51
|
De Benedetto I, Trunfio M, Guastamacchia G, Bonora S, Calcagno A. A review of the potential mechanisms of neuronal toxicity associated with antiretroviral drugs. J Neurovirol 2020; 26:642-651. [PMID: 32737860 DOI: 10.1007/s13365-020-00874-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/25/2020] [Accepted: 06/15/2020] [Indexed: 12/17/2022]
Abstract
Highly active antiretroviral treatment has led to unprecedented efficacy and tolerability in people living with HIV. This effect was also observed in the central nervous system with the nowadays uncommon observation of dementias; yet in more recent works milder forms are still reported in 20-30% of optimally treated individuals. The idea of a subclinical neuronal toxicity induced by antiretrovirals has been proposed and was somehow supported by the late-emerging effects associated with efavirenz use. In this manuscript we are reviewing all the potential mechanisms by which antiretroviral drugs have been associated with in vitro, ex vivo, or in vivo toxicity to cells pertaining to the central nervous system (neurons, astrocytes, oligodendrocytes, and endothelial cells). These include direct or indirect effects and pathological pathways such as amyloid deposition, damage to small cerebral vessels, and impairment in neurotransmission. The aim of this review is therefore to provide a detailed description of the available literature in order to guide further clinical research for improving patients' neurocognition and quality of life.
Collapse
Affiliation(s)
- Ilaria De Benedetto
- Department of Medical Sciences, School of Infectious and Tropical Diseases, University of Torino, c/o Amedeo di Savoia Hospital - Corso Svizzera 164, 10169, Torino, Italy.
| | - Mattia Trunfio
- Department of Medical Sciences, School of Infectious and Tropical Diseases, University of Torino, c/o Amedeo di Savoia Hospital - Corso Svizzera 164, 10169, Torino, Italy
| | | | - Stefano Bonora
- Department of Medical Sciences, School of Infectious and Tropical Diseases, University of Torino, c/o Amedeo di Savoia Hospital - Corso Svizzera 164, 10169, Torino, Italy
| | - Andrea Calcagno
- Department of Medical Sciences, School of Infectious and Tropical Diseases, University of Torino, c/o Amedeo di Savoia Hospital - Corso Svizzera 164, 10169, Torino, Italy
| |
Collapse
|
52
|
Gorska AM, Eugenin EA. The Glutamate System as a Crucial Regulator of CNS Toxicity and Survival of HIV Reservoirs. Front Cell Infect Microbiol 2020; 10:261. [PMID: 32670889 PMCID: PMC7326772 DOI: 10.3389/fcimb.2020.00261] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 05/04/2020] [Indexed: 12/11/2022] Open
Abstract
Glutamate (Glu) is the most abundant excitatory neurotransmitter in the central nervous system (CNS). HIV-1 and viral proteins compromise glutamate synaptic transmission, resulting in poor cell-to-cell signaling and bystander toxicity. In this study, we identified that myeloid HIV-1-brain reservoirs survive in Glu and glutamine (Gln) as a major source of energy. Thus, we found a link between synaptic compromise, metabolomics of viral reservoirs, and viral persistence. In the current manuscript we will discuss all these interactions and the potential to achieve eradication and cure using this unique metabolic profile.
Collapse
Affiliation(s)
- Anna Maria Gorska
- Department of Neuroscience, Cell Biology, and Anatomy, The University of Texas Medical Branch, Galveston, TX, United States
| | - Eliseo A Eugenin
- Department of Neuroscience, Cell Biology, and Anatomy, The University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
53
|
Marino J, Wigdahl B, Nonnemacher MR. Extracellular HIV-1 Tat Mediates Increased Glutamate in the CNS Leading to Onset of Senescence and Progression of HAND. Front Aging Neurosci 2020; 12:168. [PMID: 32581774 PMCID: PMC7295946 DOI: 10.3389/fnagi.2020.00168] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/14/2020] [Indexed: 12/13/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1)- associated neurocognitive disorders (HAND) is a disease of neurologic impairment that involves mechanisms of damage similar to other degenerative neurologic diseases such as Alzheimer’s disease (AD). In the current era of antiretroviral therapy (ART), HIV-1 replication is well-suppressed, and yet, HIV-1-infected patients still have high levels of chronic inflammation, indicating that factors other than viral replication are contributing to the development of neurocognitive impairment in these patients. The underlying mechanisms of HAND are still unknown, but the HIV-1 protein, Tat, has been highlighted as a potential viral product that contributes to the development of cognitive impairment. In AD, the presence of senescent cells in the CNS has been discussed as a contributing factor to the progression of cognitive decline and may be a mechanism also involved in the development of HAND. This mini-review discusses the viral protein HIV-1 Tat, and its potential to induce senescence in the CNS, contributing to the development of HAND.
