51
|
|
52
|
Schwinghammer C, Koopmann J, Chitadze G, Karawajew L, Brüggemann M, Eckert C. Droplet Digital PCR: A New View on Minimal Residual Disease Quantification in Acute Lymphoblastic Leukemia. J Mol Diagn 2022; 24:856-866. [PMID: 35691569 DOI: 10.1016/j.jmoldx.2022.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 03/05/2022] [Accepted: 04/06/2022] [Indexed: 11/27/2022] Open
Abstract
Real-time quantitative PCR (qPCR) using immunoglobulin/T-cell receptor gene rearrangements has been used as the gold standard for minimal residual disease (MRD) monitoring in acute lymphoblastic leukemia (ALL) for >20 years. Recently, new PCR-based technologies have emerged, such as droplet digital PCR (ddPCR), which could offer several methodologic advances for MRD monitoring. In the current work, qPCR and ddPCR were compared in an unbiased blinded prospective study (n = 88 measurements) and in a retrospective study with selected critical low positive samples (n = 65 measurements). The former included flow cytometry (Flow; n = 31 measurements) as a third MRD detection method. Published guidelines (qPCR) and the latest, revised evaluation criteria (ie, ddPCR, Flow) have been applied for data analysis. The prospective study shows that ddPCR outperforms qPCR with a significantly better quantitative limit of detection and sensitivity. The number of critical MRD estimates below quantitative limit was reduced by sixfold and by threefold in the retrospective and prospective cohorts, respectively. Furthermore, the concordance of quantitative values between ddPCR and Flow was higher than between ddPCR and qPCR, probably because ddPCR and Flow are absolute quantification methods independent of the diagnostic sample, unlike qPCR. In summary, our data highlight the advantages of ddPCR as a more precise and sensitive technology that could be used to refine response monitoring in ALL.
Collapse
Affiliation(s)
- Claudia Schwinghammer
- Department of Paediatric Oncology/Haematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Johannes Koopmann
- Department of Haematology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Guranda Chitadze
- Department of Haematology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Leonid Karawajew
- Department of Paediatric Oncology/Haematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Monika Brüggemann
- Department of Haematology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Cornelia Eckert
- Department of Paediatric Oncology/Haematology, Charité-Universitätsmedizin Berlin, Berlin, Germany; German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
53
|
Xiao M, Tian F, Liu X, Zhou Q, Pan J, Luo Z, Yang M, Yi C. Virus Detection: From State-of-the-Art Laboratories to Smartphone-Based Point-of-Care Testing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105904. [PMID: 35393791 PMCID: PMC9110880 DOI: 10.1002/advs.202105904] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/27/2022] [Indexed: 05/07/2023]
Abstract
Infectious virus outbreaks pose a significant challenge to public healthcare systems. Early and accurate virus diagnosis is critical to prevent the spread of the virus, especially when no specific vaccine or effective medicine is available. In clinics, the most commonly used viral detection methods are molecular techniques that involve the measurement of nucleic acids or proteins biomarkers. However, most clinic-based methods require complex infrastructure and expensive equipment, which are not suitable for low-resource settings. Over the past years, smartphone-based point-of-care testing (POCT) has rapidly emerged as a potential alternative to laboratory-based clinical diagnosis. This review summarizes the latest development of virus detection. First, laboratory-based and POCT-based viral diagnostic techniques are compared, both of which rely on immunosensing and nucleic acid detection. Then, various smartphone-based POCT diagnostic techniques, including optical biosensors, electrochemical biosensors, and other types of biosensors are discussed. Moreover, this review covers the development of smartphone-based POCT diagnostics for various viruses including COVID-19, Ebola, influenza, Zika, HIV, et al. Finally, the prospects and challenges of smartphone-based POCT diagnostics are discussed. It is believed that this review will aid researchers better understand the current challenges and prospects for achieving the ultimate goal of containing disease-causing viruses worldwide.
Collapse
Affiliation(s)
- Meng Xiao
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversityShenzhen518107P. R. China
| | - Feng Tian
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHunghomHong Kong999077P. R. China
| | - Xin Liu
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversityShenzhen518107P. R. China
| | - Qiaoqiao Zhou
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversityShenzhen518107P. R. China
| | - Jiangfei Pan
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversityShenzhen518107P. R. China
| | - Zhaofan Luo
- Department of Clinical LaboratoryThe Seventh Affiliated Hospital of Sun Yat‐Sen UniversityShenzhen518107P. R. China
| | - Mo Yang
- Department of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHunghomHong Kong999077P. R. China
| | - Changqing Yi
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversityShenzhen518107P. R. China
| |
Collapse
|
54
|
Digital Droplet-PCR for Quantification of Viable Campylobacter jejuni and Campylobacter coli in Chicken Meat Rinses. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The EU commission established Regulation (2017/1495) in 2017 to reduce Campylobacter on chicken skin and to decrease the number of human cases of campylobacteriosis attributable to the consumption of poultry meat. A Process Hygiene Criterion based on colony-forming unit data was set to a maximum of 1000 CFU Campylobacter spp. per gram chicken neck skin at slaughterhouses. Confronted with stressors, including cold, oxidative stress or antibiotic treatment, live cells may enter into a viable but non-cultivable state (VBNC) and lose the ability to grow, in reference to the plate count ISO 10272-2:2017 method, but still possess the potential to recover and cause infections under favorable conditions. In this study, a droplet digital PCR combined with the intercalating dye propidium monoazide (PMA) was established for quantification of C. coli and C. jejuni in chicken meat rinses. The PMA was used to inactivate DNA from dead cells in this technique. This method was successfully validated against the reference method according to ISO 16140-2:2016 for accuracy and relative trueness. Additionally, it presented a 100% selectivity for Campylobacter jejuni and C. coli. Moreover, the technical measurement uncertainty was determined according to ISO 19036:2019, and the applicability of ddPCR for quantifying C. coli and C. jejuni in chicken meat rinses was investigated on naturally contaminated samples from slaughterhouses and supermarkets. Results obtained from this study demonstrated a strong correlation to qPCR as well as the classical microbiological reference method.
Collapse
|
55
|
Lambrescu I, Popa A, Manole E, Ceafalan LC, Gaina G. Application of Droplet Digital PCR Technology in Muscular Dystrophies Research. Int J Mol Sci 2022; 23:ijms23094802. [PMID: 35563191 PMCID: PMC9099497 DOI: 10.3390/ijms23094802] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 11/25/2022] Open
Abstract
Although they are considered rare disorders, muscular dystrophies have a strong impact on people’s health. Increased disease severity with age, frequently accompanied by the loss of ability to walk in some people, and the lack of treatment, have directed the researchers towards the development of more effective therapeutic strategies aimed to improve the quality of life and life expectancy, slow down the progression, and delay the onset or convert a severe phenotype into a milder one. Improved understanding of the complex pathology of these diseases together with the tremendous advances in molecular biology technologies has led to personalized therapeutic procedures. Different approaches that are currently under extensive investigation require more efficient, sensitive, and less invasive methods. Due to its remarkable analytical sensitivity, droplet digital PCR has become a promising tool for accurate measurement of biomarkers that monitor disease progression and quantification of various therapeutic efficiency and can be considered a tool for non-invasive prenatal diagnosis and newborn screening. Here, we summarize the recent applications of droplet digital PCR in muscular dystrophy research and discuss the factors that should be considered to get the best performance with this technology.
Collapse
Affiliation(s)
- Ioana Lambrescu
- Laboratory of Cell Biology, Neuroscience and Experimental Myology, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (I.L.); (A.P.); (E.M.); (L.C.C.)
- Department of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Alexandra Popa
- Laboratory of Cell Biology, Neuroscience and Experimental Myology, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (I.L.); (A.P.); (E.M.); (L.C.C.)
- Department of Animal Production and Public Health, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 050097 Bucharest, Romania
| | - Emilia Manole
- Laboratory of Cell Biology, Neuroscience and Experimental Myology, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (I.L.); (A.P.); (E.M.); (L.C.C.)
- Pathology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Laura Cristina Ceafalan
- Laboratory of Cell Biology, Neuroscience and Experimental Myology, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (I.L.); (A.P.); (E.M.); (L.C.C.)
- Department of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Gisela Gaina
- Laboratory of Cell Biology, Neuroscience and Experimental Myology, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (I.L.); (A.P.); (E.M.); (L.C.C.)
- Correspondence: ; Tel.: +40-21-319-2732
| |
Collapse
|
56
|
Tjensvoll K, Lapin M, Gilje B, Garresori H, Oltedal S, Forthun RB, Molven A, Rozenholc Y, Nordgård O. Novel hybridization- and tag-based error-corrected method for sensitive ctDNA mutation detection using ion semiconductor sequencing. Sci Rep 2022; 12:5816. [PMID: 35388068 PMCID: PMC8986848 DOI: 10.1038/s41598-022-09698-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/24/2022] [Indexed: 11/08/2022] Open
Abstract
Circulating tumor DNA (ctDNA) analysis has emerged as a clinically useful tool for cancer diagnostics and treatment monitoring. However, ctDNA detection is complicated by low DNA concentrations and technical challenges. Here we describe our newly developed sensitive method for ctDNA detection on the Ion Torrent sequencing platform, which we call HYbridization- and Tag-based Error-Corrected sequencing (HYTEC-seq). This method combines hybridization-based capture with molecular tags, and the novel variant caller PlasmaMutationDetector2 to eliminate background errors. We describe the validation of HYTEC-seq using control samples with known mutations, demonstrating an analytical sensitivity down to 0.1% at > 99.99% specificity. Furthermore, to demonstrate the utility of this method in a clinical setting, we analyzed plasma samples from 44 patients with advanced pancreatic cancer, revealing mutations in 57% of the patients at allele frequencies as low as 0.23%.
Collapse
Affiliation(s)
- Kjersti Tjensvoll
- Department of Hematology and Oncology, Laboratory for Molecular Biology, Stavanger University Hospital, 4068, Stavanger, Norway.
| | - Morten Lapin
- Department of Hematology and Oncology, Laboratory for Molecular Biology, Stavanger University Hospital, 4068, Stavanger, Norway
| | - Bjørnar Gilje
- Department of Hematology and Oncology, Laboratory for Molecular Biology, Stavanger University Hospital, 4068, Stavanger, Norway
| | - Herish Garresori
- Department of Hematology and Oncology, Laboratory for Molecular Biology, Stavanger University Hospital, 4068, Stavanger, Norway
| | - Satu Oltedal
- Department of Hematology and Oncology, Laboratory for Molecular Biology, Stavanger University Hospital, 4068, Stavanger, Norway
| | - Rakel Brendsdal Forthun
- Department of Medical Genetics, Haukeland University Hospital, 5020, Bergen, Norway
- Department of Internal Medicine, Hematology Section, Haukeland University Hospital, 5020, Bergen, Norway
| | - Anders Molven
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, 5020, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, 5021, Bergen, Norway
| | - Yves Rozenholc
- BioSTM UR 7537, Faculté de Pharmacie de Paris, Université Paris Citè, 75006, Paris, France
| | - Oddmund Nordgård
- Department of Hematology and Oncology, Laboratory for Molecular Biology, Stavanger University Hospital, 4068, Stavanger, Norway
| |
Collapse
|
57
|
De Brun ML, Cosme B, Petersen M, Alvarez I, Folgueras-Flatschart A, Flatschart R, Panei CJ, Puentes R. Development of a droplet digital PCR assay for quantification of the proviral load of bovine leukemia virus. J Vet Diagn Invest 2022; 34:439-447. [PMID: 35369822 PMCID: PMC9254064 DOI: 10.1177/10406387221085581] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Droplet digital PCR (ddPCR) is a highly sensitive tool developed for the detection and quantification of short-sequence variants—a tool that offers unparalleled precision enabling measurement of smaller-fold changes. We describe here the use of ddPCR for the detection of Bovine leukemia virus (BLV) DNA provirus. Serum samples and whole blood from experimentally infected sheep and naturally infected cattle were analyzed through ddPCR to detect the BLV gp51 gene, and then compared with serologic and molecular tests. The ddPCR assay was significantly more accurate and sensitive than AGID, ELISA, nested PCR, and quantitative PCR. The limit of detection of ddPCR was 3.3 copies/µL, detecting positive experimentally infected sheep beginning at 6 d post-infection. The ddPCR methodology offers a promising tool for evaluating the BLV proviral load, particularly for the detection of low viral loads.
