studies indicate that recruited monocytes are selectively programmed in the pulmonary environment to express AM markers and an anti-helminth phenotype.
Collapse
Affiliation(s)
- Fei Chen
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA; Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
| | - Darine W El-Naccache
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA; Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
| | - John J Ponessa
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA; Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
| | - Alexander Lemenze
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA; Department of Pathology, Immunology, and Laboratory Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
| | - Vanessa Espinosa
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA; Department of Pediatrics, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
| | - Wenhui Wu
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA; Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
| | - Katherine Lothstein
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA; Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
| | - Linhua Jin
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA; Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
| | - Olivia Antao
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA; Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
| | - Jason S Weinstein
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA; Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
| | - Payal Damani-Yokota
- Department of Microbiology, New York University Langone Health, New York, NY 10016, USA
| | - Kamal Khanna
- Department of Microbiology, New York University Langone Health, New York, NY 10016, USA; Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Peter J Murray
- Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Amariliz Rivera
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA; Department of Pediatrics, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA
| | - Mark C Siracusa
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA; Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA.
| | - William C Gause
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA; Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, USA.
| |
Collapse
|
93
|
Amino Acid Metabolism in Cancer Drug Resistance. Cells 2022; 11:cells11010140. [PMID: 35011702 PMCID: PMC8750102 DOI: 10.3390/cells11010140] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 02/06/2023] Open
Abstract
Despite the numerous investigations on resistance mechanisms, drug resistance in cancer therapies still limits favorable outcomes in cancer patients. The complexities of the inherent characteristics of tumors, such as tumor heterogeneity and the complicated interaction within the tumor microenvironment, still hinder efforts to overcome drug resistance in cancer cells, requiring innovative approaches. In this review, we describe recent studies offering evidence for the essential roles of amino acid metabolism in driving drug resistance in cancer cells. Amino acids support cancer cells in counteracting therapies by maintaining redox homeostasis, sustaining biosynthetic processes, regulating epigenetic modification, and providing metabolic intermediates for energy generation. In addition, amino acid metabolism impacts anticancer immune responses, creating an immunosuppressive or immunoeffective microenvironment. A comprehensive understanding of amino acid metabolism as it relates to therapeutic resistance mechanisms will improve anticancer therapeutic strategies.
Collapse
|
94
|
Lechner A, Henkel FDR, Hartung F, Bohnacker S, Alessandrini F, Gubernatorova EO, Drutskaya MS, Angioni C, Schreiber Y, Haimerl P, Ge Y, Thomas D, Kabat AM, Pearce EJ, Ohnmacht C, Nedospasov SA, Murray PJ, Chaker AM, Schmidt-Weber CB, Esser-von Bieren J. Macrophages acquire a TNF-dependent inflammatory memory in allergic asthma. J Allergy Clin Immunol 2021; 149:2078-2090. [PMID: 34974067 DOI: 10.1016/j.jaci.2021.11.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 10/18/2021] [Accepted: 11/26/2021] [Indexed: 01/30/2023]
Abstract
BACKGROUND Infectious agents can reprogram or "train" macrophages and their progenitors to respond more readily to subsequent insults. However, whether such an inflammatory memory exists in type-2 inflammatory conditions such as allergic asthma was not known. OBJECTIVE To decipher macrophage trained immunity in allergic asthma. METHODS We used a combination of clinical sampling of house dust mite (HDM)-allergic patients, HDM-induced allergic airway inflammation (AAI) in mice and an in vitro training set-up to analyze persistent changes in macrophage eicosanoid-, cytokine- and chemokine production as well as underlying metabolic and epigenetic mechanisms. Transcriptional and metabolic profiles of patient-derived and in vitro trained macrophages were assessed by RNA sequencing or Seahorse and LC-MS/MS analysis, respectively. RESULTS We found that macrophages differentiated from bone marrow- or blood monocyte- progenitors of HDM-allergic mice or asthma patients show inflammatory transcriptional reprogramming and excessive mediator (TNF-α, CCL17, leukotriene, PGE2, IL-6) responses upon stimulation. Macrophages from HDM-allergic mice initially exhibited a type-2 imprint, which shifted towards a classical inflammatory training over time. HDM-induced AAI elicited a metabolically activated macrophage phenotype, producing high amounts of 2-hydroxyglutarate (2-HG). HDM-induced macrophage training in vitro was mediated by a formyl-peptide receptor 2 (FPR2)-TNF-2-HG-PGE2/EP2-axis, resulting in an M2-like macrophage phenotype with high CCL17 production. TNF blockade by etanercept or genetic ablation of Tnf in myeloid cells prevented the inflammatory imprinting of bone marrow-derived macrophages from HDM-allergic mice. CONCLUSION Allergen-triggered inflammation drives a TNF-dependent innate memory, which may perpetuate and exacerbate chronic type-2 airway inflammation and thus represents a target for asthma therapy.
