51
|
Abstract
Gambling disorder is characterized by a persistent, recurrent pattern of gambling that is associated with substantial distress or impairment. The prevalence of gambling disorder has been estimated at 0.5% of the adult population in the United States, with comparable or slightly higher estimates in other countries. The aetiology of gambling disorder is complex, with implicated genetic and environmental factors. Neurobiological studies have implicated cortico-striato-limbic structures and circuits in the pathophysiology of this disorder. Individuals with gambling disorder often go unrecognized and untreated, including within clinical settings. Gambling disorder frequently co-occurs with other conditions, particularly other psychiatric disorders. Behavioural interventions, particularly cognitive-behavioural therapy but also motivational interviewing and Gamblers Anonymous, are supported in the treatment of gambling disorder. No pharmacological therapy has a formal indication for the treatment of gambling disorder, although placebo-controlled trials suggest that some medications, such as opioid-receptor antagonists, may be helpful. Given the associations with poor quality of life and suicide, improved identification, prevention, policy and treatment efforts are needed to help people with gambling disorder.
Collapse
|
52
|
Shalev N, Vangkilde S, Neville MJ, Tunbridge EM, Nobre AC, Chechlacz M. Dissociable Catecholaminergic Modulation of Visual Attention: Differential Effects of Catechol-O-Methyltransferase and Dopamine Beta-Hydroxylase Genes on Visual Attention. Neuroscience 2019; 412:175-189. [PMID: 31195057 PMCID: PMC6645579 DOI: 10.1016/j.neuroscience.2019.05.068] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 01/17/2023]
Abstract
Visual attention enables us to prioritise behaviourally relevant visual information while ignoring distraction. The neural networks supporting attention are modulated by two catecholamines, dopamine and noradrenaline. The current study investigated the effects of single nucleotide polymorphisms in two catecholaminergic genes – COMT (Val158Met) and DBH (444 G/A) – on individual differences in attention functions. Participants (n = 125) were recruited from the Oxford Biobank by genotype-based recall. They were tested on a continuous performance task (sustained attention), a Go/No-Go task (response inhibition), and a task assessing attentional selection in accordance with the Theory of Visual Attention (TVA). We found a significant effect of DBH genotype status on the capacity to maintain attention over time (sustained attention) as measured by the continuous performance task. Furthermore, we demonstrated a significant association between COMT genotype status and effective threshold of visual perception in attentional selection as estimated based on the TVA task performance. No other group differences in attention function were found with respect to the studied genotypes. Overall, our findings provide novel experimental evidence that: (i) dopaminergic and noradrenergic genotypes have dissociable effects on visual attention; (ii) either insufficient or excessive catecholaminergic activity may have equally detrimental effects on sustained attention. Catecholaminergic genotypes have dissociative cognitive effects on visual attention. DBH (444 G/A) polymorphism affects sustained attention. COMT Val158Met polymorphism affects perceptual threshold in visual attention. Both too little and too much catecholamines may detrimentally impact sustained attention.
Collapse
Affiliation(s)
- Nir Shalev
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Oxford Centre for Human Brain Activity, University of Oxford, Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Signe Vangkilde
- Department of Psychology, Center for Visual Cognition, University of Copenhagen, Copenhagen, Denmark
| | - Matt J Neville
- Oxford NIHR Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK; Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Elizabeth M Tunbridge
- Department of Psychiatry, University of Oxford, Oxford, UK; Oxford Health NHS Foundation Trust, Oxford, UK
| | - Anna C Nobre
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Oxford Centre for Human Brain Activity, University of Oxford, Oxford, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK; Department of Psychiatry, University of Oxford, Oxford, UK
| | - Magdalena Chechlacz
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Centre for Human Brain Health, University of Birmingham, Birmingham, UK; School of Psychology, University of Birmingham, Birmingham, UK; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, USA.
| |
Collapse
|
53
|
How Microbes Shape Their Communities? A Microbial Community Model Based on Functional Genes. GENOMICS PROTEOMICS & BIOINFORMATICS 2019; 17:91-105. [PMID: 31026577 PMCID: PMC6521236 DOI: 10.1016/j.gpb.2018.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/07/2018] [Accepted: 09/25/2018] [Indexed: 12/13/2022]
Abstract
Exploring the mechanisms of maintaining microbial community structure is important to understand biofilm development or microbiota dysbiosis. In this paper, we propose a functional gene-based composition prediction (FCP) model to predict the population structure composition within a microbial community. The model predicts the community composition well in both a low-complexity community as acid mine drainage (AMD) microbiota, and a complex community as human gut microbiota. Furthermore, we define community structure shaping (CSS) genes as functional genes crucial for shaping the microbial community. We have identified CSS genes in AMD and human gut microbiota samples with FCP model and find that CSS genes change with the conditions. Compared to essential genes for microbes, CSS genes are significantly enriched in the genes involved in mobile genetic elements, cell motility, and defense mechanisms, indicating that the functions of CSS genes are focused on communication and strategies in response to the environment factors. We further find that it is the minority, rather than the majority, which contributes to maintaining community structure. Compared to health control samples, we find that some functional genes associated with metabolism of amino acids, nucleotides, and lipopolysaccharide are more likely to be CSS genes in the disease group. CSS genes may help us to understand critical cellular processes and be useful in seeking addable gene circuitries to maintain artificial self-sustainable communities. Our study suggests that functional genes are important to the assembly of microbial communities.
Collapse
|
54
|
Ye J, Ji F, Jiang D, Lin X, Chen G, Zhang W, Shan P, Zhang L, Zhuo C. Polymorphisms in Dopaminergic Genes in Schizophrenia and Their Implications in Motor Deficits and Antipsychotic Treatment. Front Neurosci 2019; 13:355. [PMID: 31057354 PMCID: PMC6479209 DOI: 10.3389/fnins.2019.00355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/28/2019] [Indexed: 12/14/2022] Open
Abstract
Dopaminergic system dysfunction is involved in schizophrenia (SCZ) pathogenesis and can mediate SCZ-related motor disorders. Recent studies have gradually revealed that SCZ susceptibility and the associated motor symptoms can be mediated by genetic factors, including dopaminergic genes. More importantly, polymorphisms in these genes are associated with both antipsychotic drug sensitivity and adverse effects. The study of genetic polymorphisms in the dopaminergic system may help to optimize individualized drug strategies for SCZ patients. This review summarizes the current progress about the involvement of the dopamine system in SCZ-associated motor disorders and the motor-related adverse effects after antipsychotic treatment, with a special focus on polymorphisms in dopaminergic genes. We hypothesize that the genetic profile of the dopaminergic system mediates both SCZ-associated motor deficits associated and antipsychotic drug-related adverse effects. The study of dopaminergic gene polymorphisms may help to predict drug efficacy and decrease adverse effects, thereby optimizing treatment strategies.
Collapse
Affiliation(s)
- Jiaen Ye
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Feng Ji
- Department of Psychiatry, College of Mental Health, Jining Medical University, Jining, China
| | - Deguo Jiang
- Department of Psychiatric-Neuroimaging-Genetics and Morbidity Laboratory (PNGC-Lab), Nankai University Affiliated Tianjin Anding Hospital, Tianjin Mental Health Center, Mental Health Teaching Hospital, Tianjin Medical University, Tianjin, China
| | - Xiaodong Lin
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Guangdong Chen
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Wei Zhang
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Peiwei Shan
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Li Zhang
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Chuanjun Zhuo
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, China.,Department of Psychiatry, College of Mental Health, Jining Medical University, Jining, China.,Department of Psychiatric-Neuroimaging-Genetics and Morbidity Laboratory (PNGC-Lab), Nankai University Affiliated Tianjin Anding Hospital, Tianjin Mental Health Center, Mental Health Teaching Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
55
|
Yang X, Zhang J, Zhang S. No association of COMT with insight problem solving in Chinese college students. PeerJ 2019; 7:e6755. [PMID: 31024766 PMCID: PMC6472467 DOI: 10.7717/peerj.6755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/10/2019] [Indexed: 11/25/2022] Open
Abstract
Genes involved in dopamine (DA) neurotransmission, such as the catechol-O-methyltransferase gene (COMT), have been suggested as key genetic candidates that might underlie the genetic basis of insight. In a sample of Chinese college students, this study examined whether COMT was associated with individual differences in the ability to solve classic insight problems. The results demonstrated that COMT was not associated with insight problem solving and there was no gender-dependent effect. This study, together with previous studies, raises the possibility of a complex relationship between COMT and insight problem solving.
Collapse
Affiliation(s)
- Xiaolei Yang
- Department of Psychology, Shandong Normal University, Jinan, Shandong, China
- College of Life Science, Qilu Normal University, Jinan, Shandong, China
| | - Jinghuan Zhang
- Department of Psychology, Shandong Normal University, Jinan, Shandong, China
| | - Shun Zhang
- Department of Psychology, Shandong Normal University, Jinan, Shandong, China
| |
Collapse
|
56
|
Larsen KM, Dzafic I, Siebner HR, Garrido MI. Alteration of functional brain architecture in 22q11.2 deletion syndrome – Insights into susceptibility for psychosis. Neuroimage 2019; 190:154-171. [DOI: 10.1016/j.neuroimage.2018.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 08/30/2018] [Accepted: 09/02/2018] [Indexed: 12/23/2022] Open
|
57
|
Salunkhe G, Feige B, Saville CWN, Lancaster TM, Stefanou ME, Bender S, Berger A, Smyrnis N, Biscaldi M, Linden DEJ, Klein C. The impact of the COMT genotype and cognitive demands on facets of intra-subject variability. Brain Cogn 2019; 132:72-79. [PMID: 30903983 DOI: 10.1016/j.bandc.2019.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/16/2019] [Accepted: 03/16/2019] [Indexed: 12/22/2022]
Abstract
Intra-Subject Variability (ISV), a potential index of catecholaminergic regulation, is elevated in several disorders linked with altered dopamine function. ISV has typically been defined as reaction time standard deviation. However, the ex-Gaussian and spectral measures capture different aspects and may delineate different underlying sources of ISV; thus reflecting different facets of the construct. We examined the impact of factors associated with dopamine metabolism, namely, Catechol-O-Methyltransferase Val158Met (COMT) genotype and Working Memory (WM) and response-switching on ISV facets in young healthy adults. The Met allele was associated with overall increased variability. The rather exclusive sensitivity of ex-Gaussian tau to frequencies below 0.025 Hz and the quasi-periodic structure of particularly slow responses support the interpretation of tau as low frequency fluctuations of neuronal networks. Sigma, by contrast, may reflect neural noise. Regarding cognitive demands, a WM load-related increase in variability was present for all genotypes and all ISV facets. Contrastingly, ISV facets reacted differently to variations in response-switching as, across genotypes, sigma was elevated for rare target trials whereas tau was elevated for frequent standard trials, particularly for Met homozygotes. Our findings support the significant role of COMT in regulating behavioural ISV with its facetted structure and presumed underlying neural processes.
Collapse
Affiliation(s)
- G Salunkhe
- Department of Child and Adolescent Psychiatry, Psychotherapy, and Psychosomatics, Medical Faculty, University of Freiburg, Germany
| | - B Feige
- Department of Psychiatry and Psychotherapy, Medical Faculty, University of Freiburg, Germany
| | - C W N Saville
- School of Psychology, Bangor University, United Kingdom
| | - T M Lancaster
- Neuroscience and Mental Health Research Institute, Cardiff University, United Kingdom
| | - M E Stefanou
- Department of Child and Adolescent Psychiatry, Psychotherapy, and Psychosomatics, Medical Faculty, University of Freiburg, Germany
| | - S Bender
- Department of Child and Adolescent Psychiatry, Medical Faculty, University of Cologne, Germany
| | - A Berger
- Department of Psychology and Zlotowski Center of Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - N Smyrnis
- Department of Psychiatry, National and Kapodistrian University of Athens, Athens, Greece
| | - M Biscaldi
- Department of Child and Adolescent Psychiatry, Psychotherapy, and Psychosomatics, Medical Faculty, University of Freiburg, Germany
| | - D E J Linden
- School for Mental Health and Neuroscience, Maastricht University, Netherlands
| | - C Klein
- Department of Child and Adolescent Psychiatry, Psychotherapy, and Psychosomatics, Medical Faculty, University of Freiburg, Germany; Department of Child and Adolescent Psychiatry, Medical Faculty, University of Cologne, Germany; Department of Psychiatry, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
58
|
MacKillop J, Gray JC, Weafer J, Sanchez-Roige S, Palmer AA, de Wit H. Genetic influences on delayed reward discounting: A genome-wide prioritized subset approach. Exp Clin Psychopharmacol 2019; 27:29-37. [PMID: 30265060 PMCID: PMC6908809 DOI: 10.1037/pha0000227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Delayed reward discounting (DRD) is a behavioral economic measure of impulsivity that has been consistently associated with addiction. It has also been identified as a promising addiction endophenotype, linking specific sources of genetic variation to individual risk. A challenge in the studies to date is that levels of DRD are often confounded with prior drug use, and previous studies have also had limited genomic scope. The current investigation sought to address these issues by studying DRD in healthy young adults with low levels of substance use (N = 986; 62% female, 100% European ancestry) and investigating genetic variation genome-wide. The genome-wide approach used a prioritized subset design, organizing the tests into theoretically and empirically informed categories and apportioning power accordingly. Three subsets were used: (a) a priori loci implicated by previous studies; (b) high-value addiction (HVA) markers from the recently developed SmokeScreen array; and (c) an atheoretical genome-wide scan. Among a priori loci, a nominally significant association was present between DRD and rs521674 in ADRA2A. No significant HVA loci were detected. One statistically significant genome-wide association was detected (rs13395777, p = 2.8 × 10-8), albeit in an intergenic region of unknown function. These findings are generally not supportive of the previous candidate gene studies and suggest that DRD has a complex genetic architecture that will require considerably larger samples to identify genetic associations more definitively. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
Collapse
Affiliation(s)
- James MacKillop
- Peter Boris Centre for Addictions Research, McMaster University/St. Joseph’s Healthcare Hamilton, Hamilton, ON L8P 3R2, Canada,Homewood Research Institute, Homewood Health Centre, Guelph, ON N1E 4J3 Canada
| | - Joshua C. Gray
- Department of Psychology, University of Georgia Athens, GA 30602, USA,Department of Psychiatry and Human Behavior, Brown University, Providence, RI 02912
| | - Jessica Weafer
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL 60637, USA
| | - Sandra Sanchez-Roige
- Department of Psychiatry, University of California, San Diego, San Diego, CA 92093, USA
| | - Abraham A. Palmer
- Department of Psychiatry, University of California, San Diego, San Diego, CA 92093, USA,Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92103, USA
| | - Harriet de Wit
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
59
|
Morozova A, Zorkina Y, Pavlov K, Pavlova O, Storozheva Z, Zubkov E, Zakharova N, Karpenko O, Reznik A, Chekhonin V, Kostyuk G. Association of rs4680 COMT, rs6280 DRD3, and rs7322347 5HT2A With Clinical Features of Youth-Onset Schizophrenia. Front Psychiatry 2019; 10:830. [PMID: 31798476 PMCID: PMC6863060 DOI: 10.3389/fpsyt.2019.00830] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/21/2019] [Indexed: 01/28/2023] Open
Abstract
We investigated the associations of rs4680 COMT, rs6280 DRD3, and rs7322347 5HT2A with youth-onset schizophrenia in the Russian population in a case-control study, and the role of the genotype in the severity of clinical features. The association between rs7322347 and schizophrenia (p = 0.0001) is described for the first time. Furthermore, we found a link with rs6280 and rs4680 in females (p = 0.001 and p = 0.02 respectively) and with rs7322347 in males (p = 0.002). Clinical symptoms were assessed on three scales: the Clinician-Rated Dimensions of Psychosis Symptom Severity scale, Positive and Negative Syndrome Scale, and Frontal Assessment Battery. Gender differences in clinical features are of particular interest. In our study we found gender differences in the severity of clinical features-higher scores for delusions (Positive and Negative Syndrome Scale and Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition) in males and higher scores for depression, delusions, somatic concern, motor retardation, poor attention were found in females.