Collapse
Affiliation(s)
- María L. De Brun
- Instituto de Patobiología, Unidad de Microbiología, Facultad de Veterinaria–Universidad de la República, Montevideo, Uruguay
| | - Bruno Cosme
- Instituto Nacional de Metrología, Calidad y Tecnología (Inmetro), Rio de Janeiro, Brazil
| | - Marcos Petersen
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Virología e Innovaciones Tecnológicas (IVIT), Buenos Aires, Argentina
| | - Irene Alvarez
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Virología e Innovaciones Tecnológicas (IVIT), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | - Roberto Flatschart
- Instituto Nacional de Metrología, Calidad y Tecnología (Inmetro), Rio de Janeiro, Brazil
| | - Carlos Javier Panei
- Laboratorio de Virología, Facultad de Ciencias Veterinarias, Universidad Nacional de la Plata (FCV-UNLP), La Plata, Argentina
| | - Rodrigo Puentes
- Instituto de Patobiología, Unidad de Microbiología, Facultad de Veterinaria–Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
58
|
Arroyo K, Nargizyan A, Andrade FG, Myint SS, Lu S, Pandey P, Yee A, de Smith AJ, Wiemels JL. Development of a Droplet Digital™ PCR DNA methylation detection and quantification assay of prenatal tobacco exposure. Biotechniques 2022; 72:121-133. [PMID: 35255733 DOI: 10.2144/btn-2021-0099] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
DNA methylation is a labile modification associated with gene expression control and environmental adaptations. High throughput, scalable and quantitative assessments of specific DNA methylation modifications in complex genomic regions for use in large population studies are needed. The performance of Droplet Digital™ PCR (ddPCR™) was investigated for DNA methylation detection against next-generation bisulfite sequencing (NGS) to demonstrate the ability of ddPCR to detect and validate DNA methylation levels and complex patterns among neighboring CpGs in regions associated with prenatal tobacco exposure. While both techniques are reproducible, ddPCR demonstrates a unique advantage for high-throughput DNA methylation analysis in large-scale population studies and provides the specificity to accurately measure DNA methylation of target CpGs in complex regions.
Collapse
Affiliation(s)
- Katti Arroyo
- Center for Genetic Epidemiology, Department of Population & Public Health Sciences, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Anahit Nargizyan
- Center for Genetic Epidemiology, Department of Population & Public Health Sciences, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Francianne G Andrade
- Center for Genetic Epidemiology, Department of Population & Public Health Sciences, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Swe Swe Myint
- Center for Genetic Epidemiology, Department of Population & Public Health Sciences, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Sabrina Lu
- Center for Genetic Epidemiology, Department of Population & Public Health Sciences, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Priyatama Pandey
- Center for Genetic Epidemiology, Department of Population & Public Health Sciences, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Amy Yee
- Center for Genetic Epidemiology, Department of Population & Public Health Sciences, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Adam J de Smith
- Center for Genetic Epidemiology, Department of Population & Public Health Sciences, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Joseph L Wiemels
- Center for Genetic Epidemiology, Department of Population & Public Health Sciences, Los Angeles, CA 90033, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
59
|
Shelton DN, Bhagavatula P, Sepulveda N, Beppu L, Gandhi S, Qin D, Hauenstein S, Radich J. Performance characteristics of the first Food and Drug Administration (FDA)-cleared digital droplet PCR (ddPCR) assay for BCR::ABL1 monitoring in chronic myelogenous leukemia. PLoS One 2022; 17:e0265278. [PMID: 35298544 PMCID: PMC8929598 DOI: 10.1371/journal.pone.0265278] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/27/2022] [Indexed: 11/19/2022] Open
Abstract
Chronic myelogenous leukemia (CML) is a hematopoietic stem cell malignancy that accounts for 15-20% of all cases of leukemia. CML is caused by a translocation between chromosomes 9 and 22 which creates an abnormal fusion gene, BCR::ABL1. The amount of BCR::ABL1 transcript RNA is a marker of disease progression and the effectiveness of tyrosine kinase inhibitor (TKI) treatment. This study determined the analytical and clinical performance of a droplet digital PCR based assay (QXDx BCR-ABL %IS Kit; Bio-Rad) for BCR::ABL1 quantification. The test has a limit of detection of MR4.7 (0.002%) and a linear range of MR0.3-4.7 (50-0.002%IS). Reproducibility of results across multiple sites, days, instruments, and users was evaluated using panels made from BCR::ABL1 positive patient samples. Clinical performance of the assay was evaluated on patient samples and compared to an existing FDA-cleared test. The reproducibility study noted negligible contributions to variance from site, instrument, day, and user for samples spanning from MR 0.7-4.2. The assay demonstrated excellent clinical correlation with the comparator test using a Deming regression with a Pearson R of 0.99, slope of 1.037 and intercept of 0.1084. This data establishes that the QXDx™ BCR-ABL %IS Kit is an accurate, precise, and sensitive system for the diagnosis and monitoring of CML.
Collapse
MESH Headings
- Fusion Proteins, bcr-abl/genetics
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Polymerase Chain Reaction/methods
- Protein Kinase Inhibitors/therapeutic use
- Reproducibility of Results
- United States
- United States Food and Drug Administration
Collapse
Affiliation(s)
- Dawne N. Shelton
- Digital Biology Group, Bio-Rad Laboratories, Pleasanton, California, United States of America
| | - Prasanthi Bhagavatula
- Digital Biology Group, Bio-Rad Laboratories, Pleasanton, California, United States of America
| | - Nathan Sepulveda
- Digital Biology Group, Bio-Rad Laboratories, Pleasanton, California, United States of America
| | - Lan Beppu
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Shital Gandhi
- Department of Pathology, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Dahui Qin
- Department of Pathology, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Scott Hauenstein
- Digital Biology Group, Bio-Rad Laboratories, Pleasanton, California, United States of America
| | - Jerald Radich
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|
60
|
Tan LL, Loganathan N, Agarwalla S, Yang C, Yuan W, Zeng J, Wu R, Wang W, Duraiswamy S. Current commercial dPCR platforms: technology and market review. Crit Rev Biotechnol 2022; 43:433-464. [PMID: 35291902 DOI: 10.1080/07388551.2022.2037503] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Digital polymerase chain reaction (dPCR) technology has provided a new technique for molecular diagnostics, with superior advantages, such as higher sensitivity, precision, and specificity over quantitative real-time PCRs (qPCR). Eight companies have offered commercial dPCR instruments: Fluidigm Corporation, Bio-Rad, RainDance Technologies, Life Technologies, Qiagen, JN MedSys Clarity, Optolane, and Stilla Technologies Naica. This paper discusses the working principle of each offered dPCR device and compares the associated: technical aspects, usability, costs, and current applications of each dPCR device. Lastly, up-and-coming dPCR technologies are also presented, as anticipation of how the dPCR device landscape may likely morph in the next few years.
Collapse
Affiliation(s)
- Li Ling Tan
- Singapore Institute of Manufacturing Technology, Singapore, Singapore.,Materials Science and Engineering School, Nanyang Technological University, Singapore, Singapore
| | - Nitin Loganathan
- Singapore Institute of Manufacturing Technology, Singapore, Singapore
| | - Sushama Agarwalla
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, India
| | - Chun Yang
- Mechanical and Aerospace Engineering School, Nanyang Technological University, Singapore, Singapore
| | - Weiyong Yuan
- Faculty of Materials & Energy, Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing, China.,Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Chongqing, China
| | - Jasmine Zeng
- Singapore Institute of Manufacturing Technology, Singapore, Singapore
| | - Ruige Wu
- Singapore Institute of Manufacturing Technology, Singapore, Singapore
| | - Wei Wang
- Singapore Institute of Manufacturing Technology, Singapore, Singapore
| | - Suhanya Duraiswamy
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, India
| |
Collapse
|
61
|
Hussain M. Isothermal droplet digital PCR method for quantification of CHO residual DNA. J Pharm Biomed Anal 2022; 211:114564. [DOI: 10.1016/j.jpba.2021.114564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/25/2021] [Accepted: 12/28/2021] [Indexed: 10/19/2022]
|
62
|
Long S. Digital PCR: Methods and applications in infectious diseases. Methods 2022; 201:1-4. [DOI: 10.1016/j.ymeth.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
63
|
Wu X, Chan C, Springs SL, Lee YH, Lu TK, Yu H. A warm-start digital CRISPR/Cas-based method for the quantitative detection of nucleic acids. Anal Chim Acta 2022; 1196:339494. [DOI: 10.1016/j.aca.2022.339494] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/03/2022] [Accepted: 01/11/2022] [Indexed: 12/21/2022]
|
64
|
Fan Y, Chen J, Liu M, Xu X, Zhang Y, Yue P, Cao W, Ji Z, Su X, Wen S, Kong J, Zhou G, Li B, Dong Y, Liu A, Bao F. Application of Droplet Digital PCR to Detection of Mycobacterium tuberculosis and Mycobacterium leprae Infections: A Narrative Review. Infect Drug Resist 2022; 15:1067-1076. [PMID: 35313727 PMCID: PMC8934166 DOI: 10.2147/idr.s349607] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/25/2022] [Indexed: 12/15/2022] Open
Abstract
Tuberculosis (TB) is a chronic infectious disease caused by Mycobacterium tuberculosis (MTB) infection, which has seriously endangered human health for many years. With the emergence of multidrug-resistant and extensively drug-resistant MTB, the prevention and treatment of TB has become a pressing need. Early diagnosis, drug resistance monitoring, and control of disease transmission are critical aspects in the prevention and treatment of TB. However, the currently available diagnostic technologies and drug sensitivity tests are time consuming, and thus, it is difficult to achieve the goal of early diagnosis and detection drug sensitivity, which results in limited control of disease transmission. The development of molecular testing technology has gradually achieved the vision of rapid and accurate diagnosis of TB. Droplet digital PCR (ddPCR) is an excellent nucleic acid quantification method with high sensitivity and no need for a calibration curve. Herein, we review the application of ddPCR in TB diagnosis and drug resistance detection and transmission monitoring.
Collapse
Affiliation(s)
- Yuxin Fan
- The Institute for Tropical Medicine, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, 650500, People’s Republic of China
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, 650030, People’s Republic of China
- Yunnan Province Key Laboratory of Children’s Major Diseases Research, The Affiliated Children Hospital, Kunming Medical University, Kunming, 650030, People’s Republic of China
| | - Jingjing Chen
- The Institute for Tropical Medicine, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, 650500, People’s Republic of China
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, 650030, People’s Republic of China
| | - Meixiao Liu
- The Institute for Tropical Medicine, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, 650500, People’s Republic of China
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, 650030, People’s Republic of China
| | - Xin Xu
- The Institute for Tropical Medicine, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, 650500, People’s Republic of China
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, 650030, People’s Republic of China
| | - Yu Zhang
- The Institute for Tropical Medicine, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, 650500, People’s Republic of China
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, 650030, People’s Republic of China
- Yunnan Province Key Laboratory of Children’s Major Diseases Research, The Affiliated Children Hospital, Kunming Medical University, Kunming, 650030, People’s Republic of China
| | - Peng Yue
- The Institute for Tropical Medicine, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, 650500, People’s Republic of China
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, 650030, People’s Republic of China
| | - Wenjing Cao
- The Institute for Tropical Medicine, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, 650500, People’s Republic of China
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, 650030, People’s Republic of China
| | - Zhenhua Ji
- The Institute for Tropical Medicine, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, 650500, People’s Republic of China
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, 650030, People’s Republic of China
| | - Xuan Su
- The Institute for Tropical Medicine, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, 650500, People’s Republic of China
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, 650030, People’s Republic of China
| | - Shiyuan Wen
- The Institute for Tropical Medicine, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, 650500, People’s Republic of China
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, 650030, People’s Republic of China
- Yunnan Province Key Laboratory of Children’s Major Diseases Research, The Affiliated Children Hospital, Kunming Medical University, Kunming, 650030, People’s Republic of China
| | - Jing Kong
- The Institute for Tropical Medicine, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, 650500, People’s Republic of China
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, 650030, People’s Republic of China
| | - Guozhong Zhou
- The Institute for Tropical Medicine, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, 650500, People’s Republic of China
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, 650030, People’s Republic of China
| | - Bingxue Li
- The Institute for Tropical Medicine, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, 650500, People’s Republic of China
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, 650030, People’s Republic of China
| | - Yan Dong
- The Institute for Tropical Medicine, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, 650500, People’s Republic of China
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, 650030, People’s Republic of China
| | - Aihua Liu
- The Institute for Tropical Medicine, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, 650500, People’s Republic of China
- Yunnan Province Key Laboratory of Children’s Major Diseases Research, The Affiliated Children Hospital, Kunming Medical University, Kunming, 650030, People’s Republic of China
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, 650030, People’s Republic of China
- Correspondence: Aihua Liu; Fukai Bao, The Institute for Tropical Medicine, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, 650500, People’s Republic of China, Email ;
| | - Fukai Bao
- The Institute for Tropical Medicine, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, 650500, People’s Republic of China
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, 650030, People’s Republic of China
- Yunnan Province Key Laboratory of Children’s Major Diseases Research, The Affiliated Children Hospital, Kunming Medical University, Kunming, 650030, People’s Republic of China
| |
Collapse
|
65
|
Edwards RL, Menteer J, Lestz RM, Baxter-Lowe LA. Cell-free DNA as a solid-organ transplant biomarker: technologies and approaches. Biomark Med 2022; 16:401-415. [PMID: 35195028 DOI: 10.2217/bmm-2021-0968] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
High-quality biomarkers that detect emergent graft damage and/or rejection after solid-organ transplantation offer new opportunities to improve post-transplant monitoring, allow early therapeutic intervention and facilitate personalized patient management. Donor-derived cell-free DNA (DD-cfDNA) is a particularly exciting minimally invasive biomarker because it has the potential to be quantitative, time-sensitive and cost-effective. Increased DD-cfDNA has been associated with graft damage and rejection episodes. Efforts are underway to further improve sensitivity and specificity. This review summarizes the procedures used to process and detect DD-cfDNA, measurement of DD-cfDNA in clinical transplantation, approaches for improving sensitivity and specificity and long-term prospects as a transplant biomarker to supplement traditional organ monitoring and invasive biopsies.