Collapse
Affiliation(s)
- Antonie Lechner
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Fiona D R Henkel
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Franziska Hartung
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Sina Bohnacker
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Francesca Alessandrini
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Ekaterina O Gubernatorova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Moscow, and Sirius University of Science and Technology, Sochi, Russia
| | - Marina S Drutskaya
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Moscow, and Sirius University of Science and Technology, Sochi, Russia
| | - Carlo Angioni
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Yannick Schreiber
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany
| | - Pascal Haimerl
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Yan Ge
- Department of Immunobiology, Hospital Carl Gustav Carus, University of Dresden, Dresden, Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Agnieszka M Kabat
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Edward J Pearce
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Caspar Ohnmacht
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Sergei A Nedospasov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Moscow, and Sirius University of Science and Technology, Sochi, Russia
| | | | - Adam M Chaker
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Munich, Germany; Department of Otorhinolaryngology and Head and Neck Surgery, TUM Medical School, Technical University of Munich, Munich, Germany
| | - Carsten B Schmidt-Weber
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Munich, Germany
| | - Julia Esser-von Bieren
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Munich, Germany.
| |
Collapse
|
95
|
Øvestad IT, Engesæter B, Halle MK, Akbari S, Bicskei B, Lapin M, Austdal M, Janssen EAM, Krakstad C, Lillesand M, Nordhus M, Munk AC, Gudlaugsson EG. High-Grade Cervical Intraepithelial Neoplasia (CIN) Associates with Increased Proliferation and Attenuated Immune Signaling. Int J Mol Sci 2021; 23:ijms23010373. [PMID: 35008799 PMCID: PMC8745058 DOI: 10.3390/ijms23010373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/27/2021] [Indexed: 01/10/2023] Open
Abstract
Implementation of high-risk human papilloma virus (HPV) screening and the increasing proportion of HPV vaccinated women in the screening program will reduce the percentage of HPV positive women with oncogenic potential. In search of more specific markers to identify women with high risk of cancer development, we used RNA sequencing to compare the transcriptomic immune-profile of 13 lesions with cervical intraepithelial neoplasia grade 3 (CIN3) or adenocarcinoma in situ (AIS) and 14 normal biopsies from women with detected HPV infections. In CIN3/AIS lesions as compared to normal tissue, 27 differential expressed genes were identified. Transcriptomic analysis revealed significantly higher expression of a number of genes related to proliferation, (CDKN2A, MELK, CDK1, MKI67, CCNB2, BUB1, FOXM1, CDKN3), but significantly lower expression of genes related to a favorable immune response (NCAM1, ARG1, CD160, IL18, CX3CL1). Compared to the RNA sequencing results, good correlation was achieved with relative quantitative PCR analysis for NCAM1 and CDKN2A. Quantification of NCAM1 positive cells with immunohistochemistry showed epithelial reduction of NCAM1 in CIN3/AIS lesions. In conclusion, NCAM1 and CDKN2A are two promising candidates to distinguish whether women are at high risk of developing cervical cancer and in need of frequent follow-up.
