51
|
Pizarro A, Díaz-Sala C. Expression Levels of Genes Encoding Proteins Involved in the Cell Wall-Plasma Membrane-Cytoskeleton Continuum Are Associated With the Maturation-Related Adventitious Rooting Competence of Pine Stem Cuttings. FRONTIERS IN PLANT SCIENCE 2021; 12:783783. [PMID: 35126413 PMCID: PMC8810826 DOI: 10.3389/fpls.2021.783783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/17/2021] [Indexed: 05/04/2023]
Abstract
Stem cutting recalcitrance to adventitious root formation is a major limitation for the clonal propagation or micropropagation of elite genotypes of many forest tree species, especially at the adult stage of development. The interaction between the cell wall-plasma membrane and cytoskeleton may be involved in the maturation-related decline of adventitious root formation. Here, pine homologs of several genes encoding proteins involved in the cell wall-plasma membrane-cytoskeleton continuum were identified, and the expression levels of 70 selected genes belonging to the aforementioned group and four genes encoding auxin carrier proteins were analyzed during adventitious root formation in rooting-competent and non-competent cuttings of Pinus radiata. Variations in the expression levels of specific genes encoding cell wall components and cytoskeleton-related proteins were detected in rooting-competent and non-competent cuttings in response to wounding and auxin treatments. However, the major correlation of gene expression with competence for adventitious root formation was detected in a family of genes encoding proteins involved in sensing the cell wall and membrane disturbances, such as specific receptor-like kinases (RLKs) belonging to the lectin-type RLKs, wall-associated kinases, Catharanthus roseus RLK1-like kinases and leucine-rich repeat RLKs, as well as downstream regulators of the small guanosine triphosphate (GTP)-binding protein family. The expression of these genes was more affected by organ and age than by auxin and time of induction.
Collapse
|
52
|
Sun J, Ning Y, Wang L, Wilkins KA, Davies JM. Damage Signaling by Extracellular Nucleotides: A Role for Cyclic Nucleotides in Elevating Cytosolic Free Calcium? FRONTIERS IN PLANT SCIENCE 2021; 12:788514. [PMID: 34925428 PMCID: PMC8675005 DOI: 10.3389/fpls.2021.788514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/10/2021] [Indexed: 05/04/2023]
Abstract
Extracellular ATP (eATP) is now held to be a constitutive damage-associated molecular pattern (DAMP) that is released by wounding, herbivory or pathogen attack. The concentration of eATP must be tightly regulated as either depletion or overload leads to cell death. In Arabidopsis thaliana, sensing of eATP is by two plasma membrane legume-like lectin serine-threonine receptor kinases (P2K1 and P2K2), although other receptors are postulated. The transcriptional response to eATP is dominated by wound- and defense-response genes. Wounding and pathogen attack can involve the cyclic nucleotides cyclic AMP (cAMP) and cyclic GMP (cGMP) which, in common with eATP, can increase cytosolic-free Ca2+ as a second messenger. This perspective on DAMP signaling by eATP considers the possibility that the eATP pathway involves production of cyclic nucleotides to promote opening of cyclic nucleotide-gated channels and so elevates cytosolic-free Ca2+. In silico analysis of P2K1 and P2K2 reveals putative adenylyl and guanylyl kinase sequences that are the hallmarks of "moonlighting" receptors capable of cAMP and cGMP production. Further, an Arabidopsis loss of function cngc mutant was found to have an impaired increase in cytosolic-free Ca2+ in response to eATP. A link between eATP, cyclic nucleotides, and Ca2+ signaling therefore appears credible.
Collapse
Affiliation(s)
- Jian Sun
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Youzheng Ning
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Limin Wang
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Katie A. Wilkins
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Julia M. Davies
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Julia M. Davies,
| |
Collapse
|
53
|
Du Y, Chen X, Guo Y, Zhang X, Zhang H, Li F, Huang G, Meng Y, Shan W. Phytophthora infestans RXLR effector PITG20303 targets a potato MKK1 protein to suppress plant immunity. THE NEW PHYTOLOGIST 2021; 229:501-515. [PMID: 32772378 DOI: 10.1111/nph.16861] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/27/2020] [Indexed: 05/21/2023]
Abstract
Pathogens secret a plethora of effectors into the host cell to modulate plant immunity. Analysing the role of effectors in altering the function of their host target proteins will reveal critical components of the plant immune system. Here we show that Phytophthora infestans RXLR effector PITG20303, a virulent variant of AVRblb2 (PITG20300) that escapes recognition by the resistance protein Rpi-blb2, suppresses PAMP-triggered immunity (PTI) and promotes pathogen colonization by targeting and stabilizing a potato MAPK cascade protein, StMKK1. Both PITG20300 and PITG20303 target StMKK1, as confirmed by multiple in vivo and in vitro assays, and StMKK1 was shown to be a negative regulator of plant immunity, as determined by overexpression and gene silencing. StMKK1 is a negative regulator of plant PTI, and the kinase activities of StMKK1 are required for its suppression of PTI and effector interaction. PITG20303 depends partially on MKK1, PITG20300 does not depend on MKK1 for suppression of PTI-induced reactive oxygen species burst, while the full virulence activities of nuclear targeted PITG20303 and PITG20300 are dependent on MKK1. Our results show that PITG20303 and PITG20300 target and stabilize the plant MAPK cascade signalling protein StMKK1 to negatively regulate plant PTI response.
Collapse
Affiliation(s)
- Yu Du
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaokang Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yalu Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaojiang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Houxiao Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fangfang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Guiyan Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuling Meng
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China
| | - Weixing Shan
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China
| |
Collapse
|
54
|
Berg JA, Hermans FWK, Beenders F, Lou L, Vriezen WH, Visser RGF, Bai Y, Schouten HJ. Analysis of QTL DM4.1 for Downy Mildew Resistance in Cucumber Reveals Multiple subQTL: A Novel RLK as Candidate Gene for the Most Important subQTL. FRONTIERS IN PLANT SCIENCE 2020; 11:569876. [PMID: 33193500 PMCID: PMC7649820 DOI: 10.3389/fpls.2020.569876] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/28/2020] [Indexed: 05/28/2023]
Abstract
One of the biggest problems in cucumber cultivation is cucurbit downy mildew (DM), caused by the obligate biotroph Pseudoperonospora cubensis. Whereas DM in cucumber was previously efficiently controlled by the dm-1 gene from Indian cucumber accession PI 197087, this resistance was broken by new DM strains, prompting the search for novel sources of resistance. A promising source of resistance is the wild cucumber accession PI 197088. It was previously shown that DM resistance in this genotype inherits polygenically. In this paper, we put the focus on one of the QTL, DM4.1 that is located on chromosome 4. QTL DM4.1 was shown to consist of three subQTL: DM4.1.1 affected pathogen-induced necrosis, DM4.1.2 was shown to have an additive effect on sporulation, and DM4.1.3 had a recessive effect on chlorosis as well as an effect on sporulation. Near-isogenic lines (NILs) were produced by introgressing the subQTLs into a susceptible cucumber line (HS279) with good horticultural traits. Transcriptomic analysis revealed that many genes in general, and defense pathway genes in particular, were differentially expressed in NIL DM4.1.1/.2 compared to NIL DM4.1.3 and the susceptible parent HS279. This indicates that the resistance from subQTL DM4.1.1 and/or subQTL DM4.1.2 likely involves defense signaling pathways, whereas resistance due to subQTL DM4.1.3 is more likely to be independent of known defense pathways. Based on fine-mapping data, we identified the RLK gene CsLRK10L2 as a likely candidate for subQTL DM4.1.2, as this gene was found to have a loss-of-function mutation in the susceptible parent HS279, and was strongly upregulated by P. cubensis inoculation in NIL DM4.1.1/.2. Heterologous expression of this gene triggered necrosis, providing further evidence that this gene is indeed causal for subQTL DM4.1.2.
Collapse
Affiliation(s)
- Jeroen A. Berg
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | | | | | - Lina Lou
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | | | | | - Yuling Bai
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - Henk J. Schouten
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
55
|
Regulation of related genes promoting resistant in Iris against root rot disease, Fusarium oxysporum f. sp. gladioli. Genomics 2020; 112:3013-3020. [DOI: 10.1016/j.ygeno.2020.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/24/2022]
|
56
|
Peng X, Wang M, Li Y, Yan W, Chang Z, Chen Z, Xu C, Yang C, Deng XW, Wu J, Tang X. Lectin receptor kinase OsLecRK-S.7 is required for pollen development and male fertility. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1227-1245. [PMID: 31833176 DOI: 10.1111/jipb.12897] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/10/2019] [Indexed: 05/29/2023]
Abstract
Pollen grains are covered by exine that protects the pollen from stress and facilitates pollination. Here we isolated a male sterile mutant s13283 in rice exhibiting aborted pollen with abnormal exine and defective aperture. The mutant gene encodes a novel plasma membrane-localized legume-lectin receptor kinase that we named OsLecRK-S.7. OsLecRK-S.7 was expressed at different levels in all tested tissues and throughout anther development. In vitro kinase assay showed OsLecRK-S.7 capable of autophosporylation. Mutation in s13283 (E560K) and mutation of the conserved ATP binding site (K418E) both knocked out the kinase activity. Mass spectrometry showed Thr376 , Ser378 , Thr386 , Thr403 , and Thr657 to be the autophosphorylation sites. Mutation of individual autophosphorylation site affected the in vitro kinase activity to different degrees, but did not abolish the gene function in fertility complementation. oslecrk-s.7 mutant plant overexpressing OsLecRK-S.7 recovered male fertility but showed severe growth retardation with reduced number of tillers, and these phenotypes were abolished by E560K or K418E mutation. The results indicated that OsLecRK-S.7 was a key regulator of pollen development.
Collapse
Affiliation(s)
- Xiaoqun Peng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Menglong Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Yiqi Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Wei Yan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Zhenyi Chang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Zhufeng Chen
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Chunjue Xu
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Xing Wang Deng
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jianxin Wu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Xiaoyan Tang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| |
Collapse
|
57
|
Pham AQ, Cho SH, Nguyen CT, Stacey G. Arabidopsis Lectin Receptor Kinase P2K2 Is a Second Plant Receptor for Extracellular ATP and Contributes to Innate Immunity. PLANT PHYSIOLOGY 2020; 183:1364-1375. [PMID: 32345768 PMCID: PMC7333714 DOI: 10.1104/pp.19.01265] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 04/14/2020] [Indexed: 05/18/2023]
Abstract
In animals, extracellular ATP is a well-studied signaling molecule that is recognized by plasma membrane-localized P2-type purinergic receptors. However, in contrast, much less is known about purinergic signaling in plants. P2 receptors play critical roles in a variety of animal biological processes, including immune system regulation. The first plant purinergic receptor, Arabidopsis (Arabidopsis thaliana) P2K1 (L-type lectin receptor kinase-I.9), was shown to contribute to plant defense against bacterial, oomycete, and fungal pathogens. Here, we demonstrate the isolation of a second purinergic receptor, P2K2, by complementation of an Arabidopsis p2k1 mutant. P2K2 (LecRK-I.5) has 74% amino acid similarity to P2K1. The P2K2 extracellular lectin domain binds to ATP with higher affinity than P2K1 (dissociation constant [K d] = 44.47 ± 15.73 nm). Interestingly, p2k2 and p2k1 p2k2 mutant plants showed increased susceptibility to the pathogen Pseudomonas syringae, with the double mutant showing a stronger phenotype. In vitro and in planta studies demonstrate that P2K2 and P2K1 interact and cross-phosphorylate upon extracellular ATP treatment. Thus, similar to animals, plants possess multiple purinergic receptors.