Collapse
Affiliation(s)
- Rebecca L Edwards
- Department of Pathology & Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Jondavid Menteer
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA.,Division of Cardiology, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Rachel M Lestz
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA.,Division of Nephrology, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Lee Ann Baxter-Lowe
- Department of Pathology & Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA.,Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| |
Collapse
|
66
|
Basanisi MG, La Bella G, Nobili G, Raele DA, Cafiero MA, Coppola R, Damato AM, Fraccalvieri R, Sottili R, La Salandra G. Detection of Coxiella burnetii DNA in sheep and goat milk and dairy products by droplet digital PCR in south Italy. Int J Food Microbiol 2022; 366:109583. [PMID: 35182931 DOI: 10.1016/j.ijfoodmicro.2022.109583] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/18/2022] [Accepted: 02/09/2022] [Indexed: 12/11/2022]
Abstract
Coxiella burnetii is a Gram-negative obligate intracellular bacterium that is responsible for Q fever, a common zoonosis which is present virtually worldwide. This microorganism infects a wide range of wild and domestic mammals, but the main reservoirs are cattle, goats and sheep, which also represent sources of human infection. A potential route of transmission of this pathogen to humans is the consumption of C. burnetii-contaminated raw milk or dairy products derived from contaminated raw milk, although the role of these foods as possible infection sources is controversial. The aims of this study were (i) to apply two ddPCR based assays targeting the C. burnetii IS1111 and icd genes for the detection and quantification of C. burnetii DNA, and (ii) to evaluate the occurrence of C. burnetii DNA in raw milk and raw milk products from sheep and goats in Apulia and Basilicata regions of Southern Italy. Of 413 milk and cheese samples tested, 78 were positive for the presence of C. burnetii DNA (18.9%), specifically, 68 of 285 milk samples (23.9%) and 10 of 128 cheese samples (7.8%) The presence of both IS1111 and icd genes was detected in only 2 (2.6%) of the 78 positive samples, while the remaining 76 (97.4%) were positive only for IS1111. C. burnetii DNA was specifically detected by the ddPCR method, whereas no cross-amplification was observed with the DNA of other foodborne bacterial pathogens. The sensitivity of the ddPCR method was determined as 0.35 and 0.56 copies/μL for IS1111 and icd genes, respectively. The findings of this study demonstrate the presence of C. burnetii DNA in a significant proportion of raw milk and dairy products. Although there is no conclusive epidemiological evidence that C. burnetii infection occurs via food, the presence of this organism in raw milk and dairy products made of raw milk should be considered a potential hazard. ddPCR is a useful tool to investigate the quality and safety of food products due to its sensitivity and precision, and could be applied to routine testing.
Collapse
Affiliation(s)
- Maria Grazia Basanisi
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata (IZS PB), Via Manfredonia 20, 71121 Foggia, Italy.
| | - Gianfranco La Bella
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata (IZS PB), Via Manfredonia 20, 71121 Foggia, Italy
| | - Gaia Nobili
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata (IZS PB), Via Manfredonia 20, 71121 Foggia, Italy
| | - Donato Antonio Raele
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata (IZS PB), Via Manfredonia 20, 71121 Foggia, Italy
| | - Maria Assunta Cafiero
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata (IZS PB), Via Manfredonia 20, 71121 Foggia, Italy
| | - Rosa Coppola
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata (IZS PB), Via Manfredonia 20, 71121 Foggia, Italy
| | - Annita Maria Damato
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata (IZS PB), Via Manfredonia 20, 71121 Foggia, Italy
| | - Rosa Fraccalvieri
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata (IZS PB), Via Manfredonia 20, 71121 Foggia, Italy
| | - Roldano Sottili
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata (IZS PB), Via Manfredonia 20, 71121 Foggia, Italy
| | - Giovanna La Salandra
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata (IZS PB), Via Manfredonia 20, 71121 Foggia, Italy
| |
Collapse
|
67
|
Endogenous human retrovirus-K is not increased in the affected tissues of Japanese ALS patients. Neurosci Res 2022; 178:78-82. [PMID: 35122916 DOI: 10.1016/j.neures.2022.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/27/2022] [Accepted: 01/30/2022] [Indexed: 11/22/2022]
Abstract
Activation of human endogenous retrovirus-K (HERV-K) is one of the proposed risk factors for amyotrophic lateral sclerosis (ALS). The HERV-K envelope protein has been reported to show neurotoxicity, and development of therapy with reverse transcriptase inhibitors is being investigated. On the other hand, some reports have failed to show HERV-K activation in ALS. In this study, we analyzed the expression of HERV-K mRNA in the motor cortex and spinal cord of 15 Japanese patients with sporadic ALS and 19 controls using reverse transcriptase droplet digital PCR. This revealed no significant increase of HERV-K expression in ALS-affected tissues, suggesting that the association between ALS and HERV-K remains questionable.
Collapse
|
68
|
Advances in improvement strategies of digital nucleic acid amplification for pathogen detection. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116568] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
69
|
Ram-Mohan N, Kim D, Zudock EJ, Hashemi MM, Tjandra KC, Rogers AJ, Blish CA, Nadeau KC, Newberry JA, Quinn JV, O'Hara R, Ashley E, Nguyen H, Jiang L, Hung P, Blomkalns AL, Yang S. SARS-CoV-2 RNAemia Predicts Clinical Deterioration and Extrapulmonary Complications from COVID-19. Clin Infect Dis 2022; 74:218-226. [PMID: 33949665 PMCID: PMC8135992 DOI: 10.1093/cid/ciab394] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The determinants of coronavirus disease 2019 (COVID-19) disease severity and extrapulmonary complications (EPCs) are poorly understood. We characterized relationships between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNAemia and disease severity, clinical deterioration, and specific EPCs. METHODS We used quantitative and digital polymerase chain reaction (qPCR and dPCR) to quantify SARS-CoV-2 RNA from plasma in 191 patients presenting to the emergency department with COVID-19. We recorded patient symptoms, laboratory markers, and clinical outcomes, with a focus on oxygen requirements over time. We collected longitudinal plasma samples from a subset of patients. We characterized the role of RNAemia in predicting clinical severity and EPCs using elastic net regression. RESULTS Of SARS-CoV-2-positive patients, 23.0% (44 of 191) had viral RNA detected in plasma by dPCR, compared with 1.4% (2 of 147) by qPCR. Most patients with serial measurements had undetectable RNAemia within 10 days of symptom onset, reached maximum clinical severity within 16 days, and symptom resolution within 33 days. Initially RNAemic patients were more likely to manifest severe disease (odds ratio, 6.72 [95% confidence interval, 2.45-19.79]), worsening of disease severity (2.43 [1.07-5.38]), and EPCs (2.81 [1.26-6.36]). RNA loads were correlated with maximum severity (r = 0.47 [95% confidence interval, .20-.67]). CONCLUSIONS dPCR is more sensitive than qPCR for the detection of SARS-CoV-2 RNAemia, which is a robust predictor of eventual COVID-19 severity and oxygen requirements, as well as EPCs. Because many COVID-19 therapies are initiated on the basis of oxygen requirements, RNAemia on presentation might serve to direct early initiation of appropriate therapies for the patients most likely to deteriorate.
Collapse
Affiliation(s)
- Nikhil Ram-Mohan
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, California, USA
| | - David Kim
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, California, USA
| | - Elizabeth J Zudock
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, California, USA
| | - Marjan M Hashemi
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, California, USA
| | - Kristel C Tjandra
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, California, USA
| | - Angela J Rogers
- Department of Medicine-Pulmonary, Allergy & Critical Care Medicine, Stanford University School of Medicine, Palo Alto, California, USA
| | - Catherine A Blish
- Department of Medicine/Infectious Diseases, Stanford University School of Medicine, Palo Alto, California, USA
| | - Kari C Nadeau
- Department of Medicine-Pulmonary, Allergy & Critical Care Medicine, Stanford University School of Medicine, Palo Alto, California, USA
| | - Jennifer A Newberry
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, California, USA
| | - James V Quinn
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, California, USA
| | - Ruth O'Hara
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, California, USA
| | - Euan Ashley
- Department of Medicine-Cardiovascular Medicine, Stanford University School of Medicine, Palo Alto, California, USA
| | | | | | - Paul Hung
- Combinati Inc, Palo Alto, California, USA
| | - Andra L Blomkalns
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, California, USA
| | - Samuel Yang
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, California, USA
| |
Collapse
|
70
|
Development of Droplet Digital PCR-Based Assays to Quantify HIV Proviral and Integrated DNA in Brain Tissues from Viremic Individuals with Encephalitis and Virally Suppressed Aviremic Individuals. Microbiol Spectr 2022; 10:e0085321. [PMID: 35019681 PMCID: PMC8754137 DOI: 10.1128/spectrum.00853-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Although combination antiretroviral therapy (cART) can suppress the replication of HIV, the virus persists and rebounds when treatment is stopped. To find a cure that can eradicate latent reservoir, a method should be able to quantify the lingering HIV. Unlike other digital PCR technologies, droplet digital PCR (ddPCR), provides absolute quantification of target DNA molecules using fluorescent dually labeled probes by massively partitioning the sample into droplets. ddPCR enables exquisitely sensitive detection and quantification of viral DNA from very limiting clinical samples, including brain tissues. We developed and optimized duplex ddPCR assays for the detection and quantification of HIV proviral DNA and integrated DNA in the brain of HIV-1-infected patients. We have applied these approaches to successfully analyze 77 human brain tissues obtained from 27 HIV-1-infected individuals, either fully virally suppressed or with encephalitis, and were able to quantify low levels of viral DNA. Further developments and advancement of digital PCR technology is promising to aid in accurate quantification and characterization of the persistent HIV reservoir. IMPORTANCE We developed ddPCR assays to quantitatively measure HIV DNA and used this ddPCR assays to detect and quantitatively measure HIV DNA in the archived brain tissues from HIV patients. The tissue viral loads assessed by ddPCR was highly correlative with those assessed by qPCR. HIV DNA in the brain was detected more frequently by ddPCR than by qPCR. ddPCR also showed higher sensitivity than qPCR since ddPCR detected HIV DNA signals in some tissues from virally suppressed individuals while qPCR could not.
Collapse
|
71
|
Jacky L, Yurk D, Alvarado J, Leatham B, Schwartz J, Annaloro J, MacDonald C, Rajagopal A. Virtual-Partition Digital PCR for High-Precision Chromosomal Counting Applications. Anal Chem 2021; 93:17020-17029. [PMID: 34905685 DOI: 10.1021/acs.analchem.1c03527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Digital PCR (dPCR) is the gold-standard analytical platform for rapid high-precision quantification of genomic fragments. However, current dPCR assays are generally limited to monitoring 1-2 analytes per sample, thereby limiting the platform's ability to address some clinical applications that require the simultaneous monitoring of 20-50 analytes per sample. Here, we present virtual-partition dPCR (VPdPCR), a novel analysis methodology enabling the detection of 10 or more target regions per color channel using conventional dPCR hardware and workflow. Furthermore, VPdPCR enables dPCR instruments to overcome upper quantitation limits caused by partitioning error. While traditional dPCR analysis establishes a single threshold to separate negative and positive partitions, VPdPCR establishes multiple thresholds to identify the number of unique targets present in each positive droplet based on fluorescence intensity. Each physical partition is then divided into a series of virtual partitions, and the resulting increase in partition count substantially decreases partitioning error. We present both a theoretical analysis of the advantages of VPdPCR and an experimental demonstration in the form of a 20-plex assay for noninvasive fetal aneuploidy testing. This demonstration assay─tested on 432 samples contrived from sheared cell-line DNA at multiple input concentrations and simulated fractions of euploid or trisomy-21 "fetal" DNA─is analyzed using both traditional dPCR thresholding and VPdPCR. VPdPCR analysis significantly lowers the variance of the chromosomal ratio across replicates and increases the accuracy of trisomy identification when compared to traditional dPCR, yielding > 98% single-well sensitivity and specificity. VPdPCR has substantial promise for increasing the utility of dPCR in applications requiring ultrahigh-precision quantitation.