Collapse
Affiliation(s)
- Irene Tveiterås Øvestad
- Department of Pathology, Stavanger University Hospital, 4011 Stavanger, Norway; (S.A.); (B.B.); (E.A.M.J.); (M.L.); (M.N.); (E.G.G.)
- Correspondence: ; Tel.: +47-9093-2314
| | - Birgit Engesæter
- Section for Cervical Cancer Screening, Cancer Registry of Norway, 0304 Oslo, Norway;
| | - Mari Kyllesø Halle
- Department of Obstetrics and Gynaecology, Haukeland University Hospital, 5053 Bergen, Norway; (M.K.H.); (C.K.)
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, 5053 Bergen, Norway
| | - Saleha Akbari
- Department of Pathology, Stavanger University Hospital, 4011 Stavanger, Norway; (S.A.); (B.B.); (E.A.M.J.); (M.L.); (M.N.); (E.G.G.)
| | - Beatrix Bicskei
- Department of Pathology, Stavanger University Hospital, 4011 Stavanger, Norway; (S.A.); (B.B.); (E.A.M.J.); (M.L.); (M.N.); (E.G.G.)
| | - Morten Lapin
- Department of Haematology and Oncology, Stavanger University Hospital, 4011 Stavanger, Norway;
| | - Marie Austdal
- Section of Biostatistics, Department of Research, Stavanger University Hospital, 4011 Stavanger, Norway;
| | - Emiel A. M. Janssen
- Department of Pathology, Stavanger University Hospital, 4011 Stavanger, Norway; (S.A.); (B.B.); (E.A.M.J.); (M.L.); (M.N.); (E.G.G.)
- Department of Chemistry, Bioscience and Environmental Technology, University of Stavanger, 4036 Stavanger, Norway
| | - Camilla Krakstad
- Department of Obstetrics and Gynaecology, Haukeland University Hospital, 5053 Bergen, Norway; (M.K.H.); (C.K.)
- Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, 5053 Bergen, Norway
| | - Melinda Lillesand
- Department of Pathology, Stavanger University Hospital, 4011 Stavanger, Norway; (S.A.); (B.B.); (E.A.M.J.); (M.L.); (M.N.); (E.G.G.)
| | - Marit Nordhus
- Department of Pathology, Stavanger University Hospital, 4011 Stavanger, Norway; (S.A.); (B.B.); (E.A.M.J.); (M.L.); (M.N.); (E.G.G.)
| | - Ane Cecilie Munk
- Department of Gynaecology, Sørlandet Hospital, 4604 Kristiansand, Norway;
| | - Einar G. Gudlaugsson
- Department of Pathology, Stavanger University Hospital, 4011 Stavanger, Norway; (S.A.); (B.B.); (E.A.M.J.); (M.L.); (M.N.); (E.G.G.)
| |
Collapse
|
96
|
Henn D, Chen K, Fehlmann T, Trotsyuk AA, Sivaraj D, Maan ZN, Bonham CA, Barrera JA, Mays CJ, Greco AH, Moortgat Illouz SE, Lin JQ, Steele SR, Foster DS, Padmanabhan J, Momeni A, Nguyen D, Wan DC, Kneser U, Januszyk M, Keller A, Longaker MT, Gurtner GC. Xenogeneic skin transplantation promotes angiogenesis and tissue regeneration through activated Trem2 + macrophages. SCIENCE ADVANCES 2021; 7:eabi4528. [PMID: 34851663 PMCID: PMC8635426 DOI: 10.1126/sciadv.abi4528] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 10/09/2021] [Indexed: 05/07/2023]
Abstract
Skin allo- and xenotransplantation are the standard treatment for major burns when donor sites for autografts are not available. The relationship between the immune response to foreign grafts and their impact on wound healing has not been fully elucidated. Here, we investigated changes in collagen architecture after xenogeneic implantation of human biologic scaffolds. We show that collagen deposition in response to the implantation of human split-thickness skin grafts (hSTSGs) containing live cells recapitulates normal skin architecture, whereas human acellular dermal matrix (ADM) grafts led to a fibrotic collagen deposition. We show that macrophage differentiation in response to hSTSG implantation is driven toward regenerative Trem2+ subpopulations and found that hydrogel delivery of these cells significantly accelerated wound closure. Our study identifies the preclinical therapeutic potential of Trem2+ macrophages to mitigate fibrosis and promote wound healing, providing a novel effective strategy to develop advanced cell therapies for complex wounds.