Collapse
Affiliation(s)
- An Quoc Pham
- Divisions of Plant Science and Biochemistry, C.S. Bond Life Science Center, University of Missouri, Columbia, Missouri 65211
| | - Sung-Hwan Cho
- Divisions of Plant Science and Biochemistry, C.S. Bond Life Science Center, University of Missouri, Columbia, Missouri 65211
| | - Cuong The Nguyen
- Divisions of Plant Science and Biochemistry, C.S. Bond Life Science Center, University of Missouri, Columbia, Missouri 65211
- Cuu Long Delta Rice Research Institute, Cantho 00000, Vietnam
| | - Gary Stacey
- Divisions of Plant Science and Biochemistry, C.S. Bond Life Science Center, University of Missouri, Columbia, Missouri 65211
| |
Collapse
|
58
|
Dinh HX, Singh D, Periyannan S, Park RF, Pourkheirandish M. Molecular genetics of leaf rust resistance in wheat and barley. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2035-2050. [PMID: 32128617 DOI: 10.1007/s00122-020-03570-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
The demand for cereal grains as a main source of energy continues to increase due to the rapid increase in world population. The leaf rust diseases of cereals cause significant yield losses, posing challenges for global food security. The deployment of resistance genes has long been considered as the most effective and sustainable way to control cereal leaf rust diseases. While genetic resistance has reduced the impact of these diseases in agriculture, losses still occur due to the ability of the respective rust pathogens to change and render resistance genes ineffective plus the slow pace at which resistance genes are discovered and characterized. This article highlights novel recently developed strategies based on advances in genome sequencing that have accelerated gene isolation by overcoming the complexity of cereal genomes. The leaf rust resistance genes cloned so far from wheat and barley belong to various protein families, including nucleotide binding site/leucine-rich repeat receptors and transporters. We review recent studies that are beginning to reveal the defense mechanisms conferred by the leaf rust resistance genes identified to date in cereals and their roles in either pattern-triggered immunity or effector-triggered immunity.
Collapse
Affiliation(s)
- Hoan X Dinh
- Plant Breeding Institute, Faculty of Science, The University of Sydney, Cobbitty, NSW, 2570, Australia
| | - Davinder Singh
- Plant Breeding Institute, Faculty of Science, The University of Sydney, Cobbitty, NSW, 2570, Australia
| | - Sambasivam Periyannan
- CSIRO Agriculture and Food, Box 1700, Clunies Ross Street, Canberra, 2601, Australia
| | - Robert F Park
- Plant Breeding Institute, Faculty of Science, The University of Sydney, Cobbitty, NSW, 2570, Australia.
| | | |
Collapse
|
59
|
Hashemi L, Golparvar AR, Nasr-Esfahani M, Golabadi M. Expression analysis of defense-related genes in cucumber (Cucumis sativus L.) against Phytophthora melonis. Mol Biol Rep 2020; 47:4933-4944. [DOI: 10.1007/s11033-020-05520-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/14/2020] [Indexed: 11/30/2022]
|
60
|
Woo JY, Kim YJ, Paek KH. CaLecRK-S.5, a pepper L-type lectin receptor kinase gene, accelerates Phytophthora elicitin-mediated defense response. Biochem Biophys Res Commun 2020; 524:951-956. [PMID: 32059849 DOI: 10.1016/j.bbrc.2020.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 02/03/2020] [Indexed: 02/03/2023]
Abstract
Innate immunity in plants relies on the recognition of pathogen-associated molecular patterns (PAMPs) by pattern-recognition receptors (PRRs) located on the plant cell surface. CaLecRK-S.5, a pepper L-type lectin receptor kinase, has been shown to confer broad-spectrum resistance through priming activation. To further elucidate the molecular mechanism of CaLecRK-S.5, transgenic tobacco plants were generated in this study. Interestingly, hemizygous transgenic plants exhibited a high accumulation of CaLecRK-S.5, but this accumulation was completely abolished in homozygous transgenic plants by a cosuppression mechanism. Gain-of-function and loss-of-function analyses revealed that CaLecRK-S.5 plays a positive role in Phytophthora elicitin-mediated defense responses.
Collapse
Affiliation(s)
- Joo Yong Woo
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Young Jin Kim
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Kyung-Hee Paek
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
61
|
Albert I, Hua C, Nürnberger T, Pruitt RN, Zhang L. Surface Sensor Systems in Plant Immunity. PLANT PHYSIOLOGY 2020; 182:1582-1596. [PMID: 31822506 PMCID: PMC7140916 DOI: 10.1104/pp.19.01299] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/21/2019] [Indexed: 05/04/2023]
Abstract
Protein complexes at the cell surface facilitate the detection of danger signals from diverse pathogens and initiate a series of complex intracellular signaling events that result in various immune responses.
Collapse
Affiliation(s)
- Isabell Albert
- Department of Plant Biochemistry, Centre for Plant Molecular Biology, Eberhard Karls University, D-72076 Tübingen, Germany
| | - Chenlei Hua
- Department of Plant Biochemistry, Centre for Plant Molecular Biology, Eberhard Karls University, D-72076 Tübingen, Germany
| | - Thorsten Nürnberger
- Department of Plant Biochemistry, Centre for Plant Molecular Biology, Eberhard Karls University, D-72076 Tübingen, Germany
- Department of Biochemistry, University of Johannesburg, Johannesburg 2001, South Africa
| | - Rory N Pruitt
- Department of Plant Biochemistry, Centre for Plant Molecular Biology, Eberhard Karls University, D-72076 Tübingen, Germany
| | - Lisha Zhang
- Department of Plant Biochemistry, Centre for Plant Molecular Biology, Eberhard Karls University, D-72076 Tübingen, Germany
| |
Collapse
|
62
|
Pietrowska-Borek M, Dobrogojski J, Sobieszczuk-Nowicka E, Borek S. New Insight into Plant Signaling: Extracellular ATP and Uncommon Nucleotides. Cells 2020; 9:E345. [PMID: 32024306 PMCID: PMC7072326 DOI: 10.3390/cells9020345] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 12/15/2022] Open
Abstract
New players in plant signaling are described in detail in this review: extracellular ATP (eATP) and uncommon nucleotides such as dinucleoside polyphosphates (NpnN's), adenosine 5'-phosphoramidate (NH2-pA), and extracellular NAD+ and NADP+ (eNAD(P)+). Recent molecular, physiological, and biochemical evidence implicating concurrently the signaling role of eATP, NpnN's, and NH2-pA in plant biology and the mechanistic events in which they are involved are discussed. Numerous studies have shown that they are often universal signaling messengers, which trigger a signaling cascade in similar reactions and processes among different kingdoms. We also present here, not described elsewhere, a working model of the NpnN' and NH2-pA signaling network in a plant cell where these nucleotides trigger induction of the phenylpropanoid and the isochorismic acid pathways yielding metabolites protecting the plant against various types of stresses. Through these signals, the plant responds to environmental stimuli by intensifying the production of various compounds, such as anthocyanins, lignin, stilbenes, and salicylic acid. Still, more research needs to be performed to identify signaling networks that involve uncommon nucleotides, followed by omic experiments to define network elements and processes that are controlled by these signals.
Collapse
Affiliation(s)
- Małgorzata Pietrowska-Borek
- Department of Biochemistry and Biotechnology, Faculty of Agronomy and Bioengineering, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland;
| | - Jędrzej Dobrogojski
- Department of Biochemistry and Biotechnology, Faculty of Agronomy and Bioengineering, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland;
| | - Ewa Sobieszczuk-Nowicka
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (E.S.-N.); (S.B.)
| | - Sławomir Borek
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (E.S.-N.); (S.B.)
| |
Collapse
|
63
|
Matthus E, Sun J, Wang L, Bhat MG, Mohammad-Sidik AB, Wilkins KA, Leblanc-Fournier N, Legué V, Moulia B, Stacey G, Davies JM. DORN1/P2K1 and purino-calcium signalling in plants: making waves with extracellular ATP. ANNALS OF BOTANY 2020; 124:1227-1242. [PMID: 31904093 PMCID: PMC6943698 DOI: 10.1093/aob/mcz135] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND AND AIMS Extracellular ATP governs a range of plant functions, including cell viability, adaptation and cross-kingdom interactions. Key functions of extracellular ATP in leaves and roots may involve an increase in cytosolic free calcium as a second messenger ('calcium signature'). The main aim here was to determine to what extent leaf and root calcium responses require the DORN1/P2K1 extracellular ATP receptor in Arabidopsis thaliana. The second aim was to test whether extracellular ATP can generate a calcium wave in the root. METHODS Leaf and root responses to extracellular ATP were reviewed for their possible links to calcium signalling and DORN1/P2K1. Leaves and roots of wild type and dorn1 plants were tested for cytosolic calcium increase in response to ATP, using aequorin. The spatial abundance of DORN1/P2K1 in the root was estimated using green fluorescent protein. Wild type roots expressing GCaMP3 were used to determine the spatial variation of cytosolic calcium increase in response to extracellular ATP. KEY RESULTS Leaf and root ATP-induced calcium signatures differed markedly. The leaf signature was only partially dependent on DORN1/P2K1, while the root signature was fully dependent. The distribution of DORN1/P2K1 in the root supports a key role in the generation of the apical calcium signature. Root apical and sub-apical calcium signatures may operate independently of each other but an apical calcium increase can drive a sub-apical increase, consistent with a calcium wave. CONCLUSION DORN1 could underpin several calcium-related responses but it may not be the only receptor for extracellular ATP in Arabidopsis. The root has the capacity for a calcium wave, triggered by extracellular ATP at the apex.
Collapse
Affiliation(s)
- Elsa Matthus
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Jian Sun
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Limin Wang
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Madhura G Bhat
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | | | - Katie A Wilkins
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | | | - Valérie Legué
- Université Clermont Auvergne, INRA, PIAF, Clermont-Ferrand, France
| | - Bruno Moulia
- Université Clermont Auvergne, INRA, PIAF, Clermont-Ferrand, France
| | - Gary Stacey
- Divisions of Plant Science and Biochemistry, University of Missouri, Columbia, MO, USA
| | - Julia M Davies
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
- For correspondence. E-mail
| |
Collapse
|
64
|
Kumar S, Tripathi D, Okubara PA, Tanaka K. Purinoceptor P2K1/DORN1 Enhances Plant Resistance Against a Soilborne Fungal Pathogen, Rhizoctonia solani. FRONTIERS IN PLANT SCIENCE 2020; 11:572920. [PMID: 33101341 PMCID: PMC7545828 DOI: 10.3389/fpls.2020.572920] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/09/2020] [Indexed: 05/21/2023]
Abstract
The purinoceptor P2K1/DORN1 recognizes extracellular ATP, a damage-associated molecular pattern (DAMP) released upon cellular disruption by wounding and necrosis, which in turn, boost plant innate immunity. P2K1 is known to confer plant resistance to foliar biotrophic, hemi-biotrophic, and necrotrophic pathogens. However, until now, no information was available on its function in defense against root pathogens. In this report, we describe the contribution of P2K1 to resistance in Arabidopsis against Rhizoctonia solani, a broad host range, necrotrophic soilborne fungal pathogen. In pot assays, the Arabidopsis P2K1 overexpression line OxP2K1 showed longer root length and a greater rosette surface area than wild type in the presence of the pathogen. In contrast, the knockout mutant dorn1-3 and the double mutant rbohd/f, defective in two subunits of the respiratory burst complex NADPH oxidase, exhibited significant reductions in shoot and root lengths and rosette surface area compared to wild type when the pathogen was present. Expression of PR1, PDF1.2, and JAZ5 in the roots was reduced in dorn1-3 and rbohd/f and elevated in OxP2K1 relative to wild type, indicating that the salicylate and jasmonate defense signaling pathways functioned in resistance. These results indicated that a DAMP-mediated defense system confers basal resistance against an important root necrotrophic fungal pathogen.