Collapse
Affiliation(s)
- Lucien Jacky
- ChromaCode Inc., 2330 Faraday Ave Suite 100, Carlsbad, California 92008, United States
| | - Dominic Yurk
- ChromaCode Inc., 2330 Faraday Ave Suite 100, Carlsbad, California 92008, United States.,Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - John Alvarado
- ChromaCode Inc., 2330 Faraday Ave Suite 100, Carlsbad, California 92008, United States
| | - Bryan Leatham
- ChromaCode Inc., 2330 Faraday Ave Suite 100, Carlsbad, California 92008, United States
| | - Jerrod Schwartz
- ChromaCode Inc., 2330 Faraday Ave Suite 100, Carlsbad, California 92008, United States
| | - John Annaloro
- ChromaCode Inc., 2330 Faraday Ave Suite 100, Carlsbad, California 92008, United States
| | - Chris MacDonald
- ChromaCode Inc., 2330 Faraday Ave Suite 100, Carlsbad, California 92008, United States
| | - Aditya Rajagopal
- ChromaCode Inc., 2330 Faraday Ave Suite 100, Carlsbad, California 92008, United States.,Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, United States.,Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
72
|
Lee HJ, Han YS, Cho IS, Jeong RD. Development and application of reverse transcription droplet digital PCR assay for sensitive detection of apple scar skin viroid during in vitro propagation of apple plantlets. Mol Cell Probes 2021; 61:101789. [PMID: 34965481 DOI: 10.1016/j.mcp.2021.101789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/14/2021] [Accepted: 12/23/2021] [Indexed: 11/28/2022]
Abstract
Apple scar skin viroid (ASSVd), of the genus Apscaviroid, causes serious pome fruit diseases, such as apple scar skin, dapple apple, pear rusty skin, pear fruit crinkle, and pear dimple fruit. This study aimed at establishing a sensitive and accurate method for quantification of ASSVd in apple leaves and plantlets using a reverse transcription droplet digital polymerase chain reaction (RT-ddPCR) assay. The specificity was analyzed using other apple viruses, and the negative amplification of the cross-reaction assay demonstrated the high specificity of RT-ddPCR. The detection limit of ASSVd by RT-ddPCR was 1.75 × 102 copies/μL (0.14 concentration), and the sensitivity was ten-fold higher than that of RT-qPCR. Similarly, positive detection in apple plantlet samples by RT-ddPCR was higher than that by RT-qPCR. The RT-ddPCR assay represents a promising alternative for accurate quantitative detection and diagnosis of ASSVd infection in ASSVd-free certification programs.
Collapse
Affiliation(s)
- Hyo-Jeong Lee
- Department of Applied Biology and Institute of Environmentally Friendly Agriculture, Chonnam National University, Gwangju, 61185, South Korea
| | - Yeon Soo Han
- Department of Applied Biology and Institute of Environmentally Friendly Agriculture, Chonnam National University, Gwangju, 61185, South Korea
| | - In-Sook Cho
- Horticultural and Herbal Crop Environment Division, National Institute of Horticultural and Herbal Science, RDA, Wanju, 55365, South Korea
| | - Rae-Dong Jeong
- Department of Applied Biology and Institute of Environmentally Friendly Agriculture, Chonnam National University, Gwangju, 61185, South Korea.
| |
Collapse
|
73
|
Pereira LA, Lapinscki BA, Debur MC, Santos JS, Petterle RR, Nogueira MB, Vidal LRR, De Almeida SM, Raboni SM. Standardization of a high-performance RT-qPCR for viral load absolute quantification of influenza A. J Virol Methods 2021; 301:114439. [PMID: 34942203 DOI: 10.1016/j.jviromet.2021.114439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 12/26/2022]
Abstract
Influenza is an acute viral infectious respiratory disease worldwide, presenting in different clinical forms, from influenza-like illness (ILI) to severe acute respiratory infection (SARI). Although real-time quantitative polymerase chain reaction (qPCR) is already an important tool for both diagnosis and treatment monitoring of several viral infections, the correlation between the clinical aspects and the viral load of influenza is still unclear. This lack of clarity is primarily due to the low accuracy and reproducibility of the methodologies developed to quantify the influenza virus. Thus, this study aimed to develop and standardize a universal absolute quantification for influenza A by reverse transcription-quantitative PCR (RT-qPCR), using a plasmid DNA. The assay showed efficiency (Eff%) 98.6, determination coefficient (R2) 0.998, linear range 10^1 to 10^10, limit of detection (LOD) 6.77, limit of quantification (LOQ) 20.52 copies/reaction. No inter and intra assay variability was shown, and neither was the matrix effect observed. Serial measurements of clinical samples collected at a 72h interval showed no change in viral load. By contrast, immunocompetent patients have a significantly lower viral load than immunosuppressed ones. Absolute quantification in clinical samples showed some predictors associated with increased viral load: (H1N1)pdm09 (0.045); women (p = 0.049) and asthmatics (p = 0.035). The high efficiency, precision, and previous performance in clinical samples suggest the assay can be used as an accurate universal viral load quantification of influenza A. Its applicability in predicting severity and response to antivirals needs to be evaluated.
Collapse
Affiliation(s)
- L A Pereira
- Graduate Program in Internal Medicine and Health Science, Universidade Federal, do Paraná, Curitiba, Brazil
| | - B A Lapinscki
- Graduate Program in Internal Medicine and Health Science, Universidade Federal, do Paraná, Curitiba, Brazil
| | - M C Debur
- Public Health Laboratory, Curitiba, Brazil
| | - J S Santos
- Virology Laboratory, Hospital de Clínicas, Universidade Federal do Paraná, Brazil
| | - R R Petterle
- Sector of Health Sciences, Medical School, Universidade Federal do Paraná, Curitiba, Brazil
| | - M B Nogueira
- Virology Laboratory, Hospital de Clínicas, Universidade Federal do Paraná, Brazil
| | - L R R Vidal
- Virology Laboratory, Hospital de Clínicas, Universidade Federal do Paraná, Brazil
| | - S M De Almeida
- Virology Laboratory, Hospital de Clínicas, Universidade Federal do Paraná, Brazil
| | - S M Raboni
- Virology Laboratory, Hospital de Clínicas, Universidade Federal do Paraná, Brazil; Infectious Diseases Division, Hospital de Clínicas, Universidade Federal do Paraná, Brazil.
| |
Collapse
|
74
|
Chen X, Song Q, Zhang B, Gao Y, Lou K, Liu Y, Wen W. A Rapid Digital PCR System with a Pressurized Thermal Cycler. MICROMACHINES 2021; 12:mi12121562. [PMID: 34945412 PMCID: PMC8708658 DOI: 10.3390/mi12121562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022]
Abstract
We designed a silicon-based fast-generated static droplets array (SDA) chip and developed a rapid digital polymerase chain reaction (dPCR) detection platform that is easy to load samples for fluorescence monitoring. By using the direct scraping method for sample loading, a droplet array of 2704 microwells with each volume of about 0.785 nL can be easily realized. It was determined that the sample loading time was less than 10 s with very simple and efficient characteristics. In this platform, a pressurized thermal cycling device was first used to solve the evaporation problem usually encountered for dPCR experiments, which is critical to ensuring the successful amplification of templates at the nanoliter scale. We used a gradient dilution of the hepatitis B virus (HBV) plasmid as the target DNA for a dPCR reaction to test the feasibility of the dPCR chip. Our experimental results demonstrated that the dPCR chip could be used to quantitatively detect DNA molecules. Furthermore, the platform can measure the fluorescence intensity in real-time. To test the accuracy of the digital PCR system, we chose three-channel silicon-based chips to operate real-time fluorescent PCR experiments on this platform.
Collapse
Affiliation(s)
- Xuee Chen
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; (X.C.); (Q.S.)
| | - Qi Song
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; (X.C.); (Q.S.)
- Guangzhou HKUST Fok Ying Tung Research Institute, Guangzhou 511458, China
| | - Beini Zhang
- Advanced Materials Thrust, Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong;
| | - Yibo Gao
- Zhuhai Shineway Biotech Co., Ltd., Zhuhai 519000, China;
| | - Kai Lou
- Guangzhou Kayja-Optics Technology Co., Ltd., Guangzhou 511458, China;
| | - Yiteng Liu
- Earth, Ocean and Atmospheric Sciences Thrust, Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong;
| | - Weijia Wen
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; (X.C.); (Q.S.)
- Advanced Materials Thrust, Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong;
- Correspondence: ; Tel.: +852-2358-7979
| |
Collapse
|
75
|
Miglietta L, Moniri A, Pennisi I, Malpartida-Cardenas K, Abbas H, Hill-Cawthorne K, Bolt F, Jauneikaite E, Davies F, Holmes A, Georgiou P, Rodriguez-Manzano J. Coupling Machine Learning and High Throughput Multiplex Digital PCR Enables Accurate Detection of Carbapenem-Resistant Genes in Clinical Isolates. Front Mol Biosci 2021; 8:775299. [PMID: 34888355 PMCID: PMC8650054 DOI: 10.3389/fmolb.2021.775299] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Rapid and accurate identification of patients colonised with carbapenemase-producing organisms (CPOs) is essential to adopt prompt prevention measures to reduce the risk of transmission. Recent studies have demonstrated the ability to combine machine learning (ML) algorithms with real-time digital PCR (dPCR) instruments to increase classification accuracy of multiplex PCR assays when using synthetic DNA templates. We sought to determine if this novel methodology could be applied to improve identification of the five major carbapenem-resistant genes in clinical CPO-isolates, which would represent a leap forward in the use of PCR-based data-driven diagnostics for clinical applications. We collected 253 clinical isolates (including 221 CPO-positive samples) and developed a novel 5-plex PCR assay for detection of blaIMP, blaKPC, blaNDM, blaOXA-48, and blaVIM. Combining the recently reported ML method “Amplification and Melting Curve Analysis” (AMCA) with the abovementioned multiplex assay, we assessed the performance of the AMCA methodology in detecting these genes. The improved classification accuracy of AMCA relies on the usage of real-time data from a single-fluorescent channel and benefits from the kinetic/thermodynamic information encoded in the thousands of amplification events produced by high throughput real-time dPCR. The 5-plex showed a lower limit of detection of 10 DNA copies per reaction for each primer set and no cross-reactivity with other carbapenemase genes. The AMCA classifier demonstrated excellent predictive performance with 99.6% (CI 97.8–99.9%) accuracy (only one misclassified sample out of the 253, with a total of 160,041 positive amplification events), which represents a 7.9% increase (p-value <0.05) compared to conventional melting curve analysis. This work demonstrates the use of the AMCA method to increase the throughput and performance of state-of-the-art molecular diagnostic platforms, without hardware modifications and additional costs, thus potentially providing substantial clinical utility on screening patients for CPO carriage.
Collapse
Affiliation(s)
- Luca Miglietta
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom.,Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, London, United Kingdom
| | - Ahmad Moniri
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, London, United Kingdom
| | - Ivana Pennisi
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Kenny Malpartida-Cardenas
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, London, United Kingdom
| | - Hala Abbas
- Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Kerri Hill-Cawthorne
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Frances Bolt
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Elita Jauneikaite
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom.,Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | - Frances Davies
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom.,Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Alison Holmes
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom.,Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Pantelis Georgiou
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, London, United Kingdom
| | - Jesus Rodriguez-Manzano
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
76
|
Kim G, Lee SK, Suh DH, Kim K, No JH, Kim YB, Kim H. Clinical evaluation of a droplet digital PCR assay for detecting POLE mutations and molecular classification of endometrial cancer. J Gynecol Oncol 2021; 33:e15. [PMID: 34910396 PMCID: PMC8899877 DOI: 10.3802/jgo.2022.33.e15] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/21/2021] [Accepted: 11/15/2021] [Indexed: 11/30/2022] Open
Abstract
Objective We evaluated droplet digital polymerase chain reaction (ddPCR) method for detecting POLE mutations in endometrial cancer (EC) and guiding its molecular classification. Methods We reviewed 240 EC specimens from our hospital database. A ddPCR assay was used to identify POLE mutations at 5 known hotspots (P286R, S297F, V411L, A456P, and S459F). Expressions of p53 and mismatch repair proteins were identified using immunohistochemistry. Results The ddPCR assay identified POLE mutations in 10.8% of patients. The most common mutation was V411L (61.54%), followed by P286R (23.07%), S459F (7.69%), S297F (3.85%), and A456P (3.85%). Eight/one cases had positive ddPCR but negative Sanger sequencing/next-generation sequencing, respectively. Molecular classification revealed p53-mutated subtype as significantly more common for tumors with a high International Federation of Gynecology and Obstetrics (FIGO) grade, deep myometrial invasion, lymphovascular space invasion, advanced stage, and high/advanced risk groups; the POLE mutated group was more frequent in the low stage and low/intermediate risk group. Survival analyses revealed the poorest outcomes for p53-mutated EC, while mismatch repair-deficient and no specific molecular profile ECs had similar progression-free survival (PFS) outcomes, and POLE-mutated ECs had the best PFS outcome (p<0.001). When only intermediate, high-intermediate, and high-risk groups were analyzed for subgroups, molecular classification still showed differences both in PFS (p=0.003) and overall survival (p=0.017). Conclusion Hotspot POLE mutations can be detected using the ddPCR assay. We suggest simultaneously evaluating POLE mutation status using ddPCR and p53/mismatch repair protein expressions using immunohistochemistry, which can rapidly and accurately determine the molecular subtype of EC. Using droplet digital polymerase chain reaction (ddPCR), we successfully detected the 5 most frequent pathogenic hotspot mutations in the POLE gene in samples from endometrial cancer patients, thus confirming the utility of ddPCR in their identification.
