51
|
Smart K, Naganawa M, Baldassarri SR, Nabulsi N, Ropchan J, Najafzadeh S, Gao H, Navarro A, Barth V, Esterlis I, Cosgrove KP, Huang Y, Carson RE, Hillmer AT. PET Imaging Estimates of Regional Acetylcholine Concentration Variation in Living Human Brain. Cereb Cortex 2021; 31:2787-2798. [PMID: 33442731 PMCID: PMC8355478 DOI: 10.1093/cercor/bhaa387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/06/2020] [Accepted: 12/01/2020] [Indexed: 11/13/2022] Open
Abstract
Acetylcholine (ACh) has distinct functional roles in striatum compared with cortex, and imbalance between these systems may contribute to neuropsychiatric disease. Preclinical studies indicate markedly higher ACh concentrations in the striatum. The goal of this work was to leverage positron emission tomography (PET) imaging estimates of drug occupancy at cholinergic receptors to explore ACh variation across the human brain, because these measures can be influenced by competition with endogenous neurotransmitter. PET scans were analyzed from healthy human volunteers (n = 4) and nonhuman primates (n = 2) scanned with the M1-selective radiotracer [11C]LSN3172176 in the presence of muscarinic antagonist scopolamine, and human volunteers (n = 10) scanned with the α4β2* nicotinic ligand (-)-[18F]flubatine during nicotine challenge. In all cases, occupancy estimates within striatal regions were consistently lower (M1/scopolamine human scans, 31 ± 3.4% occupancy in striatum, 43 ± 2.9% in extrastriatal regions, p = 0.0094; nonhuman primate scans, 42 ± 26% vs. 69 ± 28%, p < 0.0001; α4β2*/nicotine scans, 67 ± 15% vs. 74 ± 16%, p = 0.0065), indicating higher striatal ACh concentration. Subject-level measures of these concentration differences were estimated, and whole-brain images of regional ACh concentration gradients were generated. These results constitute the first in vivo estimates of regional variation in ACh concentration in the living brain and offer a novel experimental method to assess potential ACh imbalances in clinical populations.
Collapse
Affiliation(s)
- Kelly Smart
- Yale PET Center, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
| | - Mika Naganawa
- Yale PET Center, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
| | - Stephen R Baldassarri
- Department of Internal Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Nabeel Nabulsi
- Yale PET Center, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
| | - Jim Ropchan
- Yale PET Center, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
| | | | - Hong Gao
- Yale PET Center, Yale School of Medicine, New Haven, CT 06510, USA
| | | | | | - Irina Esterlis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Kelly P Cosgrove
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Yiyun Huang
- Yale PET Center, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
| | - Richard E Carson
- Yale PET Center, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Ansel T Hillmer
- Yale PET Center, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
52
|
Bakker C, Tasker T, Liptrot J, Hart EP, Klaassen ES, Doll RJ, Brown GA, Brown A, Congreve M, Weir M, Marshall FH, Cross DM, Groeneveld GJ, Nathan PJ. Safety, pharmacokinetics and exploratory pro-cognitive effects of HTL0018318, a selective M 1 receptor agonist, in healthy younger adult and elderly subjects: a multiple ascending dose study. ALZHEIMERS RESEARCH & THERAPY 2021; 13:87. [PMID: 33883008 PMCID: PMC8061066 DOI: 10.1186/s13195-021-00816-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/23/2021] [Indexed: 12/15/2022]
Abstract
Background The cholinergic system and M1 receptor remain an important target for symptomatic treatment of cognitive dysfunction. The selective M1 receptor partial agonist HTL0018318 is under development for the symptomatic treatment of Dementia’s including Alzheimer’s disease (AD) and dementia with Lewy bodies (DLB). We investigated the safety, tolerability, pharmacokinetics and exploratory pharmacodynamics of multiple doses of HTL0018318 in healthy younger adults and elderly subjects. Methods This randomised, double blind, placebo-controlled study was performed, investigating oral doses of 15–35 mg/day HTL0018318 or placebo in 7 cohorts of healthy younger adult (n = 36; 3 cohorts) and elderly (n = 50; 4 cohorts) subjects. Safety, tolerability and pharmacokinetic measurements were performed. Pharmacodynamics were assessed using a battery of neurocognitive tasks and electrophysiological biomarkers of synaptic and cognitive functions. Results HTL0018318 was generally well-tolerated in multiple doses up to 35 mg/day and were associated with mild or moderate cholinergic adverse events. There were modest increases in blood pressure and pulse rate when compared to placebo-treated subjects, with tendency for the blood pressure increase to attenuate with repeated dosing. There were no clinically significant observations or changes in blood and urine laboratory measures of safety or abnormalities in the ECGs and 24-h Holter assessments. HTL0018318 plasma exposure was dose-proportional over the range 15–35 mg. Maximum plasma concentrations were achieved after 1–2 h. The apparent terminal half-life of HTL0018318 was 16.1 h (± 4.61) in younger adult subjects and 14.3 h (± 2.78) in elderly subjects at steady state. HTL0018318 over the 10 days of treatment had significant effects on tests of short-term (working) memory (n-back) and learning (Milner maze) with moderate to large effect sizes. Conclusion Multiple doses of HTL0018138 showed well-characterised pharmacokinetics and were safe and generally well-tolerated in the dose range studied. Pro-cognitive effects on short-term memory and learning were demonstrated across the dose range. These data provide encouraging data in support of the development of HTL0018138 for cognitive dysfunction in AD and DLB. Trial registration Netherlands Trial Register identifier NTR5781. Registered on 22 March 2016. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-021-00816-5.
