51
|
Alkaline pH Increases Swimming Speed and Facilitates Mucus Penetration for Vibrio cholerae. J Bacteriol 2021; 203:JB.00607-20. [PMID: 33468594 PMCID: PMC8088521 DOI: 10.1128/jb.00607-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/05/2021] [Indexed: 01/05/2023] Open
Abstract
The diarrheal disease cholera is still a burden for populations in developing countries with poor sanitation. To develop effective vaccines and prevention strategies against Vibrio cholerae, we must understand the initial steps of infection leading to the colonization of the small intestine. Intestinal mucus is the first line of defense against intestinal pathogens. It acts as a physical barrier between epithelial tissues and the lumen that enteropathogens must overcome to establish a successful infection. We investigated the motile behavior of two Vibrio cholerae strains (El Tor C6706 and Classical O395) in mucus using single-cell tracking in unprocessed porcine intestinal mucus. We determined that V. cholerae can penetrate mucus using flagellar motility and that alkaline pH increases swimming speed and, consequently, improves mucus penetration. Microrheological measurements indicate that changes in pH between 6 and 8 (the physiological range for the human small intestine) had little effect on the viscoelastic properties of mucus. Finally, we determined that acidic pH promotes surface attachment by activating the mannose-sensitive hemagglutinin (MshA) pilus in V. cholerae El Tor C6706 without a measurable change in the total cellular concentration of the secondary messenger cyclic dimeric GMP (c-di-GMP). Overall, our results support the hypothesis that pH is an important factor affecting the motile behavior of V. cholerae and its ability to penetrate mucus. Therefore, changes in pH along the human small intestine may play a role in determining the preferred site for V. cholerae during infection. IMPORTANCE The diarrheal disease cholera is still a burden for populations in developing countries with poor sanitation. To develop effective vaccines and prevention strategies against Vibrio cholerae, we must understand the initial steps of infection leading to the colonization of the small intestine. To infect the host and deliver the cholera toxin, V. cholerae has to penetrate the mucus layer protecting the intestinal tissues. However, the interaction of V. cholerae with intestinal mucus has not been extensively investigated. In this report, we demonstrated using single-cell tracking that V. cholerae can penetrate intestinal mucus using flagellar motility. In addition, we observed that alkaline pH improves the ability of V. cholerae to penetrate mucus. This finding has important implications for understanding the dynamics of infection, because pH varies significantly along the small intestine, between individuals, and between species. Blocking mucus penetration by interfering with flagellar motility in V. cholerae, reinforcing the mucosa, controlling intestinal pH, or manipulating the intestinal microbiome will offer new strategies to fight cholera.
Collapse
|
52
|
Wang W, Zhang N, Du Y, Gao J, Li M, Lin L, Czajkowsky DM, Li X, Yang C, Shao Z. Three‐Dimensional Quantitative Imaging of Native Microbiota Distribution in the Gut. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202010921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Wei Wang
- Institute of Molecular Medicine (IMM) Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Renji Hospital School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
| | - Ni Zhang
- State Key Laboratory for Oncogenes & Related Genes and Bio-ID Center School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Yahui Du
- Institute of Molecular Medicine (IMM) Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Renji Hospital School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation Key Laboratory for Chemical Biology of Fujian Province State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemical Biology College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Juan Gao
- Institute of Molecular Medicine (IMM) Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Renji Hospital School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
| | - Min Li
- State Key Laboratory for Oncogenes & Related Genes and Bio-ID Center School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Liyuan Lin
- Institute of Molecular Medicine (IMM) Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Renji Hospital School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
| | - Daniel M. Czajkowsky
- State Key Laboratory for Oncogenes & Related Genes and Bio-ID Center School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Xiaowei Li
- State Key Laboratory for Oncogenes & Related Genes and Bio-ID Center School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Chaoyong Yang
- Institute of Molecular Medicine (IMM) Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Renji Hospital School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation Key Laboratory for Chemical Biology of Fujian Province State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemical Biology College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Zhifeng Shao
- State Key Laboratory for Oncogenes & Related Genes and Bio-ID Center School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
53
|
Abstract
Vibrio cholerae, a Gram-negative bacterium, is a natural inhabitant of the aqueous environment. However, once ingested, this bacterium can colonize the human host and cause the disease cholera. CsrA is a posttranscriptional global regulator in Vibrio cholerae. Although CsrA is critical for V. cholerae survival within the mammalian host, the regulatory targets of CsrA remain mostly unknown. To identify pathways controlled by CsrA, RNA-seq transcriptome analysis was carried out by comparing the wild type and the csrA mutant grown to early exponential, mid-exponential, and stationary phases of growth. This enabled us to identify the global effects of CsrA-mediated regulation throughout the V. cholerae growth cycle. We found that CsrA regulates 22% of the V. cholerae transcriptome, with significant regulation within the gene ontology (GO) processes that involve amino acid transport and metabolism, central carbon metabolism, lipid metabolism, iron uptake, and flagellum-dependent motility. Through CsrA-RNA coimmunoprecipitation experiments, we found that CsrA binds to multiple mRNAs that encode regulatory proteins. These include transcripts encoding the major sigma factors RpoS and RpoE, which may explain how CsrA regulation affects such a large proportion of the V. cholerae transcriptome. Other direct targets include flrC, encoding a central regulator in flagellar gene expression, and aphA, encoding the virulence gene transcription factor AphA. We found that CsrA binds to the aphA mRNA both in vivo and in vitro, and CsrA significantly increases AphA protein synthesis. The increase in AphA was due to increased translation, not transcription, in the presence of CsrA, consistent with CsrA binding to the aphA transcript and enhancing its translation. CsrA is required for the virulence of V. cholerae and this study illustrates the central role of CsrA in virulence gene regulation.
Collapse
|
54
|
Cho JY, Liu R, Macbeth JC, Hsiao A. The Interface of Vibrio cholerae and the Gut Microbiome. Gut Microbes 2021; 13:1937015. [PMID: 34180341 PMCID: PMC8244777 DOI: 10.1080/19490976.2021.1937015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 02/04/2023] Open
Abstract
The bacterium Vibrio cholerae is the etiologic agent of the severe human diarrheal disease cholera. The gut microbiome, or the native community of microorganisms found in the human gastrointestinal tract, is increasingly being recognized as a factor in driving susceptibility to infection, in vivo fitness, and host interactions of this pathogen. Here, we review a subset of the emerging studies in how gut microbiome structure and microbial function are able to drive V. cholerae virulence gene regulation, metabolism, and modulate host immune responses to cholera infection and vaccination. Improved mechanistic understanding of commensal-pathogen interactions offers new perspectives in the design of prophylactic and therapeutic approaches for cholera control.
Collapse
Affiliation(s)
- Jennifer Y. Cho
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
- Department of Biochemistry, University of California, Riverside, California, USA
| | - Rui Liu
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
- Graduate Program in Genetics, Genomics, and Bioinformatics, University of California, Riverside, California, USA
| | - John C. Macbeth
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Ansel Hsiao
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
| |
Collapse
|
55
|
Wang W, Zhang N, Du Y, Gao J, Li M, Lin L, Czajkowsky DM, Li X, Yang C, Shao Z. Three‐Dimensional Quantitative Imaging of Native Microbiota Distribution in the Gut. Angew Chem Int Ed Engl 2020; 60:3055-3061. [DOI: 10.1002/anie.202010921] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/13/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Wei Wang
- Institute of Molecular Medicine (IMM) Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Renji Hospital School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
| | - Ni Zhang
- State Key Laboratory for Oncogenes & Related Genes and Bio-ID Center School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Yahui Du
- Institute of Molecular Medicine (IMM) Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Renji Hospital School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation Key Laboratory for Chemical Biology of Fujian Province State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemical Biology College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Juan Gao
- Institute of Molecular Medicine (IMM) Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Renji Hospital School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
| | - Min Li
- State Key Laboratory for Oncogenes & Related Genes and Bio-ID Center School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Liyuan Lin
- Institute of Molecular Medicine (IMM) Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Renji Hospital School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
| | - Daniel M. Czajkowsky
- State Key Laboratory for Oncogenes & Related Genes and Bio-ID Center School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Xiaowei Li
- State Key Laboratory for Oncogenes & Related Genes and Bio-ID Center School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| | - Chaoyong Yang
- Institute of Molecular Medicine (IMM) Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Renji Hospital School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation Key Laboratory for Chemical Biology of Fujian Province State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemical Biology College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Zhifeng Shao
- State Key Laboratory for Oncogenes & Related Genes and Bio-ID Center School of Biomedical Engineering Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
56
|
Zhou Y, Lee ZL, Zhu J. On or Off: Life-Changing Decisions Made by Vibrio cholerae Under Stress. INFECTIOUS MICROBES & DISEASES 2020; 2:127-135. [PMID: 38630076 PMCID: PMC7769058 DOI: 10.1097/im9.0000000000000037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 11/25/2022]
Abstract
Vibrio cholerae, the causative agent of the infectious disease, cholera, is commonly found in brackish waters and infects human hosts via the fecal-oral route. V. cholerae is a master of stress resistance as V. cholerae's dynamic lifestyle across different physical environments constantly exposes it to diverse stressful circumstances. Specifically, V. cholerae has dedicated genetic regulatory networks to sense different environmental cues and respond to these signals. With frequent outbreaks costing a tremendous amount of lives and increased global water temperatures providing more suitable aquatic habitats for V. cholerae, cholera pandemics remain a probable catastrophic threat to humanity. Understanding how V. cholerae copes with different environmental stresses broadens our repertoire of measures against infectious diseases and expands our general knowledge of prokaryotic stress responses. In this review, we summarize the regulatory mechanisms of how V. cholerae fights against stresses in vivo and in vitro.
Collapse
|
57
|
Vibrio cholerae Type VI Activity Alters Motility Behavior in Mucin. J Bacteriol 2020; 202:JB.00261-20. [PMID: 32868403 DOI: 10.1128/jb.00261-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/11/2020] [Indexed: 01/16/2023] Open
Abstract
Motility is required for many bacterial pathogens to reach and colonize target sites. Vibrio cholerae traverses a thick mucus barrier coating the small intestine to reach the underlying epithelium. We screened a transposon library in motility medium containing mucin to identify factors that influence mucus transit. Lesions in structural genes of the type VI secretion system (T6SS) were among those recovered. Two-dimensional (2D) and 3D single-cell tracking was used to compare the motility behaviors of wild-type cells and a mutant that collectively lacked three essential T6SS structural genes (T6SS-). In the absence of mucin, wild-type and T6SS- cells exhibited similar speeds and run-reverse-flick (RRF) swimming patterns, in which forward-moving cells briefly backtrack before stochastically reorienting (flicking) in a new direction upon resuming forward movement. We show that mucin induced T6SS expression and activity in wild-type bacteria but significantly decreased their swimming speed and flicking, yielding curvilinear or near-surface circular traces for many cells. Conversely, mucin slowed T6SS- cells to a lesser extent, and many continued to flick and produce RRF-like traces. ΔcheY3 cells, which exclusively swim in the forward direction and thus cannot flick, also produced curvilinear traces with or without mucin present and, on occasion, near-surface circular traces in the presence of mucin. The dependence of flicking on swimming speed suggested that mucin-induced T6SS activity further decreased V. cholerae motility and thereby reduced flicking probability during reverse-to-forward transitions. We propose that this encourages cells to continue on their current trajectory rather than reorienting, which may benefit those tracking toward the epithelial surface.IMPORTANCE V. cholerae deploys an arsenal of virulence factors as it attempts to traverse a protective mucus layer and reach the epithelial surface of the distal small intestine. The T6SS used to cull bacterial competition during infection is induced by mucus. We show that this activity may serve an additional purpose by further decreasing motility in the presence of mucin, thereby reducing the probability of speed-dependent, near-perpendicular directional changes. We posit that this encourages cells to maintain course rather than change direction, which may aid those attempting to reach and colonize the epithelial surface.