Collapse
Affiliation(s)
- Gilhyang Kim
- Department of Pathology, Hallym University Kangnam Sacred Heart Hospital, Seoul, Korea
| | - Song Kook Lee
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Dong Hoon Suh
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Kidong Kim
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jae Hong No
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Yong Beom Kim
- Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Hyojin Kim
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Korea.
| |
Collapse
|
77
|
Yoshino O, Wong BKL, Cox DRA, Lee E, Hepworth G, Christophi C, Jones R, Dobrovic A, Muralidharan V, Perini MV. Elevated levels of circulating mitochondrial DNA predict early allograft dysfunction in patients following liver transplantation. J Gastroenterol Hepatol 2021; 36:3500-3507. [PMID: 34425021 DOI: 10.1111/jgh.15670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/02/2021] [Accepted: 08/10/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND AIM The role of circulating mitochondrial DNA (cmtDNA) in transplantation remains to be elucidated. cmtDNA may be released into the circulation as a consequence of liver injury; yet recent work also suggests a causative role for cmtDNA leading to hepatocellular injury. We hypothesized that elevated cmtDNA would be associated with adverse events after liver transplantation (LT) and conducted an observational cohort study. METHODS Twenty-one patients were enrolled prospectively prior to LT. RESULTS Postoperative complications were observed in 47.6% (n = 10). Seven patients (33.3%) had early allograft dysfunction (EAD), and six patients (28.5%) experienced acute cellular rejection within 6 months of LT. cmtDNA levels were significantly elevated in all recipients after LT compared with healthy controls and preoperative samples (1 361 937 copies/mL [IQR 586 781-3 399 687] after LT; 545 531 copies/mL [IQR 238 562-1 381 015] before LT; and 194 562 copies/mL [IQR 182 359-231 515] in healthy controls) and returned to normal levels by 5 days after transplantation. cmtDNA levels were particularly elevated in those who developed EAD in the early postoperative period (P < 0.001). In all patients, there was initially a strong overall positive correlation between cmtDNA and plasma hepatocellular enzyme levels (P < 0.05). However, the patients with EAD demonstrated a second peak in cmtDNA at postoperative day 7, which did not correlate with liver function tests. CONCLUSIONS The early release of plasma cmtDNA is strongly associated with hepatocellular damage; however, the late surge in cmtDNA in patients with EAD appeared to be independent of hepatocellular injury as measured by conventional tests.
Collapse
Affiliation(s)
- Osamu Yoshino
- Department of Surgery, Austin Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Boris Ka Leong Wong
- Translational Genomics and Epigenomics Laboratory, Department of Surgery-Austin Precinct, The University of Melbourne, Austin Hospital, Melbourne, Victoria, Australia.,School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
| | - Daniel R A Cox
- Department of Surgery, Austin Health, The University of Melbourne, Melbourne, Victoria, Australia.,Translational Genomics and Epigenomics Laboratory, Department of Surgery-Austin Precinct, The University of Melbourne, Austin Hospital, Melbourne, Victoria, Australia
| | - Eunice Lee
- Department of Surgery, Austin Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Graham Hepworth
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Christopher Christophi
- Department of Surgery, Austin Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Robert Jones
- Department of Surgery, Austin Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Alexander Dobrovic
- Department of Surgery, Austin Health, The University of Melbourne, Melbourne, Victoria, Australia.,Translational Genomics and Epigenomics Laboratory, Department of Surgery-Austin Precinct, The University of Melbourne, Austin Hospital, Melbourne, Victoria, Australia
| | | | - Marcos V Perini
- Department of Surgery, Austin Health, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
78
|
Zheng Y, Jin J, Shao Z, Liu J, Zhang R, Sun R, Hu B. Development and clinical validation of a droplet digital PCR assay for detecting Acinetobacter baumannii and Klebsiella pneumoniae in patients with suspected bloodstream infections. Microbiologyopen 2021; 10:e1247. [PMID: 34964298 PMCID: PMC8594765 DOI: 10.1002/mbo3.1247] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022] Open
Abstract
The relatively long turnaround time and low sensitivity of traditional blood culture-based diagnosis may delay effective antibiotic therapy for patients with bloodstream infections (BSIs). A rapid and sensitive pathogen detection method is urgently required to reduce the morbidity and mortality associated with BSIs. Acinetobacter baumannii and Klebsiella pneumoniae are two major microorganisms that cause BSIs. Here we report a novel droplet digital polymerase chain reaction (ddPCR) assay that can detect A. baumannii and K. pneumoniae in blood samples within 4 h, with a specificity of 100% for each strain and a limit of detection at 0.93 copies/μl for A. baumannii and 0.27 copies/μl for K. pneumoniae. Clinical validation of 170 patients with suspected BSIs showed that compared to blood cultures that detected four (2.4%) A. baumannii cases and seven (4.1%) K. pneumoniae cases, ddPCR detected 23 (13.5%) A. baumannii cases, 26 (15.3%) K. pneumoniae cases, and four (2.4%) co-infection cases, including the 11 cases detected via blood culture. In addition, patients who tested positive via ddPCR alone (n = 42) had significantly lower serum concentrations of procalcitonin and lactate, SOFA and APACHE II scores, and 28-day mortality than those reported positive via both blood culture and ddPCR (n = 11), suggesting that patients with less severe symptoms can potentially benefit from ddPCR-based diagnosis. In conclusion, our study suggests that ddPCR represents a sensitive and rapid method for identifying causal pathogens in blood samples and guiding treatment decisions in the early stages of BSIs.
Collapse
Affiliation(s)
- Yang Zheng
- Intensive Care UnitZhejiang Provincial People’s HospitalPeople’s Hospital of Hangzhou Medical CollegeHangzhouChina
| | - Jun Jin
- Intensive Care UnitZhejiang Provincial People’s HospitalPeople’s Hospital of Hangzhou Medical CollegeHangzhouChina
| | - Ziqiang Shao
- Intensive Care UnitZhejiang Provincial People’s HospitalPeople’s Hospital of Hangzhou Medical CollegeHangzhouChina
| | - Jingquan Liu
- Intensive Care UnitZhejiang Provincial People’s HospitalPeople’s Hospital of Hangzhou Medical CollegeHangzhouChina
| | - Run Zhang
- Intensive Care UnitZhejiang Provincial People’s HospitalPeople’s Hospital of Hangzhou Medical CollegeHangzhouChina
| | - Renhua Sun
- Intensive Care UnitZhejiang Provincial People’s HospitalPeople’s Hospital of Hangzhou Medical CollegeHangzhouChina
| | - Bangchuan Hu
- Intensive Care UnitZhejiang Provincial People’s HospitalPeople’s Hospital of Hangzhou Medical CollegeHangzhouChina
| |
Collapse
|
79
|
Cao L, Guo X, Mao P, Ren Y, Li Z, You M, Hu J, Tian M, Yao C, Li F, Xu F. A Portable Digital Loop-Mediated Isothermal Amplification Platform Based on Microgel Array and Hand-Held Reader. ACS Sens 2021; 6:3564-3574. [PMID: 34606243 DOI: 10.1021/acssensors.1c00603] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Digital polymerase chain reaction (dPCR) has found widespread applications in molecular diagnosis of various diseases owing to its sensitive single-molecule detection capability. However, the existing dPCR platforms rely on the auxiliary procedure to disperse DNA samples, which needs complicated operation, expensive apparatus, and consumables. Besides, the complex and costly dPCR readers also impede the applications of dPCR for point-of-care testing (POCT). Herein, we developed a portable digital loop-mediated isothermal amplification (dLAMP) platform, integrating a microscale hydrogel (microgel) array chip for sample partition, a miniaturized heater for DNA amplification, and a hand-held reader for digital readout. In the platform, the chip with thousands of isolated microgels holds the capability of self-absorption and partition of DNA samples, thus avoiding auxiliary equipment and professional personnel operations. Using the integrated dLAMP platform, λDNA templates have been quantified with a good linear detection range of 2-1000 copies/μL and a detection limit of 1 copy/μL. As a demonstration, the epidermal growth factor receptor L858R gene mutation, a crucial factor for the susceptibility of the tyrosine kinase inhibitor in non-small-cell lung cancer treatment, has been accurately identified by the dLAMP platform with a spiked plasma sample. This work shows that the developed dLAMP platform provides a low-cost, facile, and user-friendly solution for the absolute quantification of DNA, showing great potential for the POCT of nucleic acids.
Collapse
Affiliation(s)
- Lei Cao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, China
| | - Xiaojin Guo
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, China
- Department of Chemistry, School of Science, Xi’an Jiaotong University, Xi’an 710049, China
| | - Ping Mao
- Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yulin Ren
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, China
| | - Zedong Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, China
| | - Minli You
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, China
| | - Jie Hu
- Suzhou DiYinAn Biotechnology Company Ltd., Suzhou 215000, China
| | - Miao Tian
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, China
| | - Chunyan Yao
- Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Fei Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
80
|
Competitiveness of Quantitative Polymerase Chain Reaction (qPCR) and Droplet Digital Polymerase Chain Reaction (ddPCR) Technologies, with a Particular Focus on Detection of Antibiotic Resistance Genes (ARGs). Appl Microbiol 2021. [DOI: 10.3390/applmicrobiol1030028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
With fast-growing polymerase chain reaction (PCR) technologies and various application methods, the technique has benefited science and medical fields. While having strengths and limitations on each technology, there are not many studies comparing the efficiency and specificity of PCR technologies. The objective of this review is to summarize a large amount of scattered information on PCR technologies focused on the two majorly used technologies: qPCR (quantitative polymerase chain reaction) and ddPCR (droplet-digital polymerase chain reaction). Here we analyze and compare the two methods for (1) efficiency, (2) range of detection and limitations under different disciplines and gene targets, (3) optimization, and (4) status on antibiotic resistance genes (ARGs) analysis. It has been identified that the range of detection and quantification limit varies depending on the PCR method and the type of sample. Careful optimization of target gene analysis is essential for building robust analysis for both qPCR and ddPCR. In our era where mutation of genes may lead to a pandemic of viral infectious disease or antibiotic resistance-induced health threats, this study hopes to set guidelines for meticulous detection, quantification, and analysis to help future prevention and protection of global health, the economy, and ecosystems.
Collapse
|
81
|
Okamoto T, Nagaya K, Toriumi N, Sarashina T, Azuma H. Retrospective diagnosis of transient abnormal myelopoiesis by using preserved dried umbilical cord. Pediatr Int 2021; 63:1243-1245. [PMID: 34219329 DOI: 10.1111/ped.14583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/16/2020] [Accepted: 12/15/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Toshio Okamoto
- Division of Neonatology, Center for Maternity and Infant Care, Asahikawa Medical University Hospital, Hokkaido, Japan
| | - Ken Nagaya
- Division of Neonatology, Center for Maternity and Infant Care, Asahikawa Medical University Hospital, Hokkaido, Japan
| | - Naohisa Toriumi
- Department of Pediatrics, Asahikawa Medical University, Hokkaido, Japan
| | - Takeo Sarashina
- Department of Pediatrics, Asahikawa Medical University, Hokkaido, Japan
| | - Hiroshi Azuma
- Department of Pediatrics, Asahikawa Medical University, Hokkaido, Japan
| |
Collapse
|
82
|
Munjas J, Sopić M, Stefanović A, Košir R, Ninić A, Joksić I, Antonić T, Spasojević-Kalimanovska V, Prosenc Zmrzljak U. Non-Coding RNAs in Preeclampsia-Molecular Mechanisms and Diagnostic Potential. Int J Mol Sci 2021; 22:10652. [PMID: 34638993 PMCID: PMC8508896 DOI: 10.3390/ijms221910652] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 02/07/2023] Open
Abstract
Preeclampsia (PE) is a leading cause of maternal and neonatal morbidity and mortality worldwide. Defects in trophoblast invasion, differentiation of extravillous trophoblasts and spiral artery remodeling are key factors in PE development. Currently there are no predictive biomarkers clinically available for PE. Recent technological advancements empowered transcriptome exploration and led to the discovery of numerous non-coding RNA species of which microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are the most investigated. They are implicated in the regulation of numerous cellular functions, and as such are being extensively explored as potential biomarkers for various diseases. Altered expression of numerous lncRNAs and miRNAs in placenta has been related to pathophysiological processes that occur in preeclampsia. In the following text we offer summary of the latest knowledge of the molecular mechanism by which lnRNAs and miRNAs (focusing on the chromosome 19 miRNA cluster (C19MC)) contribute to pathophysiology of PE development and their potential utility as biomarkers of PE, with special focus on sample selection and techniques for the quantification of lncRNAs and miRNAs in maternal circulation.