Collapse
Affiliation(s)
- Charlotte Bakker
- Centre for Human Drug Research (CDHR), Zernikedreef 8, 2333 CL, Leiden, The Netherlands
| | - Tim Tasker
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, CB21 6DG, UK
| | - Jan Liptrot
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, CB21 6DG, UK
| | - Ellen P Hart
- Centre for Human Drug Research (CDHR), Zernikedreef 8, 2333 CL, Leiden, The Netherlands
| | - Erica S Klaassen
- Centre for Human Drug Research (CDHR), Zernikedreef 8, 2333 CL, Leiden, The Netherlands
| | - Robert Jan Doll
- Centre for Human Drug Research (CDHR), Zernikedreef 8, 2333 CL, Leiden, The Netherlands
| | | | - Alastair Brown
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, CB21 6DG, UK
| | - Miles Congreve
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, CB21 6DG, UK
| | - Malcolm Weir
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, CB21 6DG, UK
| | | | | | - Geert Jan Groeneveld
- Centre for Human Drug Research (CDHR), Zernikedreef 8, 2333 CL, Leiden, The Netherlands. .,Leiden University Medical Centre, Leiden, The Netherlands.
| | - Pradeep J Nathan
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, CB21 6DG, UK.,Department of Psychiatry, University of Cambridge, Cambridge, UK.,School of Psychological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
53
|
Pastor V, Medina JH. Medial prefrontal cortical control of reward- and aversion-based behavioral output: Bottom-up modulation. Eur J Neurosci 2021; 53:3039-3062. [PMID: 33660363 DOI: 10.1111/ejn.15168] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/15/2021] [Accepted: 02/24/2021] [Indexed: 12/22/2022]
Abstract
How does the brain guide our actions? This is a complex issue, where the medial prefrontal cortex (mPFC) plays a crucial role. The mPFC is essential for cognitive flexibility and decision making. These functions are related to reward- and aversion-based learning, which ultimately drive behavior. Though, cortical projections and modulatory systems that may regulate those processes in the mPFC are less understood. How does the mPFC regulate approach-avoidance behavior in the case of conflicting aversive and appetitive stimuli? This is likely dependent on the bottom-up neuromodulation of the mPFC projection neurons. In this review, we integrate behavioral-, pharmacological-, and viral-based circuit manipulation data showing the involvement of mPFC dopaminergic, noradrenergic, cholinergic, and serotoninergic inputs in reward and aversion processing. Given that an incorrect balance of reward and aversion value could be a key problem in mental diseases such as substance use disorders, we discuss outstanding questions for future research on the role of mPFC modulation in reward and aversion.
Collapse
Affiliation(s)
- Verónica Pastor
- CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia "Prof. Eduardo De Robertis" (IBCN), Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Medicina, Departamento de Ciencias Fisiológicas, Buenos Aires, Argentina
| | - Jorge Horacio Medina
- CONICET-Universidad de Buenos Aires, Instituto de Biología Celular y Neurociencia "Prof. Eduardo De Robertis" (IBCN), Buenos Aires, Argentina.,Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires, Argentina
| |
Collapse
|
54
|
Sethuramanujam S, Matsumoto A, deRosenroll G, Murphy-Baum B, Grosman C, McIntosh JM, Jing M, Li Y, Berson D, Yonehara K, Awatramani GB. Rapid multi-directed cholinergic transmission in the central nervous system. Nat Commun 2021; 12:1374. [PMID: 33654091 PMCID: PMC7925691 DOI: 10.1038/s41467-021-21680-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 01/27/2021] [Indexed: 01/31/2023] Open
Abstract
In many parts of the central nervous system, including the retina, it is unclear whether cholinergic transmission is mediated by rapid, point-to-point synaptic mechanisms, or slower, broad-scale 'non-synaptic' mechanisms. Here, we characterized the ultrastructural features of cholinergic connections between direction-selective starburst amacrine cells and downstream ganglion cells in an existing serial electron microscopy data set, as well as their functional properties using electrophysiology and two-photon acetylcholine (ACh) imaging. Correlative results demonstrate that a 'tripartite' structure facilitates a 'multi-directed' form of transmission, in which ACh released from a single vesicle rapidly (~1 ms) co-activates receptors expressed in multiple neurons located within ~1 µm of the release site. Cholinergic signals are direction-selective at a local, but not global scale, and facilitate the transfer of information from starburst to ganglion cell dendrites. These results suggest a distinct operational framework for cholinergic signaling that bears the hallmarks of synaptic and non-synaptic forms of transmission.