Collapse
Affiliation(s)
- Anna Morozova
- Department Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Moscow, Russia.,N.A. Alekseev Psychiatric Clinical Hospital № 1, Moscow, Russia
| | - Yana Zorkina
- Department Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Moscow, Russia
| | - Konstantin Pavlov
- Department Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Moscow, Russia
| | - Olga Pavlova
- Department Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Moscow, Russia
| | - Zinaida Storozheva
- Department Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Moscow, Russia
| | - Eugene Zubkov
- Department Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Moscow, Russia
| | | | - Olga Karpenko
- N.A. Alekseev Psychiatric Clinical Hospital № 1, Moscow, Russia
| | | | - Vladimir Chekhonin
- Department Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Moscow, Russia.,Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Georgiy Kostyuk
- N.A. Alekseev Psychiatric Clinical Hospital № 1, Moscow, Russia
| |
Collapse
|
60
|
Miranda GG, Rodrigue KM, Kennedy KM. Frontoparietal cortical thickness mediates the effect of COMT Val 158Met polymorphism on age-associated executive function. Neurobiol Aging 2019; 73:104-114. [PMID: 30342271 PMCID: PMC6251730 DOI: 10.1016/j.neurobiolaging.2018.08.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/08/2018] [Accepted: 08/17/2018] [Indexed: 12/31/2022]
Abstract
Proper dopamine (DA) signaling is likely necessary for maintaining optimal cognitive performance as we age, particularly in prefrontal-parietal networks and in fronto-striatal networks. Thus, reduced DA availability is a salient risk factor for accelerated cognitive aging. A common polymorphism that affects DA D1 receptor dopamine availability, COMT Val158Met (rs4680), influences enzymatic breakdown of DA, with COMT Val carriers having a 3- to 4-fold reduction in synaptic DA compared to COMT Met carriers. Furthermore, dopamine receptors and postsynaptic availability are drastically reduced with aging, as is executive function performance that ostensibly relies on these pathways. Here, we investigated in 176 individuals aged 20-94 years whether: (1) COMT Val carriers differ from their Met counterparts in thickness of regional cortices receiving D1 receptor pathways: prefrontal, parietal, cingulate cortices; (2) this gene-brain association differs across the adult lifespan; and (3) COMT-related regional thinning evidences cognitive consequences. We found that COMT Val carriers evidenced thinner cortex in prefrontal, parietal, and posterior cingulate cortices than COMT Met carriers and this effect was not age-dependent. Further, we demonstrate that thickness of these regions significantly mediates the effect of COMT genotype on an executive function composite measure. These results suggest that poorer executive function performance is due partly to thinner association cortex in dopaminergic-rich regions, and particularly so in individuals who are genetically predisposed to lower postsynaptic dopamine availability, regardless of age.
Collapse
Affiliation(s)
- Giuseppe G Miranda
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA
| | - Karen M Rodrigue
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA
| | - Kristen M Kennedy
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA.
| |
Collapse
|
61
|
Abstract
Healthy aging is associated with numerous deficits in cognitive function, which have been attributed to changes within the prefrontal cortex (PFC). This chapter summarizes some of the most prominent cognitive changes associated with age-related alterations in the anatomy and physiology of the PFC. Specifically, aging of the PFC results in deficient aspects of cognitive control, including sustained attention, selective attention, inhibitory control, working memory, and multitasking abilities. Yet, not all cognitive functions associated with the PFC exhibit age-related declines, such as arithmetic, comprehension, emotion perception, and emotional control. Moreover, not all older adults exhibit declines in cognition. Multiple life-course and lifestyle factors, as well as genetics, play a role in the trajectory of cognitive performance across the life span. Thus many adults retain cognitive function well into advanced age. Moreover, the brain remains plastic throughout life and there is increasing evidence that most age-related declines in cognition can be remediated by various methods such as physical exercise, cognitive training, or noninvasive brain stimulation. Overall, because cognitive aging is associated with numerous life-course and lifestyle factors, successful aging likely begins in early life, while maintaining cognition or remediating declines is a life-long process.
Collapse
Affiliation(s)
- Theodore P Zanto
- Department of Neurology, University of California San Francisco, San Francisco, CA, United States; Neuroscape, University of California San Francisco, San Francisco, CA, United States
| | - Adam Gazzaley
- Department of Neurology, University of California San Francisco, San Francisco, CA, United States; Departments of Physiology and Psychiatry, University of California San Francisco, San Francisco, CA, United States; Neuroscape, University of California San Francisco, San Francisco, CA, United States.
| |
Collapse
|
62
|
COMT Inhibition Alters Cue-Evoked Oscillatory Dynamics during Alcohol Drinking in the Rat. eNeuro 2018; 5:eN-NWR-0326-18. [PMID: 30406194 PMCID: PMC6220588 DOI: 10.1523/eneuro.0326-18.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 09/05/2018] [Indexed: 11/21/2022] Open
Abstract
Alterations in the corticostriatal system have been implicated in numerous substance use disorders, including alcohol use disorder (AUD). Adaptations in this neural system are associated with enhanced drug-seeking behaviors following exposure to cues predicting drug availability. Therefore, understanding how potential treatments alter neural activity in this system could lead to more refined and effective approaches for AUD. Local field potentials (LFPs) were acquired simultaneously in the prefrontal cortex (PFC) and nucleus accumbens (NA) of both alcohol preferring (P) and Wistar rats engaged in a Pavlovian conditioning paradigm wherein a light cue signaled the availability of ethanol (EtOH). On test days, the catechol-o-methyl-transferase (COMT) inhibitor tolcapone was administered prior to conditioning. Stimulus-evoked voltage changes were observed following the presentation of the EtOH cue in both strains and were most pronounced in the PFC of P rats. Phase analyses of LFPs in the θ band (5–11 Hz) revealed that PFC-NA synchrony was reduced in P rats relative to Wistars but was robustly increased during drinking. Presentation of the cue resulted in a larger phase reset in the PFC of P rats but not Wistars, an effect that was attenuated by tolcapone. Additionally, tolcapone reduced cued EtOH intake in P rat but not Wistars. These results suggest a link between corticostriatal synchrony and genetic risk for excessive drinking. Moreover, inhibition of COMT within these systems may result in reduced attribution of salience to reward paired stimuli via modulation of stimulus-evoked changes to cortical oscillations in genetically susceptible populations.
Collapse
|
63
|
Miguel PM, Deniz BF, Deckmann I, Confortim HD, Diaz R, Laureano DP, Silveira PP, Pereira LO. Prefrontal cortex dysfunction in hypoxic-ischaemic encephalopathy contributes to executive function impairments in rats: Potential contribution for attention-deficit/hyperactivity disorder. World J Biol Psychiatry 2018; 19:547-560. [PMID: 28105895 DOI: 10.1080/15622975.2016.1273551] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES The attention-deficit/hyperactivity disorder (ADHD) compromises the quality of life of individuals including adaptation to the social environment. ADHD aetiology includes perinatal conditions such as hypoxic-ischaemic events; preclinical studies have demonstrated attentional deficits and impulsive-hyperactive outcomes after neonatal hypoxic and/or ischaemic intervention, but data are missing to understand this relationship. Thus, the aim of this study was to evaluate executive function (EF) and impulsivity, and tissue integrity and dopaminergic function in the prefrontal cortex (PFC) of rats submitted to hypoxia-ischaemia (HI). METHODS At postnatal day (PND) 7, male Wistar rats were divided into control (n = 10) and HI groups (n = 11) and the HI procedure was conducted. At PND60, the animals were tested in the attentional set-shifting (ASS) task to EF and in the tolerance to delay of reward for assessment of impulsivity. After, morphological analysis and the dopaminergic system were evaluated in the PFC. RESULTS Animals subjected to HI had impairments in EF evidenced by a behavioural inflexibility that was correlated to PFC atrophy. Moreover, HI animals presented reduced D2 receptors in the ipsilateral side of ischaemia in the PFC. CONCLUSIONS Animals submitted to HI presented impaired EF associated with tissue atrophy and dopaminergic disturbance in the PFC.
Collapse
Affiliation(s)
- Patrícia Maidana Miguel
- a Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS) , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil.,b Departamento de Ciências Morfológicas, ICBS , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil
| | - Bruna Ferrary Deniz
- a Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS) , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil.,b Departamento de Ciências Morfológicas, ICBS , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil
| | - Iohanna Deckmann
- b Departamento de Ciências Morfológicas, ICBS , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil
| | - Heloísa Deola Confortim
- a Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS) , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil.,b Departamento de Ciências Morfológicas, ICBS , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil
| | - Ramiro Diaz
- a Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS) , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil.,b Departamento de Ciências Morfológicas, ICBS , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil
| | - Daniela Pereira Laureano
- a Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS) , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil
| | - Patrícia Pelufo Silveira
- a Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS) , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil.,c Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Faculdade de Medicina , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil.,d Ludmer Centre for Neuroinformatics and Mental Health , Douglas Mental Health University Institute, McGill University , Montreal , QC , Canada
| | - Lenir Orlandi Pereira
- a Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde (ICBS) , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil.,b Departamento de Ciências Morfológicas, ICBS , Universidade Federal do Rio Grande do Sul , Porto Alegre , RS , Brazil
| |
Collapse
|
64
|
Naß J, Efferth T. Pharmacogenetics and Pharmacotherapy of Military Personnel Suffering from Post-traumatic Stress Disorder. Curr Neuropharmacol 2018; 15:831-860. [PMID: 27834145 PMCID: PMC5652029 DOI: 10.2174/1570159x15666161111113514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 09/23/2016] [Accepted: 11/08/2016] [Indexed: 12/26/2022] Open
Abstract
Background: Posttraumatic stress disorder (PTSD) is a severe problem among soldiers with combating experience difficult to treat. The pathogenesis is still not fully understood at the psychological level. Therefore, genetic research became a focus of interest. The identification of single nucleotide polymorphisms (SNPs) may help to predict, which persons are at high risk to develop PTSD as a starting point to develop novel targeted drugs for treatment. Methods: We conducted a systematic review on SNPs in genes related to PTSD pathology and development of targeted pharmacological treatment options based on PubMed database searches. We focused on clinical trials with military personnel. Results: SNPs in 22 human genes have been linked to PTSD. These genes encode proteins acting as neurotransmitters and receptors, downstream signal transducers and metabolizing enzymes. Pharmacological inhibitors may serve as drug candidates for PTSD treatment, e.g. β2 adrenoreceptor antagonists, dopamine antagonists, partial dopamine D2 receptor agonists, dopamine β hydroxylase inhibitors, fatty acid amid hydrolase antagonists, glucocorticoid receptor agonists, tropomyosin receptor kinase B agonists, selective serotonin reuptake inhibitors, catechol-O-methyltransferase inhibitors, gamma-amino butyric acid receptor agonists, glutamate receptor inhibitors, monoaminoxidase B inhibitors, N-methyl-d-aspartate receptor antagonists. Conclusion: The combination of genetic and pharmacological research may lead to novel target-based drug developments with improved specificity and efficacy to treat PTSD. Specific SNPs may be identified as reliable biomarkers to assess individual disease risk. Focusing on soldiers suffering from PTSD will not only help to improve treatment options for this specific group, but for all PTSD patients and the general population.
Collapse
Affiliation(s)
- Janine Naß
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz. Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz. Germany
| |
Collapse
|
65
|
Scheggia D, Zamberletti E, Realini N, Mereu M, Contarini G, Ferretti V, Managò F, Margiani G, Brunoro R, Rubino T, De Luca MA, Piomelli D, Parolaro D, Papaleo F. Remote memories are enhanced by COMT activity through dysregulation of the endocannabinoid system in the prefrontal cortex. Mol Psychiatry 2018. [PMID: 28630452 DOI: 10.1038/mp.2017.126] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The prefrontal cortex (PFC) is a crucial hub for the flexible modulation of recent memories (executive functions) as well as for the stable organization of remote memories. Dopamine in the PFC is implicated in both these processes and genetic variants affecting its neurotransmission might control the unique balance between cognitive stability and flexibility present in each individual. Functional genetic variants in the catechol-O-methyltransferase (COMT) gene result in a different catabolism of dopamine in the PFC. However, despite the established role played by COMT genetic variation in executive functions, its impact on remote memory formation and recall is still poorly explored. Here we report that transgenic mice overexpressing the human COMT-Val gene (COMT-Val-tg) present exaggerated remote memories (>50 days) while having unaltered recent memories (<24 h). COMT selectively and reversibly modulated the recall of remote memories as silencing COMT Val overexpression starting from 30 days after the initial aversive conditioning normalized remote memories. COMT genetic overactivity produced a selective overdrive of the endocannabinoid system within the PFC, but not in the striatum and hippocampus, which was associated with enhanced remote memories. Indeed, acute pharmacological blockade of CB1 receptors was sufficient to rescue the altered remote memory recall in COMT-Val-tg mice and increased PFC dopamine levels. These results demonstrate that COMT genetic variations modulate the retrieval of remote memories through the dysregulation of the endocannabinoid system in the PFC.
Collapse
Affiliation(s)
- D Scheggia
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| | - E Zamberletti
- Department of Biotechnology and Life Sciences, and Neuroscience Center, University of Insubria, Busto Arsizio, Italy
| | - N Realini
- Drug Discovery and Development, Istituto Italiano di Tecnologia, Genoa, Italy
| | - M Mereu
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa, Italy.,Dipartimento di Scienze del Farmaco, Universita' degli Studi di Padova, Largo Meneghetti, Padova, Italy
| | - G Contarini
- Dipartimento di Scienze del Farmaco, Universita' degli Studi di Padova, Largo Meneghetti, Padova, Italy
| | - V Ferretti
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| | - F Managò
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| | - G Margiani
- Department of Biomedical Sciences, Università di Cagliari, Cagliari, Italy
| | - R Brunoro
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| | - T Rubino
- Department of Biotechnology and Life Sciences, and Neuroscience Center, University of Insubria, Busto Arsizio, Italy
| | - M A De Luca
- Department of Biomedical Sciences, Università di Cagliari, Cagliari, Italy
| | - D Piomelli
- Drug Discovery and Development, Istituto Italiano di Tecnologia, Genoa, Italy.,Department of Anatomy and Neurobiology, Pharmacology and Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - D Parolaro
- Department of Biotechnology and Life Sciences, and Neuroscience Center, University of Insubria, Busto Arsizio, Italy
| | - F Papaleo
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genoa, Italy
| |
Collapse
|
66
|
Moustafa AA, Salama M, Peak R, Tindle R, Salem A, Keri S, Misiak B, Frydecka D, Mohamed W. Interactions between cannabis and schizophrenia in humans and rodents. Rev Neurosci 2018; 28:811-823. [PMID: 28498796 DOI: 10.1515/revneuro-2016-0083] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/18/2017] [Indexed: 12/12/2022]
Abstract
In this review, we provide an overview of the relationship between cannabis use and the development of schizophrenia, using both animal and human studies. We further discuss the potential neural mechanism that may mediate the relationship between cannabis use and schizophrenia symptoms. We finally provide clinical implications and future studies that can further elucidate the relationship between cannabis and schizophrenia.