Collapse
Affiliation(s)
- Sonika Kumar
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
- Wheat Health, Genetics and Quality Research Unit, USDA-ARS, Pullman, WA, United States
| | - Diwaker Tripathi
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Patricia A. Okubara
- Wheat Health, Genetics and Quality Research Unit, USDA-ARS, Pullman, WA, United States
| | - Kiwamu Tanaka
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
- *Correspondence: Kiwamu Tanaka,
| |
Collapse
|
65
|
Naveed ZA, Wei X, Chen J, Mubeen H, Ali GS. The PTI to ETI Continuum in Phytophthora-Plant Interactions. FRONTIERS IN PLANT SCIENCE 2020; 11:593905. [PMID: 33391306 PMCID: PMC7773600 DOI: 10.3389/fpls.2020.593905] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/24/2020] [Indexed: 05/15/2023]
Abstract
Phytophthora species are notorious pathogens of several economically important crop plants. Several general elicitors, commonly referred to as Pathogen-Associated Molecular Patterns (PAMPs), from Phytophthora spp. have been identified that are recognized by the plant receptors to trigger induced defense responses in a process termed PAMP-triggered Immunity (PTI). Adapted Phytophthora pathogens have evolved multiple strategies to evade PTI. They can either modify or suppress their elicitors to avoid recognition by host and modulate host defense responses by deploying hundreds of effectors, which suppress host defense and physiological processes by modulating components involved in calcium and MAPK signaling, alternative splicing, RNA interference, vesicle trafficking, cell-to-cell trafficking, proteolysis and phytohormone signaling pathways. In incompatible interactions, resistant host plants perceive effector-induced modulations through resistance proteins and activate downstream components of defense responses in a quicker and more robust manner called effector-triggered-immunity (ETI). When pathogens overcome PTI-usually through effectors in the absence of R proteins-effectors-triggered susceptibility (ETS) ensues. Qualitatively, many of the downstream defense responses overlap between PTI and ETI. In general, these multiple phases of Phytophthora-plant interactions follow the PTI-ETS-ETI paradigm, initially proposed in the zigzag model of plant immunity. However, based on several examples, in Phytophthora-plant interactions, boundaries between these phases are not distinct but are rather blended pointing to a PTI-ETI continuum.
Collapse
Affiliation(s)
- Zunaira Afzal Naveed
- Department of Plant Pathology, Institute of Food and Agriculture Sciences, University of Florida, Gainesville, FL, United States
- Mid-Florida Research and Education Center, Institute of Food and Agriculture Sciences, University of Florida, Apopka, FL, United States
| | - Xiangying Wei
- Mid-Florida Research and Education Center, Institute of Food and Agriculture Sciences, University of Florida, Apopka, FL, United States
- Institute of Oceanography, Minjiang University, Fuzhou, China
- Xiangying Wei
| | - Jianjun Chen
- Mid-Florida Research and Education Center, Institute of Food and Agriculture Sciences, University of Florida, Apopka, FL, United States
| | - Hira Mubeen
- Departement of Biotechnology, University of Central Punjab, Lahore, Pakistan
| | - Gul Shad Ali
- Department of Plant Pathology, Institute of Food and Agriculture Sciences, University of Florida, Gainesville, FL, United States
- Mid-Florida Research and Education Center, Institute of Food and Agriculture Sciences, University of Florida, Apopka, FL, United States
- EukaryoTech LLC, Apopka, FL, United States
- *Correspondence: Gul Shad Ali
| |
Collapse
|
66
|
Sun Y, Qiao Z, Muchero W, Chen JG. Lectin Receptor-Like Kinases: The Sensor and Mediator at the Plant Cell Surface. FRONTIERS IN PLANT SCIENCE 2020; 11:596301. [PMID: 33362827 PMCID: PMC7758398 DOI: 10.3389/fpls.2020.596301] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/19/2020] [Indexed: 05/17/2023]
Abstract
Lectin receptor-like kinases (LecRLKs), a plant-specific receptor-like kinase (RLK) sub-family, have been recently found to play crucial roles in plant development and responses to abiotic and biotic stresses. In this review, we first describe the classification and structures of Lectin RLKs. Then we focus on the analysis of functions of LecRLKs in various biological processes and discuss the status of LecRLKs from the ligands they recognize, substrate they target, signaling pathways they are involved in, to the overall regulation of growth-defense tradeoffs. LecRLKs and the signaling components they interact with constitute recognition and protection systems at the plant cell surface contributing to the detection of environmental changes monitoring plant fitness.
Collapse
|
67
|
Chan C, Zimmerli L. The Histone Demethylase IBM1 Positively Regulates Arabidopsis Immunity by Control of Defense Gene Expression. FRONTIERS IN PLANT SCIENCE 2019; 10:1587. [PMID: 31956325 PMCID: PMC6951416 DOI: 10.3389/fpls.2019.01587] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/12/2019] [Indexed: 05/23/2023]
Abstract
Epigenetic modifications involve complex and sophisticated control over chromatin states and DNA methylation patterns, which are important for stress tolerance in plants. While the identification of epigenetic modulating enzymes keeps growing, such as MET1, for CG methylation; CMT3, DRM2, DRM3 for CHH methylation; and IBM1, SUVH4 for CHG methylation; the molecular roles of these regulators in specific physiological functions remain obscure. In a mutant screen, we identified IBM1 as a new player in plant immunity. The ibm1 mutants were hyper-susceptible to hemi-biotrophic bacteria Pseudomonas syringae. Accordingly, bacteria-induced up-regulation of PR1, PR2, and FRK1 defense markers was abolished in ibm1 mutants. Consistently, at the chromatin level, these defense marker genes showed enrichment of the inactivation mark, H3K9me2; while the activation mark H3K4me3 was reduced in ibm1 mutants. Immunoprecipitation of associated chromatin further demonstrated that IBM1 binds directly to the gene body of PR1, PR2, and FRK1. Taken together, these data suggest that IBM1 plays a critical role in modulating Arabidopsis immunity through direct regulation of defense gene expression. Notably, IBM1 maintains a permissive chromatin environment to ensure proper induction of defense genes under some biotic stress.
Collapse
|
68
|
Atri C, Akhatar J, Gupta M, Gupta N, Goyal A, Rana K, Kaur R, Mittal M, Sharma A, Singh MP, Sandhu PS, Barbetti MJ, Banga SS. Molecular and genetic analysis of defensive responses of Brassica juncea - B. fruticulosa introgression lines to Sclerotinia infection. Sci Rep 2019; 9:17089. [PMID: 31745129 PMCID: PMC6864084 DOI: 10.1038/s41598-019-53444-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 10/31/2019] [Indexed: 12/18/2022] Open
Abstract
Sclerotinia stem rot caused by Sclerotinia sclerotiorum is a major disease of crop brassicas, with inadequate variation for resistance in primary gene pools. We utilized a wild Brassicaceae species with excellent resistance against stem rot to develop a set of B. juncea - B. fruticulosa introgression lines (ILs). These were assessed for resistance using a highly reproducible stem inoculation technique against a virulent pathogen isolate. Over 40% of ILs showed higher levels of resistance. IL-43, IL-175, IL-215, IL-223 and IL-277 were most resistant ILs over three crop seasons. Sequence reads (21x) from the three most diverse ILs were then used to create B. juncea pseudomolecules, by replacing SNPs of reference B. juncea with those of re-sequenced ILs. Genotyping by sequencing (GBS) was also carried out for 88 ILs. Resultant sequence tags were then mapped on to the B. juncea pseudomolecules, and SNP genotypes prepared for each IL. Genome wide association studies helped to map resistance responses to stem rot. A total of 13 significant loci were identified on seven B. juncea chromosomes (A01, A03, A04, A05, A08, A09 and B05). Annotation of the genomic region around identified SNPs allowed identification of 20 candidate genes belonging to major disease resistance protein families, including TIR-NBS-LRR class, Chitinase, Malectin/receptor-like protein kinase, defensin-like (DEFL), desulfoglucosinolate sulfotransferase protein and lipoxygenase. A majority of the significant SNPs could be validated using whole genome sequences (21x) from five advanced generation lines being bred for Sclerotinia resistance as compared to three susceptible B. juncea germplasm lines. Our findings not only provide critical new understanding of the defensive pathway of B. fruticulosa resistance, but will also enable development of marker candidates for assisted transfer of introgressed resistant loci in to agronomically superior cultivars of crop Brassica.
Collapse
Affiliation(s)
- Chhaya Atri
- DBT Centre of Excellence on Brassicas, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Javed Akhatar
- DBT Centre of Excellence on Brassicas, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Mehak Gupta
- DBT Centre of Excellence on Brassicas, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Neha Gupta
- DBT Centre of Excellence on Brassicas, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Anna Goyal
- DBT Centre of Excellence on Brassicas, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Kusum Rana
- DBT Centre of Excellence on Brassicas, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Rimaljeet Kaur
- DBT Centre of Excellence on Brassicas, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Meenakshi Mittal
- DBT Centre of Excellence on Brassicas, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Anju Sharma
- DBT Centre of Excellence on Brassicas, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Mohini Prabha Singh
- DBT Centre of Excellence on Brassicas, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Prabhjodh S Sandhu
- DBT Centre of Excellence on Brassicas, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, Punjab, India
| | - Martin J Barbetti
- School of Agriculture and Environment and the UWA Institute of Agriculture, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Surinder S Banga
- DBT Centre of Excellence on Brassicas, Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, Punjab, India.
| |
Collapse
|
69
|
Wang Y, Subedi S, de Vries H, Doornenbal P, Vels A, Hensel G, Kumlehn J, Johnston PA, Qi X, Blilou I, Niks RE, Krattinger SG. Orthologous receptor kinases quantitatively affect the host status of barley to leaf rust fungi. NATURE PLANTS 2019; 5:1129-1135. [PMID: 31712760 DOI: 10.1038/s41477-019-0545-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 10/08/2019] [Indexed: 05/29/2023]
Abstract
Global food security depends on cereal crops with durable disease resistance. Most cereals are colonized by rust fungi, which are pathogens of major significance for global agriculture1. Cereal rusts display a high degree of host specificity and one rust species or forma specialis generally colonizes only one cereal host2. Exploiting the non-host status and transferring non-host resistance genes between cereal crop species has been proposed as a strategy for durable rust resistance breeding. The molecular determinants that define the host status to rusts, however, are largely unknown. Here, we show that orthologous genes at the Rphq2 locus for quantitative leaf rust resistance from cultivated barley3 and Rph22 from wild bulbous barley4 affect the host status to leaf rusts. Both genes encode lectin receptor-like kinases. We transformed Rphq2 and Rph22 into an experimental barley line that has been bred for susceptibility to non-adapted leaf rusts, which allowed us to quantify resistance responses against various leaf rust species. Rphq2 conferred a much stronger resistance to the leaf rust of wild bulbous barley than to the leaf rust adapted to cultivated barley, while for Rph22 the reverse was observed. We hypothesize that adapted leaf rust species mitigate perception by cognate host receptors by lowering ligand recognition. Our results provide an example of orthologous genes that connect the quantitative host with non-host resistance to cereal rusts. Such genes provide a basis to exploit non-host resistance in molecular breeding.
Collapse
Affiliation(s)
- Yajun Wang
- Plant Breeding, Wageningen University & Research, Wageningen, the Netherlands
- Center for Desert Agriculture, Biological and Environmental Science & Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Sudeep Subedi
- Plant Breeding, Wageningen University & Research, Wageningen, the Netherlands
- Nepal Agricultural Research Council, Kathmandu, Nepal
| | - Harmen de Vries
- Plant Breeding, Wageningen University & Research, Wageningen, the Netherlands
| | - Pieter Doornenbal
- Plant Breeding, Wageningen University & Research, Wageningen, the Netherlands
| | - Anton Vels
- Plant Breeding, Wageningen University & Research, Wageningen, the Netherlands
| | - Goetz Hensel
- Plant Reproductive Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Gatersleben, Germany
| | - Jochen Kumlehn
- Plant Reproductive Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Gatersleben, Germany
| | - Paul A Johnston
- The New Zealand Institute for Plant and Food Research Limited, Lincoln, New Zealand
| | - Xiaoquan Qi
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Ikram Blilou
- Center for Desert Agriculture, Biological and Environmental Science & Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Rients E Niks
- Plant Breeding, Wageningen University & Research, Wageningen, the Netherlands.
| | - Simon G Krattinger
- Center for Desert Agriculture, Biological and Environmental Science & Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| |
Collapse
|
70
|
Wang Y, Tyler BM, Wang Y. Defense and Counterdefense During Plant-Pathogenic Oomycete Infection. Annu Rev Microbiol 2019; 73:667-696. [DOI: 10.1146/annurev-micro-020518-120022] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plant-pathogenic oomycetes include numerous species that are ongoing threats to agriculture and natural ecosystems. Understanding the molecular dialogs between oomycetes and plants is instrumental for sustaining effective disease control. Plants respond to oomycete infection by multiple defense actions including strengthening of physical barriers, production of antimicrobial molecules, and programmed cell death. These responses are tightly controlled and integrated via a three-layered immune system consisting of a multiplex recognition layer, a resilient signal-integration layer, and a diverse defense-action layer. Adapted oomycete pathogens utilize apoplastic and intracellular effector arsenals to counter plant immunity mechanisms within each layer, including by evasion or suppression of recognition, interference with numerous signaling components, and neutralization or suppression of defense actions. A coevolutionary arms race continually drives the emergence of new mechanisms of plant defense and oomycete counterdefense.