Collapse
Affiliation(s)
| | - Akihiro Matsumoto
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | | | | | - Claudio Grosman
- Department of Molecular and Integrative Physiology, 407 S. Goodwin Ave, Urbana, IL, 61801, USA
| | - J Michael McIntosh
- George E. Whalen Veterans Affairs Medical Center, Department of Psychiatry, School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
- Department of Psychiatry; School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Miao Jing
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
| | - David Berson
- Neuroscience, Brown University, Providence, RI, USA
| | - Keisuke Yonehara
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus C, Denmark.
| | | |
Collapse
|
55
|
Li R, Ryu JH, Vincent P, Springer M, Kluger D, Levinsohn EA, Chen Y, Chen H, Blumenfeld H. The pulse: transient fMRI signal increases in subcortical arousal systems during transitions in attention. Neuroimage 2021; 232:117873. [PMID: 33647499 DOI: 10.1016/j.neuroimage.2021.117873] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 02/02/2021] [Accepted: 02/12/2021] [Indexed: 01/02/2023] Open
Abstract
Studies of attention emphasize cortical circuits for salience monitoring and top-down control. However, subcortical arousal systems have a major influence on dynamic cortical state. We hypothesize that task-related increases in attention begin with a "pulse" in subcortical arousal and cortical attention networks, which are reflected indirectly through transient fMRI signals. We conducted general linear model and model-free analyses of fMRI data from two cohorts and tasks with mixed block and event-related design. 46 adolescent subjects at our center and 362 normal adults from the Human Connectome Project participated. We identified a core shared network of transient fMRI increases in subcortical arousal and cortical salience/attention networks across cohorts and tasks. Specifically, we observed a transient pulse of fMRI increases both at task block onset and with individual task events in subcortical arousal areas including midbrain tegmentum, thalamus, nucleus basalis and striatum; cortical-subcortical salience network regions including the anterior insula/claustrum and anterior cingulate cortex/supplementary motor area; in dorsal attention network regions including dorsolateral frontal cortex and inferior parietal lobule; as well as in motor regions including cerebellum, and left hemisphere hand primary motor cortex. The transient pulse of fMRI increases in subcortical and cortical arousal and attention networks was consistent across tasks and study populations, whereas sustained activity in these same networks was more variable. The function of the transient pulse in these networks is unknown. However, given its anatomical distribution, it could participate in a neuromodulatory surge of activity in multiple parallel neurotransmitter systems facilitating dynamic changes in conscious attention.
Collapse
Affiliation(s)
- Rong Li
- Departments of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States; MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P R China
| | - Jun Hwan Ryu
- Departments of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States
| | - Peter Vincent
- Departments of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States
| | - Max Springer
- Departments of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States
| | - Dan Kluger
- Departments of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States
| | - Erik A Levinsohn
- Departments of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States
| | - Yu Chen
- Departments of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States
| | - Huafu Chen
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P R China
| | - Hal Blumenfeld
- Departments of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States; Departments of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States; Departments of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, United States.