Collapse
Affiliation(s)
- Jelena Munjas
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Street Vojvode Stepe 450, 11000 Belgrade, Serbia; (J.M.); (M.S.); (A.S.); (A.N.); (T.A.); (V.S.-K.)
| | - Miron Sopić
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Street Vojvode Stepe 450, 11000 Belgrade, Serbia; (J.M.); (M.S.); (A.S.); (A.N.); (T.A.); (V.S.-K.)
| | - Aleksandra Stefanović
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Street Vojvode Stepe 450, 11000 Belgrade, Serbia; (J.M.); (M.S.); (A.S.); (A.N.); (T.A.); (V.S.-K.)
| | - Rok Košir
- BIA Separations CRO, Labena Ltd., Street Verovškova 64, 1000 Ljubljana, Slovenia;
| | - Ana Ninić
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Street Vojvode Stepe 450, 11000 Belgrade, Serbia; (J.M.); (M.S.); (A.S.); (A.N.); (T.A.); (V.S.-K.)
| | - Ivana Joksić
- Genetic Laboratory Department, Obstetrics and Gynaecology Clinic “Narodni Front”, Street Kraljice Natalije 62, 11000 Belgrade, Serbia;
| | - Tamara Antonić
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Street Vojvode Stepe 450, 11000 Belgrade, Serbia; (J.M.); (M.S.); (A.S.); (A.N.); (T.A.); (V.S.-K.)
| | - Vesna Spasojević-Kalimanovska
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Street Vojvode Stepe 450, 11000 Belgrade, Serbia; (J.M.); (M.S.); (A.S.); (A.N.); (T.A.); (V.S.-K.)
| | | |
Collapse
|
83
|
Kim J, Kim DM, Park YJ, Lee ST, Kim HS, Kim MS, Kim BS, Choi JR. Expanding the Non-Invasive Diagnosis of Acute Rejection in Kidney Transplants Through Detection of Donor-Derived DNA in Urine: Proof-of-Concept Study. Ann Lab Med 2021; 41:469-478. [PMID: 33824235 PMCID: PMC8041594 DOI: 10.3343/alm.2021.41.5.469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/15/2020] [Accepted: 03/16/2021] [Indexed: 11/19/2022] Open
Abstract
Background Approximately 10%-20% of kidney transplant (KT) recipients suffer from acute rejection (AR); thus, sensitive and accurate monitoring of allograft status is recommended. We evaluated the clinical utility of donor-derived DNA (dd-DNA) detection in the urine of KT recipients as a non-invasive means for diagnosing AR. Methods Urine samples serially collected from 39 KT recipients were tested for 39 single-nucleotide variant loci selected according to technical criteria (i.e., high minor allele frequency and low analytical error) using next-generation sequencing. The fraction of dd-DNA was calculated and normalized by the urine creatinine (UCr) level (%dd-DNA/UCr). The diagnostic performance of %dd-DNA/UCr for AR was assessed by ROC curve analysis. Results There was an increasing trend of %dd-DNA/UCr in the AR group before subsequent graft injury, which occurred before (median of 52 days) histological rejection. The serum creatinine (SCr) level differed significantly between the AR and non-AR groups at two and four months of follow-up, whereas %dd-DNA/UCr differed between the groups at six months of follow-up. The combination of %dd-DNA/UCr, SCr, and spot urine protein (UPtn)/UCr showed high discriminating power, with an area under the ROC curve of 0.93 (95% confidence interval: 0.81-1.00) and a high negative predictive value of 100.0%. Conclusions Although the dd-DNA-based test cannot eliminate the need for biopsy, the high negative predictive value of this marker could increase the prebiopsy probability of detecting treatable injury to make biopsy an even more effective diagnostic tool.
Collapse
Affiliation(s)
- Jieun Kim
- Department of Laboratory Medicine, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Dong-Moung Kim
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Korea
| | - Yu Jin Park
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Seung-Tae Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Hyon-Suk Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Myoung Soo Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea.,Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Korea
| | - Beom Seok Kim
- Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Korea.,Division of Nephrology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Rak Choi
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
84
|
Szczepkowska A, Harazin A, Barna L, Deli MA, Skipor J. Identification of Reference Genes for Circadian Studies on Brain Microvessels and Choroid Plexus Samples Isolated from Rats. Biomolecules 2021; 11:biom11081227. [PMID: 34439891 PMCID: PMC8394446 DOI: 10.3390/biom11081227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/18/2022] Open
Abstract
Delivery of putative compounds of therapeutic value to the brain is limited by brain barriers: the blood–brain barrier located in the endothelium of the brain microvessels (BrMV) and the blood–cerebrospinal fluid barrier located in the epithelium of the choroid plexus (ChP). Understanding their function and modulation by the circadian clock may enhance the efficacy of brain-targeting therapies. The aim of the present study was to evaluate the stability of 10 reference genes in the BrMV and ChP, isolated from male and female rats at six time points (ZT1, 5, 9, 13, 17, and 21). Gene evaluations were performed by qPCR, analyzed by RefFinder tool, and verified by analyzing the expression of the brain and muscle ARNT-like 1 (Bmal1) using the qPCR and digital PCR methods. We identified as the most stable genes for circadian studies tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta (Ywhaz) and apolipoprotein E (Apoe) for BrMV, and beta actin (Actb) and hypoxanthine-guanine phosphoribosyltransferase (Hprt1) for ChP. After verification, ribosomal protein (Rps18) was also included as a sufficient reference gene. Additionally, the observed gender difference in the Bmal1 oscillations in both BrMV and ChP suggests that separate studies for each gender are recommended.
Collapse
Affiliation(s)
- Aleksandra Szczepkowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland;
- Correspondence: (A.S.); (M.A.D.); Tel.: +48-89-539-3125 (A.S.); +36-62-599602 (M.A.D.)
| | - András Harazin
- Institute of Biophysics, Biological Research Centre, 6726 Szeged, Hungary; (A.H.); (L.B.)
| | - Lilla Barna
- Institute of Biophysics, Biological Research Centre, 6726 Szeged, Hungary; (A.H.); (L.B.)
| | - Mária A. Deli
- Institute of Biophysics, Biological Research Centre, 6726 Szeged, Hungary; (A.H.); (L.B.)
- Correspondence: (A.S.); (M.A.D.); Tel.: +48-89-539-3125 (A.S.); +36-62-599602 (M.A.D.)
| | - Janina Skipor
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland;
| |
Collapse
|
85
|
Schlenker F, Kipf E, Borst N, Hutzenlaub T, Zengerle R, von Stetten F, Juelg P. Virtual Fluorescence Color Channels by Selective Photobleaching in Digital PCR Applied to the Quantification of KRAS Point Mutations. Anal Chem 2021; 93:10538-10545. [PMID: 34279918 DOI: 10.1021/acs.analchem.1c01488] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Multiplexing of analyses is essential to reduce sample and reagent consumption in applications with large target panels. In applications such as cancer diagnostics, the required degree of multiplexing often exceeds the number of available fluorescence channels in polymerase chain reaction (PCR) devices. The combination of photobleaching-sensitive and photobleaching-resistant fluorophores of the same color can boost the degree of multiplexing by a factor of 2 per channel. The only additional hardware required to create virtual fluorescence color channels is a low-cost light-emitting diode (LED) setup for selective photobleaching. Here, we present an assay concept for fluorescence color multiplexing in up to 10 channels (five standard channels plus five virtual channels) using the mediator probe PCR with universal reporter (UR) fluorogenic oligonucleotides. We evaluate the photobleaching characteristic of 21 URs, which cover the whole spectral range from blue to crimson. This comprehensive UR data set is employed to demonstrate the use of three virtual channels in addition to the three standard channels of a commercial dPCR device (blue, green, and red) targeting cancer-associated point mutations (KRAS G12D and G12V). Moreover, a LOD (limit of detection) analysis of this assay confirms the high sensitivity of the multiplexing method (KRAS G12D: 16 DNA copies/reaction in the standard red channel and KRAS G12V: nine DNA copies/reaction in the virtual red channel). Based on the presented data set, optimal fluorogenic reporter combinations can be easily selected for the application-specific creation of virtual channels, enabling a high degree of multiplexing at low optical and technical effort.
Collapse
Affiliation(s)
| | - Elena Kipf
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Nadine Borst
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.,Laboratory for MEMS Applications, IMTEK-Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Tobias Hutzenlaub
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.,Laboratory for MEMS Applications, IMTEK-Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Roland Zengerle
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.,Laboratory for MEMS Applications, IMTEK-Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Felix von Stetten
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.,Laboratory for MEMS Applications, IMTEK-Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Peter Juelg
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| |
Collapse
|
86
|
Huggett JF, Devonshire AS, Whale AS, Cowen S, Foy CA. Pushing the Envelope with Clinical Use of Digital PCR. Clin Chem 2021; 67:921-923. [PMID: 34120171 DOI: 10.1093/clinchem/hvab082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 11/12/2022]
Affiliation(s)
- Jim F Huggett
- Molecular & Cell Biology, National Measurement Laboratory, LGC, Teddington, UK
| | - Alison S Devonshire
- Molecular & Cell Biology, National Measurement Laboratory, LGC, Teddington, UK
| | - Alexandra S Whale
- Molecular & Cell Biology, National Measurement Laboratory, LGC, Teddington, UK
| | - Simon Cowen
- Molecular & Cell Biology, National Measurement Laboratory, LGC, Teddington, UK
| | - Carole A Foy
- Molecular & Cell Biology, National Measurement Laboratory, LGC, Teddington, UK
| |
Collapse
|
87
|
Radich J. Building a better mousetrap for accurate and sensitive polymerase chain reaction. Br J Haematol 2021; 194:11-13. [PMID: 34114207 DOI: 10.1111/bjh.17520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 11/27/2022]
Affiliation(s)
- Jerry Radich
- Clinical Research Division, Departments of Oncology and Haematology, University of Washingon, Seattle, WA, USA
| |
Collapse
|
88
|
Belay M, Tulu B, Younis S, Jolliffe DA, Tayachew D, Manwandu H, Abozen T, Tirfie EA, Tegegn M, Zewude A, Forrest S, Mayito J, Huggett JF, Jones GM, O'Sullivan DM, Martineau HM, Noursadeghi M, Chandran A, Harris KA, Nikolayevskyy V, Demaret J, Berg S, Vordermeier M, Balcha TT, Aseffa A, Ameni G, Abebe M, Reece ST, Martineau AR. Detection of Mycobacterium tuberculosis complex DNA in CD34-positive peripheral blood mononuclear cells of asymptomatic tuberculosis contacts: an observational study. THE LANCET. MICROBE 2021; 2:e267-e275. [PMID: 34100007 PMCID: PMC8172384 DOI: 10.1016/s2666-5247(21)00043-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Haematopoietic stem cells expressing the CD34 surface marker have been posited as a niche for Mycobacterium tuberculosis complex bacilli during latent tuberculosis infection. Our aim was to determine whether M tuberculosis complex DNA is detectable in CD34-positive peripheral blood mononuclear cells (PBMCs) isolated from asymptomatic adults living in a setting with a high tuberculosis burden. METHODS We did a cross-sectional study in Ethiopia between Nov 22, 2017, and Jan 10, 2019. Digital PCR (dPCR) was used to determine whether M tuberculosis complex DNA was detectable in PBMCs isolated from 100 mL blood taken from asymptomatic adults with HIV infection or a history of recent household or occupational exposure to an index case of human or bovine tuberculosis. Participants were recruited from HIV clinics, tuberculosis clinics, and cattle farms in and around Addis Ababa. A nested prospective study was done in a subset of HIV-infected individuals to evaluate whether administration of isoniazid preventive therapy was effective in clearing M tuberculosis complex DNA from PBMCs. Follow-up was done between July 20, 2018, and Feb 13, 2019. QuantiFERON-TB Gold assays were also done on all baseline and follow-up samples. FINDINGS Valid dPCR data (ie, droplet counts >10 000 per well) were available for paired CD34-positive and CD34-negative PBMC fractions from 197 (70%) of 284 participants who contributed data to cross-sectional analyses. M tuberculosis complex DNA was detected in PBMCs of 156 of 197 participants with valid dPCR data (79%, 95% CI 74-85). It was more commonly present in CD34-positive than in CD34-negative fractions (154 [73%] of 197 vs 46 [23%] of 197; p<0·0001). Prevalence of dPCR-detected M tuberculosis complex DNA did not differ between QuantiFERON-negative and QuantiFERON-positive participants (77 [78%] of 99 vs 79 [81%] of 98; p=0·73), but it was higher in HIV-infected than in HIV-uninfected participants (67 [89%] of 75 vs 89 [73%] of 122, p=0·0065). By contrast, the proportion of QuantiFERON-positive participants was lower in HIV-infected than in HIV-uninfected participants (25 [33%] of 75 vs 73 [60%] of 122; p<0·0001). Administration of isoniazid preventive therapy reduced the prevalence of dPCR-detected M tuberculosis complex DNA from 41 (95%) of 43 HIV-infected individuals at baseline to 23 (53%) of 43 after treatment (p<0·0001), but it did not affect the prevalence of QuantiFERON positivity (17 [40%] of 43 at baseline vs 13 [30%] of 43 after treatment; p=0·13). INTERPRETATION We report a novel molecular microbiological biomarker of latent tuberculosis infection with properties that are distinct from those of a commercial interferon-γ release assay. Our findings implicate the bone marrow as a niche for M tuberculosis in latently infected individuals. Detection of M tuberculosis complex DNA in PBMCs has potential applications in the diagnosis of latent tuberculosis infection, in monitoring response to preventive therapy, and as an outcome measure in clinical trials of interventions to prevent or treat latent tuberculosis infection. FUNDING UK Medical Research Council.