Collapse
Affiliation(s)
- Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China;,
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Brett M. Tyler
- Center for Genome Research and Biocomputing and Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China;,
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| |
Collapse
|
71
|
Herlihy J, Ludwig NR, van den Ackerveken G, McDowell JM. Oomycetes Used in Arabidopsis Research. THE ARABIDOPSIS BOOK 2019; 17:e0188. [PMID: 33149730 PMCID: PMC7592078 DOI: 10.1199/tab.0188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Arabidopsis plants in their natural environment are susceptible to infection by oomycete pathogens, in particular to downy mildew and white rust diseases. These naturally occurring infectious agents have imposed evolutionary pressures on Arabidopsis populations and are therefore highly relevant for the study of host-pathogen co-evolution. In addition, the study of oomycete diseases, including infections caused by several Phytophthora species, has led to many scientific discoveries on Arabidopsis immunity and disease. Herein, we describe the major oomycete species used for experiments on Arabidopsis, and how these pathosystems have been used to provide significant insights into mechanistic and evolutionary aspects of plant-oomycete interactions. We also highlight understudied aspects of plant-oomycete interactions, as well as translational approaches, that can be productively addressed using the reference pathosystems described in this article.
Collapse
Affiliation(s)
- John Herlihy
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Nora R. Ludwig
- Plant–Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Guido van den Ackerveken
- Plant–Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - John M. McDowell
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
72
|
Jewell JB, Tanaka K. Transcriptomic perspective on extracellular ATP signaling: a few curious trifles. PLANT SIGNALING & BEHAVIOR 2019; 14:1659079. [PMID: 31451022 PMCID: PMC6804718 DOI: 10.1080/15592324.2019.1659079] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 05/24/2023]
Abstract
Extracellular ATP is perceived by the purinoceptor P2K1, leading to induction of defense response in plants. Previously, we described the transcriptomic response to extracellular ATP in wild-type Arabidopsis seedlings and mutants of classical defense hormone signaling pathways (Jewell et al., 2019, Plant Physiol. 179: 1144-58), in which extracellular ATP was found to induce defense-related genes independently and also along with other defense signaling pathways. In the present study, we provide further analysis and discussion of the data that we neglected to describe in the previous transcriptomics report. Briefly, we describe transcriptomic differences between a P2K1 knockout mutant (dorn1) and wild-type seedlings in the absence of exogenous ATP as well as an analysis of genes more responsive to extracellular ATP in a P2K1 overexpression line. Finally, we describe an exaggerated response to extracellular ATP in the ein2 mutant and suggest testable explanations of this phenomenon.
Collapse
Affiliation(s)
- Jeremy B. Jewell
- Department of Plant Pathology, Washington State University, Pullman, WA, USA
| | - Kiwamu Tanaka
- Department of Plant Pathology, Washington State University, Pullman, WA, USA
| |
Collapse
|
73
|
Wang W, Jiao F. Effectors of Phytophthora pathogens are powerful weapons for manipulating host immunity. PLANTA 2019; 250:413-425. [PMID: 31243548 DOI: 10.1007/s00425-019-03219-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 06/18/2019] [Indexed: 05/11/2023]
Abstract
This article provides an overview of the interactions between Phytophthora effectors and plant immune system components, which form a cross-linked complex network that regulates plant pathogen resistance. Pathogens secrete numerous effector proteins into plants to promote infections. Several Phytophthora species (e.g., P. infestans, P. ramorum, P. sojae, P. capsici, P. cinnamomi, and P. parasitica) are notorious pathogens that are extremely damaging to susceptible plants. Analyses of genomic data revealed that Phytophthora species produce a large group of effector proteins, which are critical for pathogenesis. And, the targets and functions of many identified Phytophthora effectors have been investigated. Phytophthora effectors can affect various aspects of plant immune systems, including plant cell proteases, phytohormones, RNAs, the MAPK pathway, catalase, the ubiquitin proteasome pathway, the endoplasmic reticulum, NB-LRR proteins, and the cell membrane. Clarifying the effector-plant interactions is important for unravelling the functions of Phytophthora effectors during pathogenesis. In this article, we review the effectors identified in recent decades and provide an overview of the effector-directed regulatory network in plants following infections by Phytophthora species.
Collapse
Affiliation(s)
- Wenjing Wang
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, No. 11 Forth Longitudinal Keyuan Rd, Laoshan District, Qingdao, 266101, People's Republic of China.
| | - Fangchan Jiao
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, People's Republic of China
| |
Collapse
|
74
|
Cereal Root Interactions with Soilborne Pathogens—From Trait to Gene and Back. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9040188] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Realizing the yield potential of crop plants in the presence of shifting pathogen populations, soil quality, rainfall, and other agro-environmental variables remains a challenge for growers and breeders worldwide. In this review, we discuss current approaches for combatting the soilborne phytopathogenic nematodes, Pratylenchus and Heterodera of wheat and barley, and Meloidogyne graminicola Golden and Birchfield, 1965 of rice. The necrotrophic fungal pathogens, Rhizoctonia solani Kühn 1858 AG-8 and Fusarium spp. of wheat and barley, also are discussed. These pathogens constitute major causes of yield loss in small-grain cereals of the Pacific Northwest, USA and throughout the world. Current topics include new sources of genetic resistance, molecular leads from whole genome sequencing and genome-wide patterns of hosts, nematode or fungal gene expression during root-pathogen interactions, host-induced gene silencing, and building a molecular toolbox of genes and regulatory sequences for deployment of resistance genes. In conclusion, improvement of wheat, barley, and rice will require multiple approaches.
Collapse
|
75
|
Judelson HS, Ah-Fong AMV. Exchanges at the Plant-Oomycete Interface That Influence Disease. PLANT PHYSIOLOGY 2019; 179:1198-1211. [PMID: 30538168 PMCID: PMC6446794 DOI: 10.1104/pp.18.00979] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/19/2018] [Indexed: 05/20/2023]
Abstract
Molecular exchanges between plants and biotrophic, hemibiotrophic, and necrotrophic oomycetes affect disease progression.
Collapse
Affiliation(s)
- Howard S Judelson
- Department of Microbiology and Plant Pathology, University of California, Riverside, California 92521
| | - Audrey M V Ah-Fong
- Department of Microbiology and Plant Pathology, University of California, Riverside, California 92521
| |
Collapse
|
76
|
Jewell JB, Sowders JM, He R, Willis MA, Gang DR, Tanaka K. Extracellular ATP Shapes a Defense-Related Transcriptome Both Independently and along with Other Defense Signaling Pathways. PLANT PHYSIOLOGY 2019; 179:1144-1158. [PMID: 30630869 PMCID: PMC6393801 DOI: 10.1104/pp.18.01301] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/04/2019] [Indexed: 05/20/2023]
Abstract
ATP is not only an essential metabolite of cellular biochemistry but also acts as a signal in the extracellular milieu. In plants, extracellular ATP is monitored by the purinergic receptor P2K1. Recent studies have revealed that extracellular ATP acts as a damage-associated molecular pattern in plants, and its signaling through P2K1 is important for mounting an effective defense response against various pathogenic microorganisms. Biotrophic and necrotrophic pathogens attack plants using different strategies, to which plants respond accordingly with salicylate-based or jasmonate/ethylene-based defensive signaling, respectively. Interestingly, defense mediated by P2K1 is effective against pathogens of both lifestyles, raising the question of the level of interplay between extracellular ATP signaling and that of jasmonate, ethylene, and salicylate. To address this issue, we analyzed ATP-induced transcriptomes in wild-type Arabidopsis (Arabidopsis thaliana) seedlings and mutant seedlings defective in essential components in the signaling pathways of jasmonate, ethylene, and salicylate (classic defense hormones) as well as a mutant and an overexpression line of the P2K1 receptor. We found that P2K1 function is crucial for faithful ATP-induced transcriptional changes and that a subset of genes is more responsive in the P2K1 overexpression line. We also found that more than half of the ATP-responsive genes required signaling by one or more of the pathways for the classical defense hormones, with the jasmonate-based signaling being more critical than others. By contrast, the other ATP-responsive genes were unaffected by deficiencies in signaling for any of the classical defense hormones. These ATP-responsive genes were highly enriched for defense-related Gene Ontology terms. We further tested the ATP-induced genes in knockout mutants of transcription factors, demonstrating that MYCs acting downstream of the jasmonate receptor complex and calmodulin-binding transcription activators are nuclear transducers of P2K1-mediated extracellular ATP signaling.
Collapse
Affiliation(s)
- Jeremy B Jewell
- Department of Plant Pathology, Washington State University, Pullman, Washington 99164
| | - Joel M Sowders
- Department of Plant Pathology, Washington State University, Pullman, Washington 99164
- Molecular Plant Sciences Program, Washington State University, Pullman, Washington 99164
| | - Ruifeng He
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164
| | - Mark A Willis
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164
| | - David R Gang
- Molecular Plant Sciences Program, Washington State University, Pullman, Washington 99164
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164
| | - Kiwamu Tanaka
- Department of Plant Pathology, Washington State University, Pullman, Washington 99164
- Molecular Plant Sciences Program, Washington State University, Pullman, Washington 99164
| |
Collapse
|
77
|
Nizam S, Qiang X, Wawra S, Nostadt R, Getzke F, Schwanke F, Dreyer I, Langen G, Zuccaro A. Serendipita indica E5'NT modulates extracellular nucleotide levels in the plant apoplast and affects fungal colonization. EMBO Rep 2019; 20:embr.201847430. [PMID: 30642845 PMCID: PMC6362346 DOI: 10.15252/embr.201847430] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/13/2022] Open
Abstract
Extracellular adenosine 5′‐triphosphate (eATP) is an essential signaling molecule that mediates different cellular processes through its interaction with membrane‐associated receptor proteins in animals and plants. eATP regulates plant growth, development, and responses to biotic and abiotic stresses. Its accumulation in the apoplast induces ROS production and cytoplasmic calcium increase mediating a defense response to invading microbes. We show here that perception of extracellular nucleotides, such as eATP, is important in plant–fungus interactions and that during colonization by the beneficial root endophyte Serendipita indica eATP accumulates in the apoplast at early symbiotic stages. Using liquid chromatography–tandem mass spectrometry, and cytological and functional analysis, we show that S. indica secrets SiE5′NT, an enzymatically active ecto‐5′‐nucleotidase capable of hydrolyzing nucleotides in the apoplast. Arabidopsis thaliana lines producing extracellular SiE5′NT are significantly better colonized, have reduced eATP levels, and altered responses to biotic stresses, indicating that SiE5′NT functions as a compatibility factor. Our data suggest that extracellular bioactive nucleotides and their perception play an important role in fungus–root interactions and that fungal‐derived enzymes can modify apoplastic metabolites to promote fungal accommodation.