Collapse
|
58
|
Humans Surviving Cholera Develop Antibodies against Vibrio cholerae O-Specific Polysaccharide That Inhibit Pathogen Motility. mBio 2020; 11:mBio.02847-20. [PMID: 33203761 PMCID: PMC7683404 DOI: 10.1128/mbio.02847-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cholera is a severe dehydrating illness of humans caused by Vibrio cholerae. V. cholerae is a highly motile bacterium that has a single flagellum covered in lipopolysaccharide (LPS) displaying O-specific polysaccharide (OSP), and V. cholerae motility correlates with its ability to cause disease. The mechanisms of protection against cholera are not well understood; however, since V. cholerae is a noninvasive intestinal pathogen, it is likely that antibodies that bind the pathogen or its products in the intestinal lumen contribute to protection from infection. Here, we demonstrate that OSP-specific antibodies isolated from humans surviving cholera in Bangladesh inhibit V. cholerae motility and are associated with protection against challenge in a motility-dependent manner. The mechanism of protection against cholera afforded by previous illness or vaccination is currently unknown. We have recently shown that antibodies targeting O-specific polysaccharide (OSP) of Vibrio cholerae correlate highly with protection against cholera. V. cholerae is highly motile and possesses a flagellum sheathed in OSP, and motility of V. cholerae correlates with virulence. Using high-speed video microscopy and building upon previous animal-related work, we demonstrate that sera, polyclonal antibody fractions, and OSP-specific monoclonal antibodies recovered from humans surviving cholera block V. cholerae motility at both subagglutinating and agglutinating concentrations. This antimotility effect is reversed by preadsorbing sera and polyclonal antibody fractions with purified OSP and is associated with OSP-specific but not flagellin-specific monoclonal antibodies. Fab fragments of OSP-specific polyclonal antibodies do not inhibit motility, suggesting a requirement for antibody-mediated cross-linking in motility inhibition. We show that OSP-specific antibodies do not directly affect V. cholerae viability, but that OSP-specific monoclonal antibody highly protects against death in the murine cholera model. We used in vivo competitive index studies to demonstrate that OSP-specific antibodies impede colonization and survival of V. cholerae in intestinal tissues and that this impact is motility dependent. Our findings suggest that the impedance of motility by antibodies targeting V. cholerae OSP contributes to protection against cholera.
Collapse
|
59
|
Biswas S, Chouhan OP, Bandekar D. Diguanylate Cyclases in Vibrio cholerae: Essential Regulators of Lifestyle Switching. Front Cell Infect Microbiol 2020; 10:582947. [PMID: 33194821 PMCID: PMC7642852 DOI: 10.3389/fcimb.2020.582947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/14/2020] [Indexed: 01/04/2023] Open
Abstract
Biofilm formation in Vibrio cholerae empowers the bacteria to lead a dual lifestyle and enhances its infectivity. While the formation and dispersal of the biofilm involves multiple components—both proteinaceous and non-proteinaceous, the key to the regulatory control lies with the ubiquitous secondary signaling molecule, cyclic-di-GMP (c-di-GMP). A number of different cellular components may interact with c-di-GMP, but the onus of synthesis of this molecule lies with a class of enzymes known as diguanylate cyclases (DGCs). DGC activity is generally associated with proteins possessing a GGDEF domain, ubiquitously present across all bacterial systems. V. cholerae is also endowed with multiple DGCs and information about some of them have been pouring in over the past decade. This review summarizes the DGCs confirmed till date in V. cholerae, and emphasizes the importance of DGCs and their product, c-di-GMP in the virulence and lifecycle of the bacteria.
Collapse
Affiliation(s)
- Sumit Biswas
- ViStA Lab, Department of Biological Sciences, Birla Institute of Technology and Sciences (BITS), Pilani-KK Birla Goa Campus, Goa, India
| | - Om Prakash Chouhan
- ViStA Lab, Department of Biological Sciences, Birla Institute of Technology and Sciences (BITS), Pilani-KK Birla Goa Campus, Goa, India
| | - Divya Bandekar
- ViStA Lab, Department of Biological Sciences, Birla Institute of Technology and Sciences (BITS), Pilani-KK Birla Goa Campus, Goa, India
| |
Collapse
|
60
|
Liang Z, Carothers K, Holmes A, Donahue D, Lee SW, Castellino FJ, Ploplis VA. Stable genetic integration of a red fluorescent protein in a virulent Group A Streptococcus strain. Access Microbiol 2020; 1:e000062. [PMID: 32974562 PMCID: PMC7472541 DOI: 10.1099/acmi.0.000062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/27/2019] [Indexed: 11/29/2022] Open
Abstract
There are several advantages, both in vitro and in vivo, in utilizing bacteria that express a fluorescent protein. Such a protein can be transiently incorporated into the bacteria or integrated within the bacterial genome. The most widely utilized fluorescent protein is green fluorescent protein (GFP), but limitations exist on its use. Additional fluorescent proteins have been designed that have many advantages over GFP and technologies for their incorporation into bacteria have been optimized. In the current study, we report the successful integration and expression of a stable fluorescent reporter, mCherry (red fluorescent protein, RFP), into the genome of a human pathogen, Group A Streptococcus pyogenes (GAS) isolate AP53(S-). RFP was targeted at the atg codon of the fcR pseudogene that is present in the mga regulon of AP53(S-). Transcription of critical bacterial genes was not functionally altered by the genomic integration of mCherry. Host virulence both in vitro (keratinocyte infection and cytotoxicity) and in vivo (skin infection) was maintained in AP53(S-)-RFP. Additionally, survival of mice infected with either AP53(S-) or AP53(S-)-RFP was similar, demonstrating that overall pathogenicity of the AP53(S-) strain was not altered by the expression of mCherry. These studies demonstrate the feasibility of integrating a fluorescent reporter into the bacterial genome of a naturally virulent isolate of Group A S. pyogenes for comparative experimental studies.
Collapse
Affiliation(s)
- Zhong Liang
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Katelyn Carothers
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Adam Holmes
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Deborah Donahue
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Shaun W Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Francis J Castellino
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA.,Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Victoria A Ploplis
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA.,Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
61
|
Ortega DR, Kjær A, Briegel A. The chemosensory systems of Vibrio cholerae. Mol Microbiol 2020; 114:367-376. [PMID: 32347610 PMCID: PMC7534058 DOI: 10.1111/mmi.14520] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 12/11/2022]
Abstract
Vibrio cholerae, the causative agent of the acute diarrheal disease cholera, is able to thrive in diverse habitats such as natural water bodies and inside human hosts. To ensure their survival, these bacteria rely on chemosensory pathways to sense and respond to changing environmental conditions. These pathways constitute a highly sophisticated cellular control system in Bacteria and Archaea. Reflecting the complex life cycle of V. cholerae, this organism has three different chemosensory pathways that together contain over 50 proteins expressed under different environmental conditions. Only one of them is known to control motility, while the function of the other two remains to be discovered. Here, we provide an overview of the chemosensory systems in V. cholerae and the advances toward understanding their structure and function.
Collapse
Affiliation(s)
- Davi R. Ortega
- Institute of BiologyLeiden UniversityLeidenThe Netherlands
- Present address:
Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCAUSA
| | - Andreas Kjær
- Department of BiochemistryUniversity of OxfordOxfordUK
| | - Ariane Briegel
- Institute of BiologyLeiden UniversityLeidenThe Netherlands
| |
Collapse
|
62
|
Abstract
Vibrio cholerae remains a challenge in the developing world and incidence of the disease it causes, cholera, is anticipated to increase with rising global temperatures and with emergent, highly infectious strains. At present, the underlying metabolic processes that support V. cholerae growth during infection are less well understood than specific virulence traits, such as production of a toxin or pilus. In this study, we determined that oxidative metabolism of host substrates such as mucin contribute significantly to V. cholerae population expansion in vivo. Identifying metabolic pathways critical for growth can provide avenues for controlling V. cholerae infection and the knowledge may be translatable to other pathogens of the gastrointestinal tract. Vibrio cholerae replicates to high cell density in the human small intestine, leading to the diarrheal disease cholera. During infection, V. cholerae senses and responds to environmental signals that govern cellular responses. Spatial localization of V. cholerae within the intestine affects nutrient availability and metabolic pathways required for replicative success. Metabolic processes used by V. cholerae to reach such high cell densities are not fully known. We sought to better define the metabolic traits that contribute to high levels of V. cholerae during infection. By disrupting the pyruvate dehydrogenase (PDH) complex and pyruvate formate-lyase (PFL), we could differentiate aerobic and anaerobic metabolic pathway involvement in V. cholerae proliferation. We demonstrate that oxidative metabolism is a key contributor to the replicative success of V. choleraein vivo using an infant mouse model in which PDH mutants were attenuated 100-fold relative to the wild type for colonization. Additionally, metabolism of host substrates, including mucin, was determined to support V. cholerae growth in vitro as a sole carbon source, primarily under aerobic growth conditions. Mucin likely contributes to population expansion during human infection as it is a ubiquitous source of carbohydrates. These data highlight oxidative metabolism as important in the intestinal environment and warrant further investigation of how oxygen and other host substrates shape the intestinal landscape that ultimately influences bacterial disease. We conclude from our results that oxidative metabolism of host substrates is a key driver of V. cholerae proliferation during infection, leading to the substantial bacterial burden exhibited in cholera patients.
Collapse
|
63
|
Vlazaki M, Huber J, Restif O. Integrating mathematical models with experimental data to investigate the within-host dynamics of bacterial infections. Pathog Dis 2020; 77:5704399. [PMID: 31942996 PMCID: PMC6986552 DOI: 10.1093/femspd/ftaa001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/13/2020] [Indexed: 12/23/2022] Open
Abstract
Bacterial infections still constitute a major cause of mortality and morbidity worldwide. The unavailability of therapeutics, antimicrobial resistance and the chronicity of infections due to incomplete clearance contribute to this phenomenon. Despite the progress in antimicrobial and vaccine development, knowledge about the effect that therapeutics have on the host–bacteria interactions remains incomplete. Insights into the characteristics of bacterial colonization and migration between tissues and the relationship between replication and host- or therapeutically induced killing can enable efficient design of treatment approaches. Recently, innovative experimental techniques have generated data enabling the qualitative characterization of aspects of bacterial dynamics. Here, we argue that mathematical modeling as an adjunct to experimental data can enrich the biological insight that these data provide. However, due to limited interdisciplinary training, efforts to combine the two remain limited. To promote this dialogue, we provide a categorization of modeling approaches highlighting their relationship to data generated by a range of experimental techniques in the area of in vivo bacterial dynamics. We outline common biological themes explored using mathematical models with case studies across all pathogen classes. Finally, this review advocates multidisciplinary integration to improve our mechanistic understanding of bacterial infections and guide the use of existing or new therapies.