Collapse
|
67
|
Tait DS, Bowman EM, Neuwirth LS, Brown VJ. Assessment of intradimensional/extradimensional attentional set-shifting in rats. Neurosci Biobehav Rev 2018; 89:72-84. [PMID: 29474818 DOI: 10.1016/j.neubiorev.2018.02.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/06/2018] [Accepted: 02/19/2018] [Indexed: 01/07/2023]
Abstract
The rat intradimensional/extradimensional (ID/ED) task, first described by Birrell and Brown 18 years ago, has become the predominant means by which attentional set-shifting is investigated in rodents: the use of rats in the task has been described in over 135 publications by researchers from nearly 90 universities and pharmaceutical companies. There is variation in the protocols used by different groups, including differences in apparatus, stimuli (both stimulus dimensions and exemplars within), and also the methodology. Nevertheless, most of these variations seem to be of little consequence: there is remarkable similarity in the profile of published data, with consistency of learning rates and in the size and reliability of the set-shifting and reversal 'costs'. However, we suspect that there may be inconsistent data that is unpublished or perhaps 'failed experiments' that may have been caused by unintended deviations from effective protocols. The purpose of this review is to describe our approach and the rationale behind certain aspects of the protocol, including common pitfalls that are encountered when establishing an effective local protocol.
Collapse
Affiliation(s)
- David S Tait
- School of Psychology and Neuroscience, University of St Andrews, St Mary's Quad, South Street, St Andrews, Fife, KY16 9JP, UK.
| | - Eric M Bowman
- School of Psychology and Neuroscience, University of St Andrews, St Mary's Quad, South Street, St Andrews, Fife, KY16 9JP, UK
| | - Lorenz S Neuwirth
- Department of Psychology, SUNY Old Westbury, Old Westbury, NY, 11568, USA; SUNY Neuroscience Research Institute, Old Westbury, NY, 11568, USA
| | - Verity J Brown
- School of Psychology and Neuroscience, University of St Andrews, St Mary's Quad, South Street, St Andrews, Fife, KY16 9JP, UK
| |
Collapse
|
68
|
Zhang H, Li J, Yang B, Ji T, Long Z, Xing Q, Shao D, Bai H, Sun J, Cao F. The divergent impact of catechol-O-methyltransferase (COMT) Val 158Met genetic polymorphisms on executive function in adolescents with discrete patterns of childhood adversity. Compr Psychiatry 2018; 81:33-41. [PMID: 29222971 DOI: 10.1016/j.comppsych.2017.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 11/07/2017] [Accepted: 11/17/2017] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Catechol-O-methyltransferase (COMT) Val158Met functional polymorphisms play a crucial role in the development of executive function (EF), but their effect may be moderated by environmental factors such as childhood adversity. The present study aimed at testing the divergent impact of the COMT Val158Met genotype on EF in non-clinical adolescents with discrete patterns of childhood adversity. METHODS A total of 341 participants completed the Childhood Trauma Questionnaire, the self-reported version of the Behavior Rating Inventory of Executive Function, and self-administered questionnaires on familial function. The participants' COMT Val158Met genotype was determined. Associations among the variables were explored using latent class analysis and general linear models. RESULTS We found that Val/Val homozygotes showed significantly worse performance on behavioral shift, relative to Met allele carriers (F=5.921, p=0.015, Partial η2=0.018). Moreover, three typical patterns of childhood adversity, namely, low childhood adversity (23.5%), childhood neglect (59.8%), and high childhood adversity (16.7%), were found. Both childhood neglect and high childhood adversity had a negative impact on each aspect of EF and on global EF performance. Importantly, these results provided evidence for significant interaction effects, as adolescents with the Val/Val genotype showed inferior behavioral shift performance than Met carriers (F=6.647, p=0.010, Partial η2=0.020) in the presence of high childhood adversity. Furthermore, there were no differences between the genotypes for childhood neglect and low childhood adversity. CONCLUSIONS Overall, this is the first study to show that an interaction between the COMT genotype and childhood adversity affects EF in non-clinical adolescents. These results suggest that the COMT genotype may operate as a susceptibility gene vulnerable to an adverse environment.
Collapse
Affiliation(s)
- Huihui Zhang
- School of Nursing, Shandong University, No. 44 Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Jie Li
- School of Nursing, Shandong University, No. 44 Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Bei Yang
- School of Nursing, Shandong University, No. 44 Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Tao Ji
- Zaozhuang Vocational College, Zaozhuang, Shandong, PR China
| | - Zhouting Long
- Zaozhuang Vocational College, Zaozhuang, Shandong, PR China
| | - Qiquan Xing
- Zaozhuang Vocational College, Zaozhuang, Shandong, PR China
| | - Di Shao
- School of Nursing, Shandong University, No. 44 Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Huayu Bai
- School of Nursing, Shandong University, No. 44 Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Jiwei Sun
- School of Nursing, Shandong University, No. 44 Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Fenglin Cao
- School of Nursing, Shandong University, No. 44 Wenhua Xi Road, Jinan, Shandong 250012, PR China.
| |
Collapse
|
69
|
Gene–gene interaction between DRD4 and COMT modulates clinical response to clozapine in treatment-resistant schizophrenia. Pharmacogenet Genomics 2018; 28:31-35. [DOI: 10.1097/fpc.0000000000000314] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
70
|
Effects of tolcapone and bromocriptine on cognitive stability and flexibility. Psychopharmacology (Berl) 2018; 235:1295-1305. [PMID: 29427081 PMCID: PMC5869902 DOI: 10.1007/s00213-018-4845-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 01/31/2018] [Indexed: 12/22/2022]
Abstract
RATIONALE The prefrontal cortex (PFC) and basal ganglia (BG) have been associated with cognitive stability and cognitive flexibility, respectively. We hypothesized that increasing PFC dopamine tone by administering tolcapone (a catechol-O-methyltransferase (COMT) inhibitor) to human subjects should promote stability; conversely, increasing BG dopamine tone by administering bromocriptine (a D2 receptor agonist) should promote flexibility. OBJECTIVE We assessed these hypotheses by administering tolcapone, bromocriptine, and a placebo to healthy subjects who performed a saccadic eye movement task requiring stability and flexibility. METHODS We used a randomized, double-blind, within-subject design that was counterbalanced across drug administration sessions. In each session, subjects were cued to prepare for a pro-saccade (look towards a visual stimulus) or anti-saccade (look away) on every trial. On 60% of the trials, subjects were instructed to switch the response already in preparation. We hypothesized that flexibility would be required on switch trials, whereas stability would be required on non-switch trials. The primary measure of performance was efficiency (the percentage correct divided by reaction time for each trial type). RESULTS Subjects were significantly less efficient across all trial types under tolcapone, and there were no significant effects of bromocriptine. After grouping subjects based on Val158Met COMT polymorphism, we found that Met/Met and Val/Met subjects (greater PFC dopamine) were less efficient compared to Val/Val subjects. CONCLUSIONS Optimal behavior was based on obeying the environmental stimuli, and we found reduced efficiency with greater PFC dopamine tone. We suggest that greater PFC dopamine interfered with the ability to flexibly follow the environment.
Collapse
|
71
|
Elton A, Smith CT, Parrish MH, Boettiger CA. COMT Val 158Met Polymorphism Exerts Sex-Dependent Effects on fMRI Measures of Brain Function. Front Hum Neurosci 2017; 11:578. [PMID: 29270116 PMCID: PMC5723646 DOI: 10.3389/fnhum.2017.00578] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/16/2017] [Indexed: 12/13/2022] Open
Abstract
Evidence suggests that dopamine levels in the prefrontal cortex (PFC) modulate executive functions. A key regulator of PFC dopamine is catechol-O-methyltransferase (COMT). The activity level of the COMT enzyme are influenced by sex and the Val158Met polymorphism (rs4680) of the COMT gene, with male sex and Val alleles both being associated with higher bulk enzyme activity, and presumably lower PFC dopamine. COMT genotype has not only been associated with individual differences in frontal dopamine-mediated behaviors, but also with variations in neuroimaging measures of brain activity and functional connectivity. In this study, we investigated whether COMT genotype predicts individual differences in neural activity and connectivity, and whether such effects are sex-dependent. We tested 93 healthy adults (48 females), genotyped for the Val158Met polymorphism, in a delay discounting task and at rest during fMRI. Delay discounting behavior was predicted by an interaction of COMT genotype and sex, consistent with a U-shaped relationship with enzyme activity. COMT genotype and sex similarly exhibited U-shaped relationships with individual differences in neural activation, particularly among networks that were most engaged by the task, including the default-mode network. Effects of COMT genotype and sex on functional connectivity during rest were also U-shaped. In contrast, flexible reorganization of network connections across task conditions varied linearly with COMT among both sexes. These data provide insight into the potential influences of COMT-regulated variations in catecholamine levels on brain function, which may represent endophenotypes for disorders of impulsivity.
Collapse
Affiliation(s)
- Amanda Elton
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, United States.,Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, United States
| | - Christopher T Smith
- Neuroscience Curriculum, University of North Carolina, Chapel Hill, NC, United States
| | - Michael H Parrish
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, United States
| | - Charlotte A Boettiger
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, United States.,Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, United States.,Neuroscience Curriculum, University of North Carolina, Chapel Hill, NC, United States.,Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
72
|
Brain catechol-O-methyltransferase (COMT) inhibition by tolcapone counteracts recognition memory deficits in normal and chronic phencyclidine-treated rats and in COMT-Val transgenic mice. Behav Pharmacol 2017; 27:415-21. [PMID: 26919286 DOI: 10.1097/fbp.0000000000000208] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The critical involvement of dopamine in cognitive processes has been well established, suggesting that therapies targeting dopamine metabolism may alleviate cognitive dysfunction. Catechol-O-methyl transferase (COMT) is a catecholamine-degrading enzyme, the substrates of which include dopamine, epinephrine, and norepinephrine. The present work illustrates the potential therapeutic efficacy of COMT inhibition in alleviating cognitive impairment. A brain-penetrant COMT inhibitor, tolcapone, was tested in normal and phencyclidine-treated rats and COMT-Val transgenic mice. In a novel object recognition procedure, tolcapone counteracted a 24-h-dependent forgetting of a familiar object as well as phencyclidine-induced recognition deficits in the rats at doses ranging from 7.5 to 30 mg/kg. In contrast, entacapone, a COMT inhibitor that does not readily cross the blood-brain barrier, failed to show efficacy at doses up to 30 mg/kg. Tolcapone at a dose of 30 mg/kg also improved novel object recognition performance in transgenic mice, which showed clear recognition deficits. Complementing earlier studies, our results indicate that central inhibition of COMT positively impacts recognition memory processes and might constitute an appealing treatment for cognitive dysfunction related to neuropsychiatric disorders.
Collapse
|
73
|
Pasternak AL, Ward KM, Luzum JA, Ellingrod VL, Hertz DL. Germline genetic variants with implications for disease risk and therapeutic outcomes. Physiol Genomics 2017; 49:567-581. [PMID: 28887371 PMCID: PMC5668651 DOI: 10.1152/physiolgenomics.00035.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Genetic testing has multiple clinical applications including disease risk assessment, diagnosis, and pharmacogenomics. Pharmacogenomics can be utilized to predict whether a pharmacologic therapy will be effective or to identify patients at risk for treatment-related toxicity. Although genetic tests are typically ordered for a distinct clinical purpose, the genetic variants that are found may have additional implications for either disease or pharmacology. This review will address multiple examples of germline genetic variants that are informative for both disease and pharmacogenomics. The discussed relationships are diverse. Some of the agents are targeted for the disease-causing genetic variant, while others, although not targeted therapies, have implications for the disease they are used to treat. It is also possible that the disease implications of a genetic variant are unrelated to the pharmacogenomic implications. Some of these examples are considered clinically actionable pharmacogenes, with evidence-based, pharmacologic treatment recommendations, while others are still investigative as areas for additional research. It is important that clinicians are aware of both the disease and pharmacogenomic associations of these germline genetic variants to ensure patients are receiving comprehensive personalized care.
Collapse
Affiliation(s)
- Amy L Pasternak
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan
| | - Kristen M Ward
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan
| | - Jasmine A Luzum
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan
| | - Vicki L Ellingrod
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan
| | - Daniel L Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan
| |
Collapse
|
74
|
El-Hage W, Cléry H, Andersson F, Filipiak I, Thiebaut de Schotten M, Gohier B, Surguladze S. Sex-specific effects of COMT Val158Met polymorphism on corpus callosum structure: A whole-brain diffusion-weighted imaging study. Brain Behav 2017; 7:e00786. [PMID: 28948081 PMCID: PMC5607550 DOI: 10.1002/brb3.786] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/12/2017] [Accepted: 06/26/2017] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Genetic polymorphisms play a significant role in determining brain morphology, including white matter structure and may thus influence the development of brain functions. The main objective of this study was to examine the effect of Val158Met (rs4680) polymorphism of Catechol-O-Methyltransferase (COMT) gene on white matter connectivity in healthy adults. METHODS We used a whole-brain diffusion-weighted imaging method with Tract-Based Spatial Statistics (TBSS) analysis to examine white matter structural integrity in intrinsic brain networks on a sample of healthy subjects (N = 82). RESULTS Results revealed a sex-specific effect of COMT on corpus callosum (CC): in males only, Val homozygotes had significantly higher fractional anisotropy (FA) compared to Met-carriers. Volume-of-interest analysis showed a genotype by sex interaction on FA in genu and rostral midbody of CC, whereby Val males demonstrated higher FA than Met females. CONCLUSIONS These results demonstrate the key effect of genes by sex interaction, rather than their individual contribution, on the corpus callosum anatomy.