Collapse
Affiliation(s)
- Mulugeta Belay
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
- Institute of Health and Society, University of Oslo, Oslo, Norway
| | - Begna Tulu
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Medical Laboratory Science, Bahir Dar University, Bahir Dar, Ethiopia
| | - Sidra Younis
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National University of Medical Sciences, Rawalpindi, Punjab, Pakistan
| | - David A Jolliffe
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Dawit Tayachew
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Hana Manwandu
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | | | | | | | - Aboma Zewude
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Sally Forrest
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Jonathan Mayito
- School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Jim F Huggett
- National Measurement Laboratory, LGC, Teddington, Middlesex, UK
- School of Biosciences & Medicine, Faculty of Health & Medical Science, University of Surrey, Guildford, UK
| | - Gerwyn M Jones
- National Measurement Laboratory, LGC, Teddington, Middlesex, UK
| | | | | | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, London, UK
| | - Aneesh Chandran
- Division of Infection and Immunity, University College London, London, UK
| | - Kathryn A Harris
- Camelia Botnar Laboratories, Great Ormond Street Hospital for Children, London, UK
| | - Vlad Nikolayevskyy
- National Mycobacterium Reference Service—South, National Infection Service, London, UK
| | - Julie Demaret
- Institut d'Immunologie, Centre de Biologie-Pathologie-Génétique du CHRU de Lille, Lille, France
| | | | | | - Taye T Balcha
- Clinical Infection Medicine, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Gobena Ameni
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Veterinary Medicine, College of Food and Agriculture, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Markos Abebe
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Stephen T Reece
- Department of Medicine, University of Cambridge, Cambridge, UK
- Kymab, Babraham Research Campus, Cambridge, UK
| | - Adrian R Martineau
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
89
|
Min YK, Park KS. The Application of Control Materials for Ongoing Quality Management of Next-Generation Sequencing in a Clinical Genetic Laboratory. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:543. [PMID: 34071304 PMCID: PMC8227145 DOI: 10.3390/medicina57060543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022]
Abstract
Next-generation sequencing (NGS) has played an important role in detecting genetic variants with pathologic and therapeutic potential. The advantages of NGS, such as high-throughput sequencing capacity and massively parallel sequencing, have a significant impact on realization of genetic profiling in clinical genetic laboratories. These changes have enabled clinicians to execute precision medicine in diagnosis, prognosis, and treatment for patients. However, to adapt targeted gene panels in diagnostic use, analytical validation and ongoing quality control should be implemented and applied with both practical guidelines and appropriate control materials. Several guidelines for NGS quality control recommend usage of control materials such as HapMap cell lines, synthetic DNA fragments, and genetically characterized cell lines; however, specifications or applications of such usage are insufficient to guideline method development. This review focuses on what factors should be considered before control material selection for NGS assay and practical methods of how they could be developed in clinical genetic laboratories. This review also provides the detailed sources of critical information related to control materials.
Collapse
Affiliation(s)
- Young-Kyu Min
- Department of Medical Laser, Dankook University, Chungnam 31116, Korea;
- Department of Laboratory Medicine, Severance Hospital, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Kyung-Sun Park
- Department of Laboratory Medicine, Kyung Hee University School of Medicine and Kyung Hee University Medical Center, Seoul 02447, Korea
| |
Collapse
|
90
|
Cassinari K, Alessandri-Gradt E, Chambon P, Charbonnier F, Gracias S, Beaussire L, Alexandre K, Sarafan-Vasseur N, Houdayer C, Etienne M, Caron F, Plantier JC, Frebourg T. Assessment of Multiplex Digital Droplet RT-PCR as a Diagnostic Tool for SARS-CoV-2 Detection in Nasopharyngeal Swabs and Saliva Samples. Clin Chem 2021; 67:736-741. [PMID: 33331864 PMCID: PMC7799276 DOI: 10.1093/clinchem/hvaa323] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/23/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Reverse transcription-quantitative PCR on nasopharyngeal swabs is currently the reference COVID-19 diagnosis method but exhibits imperfect sensitivity. METHODS We developed a multiplex reverse transcription-digital droplet PCR (RT-ddPCR) assay, targeting 6 SARS-CoV-2 genomic regions, and evaluated it on nasopharyngeal swabs and saliva samples collected from 130 COVID-19 positive or negative ambulatory individuals, who presented symptoms suggestive of mild or moderate SARS-CoV2 infection. RESULTS For the nasopharyngeal swab samples, the results obtained using the 6-plex RT-ddPCR and RT-qPCR assays were all concordant. The 6-plex RT-ddPCR assay was more sensitive than RT-qPCR (85% versus 62%) on saliva samples from patients with positive nasopharyngeal swabs. CONCLUSION Multiplex RT-ddPCR represents an alternative and complementary tool for the diagnosis of COVID-19, in particular to control RT-qPCR ambiguous results. It can also be applied to saliva for repetitive sampling and testing individuals for whom nasopharyngeal swabbing is not possible.
Collapse
Affiliation(s)
- Kévin Cassinari
- Department of Genetics, Rouen University Hospital and Inserm U1245, UNIROUEN, Normandie University, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Elodie Alessandri-Gradt
- Virology Laboratory, Rouen University Hospital, Rouen, France.,Research Group on Microbial Adaptation, GRAM, UNIROUEN, Normandie University, Rouen, France
| | - Pascal Chambon
- Department of Genetics, Rouen University Hospital and Inserm U1245, UNIROUEN, Normandie University, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Françoise Charbonnier
- Department of Genetics, Rouen University Hospital and Inserm U1245, UNIROUEN, Normandie University, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Ségolène Gracias
- Virology Laboratory, Rouen University Hospital, Rouen, France.,Research Group on Microbial Adaptation, GRAM, UNIROUEN, Normandie University, Rouen, France
| | - Ludivine Beaussire
- Department of Genetics, Rouen University Hospital and Inserm U1245, UNIROUEN, Normandie University, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Kevin Alexandre
- Research Group on Microbial Adaptation, GRAM, UNIROUEN, Normandie University, Rouen, France.,Department of Infectious Diseases, Rouen University Hospital, Rouen, France
| | - Nasrin Sarafan-Vasseur
- Department of Genetics, Rouen University Hospital and Inserm U1245, UNIROUEN, Normandie University, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Claude Houdayer
- Department of Genetics, Rouen University Hospital and Inserm U1245, UNIROUEN, Normandie University, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Manuel Etienne
- Research Group on Microbial Adaptation, GRAM, UNIROUEN, Normandie University, Rouen, France.,Department of Infectious Diseases, Rouen University Hospital, Rouen, France
| | - François Caron
- Research Group on Microbial Adaptation, GRAM, UNIROUEN, Normandie University, Rouen, France.,Department of Infectious Diseases, Rouen University Hospital, Rouen, France
| | - Jean Christophe Plantier
- Virology Laboratory, Rouen University Hospital, Rouen, France.,Research Group on Microbial Adaptation, GRAM, UNIROUEN, Normandie University, Rouen, France
| | - Thierry Frebourg
- Department of Genetics, Rouen University Hospital and Inserm U1245, UNIROUEN, Normandie University, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| |
Collapse
|
91
|
Alignment of Qx100/Qx200 Droplet Digital (Bio-Rad) and QuantStudio 3D (Thermofisher) Digital PCR for Quantification of BCR-ABL1 in Ph+ Chronic Myeloid Leukemia. Diseases 2021; 9:diseases9020035. [PMID: 34062996 PMCID: PMC8161814 DOI: 10.3390/diseases9020035] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 01/06/2023] Open
Abstract
In recent years, the digital polymerase chain reaction has received increasing interest as it has emerged as a tool to provide more sensitive and accurate detection of minimal residual disease. In order to start the process of data alignment, we assessed the consistency of the BCR-ABL1 quantification results of the analysis of 16 RNA samples at different levels of disease. The results were obtained by two different laboratories that relied on The Qx100/Qx200 Droplet Digital PCR System (Bio-Rad) and Quant Studio 3D dPCR System (Thermofisher) platforms. We assessed the compatibility between the estimated values by linear regression, Bland-Altman bias-plot, and Mann-Whitney nonparametric test. The results confirmed the compatibility of the measures, allowing us tocompute an 'alignment factor' (AF), equal to 1.41, which was further validated by a different series of experiments. We conclude that the performed measurements by the two laboratories are comparable, and also equalized through the introduction of an alignment factor.
Collapse
|
92
|
Qin Z, Xiang X, Xue L, Cai W, Gao J, Yang J, Liang Y, Wang L, Chen M, Pang R, Li Y, Zhang J, Hu Y, Wu Q. Development of a novel RAA-based microfluidic chip for absolute quantitative detection of human norovirus. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
93
|
Lee HJ, Shin KH, Jeong SJ, Kim IS. Comparison of single nucleotide polymorphisms and short tandem repeats as markers for differentiating between donors and recipients in solid organ transplantation. KOREAN JOURNAL OF TRANSPLANTATION 2021; 35:1-7. [PMID: 35769615 PMCID: PMC9235337 DOI: 10.4285/kjt.20.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/12/2020] [Accepted: 12/10/2020] [Indexed: 11/04/2022] Open
Abstract
Background Methods Results Conclusions
Collapse
Affiliation(s)
- Hyun-Ji Lee
- Department of Laboratory Medicine, and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Kyoung-Hwa Shin
- Department of Laboratory Medicine, Pusan National University Hospital, Busan, Korea
| | - Su Jeong Jeong
- Department of Laboratory Medicine, and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - In Suk Kim
- Department of Laboratory Medicine, and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| |
Collapse
|
94
|
Huggett JF. The Digital MIQE Guidelines Update: Minimum Information for Publication of Quantitative Digital PCR Experiments for 2020. Clin Chem 2021; 66:1012-1029. [PMID: 32746458 DOI: 10.1093/clinchem/hvaa125] [Citation(s) in RCA: 224] [Impact Index Per Article: 74.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/18/2020] [Indexed: 12/17/2022]
Abstract
Digital PCR (dPCR) has developed considerably since the publication of the Minimum Information for Publication of Digital PCR Experiments (dMIQE) guidelines in 2013, with advances in instrumentation, software, applications, and our understanding of its technological potential. Yet these developments also have associated challenges; data analysis steps, including threshold setting, can be difficult and preanalytical steps required to purify, concentrate, and modify nucleic acids can lead to measurement error. To assist independent corroboration of conclusions, comprehensive disclosure of all relevant experimental details is required. To support the community and reflect the growing use of dPCR, we present an update to dMIQE, dMIQE2020, including a simplified dMIQE table format to assist researchers in providing key experimental information and understanding of the associated experimental process. Adoption of dMIQE2020 by the scientific community will assist in standardizing experimental protocols, maximize efficient utilization of resources, and further enhance the impact of this powerful technology.