| |
Collapse
|
56
|
Sarter M, Avila C, Kucinski A, Donovan E. Make a Left Turn: Cortico-Striatal Circuitry Mediating the Attentional Control of Complex Movements. Mov Disord 2021; 36:535-546. [PMID: 33615556 DOI: 10.1002/mds.28532] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND In movement disorders such as Parkinson's disease (PD), cholinergic signaling is disrupted by the loss of basal forebrain cholinergic neurons, as well as aberrant activity in striatal cholinergic interneurons (ChIs). Several lines of evidence suggest that gait imbalance, a key disabling symptom of PD, may be driven by alterations in high-level frontal cortical and cortico-striatal processing more typically associated with cognitive dysfunction. METHODS Here we describe the corticostriatal circuitry that mediates the cognitive-motor interactions underlying such complex movement control. The ability to navigate dynamic, obstacle-rich environments requires the continuous integration of information about the environment with movement selection and sequencing. The cortical-attentional processing of extero- and interoceptive cues requires modulation by cholinergic activity to guide striatal movement control. Cue-derived information is "transferred" to striatal circuitry primarily via fronto-striatal glutamatergic projections. RESULT Evidence from parkinsonian fallers and from a rodent model reproducing the dual cholinergic-dopaminergic losses observed in these patients supports the main hypotheses derived from this neuronal circuitry-guided conceptualization of parkinsonian falls. Furthermore, in the striatum, ChIs constitute a particularly critical node for the integration of cortical with midbrain dopaminergic afferents and thus for cues to control movements. CONCLUSION Procholinergic treatments that enhance or rescue cortical and striatal mechanisms may improve complex movement control in parkinsonian fallers and perhaps also in older persons suffering from gait disorders and a propensity for falls. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Martin Sarter
- Department of Psychology & Neuroscience Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Cassandra Avila
- Department of Psychology & Neuroscience Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Aaron Kucinski
- Department of Psychology & Neuroscience Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Eryn Donovan
- Department of Psychology & Neuroscience Program, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
57
|
Reduction of falls in a rat model of PD falls by the M1 PAM TAK-071. Psychopharmacology (Berl) 2021; 238:1953-1964. [PMID: 33735392 PMCID: PMC7969347 DOI: 10.1007/s00213-021-05822-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/08/2021] [Indexed: 01/03/2023]
Abstract
RATIONALE In addition to the disease-defining motor symptoms, patients with Parkinson's disease (PD) exhibit gait dysfunction, postural instability, and a propensity for falls. These dopamine (DA) replacement-resistant symptoms in part have been attributed to loss of basal forebrain (BF) cholinergic neurons and, in interaction with striatal dopamine (DA) loss, to the resulting disruption of the attentional control of balance and complex movements. Rats with dual cholinergic-DA losses ("DL rats") were previously demonstrated to model PD falls and associated impairments of gait and balance. OBJECTIVES We previously found that the muscarinic M1-positive allosteric modulator (PAM) TAK-071 improved the attentional performance of rats with BF cholinergic losses. Here, we tested the hypotheses that TAK-071 reduces fall rates in DL rats. RESULTS Prior to DL surgery, female rats were trained to traverse a rotating straight rod as well as a rod with two zigzag segments. DL rats were refamiliarized with such traversals post-surgery and tested over 7 days on increasingly demanding testing conditions. TAK-071 (0.1, 0.3 mg/kg, p.o.) was administered prior to daily test sessions over this 7-day period. As before, DL rats fell more frequently than sham-operated control rats. Treatment of DL rats with TAK-071 reduced falls from the rotating rod and the rotating zigzag rod, specifically when the angled part of the zigzag segment, upon entering, was at a steep, near vertical angle. CONCLUSIONS TAK-071 may benefit complex movement control, specifically in situations which disrupt the patterning of forward movement and require the interplay between cognitive and motor functions to modify movement based on information about the state of dynamic surfaces, balance, and gait.
Collapse
|
58
|
Spatial topography of the basal forebrain cholinergic projections: Organization and vulnerability to degeneration. HANDBOOK OF CLINICAL NEUROLOGY 2021; 179:159-173. [PMID: 34225960 DOI: 10.1016/b978-0-12-819975-6.00008-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The basal forebrain (BF) cholinergic system constitutes a heterogeneous cluster of large projection neurons that innervate the entire cortical mantle and amygdala. Cholinergic neuromodulation plays a critical role in regulating cognition and behavior, as well as maintenance of cellular homeostasis. Decades of postmortem histology research have demonstrated that the BF cholinergic neurons are selectively vulnerable to aging and age-related neuropathology in degenerative diseases such as Alzheimer's and Parkinson's diseases. Emerging evidence from in vivo neuroimaging research, which permits longitudinal tracking of at-risk individuals, indicates that cholinergic neurodegeneration might play an earlier and more pivotal role in these diseases than was previously appreciated. Despite these advances, our understanding of the organization and functions of the BF cholinergic system mostly derives from nonhuman animal research. In this chapter, we begin with a review of the topographical organization of the BF cholinergic system in rodent and nonhuman primate models. We then discuss basic and clinical neuroscience research in humans, which has started to translate and extend the nonhuman animal research using novel noninvasive neuroimaging techniques. We focus on converging evidence indicating that the selective vulnerability of cholinergic neurons in Alzheimer's and Parkinson's diseases is expressed along a rostral-caudal topography in the BF. We close with a discussion of why this topography of vulnerability in the BF may occur and why it is relevant to the clinician.