Collapse
Affiliation(s)
- Myrto Vlazaki
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, CB3 0ES, Cambridge, UK
| | - John Huber
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, CB3 0ES, Cambridge, UK
| | - Olivier Restif
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, CB3 0ES, Cambridge, UK
| |
Collapse
|
64
|
Kimura S, Dedon PC, Waldor MK. Comparative tRNA sequencing and RNA mass spectrometry for surveying tRNA modifications. Nat Chem Biol 2020; 16:964-972. [PMID: 32514182 DOI: 10.1038/s41589-020-0558-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 04/22/2020] [Indexed: 12/12/2022]
Abstract
Chemical modifications of the nucleosides that comprise transfer RNAs are diverse. However, the structure, location and extent of modifications have been systematically charted in very few organisms. Here, we describe an approach in which rapid prediction of modified sites through reverse transcription-derived signatures in high-throughput transfer RNA-sequencing (tRNA-seq) data is coupled with identification of tRNA modifications through RNA mass spectrometry. Comparative tRNA-seq enabled prediction of several Vibrio cholerae modifications that are absent from Escherichia coli and also revealed the effects of various environmental conditions on V. cholerae tRNA modification. Through RNA mass spectrometric analyses, we showed that two of the V. cholerae-specific reverse transcription signatures reflected the presence of a new modification (acetylated acp3U (acacp3U)), while the other results from C-to-Ψ RNA editing, a process not described before. These findings demonstrate the utility of this approach for rapid surveillance of tRNA modification profiles and environmental control of tRNA modification.
Collapse
Affiliation(s)
- Satoshi Kimura
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA. .,Department of Microbiology, Harvard Medical School, Boston, MA, USA. .,Howard Hughes Medical Institute, Boston, MA, USA.
| | - Peter C Dedon
- Department of Biological Engineering, Massachusetts Institution of Technology, Cambridge, MA, USA.,Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, USA. .,Department of Microbiology, Harvard Medical School, Boston, MA, USA. .,Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
65
|
Gallego-Hernandez AL, DePas WH, Park JH, Teschler JK, Hartmann R, Jeckel H, Drescher K, Beyhan S, Newman DK, Yildiz FH. Upregulation of virulence genes promotes Vibrio cholerae biofilm hyperinfectivity. Proc Natl Acad Sci U S A 2020; 117:11010-11017. [PMID: 32355001 PMCID: PMC7245069 DOI: 10.1073/pnas.1916571117] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Vibrio cholerae remains a major global health threat, disproportionately impacting parts of the world without adequate infrastructure and sanitation resources. In aquatic environments, V. cholerae exists both as planktonic cells and as biofilms, which are held together by an extracellular matrix. V. cholerae biofilms have been shown to be hyperinfective, but the mechanism of hyperinfectivity is unclear. Here we show that biofilm-grown cells, irrespective of the surfaces on which they are formed, are able to markedly outcompete planktonic-grown cells in the infant mouse. Using an imaging technique designed to render intestinal tissue optically transparent and preserve the spatial integrity of infected intestines, we reveal and compare three-dimensional V. cholerae colonization patterns of planktonic-grown and biofilm-grown cells. Quantitative image analyses show that V. cholerae colonizes mainly the medial portion of the small intestine and that both the abundance and localization patterns of biofilm-grown cells differ from that of planktonic-grown cells. In vitro biofilm-grown cells activate expression of the virulence cascade, including the toxin coregulated pilus (TCP), and are able to acquire the cholera toxin-carrying CTXФ phage. Overall, virulence factor gene expression is also higher in vivo when infected with biofilm-grown cells, and modulation of their regulation is sufficient to cause the biofilm hyperinfectivity phenotype. Together, these results indicate that the altered biogeography of biofilm-grown cells and their enhanced production of virulence factors in the intestine underpin the biofilm hyperinfectivity phenotype.
Collapse
Affiliation(s)
- A L Gallego-Hernandez
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA 95064
| | - W H DePas
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - J H Park
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA 95064
| | - J K Teschler
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA 95064
| | - R Hartmann
- Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
- Department of Physics, Philipps University Marburg, D-35032 Marburg, Germany
| | - H Jeckel
- Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
- Department of Physics, Philipps University Marburg, D-35032 Marburg, Germany
| | - K Drescher
- Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
- Department of Physics, Philipps University Marburg, D-35032 Marburg, Germany
| | - S Beyhan
- Department of Infectious Diseases, J. Craig Venter Institute, La Jolla, CA 92037
| | - D K Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125.;
| | - F H Yildiz
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA 95064;
| |
Collapse
|
66
|
Swimming motility of a gut bacterial symbiont promotes resistance to intestinal expulsion and enhances inflammation. PLoS Biol 2020; 18:e3000661. [PMID: 32196484 PMCID: PMC7112236 DOI: 10.1371/journal.pbio.3000661] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/01/2020] [Accepted: 02/24/2020] [Indexed: 01/07/2023] Open
Abstract
Some of the densest microbial ecosystems in nature thrive within the intestines of humans and other animals. To protect mucosal tissues and maintain immune tolerance, animal hosts actively sequester bacteria within the intestinal lumen. In response, numerous bacterial pathogens and pathobionts have evolved strategies to subvert spatial restrictions, thereby undermining immune homeostasis. However, in many cases, it is unclear how escaping host spatial control benefits gut bacteria and how changes in intestinal biogeography are connected to inflammation. A better understanding of these processes could uncover new targets for treating microbiome-mediated inflammatory diseases. To this end, we investigated the spatial organization and dynamics of bacterial populations within the intestine using larval zebrafish and live imaging. We discovered that a proinflammatory Vibrio symbiont native to zebrafish governs its own spatial organization using swimming motility and chemotaxis. Surprisingly, we found that Vibrio’s motile behavior does not enhance its growth rate but rather promotes its persistence by enabling it to counter intestinal flow. In contrast, Vibrio mutants lacking motility traits surrender to host spatial control, becoming aggregated and entrapped within the lumen. Consequently, nonmotile and nonchemotactic mutants are susceptible to intestinal expulsion and experience large fluctuations in absolute abundance. Further, we found that motile Vibrio cells induce expression of the proinflammatory cytokine tumor necrosis factor alpha (TNFα) in gut-associated macrophages and the liver. Using inducible genetic switches, we demonstrate that swimming motility can be manipulated in situ to modulate the spatial organization, persistence, and inflammatory activity of gut bacterial populations. Together, our findings suggest that host spatial control over resident microbiota plays a broader role in regulating the abundance and persistence of gut bacteria than simply protecting mucosal tissues. Moreover, we show that intestinal flow and bacterial motility are potential targets for therapeutically managing bacterial spatial organization and inflammatory activity within the gut. The use of live imaging and bacteria engineered to carry inducible genetic switches reveals how a gut symbiont uses swimming motility to escape the host's spatial control and persist within the physically dynamic confines of the intestine.
Collapse
|
67
|
Wang W, Yang Q, Du Y, Zhou X, Du X, Wu Q, Lin L, Song Y, Li F, Yang C, Tan W. Metabolic Labeling of Peptidoglycan with NIR‐II Dye Enables In Vivo Imaging of Gut Microbiota. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201910555] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Wei Wang
- Institute of Molecular Medicine (IMM)Renji HospitalShanghai Jiao Tong University School of MedicineSchool of Chemistry and Chemical EngineeringShanghai Jiao Tong University Shanghai 200127 China
| | - Qinglai Yang
- Institute of Molecular Medicine (IMM)Renji HospitalShanghai Jiao Tong University School of MedicineSchool of Chemistry and Chemical EngineeringShanghai Jiao Tong University Shanghai 200127 China
- Research Center for Advanced Materials and BiotechnologyResearch Institute of Tsinghua University in Shenzhen Shenzhen 518057 China
| | - Yahui Du
- Collaborative Innovation Center of Chemistry for Energy MaterialsThe MOE Key Laboratory of Spectrochemical Analysis and InstrumentationState Key Laboratory of Physical Chemistry of Solid SurfacesDepartment of Chemical BiologyCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 China
| | - Xiaobo Zhou
- Department of ChemistryFudan University Shanghai 200433 China
| | - Xiaochen Du
- Institute of Molecular Medicine (IMM)Renji HospitalShanghai Jiao Tong University School of MedicineSchool of Chemistry and Chemical EngineeringShanghai Jiao Tong University Shanghai 200127 China
| | - Qiuyue Wu
- Institute of Molecular Medicine (IMM)Renji HospitalShanghai Jiao Tong University School of MedicineSchool of Chemistry and Chemical EngineeringShanghai Jiao Tong University Shanghai 200127 China
| | - Liyuan Lin
- Institute of Molecular Medicine (IMM)Renji HospitalShanghai Jiao Tong University School of MedicineSchool of Chemistry and Chemical EngineeringShanghai Jiao Tong University Shanghai 200127 China
| | - Yanling Song
- Institute of Molecular Medicine (IMM)Renji HospitalShanghai Jiao Tong University School of MedicineSchool of Chemistry and Chemical EngineeringShanghai Jiao Tong University Shanghai 200127 China
| | - Fuyou Li
- Department of ChemistryFudan University Shanghai 200433 China
| | - Chaoyong Yang
- Institute of Molecular Medicine (IMM)Renji HospitalShanghai Jiao Tong University School of MedicineSchool of Chemistry and Chemical EngineeringShanghai Jiao Tong University Shanghai 200127 China
- Collaborative Innovation Center of Chemistry for Energy MaterialsThe MOE Key Laboratory of Spectrochemical Analysis and InstrumentationState Key Laboratory of Physical Chemistry of Solid SurfacesDepartment of Chemical BiologyCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 China
| | - Weihong Tan
- Institute of Molecular Medicine (IMM)Renji HospitalShanghai Jiao Tong University School of MedicineSchool of Chemistry and Chemical EngineeringShanghai Jiao Tong University Shanghai 200127 China
- Molecular Science and Biomedicine Laboratory (MBL)State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringHunan University Changsha 410082 China
| |
Collapse
|
68
|
Wang W, Yang Q, Du Y, Zhou X, Du X, Wu Q, Lin L, Song Y, Li F, Yang C, Tan W. Metabolic Labeling of Peptidoglycan with NIR-II Dye Enables In Vivo Imaging of Gut Microbiota. Angew Chem Int Ed Engl 2020; 59:2628-2633. [PMID: 31793153 DOI: 10.1002/anie.201910555] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 11/09/2019] [Indexed: 12/23/2022]
Abstract
Deepening our understanding of mammalian gut microbiota has been greatly hampered by the lack of a facile, real-time, and in vivo bacterial imaging method. To address this unmet need in microbial visualization, we herein report the development of a second near-infrared (NIR-II)-based method for in vivo imaging of gut bacteria. Using d-propargylglycine in gavage and then click reaction with an azide-containing NIR-II dye, gut microbiota of a donor mouse was strongly labeled with NIR-II fluorescence on their peptidoglycan. The bacteria could be readily visualized in recipient mouse gut with high spatial resolution and deep tissue penetration under NIR irradiation. The NIR-II-based metabolic labeling strategy reported herein, provides, to the best of our knowledge, the first protocol for facile in vivo visualization of gut microbiota within deep tissues, and offers an instrumental tool for deciphering the complex biology of these gut "dark matters".