Collapse
|
95
|
Martinez RJ, Kang Q, Nennig D, Bailey NG, Brown NA, Betz BL, Tewari M, Thyagarajan B, Bachanova V, Mroz P. One-Step Multiplexed Droplet Digital Polymerase Chain Reaction for Quantification of p190 BCR-ABL1 Fusion Transcript in B-Lymphoblastic Leukemia. Arch Pathol Lab Med 2021; 146:92-100. [PMID: 33769465 DOI: 10.5858/arpa.2020-0454-oa] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2021] [Indexed: 11/06/2022]
Abstract
CONTEXT.— Quantification and detection of the t(9;22) (BCR-ABL1) translocation in chronic myelogenous leukemia and B-lymphoblastic leukemia are important for directing treatment protocols and monitoring disease relapse. However, quantification using traditional reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) is dependent on a calibration curve and is prone to laboratory-to-laboratory variation. Droplet digital polymerase chain reaction (ddPCR) is a novel method that allows for highly sensitive absolute quantification of transcript copy number. As such, ddPCR is a good candidate for disease monitoring, an assay requiring reproducible measurements with high specificity and sensitivity. OBJECTIVE.— To compare results of ddPCR and RT-qPCR BCR-ABL1 fusion transcript measurements of patient samples and determine if either method is superior. DESIGN.— We optimized and standardized a 1-step multiplexed ddPCR assay to detect BCR-ABL1 p190 and ABL1 e10 transcripts. The ddPCR optimization included varying cycle number and primer concentration with standardization of droplet generation and droplet number and analyses to improve data sensitivity. Following optimization, ddPCR measurements were performed on clinical samples and compared with traditional RT-qPCR results. RESULTS.— Droplet digital polymerase chain reaction was able to detect the BCR-ABL1 p190 transcript to 0.001% (1:10-5) with a calculated limit of detection and limit of quantitation of 4.1 and 5.3 transcripts, respectively. When tested on patient samples, ddPCR was able to identify 20% more positives than a laboratory-developed 2-step RT-qPCR assay. CONCLUSIONS.— Droplet digital polymerase chain reaction demonstrated increased detection of BCR-ABL1 compared with RT-qPCR. Improved detection of BCR-ABL1 p190 and the potential for improved standardization across multiple laboratories makes ddPCR a suitable method for the disease monitoring in patients with acute B-lymphoblastic leukemia.
Collapse
Affiliation(s)
- Ryan J Martinez
- From the Department of Laboratory Medicine and Pathology (Martinez, Nennig, Thyagarajan, Mroz)
| | - Qing Kang
- the Division of Hematology and Oncology, Department of Internal Medicine (Kang, Tewari)
| | - Davis Nennig
- From the Department of Laboratory Medicine and Pathology (Martinez, Nennig, Thyagarajan, Mroz)
| | - Nathanael G Bailey
- the Division of Hematopathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania (Bailey)
| | | | | | - Muneesh Tewari
- the Division of Hematology and Oncology, Department of Internal Medicine (Kang, Tewari).,the Center for Computational Medicine and Bioinformatics (Tewari).,the Department of Biomedical Engineering (Tewari), University of Michigan, Ann Arbor
| | - Bharat Thyagarajan
- From the Department of Laboratory Medicine and Pathology (Martinez, Nennig, Thyagarajan, Mroz)
| | - Veronika Bachanova
- the Division of Hematology-Oncology and Transplantation (Bachanova), University of Minnesota, Minneapolis
| | - Pawel Mroz
- From the Department of Laboratory Medicine and Pathology (Martinez, Nennig, Thyagarajan, Mroz)
| |
Collapse
|
96
|
Nowacka-Woszuk J, Mackowski M, Stefaniuk-Szmukier M, Cieslak J. The equine graying with age mutation of the STX17 gene: A copy number study using droplet digital PCR reveals a new pattern. Anim Genet 2021; 52:223-227. [PMID: 33550611 DOI: 10.1111/age.13044] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2021] [Indexed: 01/05/2023]
Abstract
The equine graying with age causative mutation in the syntaxin-17 gene (STX17) has been known for over a decade, but proper genotyping of this variant remains challenging due to its molecular character (4.6-kb tandem duplication). Precise information on gray mutation status is important for horse breeders and veterinarians, since gray homozygous horses are more prone to developing aggressive melanoma tumors than heterozygotes. Since recent studies have confirmed that droplet digital PCR is a valuable technique for copy number analysis, we decided to investigate whether this method can be used for accurate genotyping of the horse graying-related variant and established the copy numbers of the 4.6-kb fragment in the available cohort (n = 75) of gray and nongray horses of various breeds. Surprisingly, we found that our STX17 genotype results varied from what has been previously published, suggesting that gray phenotype is associated with the presence of six (GG) or four (Gg) copies of studied region. All the examined nongray horses (gg) have the two copies of these fragments. This new pattern and its inheritance were also confirmed by an analysis conducted for the Polish Warmblood horse family. We noted no further copy number variation in the entire tested samples set. Our study confirmed the usefulness and accuracy of droplet digital PCR for genotyping STX17 gene variant. Further studies on a broader range of materials are needed to fully understand the origin and molecular structure of the graying causative mutation in the horse STX17.
Collapse
Affiliation(s)
- J Nowacka-Woszuk
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, Poznan, 60-637, Poland
| | - M Mackowski
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, Poznan, 60-637, Poland.,Horse Genetic Markers Laboratory, Poznan University of Life Sciences, Wolynska 33, Poznan, 60-637, Poland
| | - M Stefaniuk-Szmukier
- Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture in Krakow, Mickiewicza 24/28, Krakow, 30-059, Poland
| | - J Cieslak
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, Poznan, 60-637, Poland
| |
Collapse
|
97
|
Gao R, Liao X, Zhao X, Liu D, Ding T. The diagnostic tools for viable but nonculturable pathogens in the food industry: Current status and future prospects. Compr Rev Food Sci Food Saf 2021; 20:2146-2175. [PMID: 33484068 DOI: 10.1111/1541-4337.12695] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 12/21/2022]
Abstract
Viable but nonculturable (VBNC) microorganisms have been recognized as pathogenic contaminants in foods and environments. The failure of VBNC cells to form the visible colonies hinders the ability to use conventional media for their detection. Efficient and rapid detection of pathogens in the VBNC state is a prerequisite to ensure the food safety and public health. Despite their nonculturability, VBNC cells have distinct characteristics, such as morphology, metabolism, chemical composition, and gene and protein expression, that have been used as the basis for the development of abundant diagnostic tools. This review covers the current status and advances in various approaches for examining microorganisms in the VBNC state, including but not limited to the methodological aspects, advantages, and drawbacks of each technique. Existing methods, such as direct viable count, SYTO/PI dual staining, and propidium monoazide quantitative polymerase chain reaction (PCR), as well as some techniques with potential to be applied in the future, such as digital PCR, enhanced-surface Raman spectroscopy, and impedance-based techniques, are summarized in depth. Finally, future prospects for the one-step detection of VBNC bacteria are proposed and discussed. We believe that this review can provide more optional methods for researchers and promote the development of rapid, accurate detecting methods, and for inspectors, the diagnostic tools can provide data to undertake risk analysis of VBNC cells.
Collapse
Affiliation(s)
- Rui Gao
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinyu Liao
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xihong Zhao
- Research Center for Environmental Ecology and Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Donghong Liu
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tian Ding
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
98
|
Choi Y, Song Y, Kim YT, Lee SJ, Lee KG, Im SG. Multifunctional Printable Micropattern Array for Digital Nucleic Acid Assay for Microbial Pathogen Detection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:3098-3108. [PMID: 33423455 DOI: 10.1021/acsami.0c16862] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The digital nucleic acid assay is a precise, sensitive, and reproducible method for determining the presence of individual target molecules separated in designated partitions; thus, this technique can be used for the nucleic acid detection. Here, we propose a multifunctional micropattern array capable of isolating individual target molecules into partitions and simultaneous on-site cell lysis to achieve a direct DNA extraction and digitized quantification thereof. The multifunctional micropattern array is fabricated by the deposition of a copolymer film, poly(2-dimethylaminomethyl styrene-co-hydroxyethyl methacrylate) (pDH), directly on a microfluidic chip surface via the photoinitiated chemical vapor deposition process, followed by hydrophobic microcontact printing (μCP) to define each partition for the nucleic acid isolation. The pDH layer is a positively charged surface, which is desirable for the bacterial lysis and DNA capture, while showing exceptional water stability for more than 24 h. The hydrophobic μCP-treated pDH surface is stable under aqueous conditions at a high temperature (70 °C) for 1 h and enables the rapid and reliable formation of thousands of sessile microdroplets for the compartmentalization of an aqueous sample solution without involving bulky and costly microfluidic devices. By assembling the multifunctional micropattern array into the microfluidic chip, the isothermal amplification in each partition can detect DNA templates over a concentration range of 0.01-2 ng/μL. The untreated bacterial cells can also be directly compartmentalized via the microdroplet formation, followed by the on-site cell lysis and DNA capture on the compartmentalized pDH surface. For Escherichia coli O157:H7, Salmonella enteritidis, and Staphylococcus aureus cells, cell numbers ranging from 1.4 × 104 to 1.4 × 107 can be distinguished by using the multifunctional micropattern array, regardless of the cell type. The multifunctional micropattern array developed in this study provides a novel multifunctional compartmentalization method for rapid, simple, and accurate digital nucleic acid assays.
Collapse
Affiliation(s)
- Yunho Choi
- Department of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Younseong Song
- Department of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Yong Tae Kim
- Department of Chemical Engineering & Biotechnology, Korea Polytechnic University, 237 Sangidaehak-ro, Siheung-si, Gyeonggi-do 15073, Republic of Korea
| | - Seok Jae Lee
- National Nanofab Center, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Kyoung G Lee
- National Nanofab Center, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sung Gap Im
- Department of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- KAIST Institute for NanoCentury, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
99
|
Comparison of Seven Commercial Severe Acute Respiratory Syndrome Coronavirus 2 Nucleic Acid Detection Reagents with Pseudovirus as Quality Control Material. J Mol Diagn 2020; 23:300-309. [PMID: 33383210 PMCID: PMC7769707 DOI: 10.1016/j.jmoldx.2020.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/19/2020] [Accepted: 12/14/2020] [Indexed: 12/26/2022] Open
Abstract
The ongoing pandemic of coronavirus disease 2019 threatens the whole world, which catalyzes a variety of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleic acid test (NAT) kits. To monitor test quality and evaluate NAT kits, quality control materials that best simulate real clinical samples are needed. In this study, the performance of SARS-CoV-2 cell culture supernatant, PCDH-based pseudovirus, and MS2-based pseudovirus as quality control materials was compared. PCDH-based pseudovirus was found to be more similar in characteristics to SARS-CoV-2 particle, and more suitable for evaluating SARS-CoV-2 NAT kits than MS2-based pseudovirus. Proper detection using sensitive and precise NAT kits is essential to guarantee diagnosis. Thus, limit of detection, precision, anti-inference ability, and cross-reactivity of NAT kits from PerkinElmer, Beijing Wantai Biological Pharmacy Enterprise Co, Ltd, Shanghai Kehua Bio-Engineering Co, Ltd, Sansure Biotech Inc., Da An Gene Co, Ltd, Shanghai BioGerm Medical Biotechnology Co, Ltd, and Applied Biological Technologies Co, Ltd, were compared using PCDH-based pseudovirus. For the seven kits evaluated, N gene was more sensitive than ORF1ab gene in most kits, whereas E gene was most sensitive among the three genes in Shanghai Kehua Bio-Engineering Co, Ltd, and Applied Biological Technologies Co, Ltd. PerkinElmer got the lowest limit of detection for N gene at 11.61 copies/mL, and the value was 34.66 copies/mL for ORF1ab gene. All of the kits showed good precision, with CV values less than 5%, as well as acceptable anti-interference ability of 2 mg/L human genomic DNA. No cross-reactivity was observed with other respiratory viruses.
Collapse
|
100
|
Steele JL, Stevens RC, Cabrera OA, Bassill GJ, Cramer SM, Guzman F, Shuber AP. Novel CRISPR-based sequence specific enrichment methods for target loci and single base mutations. PLoS One 2020; 15:e0243781. [PMID: 33362267 PMCID: PMC7757808 DOI: 10.1371/journal.pone.0243781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/25/2020] [Indexed: 01/10/2023] Open
Abstract
The programmable sequence specificity of CRISPR has found uses in gene editing and diagnostics. This manuscript describes an additional application of CRISPR through a family of novel DNA enrichment technologies. CAMP (CRISPR Associated Multiplexed PCR) and cCAMP (chimeric CRISPR Associated Multiplexed PCR) utilize the sequence specificity of the Cas9/sgRNA complex to target loci for the ligation of a universal adapter that is used for subsequent amplification. cTRACE (chimeric Targeting Rare Alleles with CRISPR-based Enrichment) also applies this method to use Cas9/sgRNA to target loci for the addition of universal adapters, however it has an additional selection for specific mutations through the use of an allele-specific primer. These three methods can produce multiplex PCR that significantly reduces the optimization required for every target. The methods are also not specific to any downstream analytical platform. We additionally will present a mutation specific enrichment technology that is non-amplification based and leaves the DNA in its native state: TRACE (Targeting Rare Alleles with CRISPR-based Enrichment). TRACE utilizes the Cas9/sgRNA complex to sterically protect the ends of targeted sequences from exonuclease activity which digests both the normal variant as well as any off-target sequences.
Collapse
Affiliation(s)
| | | | - Oscar A. Cabrera
- Genetics Research LLC, Waltham, Massachusetts, United States of America
| | - Gary J. Bassill
- Genetics Research LLC, Waltham, Massachusetts, United States of America
| | - Sabrina M. Cramer
- Genetics Research LLC, Waltham, Massachusetts, United States of America
| | - Felipe Guzman
- Genetics Research LLC, Waltham, Massachusetts, United States of America
| | - Anthony P. Shuber
- Genetics Research LLC, Waltham, Massachusetts, United States of America
| |
Collapse
|