Collapse
|
59
|
Mimura Y, Nishida H, Nakajima S, Tsugawa S, Morita S, Yoshida K, Tarumi R, Ogyu K, Wada M, Kurose S, Miyazaki T, Blumberger DM, Daskalakis ZJ, Chen R, Mimura M, Noda Y. Neurophysiological biomarkers using transcranial magnetic stimulation in Alzheimer's disease and mild cognitive impairment: A systematic review and meta-analysis. Neurosci Biobehav Rev 2020; 121:47-59. [PMID: 33307047 DOI: 10.1016/j.neubiorev.2020.12.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/08/2020] [Accepted: 12/03/2020] [Indexed: 12/19/2022]
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive neurophysiological tool that enables the investigation of cortical excitability in the human brain. Paired-pulse TMS paradigms include short- and long-interval intracortical inhibition (SICI/LICI), intracortical facilitation (ICF), and short-latency afferent inhibition (SAI), which can assess neurophysiological functions of GABAergic, glutamatergic, and cholinergic neural circuits, respectively. We conducted the first systematic review and meta-analysis to compare these TMS indices among patients with AD, mild cognitive impairment (MCI), and healthy controls (HC). Our meta-analyses indicated that RMT, SAI, SICI, and LICI were significantly lower in patients with AD, while ICF did not show a difference in patients with AD compared with HC. In patients with MCI, RMT and SAI were significantly lower than in HC. In conclusion, motor cortical excitability was increased, while cholinergic function was decreased in AD and MCI in comparison with HC and patients with AD had decreased GABAergic and glutamatergic functions compared with HC. Our results warrant further studies to differentiate AD, MCI, and HC, employing multimodal TMS neurophysiology.
Collapse
Affiliation(s)
- Yu Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Hana Nishida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan; Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada.
| | - Sakiko Tsugawa
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Shinji Morita
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Kazunari Yoshida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan; Pharmacogenetics Research Clinic, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Ryosuke Tarumi
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Kamiyu Ogyu
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Masataka Wada
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Shin Kurose
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Takahiro Miyazaki
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Zafiris J Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Robert Chen
- Division of Neurology, Department of Medicine, University of Toronto, Division of Brain, Imaging and Behaviour - Systems Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
60
|
Nicotinic Receptors in Sleep-Related Hypermotor Epilepsy: Pathophysiology and Pharmacology. Brain Sci 2020; 10:brainsci10120907. [PMID: 33255633 PMCID: PMC7761363 DOI: 10.3390/brainsci10120907] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 12/12/2022] Open
Abstract
Sleep-related hypermotor epilepsy (SHE) is characterized by hyperkinetic focal seizures, mainly arising in the neocortex during non-rapid eye movements (NREM) sleep. The familial form is autosomal dominant SHE (ADSHE), which can be caused by mutations in genes encoding subunits of the neuronal nicotinic acetylcholine receptor (nAChR), Na+-gated K+ channels, as well as non-channel signaling proteins, such as components of the gap activity toward rags 1 (GATOR1) macromolecular complex. The causative genes may have different roles in developing and mature brains. Under this respect, nicotinic receptors are paradigmatic, as different pathophysiological roles are exerted by distinct nAChR subunits in adult and developing brains. The widest evidence concerns α4 and β2 subunits. These participate in heteromeric nAChRs that are major modulators of excitability in mature neocortical circuits as well as regulate postnatal synaptogenesis. However, growing evidence implicates mutant α2 subunits in ADSHE, which poses interpretive difficulties as very little is known about the function of α2-containing (α2*) nAChRs in the human brain. Planning rational therapy must consider that pharmacological treatment could have different effects on synaptic maturation and adult excitability. We discuss recent attempts towards precision medicine in the mature brain and possible approaches to target developmental stages. These issues have general relevance in epilepsy treatment, as the pathogenesis of genetic epilepsies is increasingly recognized to involve developmental alterations.
Collapse
|
61
|
Milbocker KA, Klintsova AY. Examination of cortically projecting cholinergic neurons following exercise and environmental intervention in a rodent model of fetal alcohol spectrum disorders. Birth Defects Res 2020; 113:299-313. [PMID: 33174398 DOI: 10.1002/bdr2.1839] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/13/2020] [Accepted: 10/31/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Up to 1 in 5 infants in the United States are exposed to alcohol prenatally, resulting in neurodevelopmental deficits categorized as fetal alcohol spectrum disorders (FASD). Choline supplementation ameliorates some deficits, suggesting that alcohol exposure (AE) perturbs cholinergic neurotransmission and development. Behavioral interventions, which upregulate cholinergic neurotransmission, rescue cognitive deficits in rodent models of FASD. METHODS We investigated the impacts of two interventions (either wheel-running (WR) or "super intervention," WR plus exposure to a complex environment) on cholinergic neuronal morphology in the nucleus basalis of Meynert (NBM), the source of cortical cholinergic input, and prefrontal cortex (PFC) in a rodent model of FASD. One third of the total 47 male pups received intragastric intubation of ethanol in milk substitute during postnatal days (PD) 4-9. Another third served as sham-intubated procedural controls while the final third served as suckle controls. Rats from each group were exposed to either intervention during PD 30-72. Choline acetyltransferase (ChAT+ ) and acetylcholinesterase staining were used to quantify cholinergic neuron number, soma volume, and axon number. RESULTS Our data indicate a main effect of postnatal treatment on ChAT+ neuron number in NBM in adulthood. Post hoc analysis demonstrates that ChAT+ neuron number is reduced in AE compared to suckle control rodents (p < .01). CONCLUSIONS We examined the cytoarchitectonics of cholinergic neurons in NBM and PFC in adulthood following early postnatal AE and two interventions. We show that AE reduces ChAT+ neuron number in NBM, and this is not mitigated by either intervention.