Collapse
Affiliation(s)
- Wissam El-Hage
- Université François-Rabelais de ToursInserm UMR U930 'Imagerie et Cerveau' Tours France.,Clinique Psychiatrique Universitaire CHRU de Tours Tours France.,Inserm 1415 Centre d'Investigation Clinique CHRU de Tours Tours France
| | - Helen Cléry
- Université François-Rabelais de ToursInserm UMR U930 'Imagerie et Cerveau' Tours France
| | - Frederic Andersson
- Université François-Rabelais de ToursInserm UMR U930 'Imagerie et Cerveau' Tours France
| | - Isabelle Filipiak
- Université François-Rabelais de ToursInserm UMR U930 'Imagerie et Cerveau' Tours France
| | - Michel Thiebaut de Schotten
- Inserm U1127 UPMC-Paris6 UMR-S 975 CNRS UMR 7225 Brain and Spine Institute Groupe Hospitalier Pitié-Salpetrière Paris France.,Brain Connectivity and Behaviour Group Frontlab, Brain and Spine Institute Paris France
| | | | - Simon Surguladze
- Institute of Psychiatry, Psychology & Neuroscience King's College London London UK.,Social & Affective Neuroscience Laboratory Ilia State University Tbilisi Georgia
| |
Collapse
|
75
|
The “highs and lows” of the human brain on dopaminergics: Evidence from neuropharmacology. Neurosci Biobehav Rev 2017. [DOI: 10.1016/j.neubiorev.2017.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
76
|
Cavalluzzi MM, Mangiatordi GF, Nicolotti O, Lentini G. Ligand efficiency metrics in drug discovery: the pros and cons from a practical perspective. Expert Opin Drug Discov 2017; 12:1087-1104. [PMID: 28814111 DOI: 10.1080/17460441.2017.1365056] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Ligand efficiency metrics are almost universally accepted as a valuable indicator of compound quality and an aid to reduce attrition. Areas covered: In this review, the authors describe ligand efficiency metrics giving a balanced overview on their merits and points of weakness in order to enable the readers to gain an informed opinion. Relevant theoretical breakthroughs and drug-like properties are also illustrated. Several recent exemplary case studies are discussed in order to illustrate the main fields of application of ligand efficiency metrics. Expert opinion: As a medicinal chemist guide, ligand efficiency metrics perform in a context- and chemotype-dependent manner; thus, they should not be used as a magic box. Since the 'big bang' of efficiency metrics occurred more or less ten years ago and the average time to develop a new drug is over the same period, the next few years will give a clearer outlook on the increased rate of success, if any, gained by means of these new intriguing tools.
Collapse
Affiliation(s)
| | | | - Orazio Nicolotti
- a Department of Pharmacy - Drug Sciences , University of Bari Aldo Moro , Bari , Italy
| | - Giovanni Lentini
- a Department of Pharmacy - Drug Sciences , University of Bari Aldo Moro , Bari , Italy
| |
Collapse
|
77
|
Talpos JC. Symptomatic thinking: the current state of Phase III and IV clinical trials for cognition in schizophrenia. Drug Discov Today 2017; 22:1017-1026. [PMID: 28461223 DOI: 10.1016/j.drudis.2017.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 04/19/2017] [Accepted: 04/21/2017] [Indexed: 12/20/2022]
Abstract
Research indicates that relieving the cognitive and negative symptoms of schizophrenia is crucial for improving patient quality of life. However effective pharmacotherapies for cognitive and negative symptoms do not currently exist. A review of ongoing Phase III clinical trials indicates that, despite numerous compounds being investigated for cognition in schizophrenia, few are actually novel and most are not backed by empirically driven preclinical research efforts. Based on these trials, and a general disinvestment in development of novel therapies for schizophrenia, the likelihood of a major advancement in treating cognitive differences in schizophrenia does not look promising. Possible ways in which the remaining resources for development of novel treatment for schizophrenia can best be leveraged are discussed.
Collapse
Affiliation(s)
- John C Talpos
- National Center for Toxicological Research, 3900 NCTR Rd, Jefferson, AR 72079, USA.
| |
Collapse
|
78
|
Xiao X, Chang H, Li M. Molecular mechanisms underlying noncoding risk variations in psychiatric genetic studies. Mol Psychiatry 2017; 22:497-511. [PMID: 28044063 PMCID: PMC5378805 DOI: 10.1038/mp.2016.241] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/08/2016] [Accepted: 11/14/2016] [Indexed: 12/18/2022]
Abstract
Recent large-scale genetic approaches such as genome-wide association studies have allowed the identification of common genetic variations that contribute to risk architectures of psychiatric disorders. However, most of these susceptibility variants are located in noncoding genomic regions that usually span multiple genes. As a result, pinpointing the precise variant(s) and biological mechanisms accounting for the risk remains challenging. By reviewing recent progresses in genetics, functional genomics and neurobiology of psychiatric disorders, as well as gene expression analyses of brain tissues, here we propose a roadmap to characterize the roles of noncoding risk loci in the pathogenesis of psychiatric illnesses (that is, identifying the underlying molecular mechanisms explaining the genetic risk conferred by those genomic loci, and recognizing putative functional causative variants). This roadmap involves integration of transcriptomic data, epidemiological and bioinformatic methods, as well as in vitro and in vivo experimental approaches. These tools will promote the translation of genetic discoveries to physiological mechanisms, and ultimately guide the development of preventive, therapeutic and prognostic measures for psychiatric disorders.
Collapse
Affiliation(s)
- X Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - H Chang
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - M Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| |
Collapse
|
79
|
Perkovic MN, Erjavec GN, Strac DS, Uzun S, Kozumplik O, Pivac N. Theranostic Biomarkers for Schizophrenia. Int J Mol Sci 2017; 18:E733. [PMID: 28358316 PMCID: PMC5412319 DOI: 10.3390/ijms18040733] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 12/14/2022] Open
Abstract
Schizophrenia is a highly heritable, chronic, severe, disabling neurodevelopmental brain disorder with a heterogeneous genetic and neurobiological background, which is still poorly understood. To allow better diagnostic procedures and therapeutic strategies in schizophrenia patients, use of easy accessible biomarkers is suggested. The most frequently used biomarkers in schizophrenia are those associated with the neuroimmune and neuroendocrine system, metabolism, different neurotransmitter systems and neurotrophic factors. However, there are still no validated and reliable biomarkers in clinical use for schizophrenia. This review will address potential biomarkers in schizophrenia. It will discuss biomarkers in schizophrenia and propose the use of specific blood-based panels that will include a set of markers associated with immune processes, metabolic disorders, and neuroendocrine/neurotrophin/neurotransmitter alterations. The combination of different markers, or complex multi-marker panels, might help in the discrimination of patients with different underlying pathologies and in the better classification of the more homogenous groups. Therefore, the development of the diagnostic, prognostic and theranostic biomarkers is an urgent and an unmet need in psychiatry, with the aim of improving diagnosis, therapy monitoring, prediction of treatment outcome and focus on the personal medicine approach in order to improve the quality of life in patients with schizophrenia and decrease health costs worldwide.
Collapse
Affiliation(s)
| | | | - Dubravka Svob Strac
- Rudjer Boskovic Institute, Division of Molecular Medicine, 10000 Zagreb, Croatia.
| | - Suzana Uzun
- Clinic for Psychiatry Vrapce, 10090 Zagreb, Croatia.
| | | | - Nela Pivac
- Rudjer Boskovic Institute, Division of Molecular Medicine, 10000 Zagreb, Croatia.
| |
Collapse
|
80
|
Kim YK, Choi J, Park SC. A Novel Bio-Psychosocial-Behavioral Treatment Model in Schizophrenia. Int J Mol Sci 2017; 18:ijms18040734. [PMID: 28358303 PMCID: PMC5412320 DOI: 10.3390/ijms18040734] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/25/2017] [Accepted: 03/26/2017] [Indexed: 12/21/2022] Open
Abstract
Despite the substantial burden of illness in schizophrenia, there has been a discrepancy between the beneficial effects of an increased use of antipsychotic medications and achieving limited recovery or remission. Because the focus of the most common antipsychotic medications is on dopamine, which is associated with positive symptoms, there is an unmet need for patients with negative symptoms. Since cognitive and negative symptoms rather than positive symptoms are more closely associated with psychosocial impairments in patients with schizophrenia, the non-dopaminergic systems including glutamate and γ-aminobutyric acid (GABA) of the prefrontal cortex should be of concern as well. The balance of excitation and inhibition has been associated with epigenetic modifications and thus can be analyzed in terms of a neurodevelopmental and neural circuitry perspective. Hence, a novel bio-psychosocial-behavioral model for the treatment of schizophrenia is needed to account for the non-dopaminergic systems involved in schizophrenia, rather than dopaminergic mechanisms. This model can be understood from the viewpoint of neurodevelopment and neural circuitry and should include the staging care, personalized care, preventive care, reducing the cognitive deficits, and reducing stigma. Thomas R. Insel proposed this as a goal for schizophrenia treatment to be achieved by 2030.
Collapse
Affiliation(s)
- Yong-Ku Kim
- Department of Psychiatry, Korea University College of Medicine, Seoul 02841, Korea.
| | - Joonho Choi
- Department of Psychiatry, Hanyang University Guri Hospital, Guri 11923, Korea.
| | - Seon-Cheol Park
- Department of Psychiatry, Inje University College of Medicine and Haeundae Paik Hospital, Busan 48108, Korea.
| |
Collapse
|
81
|
Corral-Frías NS, Pizzagalli DA, Carré JM, Michalski LJ, Nikolova YS, Perlis RH, Fagerness J, Lee MR, Conley ED, Lancaster TM, Haddad S, Wolf A, Smoller JW, Hariri AR, Bogdan R. COMT Val(158) Met genotype is associated with reward learning: a replication study and meta-analysis. GENES BRAIN AND BEHAVIOR 2017; 15:503-13. [PMID: 27138112 DOI: 10.1111/gbb.12296] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/25/2016] [Accepted: 04/14/2016] [Indexed: 02/06/2023]
Abstract
Identifying mechanisms through which individual differences in reward learning emerge offers an opportunity to understand both a fundamental form of adaptive responding as well as etiological pathways through which aberrant reward learning may contribute to maladaptive behaviors and psychopathology. One candidate mechanism through which individual differences in reward learning may emerge is variability in dopaminergic reinforcement signaling. A common functional polymorphism within the catechol-O-methyl transferase gene (COMT; rs4680, Val(158) Met) has been linked to reward learning, where homozygosity for the Met allele (linked to heightened prefrontal dopamine function and decreased dopamine synthesis in the midbrain) has been associated with relatively increased reward learning. Here, we used a probabilistic reward learning task to asses response bias, a behavioral form of reward learning, across three separate samples that were combined for analyses (age: 21.80 ± 3.95; n = 392; 268 female; European-American: n = 208). We replicate prior reports that COMT rs4680 Met allele homozygosity is associated with increased reward learning in European-American participants (β = 0.20, t = 2.75, P < 0.01; ΔR(2) = 0.04). Moreover, a meta-analysis of 4 studies, including the current one, confirmed the association between COMT rs4680 genotype and reward learning (95% CI -0.11 to -0.03; z = 3.2; P < 0.01). These results suggest that variability in dopamine signaling associated with COMT rs4680 influences individual differences in reward which may potentially contribute to psychopathology characterized by reward dysfunction.
Collapse
Affiliation(s)
- N S Corral-Frías
- Psychiatry Department, Washington University in St. Louis, St. Louis, MO, USA.,BRAIN Laboratory, Department of Psychology, Washington University in St. Louis, St. Louis, MO, USA
| | - D A Pizzagalli
- Center For Depression, Anxiety and Stress Research and Neuroimaging Center, McLean Hospital and Harvard Medical School, Belmont, MA, USA
| | - J M Carré
- Nipissing University, North Bay, Ontario, Canada
| | - L J Michalski
- BRAIN Laboratory, Department of Psychology, Washington University in St. Louis, St. Louis, MO, USA
| | - Y S Nikolova
- Centre for Addiction and Mental Health Toronto, Ontario, Canada
| | - R H Perlis
- Massachusetts General Hospital and Harvard Medical School, Cambridge, MA, USA.,Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
| | - J Fagerness
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
| | - M R Lee
- National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, USA
| | | | - T M Lancaster
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - S Haddad
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
| | - A Wolf
- Department of Psychiatry Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - J W Smoller
- Massachusetts General Hospital and Harvard Medical School, Cambridge, MA, USA.,Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
| | - A R Hariri
- Laboratory of NeuroGenetics, Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - R Bogdan
- BRAIN Laboratory, Department of Psychology, Washington University in St. Louis, St. Louis, MO, USA.,Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
82
|
Kayser AS, Vega T, Weinstein D, Peters J, Mitchell JM. Right inferior frontal cortex activity correlates with tolcapone responsivity in problem and pathological gamblers. Neuroimage Clin 2016; 13:339-348. [PMID: 28066708 PMCID: PMC5200917 DOI: 10.1016/j.nicl.2016.12.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/15/2016] [Accepted: 12/17/2016] [Indexed: 02/04/2023]
Abstract
Failures of self-regulation in problem and pathological gambling (PPG) are thought to emerge from failures of top-down control, reflected neurophysiologically in a reduced capacity of prefrontal cortex to influence activity within subcortical structures. In patients with addictions, these impairments have been argued to alter evaluation of reward within dopaminergic neuromodulatory systems. Previously we demonstrated that augmenting dopamine tone in frontal cortex via use of tolcapone, an inhibitor of the dopamine-degrading enzyme catechol-O-methyltransferase (COMT), reduced delay discounting, a measure of impulsivity, in healthy subjects. To evaluate this potentially translational approach to augmenting prefrontal inhibitory control, here we hypothesized that increasing cortical dopamine tone would reduce delay discounting in PPG subjects in proportion to its ability to augment top-down control. To causally test this hypothesis, we administered the COMT inhibitor tolcapone in a randomized, double-blind, placebo-controlled, within-subject study of 17 PPG subjects who performed a delay discounting task while functional MRI images were obtained. In this subject population, we found that greater BOLD activity during the placebo condition within the right inferior frontal cortex (RIFC), a region thought to be important for inhibitory control, correlated with greater declines in impulsivity on tolcapone versus placebo. Intriguingly, connectivity between RIFC and the right striatum, and not the level of activity within RIFC itself, increased on tolcapone versus placebo. Together, these findings support the hypothesis that tolcapone-mediated increases in top-down control may reduce impulsivity in PPG subjects, a finding with potential translational relevance for gambling disorders, and for behavioral addictions in general.
Collapse
Affiliation(s)
- Andrew S. Kayser
- Department of Neurology, University of California, San Francisco, United States
- Department of Neurology, VA Northern California Health Care System, United States
| | - Taylor Vega
- Department of Neurology, VA Northern California Health Care System, United States
| | - Dawn Weinstein
- Department of Neurology, University of California, San Francisco, United States
| | - Jan Peters
- Department of Psychology, University of Cologne, Germany
| | - Jennifer M. Mitchell
- Department of Neurology, University of California, San Francisco, United States
- Department of Psychiatry, University of California, San Francisco, United States
| |
Collapse
|
83
|
Genotype-Dependent Effects of COMT Inhibition on Cognitive Function in a Highly Specific, Novel Mouse Model of Altered COMT Activity. Neuropsychopharmacology 2016; 41:3060-3069. [PMID: 27388330 PMCID: PMC5101554 DOI: 10.1038/npp.2016.119] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 02/07/2023]
Abstract
Catechol-O-methyltransferase (COMT) modulates dopamine levels in the prefrontal cortex. The human gene contains a polymorphism (Val158Met) that alters enzyme activity and influences PFC function. It has also been linked with cognition and anxiety, but the findings are mixed. We therefore developed a novel mouse model of altered COMT activity. The human Met allele was introduced into the native mouse COMT gene to produce COMT-Met mice, which were compared with their wild-type littermates. The model proved highly specific: COMT-Met mice had reductions in COMT abundance and activity, compared with wild-type mice, explicitly in the absence of off-target changes in the expression of other genes. Despite robust alterations in dopamine metabolism, we found only subtle changes on certain cognitive tasks under baseline conditions (eg, increased spatial novelty preference in COMT-Met mice vs wild-type mice). However, genotype differences emerged after administration of the COMT inhibitor tolcapone: performance of wild-type mice, but not COMT-Met mice, was improved on the 5-choice serial reaction time task after tolcapone administration. There were no changes in anxiety-related behaviors in the tests that we used. Our findings are convergent with human studies of the Val158Met polymorphism, and suggest that COMT's effects are most prominent when the dopamine system is challenged. Finally, they demonstrate the importance of considering COMT genotype when examining the therapeutic potential of COMT inhibitors.