Collapse
Affiliation(s)
- Wei Wang
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Qinglai Yang
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China.,Research Center for Advanced Materials and Biotechnology, Research Institute of Tsinghua University in Shenzhen, Shenzhen, 518057, China
| | - Yahui Du
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiaobo Zhou
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Xiaochen Du
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Qiuyue Wu
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Liyuan Lin
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yanling Song
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Fuyou Li
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Chaoyong Yang
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China.,Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Weihong Tan
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China.,Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
69
|
Sun F, Wang C, Chen L, Weng G, Zheng Z. The intestinal bacterial community of healthy and diseased animals and its association with the aquaculture environment. Appl Microbiol Biotechnol 2019; 104:775-783. [PMID: 31781816 DOI: 10.1007/s00253-019-10236-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/24/2019] [Accepted: 11/04/2019] [Indexed: 11/24/2022]
Abstract
Although increasing levels of attention have been targeted towards aquaculture-associated bacteria, the bacterial community of animal intestines and its relationship with the aquaculture environment need to be further investigated. In this study, we used high-throughput sequencing to analyze the bacterial community of pond water, sediment, and the intestines of diseased and healthy animals. Our data showed that Proteobacteria, Firmicutes, Cyanobacteria, and Bacteroidetes were the dominant taxa of bacteria across all samples and accounted for more than 90% of the total sequence. Difference analysis and Venn diagrams showed that most of the intestinal bacterial OTUs (operational taxonomic units) of diseased and healthy animals were the same as those of sediment and water, indicating that the aquaculture environment was the main source of intestinal bacteria. Compared with healthy animals, a considerable reduction of OTUs was evident in diseased animals. Welch's t test showed that the dominant bacterial taxa in sediment, water, and animal intestine were significantly different (p < 0.05) and each had its own unique dominant microorganisms. In addition, differences between the intestinal bacteria of healthy and diseased animals were represented by potential probiotics and pathogens, such as Bacillus, Vibrio, Oceanobacillus, and Lactococcus. Principal component analysis (PcoA) showed that a similar environment shaped a similar microbial structure. There was a large difference in the spectrum of intestinal bacteria in diseased animals; furthermore, the spectrum of intestinal bacteria in diseased animals was very different from the environment than in healthy animals. This study provides a theoretical basis for a relationship between the intestinal bacteria of healthy and diseased animals and the environment and provides guidance for environmental regulation and disease prevention in aquaculture areas.
Collapse
Affiliation(s)
- Fulin Sun
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510000, China. .,Daya Bay Marine Biology Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Shenzhen, 518000, China.
| | - Chunzhong Wang
- Putian Institute of Aquaculture Science of Fujian Province, Putian, 351100, China.
| | - Lijuan Chen
- Putian Tian Ran Xing Agriculture Development Co. Ltd., Putian, 351100, Fujian, China
| | - Guozhu Weng
- Putian Customs Comprehensive Technical Service Center, Putian, 351100, China
| | - Zhipeng Zheng
- Putian Tian Ran Xing Agriculture Development Co. Ltd., Putian, 351100, Fujian, China
| |
Collapse
|
70
|
Abstract
Vibrio cholerae is a noninvasive pathogen that colonizes the small intestine and produces cholera toxin, causing severe secretory diarrhea. Cholera results in long lasting immunity, and recent studies have improved our understanding of the antigenic repertoire of V. cholerae Interactions between the host, V. cholerae, and the intestinal microbiome are now recognized as factors which impact susceptibility to cholera and the ability to mount a successful immune response to vaccination. Here, we review recent data and corresponding models to describe immune responses to V. cholerae infection and explain how the host microbiome may impact the pathogenesis of V. cholerae In the ongoing battle against cholera, the intestinal microbiome represents a frontier for new approaches to intervention and prevention.
Collapse
|
71
|
Narendrakumar L, Theresa M, Krishnankutty Chandrika S, Thomas S. Tryptanthrin, a potential biofilm inhibitor against toxigenic Vibrio cholerae, modulating the global quorum sensing regulator, LuxO. BIOFOULING 2019; 35:1093-1103. [PMID: 31825257 DOI: 10.1080/08927014.2019.1696315] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 11/12/2019] [Accepted: 11/16/2019] [Indexed: 06/10/2023]
Abstract
Cholera caused by the Gram-negative bacterium Vibrio cholerae still remains a major health burden in developing countries due to its high transmissibility and multidrug resistance. Alternative strategies are in quest to curtail the disease focusing on antivirulent approaches, such as biofilm inhibition, which make bacteria more susceptible to antibiotic therapies. The biofilm state is important for V. cholerae pathogenesis and its persistence in the environment. In the present study, tryptanthrin, a phytochemical, has been identified as possessing strong anti-biofilm activity at sub MIC (2 µg ml-1) against V. cholerae. LuxO was identified as the putative target of tryptanthrin by molecular docking and real time analysis. The phytochemical was identified as safe and possessed synergistic action with ciprofloxacin, a commonly used quinolone antibiotic to treat cholera. Collectively, the study establishes the first report on the anti-biofilm property of tryptanthrin by targeting LuxO, which could serve as a potential antivirulent therapy to combat V. cholerae infections.
Collapse
Affiliation(s)
- Lekshmi Narendrakumar
- Cholera and Biofilm Research Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
- Department of Biotechnology, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Mary Theresa
- Cholera and Biofilm Research Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | | | - Sabu Thomas
- Cholera and Biofilm Research Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
72
|
Herzog R, Peschek N, Fröhlich KS, Schumacher K, Papenfort K. Three autoinducer molecules act in concert to control virulence gene expression in Vibrio cholerae. Nucleic Acids Res 2019; 47:3171-3183. [PMID: 30649554 PMCID: PMC6451090 DOI: 10.1093/nar/gky1320] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/21/2018] [Accepted: 12/28/2018] [Indexed: 12/24/2022] Open
Abstract
Bacteria use quorum sensing to monitor cell density and coordinate group behaviours. In Vibrio cholerae, the causative agent of the diarrheal disease cholera, quorum sensing is connected to virulence gene expression via the two autoinducer molecules, AI-2 and CAI-1. Both autoinducers share one signal transduction pathway to control the production of AphA, a key transcriptional activator of biofilm formation and virulence genes. In this study, we demonstrate that the recently identified autoinducer, DPO, also controls AphA production in V. cholerae. DPO, functioning through the transcription factor VqmA and the VqmR small RNA, reduces AphA levels at the post-transcriptional level and consequently inhibits virulence gene expression. VqmR-mediated repression of AphA provides an important link between the AI-2/CAI-1 and DPO-dependent quorum sensing pathways in V. cholerae. Transcriptome analyses comparing the effect of single autoinducers versus autoinducer combinations show that quorum sensing controls the expression of ∼400 genes in V. cholerae and that all three autoinducers are required for a full quorum sensing response. Together, our data provide a global view on autoinducer interplay in V. cholerae and highlight the importance of RNA-based gene control for collective functions in this major human pathogen.
Collapse
Affiliation(s)
- Roman Herzog
- Faculty of Biology I, Department of Microbiology, Ludwig-Maximilians-University of Munich, 82152 Martinsried, Germany
| | - Nikolai Peschek
- Faculty of Biology I, Department of Microbiology, Ludwig-Maximilians-University of Munich, 82152 Martinsried, Germany.,Munich Center for Integrated Protein Science (CIPSM), Germany
| | - Kathrin S Fröhlich
- Faculty of Biology I, Department of Microbiology, Ludwig-Maximilians-University of Munich, 82152 Martinsried, Germany
| | - Kilian Schumacher
- Faculty of Biology I, Department of Microbiology, Ludwig-Maximilians-University of Munich, 82152 Martinsried, Germany
| | - Kai Papenfort
- Faculty of Biology I, Department of Microbiology, Ludwig-Maximilians-University of Munich, 82152 Martinsried, Germany.,Munich Center for Integrated Protein Science (CIPSM), Germany
| |
Collapse
|
73
|
Hubbard TP, Billings G, Dörr T, Sit B, Warr AR, Kuehl CJ, Kim M, Delgado F, Mekalanos JJ, Lewnard JA, Waldor MK. A live vaccine rapidly protects against cholera in an infant rabbit model. Sci Transl Med 2019; 10:10/445/eaap8423. [PMID: 29899024 DOI: 10.1126/scitranslmed.aap8423] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 03/26/2018] [Indexed: 12/17/2022]
Abstract
Outbreaks of cholera, a rapidly fatal diarrheal disease, often spread explosively. The efficacy of reactive vaccination campaigns-deploying Vibrio cholerae vaccines during epidemics-is partially limited by the time required for vaccine recipients to develop adaptive immunity. We created HaitiV, a live attenuated cholera vaccine candidate, by deleting diarrheagenic factors from a recent clinical isolate of V. cholerae and incorporating safeguards against vaccine reversion. We demonstrate that administration of HaitiV 24 hours before lethal challenge with wild-type V. cholerae reduced intestinal colonization by the wild-type strain, slowed disease progression, and reduced mortality in an infant rabbit model of cholera. HaitiV-mediated protection required viable vaccine, and rapid protection kinetics are not consistent with development of adaptive immunity. These features suggest that HaitiV mediates probiotic-like protection from cholera, a mechanism that is not known to be elicited by traditional vaccines. Mathematical modeling indicates that an intervention that works at the speed of HaitiV-mediated protection could improve the public health impact of reactive vaccination.
Collapse
Affiliation(s)
- Troy P Hubbard
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.,Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Gabriel Billings
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.,Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Tobias Dörr
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.,Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Brandon Sit
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.,Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Alyson R Warr
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.,Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Carole J Kuehl
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.,Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Minsik Kim
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.,Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Fernanda Delgado
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - John J Mekalanos
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Joseph A Lewnard
- Center for Communicable Disease Dynamics, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Matthew K Waldor
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA. .,Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA.,Howard Hughes Medical Institute, Boston, MA 02115, USA.,Department of Immunology and Infectious Disease, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
74
|
Abstract
Vibrio cholerae is a prototypical noninvasive mucosal pathogen, yet infection generates long-lasting protection against subsequent disease. Vibriocidal antibody responses are an imperfect but established correlate of protection against cholera following both infection and vaccination. However, vibriocidal antibody responses are likely a surrogate marker for longer-lasting functional immune responses that target the O-polysaccharide antigen at the mucosal surface. While the current bivalent inactivated oral whole cell vaccine is being increasingly used to prevent cholera in areas where the disease is a threat, the most significant limitation of this vaccine is it offers relatively limited direct protection in young children. Future strategies for cholera vaccination include the development of cholera conjugate vaccines and the further development of live attenuated vaccines. Ultimately, the goal of a multivalent vaccine for cholera and other childhood enteric infections that can be incorporated into a standard immunization schedule should be realized.