Collapse
Affiliation(s)
- Katrina A Milbocker
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| | - Anna Y Klintsova
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
62
|
Crouse RB, Kim K, Batchelor HM, Girardi EM, Kamaletdinova R, Chan J, Rajebhosale P, Pittenger ST, Role LW, Talmage DA, Jing M, Li Y, Gao XB, Mineur YS, Picciotto MR. Acetylcholine is released in the basolateral amygdala in response to predictors of reward and enhances the learning of cue-reward contingency. eLife 2020; 9:57335. [PMID: 32945260 PMCID: PMC7529459 DOI: 10.7554/elife.57335] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
The basolateral amygdala (BLA) is critical for associating initially neutral cues with appetitive and aversive stimuli and receives dense neuromodulatory acetylcholine (ACh) projections. We measured BLA ACh signaling and activity of neurons expressing CaMKIIα (a marker for glutamatergic principal cells) in mice during cue-reward learning using a fluorescent ACh sensor and calcium indicators. We found that ACh levels and nucleus basalis of Meynert (NBM) cholinergic terminal activity in the BLA (NBM-BLA) increased sharply in response to reward-related events and shifted as mice learned the cue-reward contingency. BLA CaMKIIα neuron activity followed reward retrieval and moved to the reward-predictive cue after task acquisition. Optical stimulation of cholinergic NBM-BLA terminal fibers led to a quicker acquisition of the cue-reward contingency. These results indicate BLA ACh signaling carries important information about salient events in cue-reward learning and provides a framework for understanding how ACh signaling contributes to shaping BLA responses to emotional stimuli.
Collapse
Affiliation(s)
- Richard B Crouse
- Department of Psychiatry, Yale University, New Haven, United States.,Yale Interdepartmental Neuroscience Program, New Haven, United States
| | - Kristen Kim
- Department of Psychiatry, Yale University, New Haven, United States.,Yale Interdepartmental Neuroscience Program, New Haven, United States
| | - Hannah M Batchelor
- Department of Psychiatry, Yale University, New Haven, United States.,Yale Interdepartmental Neuroscience Program, New Haven, United States
| | - Eric M Girardi
- Department of Psychiatry, Yale University, New Haven, United States
| | - Rufina Kamaletdinova
- Department of Psychiatry, Yale University, New Haven, United States.,City University of New York, Hunter College, New York, United States
| | - Justin Chan
- Department of Psychiatry, Yale University, New Haven, United States
| | - Prithviraj Rajebhosale
- Program in Neuroscience, Stony Brook University, New York, United States.,National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, United States
| | | | - Lorna W Role
- National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, United States
| | - David A Talmage
- National Institute of Mental Health (NIMH), Bethesda, United States
| | - Miao Jing
- Chinese Institute for Brain Research (CIBR), Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China.,PKU-IDG/McGovern Institute for Brain Research, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xiao-Bing Gao
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, United States
| | - Yann S Mineur
- Department of Psychiatry, Yale University, New Haven, United States
| | - Marina R Picciotto
- Department of Psychiatry, Yale University, New Haven, United States.,Yale Interdepartmental Neuroscience Program, New Haven, United States
| |
Collapse
|
63
|
Chrna5 is Essential for a Rapid and Protected Response to Optogenetic Release of Endogenous Acetylcholine in Prefrontal Cortex. J Neurosci 2020; 40:7255-7268. [PMID: 32817066 DOI: 10.1523/jneurosci.1128-20.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/01/2020] [Accepted: 08/09/2020] [Indexed: 12/16/2022] Open
Abstract
Optimal attention performance requires cholinergic modulation of corticothalamic neurons in the prefrontal cortex. These pyramidal cells express specialized nicotinic acetylcholine receptors containing the α5 subunit encoded by Chrna5 Disruption of this gene impairs attention, but the advantage α5 confers on endogenous cholinergic signaling is unknown. To ascertain this underlying mechanism, we used optogenetics to stimulate cholinergic afferents in prefrontal cortex brain slices from compound-transgenic wild-type and Chrna5 knock-out mice of both sexes. These electrophysiological experiments identify that Chrna5 is critical for the rapid onset of the postsynaptic cholinergic response. Loss of α5 slows cholinergic excitation and delays its peak, and these effects