Collapse
|
84
|
Li M, Weinberger DR. RETRACTION: Illuminating the dark road from schizophrenia genetic associations to disease mechanisms. Natl Sci Rev 2016. [DOI: 10.1093/nsr/nww065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abstract
Recent large-scale genome-wide association studies (GWAS) have enabled the discovery of common genetic variations contributing to risk architectures of schizophrenia in human populations; however, the majority of GWAS-identified variants are located in large genomic regions spanning multiple genes, and recognizing the precise targets and mechanisms of these clinical associations is now the major challenge. Here, we review recent progress in schizophrenia genetics, functional genomics and related neuroscience research, and propose a functional pipeline to translate schizophrenia GWAS risk loci into disease biology and information for drug discovery. The pipeline includes identification of underlying molecular mechanisms using transcriptomic data in human brain, prioritization of putative functional causative variants by the integration of genetic epidemiological and bioinformatics methods as well as molecular approaches, and in vitro and in vivo experimental characterizations of the identified targeted species and causative variants to dissect the relevant disease biology. These approaches will accelerate progress from schizophrenia genetic studies to biological mechanisms and ultimately guide the development of prognostic, preventive and therapeutic measures.
Collapse
Affiliation(s)
- Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming 650223, China
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, 21205, USA
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, 21205, USA
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, 21205, USA
- McKusick Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, 21205, USA
| |
Collapse
|
85
|
Qayyum A, Zai CC, Hirata Y, Tiwari AK, Cheema S, Nowrouzi B, Beitchman JH, Kennedy JL. The Role of the Catechol-o-Methyltransferase (COMT) GeneVal158Met in Aggressive Behavior, a Review of Genetic Studies. Curr Neuropharmacol 2016; 13:802-14. [PMID: 26630958 PMCID: PMC4759319 DOI: 10.2174/1570159x13666150612225836] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 05/22/2015] [Accepted: 05/25/2015] [Indexed: 12/04/2022] Open
Abstract
Aggressive behaviors have become a major public health problem, and early-onset aggression can lead to outcomes such as substance abuse, antisocial personality disorder among other issues. In recent years, there has been an increase in research in the molecular and genetic underpinnings of aggressive behavior, and one of the candidate genes codes for the catechol-O-methyltransferase (COMT). COMT is involved in catabolizing catecholamines such as dopamine. These neurotransmitters appear to be involved in regulating mood which can contribute to aggression. The most common gene variant studied in the COMT gene is the Valine (Val) to Methionine (Met) substitution at codon 158. We will be reviewing the current literature on this gene variant in aggressive behavior.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - James L Kennedy
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario M5T 1R8 Canada.
| |
Collapse
|
86
|
Müller T. Nondopaminergic therapy of motor and nonmotor symptoms in Parkinson's disease: a clinician's perspective. Neurodegener Dis Manag 2016; 6:385-98. [PMID: 27599900 DOI: 10.2217/nmt-2016-0025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Patients with Parkinson's disease suffer from impaired motor behavior due to the dopaminergic striatal deficit and nonmotor symptoms, which also result from nondopaminergic neuronal death. This review provides a personal opinion on treatment strategies for symptoms, resulting at least partially from nondopaminergic neurodegeneration, and on therapeutic modulation of dopaminergic neurotransmission. Patient-tailored treatment regimes on the basis of an individual risk benefit ratio as essential precondition try to balance all these symptoms. Individually varying heterogeneity of symptoms, nonlinear disease progression, treatment response, acceptance, tolerability and safety of applied therapies demand a close, consistent relationship between patient and treating physician. Daily maintenance of patients does not ask for too detailed treatment guidelines.
Collapse
Affiliation(s)
- Thomas Müller
- Department of Neurology, St. Joseph Hospital Berlin-Weißensee, Gartenstr. 1, 13088 Berlin, Germany
| |
Collapse
|
87
|
Nilsson SR, Fejgin K, Gastambide F, Vogt MA, Kent BA, Nielsen V, Nielsen J, Gass P, Robbins TW, Saksida LM, Stensbøl TB, Tricklebank MD, Didriksen M, Bussey TJ. Assessing the Cognitive Translational Potential of a Mouse Model of the 22q11.2 Microdeletion Syndrome. Cereb Cortex 2016; 26:3991-4003. [PMID: 27507786 PMCID: PMC5028007 DOI: 10.1093/cercor/bhw229] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 07/03/2016] [Indexed: 12/26/2022] Open
Abstract
A chromosomal microdeletion at the 22q11.2 locus is associated with extensive cognitive impairments, schizophrenia and other psychopathology in humans. Previous reports indicate that mouse models of the 22q11.2 microdeletion syndrome (22q11.2DS) may model the genetic basis of cognitive deficits relevant for neuropsychiatric disorders such as schizophrenia. To assess the models usefulness for drug discovery, a novel mouse (Df(h22q11)/+) was assessed in an extensive battery of cognitive assays by partners within the NEWMEDS collaboration (Innovative Medicines Initiative Grant Agreement No. 115008). This battery included classic and touchscreen-based paradigms with recognized sensitivity and multiple attempts at reproducing previously published findings in 22q11.2DS mouse models. This work represents one of the most comprehensive reports of cognitive functioning in a transgenic animal model. In accordance with previous reports, there were non-significant trends or marginal impairment in some tasks. However, the Df(h22q11)/+ mouse did not show comprehensive deficits; no robust impairment was observed following more than 17 experiments and 14 behavioral paradigms. Thus - within the current protocols - the 22q11.2DS mouse model fails to mimic the cognitive alterations observed in human 22q11.2 deletion carriers. We suggest that the 22q11.2DS model may induce liability for cognitive dysfunction with additional "hits" being required for phenotypic expression.
Collapse
Affiliation(s)
- Simon Ro Nilsson
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK Department of Psychology, State University of New York at Binghamton, Binghamton, NY 13902-6000, USA
| | - Kim Fejgin
- H. Lundbeck A/S, Synaptic Transmission, Neuroscience Research DK, Ottiliavej 9, Valby 2500, Denmark
| | - Francois Gastambide
- In Vivo Pharmacology, Lilly Research Laboratories, Eli Lilly & Co. Ltd, Erl Wood Manor, Sunninghill Road, Windlesham GU20 6PH, UK
| | - Miriam A Vogt
- Central Institute of Mental Health, Mannheim Faculty, University of Heidelberg, J5, 68159 Mannheim, Germany
| | - Brianne A Kent
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK
| | - Vibeke Nielsen
- H. Lundbeck A/S, Synaptic Transmission, Neuroscience Research DK, Ottiliavej 9, Valby 2500, Denmark
| | - Jacob Nielsen
- H. Lundbeck A/S, Synaptic Transmission, Neuroscience Research DK, Ottiliavej 9, Valby 2500, Denmark
| | - Peter Gass
- Central Institute of Mental Health, Mannheim Faculty, University of Heidelberg, J5, 68159 Mannheim, Germany
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK
| | - Lisa M Saksida
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK
| | - Tine B Stensbøl
- H. Lundbeck A/S, Synaptic Transmission, Neuroscience Research DK, Ottiliavej 9, Valby 2500, Denmark
| | - Mark D Tricklebank
- In Vivo Pharmacology, Lilly Research Laboratories, Eli Lilly & Co. Ltd, Erl Wood Manor, Sunninghill Road, Windlesham GU20 6PH, UK
| | - Michael Didriksen
- H. Lundbeck A/S, Synaptic Transmission, Neuroscience Research DK, Ottiliavej 9, Valby 2500, Denmark
| | - Timothy J Bussey
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK
| |
Collapse
|
88
|
The association between the COMT gene Val158Met polymorphism and preschoolers’ autobiographical memory details and narrative cohesiveness. COGNITIVE DEVELOPMENT 2016. [DOI: 10.1016/j.cogdev.2016.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
89
|
Zhao Z, Harrison ST, Schubert JW, Sanders JM, Polsky-Fisher S, Zhang NR, McLoughlin D, Gibson CR, Robinson RG, Sachs NA, Kandebo M, Yao L, Smith SM, Hutson PH, Wolkenberg SE, Barrow JC. Synthesis and optimization of N -heterocyclic pyridinones as catechol- O -methyltransferase (COMT) inhibitors. Bioorg Med Chem Lett 2016; 26:2952-2956. [DOI: 10.1016/j.bmcl.2016.03.095] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/24/2016] [Accepted: 03/25/2016] [Indexed: 11/28/2022]
|
90
|
Huang E, Zai CC, Lisoway A, Maciukiewicz M, Felsky D, Tiwari AK, Bishop JR, Ikeda M, Molero P, Ortuno F, Porcelli S, Samochowiec J, Mierzejewski P, Gao S, Crespo-Facorro B, Pelayo-Terán JM, Kaur H, Kukreti R, Meltzer HY, Lieberman JA, Potkin SG, Müller DJ, Kennedy JL. Catechol-O-Methyltransferase Val158Met Polymorphism and Clinical Response to Antipsychotic Treatment in Schizophrenia and Schizo-Affective Disorder Patients: a Meta-Analysis. Int J Neuropsychopharmacol 2016; 19:pyv132. [PMID: 26745992 PMCID: PMC4886669 DOI: 10.1093/ijnp/pyv132] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/19/2015] [Accepted: 12/02/2015] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The catechol-O-methyltransferase (COMT) enzyme plays a crucial role in dopamine degradation, and the COMT Val158Met polymorphism (rs4680) is associated with significant differences in enzymatic activity and consequently dopamine concentrations in the prefrontal cortex. Multiple studies have analyzed the COMT Val158Met variant in relation to antipsychotic response. Here, we conducted a meta-analysis examining the relationship between COMT Val158Met and antipsychotic response. METHODS Searches using PubMed, Web of Science, and PsycInfo databases (03/01/2015) yielded 23 studies investigating COMT Val158Met variation and antipsychotic response in schizophrenia and schizo-affective disorder. Responders/nonresponders were defined using each study's original criteria. If no binary response definition was used, authors were asked to define response according to at least 30% Positive and Negative Syndrome Scale score reduction (or equivalent in other scales). Analysis was conducted under a fixed-effects model. RESULTS Ten studies met inclusion criteria for the meta-analysis. Five additional antipsychotic-treated samples were analyzed for Val158Met and response and included in the meta-analysis (ntotal=1416). Met/Met individuals were significantly more likely to respond than Val-carriers (P=.039, ORMet/Met=1.37, 95% CI: 1.02-1.85). Met/Met patients also experienced significantly greater improvement in positive symptoms relative to Val-carriers (P=.030, SMD=0.24, 95% CI: 0.024-0.46). Posthoc analyses on patients treated with atypical antipsychotics (n=1207) showed that Met/Met patients were significantly more likely to respond relative to Val-carriers (P=.0098, ORMet/Met=1.54, 95% CI: 1.11-2.14), while no difference was observed for typical-antipsychotic-treated patients (n=155) (P=.65). CONCLUSIONS Our findings suggest that the COMT Val158Met polymorphism is associated with response to antipsychotics in schizophrenia and schizo-affective disorder patients. This effect may be more pronounced for atypical antipsychotics.