Collapse
Affiliation(s)
- Jamie Marino
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States.,Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
54
|
Li GH, Maric D, Major EO, Nath A. Productive HIV infection in astrocytes can be established via a nonclassical mechanism. AIDS 2020; 34:963-978. [PMID: 32379159 PMCID: PMC7429268 DOI: 10.1097/qad.0000000000002512] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Astrocytes are proposed to be a critical reservoir of HIV in the brain. However, HIV infection of astrocytes is inefficient in vitro except for cell-to-cell transmission from HIV-infected cells. Here, we explore mechanisms by which cell-free HIV bypasses entry and postentry barriers leading to a productive infection. METHODS HIV infection of astrocytes was investigated by a variety of techniques including transfection of CD4-expressing plasmid, treatment with lysosomotropic agents or using a transwell culture system loaded with HIV-infected lymphocytes. Infection was monitored by HIV-1 p24 in culture supernatants and integrated proviral DNA was quantified by Alu-PCR. RESULTS Persistent HIV infection could be established in astrocytes by transfection of proviral DNA, transduction with VSV-G-pseudotyped viruses, transient expression of CD4 followed by HIV infection, or simultaneous treatment with lysosomotropic chloroquine or Tat-HA2 peptide with HIV infection. In absence of these treatments, HIV entered via endocytosis as seen by electronmicroscopy and underwent lysosomal degradation without proviral integration, indicating endocytosis is a dead end for HIV in astrocytes. Nevertheless, productive infection was observed when astrocytes were in close proximity but physically separated from HIV-infected lymphocytes in the transwell cultures. This occurred with X4 or dual tropic R5X4 viruses and was blocked by an antibody or antagonist to CXCR4. CONCLUSION A CD4-independent, CXCR4-dependent mechanism of viral entry is proposed, by which immature HIV particles from infected lymphocytes might directly bind to CXCR4 on astrocytes and trigger virus--cell fusion during or after the process of viral maturation. This mechanism may contribute to the formation of brain HIV reservoirs.
Collapse
Affiliation(s)
- Guan-Han Li
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Eugene O. Major
- Laboratory of Molecular Medicine and Neuroscience, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| |
Collapse
|
55
|
Dong D, Xie W, Liu M. Alteration of cell junctions during viral infection. Thorac Cancer 2020; 11:519-525. [PMID: 32017415 PMCID: PMC7049484 DOI: 10.1111/1759-7714.13344] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/21/2022] Open
Abstract
Cell junctions serve as a protective barrier for cells and provide an important channel for information transmission between cells and the surrounding environment. Viruses are parasites that invade and commandeer components of host cells in order to survive and replicate, and they have evolved various mechanisms to alter cell junctions to facilitate viral infection. In this review, we examined the current state of knowledge on the action of viruses on host cell junctions. The existing evidence suggests that targeting the molecules involved in the virus-cell junction interaction can prevent the spread of viral diseases.