are observed in two different optogenetic mouse lines. Disruption of Chrna5 does not otherwise perturb the magnitude of the response, which remains strongly mediated by nicotinic receptors and tightly controlled by autoinhibition via muscarinic M2 receptors. However, when conditions are altered to promote sustained cholinergic receptor stimulation, it becomes evident that α5 also works to protect nicotinic responses against desensitization. Rescuing Chrna5 disruption thus presents the double challenge of improving the onset of nicotinic signaling without triggering desensitization. Here, we identify that an agonist for the unorthodox α-α nicotinic binding site can allosterically enhance the cholinergic pathway considered vital for attention. Treatment with NS9283 restores the rapid onset of the postsynaptic cholinergic response without triggering desensitization. Together, this work demonstrates the advantages of speed and resilience that Chrna5 confers on endogenous cholinergic signaling, defining a critical window of interest for cue detection and attentional processing.SIGNIFICANCE STATEMENT The α5 nicotinic receptor subunit (Chrna5) is important for attention, but its advantage in detecting endogenous cholinergic signals is unknown. Here, we show that α5 subunits permit rapid cholinergic responses in prefrontal cortex and protect these responses from desensitization. Our findings clarify why Chrna5 is required for optimal attentional performance under demanding conditions. To treat the deficit arising from Chrna5 disruption without triggering desensitization, we enhanced nicotinic receptor affinity using NS9283 stimulation at the unorthodox α-α nicotinic binding site. This approach successfully restored the rapid-onset kinetics of endogenous cholinergic neurotransmission. In summary, we reveal a previously unknown role of Chrna5 as well as an effective approach to compensate for genetic disruption and permit fast cholinergic excitation of prefrontal attention circuits.
Collapse
|
64
|
Laliberté G, Othman R, Vaucher E. Mesoscopic Mapping of Stimulus-Selective Response Plasticity in the Visual Pathways Modulated by the Cholinergic System. Front Neural Circuits 2020; 14:38. [PMID: 32719589 PMCID: PMC7350895 DOI: 10.3389/fncir.2020.00038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/22/2020] [Indexed: 11/13/2022] Open
Abstract
The cholinergic potentiation of visual conditioning enhances visual acuity and discrimination of the trained stimulus. To determine if this also induces long-term plastic changes on cortical maps and connectivity in the visual cortex and higher associative areas, mesoscopic calcium imaging was performed in head-fixed awake GCaMP6s adult mice before and after conditioning. The conditioned stimulus (0.03 cpd, 30°, 100% contrast, 1 Hz-drifting gratings) was presented 10 min daily for a week. Saline or Donepezil (DPZ, 0.3 mg/kg, s.c.), a cholinesterase inhibitor that potentiates cholinergic transmission, were injected prior to each conditioning session and compared to a sham-conditioned group. Cortical maps of resting state and evoked response to the monocular presentation of conditioned or non-conditioned stimulus (30°, 50 and 75% contrast; 90°, 50, 75, and 100% contrast) were established. Amplitude, duration, and latency of the peak response, as well as size of activation were measured in the primary visual cortex (V1), secondary visual areas (AL, A, AM, PM, LM, RL), retrosplenial cortex (RSC), and higher cortical areas. Visual stimulation increased calcium signaling in all primary and secondary visual areas, the RSC, but no other cortices. There were no significant effects of sham-conditioning or conditioning alone, but DPZ treatment during conditioning significantly decreased the integrated neuronal activity of superficial layers evoked by the conditioned stimulus in V1, AL, PM, and LM. The activity of downstream cortical areas was not changed. The size of the activated area was decreased in V1 and PM, and the signal-to-noise ratio was decreased in AL and PM. Interestingly, signal correlation was seen only between V1, the ventral visual pathway, and the RSC, and was decreased by DPZ administration. The resting state activity was slightly correlated and rarely affected by treatments, except between binocular and monocular V1 in both hemispheres. In conclusion, cholinergic potentiation of visual conditioning induced change in visual processing in the superficial cortical layers. This effect might be a key mechanism in the establishment of the fine cortical tuning in response to the conditioned visual stimulus.