Collapse
Affiliation(s)
- Shadab Nizam
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.,Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, University of Cologne, Cologne, Germany
| | - Xiaoyu Qiang
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.,Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, University of Cologne, Cologne, Germany
| | - Stephan Wawra
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, University of Cologne, Cologne, Germany
| | - Robin Nostadt
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Felix Getzke
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, University of Cologne, Cologne, Germany
| | - Florian Schwanke
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, University of Cologne, Cologne, Germany
| | - Ingo Dreyer
- Centro de Bioinformática y Simulación Molecular (CBSM), Universidad de Talca, Talca, Chile
| | - Gregor Langen
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, University of Cologne, Cologne, Germany
| | - Alga Zuccaro
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany .,Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, University of Cologne, Cologne, Germany
| |
Collapse
|
78
|
Nellist CF, Vickerstaff RJ, Sobczyk MK, Marina-Montes C, Wilson FM, Simpson DW, Whitehouse AB, Harrison RJ. Quantitative trait loci controlling Phytophthora cactorum resistance in the cultivated octoploid strawberry ( Fragaria × ananassa). HORTICULTURE RESEARCH 2019; 6:60. [PMID: 31069084 PMCID: PMC6491645 DOI: 10.1038/s41438-019-0136-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 01/17/2019] [Accepted: 01/22/2019] [Indexed: 05/18/2023]
Abstract
The cultivated strawberry, Fragaria × ananassa (Fragaria spp.) is the most economically important global soft fruit. Phytophthora cactorum, a water-borne oomycete causes economic losses in strawberry production globally. A bi-parental cross of octoploid cultivated strawberry segregating for resistance to P. cactorum, the causative agent of crown rot disease, was screened using artificial inoculation. Multiple putative resistance quantitative trait loci (QTL) were identified and mapped. Three major effect QTL (FaRPc6C, FaRPc6D and FaRPc7D) explained 37% of the variation observed. There were no epistatic interactions detected between the three major QTLs. Testing a subset of the mapping population progeny against a range of P. cactorum isolates revealed no significant interaction (p = 0.0593). However, some lines showed higher susceptibility than predicted, indicating that additional undetected factors may affect the expression of some quantitative resistance loci. Using historic crown rot disease score data from strawberry accessions, a preliminary genome-wide association study (GWAS) of 114 individuals revealed an additional locus associated with resistance to P. cactorum. Mining of the Fragaria vesca Hawaii 4 v1.1 genome revealed candidate resistance genes in the QTL regions.
Collapse
Affiliation(s)
- Charlotte F. Nellist
- Department of Genetics, Genomics and Breeding, NIAB EMR, New Road, East Malling, ME19 6BJ UK
| | - Robert J. Vickerstaff
- Department of Genetics, Genomics and Breeding, NIAB EMR, New Road, East Malling, ME19 6BJ UK
| | - Maria K. Sobczyk
- Department of Genetics, Genomics and Breeding, NIAB EMR, New Road, East Malling, ME19 6BJ UK
| | - César Marina-Montes
- Department of Genetics, Genomics and Breeding, NIAB EMR, New Road, East Malling, ME19 6BJ UK
| | - Fiona M. Wilson
- Department of Genetics, Genomics and Breeding, NIAB EMR, New Road, East Malling, ME19 6BJ UK
| | - David W. Simpson
- Department of Genetics, Genomics and Breeding, NIAB EMR, New Road, East Malling, ME19 6BJ UK
| | - Adam B. Whitehouse
- Department of Genetics, Genomics and Breeding, NIAB EMR, New Road, East Malling, ME19 6BJ UK
| | - Richard J. Harrison
- Department of Genetics, Genomics and Breeding, NIAB EMR, New Road, East Malling, ME19 6BJ UK
| |
Collapse
|
79
|
Gouhier-Darimont C, Stahl E, Glauser G, Reymond P. The Arabidopsis Lectin Receptor Kinase LecRK-I.8 Is Involved in Insect Egg Perception. FRONTIERS IN PLANT SCIENCE 2019; 10:623. [PMID: 31134123 PMCID: PMC6524003 DOI: 10.3389/fpls.2019.00623] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/26/2019] [Indexed: 05/16/2023]
Abstract
Plants induce defense responses after insect egg deposition, but very little is known about the perception mechanisms. In Arabidopsis thaliana, eggs of the specialist insect Pieris brassicae trigger accumulation of reactive oxygen species (ROS) and salicylic acid (SA), followed by induction of defense genes and localized necrosis. Here, the involvement of the clade I L-type lectin receptor kinase LecRK-I.8 in these responses was studied. Expression of LecRK-I.8 was upregulated at the site of P. brassicae oviposition and egg extract (EE) treatment. ROS, SA, cell death, and expression of PR1 were substantially reduced in the Arabidopsis knock-out mutant lecrk-I.8 after EE treatment. In addition, EE-induced systemic resistance against Pseudomonas syringae was abolished in lecrk-I.8. Expression of ten clade I homologs of LecRK-I.8 was also induced by EE treatment, but single mutants displayed only weak alteration of EE-induced PR1 expression. These results demonstrate that LecRK-I.8 is an early component of egg perception.
Collapse
Affiliation(s)
| | - Elia Stahl
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Gaetan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel, Switzerland
| | - Philippe Reymond
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
- *Correspondence: Philippe Reymond,
| |
Collapse
|
80
|
Armitage AD, Lysøe E, Nellist CF, Lewis LA, Cano LM, Harrison RJ, Brurberg MB. Bioinformatic characterisation of the effector repertoire of the strawberry pathogen Phytophthora cactorum. PLoS One 2018; 13:e0202305. [PMID: 30278048 PMCID: PMC6168125 DOI: 10.1371/journal.pone.0202305] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 06/23/2018] [Indexed: 12/21/2022] Open
Abstract
The oomycete pathogen Phytophthora cactorum causes crown rot, a major disease of cultivated strawberry. We report the draft genome of P. cactorum isolate 10300, isolated from symptomatic Fragaria x ananassa tissue. Our analysis revealed that there are a large number of genes encoding putative secreted effectors in the genome, including nearly 200 RxLR domain containing effectors, 77 Crinklers (CRN) grouped into 38 families, and numerous apoplastic effectors, such as phytotoxins (PcF proteins) and necrosis inducing proteins. As in other Phytophthora species, the genomic environment of many RxLR and CRN genes differed from core eukaryotic genes, a hallmark of the two-speed genome. We found genes homologous to known Phytophthora infestans avirulence genes including Avr1, Avr3b, Avr4, Avrblb1 and AvrSmira2 indicating effector sequence conservation between Phytophthora species of clade 1a and clade 1c. The reported P. cactorum genome sequence and associated annotations represent a comprehensive resource for avirulence gene discovery in other Phytophthora species from clade 1 and, will facilitate effector informed breeding strategies in other crops.
Collapse
Affiliation(s)
| | - Erik Lysøe
- Norwegian Institute of Bioeconomy Research (NIBIO), Division of Biotechnology and Plant Health, Ås, Norway
| | | | | | - Liliana M. Cano
- University of Florida, UF/IFAS Indian River Research and Education Center, Fort Pierce, Florida, United States of America
- The Sainsbury Laboratory, Norwich, United Kingdom
| | | | - May B. Brurberg
- Norwegian Institute of Bioeconomy Research (NIBIO), Division of Biotechnology and Plant Health, Ås, Norway
- Norwegian University of Life Sciences (NMBU), Department of Plant Sciences, Ås, Norway
| |
Collapse
|
81
|
Sharma C, Saripalli G, Kumar S, Gautam T, Kumar A, Rani S, Jain N, Prasad P, Raghuvanshi S, Jain M, Sharma JB, Prabhu KV, Sharma PK, Balyan HS, Gupta PK. A study of transcriptome in leaf rust infected bread wheat involving seedling resistance gene Lr28. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:1046-1064. [PMID: 32291004 DOI: 10.1071/fp17326] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 04/09/2018] [Indexed: 05/02/2023]
Abstract
Leaf rust disease causes severe yield losses in wheat throughout the world. During the present study, high-throughput RNA-Seq analysis was used to gain insights into the role of Lr28 gene in imparting seedling leaf rust resistance in wheat. Differential expression analysis was conducted using a pair of near-isogenic lines (NILs) (HD 2329 and HD 2329+Lr28) at early (0h before inoculation (hbi), 24 and 48h after inoculation (hai)) and late stages (72, 96 and 168 hai) after inoculation with a virulent pathotype of pathogen Puccinia triticina. Expression of a large number of genes was found to be affected due to the presence/absence of Lr28. Gene ontology analysis of the differentially expressed transcripts suggested enrichment of transcripts involved in carbohydrate and amino acid metabolism, oxidative stress and hormone metabolism, in resistant and/or susceptible NILs. Genes encoding receptor like kinases (RLKs) (including ATP binding; serine threonine kinases) and other kinases were the most abundant class of genes, whose expression was affected. Genes involved in reactive oxygen species (ROS) homeostasis and several genes encoding transcription factors (TFs) (most abundant being WRKY TFs) were also identified along with some ncRNAs and histone variants. Quantitative real-time PCR was also used for validation of 39 representative selected genes. In the long term, the present study should prove useful in developing leaf rust resistant wheat cultivars through molecular breeding.
Collapse
Affiliation(s)
- Chanchal Sharma
- Department of Genetics and Plant Breeding, Ch.Charan Singh University, Meerut, 250004, India
| | - Gautam Saripalli
- Department of Genetics and Plant Breeding, Ch.Charan Singh University, Meerut, 250004, India
| | - Santosh Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Tinku Gautam
- Department of Genetics and Plant Breeding, Ch.Charan Singh University, Meerut, 250004, India
| | - Avneesh Kumar
- Department of Genetics and Plant Breeding, Ch.Charan Singh University, Meerut, 250004, India
| | - Sushma Rani
- Division of Genetics, Indian Agricultural Research Institute (IARI), Pusa, New Delhi, 110022, India
| | - Neelu Jain
- Division of Genetics, Indian Agricultural Research Institute (IARI), Pusa, New Delhi, 110022, India
| | - Pramod Prasad
- Regional Station, Indian Institute of Wheat and Barley Research, Flowerdale, Shimla, 171002, India
| | - Saurabh Raghuvanshi
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Mukesh Jain
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - J B Sharma
- Division of Genetics, Indian Agricultural Research Institute (IARI), Pusa, New Delhi, 110022, India
| | - K V Prabhu
- Division of Genetics, Indian Agricultural Research Institute (IARI), Pusa, New Delhi, 110022, India
| | - P K Sharma
- Department of Genetics and Plant Breeding, Ch.Charan Singh University, Meerut, 250004, India
| | - H S Balyan
- Department of Genetics and Plant Breeding, Ch.Charan Singh University, Meerut, 250004, India
| | - P K Gupta
- Department of Genetics and Plant Breeding, Ch.Charan Singh University, Meerut, 250004, India
| |
Collapse
|
82
|
Marquez N, Giachero ML, Gallou A, Debat HJ, Cranenbrouck S, Di Rienzo JA, Pozo MJ, Ducasse DA, Declerck S. Transcriptional Changes in Mycorrhizal and Nonmycorrhizal Soybean Plants upon Infection with the Fungal Pathogen Macrophomina phaseolina. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:842-855. [PMID: 29498566 DOI: 10.1094/mpmi-11-17-0282-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Macrophomina phaseolina is a soil-borne fungal pathogen with a wide host range that causes charcoal rot in soybean [Glycine max (L.) Merr.]. Control of the disease is a challenge, due to the absence of genetic resistance and effective chemical control. Alternative or complementary measures are needed, such as the use of biological control agents, in an integrated approach. Several studies have demonstrated the role of arbuscular mycorrhizal fungi (AMF) in enhancing plant resistance or tolerance to biotic stresses, decreasing the symptoms and pressure caused by various pests and diseases, including M. phaseolina in soybean. However, the specific contribution of AMF in the regulation of the plant response to M. phaseolina remains unclear. Therefore, the objective of the present study was to investigate, under strict in-vitro culture conditions, the global transcriptional changes in roots of premycorrhized soybean plantlets challenged by M. phaseolina (+AMF+Mp) as compared with nonmycorrhizal soybean plantlets (-AMF+Mp). MapMan software was used to distinguish transcriptional changes, with special emphasis on those related to plant defense responses. Soybean genes identified as strongly upregulated during infection by the pathogen included pathogenesis-related proteins, disease-resistance proteins, transcription factors, and secondary metabolism-related genes, as well as those encoding for signaling hormones. Remarkably, the +AMF+Mp treatment displayed a lower number of upregulated genes as compared with the -AMF+Mp treatment. AMF seemed to counteract or balance costs upon M. phaseolina infection, which could be associated to a negative impact on biomass and seed production. These detailed insights in soybean-AMF interaction help us to understand the complex underlying mechanisms involved in AMF-mediated biocontrol and support the importance of preserving and stimulating the existing plant-AMF associates, via adequate agricultural practices, to optimize their agro-ecological potential.