Collapse
Affiliation(s)
- Jason B Harris
- Division of Pediatric Global Health, Massachusetts General Hospital, Boston, Massachusetts.,Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
75
|
Yang W, Briegel A. Diversity of Bacterial Chemosensory Arrays. Trends Microbiol 2019; 28:68-80. [PMID: 31473052 DOI: 10.1016/j.tim.2019.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/15/2019] [Accepted: 08/01/2019] [Indexed: 02/01/2023]
Abstract
Chemotaxis is crucial for the survival of bacteria, and the signaling systems associated with it exhibit a high level of evolutionary conservation. The architecture of the chemosensory array and the signal transduction mechanisms have been extensively studied in Escherichia coli. More recent studies have revealed a vast diversity of the chemosensory system among bacteria. Unlike E. coli, some bacteria assemble more than one chemosensory array and respond to a broader spectrum of environmental and internal stimuli. These chemosensory arrays exhibit a great variability in terms of protein composition, cellular localization, and functional variability. Here, we present recent findings that emphasize the extent of diversity in chemosensory arrays and highlight the importance of studying chemosensory arrays in bacteria other than the common model organisms.
Collapse
Affiliation(s)
- Wen Yang
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Ariane Briegel
- Institute of Biology, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
76
|
Taylor JA, Sichel SR, Salama NR. Bent Bacteria: A Comparison of Cell Shape Mechanisms in Proteobacteria. Annu Rev Microbiol 2019; 73:457-480. [PMID: 31206344 DOI: 10.1146/annurev-micro-020518-115919] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Helical cell shape appears throughout the bacterial phylogenetic tree. Recent exciting work characterizing cell shape mutants in a number of curved and helical Proteobacteria is beginning to suggest possible mechanisms and provide tools to assess functional significance. We focus here on Caulobacter crescentus, Vibrio cholerae, Helicobacter pylori, and Campylobacter jejuni, organisms from three classes of Proteobacteria that live in diverse environments, from freshwater and saltwater to distinct compartments within the gastrointestinal tract of humans and birds. Comparisons among these bacteria reveal common themes as well as unique solutions to the task of maintaining cell curvature. While motility appears to be influenced in all these bacteria when cell shape is perturbed, consequences on niche colonization are diverse, suggesting the need to consider additional selective pressures.
Collapse
Affiliation(s)
- Jennifer A Taylor
- Department of Microbiology, University of Washington, Seattle, Washington 98195, USA; .,Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Sophie R Sichel
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.,Molecular Medicine and Mechanisms of Disease Graduate Program, University of Washington, Seattle, Washington 98195, USA
| | - Nina R Salama
- Department of Microbiology, University of Washington, Seattle, Washington 98195, USA; .,Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| |
Collapse
|
77
|
Fung C, Tan S, Nakajima M, Skoog EC, Camarillo-Guerrero LF, Klein JA, Lawley TD, Solnick JV, Fukami T, Amieva MR. High-resolution mapping reveals that microniches in the gastric glands control Helicobacter pylori colonization of the stomach. PLoS Biol 2019; 17:e3000231. [PMID: 31048876 PMCID: PMC6497225 DOI: 10.1371/journal.pbio.3000231] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/29/2019] [Indexed: 12/22/2022] Open
Abstract
Lifelong infection of the gastric mucosa by Helicobacter pylori can lead to peptic ulcers and gastric cancer. However, how the bacteria maintain chronic colonization in the face of constant mucus and epithelial cell turnover in the stomach is unclear. Here, we present a new model of how H. pylori establish and persist in stomach, which involves the colonization of a specialized microenvironment, or microniche, deep in the gastric glands. Using quantitative three-dimensional (3D) confocal microscopy and passive CLARITY technique (PACT), which renders tissues optically transparent, we analyzed intact stomachs from mice infected with a mixture of isogenic, fluorescent H. pylori strains with unprecedented spatial resolution. We discovered that a small number of bacterial founders initially establish colonies deep in the gastric glands and then expand to colonize adjacent glands, forming clonal population islands that persist over time. Gland-associated populations do not intermix with free-swimming bacteria in the surface mucus, and they compete for space and prevent newcomers from establishing in the stomach. Furthermore, bacterial mutants deficient in gland colonization are outcompeted by wild-type (WT) bacteria. Finally, we found that host factors such as the age at infection and T-cell responses control bacterial density within the glands. Collectively, our results demonstrate that microniches in the gastric glands house a persistent H. pylori reservoir, which we propose replenishes the more transient bacterial populations in the superficial mucosa.
Collapse
Affiliation(s)
- Connie Fung
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Mifuyu Nakajima
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Emma C Skoog
- Center for Comparative Medicine, University of California, Davis School of Medicine, Davis, California, United States of America
| | | | - Jessica A Klein
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Trevor D Lawley
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Jay V Solnick
- Center for Comparative Medicine, University of California, Davis School of Medicine, Davis, California, United States of America
- Department of Medicine, University of California, Davis School of Medicine, Davis, California, United States of America
- Department of Microbiology and Immunology, University of California, Davis School of Medicine, Davis, California, United States of America
| | - Tadashi Fukami
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Manuel R Amieva
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
78
|
Altinoglu I, Merrifield CJ, Yamaichi Y. Single molecule super-resolution imaging of bacterial cell pole proteins with high-throughput quantitative analysis pipeline. Sci Rep 2019; 9:6680. [PMID: 31040310 PMCID: PMC6491441 DOI: 10.1038/s41598-019-43051-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 04/05/2019] [Indexed: 12/17/2022] Open
Abstract
Bacteria show sophisticated control of their cellular organization, and many bacteria deploy different polar landmark proteins to organize the cell pole. Super-resolution microscopy, such as Photo-Activated Localization Microscopy (PALM), provides the nanoscale localization of molecules and is crucial for better understanding of organization and dynamics in single-molecule. However, analytical tools are not fully available yet, in particular for bacterial cell biology. For example, quantitative and statistical analyses of subcellular localization with multiple cells from multiple fields of view are lacking. Furthermore, brightfield images are not sufficient to get accurate contours of small and low contrast bacterial cells, compared to subpixel presentation of target molecules. Here we describe a novel analytic tool for PALM which integrates precisely drawn cell outlines, of either inner membrane or periplasm, labelled by PALM-compatible fluorescent protein fusions, with molecule data for >10,000 molecules from >100 cells by fitting each cell into an oval arc. In the vibrioid bacterium Vibrio cholerae, the polar anchor HubP constitutes a big polar complex which includes multiple proteins involved in chemotaxis and the flagellum. With this pipeline, HubP is shown to be slightly skewed towards the inner curvature side of the cell, while its interaction partners showed rather loose polar localization.
Collapse
Affiliation(s)
- Ipek Altinoglu
- Department of Genome Biology, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Univ. Paris Sud, Gif sur Yvette, France.,Graduate School of Structure and Dynamics of Living Systems, Univ. Paris-Sud, Orsay, France
| | - Christien J Merrifield
- Department of Cell Biology, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Univ. Paris Sud, Gif sur Yvette, France
| | - Yoshiharu Yamaichi
- Department of Genome Biology, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Univ. Paris Sud, Gif sur Yvette, France.
| |
Collapse
|
79
|
Gorelik O, Levy N, Shaulov L, Yegodayev K, Meijler MM, Sal-Man N. Vibrio cholerae autoinducer-1 enhances the virulence of enteropathogenic Escherichia coli. Sci Rep 2019; 9:4122. [PMID: 30858454 PMCID: PMC6411865 DOI: 10.1038/s41598-019-40859-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 02/25/2019] [Indexed: 12/19/2022] Open
Abstract
Diarrhoea is the second leading cause of death in children under the age of five. The bacterial species, Vibrio cholerae and enteropathogenic Escherichia coli (EPEC), are among the main pathogens that cause diarrhoeal diseases, which are associated with high mortality rates. These two pathogens have a common infection site-the small intestine. While it is known that both pathogens utilize quorum sensing (QS) to determine their population size, it is not yet clear whether potential bacterial competitors can also use this information. In this study, we examined the ability of EPEC to determine V. cholerae population sizes and to modulate its own virulence mechanisms accordingly. We found that EPEC virulence is enhanced in response to elevated concentrations of cholera autoinducer-1 (CAI-1), even though neither a CAI-1 synthase nor CAI-1 receptors have been reported in E. coli. This CAI-1 sensing and virulence upregulation response may facilitate the ability of EPEC to coordinate successful colonization of a host co-infected with V. cholerae. To the best of our knowledge, this is the first observed example of 'eavesdropping' between two bacterial pathogens that is based on interspecies sensing of a QS molecule.
Collapse
Affiliation(s)
- Orna Gorelik
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Niva Levy
- The Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Lihi Shaulov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ksenia Yegodayev
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Michael M Meijler
- The Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Neta Sal-Man
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
80
|
Yang JS, An SJ, Jang MS, Song M, Han SH. IgM specific to lipopolysaccharide of Vibrio cholerae is a surrogate antibody isotype responsible for serum vibriocidal activity. PLoS One 2019; 14:e0213507. [PMID: 30845262 PMCID: PMC6405115 DOI: 10.1371/journal.pone.0213507] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 02/24/2019] [Indexed: 12/21/2022] Open
Abstract
Serum vibriocidal antibody assays have long been used to evaluate the immunogenicity of cholera vaccines formulated with killed whole-cell Vibrio cholerae. However, the antibody isotypes responsible for the serum vibriocidal activity are not fully characterized. In this study, we examined 20 clinical serum samples obtained from human subjects who had been vaccinated with a killed, whole-cell cholera vaccine and a positive control, human convalescent sera with high vibriocidal activity, to determine which isotype antibody is associated with the vibriocidal activity. Antibody isotypes from pooled convalescent sera were fractionated by size-exclusion column chromatography, and the major vibriocidal activity was detected in the IgM fraction. Depletion of IgM antibodies in the convalescent sera produced a significant (P<0.05) decrease in vibriocidal activity (16-fold decrease), whereas only a small change was observed with depletion of IgG or IgA. In addition, anti-LPS IgM antibody showed the highest correlation with vibriocidal activity (Spearman correlation coefficient r = 0.846) among antibody isotypes against heat-killed V. cholerae, lipopolysaccharide (LPS), or major outer membrane protein (Omp U), while total IgG, IgA, or IgM antibody level was not correlated with vibriocidal activity in the 20 human clinical serum samples. Furthermore, human convalescent sera significantly (P<0.001) inhibited the attachment of V. cholerae to HT-29, a human intestinal epithelial cell in vitro. Interestingly, IgM-depleted convalescent sera could not effectively inhibit bacterial adherence compared with non-depleted sera (P<0.05). Finally, bacterial adhesion was significantly inhibited by sera with high vibriocidal titer compared with low-titer sera (P = 0.014). Collectively, we demonstrated that anti-V. cholerae LPS IgM is highly correlated with serum vibriocidal activity and it could be a surrogate antibody isotype representing protective antibodies against V. cholerae.