Collapse
Affiliation(s)
- Dominic Henn
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
- Department of Hand, Plastic, and Reconstructive Surgery, BG Trauma Center Ludwigshafen, Ruprecht-Karls-University of Heidelberg, Heidelberg, Germany
| | - Kellen Chen
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Tobias Fehlmann
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Artem A. Trotsyuk
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Dharshan Sivaraj
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Zeshaan N. Maan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Clark A. Bonham
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Janos A. Barrera
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Chyna J. Mays
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Autumn H. Greco
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Sylvia E. Moortgat Illouz
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
| | - John Qian Lin
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Sydney R. Steele
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Deshka S. Foster
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Jagannath Padmanabhan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Arash Momeni
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Dung Nguyen
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Derrick C. Wan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Ulrich Kneser
- Department of Hand, Plastic, and Reconstructive Surgery, BG Trauma Center Ludwigshafen, Ruprecht-Karls-University of Heidelberg, Heidelberg, Germany
| | - Michael Januszyk
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Michael T. Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Geoffrey C. Gurtner
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
| |
Collapse
|
97
|
Li J, Thomson AW, Rogers NM. Myeloid and Mesenchymal Stem Cell Therapies for Solid Organ Transplant Tolerance. Transplantation 2021; 105:e303-e321. [PMID: 33756544 PMCID: PMC8455706 DOI: 10.1097/tp.0000000000003765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Transplantation is now performed globally as a routine procedure. However, the increased demand for donor organs and consequent expansion of donor criteria has created an imperative to maximize the quality of these gains. The goal is to balance preservation of allograft function against patient quality-of-life, despite exposure to long-term immunosuppression. Elimination of immunosuppressive therapy to avoid drug toxicity, with concurrent acceptance of the allograft-so-called operational tolerance-has proven elusive. The lack of recent advances in immunomodulatory drug development, together with advances in immunotherapy in oncology, has prompted interest in cell-based therapies to control the alloimmune response. Extensive experimental work in animals has characterized regulatory immune cell populations that can induce and maintain tolerance, demonstrating that their adoptive transfer can promote donor-specific tolerance. An extension of this large body of work has resulted in protocols for manufacture, as well as early-phase safety and feasibility trials for many regulatory cell types. Despite the excitement generated by early clinical trials in autoimmune diseases and organ transplantation, there is as yet no clinically validated, approved regulatory cell therapy for transplantation. In this review, we summarize recent advances in this field, with a focus on myeloid and mesenchymal cell therapies, including current understanding of the mechanisms of action of regulatory immune cells, and clinical trials in organ transplantation using these cells as therapeutics.