Collapse
Affiliation(s)
- Nathalie Marquez
- 1 Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria, Camino 60 cuadras km 5.5, 5119. Córdoba, Argentina
- 2 Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| | - María L Giachero
- 1 Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria, Camino 60 cuadras km 5.5, 5119. Córdoba, Argentina
| | - Adrien Gallou
- 3 Centro Nacional de Referencia de Control Biológico, Km 1.5 Carretera Tecomán-Estación FFCC. Apdo. Postal 67, Tecomán, Colima, México
| | - Humberto J Debat
- 1 Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria, Camino 60 cuadras km 5.5, 5119. Córdoba, Argentina
| | - Sylvie Cranenbrouck
- 4 Université catholique de Louvain, Earth and Life Institute, Applied Microbiology, Mycology, Mycothèque de l'Université catholique de Louvain (MUCL), Part of the Belgian Coordinated Collections of Microorganisms (BCCM), Croix du Sud 2, bte L7.05.06, B-1358, Louvain-la-Neuve, Belgium
| | - Julio A Di Rienzo
- 5 Cátedra de Estadística y Biometría, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Ing Agr; Felix Aldo Marrone 746, 5000 Córdoba, Argentina
| | - María J Pozo
- 6 Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, CSIC, Prof. Albareda 1, 18008, Granada, Spain
| | - Daniel A Ducasse
- 1 Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria, Camino 60 cuadras km 5.5, 5119. Córdoba, Argentina
| | - Stéphane Declerck
- 7 Université catholique de Louvain, Earth and Life Institute, Applied Microbiology, Mycology, Croix du Sud 2, bte L7.05.06, B-1358, Louvain-la-Neuve, Belgium
| |
Collapse
|
83
|
Tomczynska I, Stumpe M, Mauch F. A conserved RxLR effector interacts with host RABA-type GTPases to inhibit vesicle-mediated secretion of antimicrobial proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:187-203. [PMID: 29671919 DOI: 10.1111/tpj.13928] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/16/2018] [Accepted: 03/22/2018] [Indexed: 05/20/2023]
Abstract
Plant pathogens of the oomycete genus Phytophthora produce virulence factors, known as RxLR effector proteins that are transferred into host cells to suppress disease resistance. Here, we analyse the function of the highly conserved RxLR24 effector of Phytophthora brassicae. RxLR24 was expressed early in the interaction with Arabidopsis plants and ectopic expression in the host enhanced leaf colonization and zoosporangia formation. Co-immunoprecipitation (Co-IP) experiments followed by mass spectrometry identified different members of the RABA GTPase family as putative RxLR24 targets. Physical interaction of RxLR24 or its homologue from the potato pathogen Phytophthora infestans with different RABA GTPases of Arabidopsis or potato, respectively, was confirmed by reciprocal Co-IP. In line with the function of RABA GTPases in vesicular secretion, RxLR24 co-localized with RABA1a to vesicles and the plasma membrane. The effect of RxLR24 on the secretory process was analysed with fusion constructs of secreted antimicrobial proteins with a pH-sensitive GFP tag. PATHOGENESIS RELATED PROTEIN 1 (PR-1) and DEFENSIN (PDF1.2) were efficiently exported in control tissue, whereas in the presence of RxLR24 they both accumulated in the endoplasmic reticulum. Together our results imply a virulence function of RxLR24 effectors as inhibitors of RABA GTPase-mediated vesicular secretion of antimicrobial PR-1, PDF1.2 and possibly other defence-related compounds.
Collapse
Affiliation(s)
- Iga Tomczynska
- Department of Biology, University of Fribourg, chemin du musée 10, 1700, Fribourg, Switzerland
| | - Michael Stumpe
- Department of Biology, University of Fribourg, chemin du musée 10, 1700, Fribourg, Switzerland
| | - Felix Mauch
- Department of Biology, University of Fribourg, chemin du musée 10, 1700, Fribourg, Switzerland
| |
Collapse
|
84
|
Molecular Mechanism of Plant Recognition of Extracellular ATP. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1051:233-253. [PMID: 29064066 DOI: 10.1007/5584_2017_110] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adenosine 5'-triphosphate (ATP), a ubiquitously dispersed biomolecule, is not only a major source of biochemical energy for living cells, but also acts as a critical signaling molecule through inter-cellular communication. Recent studies have clearly shown that extracellular ATP is involved in various physiological processes in plants, including root growth, stomata movement, pollen tube development, gravitropism, and abiotic/biotic stress responses. The first plant purinergic receptor for extracellular ATP, DORN1 (the founding member of the P2K family of purinergic receptors), was identified in Arabidopsis thaliana by a forward genetic screen. DORN1 consists of an extracellular lectin domain, transmembrane domain, and serine/threonine kinase, intracellular domain. The predicted structure of the DORN1 extracellular domain revealed putative key ATP binding residues but an apparent lack of sugar binding. In this chapter, we summarize recent studies on the molecular mechanism of plant recognition of extracellular ATP with specific reference to the role of DORN1.
Collapse
|
85
|
Teixeira MA, Rajewski A, He J, Castaneda OG, Litt A, Kaloshian I. Classification and phylogenetic analyses of the Arabidopsis and tomato G-type lectin receptor kinases. BMC Genomics 2018; 19:239. [PMID: 29625550 PMCID: PMC5889549 DOI: 10.1186/s12864-018-4606-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 03/16/2018] [Indexed: 01/04/2023] Open
Abstract
Background Pathogen perception by plants is mediated by plasma membrane-localized immune receptors that have varied extracellular domains. Lectin receptor kinases (LecRKs) are among these receptors and are subdivided into 3 classes, C-type LecRKs (C-LecRKs), L-type LecRKs (L-LecRKs) and G-type LecRKs (G-LecRKs). While C-LecRKs are represented by one or two members in all plant species investigated and have unknown functions, L-LecRKs have been characterized in a few plant species and have been shown to play roles in plant defense against pathogens. Whereas Arabidopsis G-LecRKs have been characterized, this family of LecRKs has not been studied in tomato. Results This investigation updates the current characterization of Arabidopsis G-LecRKs and characterizes the tomato G-LecRKs, using LecRKs from the monocot rice and the basal eudicot columbine to establish a basis for comparisons between the two core eudicots. Additionally, revisiting parameters established for Arabidopsis nomenclature for LecRKs is suggested for both Arabidopsis and tomato. Moreover, using phylogenetic analysis, we show the relationship among and between members of G-LecRKs from all three eudicot plant species. Furthermore, investigating presence of motifs in G-LecRKs we identified conserved motifs among members of G-LecRKs in tomato and Arabidopsis, with five present in at least 30 of the 38 Arabidopsis members and in at least 45 of the 73 tomato members. Conclusions This work characterized tomato G-LecRKs and added members to the currently characterized Arabidopsis G-LecRKs. Additionally, protein sequence analysis showed an expansion of this family in tomato as compared to Arabidopsis, and the existence of conserved common motifs in the two plant species as well as conserved species-specific motifs. Electronic supplementary material The online version of this article (10.1186/s12864-018-4606-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marcella A Teixeira
- Department of Nematology, University of California, Riverside, California, USA
| | - Alex Rajewski
- Department of Botany and Plant Sciences, University of California, Riverside, California, USA
| | - Jiangman He
- Department of Nematology, University of California, Riverside, California, USA
| | | | - Amy Litt
- Department of Botany and Plant Sciences, University of California, Riverside, California, USA.,Institute for Integrative Genome Biology, University of California, Riverside, California, USA
| | - Isgouhi Kaloshian
- Department of Nematology, University of California, Riverside, California, USA. .,Institute for Integrative Genome Biology, University of California, Riverside, California, USA.
| |
Collapse
|
86
|
Santamaria ME, Diaz I, Martinez M. Dehydration Stress Contributes to the Enhancement of Plant Defense Response and Mite Performance on Barley. FRONTIERS IN PLANT SCIENCE 2018; 9:458. [PMID: 29681917 PMCID: PMC5898276 DOI: 10.3389/fpls.2018.00458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/22/2018] [Indexed: 05/26/2023]
Abstract
Under natural conditions, plants suffer different stresses simultaneously or in a sequential way. At present, the combined effect of biotic and abiotic stressors is one of the most important threats to crop production. Understanding how plants deal with the panoply of potential stresses affecting them is crucial to develop biotechnological tools to protect plants. As well as for drought stress, the economic importance of the spider mite on agriculture is expected to increase due to climate change. Barley is a host of the polyphagous spider mite Tetranychus urticae and drought produces important yield losses. To obtain insights on the combined effect of drought and mite stresses on the defensive response of this cereal, we have analyzed the transcriptomic responses of barley plants subjected to dehydration (water-deficit) treatment, spider mite attack, or to the combined dehydration-spider mite stress. The expression patterns of mite-induced responsive genes included many jasmonic acid responsive genes and were quickly induced. In contrast, genes related to dehydration tolerance were later up-regulated. Besides, a higher up-regulation of mite-induced defenses was showed by the combined dehydration and mite treatment than by the individual mite stress. On the other hand, the performance of the mite in dehydration stressed and well-watered plants was tested. Despite the stronger defensive response in plants that suffer dehydration and mite stresses, the spider mite demonstrates a better performance under dehydration condition than in well-watered plants. These results highlight the complexity of the regulatory events leading to the response to a combination of stresses and emphasize the difficulties to predict their consequences on crop production.
Collapse
Affiliation(s)
- M. E. Santamaria
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Isabel Diaz
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Manuel Martinez
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
87
|
Yekondi S, Liang FC, Okuma E, Radziejwoski A, Mai HW, Swain S, Singh P, Gauthier M, Chien HC, Murata Y, Zimmerli L. Nonredundant functions of Arabidopsis LecRK-V.2 and LecRK-VII.1 in controlling stomatal immunity and jasmonate-mediated stomatal closure. THE NEW PHYTOLOGIST 2018; 218:253-268. [PMID: 29250804 DOI: 10.1111/nph.14953] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/12/2017] [Indexed: 05/24/2023]
Abstract
Stomatal immunity restricts bacterial entry to leaves through the recognition of microbe-associated molecular patterns (MAMPs) by pattern-recognition receptors (PRRs) and downstream abscisic acid and salicylic acid signaling. Through a reverse genetics approach, we characterized the function of the L-type lectin receptor kinase-V.2 (LecRK-V.2) and -VII.1 (LecRK-VII.1). Analyses of interactions with the PRR FLAGELLIN SENSING2 (FLS2) were performed by co-immunoprecipitation and bimolecular fluorescence complementation and whole-cell patch-clamp analyses were used to evaluate guard cell Ca2+ -permeable cation channels. The Arabidopsis thaliana LecRK-V.2 and LecRK-VII.1 and notably their kinase activities were required for full activation of stomatal immunity. Knockout lecrk-V.2 and lecrk-VII.1 mutants were hyper-susceptible to Pseudomonas syringae infection and showed defective stomatal closure in response to bacteria or to the MAMPs flagellin and EF-Tu. By contrast, Arabidopsis over-expressing LecRK-V.2 or LecRK-VII.1 demonstrated a potentiated stomatal immunity. LecRK-V.2 and LecRK-VII.1 are shown to be part of the FLS2 PRR complex. In addition, LecRK-V.2 and LecRK-VII.1 were critical for methyl jasmonate (MeJA)-mediated stomatal closure, notably for MeJA-induced activation of guard cell Ca2+ -permeable cation channels. This study highlights the role of LecRK-V.2 and LecRK-VII.1 in stomatal immunity at the FLS2 PRR complex and in MeJA-mediated stomatal closure.
Collapse
Affiliation(s)
- Shweta Yekondi
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Fu-Chun Liang
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Eiji Okuma
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Amandine Radziejwoski
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Hsien-Wei Mai
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Swadhin Swain
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Prashant Singh
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Mathieu Gauthier
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Hsiao-Chiao Chien
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Yoshiyuki Murata
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Laurent Zimmerli
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei, 106, Taiwan
| |
Collapse
|
88
|
Lin Y, Wang K, Li X, Sun C, Yin R, Wang Y, Wang Y, Zhang M. Evolution, functional differentiation, and co-expression of the RLK gene family revealed in Jilin ginseng, Panax ginseng C.A. Meyer. Mol Genet Genomics 2018; 293:845-859. [PMID: 29468273 PMCID: PMC6061065 DOI: 10.1007/s00438-018-1425-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 02/03/2018] [Indexed: 12/18/2022]
Abstract
Most genes in a genome exist in the form of a gene family; therefore, it is necessary to have knowledge of how a gene family functions to comprehensively understand organismal biology. The receptor-like kinase (RLK)-encoding gene family is one of the most important gene families in plants. It plays important roles in biotic and abiotic stress tolerances, and growth and development. However, little is known about the functional differentiation and relationships among the gene members within a gene family in plants. This study has isolated 563 RLK genes (designated as PgRLK genes) expressed in Jilin ginseng (Panax ginseng C.A. Meyer), investigated their evolution, and deciphered their functional diversification and relationships. The PgRLK gene family is highly diverged and formed into eight types. The LRR type is the earliest and most prevalent, while only the Lec type originated after P. ginseng evolved. Furthermore, although the members of the PgRLK gene family all encode receptor-like protein kinases and share conservative domains, they are functionally very diverse, participating in numerous biological processes. The expressions of different members of the PgRLK gene family are extremely variable within a tissue, at a developmental stage and in the same cultivar, but most of the genes tend to express correlatively, forming a co-expression network. These results not only provide a deeper and comprehensive understanding of the evolution, functional differentiation and correlation of a gene family in plants, but also an RLK genic resource useful for enhanced ginseng genetic improvement.