Collapse
Affiliation(s)
- Jae Seung Yang
- Clinical Research Laboratory, International Vaccine Institute, Seoul, Republic of Korea
| | - So Jung An
- Vaccine Process Development, International Vaccine Institute, Seoul, Republic of Korea
| | - Mi Seon Jang
- Clinical Research Laboratory, International Vaccine Institute, Seoul, Republic of Korea
| | - Manki Song
- Clinical Research Laboratory, International Vaccine Institute, Seoul, Republic of Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
81
|
Preska Steinberg A, Datta SS, Naragon T, Rolando JC, Bogatyrev SR, Ismagilov RF. High-molecular-weight polymers from dietary fiber drive aggregation of particulates in the murine small intestine. eLife 2019; 8:40387. [PMID: 30666958 PMCID: PMC6342521 DOI: 10.7554/elife.40387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 12/28/2018] [Indexed: 12/28/2022] Open
Abstract
The lumen of the small intestine (SI) is filled with particulates: microbes, therapeutic particles, and food granules. The structure of this particulate suspension could impact uptake of drugs and nutrients and the function of microorganisms; however, little is understood about how this suspension is re-structured as it transits the gut. Here, we demonstrate that particles spontaneously aggregate in SI luminal fluid ex vivo. We find that mucins and immunoglobulins are not required for aggregation. Instead, aggregation can be controlled using polymers from dietary fiber in a manner that is qualitatively consistent with polymer-induced depletion interactions, which do not require specific chemical interactions. Furthermore, we find that aggregation is tunable; by feeding mice dietary fibers of different molecular weights, we can control aggregation in SI luminal fluid. This work suggests that the molecular weight and concentration of dietary polymers play an underappreciated role in shaping the physicochemical environment of the gut. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Asher Preska Steinberg
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States
| | - Sujit S Datta
- Department of Chemical and Biological Engineering, Princeton University, Princeton, United States
| | - Thomas Naragon
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States
| | - Justin C Rolando
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States
| | - Said R Bogatyrev
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Rustem F Ismagilov
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|
82
|
The RNA degradosome promotes tRNA quality control through clearance of hypomodified tRNA. Proc Natl Acad Sci U S A 2019; 116:1394-1403. [PMID: 30622183 DOI: 10.1073/pnas.1814130116] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The factors and mechanisms that govern tRNA stability in bacteria are not well understood. Here, we investigated the influence of posttranscriptional modification of bacterial tRNAs (tRNA modification) on tRNA stability. We focused on ThiI-generated 4-thiouridine (s4U), a modification found in bacterial and archaeal tRNAs. Comprehensive quantification of Vibrio cholerae tRNAs revealed that the abundance of some tRNAs is decreased in a ΔthiI strain in a stationary phase-specific manner. Multiple mechanisms, including rapid degradation of a subset of hypomodified tRNAs, account for the reduced abundance of tRNAs in the absence of thiI Through transposon insertion sequencing, we identified additional tRNA modifications that promote tRNA stability and bacterial viability. Genetic analysis of suppressor mutants as well as biochemical analyses revealed that rapid degradation of hypomodified tRNA is mediated by the RNA degradosome. Elongation factor Tu seems to compete with the RNA degradosome, protecting aminoacyl tRNAs from decay. Together, our observations describe a previously unrecognized bacterial tRNA quality control system in which hypomodification sensitizes tRNAs to decay mediated by the RNA degradosome.
Collapse
|
83
|
Wasilko NP, Larios-Valencia J, Steingard CH, Nunez BM, Verma SC, Miyashiro T. Sulfur availability for Vibrio fischeri growth during symbiosis establishment depends on biogeography within the squid light organ. Mol Microbiol 2019; 111:621-636. [PMID: 30506600 DOI: 10.1111/mmi.14177] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2018] [Indexed: 12/23/2022]
Abstract
The fitness of host-associated microbes depends on their ability to access nutrients in vivo. Identifying these mechanisms is significant for understanding how microbes have evolved to fill specific ecological niches within a host. Vibrio fischeri is a bioluminescent bacterium that colonizes and proliferates within the light organ of the Hawaiian bobtail squid, which provides an opportunity to study how bacteria grow in vivo. Here, the transcription factor CysB is shown to be necessary for V. fischeri both to grow on several sulfur sources in vitro and to establish symbiosis with juvenile squid. CysB is also found to regulate several genes involved in sulfate assimilation and to contribute to the growth of V. fischeri on cystine, which is the oxidized form of cysteine. A mutant that grows on cystine but not sulfate could establish symbiosis, suggesting that V. fischeri acquires nutrients related to this compound within the host. Finally, CysB-regulated genes are shown to be differentially expressed among the V. fischeri populations occupying the various colonization sites found within the light organ. Together, these results suggest the biogeography of V. fischeri populations within the squid light organ impacts the physiology of this symbiotic bacterium in vivo through CysB-dependent gene regulation.
Collapse
Affiliation(s)
- Nathan P Wasilko
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, 410 South Frear Laboratory, University Park, PA, 16802, USA
| | - Jessie Larios-Valencia
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, 410 South Frear Laboratory, University Park, PA, 16802, USA
| | - Caroline H Steingard
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, 410 South Frear Laboratory, University Park, PA, 16802, USA
| | - Briana M Nunez
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, 410 South Frear Laboratory, University Park, PA, 16802, USA
| | - Subhash C Verma
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, 410 South Frear Laboratory, University Park, PA, 16802, USA
| | - Tim Miyashiro
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, 410 South Frear Laboratory, University Park, PA, 16802, USA
| |
Collapse
|
84
|
Jemielita M, Wingreen NS, Bassler BL. Quorum sensing controls Vibrio cholerae multicellular aggregate formation. eLife 2018; 7:42057. [PMID: 30582742 PMCID: PMC6351105 DOI: 10.7554/elife.42057] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 12/23/2018] [Indexed: 12/15/2022] Open
Abstract
Bacteria communicate and collectively regulate gene expression using a process called quorum sensing (QS). QS relies on group-wide responses to signal molecules called autoinducers. Here, we show that QS activates a new program of multicellularity in Vibrio cholerae. This program, which we term aggregation, is distinct from the canonical surface-biofilm formation program, which QS represses. Aggregation is induced by autoinducers, occurs rapidly in cell suspensions, and does not require cell division, features strikingly dissimilar from those characteristic of V. cholerae biofilm formation. Extracellular DNA limits aggregate size, but is not sufficient to drive aggregation. A mutagenesis screen identifies genes required for aggregate formation, revealing proteins involved in V. cholerae intestinal colonization, stress response, and a protein that distinguishes the current V. cholerae pandemic strain from earlier pandemic strains. We suggest that QS-controlled aggregate formation is important for V. cholerae to successfully transit between the marine niche and the human host.
Collapse
Affiliation(s)
- Matthew Jemielita
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Ned S Wingreen
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Bonnie L Bassler
- Department of Molecular Biology, Princeton University, Princeton, United States.,Howard Hughes Medical Institute, Chevy Chase, United States
| |
Collapse
|
85
|
Yang C, Ottemann KM. Control of bacterial colonization in the glands and crypts. Curr Opin Microbiol 2018; 47:38-44. [PMID: 30502720 DOI: 10.1016/j.mib.2018.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/07/2018] [Accepted: 11/14/2018] [Indexed: 12/31/2022]
Abstract
The epithelial cell layer of the major organs of the mammalian gastrointestinal (GI) tract is extensively invaginated into thousands of gland and crypt structures. These are lined by distinct sets of epithelial cells and may comprise discrete niches. The host maximizes the distance between the epithelial cell layer and GI-inhabiting microbes to limit inflammation, and these strategies also likely keep bacteria out of the glands and crypts. We discuss here the specific host processes that have been shown to restrict bacterial presence in the glands and crypts, specifically the immune system, acid, mucin, oxygen, and reactive oxygen species. Not surprisingly, microbes have evolved sophisticated strategies to overcome these host factors and reside close to the epithelium in the glands and crypts. Bacterial properties important for gland and crypt colonization include bacterial immunomodulatory molecules, chemotaxis, and the use of certain metabolites. Overall, these as-yet limited studies suggest there are specific host and bacterial properties that control gland and crypt colonization, contributing to the overall microbial spatial organization of the GI tract. However, there remains much to be discovered in this area.
Collapse
Affiliation(s)
- Christina Yang
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA 95064 USA
| | - Karen M Ottemann
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA 95064 USA.
| |
Collapse
|
86
|
Matilla MA, Krell T. The effect of bacterial chemotaxis on host infection and pathogenicity. FEMS Microbiol Rev 2018; 42:4563582. [PMID: 29069367 DOI: 10.1093/femsre/fux052] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/19/2017] [Indexed: 12/26/2022] Open
Abstract
Chemotaxis enables microorganisms to move according to chemical gradients. Although this process requires substantial cellular energy, it also affords key physiological benefits, including enhanced access to growth substrates. Another important implication of chemotaxis is that it also plays an important role in infection and disease, as chemotaxis signalling pathways are broadly distributed across a variety of pathogenic bacteria. Furthermore, current research indicates that chemotaxis is essential for the initial stages of infection in different human, animal and plant pathogens. This review focuses on recent findings that have identified specific bacterial chemoreceptors and corresponding chemoeffectors associated with pathogenicity. Pathogenicity-related chemoeffectors are either host and niche-specific signals or intermediates of the host general metabolism. Plant pathogens were found to contain an elevated number of chemotaxis signalling genes and functional studies demonstrate that these genes are critical for their ability to enter the host. The expanding body of knowledge of the mechanisms underlying chemotaxis in pathogens provides a foundation for the development of new therapeutic strategies capable of blocking infection and preventing disease by interfering with chemotactic signalling pathways.
Collapse
Affiliation(s)
- Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain
| |
Collapse
|
87
|
Peterson KM, Gellings PS. Multiple intraintestinal signals coordinate the regulation of Vibrio cholerae virulence determinants. Pathog Dis 2018; 76:4791527. [PMID: 29315383 DOI: 10.1093/femspd/ftx126] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/27/2017] [Indexed: 12/17/2022] Open
Abstract
Vibrio cholerae is a Gram-negative motile bacterium capable of causing fatal pandemic disease in humans via oral ingestion of contaminated water or food. Within the human intestine, the motile vibrios must evade the innate host defense mechanisms, penetrate the mucus layer covering the small intestine, adhere to and multiply on the surface of the microvilli and cause disease via the action of cholera toxin. The explosive diarrhea associated with V. cholerae intestinal colonization leads to dissemination of the vibrios back into the environment to complete this phase of the life cycle. The host phase of the vibrio life cycle is made possible via the concerted action of a signaling cascade that controls the synthesis of V. cholerae colonization determinants. These virulence proteins are coordinately synthesized in response to specific host signals that are still largely undefined. A more complete understanding of the molecular events involved in the V. cholerae recognition of intraintestinal signals and the subsequent transcriptional response will provide important information regarding how pathogenic bacteria establish infection and provide novel methods for treating and/or preventing bacterial infections such as Asiatic cholera. This review will summarize what is currently known in regard to host intraintestinal signals that inform the complex ToxR regulatory cascade in order to coordinate in a spatial and temporal fashion virulence protein synthesis within the human small intestine.