Collapse
Affiliation(s)
- Eric Huang
- Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada (Mr Huang, Dr Zai, Ms Lisoway, Dr Maciukiewicz, Mr Felsky, Dr Tiwari, Dr Müller, and Dr Kennedy); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN (Dr Bishop); Department of Psychiatry, Fujita Health University, Toyoake, Aichi, Japan (Dr Ikeda); Departamento de Psiquiatria, Clinica Universidad de Navarra, Pamplona, Spain (Drs Molero and Ortuno); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (Dr Porcelli); Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland (Dr Samochowiec); Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland (Dr Mierzejewski); Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, China (Dr Gao); Department of Psychiatry, CIBERSAM, University Hospital Marqués de Valdecilla- IDIVAL, School of Medicine, University of Cantabria, Santander, Spain (Dr Pelayo-Terán); Institute of Genomics and Integrative Biology, Delhi, India (Drs Kaur and Kukreti); Feinberg School of Medicine, Northwestern University, Chicago, IL (Dr Meltzer); Department of Psychiatry, Columbia University Medical Center, New York, NY (Dr Lieberman); Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA (Dr Potkin)
| | - Clement C Zai
- Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada (Mr Huang, Dr Zai, Ms Lisoway, Dr Maciukiewicz, Mr Felsky, Dr Tiwari, Dr Müller, and Dr Kennedy); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN (Dr Bishop); Department of Psychiatry, Fujita Health University, Toyoake, Aichi, Japan (Dr Ikeda); Departamento de Psiquiatria, Clinica Universidad de Navarra, Pamplona, Spain (Drs Molero and Ortuno); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (Dr Porcelli); Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland (Dr Samochowiec); Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland (Dr Mierzejewski); Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, China (Dr Gao); Department of Psychiatry, CIBERSAM, University Hospital Marqués de Valdecilla- IDIVAL, School of Medicine, University of Cantabria, Santander, Spain (Dr Pelayo-Terán); Institute of Genomics and Integrative Biology, Delhi, India (Drs Kaur and Kukreti); Feinberg School of Medicine, Northwestern University, Chicago, IL (Dr Meltzer); Department of Psychiatry, Columbia University Medical Center, New York, NY (Dr Lieberman); Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA (Dr Potkin)
| | - Amanda Lisoway
- Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada (Mr Huang, Dr Zai, Ms Lisoway, Dr Maciukiewicz, Mr Felsky, Dr Tiwari, Dr Müller, and Dr Kennedy); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN (Dr Bishop); Department of Psychiatry, Fujita Health University, Toyoake, Aichi, Japan (Dr Ikeda); Departamento de Psiquiatria, Clinica Universidad de Navarra, Pamplona, Spain (Drs Molero and Ortuno); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (Dr Porcelli); Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland (Dr Samochowiec); Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland (Dr Mierzejewski); Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, China (Dr Gao); Department of Psychiatry, CIBERSAM, University Hospital Marqués de Valdecilla- IDIVAL, School of Medicine, University of Cantabria, Santander, Spain (Dr Pelayo-Terán); Institute of Genomics and Integrative Biology, Delhi, India (Drs Kaur and Kukreti); Feinberg School of Medicine, Northwestern University, Chicago, IL (Dr Meltzer); Department of Psychiatry, Columbia University Medical Center, New York, NY (Dr Lieberman); Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA (Dr Potkin)
| | - Malgorzata Maciukiewicz
- Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada (Mr Huang, Dr Zai, Ms Lisoway, Dr Maciukiewicz, Mr Felsky, Dr Tiwari, Dr Müller, and Dr Kennedy); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN (Dr Bishop); Department of Psychiatry, Fujita Health University, Toyoake, Aichi, Japan (Dr Ikeda); Departamento de Psiquiatria, Clinica Universidad de Navarra, Pamplona, Spain (Drs Molero and Ortuno); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (Dr Porcelli); Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland (Dr Samochowiec); Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland (Dr Mierzejewski); Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, China (Dr Gao); Department of Psychiatry, CIBERSAM, University Hospital Marqués de Valdecilla- IDIVAL, School of Medicine, University of Cantabria, Santander, Spain (Dr Pelayo-Terán); Institute of Genomics and Integrative Biology, Delhi, India (Drs Kaur and Kukreti); Feinberg School of Medicine, Northwestern University, Chicago, IL (Dr Meltzer); Department of Psychiatry, Columbia University Medical Center, New York, NY (Dr Lieberman); Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA (Dr Potkin)
| | - Daniel Felsky
- Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada (Mr Huang, Dr Zai, Ms Lisoway, Dr Maciukiewicz, Mr Felsky, Dr Tiwari, Dr Müller, and Dr Kennedy); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN (Dr Bishop); Department of Psychiatry, Fujita Health University, Toyoake, Aichi, Japan (Dr Ikeda); Departamento de Psiquiatria, Clinica Universidad de Navarra, Pamplona, Spain (Drs Molero and Ortuno); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (Dr Porcelli); Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland (Dr Samochowiec); Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland (Dr Mierzejewski); Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, China (Dr Gao); Department of Psychiatry, CIBERSAM, University Hospital Marqués de Valdecilla- IDIVAL, School of Medicine, University of Cantabria, Santander, Spain (Dr Pelayo-Terán); Institute of Genomics and Integrative Biology, Delhi, India (Drs Kaur and Kukreti); Feinberg School of Medicine, Northwestern University, Chicago, IL (Dr Meltzer); Department of Psychiatry, Columbia University Medical Center, New York, NY (Dr Lieberman); Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA (Dr Potkin)
| | - Arun K Tiwari
- Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada (Mr Huang, Dr Zai, Ms Lisoway, Dr Maciukiewicz, Mr Felsky, Dr Tiwari, Dr Müller, and Dr Kennedy); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN (Dr Bishop); Department of Psychiatry, Fujita Health University, Toyoake, Aichi, Japan (Dr Ikeda); Departamento de Psiquiatria, Clinica Universidad de Navarra, Pamplona, Spain (Drs Molero and Ortuno); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (Dr Porcelli); Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland (Dr Samochowiec); Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland (Dr Mierzejewski); Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, China (Dr Gao); Department of Psychiatry, CIBERSAM, University Hospital Marqués de Valdecilla- IDIVAL, School of Medicine, University of Cantabria, Santander, Spain (Dr Pelayo-Terán); Institute of Genomics and Integrative Biology, Delhi, India (Drs Kaur and Kukreti); Feinberg School of Medicine, Northwestern University, Chicago, IL (Dr Meltzer); Department of Psychiatry, Columbia University Medical Center, New York, NY (Dr Lieberman); Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA (Dr Potkin)
| | - Jeffrey R Bishop
- Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada (Mr Huang, Dr Zai, Ms Lisoway, Dr Maciukiewicz, Mr Felsky, Dr Tiwari, Dr Müller, and Dr Kennedy); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN (Dr Bishop); Department of Psychiatry, Fujita Health University, Toyoake, Aichi, Japan (Dr Ikeda); Departamento de Psiquiatria, Clinica Universidad de Navarra, Pamplona, Spain (Drs Molero and Ortuno); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (Dr Porcelli); Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland (Dr Samochowiec); Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland (Dr Mierzejewski); Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, China (Dr Gao); Department of Psychiatry, CIBERSAM, University Hospital Marqués de Valdecilla- IDIVAL, School of Medicine, University of Cantabria, Santander, Spain (Dr Pelayo-Terán); Institute of Genomics and Integrative Biology, Delhi, India (Drs Kaur and Kukreti); Feinberg School of Medicine, Northwestern University, Chicago, IL (Dr Meltzer); Department of Psychiatry, Columbia University Medical Center, New York, NY (Dr Lieberman); Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA (Dr Potkin)
| | - Masashi Ikeda
- Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada (Mr Huang, Dr Zai, Ms Lisoway, Dr Maciukiewicz, Mr Felsky, Dr Tiwari, Dr Müller, and Dr Kennedy); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN (Dr Bishop); Department of Psychiatry, Fujita Health University, Toyoake, Aichi, Japan (Dr Ikeda); Departamento de Psiquiatria, Clinica Universidad de Navarra, Pamplona, Spain (Drs Molero and Ortuno); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (Dr Porcelli); Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland (Dr Samochowiec); Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland (Dr Mierzejewski); Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, China (Dr Gao); Department of Psychiatry, CIBERSAM, University Hospital Marqués de Valdecilla- IDIVAL, School of Medicine, University of Cantabria, Santander, Spain (Dr Pelayo-Terán); Institute of Genomics and Integrative Biology, Delhi, India (Drs Kaur and Kukreti); Feinberg School of Medicine, Northwestern University, Chicago, IL (Dr Meltzer); Department of Psychiatry, Columbia University Medical Center, New York, NY (Dr Lieberman); Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA (Dr Potkin)
| | - Patricio Molero
- Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada (Mr Huang, Dr Zai, Ms Lisoway, Dr Maciukiewicz, Mr Felsky, Dr Tiwari, Dr Müller, and Dr Kennedy); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN (Dr Bishop); Department of Psychiatry, Fujita Health University, Toyoake, Aichi, Japan (Dr Ikeda); Departamento de Psiquiatria, Clinica Universidad de Navarra, Pamplona, Spain (Drs Molero and Ortuno); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (Dr Porcelli); Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland (Dr Samochowiec); Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland (Dr Mierzejewski); Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, China (Dr Gao); Department of Psychiatry, CIBERSAM, University Hospital Marqués de Valdecilla- IDIVAL, School of Medicine, University of Cantabria, Santander, Spain (Dr Pelayo-Terán); Institute of Genomics and Integrative Biology, Delhi, India (Drs Kaur and Kukreti); Feinberg School of Medicine, Northwestern University, Chicago, IL (Dr Meltzer); Department of Psychiatry, Columbia University Medical Center, New York, NY (Dr Lieberman); Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA (Dr Potkin)
| | - Felipe Ortuno
- Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada (Mr Huang, Dr Zai, Ms Lisoway, Dr Maciukiewicz, Mr Felsky, Dr Tiwari, Dr Müller, and Dr Kennedy); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN (Dr Bishop); Department of Psychiatry, Fujita Health University, Toyoake, Aichi, Japan (Dr Ikeda); Departamento de Psiquiatria, Clinica Universidad de Navarra, Pamplona, Spain (Drs Molero and Ortuno); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (Dr Porcelli); Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland (Dr Samochowiec); Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland (Dr Mierzejewski); Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, China (Dr Gao); Department of Psychiatry, CIBERSAM, University Hospital Marqués de Valdecilla- IDIVAL, School of Medicine, University of Cantabria, Santander, Spain (Dr Pelayo-Terán); Institute of Genomics and Integrative Biology, Delhi, India (Drs Kaur and Kukreti); Feinberg School of Medicine, Northwestern University, Chicago, IL (Dr Meltzer); Department of Psychiatry, Columbia University Medical Center, New York, NY (Dr Lieberman); Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA (Dr Potkin)
| | - Stefano Porcelli
- Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada (Mr Huang, Dr Zai, Ms Lisoway, Dr Maciukiewicz, Mr Felsky, Dr Tiwari, Dr Müller, and Dr Kennedy); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN (Dr Bishop); Department of Psychiatry, Fujita Health University, Toyoake, Aichi, Japan (Dr Ikeda); Departamento de Psiquiatria, Clinica Universidad de Navarra, Pamplona, Spain (Drs Molero and Ortuno); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (Dr Porcelli); Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland (Dr Samochowiec); Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland (Dr Mierzejewski); Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, China (Dr Gao); Department of Psychiatry, CIBERSAM, University Hospital Marqués de Valdecilla- IDIVAL, School of Medicine, University of Cantabria, Santander, Spain (Dr Pelayo-Terán); Institute of Genomics and Integrative Biology, Delhi, India (Drs Kaur and Kukreti); Feinberg School of Medicine, Northwestern University, Chicago, IL (Dr Meltzer); Department of Psychiatry, Columbia University Medical Center, New York, NY (Dr Lieberman); Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA (Dr Potkin)
| | - Jerzy Samochowiec
- Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada (Mr Huang, Dr Zai, Ms Lisoway, Dr Maciukiewicz, Mr Felsky, Dr Tiwari, Dr Müller, and Dr Kennedy); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN (Dr Bishop); Department of Psychiatry, Fujita Health University, Toyoake, Aichi, Japan (Dr Ikeda); Departamento de Psiquiatria, Clinica Universidad de Navarra, Pamplona, Spain (Drs Molero and Ortuno); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (Dr Porcelli); Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland (Dr Samochowiec); Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland (Dr Mierzejewski); Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, China (Dr Gao); Department of Psychiatry, CIBERSAM, University Hospital Marqués de Valdecilla- IDIVAL, School of Medicine, University of Cantabria, Santander, Spain (Dr Pelayo-Terán); Institute of Genomics and Integrative Biology, Delhi, India (Drs Kaur and Kukreti); Feinberg School of Medicine, Northwestern University, Chicago, IL (Dr Meltzer); Department of Psychiatry, Columbia University Medical Center, New York, NY (Dr Lieberman); Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA (Dr Potkin)
| | - Pawel Mierzejewski
- Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada (Mr Huang, Dr Zai, Ms Lisoway, Dr Maciukiewicz, Mr Felsky, Dr Tiwari, Dr Müller, and Dr Kennedy); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN (Dr Bishop); Department of Psychiatry, Fujita Health University, Toyoake, Aichi, Japan (Dr Ikeda); Departamento de Psiquiatria, Clinica Universidad de Navarra, Pamplona, Spain (Drs Molero and Ortuno); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (Dr Porcelli); Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland (Dr Samochowiec); Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland (Dr Mierzejewski); Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, China (Dr Gao); Department of Psychiatry, CIBERSAM, University Hospital Marqués de Valdecilla- IDIVAL, School of Medicine, University of Cantabria, Santander, Spain (Dr Pelayo-Terán); Institute of Genomics and Integrative Biology, Delhi, India (Drs Kaur and Kukreti); Feinberg School of Medicine, Northwestern University, Chicago, IL (Dr Meltzer); Department of Psychiatry, Columbia University Medical Center, New York, NY (Dr Lieberman); Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA (Dr Potkin)
| | - Shugui Gao
- Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada (Mr Huang, Dr Zai, Ms Lisoway, Dr Maciukiewicz, Mr Felsky, Dr Tiwari, Dr Müller, and Dr Kennedy); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN (Dr Bishop); Department of Psychiatry, Fujita Health University, Toyoake, Aichi, Japan (Dr Ikeda); Departamento de Psiquiatria, Clinica Universidad de Navarra, Pamplona, Spain (Drs Molero and Ortuno); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (Dr Porcelli); Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland (Dr Samochowiec); Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland (Dr Mierzejewski); Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, China (Dr Gao); Department of Psychiatry, CIBERSAM, University Hospital Marqués de Valdecilla- IDIVAL, School of Medicine, University of Cantabria, Santander, Spain (Dr Pelayo-Terán); Institute of Genomics and Integrative Biology, Delhi, India (Drs Kaur and Kukreti); Feinberg School of Medicine, Northwestern University, Chicago, IL (Dr Meltzer); Department of Psychiatry, Columbia University Medical Center, New York, NY (Dr Lieberman); Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA (Dr Potkin)
| | - Benedicto Crespo-Facorro
- Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada (Mr Huang, Dr Zai, Ms Lisoway, Dr Maciukiewicz, Mr Felsky, Dr Tiwari, Dr Müller, and Dr Kennedy); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN (Dr Bishop); Department of Psychiatry, Fujita Health University, Toyoake, Aichi, Japan (Dr Ikeda); Departamento de Psiquiatria, Clinica Universidad de Navarra, Pamplona, Spain (Drs Molero and Ortuno); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (Dr Porcelli); Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland (Dr Samochowiec); Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland (Dr Mierzejewski); Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, China (Dr Gao); Department of Psychiatry, CIBERSAM, University Hospital Marqués de Valdecilla- IDIVAL, School of Medicine, University of Cantabria, Santander, Spain (Dr Pelayo-Terán); Institute of Genomics and Integrative Biology, Delhi, India (Drs Kaur and Kukreti); Feinberg School of Medicine, Northwestern University, Chicago, IL (Dr Meltzer); Department of Psychiatry, Columbia University Medical Center, New York, NY (Dr Lieberman); Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA (Dr Potkin)
| | - José M Pelayo-Terán
- Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada (Mr Huang, Dr Zai, Ms Lisoway, Dr Maciukiewicz, Mr Felsky, Dr Tiwari, Dr Müller, and Dr Kennedy); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN (Dr Bishop); Department of Psychiatry, Fujita Health University, Toyoake, Aichi, Japan (Dr Ikeda); Departamento de Psiquiatria, Clinica Universidad de Navarra, Pamplona, Spain (Drs Molero and Ortuno); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (Dr Porcelli); Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland (Dr Samochowiec); Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland (Dr Mierzejewski); Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, China (Dr Gao); Department of Psychiatry, CIBERSAM, University Hospital Marqués de Valdecilla- IDIVAL, School of Medicine, University of Cantabria, Santander, Spain (Dr Pelayo-Terán); Institute of Genomics and Integrative Biology, Delhi, India (Drs Kaur and Kukreti); Feinberg School of Medicine, Northwestern University, Chicago, IL (Dr Meltzer); Department of Psychiatry, Columbia University Medical Center, New York, NY (Dr Lieberman); Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA (Dr Potkin)
| | - Harpreet Kaur
- Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada (Mr Huang, Dr Zai, Ms Lisoway, Dr Maciukiewicz, Mr Felsky, Dr Tiwari, Dr Müller, and Dr Kennedy); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN (Dr Bishop); Department of Psychiatry, Fujita Health University, Toyoake, Aichi, Japan (Dr Ikeda); Departamento de Psiquiatria, Clinica Universidad de Navarra, Pamplona, Spain (Drs Molero and Ortuno); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (Dr Porcelli); Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland (Dr Samochowiec); Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland (Dr Mierzejewski); Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, China (Dr Gao); Department of Psychiatry, CIBERSAM, University Hospital Marqués de Valdecilla- IDIVAL, School of Medicine, University of Cantabria, Santander, Spain (Dr Pelayo-Terán); Institute of Genomics and Integrative Biology, Delhi, India (Drs Kaur and Kukreti); Feinberg School of Medicine, Northwestern University, Chicago, IL (Dr Meltzer); Department of Psychiatry, Columbia University Medical Center, New York, NY (Dr Lieberman); Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA (Dr Potkin)
| | - Ritushree Kukreti
- Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada (Mr Huang, Dr Zai, Ms Lisoway, Dr Maciukiewicz, Mr Felsky, Dr Tiwari, Dr Müller, and Dr Kennedy); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN (Dr Bishop); Department of Psychiatry, Fujita Health University, Toyoake, Aichi, Japan (Dr Ikeda); Departamento de Psiquiatria, Clinica Universidad de Navarra, Pamplona, Spain (Drs Molero and Ortuno); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (Dr Porcelli); Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland (Dr Samochowiec); Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland (Dr Mierzejewski); Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, China (Dr Gao); Department of Psychiatry, CIBERSAM, University Hospital Marqués de Valdecilla- IDIVAL, School of Medicine, University of Cantabria, Santander, Spain (Dr Pelayo-Terán); Institute of Genomics and Integrative Biology, Delhi, India (Drs Kaur and Kukreti); Feinberg School of Medicine, Northwestern University, Chicago, IL (Dr Meltzer); Department of Psychiatry, Columbia University Medical Center, New York, NY (Dr Lieberman); Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA (Dr Potkin)
| | - Herbert Y Meltzer
- Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada (Mr Huang, Dr Zai, Ms Lisoway, Dr Maciukiewicz, Mr Felsky, Dr Tiwari, Dr Müller, and Dr Kennedy); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN (Dr Bishop); Department of Psychiatry, Fujita Health University, Toyoake, Aichi, Japan (Dr Ikeda); Departamento de Psiquiatria, Clinica Universidad de Navarra, Pamplona, Spain (Drs Molero and Ortuno); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (Dr Porcelli); Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland (Dr Samochowiec); Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland (Dr Mierzejewski); Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, China (Dr Gao); Department of Psychiatry, CIBERSAM, University Hospital Marqués de Valdecilla- IDIVAL, School of Medicine, University of Cantabria, Santander, Spain (Dr Pelayo-Terán); Institute of Genomics and Integrative Biology, Delhi, India (Drs Kaur and Kukreti); Feinberg School of Medicine, Northwestern University, Chicago, IL (Dr Meltzer); Department of Psychiatry, Columbia University Medical Center, New York, NY (Dr Lieberman); Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA (Dr Potkin)
| | - Jeffrey A Lieberman
- Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada (Mr Huang, Dr Zai, Ms Lisoway, Dr Maciukiewicz, Mr Felsky, Dr Tiwari, Dr Müller, and Dr Kennedy); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN (Dr Bishop); Department of Psychiatry, Fujita Health University, Toyoake, Aichi, Japan (Dr Ikeda); Departamento de Psiquiatria, Clinica Universidad de Navarra, Pamplona, Spain (Drs Molero and Ortuno); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (Dr Porcelli); Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland (Dr Samochowiec); Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland (Dr Mierzejewski); Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, China (Dr Gao); Department of Psychiatry, CIBERSAM, University Hospital Marqués de Valdecilla- IDIVAL, School of Medicine, University of Cantabria, Santander, Spain (Dr Pelayo-Terán); Institute of Genomics and Integrative Biology, Delhi, India (Drs Kaur and Kukreti); Feinberg School of Medicine, Northwestern University, Chicago, IL (Dr Meltzer); Department of Psychiatry, Columbia University Medical Center, New York, NY (Dr Lieberman); Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA (Dr Potkin)
| | - Steven G Potkin
- Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada (Mr Huang, Dr Zai, Ms Lisoway, Dr Maciukiewicz, Mr Felsky, Dr Tiwari, Dr Müller, and Dr Kennedy); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN (Dr Bishop); Department of Psychiatry, Fujita Health University, Toyoake, Aichi, Japan (Dr Ikeda); Departamento de Psiquiatria, Clinica Universidad de Navarra, Pamplona, Spain (Drs Molero and Ortuno); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (Dr Porcelli); Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland (Dr Samochowiec); Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland (Dr Mierzejewski); Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, China (Dr Gao); Department of Psychiatry, CIBERSAM, University Hospital Marqués de Valdecilla- IDIVAL, School of Medicine, University of Cantabria, Santander, Spain (Dr Pelayo-Terán); Institute of Genomics and Integrative Biology, Delhi, India (Drs Kaur and Kukreti); Feinberg School of Medicine, Northwestern University, Chicago, IL (Dr Meltzer); Department of Psychiatry, Columbia University Medical Center, New York, NY (Dr Lieberman); Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA (Dr Potkin)
| | - Daniel J Müller
- Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada (Mr Huang, Dr Zai, Ms Lisoway, Dr Maciukiewicz, Mr Felsky, Dr Tiwari, Dr Müller, and Dr Kennedy); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN (Dr Bishop); Department of Psychiatry, Fujita Health University, Toyoake, Aichi, Japan (Dr Ikeda); Departamento de Psiquiatria, Clinica Universidad de Navarra, Pamplona, Spain (Drs Molero and Ortuno); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (Dr Porcelli); Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland (Dr Samochowiec); Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland (Dr Mierzejewski); Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, China (Dr Gao); Department of Psychiatry, CIBERSAM, University Hospital Marqués de Valdecilla- IDIVAL, School of Medicine, University of Cantabria, Santander, Spain (Dr Pelayo-Terán); Institute of Genomics and Integrative Biology, Delhi, India (Drs Kaur and Kukreti); Feinberg School of Medicine, Northwestern University, Chicago, IL (Dr Meltzer); Department of Psychiatry, Columbia University Medical Center, New York, NY (Dr Lieberman); Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA (Dr Potkin)
| | - James L Kennedy
- Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada (Mr Huang, Dr Zai, Ms Lisoway, Dr Maciukiewicz, Mr Felsky, Dr Tiwari, Dr Müller, and Dr Kennedy); Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN (Dr Bishop); Department of Psychiatry, Fujita Health University, Toyoake, Aichi, Japan (Dr Ikeda); Departamento de Psiquiatria, Clinica Universidad de Navarra, Pamplona, Spain (Drs Molero and Ortuno); Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (Dr Porcelli); Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland (Dr Samochowiec); Department of Pharmacology, Institute of Psychiatry and Neurology, Warsaw, Poland (Dr Mierzejewski); Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, China (Dr Gao); Department of Psychiatry, CIBERSAM, University Hospital Marqués de Valdecilla- IDIVAL, School of Medicine, University of Cantabria, Santander, Spain (Dr Pelayo-Terán); Institute of Genomics and Integrative Biology, Delhi, India (Drs Kaur and Kukreti); Feinberg School of Medicine, Northwestern University, Chicago, IL (Dr Meltzer); Department of Psychiatry, Columbia University Medical Center, New York, NY (Dr Lieberman); Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA (Dr Potkin).
| |
Collapse
|
91
|
Persson N, Lavebratt C, Sundström A, Fischer H. Pulse Pressure Magnifies the Effect of COMT Val(158)Met on 15 Years Episodic Memory Trajectories. Front Aging Neurosci 2016; 8:34. [PMID: 26973509 PMCID: PMC4773588 DOI: 10.3389/fnagi.2016.00034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/09/2016] [Indexed: 11/13/2022] Open
Abstract
We investigated whether a physiological marker of cardiovascular health, pulse pressure (PP), and age magnified the effect of the functional COMT Val(158)Met (rs4680) polymorphism on 15-years cognitive trajectories [episodic memory (EM), visuospatial ability, and semantic memory] using data from 1585 non-demented adults from the Betula study. A multiple-group latent growth curve model was specified to gauge individual differences in change, and average trends therein. The allelic variants showed negligible differences across the cognitive markers in average trends. The older portion of the sample selectively age-magnified the effects of Val(158)Met on EM changes, resulting in greater decline in Val compared to homozygote Met carriers. This effect was attenuated by statistical control for PP. Further, PP moderated the effects of COMT on 15-years EM trajectories, resulting in greater decline in Val carriers, even after accounting for the confounding effects of sex, education, cardiovascular diseases (diabetes, stroke, and hypertension), and chronological age, controlled for practice gains. The effect was still present after excluding individuals with a history of cardiovascular diseases. The effects of cognitive change were not moderated by any other covariates. This report underscores the importance of addressing synergistic effects in normal cognitive aging, as the addition thereof may place healthy individuals at greater risk for memory decline.
Collapse
Affiliation(s)
- Ninni Persson
- Department of Psychology, Stockholm University Stockholm, Sweden
| | - Catharina Lavebratt
- The Center for Molecular Medicine, Karolinska University HospitalStockholm, Sweden; Department of Molecular Medicine and Surgery, Karolinska InstitutetStockholm, Sweden
| | - Anna Sundström
- Department of Psychology, Umeå UniversityUmeå, Sweden; Centre for Demographic and Ageing Research, Umeå UniversityUmeå, Sweden
| | - Håkan Fischer
- Department of Psychology, Stockholm University Stockholm, Sweden
| |
Collapse
|
92
|
Lee A, Qiu A. Modulative effects of COMT haplotype on age-related associations with brain morphology. Hum Brain Mapp 2016; 37:2068-82. [PMID: 26920810 DOI: 10.1002/hbm.23161] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 02/09/2016] [Accepted: 02/16/2016] [Indexed: 12/25/2022] Open
Abstract
Catechol-O-methyltransferase (COMT), located on chromosome 22q11.2, encodes an enzyme critical for dopamine flux in the prefrontal cortex. Genetic variants of COMT have been suggested to functionally manipulate prefrontal morphology and function in healthy adults. This study aims to investigate modulative roles of individuals COMT SNPs (rs737865, val158met, rs165599) and its haplotypes in age-related brain morphology using an Asian sample with 174 adults aged from 21 to 80 years. We showed an age-related decline in cortical thickness of the dorsal visual pathway, including the left dorsolateral prefrontal cortex, bilateral angular gyrus, right superior frontal cortex, and age-related shape compression in the basal ganglia as a function of the genotypes of the individual COMT SNPs, especially COMT val158met. Using haplotype trend regression analysis, COMT haplotype probabilities were estimated and further revealed an age-related decline in cortical thickness in the default mode network (DMN), including the posterior cingulate, precuneus, supramarginal and paracentral cortex, and the ventral visual system, including the occipital cortex and left inferior temporal cortex, as a function of the COMT haplotype. Our results provided new evidence on an antagonistic pleiotropic effect in COMT, suggesting that genetically programmed neural benefits in early life may have a potential bearing towards neural susceptibility in later life. Hum Brain Mapp 37:2068-2082, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Annie Lee
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Anqi Qiu
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117576, Singapore.,Clinical Imaging Research Center, National University of Singapore, Singapore, 117456, Singapore.,Singapore Institute for Clinical Sciences, the Agency for Science, Technology and Research, Singapore, 117609, Singapore
| |
Collapse
|
93
|
Byrne KA, Davis T, Worthy DA. Dopaminergic Genetic Polymorphisms Predict Rule-based Category Learning. J Cogn Neurosci 2016; 28:959-70. [PMID: 26918585 DOI: 10.1162/jocn_a_00942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Dopaminergic genes play an important role in cognitive function. DRD2 and DARPP-32 dopamine receptor gene polymorphisms affect striatal dopamine binding potential, and the Val158Met single-nucleotide polymorphism of the COMT gene moderates dopamine availability in the pFC. Our study assesses the role of these gene polymorphisms on performance in two rule-based category learning tasks. Participants completed unidimensional and conjunctive rule-based tasks. In the unidimensional task, a rule along a single stimulus dimension can be used to distinguish category members. In contrast, a conjunctive rule utilizes a combination of two dimensions to distinguish category members. DRD2 C957T TT homozygotes outperformed C allele carriers on both tasks, and DARPP-32 AA homozygotes outperformed G allele carriers on both tasks. However, we found an interaction between COMT and task type where Met allele carriers outperformed Val homozygotes in the conjunctive rule task, but both groups performed equally well in the unidimensional task. Thus, striatal dopamine binding may play a critical role in both types of rule-based tasks, whereas prefrontal dopamine binding is important for learning more complex conjunctive rule tasks. Modeling results suggest that striatal dopaminergic genes influence selective attention processes whereas cortical genes mediate the ability to update complex rule representations.
Collapse
|
94
|
Doll BB, Bath KG, Daw ND, Frank MJ. Variability in Dopamine Genes Dissociates Model-Based and Model-Free Reinforcement Learning. J Neurosci 2016; 36:1211-22. [PMID: 26818509 PMCID: PMC4728725 DOI: 10.1523/jneurosci.1901-15.2016] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 12/14/2015] [Accepted: 12/14/2015] [Indexed: 11/21/2022] Open
Abstract
Considerable evidence suggests that multiple learning systems can drive behavior. Choice can proceed reflexively from previous actions and their associated outcomes, as captured by "model-free" learning algorithms, or flexibly from prospective consideration of outcomes that might occur, as captured by "model-based" learning algorithms. However, differential contributions of dopamine to these systems are poorly understood. Dopamine is widely thought to support model-free learning by modulating plasticity in striatum. Model-based learning may also be affected by these striatal effects, or by other dopaminergic effects elsewhere, notably on prefrontal working memory function. Indeed, prominent demonstrations linking striatal dopamine to putatively model-free learning did not rule out model-based effects, whereas other studies have reported dopaminergic modulation of verifiably model-based learning, but without distinguishing a prefrontal versus striatal locus. To clarify the relationships between dopamine, neural systems, and learning strategies, we combine a genetic association approach in humans with two well-studied reinforcement learning tasks: one isolating model-based from model-free behavior and the other sensitive to key aspects of striatal plasticity. Prefrontal function was indexed by a polymorphism in the COMT gene, differences of which reflect dopamine levels in the prefrontal cortex. This polymorphism has been associated with differences in prefrontal activity and working memory. Striatal function was indexed by a gene coding for DARPP-32, which is densely expressed in the striatum where it is necessary for synaptic plasticity. We found evidence for our hypothesis that variations in prefrontal dopamine relate to model-based learning, whereas variations in striatal dopamine function relate to model-free learning. SIGNIFICANCE STATEMENT Decisions can stem reflexively from their previously associated outcomes or flexibly from deliberative consideration of potential choice outcomes. Research implicates a dopamine-dependent striatal learning mechanism in the former type of choice. Although recent work has indicated that dopamine is also involved in flexible, goal-directed decision-making, it remains unclear whether it also contributes via striatum or via the dopamine-dependent working memory function of prefrontal cortex. We examined genetic indices of dopamine function in these regions and their relation to the two choice strategies. We found that striatal dopamine function related most clearly to the reflexive strategy, as previously shown, and that prefrontal dopamine related most clearly to the flexible strategy. These findings suggest that dissociable brain regions support dissociable choice strategies.
Collapse
Affiliation(s)
- Bradley B Doll
- Center for Neural Science, New York University, New York, New York 10003, Department of Psychology, Columbia University, New York, New York 10027,
| | - Kevin G Bath
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, Providence, Rhode Island 02912
| | - Nathaniel D Daw
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08540, Department of Psychology, Princeton University, Princeton, New Jersey 08540, and
| | - Michael J Frank
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, Providence, Rhode Island 02912, Brown Institute for Brain Science, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
95
|
van Amelsvoort T, Hernaus D. Effect of Pharmacological Interventions on the Fronto-Cingulo-Parietal Cognitive Control Network in Psychiatric Disorders: A Transdiagnostic Systematic Review of fMRI Studies. Front Psychiatry 2016; 7:82. [PMID: 27242552 PMCID: PMC4870274 DOI: 10.3389/fpsyt.2016.00082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/26/2016] [Indexed: 01/10/2023] Open
Abstract
Executive function deficits, such as working memory, decision-making, and attention problems, are a common feature of several psychiatric disorders for which no satisfactory treatment exists. Here, we transdiagnostically investigate the effects of pharmacological interventions (other than methylphenidate) on the fronto-cingulo-parietal cognitive control network, in order to identify functional brain markers for future procognitive pharmacological interventions. Twenty-nine manuscripts investigated the effect of pharmacological treatment on executive function-related brain correlates in psychotic disorders (n = 11), depression (n = 4), bipolar disorder (n = 4), ADHD (n = 4), OCD (n = 2), smoking dependence (n = 2), alcohol dependence (n = 1), and pathological gambling (n = 1). In terms of impact on the fronto-cingulo-parietal network, the preliminary evidence for catechol-O-methyl-transferase inhibitors, nicotinic receptor agonists, and atomoxetine was relatively consistent, the data for atypical antipsychotics and anticonvulsants moderate, and interpretation of the data for antidepressants was hampered by the employed study designs. Increased activity in task-relevant areas and decreased activity in task-irrelevant areas were the most common transdiagnostic effects of pharmacological treatment. These markers showed good positive and moderate negative predictive value. It is concluded that fronto-cingulo-parietal activity changes can serve as a marker for future procognitive interventions. Future recommendations include the use of randomized double-blind designs and selective cholinergic and glutamatergic compounds.