Collapse
Affiliation(s)
- Yanping Lin
- College of Life Science, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, Jilin, China.,Research Center of Ginseng Genetic Resources Development and Utilization, 2888 Xincheng Street, Changchun, 130118, Jilin, China
| | - Kangyu Wang
- College of Life Science, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, Jilin, China.,Research Center of Ginseng Genetic Resources Development and Utilization, 2888 Xincheng Street, Changchun, 130118, Jilin, China
| | - Xiangyu Li
- College of Life Science, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, Jilin, China.,Research Center of Ginseng Genetic Resources Development and Utilization, 2888 Xincheng Street, Changchun, 130118, Jilin, China
| | - Chunyu Sun
- College of Life Science, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, Jilin, China.,Research Center of Ginseng Genetic Resources Development and Utilization, 2888 Xincheng Street, Changchun, 130118, Jilin, China
| | - Rui Yin
- College of Life Science, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, Jilin, China.,Research Center of Ginseng Genetic Resources Development and Utilization, 2888 Xincheng Street, Changchun, 130118, Jilin, China
| | - Yanfang Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Yi Wang
- College of Life Science, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, Jilin, China. .,Research Center of Ginseng Genetic Resources Development and Utilization, 2888 Xincheng Street, Changchun, 130118, Jilin, China.
| | - Meiping Zhang
- College of Life Science, Jilin Agricultural University, 2888 Xincheng Street, Changchun, 130118, Jilin, China. .,Research Center of Ginseng Genetic Resources Development and Utilization, 2888 Xincheng Street, Changchun, 130118, Jilin, China.
| |
Collapse
|
89
|
Tripathi D, Tanaka K. A crosstalk between extracellular ATP and jasmonate signaling pathways for plant defense. PLANT SIGNALING & BEHAVIOR 2018; 13:e1432229. [PMID: 29370573 PMCID: PMC6103277 DOI: 10.1080/15592324.2018.1432229] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 01/22/2018] [Indexed: 05/24/2023]
Abstract
Damage-associated molecular patterns (DAMPs), such as extracellular ATP, act as danger signals in response to biotic and abiotic stresses. Extracellular ATP is perceived by a plant purinoceptor, P2 receptor kinase 1 (P2K1), inducing downstream signaling for defense responses. How ATP induces these defense responses has not been well studied. A recent study by Tripathi et al. (Plant Physiology, 176: 511-523, 2018) revealed a synergistic interaction between extracellular ATP and jasmonate (JA) signaling during plant defense responses. This signaling crosstalk requires the formation of secondary messengers, i.e., cytosolic calcium, reactive oxygen species, and nitric oxide. This finding has given a new direction towards understanding the defense signals activated by DAMPs. In this addendum, we discuss possible insights into how extracellular ATP signaling interacts with the JA signaling pathway for plant defense responses.
Collapse
Affiliation(s)
- Diwaker Tripathi
- Department of Plant Pathology, Washington State University, Pullman, WA, USA
| | - Kiwamu Tanaka
- Department of Plant Pathology, Washington State University, Pullman, WA, USA
| |
Collapse
|
90
|
Song Y, Liu L, Wang Y, Valkenburg D, Zhang X, Zhu L, Thomma BPHJ. Transfer of tomato immune receptor Ve1 confers Ave1-dependent Verticillium resistance in tobacco and cotton. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:638-648. [PMID: 28796297 PMCID: PMC5787823 DOI: 10.1111/pbi.12804] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/14/2017] [Accepted: 08/02/2017] [Indexed: 05/24/2023]
Abstract
Verticillium wilts caused by soilborne fungal species of the Verticillium genus are economically important plant diseases that affect a wide range of host plants and are notoriously difficult to combat. Perception of pathogen(-induced) ligands by plant immune receptors is a key component of plant innate immunity. In tomato, race-specific resistance to Verticillium wilt is governed by the cell surface-localized immune receptor Ve1 through recognition of the effector protein Ave1 that is secreted by race 1 strains of Verticillium spp. It was previously demonstrated that transgenic expression of tomato Ve1 in the model plant Arabidopsis thaliana leads to Verticillium wilt resistance. Here, we investigated whether tomato Ve1 can confer Verticillium resistance when expressed in the crop species tobacco (Nicotiana tabcum) and cotton (Gossypium hirsutum). We show that transgenic tobacco and cotton plants constitutively expressing tomato Ve1 exhibit enhanced resistance against Verticillium wilt in an Ave1-dependent manner. Thus, we demonstrate that the functionality of tomato Ve1 in Verticillium wilt resistance through recognition of the Verticillium effector Ave1 is retained after transfer to tobacco and cotton, implying that the Ve1-mediated immune signalling pathway is evolutionary conserved across these plant species. Moreover, our results suggest that transfer of tomato Ve1 across sexually incompatible plant species can be exploited in breeding programmes to engineer Verticillium wilt resistance.
Collapse
Affiliation(s)
- Yin Song
- Laboratory of PhytopathologyWageningen UniversityWageningenThe Netherlands
| | - Linlin Liu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Yidong Wang
- Laboratory of PhytopathologyWageningen UniversityWageningenThe Netherlands
| | | | - Xianlong Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | | |
Collapse
|
91
|
Bacete L, Mélida H, Miedes E, Molina A. Plant cell wall-mediated immunity: cell wall changes trigger disease resistance responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:614-636. [PMID: 29266460 DOI: 10.1111/tpj.13807] [Citation(s) in RCA: 282] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/07/2017] [Accepted: 12/14/2017] [Indexed: 05/18/2023]
Abstract
Plants have evolved a repertoire of monitoring systems to sense plant morphogenesis and to face environmental changes and threats caused by different attackers. These systems integrate different signals into overreaching triggering pathways which coordinate developmental and defence-associated responses. The plant cell wall, a dynamic and complex structure surrounding every plant cell, has emerged recently as an essential component of plant monitoring systems, thus expanding its function as a passive defensive barrier. Plants have a dedicated mechanism for maintaining cell wall integrity (CWI) which comprises a diverse set of plasma membrane-resident sensors and pattern recognition receptors (PRRs). The PRRs perceive plant-derived ligands, such as peptides or wall glycans, known as damage-associated molecular patterns (DAMPs). These DAMPs function as 'danger' alert signals activating DAMP-triggered immunity (DTI), which shares signalling components and responses with the immune pathways triggered by non-self microbe-associated molecular patterns that mediate disease resistance. Alteration of CWI by impairment of the expression or activity of proteins involved in cell wall biosynthesis and/or remodelling, as occurs in some plant cell wall mutants, or by wall damage due to colonization by pathogens/pests, activates specific defensive and growth responses. Our current understanding of how these alterations of CWI are perceived by the wall monitoring systems is scarce and few plant sensors/PRRs and DAMPs have been characterized. The identification of these CWI sensors and PRR-DAMP pairs will help us to understand the immune functions of the wall monitoring system, and might allow the breeding of crop varieties and the design of agricultural strategies that would enhance crop disease resistance.
Collapse
Affiliation(s)
- Laura Bacete
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, 28040, Madrid, Spain
| | - Hugo Mélida
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Eva Miedes
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, 28040, Madrid, Spain
| | - Antonio Molina
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, 28040, Madrid, Spain
| |
Collapse
|
92
|
Du Y, Overdijk EJR, Berg JA, Govers F, Bouwmeester K. Solanaceous exocyst subunits are involved in immunity to diverse plant pathogens. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:655-666. [PMID: 29329405 PMCID: PMC5853398 DOI: 10.1093/jxb/erx442] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 12/04/2017] [Indexed: 05/28/2023]
Abstract
The exocyst, a multiprotein complex consisting of eight subunits, plays an essential role in many biological processes by mediating secretion of post-Golgi-derived vesicles towards the plasma membrane. In recent years, roles for plant exocyst subunits in pathogen defence have been uncovered, largely based on studies in the model plant Arabidopsis. Only a few studies have been undertaken to assign the role of exocyst subunits in plant defence in other plants species, including crops. In this study, predicted protein sequences from exocyst subunits were retrieved by mining databases from the Solanaceous plants Nicotiana benthamiana, tomato, and potato. Subsequently, their evolutionary relationship with Arabidopsis exocyst subunits was analysed. Gene silencing in N. benthamiana showed that several exocyst subunits are required for proper plant defence against the (hemi-)biotrophic plant pathogens Phytophthora infestans and Pseudomonas syringae. In contrast, some exocyst subunits seem to act as susceptibility factors for the necrotrophic pathogen Botrytis cinerea. Furthermore, the majority of the exocyst subunits were found to be involved in callose deposition, suggesting that they play a role in basal plant defence. This study provides insight into the evolution of exocyst subunits in Solanaceous plants and is the first to show their role in immunity against multiple unrelated pathogens.
Collapse
Affiliation(s)
- Yu Du
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, The Netherlands
| | - Elysa J R Overdijk
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, The Netherlands
- Laboratory of Cell Biology, Wageningen University & Research, Wageningen, The Netherlands
| | - Jeroen A Berg
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, The Netherlands
| | - Francine Govers
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, The Netherlands
| | - Klaas Bouwmeester
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
93
|
Wang Z, Cheng J, Fan A, Zhao J, Yu Z, Li Y, Zhang H, Xiao J, Muhammad F, Wang H, Cao A, Xing L, Wang X. LecRK-V, an L-type lectin receptor kinase in Haynaldia villosa, plays positive role in resistance to wheat powdery mildew. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:50-62. [PMID: 28436098 PMCID: PMC5811777 DOI: 10.1111/pbi.12748] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/21/2017] [Accepted: 04/14/2017] [Indexed: 05/25/2023]
Abstract
Plant sense potential microbial pathogen using pattern recognition receptors (PRRs) to recognize pathogen-associated molecular patterns (PAMPs). The Lectin receptor-like kinase genes (LecRKs) are involved in various cellular processes mediated by signal transduction pathways. In the present study, an L-type lectin receptor kinase gene LecRK-V was cloned from Haynaldia villosa, a diploid wheat relative which is highly resistant to powdery mildew. The expression of LecRK-V was rapidly up-regulated by Bgt inoculation and chitin treatment. Its transcript level was higher in the leaves than in roots, culms, spikes and callus. Single-cell transient overexpression of LecRK-V led to decreased haustorium index in wheat variety Yangmai158, which is powdery mildew susceptible. Stable transformation LecRK-V into Yangmai158 significantly enhanced the powdery mildew resistance at both seedling and adult stages. At seedling stage, the transgenic line was highly resistance to 18 of the tested 23 Bgt isolates, hypersensitive responses (HR) were observed for 22 Bgt isolates, and more ROS at the Bgt infection sites was accumulated. These indicated that LecRK-V confers broad-spectrum resistance to powdery mildew, and ROS and SA pathways contribute to the enhanced powdery mildew resistance in wheat.