Collapse
Affiliation(s)
- Kenneth M Peterson
- Department of Microbiology and Immunology, Louisiana State University Health Science Center, Shreveport, LA 71130, USA
| | - Patrick S Gellings
- Department of Microbiology and Immunology, Louisiana State University Health Science Center, Shreveport, LA 71130, USA
| |
Collapse
|
88
|
Reddi G, Pruss K, Cottingham KL, Taylor RK, Almagro-Moreno S. Catabolism of mucus components influences motility of Vibrio cholerae in the presence of environmental reservoirs. PLoS One 2018; 13:e0201383. [PMID: 30048543 PMCID: PMC6062102 DOI: 10.1371/journal.pone.0201383] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/13/2018] [Indexed: 11/25/2022] Open
Abstract
Vibrio cholerae O1, the etiological agent of cholera, is a natural inhabitant of aquatic ecosystems. Motility is a critical element for the colonization of both the human host and its environmental reservoirs. In this study, we investigated the molecular mechanisms underlying the chemotactic response of V. cholerae in the presence of some of its environmental reservoirs. We found that, from the several oligosaccharides found in mucin, two specifically triggered motility of V. cholerae O1: N-acetylneuraminic acid (Neu5Ac) and N-acetylglucosamine (GlcNAc). We determined that the compounds need to be internally catabolized in order to trigger motility of V. cholerae. Interestingly, the catabolism of Neu5Ac and GlcNAc converges and the production of one molecule common to both pathways, glucosamine-6-phosphate (GlcN-6P), is essential to induce motility in the presence of both compounds. Mutants unable to produce GlcN-6P show greatly reduced motility towards mucin. Furthermore, we determined that the production of GlcN-6P is necessary to induce motility of V. cholerae in the presence of some of its environmental reservoirs such as crustaceans or cyanobacteria, revealing a molecular link between the two distinct modes of the complex life cycle of V. cholerae. Finally, cross-species comparisons revealed varied chemotactic responses towards mucin, GlcNAc, and Neu5Ac for environmental (non-pathogenic) strains of V. cholerae, clinical and environmental isolates of the human pathogens Vibrio vulnificus and Vibrio parahaemolyticus, and fish and squid isolates of the symbiotic bacterium Vibrio fischeri. The data presented here suggest nuance in convergent strategies across species of the same bacterial family for motility towards suitable substrates for colonization.
Collapse
Affiliation(s)
- Geethika Reddi
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States of America
| | - Kali Pruss
- Department of Microbiology & Immunology, Stanford School of Medicine, Stanford University, Palo Alto, California, United States of America
| | - Kathryn L. Cottingham
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Ronald K. Taylor
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Salvador Almagro-Moreno
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States of America
- National Center for Integrated Coastal Research, University of Central Florida, Orlando, Florida, United States of America
| |
Collapse
|
89
|
Abstract
Vibrio is a genus of ubiquitous bacteria found in a wide variety of aquatic and marine habitats; of the >100 described Vibrio spp., ~12 cause infections in humans. Vibrio cholerae can cause cholera, a severe diarrhoeal disease that can be quickly fatal if untreated and is typically transmitted via contaminated water and person-to-person contact. Non-cholera Vibrio spp. (for example, Vibrio parahaemolyticus, Vibrio alginolyticus and Vibrio vulnificus) cause vibriosis - infections normally acquired through exposure to sea water or through consumption of raw or undercooked contaminated seafood. Non-cholera bacteria can lead to several clinical manifestations, most commonly mild, self-limiting gastroenteritis, with the exception of V. vulnificus, an opportunistic pathogen with a high mortality that causes wound infections that can rapidly lead to septicaemia. Treatment for Vibrio spp. infection largely depends on the causative pathogen: for example, rehydration therapy for V. cholerae infection and debridement of infected tissues for V. vulnificus-associated wound infections, with antibiotic therapy for severe cholera and systemic infections. Although cholera is preventable and effective oral cholera vaccines are available, outbreaks can be triggered by natural or man-made events that contaminate drinking water or compromise access to safe water and sanitation. The incidence of vibriosis is rising, perhaps owing in part to the spread of Vibrio spp. favoured by climate change and rising sea water temperature.
Collapse
|
90
|
Cyclic di-GMP Positively Regulates DNA Repair in Vibrio cholerae. J Bacteriol 2018; 200:JB.00005-18. [PMID: 29610212 DOI: 10.1128/jb.00005-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/27/2018] [Indexed: 12/21/2022] Open
Abstract
In Vibrio cholerae, high intracellular cyclic di-GMP (c-di-GMP) concentration are associated with a biofilm lifestyle, while low intracellular c-di-GMP concentrations are associated with a motile lifestyle. c-di-GMP also regulates other behaviors, such as acetoin production and type II secretion; however, the extent of phenotypes regulated by c-di-GMP is not fully understood. We recently determined that the sequence upstream of the DNA repair gene encoding 3-methyladenine glycosylase (tag) was positively induced by c-di-GMP, suggesting that this signaling system might impact DNA repair pathways. We identified a DNA region upstream of tag that is required for transcriptional induction by c-di-GMP. We further showed that c-di-GMP induction of tag expression was dependent on the c-di-GMP-dependent biofilm regulators VpsT and VpsR. In vitro binding assays and heterologous host expression studies show that VpsT acts directly at the tag promoter in response to c-di-GMP to induce tag expression. Last, we determined that strains with high c-di-GMP concentrations are more tolerant of the DNA-damaging agent methyl methanesulfonate. Our results indicate that the regulatory network of c-di-GMP in V. cholerae extends beyond biofilm formation and motility to regulate DNA repair through the VpsR/VpsT c-di-GMP-dependent cascade.IMPORTANCEVibrio cholerae is a prominent human pathogen that is currently causing a pandemic outbreak in Haiti, Yemen, and Ethiopia. The second messenger molecule cyclic di-GMP (c-di-GMP) mediates the transitions in V. cholerae between a sessile biofilm-forming state and a motile lifestyle, both of which are important during V. cholerae environmental persistence and human infections. Here, we report that in V. cholerae c-di-GMP also controls DNA repair. We elucidate the regulatory pathway by which c-di-GMP increases DNA repair, allowing this bacterium to tolerate high concentrations of mutagens at high intracellular levels of c-di-GMP. Our work suggests that DNA repair and biofilm formation may be linked in V. cholerae.
Collapse
|
91
|
Mao N, Cubillos-Ruiz A, Cameron DE, Collins JJ. Probiotic strains detect and suppress cholera in mice. Sci Transl Med 2018; 10:eaao2586. [PMID: 29899022 PMCID: PMC7821980 DOI: 10.1126/scitranslmed.aao2586] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 01/22/2018] [Accepted: 05/08/2018] [Indexed: 12/18/2022]
Abstract
Microbiota-modulating interventions are an emerging strategy to promote gastrointestinal homeostasis. Yet, their use in the detection, prevention, and treatment of acute infections remains underexplored. We report the basis of a probiotic-based strategy to promote colonization resistance and point-of-need diagnosis of cholera, an acute diarrheal disease caused by the pathogen Vibrio cholerae Oral administration of Lactococcus lactis, a common dietary fermentative bacterium, reduced intestinal V. cholerae burden and improved survival in infected infant mice through the production of lactic acid. Furthermore, we engineered an L. lactis strain that specifically detects quorum-sensing signals of V. cholerae in the gut and triggers expression of an enzymatic reporter that is readily detected in fecal samples. We postulate that preventive dietary interventions with fermented foods containing natural and engineered L. lactis strains may hinder cholera progression and improve disease surveillance in populations at risk of cholera outbreaks.
Collapse
Affiliation(s)
- Ning Mao
- Institute for Medical Engineering and Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology (MIT), Cambridge, MA 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Andres Cubillos-Ruiz
- Institute for Medical Engineering and Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology (MIT), Cambridge, MA 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - D. Ewen Cameron
- Institute for Medical Engineering and Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology (MIT), Cambridge, MA 02138, USA
| | - James J. Collins
- Institute for Medical Engineering and Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology (MIT), Cambridge, MA 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
92
|
Deschaine BM, Heysel AR, Lenhart BA, Murphy HA. Biofilm formation and toxin production provide a fitness advantage in mixed colonies of environmental yeast isolates. Ecol Evol 2018; 8:5541-5550. [PMID: 29938072 PMCID: PMC6010761 DOI: 10.1002/ece3.4082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 01/01/2023] Open
Abstract
Microbes can engage in social interactions ranging from cooperation to warfare. Biofilms are structured, cooperative microbial communities. Like all cooperative communities, they are susceptible to invasion by selfish individuals who benefit without contributing. However, biofilms are pervasive and ancient, representing the first fossilized life. One hypothesis for the stability of biofilms is spatial structure: Segregated patches of related cooperative cells are able to outcompete unrelated cells. These dynamics have been explored computationally and in bacteria; however, their relevance to eukaryotic microbes remains an open question. The complexity of eukaryotic cell signaling and communication suggests the possibility of different social dynamics. Using the tractable model yeast, Saccharomyces cerevisiae, which can form biofilms, we investigate the interactions of environmental isolates with different social phenotypes. We find that biofilm strains spatially exclude nonbiofilm strains and that biofilm spatial structure confers a consistent and robust fitness advantage in direct competition. Furthermore, biofilms may protect against killer toxin, a warfare phenotype. During biofilm formation, cells are susceptible to toxin from nearby competitors; however, increased spatial use may provide an escape from toxin producers. Our results suggest that yeast biofilms represent a competitive strategy and that principles elucidated for the evolution and stability of bacterial biofilms may apply to more complex eukaryotes.
Collapse
Affiliation(s)
| | - Angela R. Heysel
- Department of BiologyThe College of William and MaryWilliamsburgVirginia
| | - B. Adam Lenhart
- Department of BiologyThe College of William and MaryWilliamsburgVirginia
| | - Helen A. Murphy
- Department of BiologyThe College of William and MaryWilliamsburgVirginia
| |
Collapse
|
93
|
Valiente E, Davies C, Mills DC, Getino M, Ritchie JM, Wren BW. Vibrio cholerae accessory colonisation factor AcfC: a chemotactic protein with a role in hyperinfectivity. Sci Rep 2018; 8:8390. [PMID: 29849063 PMCID: PMC5976639 DOI: 10.1038/s41598-018-26570-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 05/10/2018] [Indexed: 12/25/2022] Open
Abstract
Vibrio cholerae O1 El Tor is an aquatic Gram-negative bacterium responsible for the current seventh pandemic of the diarrheal disease, cholera. A previous whole-genome analysis on V. cholerae O1 El Tor strains from the 2010 epidemic in Pakistan showed that all strains contained the V. cholerae pathogenicity island-1 and the accessory colonisation gene acfC (VC_0841). Here we show that acfC possess an open reading frame of 770 bp encoding a protein with a predicted size of 28 kDa, which shares high amino acid similarity with two adhesion proteins found in other enteropathogens, including Paa in serotype O45 porcine enteropathogenic Escherichia coli and PEB3 in Campylobacter jejuni. Using a defined acfC deletion mutant, we studied the specific role of AcfC in V. cholerae O1 El Tor environmental survival, colonisation and virulence in two infection model systems (Galleria mellonella and infant rabbits). Our results indicate that AcfC might be a periplasmic sulfate-binding protein that affects chemotaxis towards mucin and bacterial infectivity in the infant rabbit model of cholera. Overall, our findings suggest that AcfC contributes to the chemotactic response of WT V. cholerae and plays an important role in defining the overall distribution of the organism within the intestine.