Collapse
Affiliation(s)
- Guillaume Laliberté
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'Optométrie, Université de Montréal, Montréal, QC, Canada
| | - Rahmeh Othman
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'Optométrie, Université de Montréal, Montréal, QC, Canada.,Départment de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Elvire Vaucher
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'Optométrie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
65
|
Complex Movement Control in a Rat Model of Parkinsonian Falls: Bidirectional Control by Striatal Cholinergic Interneurons. J Neurosci 2020; 40:6049-6067. [PMID: 32554512 DOI: 10.1523/jneurosci.0220-20.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/10/2020] [Accepted: 05/15/2020] [Indexed: 01/18/2023] Open
Abstract
Older persons and, more severely, persons with Parkinson's disease (PD) exhibit gait dysfunction, postural instability and a propensity for falls. These dopamine (DA) replacement-resistant symptoms are associated with losses of basal forebrain and striatal cholinergic neurons, suggesting that falls reflect disruption of the corticostriatal transfer of movement-related cues and their striatal integration with movement sequencing. To advance a rodent model of the complex movement deficits of Parkinsonian fallers, here we first demonstrated that male and female rats with dual cortical cholinergic and striatal DA losses (DL rats) exhibit cued turning deficits, modeling the turning deficits seen in these patients. As striatal cholinergic interneurons (ChIs) are positioned to integrate movement cues with gait, and as ChI loss has been associated with falls in PD, we next used this task, as well as a previously established task used to reveal heightened fall rates in DL rats, to broadly test the role of ChIs. Chemogenetic inhibition of ChIs in otherwise intact male and female rats caused cued turning deficits and elevated fall rates. Spontaneous turning was unaffected. Furthermore, chemogenetic stimulation of ChIs in DL rats reduced fall rates and restored cued turning performance. Stimulation of ChIs was relatively more effective in rats with viral transfection spaces situated lateral to the DA depletion areas in the dorsomedial striatum. These results indicate that striatal ChIs are essential for the control of complex movements, and they suggest a therapeutic potential of stimulation of ChIs to restore gait and balance, and to prevent falls in PD.SIGNIFICANCE STATEMENT In persons with Parkinson's disease, gait dysfunction and the associated risk for falls do not benefit from dopamine replacement therapy and often result in long-term hospitalization and nursing home placement. Here, we first validated a new task to demonstrate impairments in cued turning behavior in rodents modeling the cholinergic-dopaminergic losses observed in Parkinsonian fallers. We then demonstrated the essential role of striatal cholinergic interneurons for turning behavior as well as for traversing dynamic surfaces and avoiding falls. Stimulation of these interneurons in the rat model rescued turning performance and reduced fall rates. Our findings indicate the feasibility of investigating the neuronal circuitry underling complex movement control in rodents, and that striatal cholinergic interneurons are an essential node of such circuitry.
Collapse
|
66
|
Lu Y, Sarter M, Zochowski M, Booth V. Phasic cholinergic signaling promotes emergence of local gamma rhythms in excitatory-inhibitory networks. Eur J Neurosci 2020; 52:3545-3560. [PMID: 32293081 DOI: 10.1111/ejn.14744] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/02/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023]
Abstract
Recent experimental results have shown that the detection of cues in behavioral attention tasks relies on transient increases of acetylcholine (ACh) release in frontal cortex and cholinergically driven oscillatory activity in the gamma frequency band (Howe et al. Journal of Neuroscience, 2017, 37, 3215). The cue-induced gamma rhythmic activity requires stimulation of M1 muscarinic receptors. Using biophysical computational modeling, we show that a network of excitatory (E) and inhibitory (I) neurons that initially displays asynchronous firing can generate transient gamma oscillatory activity in response to simulated brief pulses of ACh. ACh effects are simulated as transient modulation of the conductance of an M-type K+ current which is blocked by activation of muscarinic receptors and has significant effects on neuronal excitability. The ACh-induced effects on the M current conductance, gKs , change network dynamics to promote the emergence of network gamma rhythmicity through a Pyramidal-Interneuronal Network Gamma mechanism. Depending on connectivity strengths between and among E and I cells, gamma activity decays with the simulated gKs transient modulation or is sustained in the network after the gKs transient has completely dissipated. We investigated the sensitivity of the emergent gamma activity to synaptic strengths, external noise and simulated levels of gKs modulation. To address recent experimental findings that cholinergic signaling is likely spatially focused and dynamic, we show that localized gKs modulation can induce transient changes of cellular excitability in local subnetworks, subsequently causing population-specific gamma oscillations. These results highlight dynamical mechanisms underlying localization of ACh-driven responses and suggest that spatially localized, cholinergically induced gamma may contribute to selectivity in the processing of competing external stimuli, as occurs in attentional tasks.
Collapse
Affiliation(s)
- Yiqing Lu
- Department of Mathematics, University of Michigan, Ann Arbor, MI, USA
| | - Martin Sarter
- Department of Psychology and Neuroscience Program, University of Michigan, Ann Arbor, MI, USA
| | - Michal Zochowski
- Departments of Physics and Biophysics, University of Michigan, Ann Arbor, MI, USA
| | - Victoria Booth
- Departments of Mathematics and Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|