Collapse
Affiliation(s)
- Zongkuan Wang
- State Key Lab of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingJiangsuChina
| | - Jiangyue Cheng
- State Key Lab of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingJiangsuChina
| | - Anqi Fan
- State Key Lab of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingJiangsuChina
| | - Jia Zhao
- State Key Lab of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingJiangsuChina
| | - Zhongyu Yu
- State Key Lab of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingJiangsuChina
| | - Yingbo Li
- State Key Lab of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingJiangsuChina
| | - Heng Zhang
- State Key Lab of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingJiangsuChina
| | - Jin Xiao
- State Key Lab of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingJiangsuChina
| | - Faheem Muhammad
- State Key Lab of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingJiangsuChina
| | - Haiyan Wang
- State Key Lab of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingJiangsuChina
| | - Aizhong Cao
- State Key Lab of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingJiangsuChina
| | - Liping Xing
- State Key Lab of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingJiangsuChina
| | - Xiue Wang
- State Key Lab of Crop Genetics and Germplasm EnhancementCytogenetics InstituteNanjing Agricultural University/JCIC‐MCPNanjingJiangsuChina
| |
Collapse
|
94
|
Wang Y, Wang Y. Trick or Treat: Microbial Pathogens Evolved Apoplastic Effectors Modulating Plant Susceptibility to Infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:6-12. [PMID: 29090656 DOI: 10.1094/mpmi-07-17-0177-fi] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The apoplastic space between the plant cell wall and the plasma membrane constitutes a major battleground for plant-pathogen interactions. To survive in harsh conditions in the plant apoplast, pathogens must cope with various immune responses. During infection, plant pathogens secrete an arsenal of effector proteins into the apoplast milieu, some of which are detected by the plant surveillance system and, thus, activate plant innate immunity. Effectors that evade plant perception act in modulating plant apoplast immunity to favor successful pathogen infection. The concerted actions of apoplastic effectors often determine the outcomes of plant-pathogen interactions. In this review, we summarize current advances on the understanding of apoplastic effectors and highlight the strategies employed by pathogens to counter host apoplastic defense.
Collapse
Affiliation(s)
- Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| |
Collapse
|
95
|
Extracellular ATP elicits DORN1-mediated RBOHD phosphorylation to regulate stomatal aperture. Nat Commun 2017; 8:2265. [PMID: 29273780 PMCID: PMC5741621 DOI: 10.1038/s41467-017-02340-3] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 11/21/2017] [Indexed: 02/05/2023] Open
Abstract
In addition to acting as a cellular energy source, ATP can also act as a damage-associated molecular pattern in both animals and plants. Stomata are leaf pores that control gas exchange and, therefore, impact critical functions such as photosynthesis, drought tolerance, and also are the preferred entry point for pathogens. Here we show the addition of ATP leads to the rapid closure of leaf stomata and enhanced resistance to the bacterial pathogen Psuedomonas syringae. This response is mediated by ATP recognition by the receptor DORN1, followed by direct phosphorylation of the NADPH oxidase RBOHD, resulting in elevated production of reactive oxygen species and stomatal closure. Mutation of DORN1 phosphorylation sites on RBOHD eliminates the ability of ATP to induce stomatal closure. The data implicate purinergic signaling via DORN1 in the control of stomatal aperture with important implications for the control of plant photosynthesis, water homeostasis, pathogen resistance, and ultimately yield. Extracellular ATP acts as a damage-associated molecular pattern that triggers signaling responses to wounding and environmental stimuli in plants. Here Chen et al. show that ATP perception by DORN1 can trigger stomatal closure mediated via RBOHD phosphorylation and ROS production.
Collapse
|
96
|
Chen Y, Halterman D. Determination of virulence contribution from Phytophthora infestans effector IPI-O4 in a resistant potato host containing the RB gene. PHYSIOLOGICAL AND MOLECULAR PLANT PATHOLOGY 2017; 100:30-34. [PMID: 0 DOI: 10.1016/j.pmpp.2017.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
|
97
|
Balagué C, Gouget A, Bouchez O, Souriac C, Haget N, Boutet‐Mercey S, Govers F, Roby D, Canut H. The Arabidopsis thaliana lectin receptor kinase LecRK-I.9 is required for full resistance to Pseudomonas syringae and affects jasmonate signalling. MOLECULAR PLANT PATHOLOGY 2017; 18:937-948. [PMID: 27399963 PMCID: PMC6638305 DOI: 10.1111/mpp.12457] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 06/15/2016] [Accepted: 06/22/2016] [Indexed: 05/20/2023]
Abstract
On microbial attack, plants can detect invaders and activate plant innate immunity. For the detection of pathogen molecules or cell wall damage, plants employ receptors that trigger the activation of defence responses. Cell surface proteins that belong to large families of lectin receptor kinases are candidates to function as immune receptors. Here, the function of LecRK-I.9 (At5g60300), a legume-type lectin receptor kinase involved in cell wall-plasma membrane contacts and in extracellular ATP (eATP) perception, was studied through biochemical, gene expression and reverse genetics approaches. In Arabidopsis thaliana, LecRK-I.9 expression is rapidly, highly and locally induced on inoculation with avirulent strains of Pseudomonas syringae pv. tomato (Pst). Two allelic lecrk-I.9 knock-out mutants showed decreased resistance to Pst. Conversely, over-expression of LecRK-I.9 led to increased resistance to Pst. The analysis of defence gene expression suggests an alteration of both the salicylic acid (SA) and jasmonic acid (JA) signalling pathways. In particular, LecRK-I.9 expression during plant-pathogen interaction was dependent on COI1 (CORONATINE INSENSITIVE 1) and JAR1 (JASMONATE RESISTANT 1) components, and JA-responsive transcription factors (TFs) showed altered levels of expression in plants over-expressing LecRK-I.9. A similar misregulation of these TFs was obtained by JA treatment. This study identified LecRK-I.9 as necessary for full resistance to Pst and demonstrated its involvement in the control of defence against pathogens through a regulation of JA signalling components. The role of LecRK-I.9 is discussed with regard to the potential molecular mechanisms linking JA signalling to cell wall damage and/or eATP perception.
Collapse
Affiliation(s)
- Claudine Balagué
- CNRSLaboratoire des Interactions Plantes Microorganismes (LIPM), UMR2594Castanet‐Tolosan31326France
- INRA, Laboratoire des Interactions Plantes Microorganismes (LIPM), UMR441Castanet‐Tolosan31326France
| | - Anne Gouget
- CNRSLaboratoire des Interactions Plantes Microorganismes (LIPM), UMR2594Castanet‐Tolosan31326France
- INRA, Laboratoire des Interactions Plantes Microorganismes (LIPM), UMR441Castanet‐Tolosan31326France
- Laboratoire de Recherche en Sciences VégétalesUniversité de Toulouse, CNRS, UPS; BP 42617 AuzevilleCastanet‐Tolosan31326France
| | - Olivier Bouchez
- CNRSLaboratoire des Interactions Plantes Microorganismes (LIPM), UMR2594Castanet‐Tolosan31326France
- INRA, Laboratoire des Interactions Plantes Microorganismes (LIPM), UMR441Castanet‐Tolosan31326France
| | - Camille Souriac
- CNRSLaboratoire des Interactions Plantes Microorganismes (LIPM), UMR2594Castanet‐Tolosan31326France
- INRA, Laboratoire des Interactions Plantes Microorganismes (LIPM), UMR441Castanet‐Tolosan31326France
- Laboratoire de Recherche en Sciences VégétalesUniversité de Toulouse, CNRS, UPS; BP 42617 AuzevilleCastanet‐Tolosan31326France
| | - Nathalie Haget
- Laboratoire de Recherche en Sciences VégétalesUniversité de Toulouse, CNRS, UPS; BP 42617 AuzevilleCastanet‐Tolosan31326France
| | - Stéphanie Boutet‐Mercey
- AgroParisTechInstitut Jean‐Pierre Bourgin, Unité Mixte de Recherche 1318, Saclay Plant ScienceVersailles78000France
| | - Francine Govers
- Laboratory of PhytopathologyPlant Sciences Group, Wageningen UniversityDroevendaalsesteeg 1WageningenPB6708the Netherlands
| | - Dominique Roby
- CNRSLaboratoire des Interactions Plantes Microorganismes (LIPM), UMR2594Castanet‐Tolosan31326France
- INRA, Laboratoire des Interactions Plantes Microorganismes (LIPM), UMR441Castanet‐Tolosan31326France
| | - Hervé Canut
- Laboratoire de Recherche en Sciences VégétalesUniversité de Toulouse, CNRS, UPS; BP 42617 AuzevilleCastanet‐Tolosan31326France
| |
Collapse
|
98
|
Affiliation(s)
- Yan Wang
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Klaas Bouwmeester
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
99
|
Luo X, Xu N, Huang J, Gao F, Zou H, Boudsocq M, Coaker G, Liu J. A Lectin Receptor-Like Kinase Mediates Pattern-Triggered Salicylic Acid Signaling. PLANT PHYSIOLOGY 2017; 174:2501-2514. [PMID: 28696275 PMCID: PMC5543950 DOI: 10.1104/pp.17.00404] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/07/2017] [Indexed: 05/19/2023]
Abstract
Plant surface-localized pathogen recognition receptors (PRRs) perceive conserved microbial features, termed pathogen-associated molecular patterns (PAMPs), resulting in disease resistance. PAMP perception leads to calcium influx, MAPK activation, a burst of reactive oxygen species (ROS) mediated by RbohD, accumulation of the defense hormone salicylic acid (SA), and callose deposition. Lectin receptor-like kinases (LecRKs) belong to a specific PRR family and are important players in plant innate immunity. Here, we report that LecRK-IX.2 is a positive regulator of PRR-triggered immunity. Pathogen infection activated the transcription of Arabidopsis (Arabidopsis thaliana) LecRK-IX.2, and the LecRK-IX.2 knockout lines exhibited enhanced susceptibility to virulent Pseudomonas syringae pv tomato DC3000. In addition, LecRK-IX.2 is capable of inducing RbohD phosphorylation, likely by recruiting calcium-dependent protein kinases to trigger ROS production in Arabidopsis. Overexpression of LecRK-IX.2 resulted in elevated ROS and SA and enhanced systemic acquired resistance to P. syringae pv tomato DC3000. Our data highlight the importance of LecRKs in plant immune signaling and SA accumulation.
Collapse
Affiliation(s)
- Xuming Luo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Xu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Junkai Huang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Gao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Huasong Zou
- College of Plant Protection, Fujian Agriculture and Forest University, Fuzhou 350002, China
| | - Marie Boudsocq
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université d'Evry Val d'Essonne, Université Paris-Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, 91405 Orsay, France
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, California 95616
| | - Jun Liu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
100
|
Wang C, Zhou M, Zhang X, Yao J, Zhang Y, Mou Z. A lectin receptor kinase as a potential sensor for extracellular nicotinamide adenine dinucleotide in Arabidopsis thaliana. eLife 2017; 6:e25474. [PMID: 28722654 PMCID: PMC5560858 DOI: 10.7554/elife.25474] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 07/18/2017] [Indexed: 12/20/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) participates in intracellular and extracellular signaling events unrelated to metabolism. In animals, purinergic receptors are required for extracellular NAD+ (eNAD+) to evoke biological responses, indicating that eNAD+ may be sensed by cell-surface receptors. However, the identity of eNAD+-binding receptors still remains elusive. Here, we identify a lectin receptor kinase (LecRK), LecRK-I.8, as a potential eNAD+ receptor in Arabidopsis. The extracellular lectin domain of LecRK-I.8 binds NAD+ with a dissociation constant of 436.5 ± 104.8 nM, although much higher concentrations are needed to trigger in vivo responses. Mutations in LecRK-I.8 inhibit NAD+-induced immune responses, whereas overexpression of LecRK-I.8 enhances the Arabidopsis response to NAD+. Furthermore, LecRK-I.8 is required for basal resistance against bacterial pathogens, substantiating a role for eNAD+ in plant immunity. Our results demonstrate that lectin receptors can potentially function as eNAD+-binding receptors and provide direct evidence for eNAD+ being an endogenous signaling molecule in plants.
Collapse
Affiliation(s)
- Chenggang Wang
- Department of Microbiology and Cell Science, University of Florida, Gainesville, United States
| | - Mingqi Zhou
- Department of Microbiology and Cell Science, University of Florida, Gainesville, United States
| | - Xudong Zhang
- Department of Microbiology and Cell Science, University of Florida, Gainesville, United States
| | - Jin Yao
- Target Sciences, GlaxoSmithKline, King of Prussia, United States
| | - Yanping Zhang
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, United States
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, Gainesville, United States
| |
Collapse
|