Collapse
Affiliation(s)
- Jennifer Li
- Center of Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, Australia
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Angus W Thomson
- Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Natasha M Rogers
- Center of Transplant and Renal Research, Westmead Institute for Medical Research, Westmead, Australia
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney, Australia
| |
Collapse
|
98
|
Lechner A, Bohnacker S, Esser-von Bieren J. Macrophage regulation & function in helminth infection. Semin Immunol 2021; 53:101526. [PMID: 34802871 DOI: 10.1016/j.smim.2021.101526] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/03/2021] [Accepted: 11/06/2021] [Indexed: 12/14/2022]
Abstract
Macrophages are innate immune cells with essential roles in host defense, inflammation, immune regulation and repair. During infection with multicellular helminth parasites, macrophages contribute to pathogen trapping and killing as well as to tissue repair and the resolution of type 2 inflammation. Macrophages produce a broad repertoire of effector molecules, including enzymes, cytokines, chemokines and growth factors that govern anti-helminth immunity and repair of parasite-induced tissue damage. Helminth infection and the associated type 2 immune response induces an alternatively activated macrophage (AAM) phenotype that - beyond driving host defense - prevents aberrant Th2 cell activation and type 2 immunopathology. The immune regulatory potential of macrophages is exploited by helminth parasites that induce the production of anti-inflammatory mediators such as interleukin 10 or prostaglandin E2 to evade host immunity. Here, we summarize current insights into the mechanisms of macrophage-mediated host defense and repair during helminth infection and highlight recent progress on the immune regulatory crosstalk between macrophages and helminth parasites. We also point out important remaining questions such as the translation of findings from murine models to human settings of helminth infection as well as long-term consequences of helminth-induced macrophage reprogramming for subsequent host immunity.
Collapse
Affiliation(s)
- Antonie Lechner
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, 80802, Munich, Germany
| | - Sina Bohnacker
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, 80802, Munich, Germany
| | - Julia Esser-von Bieren
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, 80802, Munich, Germany.
| |
Collapse
|
99
|
Popple SJ, Burrows K, Mortha A, Osborne LC. Remote regulation of type 2 immunity by intestinal parasites. Semin Immunol 2021; 53:101530. [PMID: 34802872 DOI: 10.1016/j.smim.2021.101530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 02/06/2023]
Abstract
The intestinal tract is the target organ of most parasitic infections, including those by helminths and protozoa. These parasites elicit prototypical type 2 immune activation in the host's immune system with striking impact on the local tissue microenvironment. Despite local containment of these parasites within the intestinal tract, parasitic infections also mediate immune adaptation in peripheral organs. In this review, we summarize the current knowledge on how such gut-tissue axes influence important immune-mediated resistance and disease tolerance in the context of coinfections, and elaborate on the implications of parasite-regulated gut-lung and gut-brain axes on the development and severity of airway inflammation and central nervous system diseases.
Collapse
Affiliation(s)
- S J Popple
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - K Burrows
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - A Mortha
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - L C Osborne
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
100
|
Dietary protein supplementation results in molecular and cellular changes related to T helper type 2 immunity in the lung and small intestine in lactating rats re-infected with Nippostrongylus brasiliensis. Parasitology 2021; 149:337-346. [PMID: 35264261 PMCID: PMC10090644 DOI: 10.1017/s0031182021001876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Acquired immunity to gastrointestinal nematodes reduces during late pregnancy and lactation which is known as periparturient relaxation of immunity (PPRI). Protein supplementation reduces the degree of PPRI in a rat model re-infected with Nippostrongylus brasiliensis, but the underlying molecular mechanisms have yet to be elucidated. Here, we hypothesized that protein supplementation will enhance T helper type 2 immunity (Th2) in the lung and small intestine. Nulliparous Sprague-Dawley rats were given a primary infection of N. brasiliensis prior to mating and restrictedly fed diets with either low protein (LP) or high protein (HP) during pregnancy and lactation. Dams were secondary infected with N. brasiliensis on day 2 post-parturition, and histology and gene expression were analysed for tissue samples collected at days 5, 8 and 11. Genes related to Th2 immunity in the lung, Retnla, Il13 and Mmp12, and in the intestine, Retnlb, were upregulated in HP dams compared to LP dams, which indicates the effect of dietary protein on Th2 immunity. HP dams also had increased splenic CD68+ macrophage populations compared to LP dams following secondary infection, suggesting enhanced immunity at a cellular level. Our data assist to define strategic utilization of nutrient supply in mammals undergoing reproductive and lactational efforts.
Collapse
|