Collapse
Affiliation(s)
- Esmeralda Valiente
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, WC1E 7HT, London, UK
| | - Cadi Davies
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, WC1E 7HT, London, UK
| | - Dominic C Mills
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, WC1E 7HT, London, UK.,Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Olin Hall, Ithaca, NY, USA
| | - Maria Getino
- Department of Microbial Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Jennifer M Ritchie
- Department of Microbial Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Brendan W Wren
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, WC1E 7HT, London, UK.
| |
Collapse
|
94
|
Kaur S, Sharma P, Kalia N, Singh J, Kaur S. Anti-biofilm Properties of the Fecal Probiotic Lactobacilli Against Vibrio spp. Front Cell Infect Microbiol 2018; 8:120. [PMID: 29740541 PMCID: PMC5928150 DOI: 10.3389/fcimb.2018.00120] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 04/03/2018] [Indexed: 12/21/2022] Open
Abstract
Diarrheal disease caused by Vibrio cholerae is endemic in developing countries including India and is associated with high rate of mortality especially in children. V. cholerae is known to form biofilms on the gut epithelium, and the biofilms once formed are resistant to the action of antibiotics. Therefore agents that prevent the biofilm formation and disperse the preformed biofilms are associated with therapeutic benefits. The use of antibiotics for the treatment of cholera is associated with side effects such as gut dysbiosis due to depletion of gut microflora, and the increasing problem of antibiotic resistance. Thus search for safe alternative therapeutic agents is warranted. Herein, we screened the lactobacilli spp. isolated from the fecal samples of healthy children for their abilities to prevent biofilm formation and to disperse the preformed biofilms of V. cholerae and V. parahaemolyticus by using an in vitro assay. The results showed that the culture supernatant (CS) of all the seven isolates of Lactobacillus spp. used in the study inhibited the biofilm formation of V. cholerae by more than 90%. Neutralization of pH of CS completely abrogated their antimicrobial activities against V. cholera, but had negligible effects on their biofilm inhibitory potential. Further, CS of all the lactobacilli isolates caused the dispersion of preformed V. cholerae biofilms in the range 62–85%; however, pH neutralization of CS reduced the biofilm dispersal potential of the 4 out of 7 isolates by 19–57%. Furthermore, the studies showed that CS of none of the lactobacilii isolates had antimicrobial activity against V. parahaemolyticus, but 5 out of 7 isolates inhibited the formation of its biofilm in the range 62–82%. However, none of the CS dispersed the preformed biofilms of V. parahaemolyticus. The ability of CS to inhibit the adherence of Vibrio spp. to the epithelial cell line was also determined. Thus, we conclude that the biofilm dispersive action of CS of lactobacilli is strain-specific and pH-dependent. As Vibrio is known to form biofilms in the intestinal niche having physiological pH in the range 6–7, the probiotic strains that have dispersive action at high pH may have better therapeutic potential.
Collapse
Affiliation(s)
- Sumanpreet Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, India
| | - Preeti Sharma
- Department of Microbiology, Guru Nanak Dev University, Amritsar, India
| | - Namarta Kalia
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, India
| | - Jatinder Singh
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, India
| | - Sukhraj Kaur
- Department of Microbiology, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
95
|
Chemotaxis Allows Bacteria To Overcome Host-Generated Reactive Oxygen Species That Constrain Gland Colonization. Infect Immun 2018; 86:IAI.00878-17. [PMID: 29507083 DOI: 10.1128/iai.00878-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/01/2018] [Indexed: 12/11/2022] Open
Abstract
The epithelial layer of the gastrointestinal tract contains invaginations, called glands or crypts, which are colonized by symbiotic and pathogenic microorganisms and may function as designated niches for certain species. Factors that control gland colonization are poorly understood, but bacterial chemotaxis aids occupation of these sites. We report here that a Helicobacter pylori cytoplasmic chemoreceptor, TlpD, is required for gland colonization in the stomach. tlpD mutants demonstrate gland colonization defects characterized by a reduction in the percentage of glands colonized but not in the number of bacteria per gland. Consistent with TlpD's reported role in reactive oxygen species (ROS) avoidance, tlpD mutants showed hallmarks of exposure to high ROS. To assess the role of host-generated ROS in TlpD-dependent gland colonization, we utilized mice that lack either the ability to generate epithelial hydrogen peroxide or immune cell superoxide. tlpD gland colonization defects were rescued to wild-type H. pylori levels in both of these mutants. These results suggest that multiple types of innate immune-generated ROS production limit gland colonization and that bacteria have evolved specific mechanisms to sense and direct their motility in response to this signal and thus spread throughout tissue.
Collapse
|
96
|
Martínez-García R, Nadell CD, Hartmann R, Drescher K, Bonachela JA. Cell adhesion and fluid flow jointly initiate genotype spatial distribution in biofilms. PLoS Comput Biol 2018; 14:e1006094. [PMID: 29659578 PMCID: PMC5901778 DOI: 10.1371/journal.pcbi.1006094] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/16/2018] [Indexed: 11/18/2022] Open
Abstract
Biofilms are microbial collectives that occupy a diverse array of surfaces. It is well known that the function and evolution of biofilms are strongly influenced by the spatial arrangement of different strains and species within them, but how spatiotemporal distributions of different genotypes in biofilm populations originate is still underexplored. Here, we study the origins of biofilm genetic structure by combining model development, numerical simulations, and microfluidic experiments using the human pathogen Vibrio cholerae. Using spatial correlation functions to quantify the differences between emergent cell lineage segregation patterns, we find that strong adhesion often, but not always, maximizes the size of clonal cell clusters on flat surfaces. Counterintuitively, our model predicts that, under some conditions, investing in adhesion can reduce rather than increase clonal group size. Our results emphasize that a complex interaction between fluid flow and cell adhesiveness can underlie emergent patterns of biofilm genetic structure. This structure, in turn, has an outsize influence on how biofilm-dwelling populations function and evolve.
Collapse
Affiliation(s)
- Ricardo Martínez-García
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Carey D. Nadell
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Raimo Hartmann
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Knut Drescher
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Department of Physics, Phillips-Universität Marburg, Marburg, Germany
| | - Juan A. Bonachela
- Marine Population Modeling Group, Department of Mathematics and Statistics, University of Strathclyde, Glasgow, Scotland, United Kingdom
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, New Jersey, United States of America
| |
Collapse
|
97
|
Affiliation(s)
- Yi-Ming Shi
- Department of Biosciences, Merck-endowed Chair for Molecular Biotechnology &Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität Frankfurt, Frankfurt am Main, Germany
| | - Helge B Bode
- Department of Biosciences, Merck-endowed Chair for Molecular Biotechnology &Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
98
|
Ringgaard S, Yang W, Alvarado A, Schirner K, Briegel A. Chemotaxis arrays in Vibrio species and their intracellular positioning by the ParC/ParP system. J Bacteriol 2018; 200:e00793-17. [PMID: 29531180 PMCID: PMC6040185 DOI: 10.1128/jb.00793-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Most motile bacteria are able to bias their movement towards more favorable environments or to escape from obnoxious substances by a process called chemotaxis. Chemotaxis depends on a chemosensory system that is able to sense specific environmental signals and generate a behavioral response. Typically, the signal is transmitted to the bacterial flagellum, ultimately regulating the swimming behavior of individual cells. Chemotaxis is mediated by proteins that assemble into large, highly ordered arrays. It is imperative for successful chemotactic behavior and cellular competitiveness that chemosensory arrays form and localize properly within the cell. Here we review how chemotaxis arrays form and localize in Vibrio cholerae and Vibrio parahaemolyticus We focus on how the ParC/ParP-system mediates cell cycle-dependent polar localization of chemotaxis arrays and thus ensures proper cell pole development and array inheritance upon cell division.
Collapse
Affiliation(s)
- Simon Ringgaard
- Departmet of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
| | - Wen Yang
- Institute of Biology, Leiden University, Leiden, Netherlands
| | - Alejandra Alvarado
- Departmet of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | | | - Ariane Briegel
- Institute of Biology, Leiden University, Leiden, Netherlands
| |
Collapse
|
99
|
Fu Y, Ho BT, Mekalanos JJ. Tracking Vibrio cholerae Cell-Cell Interactions during Infection Reveals Bacterial Population Dynamics within Intestinal Microenvironments. Cell Host Microbe 2018; 23:274-281.e2. [PMID: 29398650 PMCID: PMC6031135 DOI: 10.1016/j.chom.2017.12.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/09/2017] [Accepted: 12/13/2017] [Indexed: 01/20/2023]
Abstract
Vibrio cholerae is the causative agent of the diarrheal disease cholera. Although many V. cholerae virulence factors have been studied, the role of interbacterial interactions within the host gut and their influence on colonization are poorly understood. Here, we utilized the conjugative properties of a Vibrio-specific plasmid to serve as a quantifiable genetic marker for direct contact among V. cholerae cells in the infant rabbit model for cholera. In conjunction, we also quantified contact-dependent type 6 secretion system (T6SS)-mediated killing of co-infecting V. cholerae strains. Tracking these interbacterial interactions revealed that most contact-dependent cell-cell interactions among V. cholerae occur in specific intestinal microenvironments, notably the distal small intestine and cecum, and that the T6SS confers a competitive advantage within the middle small intestine. These results support a model for V. cholerae gut colonization, which includes microenvironments where critical microbial-host and bacterial-bacterial interactions occur to facilitate colonization by this pathogen.
Collapse
Affiliation(s)
- Yang Fu
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Brian T Ho
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - John J Mekalanos
- Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| |
Collapse
|
100
|
Lock JY, Carlson TL, Carrier RL. Mucus models to evaluate the diffusion of drugs and particles. Adv Drug Deliv Rev 2018; 124:34-49. [PMID: 29117512 DOI: 10.1016/j.addr.2017.11.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/12/2017] [Accepted: 11/01/2017] [Indexed: 12/22/2022]
Abstract
Mucus is a complex hydrogel that acts as a natural barrier to drug delivery at different mucosal surfaces including the respiratory, gastrointestinal, and vaginal tracts. To elucidate the role mucus plays in drug delivery, different in vitro, in vivo, and ex vivo mucus models and techniques have been utilized. Drug and drug carrier diffusion can be studied using various techniques in either isolated mucus gels or mucus present on cell cultures and tissues. The species, age, and potential disease state of the animal from which mucus is derived can all impact mucus composition and structure, and therefore impact drug and drug carrier diffusion. This review provides an overview of the techniques used to characterize drug and drug carrier diffusion, and discusses the advantages and disadvantages of the different models available to highlight the information they can afford.
Collapse
|