Collapse
Affiliation(s)
- Thérèse van Amelsvoort
- Department of Psychiatry and Neuropsychology, South Limburg Mental Health Research and Teaching Network, EURON, School for Mental Health and NeuroScience MHeNS Maastricht University , Maastricht , Netherlands
| | - Dennis Hernaus
- Department of Psychiatry and Neuropsychology, South Limburg Mental Health Research and Teaching Network, EURON, School for Mental Health and NeuroScience MHeNS Maastricht University , Maastricht , Netherlands
| |
Collapse
|
96
|
Winkler EA, Yue JK, McAllister TW, Temkin NR, Oh SS, Burchard EG, Hu D, Ferguson AR, Lingsma HF, Burke JF, Sorani MD, Rosand J, Yuh EL, Barber J, Tarapore PE, Gardner RC, Sharma S, Satris GG, Eng C, Puccio AM, Wang KKW, Mukherjee P, Valadka AB, Okonkwo DO, Diaz-Arrastia R, Manley GT. COMT Val 158 Met polymorphism is associated with nonverbal cognition following mild traumatic brain injury. Neurogenetics 2015; 17:31-41. [PMID: 26576546 DOI: 10.1007/s10048-015-0467-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 10/22/2015] [Indexed: 11/28/2022]
Abstract
Mild traumatic brain injury (mTBI) results in variable clinical outcomes, which may be influenced by genetic variation. A single-nucleotide polymorphism in catechol-o-methyltransferase (COMT), an enzyme which degrades catecholamine neurotransmitters, may influence cognitive deficits following moderate and/or severe head trauma. However, this has been disputed, and its role in mTBI has not been studied. Here, we utilize the Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot (TRACK-TBI Pilot) study to investigate whether the COMT Val (158) Met polymorphism influences outcome on a cognitive battery 6 months following mTBI--Wechsler Adult Intelligence Test Processing Speed Index Composite Score (WAIS-PSI), Trail Making Test (TMT) Trail B minus Trail A time, and California Verbal Learning Test, Second Edition Trial 1-5 Standard Score (CVLT-II). All patients had an emergency department Glasgow Coma Scale (GCS) of 13-15, no acute intracranial pathology on head CT, and no polytrauma as defined by an Abbreviated Injury Scale (AIS) score of ≥3 in any extracranial region. Results in 100 subjects aged 40.9 (SD 15.2) years (COMT Met (158) /Met (158) 29 %, Met (158) /Val (158) 47 %, Val (158) /Val (158) 24 %) show that the COMT Met (158) allele (mean 101.6 ± SE 2.1) associates with higher nonverbal processing speed on the WAIS-PSI when compared to Val (158) /Val (158) homozygotes (93.8 ± SE 3.0) after controlling for demographics and injury severity (mean increase 7.9 points, 95 % CI [1.4 to 14.3], p = 0.017). The COMT Val (158) Met polymorphism did not associate with mental flexibility on the TMT or with verbal learning on the CVLT-II. Hence, COMT Val (158) Met may preferentially modulate nonverbal cognition following uncomplicated mTBI.Registry: ClinicalTrials.gov Identifier NCT01565551.
Collapse
Affiliation(s)
- Ethan A Winkler
- Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA, 94110, USA.,Brain and Spinal Injury Center, San Francisco General Hospital, San Francisco, CA, USA
| | - John K Yue
- Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA, 94110, USA.,Brain and Spinal Injury Center, San Francisco General Hospital, San Francisco, CA, USA
| | - Thomas W McAllister
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nancy R Temkin
- Departments of Neurological Surgery and Biostatistics, University of Washington, Seattle, WA, USA
| | - Sam S Oh
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Esteban G Burchard
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Donglei Hu
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Adam R Ferguson
- Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA, 94110, USA.,Brain and Spinal Injury Center, San Francisco General Hospital, San Francisco, CA, USA
| | - Hester F Lingsma
- Department of Public Health, Erasmus Medical Center, Rotterdam, The Netherlands
| | - John F Burke
- Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA, 94110, USA.,Brain and Spinal Injury Center, San Francisco General Hospital, San Francisco, CA, USA
| | - Marco D Sorani
- Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA, 94110, USA.,Brain and Spinal Injury Center, San Francisco General Hospital, San Francisco, CA, USA
| | - Jonathan Rosand
- Department of Neurology, Harvard Medical School, Boston, MA, USA.,Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Esther L Yuh
- Brain and Spinal Injury Center, San Francisco General Hospital, San Francisco, CA, USA.,Department of Radiology, University of California, San Francisco, San Francisco, CA, USA
| | - Jason Barber
- Departments of Neurological Surgery and Biostatistics, University of Washington, Seattle, WA, USA
| | - Phiroz E Tarapore
- Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA, 94110, USA.,Brain and Spinal Injury Center, San Francisco General Hospital, San Francisco, CA, USA
| | - Raquel C Gardner
- Department of Neurology, Harvard Medical School, Boston, MA, USA.,Department of Neurology, San Francisco Veterans Administration Medical Center, San Francisco, CA, USA
| | - Sourabh Sharma
- Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA, 94110, USA.,Brain and Spinal Injury Center, San Francisco General Hospital, San Francisco, CA, USA
| | - Gabriela G Satris
- Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA, 94110, USA.,Brain and Spinal Injury Center, San Francisco General Hospital, San Francisco, CA, USA
| | - Celeste Eng
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Ava M Puccio
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Kevin K W Wang
- Center for Neuroproteomics and Biomarkers Research, Departments of Psychiatry and Neuroscience, University of Florida, Gainesville, FL, USA
| | - Pratik Mukherjee
- Brain and Spinal Injury Center, San Francisco General Hospital, San Francisco, CA, USA.,Department of Radiology, University of California, San Francisco, San Francisco, CA, USA
| | | | - David O Okonkwo
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Center for Neuroscience and Regenerative Medicine, Bethesda, MD, USA
| | - Geoffrey T Manley
- Department of Neurological Surgery, University of California, San Francisco, 1001 Potrero Avenue, Building 1, Room 101, San Francisco, CA, 94110, USA. .,Brain and Spinal Injury Center, San Francisco General Hospital, San Francisco, CA, USA.
| | | |
Collapse
|
97
|
Ge L, Wu HY, Pan SL, Huang L, Sun P, Liang QH, Pang GF, Lv ZP, Hu CY, Liu CW, Zhou XL, Huang LJ, Yin RX, Peng JH. COMT Val158Met polymorphism is associated with blood pressure and lipid levels in general families of Bama longevous area in China. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:15055-15064. [PMID: 26823844 PMCID: PMC4713630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 10/25/2015] [Indexed: 06/05/2023]
Abstract
To see the possible relationship between COMT Val158Met polymorphism and blood pressure (BP) and serum lipid levels and its putative role in human longevity, we genotyped COMT Val158Met (rs4680) by PCR-RFLP for members from Bama long-lived families (BLF, n = 1538), Bama non-long-lived families (BNLF, n = 600), Pingguo (a county outside Bama region) long-lived families (PLF, n = 538) and Pingguo non-long-lived families (PNLF, n = 403) after anthropometric measures were collected and serum lipid levels were detected. The distribution of genotypes and alleles among four family groups was significantly different (all P < 0.01), with GA/AA genotype and minor allele A presenting more frequently in Bama population than Pingguo Population (P < 0.01). The systolic blood pressure (SBP), pulse pressure (PP), total cholesterol (TC), triglyceride (TG) and low density lipoprotein-cholesterol (LDL-C) levels of GG genotype carriers were dramatically higher than non-GG carriers in BNLF (P < 0.05); the SBP and PP levels of GG carriers were lower (P < 0.05) while TC, LDL-C level were higher (P < 0.01) than that of non-GG carriers in PLF; no difference in blood pressure and lipids were observed between genotypes in BLF and PNLF (P > 0.05). Correlation analyses revealed that COMT Val158Met was mainly correlated negatively with SBP, diastolic blood pressure (DBP) and LDL-C in BNLF and negatively with TC level in BLF, BNLF and PLF. These data suggest that COMT Val158Met polymorphism may have more impact on the modulation of BP and lipid profiles in the average families than in the long-lived families in Bama region. The association between this SNP and other phenotypes (e.g. cognition) and its roles in the longevity in Bama area thus warrant further investigation.
Collapse
Affiliation(s)
- Lin Ge
- Department of Pathophysiology, Guangxi Medical UniversityNanning, Guangxi, China
| | - Hua-Yu Wu
- Department of Cell Biology & Genetics, Guangxi Medical UniversityNanning , Guangxi, China
| | - Shang-Ling Pan
- Department of Pathophysiology, Guangxi Medical UniversityNanning, Guangxi, China
| | - Ling Huang
- Department of Pathophysiology, Guangxi Medical UniversityNanning, Guangxi, China
| | - Peng Sun
- Department of Pathophysiology, Guangxi Medical UniversityNanning, Guangxi, China
| | - Qing-Hua Liang
- Department of Neurology, Jiangbin Hospital of Guangxi Zhuang Autonomous RegionNanning, Guangxi, China
| | - Guo-Fang Pang
- Department of Neurology, Jiangbin Hospital of Guangxi Zhuang Autonomous RegionNanning, Guangxi, China
| | - Ze-Ping Lv
- Department of Neurology, Jiangbin Hospital of Guangxi Zhuang Autonomous RegionNanning, Guangxi, China
| | - Cai-You Hu
- Department of Neurology, Jiangbin Hospital of Guangxi Zhuang Autonomous RegionNanning, Guangxi, China
| | - Cheng-Wu Liu
- Department of Pathophysiology, Guangxi Medical UniversityNanning, Guangxi, China
| | - Xiao-Ling Zhou
- Department of Pathophysiology, Guangxi Medical UniversityNanning, Guangxi, China
| | - Ling-Jin Huang
- Department of Pathophysiology, Guangxi Medical UniversityNanning, Guangxi, China
| | - Rui-Xing Yin
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical UniversityNanning, Guangxi, China
| | - Jun-Hua Peng
- Department of Pathophysiology, Guangxi Medical UniversityNanning, Guangxi, China
| |
Collapse
|
98
|
Tunbridge EM, Dunn G, Murray RM, Evans N, Lister R, Stumpenhorst K, Harrison PJ, Morrison PD, Freeman D. Genetic moderation of the effects of cannabis: catechol-O-methyltransferase (COMT) affects the impact of Δ9-tetrahydrocannabinol (THC) on working memory performance but not on the occurrence of psychotic experiences. J Psychopharmacol 2015; 29:1146-51. [PMID: 26464454 DOI: 10.1177/0269881115609073] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cannabis use can induce cognitive impairments and psychotic experiences. A functional polymorphism in the catechol-O-methyltransferase (COMT) gene (Val(158)Met) appears to influence the immediate cognitive and psychotic effects of cannabis, or ∆(9)-tetrahydrocannabinol (THC), its primary psychoactive ingredient. This study investigated the moderation of the impact of experimentally administered THC by COMT. Cognitive performance and psychotic experiences were studied in participants without a psychiatric diagnosis, using a between-subjects design (THC vs. placebo). The effect of COMT Val(158)Met genotype on the cognitive and psychotic effects of THC, administered intravenously in a double-blind, placebo-controlled manner to 78 participants who were vulnerable to paranoia, was examined. The results showed interactive effects of genotype and drug group (THC or placebo) on working memory, assayed using the Digit Span Backwards task. Specifically, THC impaired performance in COMT Val/Val, but not Met, carriers. In contrast, the effect of THC on psychotic experiences, measured using the Community Assessment of Psychic Experiences (CAPE) positive dimension, was unaffected by COMT genotype. This study is the largest to date examining the impact of COMT genotype on response to experimentally administered THC, and the first using a purely non-clinical cohort. The data suggest that COMT genotype moderates the cognitive, but not the psychotic, effects of acutely administered THC.
Collapse
Affiliation(s)
| | - Graham Dunn
- Centre for Biostatistics, Institute of Population Health, University of Manchester, Manchester, UK
| | - Robin M Murray
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, London, UK
| | - Nicole Evans
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Rachel Lister
- Department of Psychiatry, University of Oxford, Oxford, UK
| | | | | | - Paul D Morrison
- Department of Psychosis Studies, Institute of Psychiatry, King's College London, London, UK
| | - Daniel Freeman
- Department of Psychiatry, University of Oxford, Oxford, UK
| |
Collapse
|
99
|
Yildirim BO, Derksen JJL. Mesocorticolimbic dopamine functioning in primary psychopathy: A source of within-group heterogeneity. Psychiatry Res 2015; 229:633-77. [PMID: 26277034 DOI: 10.1016/j.psychres.2015.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 04/08/2015] [Accepted: 07/05/2015] [Indexed: 01/17/2023]
Abstract
Despite similar emotional deficiencies, primary psychopathic individuals can be situated on a continuum that spans from controlled to disinhibited. The constructs on which primary psychopaths are found to diverge, such as self-control, cognitive flexibility, and executive functioning, are crucially regulated by dopamine (DA). As such, the goal of this review is to examine which specific alterations in the meso-cortico-limbic DA system and corresponding genes (e.g., TH, DAT, COMT, DRD2, DRD4) might bias development towards a more controlled or disinhibited expression of primary psychopathy. Based on empirical data, it is argued that primary psychopathy is generally related to a higher tonic and population activity of striatal DA neurons and lower levels of D2-type DA receptors in meso-cortico-limbic projections, which may boost motivational drive towards incentive-laden goals, dampen punishment sensitivity, and increase future reward-expectancy. However, increasingly higher levels of DA activity in the striatum (moderate versus pathological elevations), lower levels of DA functionality in the prefrontal cortex, and higher D1-to-D2-type receptor ratios in meso-cortico-limbic projections may lead to increasingly disinhibited and impetuous phenotypes of primary psychopathy. Finally, in order to provide a more coherent view on etiological mechanisms, we discuss interactions between DA and serotonin that are relevant for primary psychopathy.
Collapse
Affiliation(s)
- Bariş O Yildirim
- Department of Clinical Psychology, Radboud University Nijmegen, De Kluyskamp 1002, 6545 JD Nijmegen, The Netherlands.
| | - Jan J L Derksen
- Department of Clinical Psychology, Room: A.07.04B, Radboud University Nijmegen, Montessorilaan 3, 6525 HR Nijmegen, The Netherlands.
| |
Collapse
|
100
|
Fallon SJ, Smulders K, Esselink RA, van de Warrenburg BP, Bloem BR, Cools R. Differential optimal dopamine levels for set-shifting and working memory in Parkinson's disease. Neuropsychologia 2015; 77:42-51. [DOI: 10.1016/j.neuropsychologia.2015.07.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 07/28/2015] [Accepted: 07/30/2015] [Indexed: 12/16/2022]
|