Collapse
Affiliation(s)
- Dan Dong
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Wei Xie
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Min Liu
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
56
|
Abstract
PURPOSE OF REVIEW Gallant efforts are ongoing to achieve sustained antiretroviral therapy (ART)-free HIV remission in the HIV-infected person; however, most, if not all, current human clinical studies have primarily focused these efforts on targeting viral persistence in CD4 T cells in blood and tissue sanctuaries. The lack of myeloid centered HIV clinical trials, either as primary or secondary end points, has hindered our understanding of the contribution of myeloid cells in unsuccessful trials but may also guide successes in future HIV eradication clinical strategies. RECENT FINDINGS Recent advances have highlighted the importance of myeloid reservoirs as sanctuaries of HIV persistence and therefore may partially be responsible for viral recrudescence following ART treatment interruption in several clinical trials where HIV was not detectable or recovered from CD4 T cells. Given these findings, novel innovative therapeutic approaches specifically focused on HIV clearance in myeloid cell populations need to be vigorously pursued if we are to achieve additional cases of sustained ART-free remission. This review will highlight new research efforts defining myeloid persistence and recent advances in HIV remission and cure trials that would be relevant in targeting this compartment and make an argument as to their clinical relevancy as we progress towards sustained ART-free HIV remission in all HIV-infected persons.
Collapse
Affiliation(s)
- Brooks I Mitchell
- John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St., Honolulu, HI, USA
| | - Elizabeth I Laws
- John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St., Honolulu, HI, USA
| | - Lishomwa C Ndhlovu
- John A. Burns School of Medicine, University of Hawaii, 651 Ilalo St., Honolulu, HI, USA.
| |
Collapse
|
57
|
McNay EC, Pearson-Leary J. GluT4: A central player in hippocampal memory and brain insulin resistance. Exp Neurol 2020; 323:113076. [PMID: 31614121 PMCID: PMC6936336 DOI: 10.1016/j.expneurol.2019.113076] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/19/2019] [Accepted: 10/01/2019] [Indexed: 12/24/2022]
Abstract
Insulin is now well-established as playing multiple roles within the brain, and specifically as regulating hippocampal cognitive processes and metabolism. Impairments to insulin signaling, such as those seen in type 2 diabetes and Alzheimer's disease, are associated with brain hypometabolism and cognitive impairment, but the mechanisms of insulin's central effects are not determined. Several lines of research converge to suggest that the insulin-responsive glucose transporter GluT4 plays a central role in hippocampal memory processes, and that reduced activation of this transporter may underpin the cognitive impairments seen as a consequence of insulin resistance.
Collapse
Affiliation(s)
- Ewan C McNay
- Behavioral Neuroscience, University at Albany, Albany, NY, USA.
| | - Jiah Pearson-Leary
- Department of Anesthesiology, Abramson Research Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
58
|
Chompre G, Martinez-Orengo N, Cruz M, Porter JT, Noel RJ. TGFβRI antagonist inhibits HIV-1 Nef-induced CC chemokine family ligand 2 (CCL2) in the brain and prevents spatial learning impairment. J Neuroinflammation 2019; 16:262. [PMID: 31829243 PMCID: PMC6905066 DOI: 10.1186/s12974-019-1664-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 11/27/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND HIV-1-associated neurocognitive disorders (HAND) progression is related to continued inflammation despite undetectable viral loads and may be caused by early viral proteins expressed by latently infected cells. Astrocytes represent an HIV reservoir in the brain where the early viral neurotoxin negative factor (Nef) is produced. We previously demonstrated that astrocytic expression of Nef in the hippocampus of rats causes inflammation, macrophage infiltration, and memory impairment. Since these processes are affected by TGFβ signaling pathways, and TGFβ-1 is found at higher levels in the central nervous system of HIV-1+ individuals and is released by astrocytes, we hypothesized a role for TGFβ-1 in our model of Nef neurotoxicity. METHODS To test this hypothesis, we compared cytokine gene expression by cultured astrocytes expressing Nef or green fluorescent protein. To determine the role of Nef and a TGFβRI inhibitor on memory and learning, we infused astrocytes expressing Nef into the hippocampus of rats and then treated them daily with an oral dose of SD208 (10 mg/kg) or placebo for 7 days. During this time, locomotor activity was recorded in an open field and spatial learning tested in the novel location recognition paradigm. Postmortem tissue analyses of inflammatory and signaling molecules were conducted using immunohistochemistry and immunofluorescence. RESULTS TGFβ-1 was induced in cultures expressing Nef at 24 h followed by CCL2 induction which was prevented by blocking TGFβRI with SD208 (competitive inhibitor). Interestingly, Nef seems to change the TGFβRI localization as suggested by the distribution of the immunoreactivity. Nef caused a deficit in spatial learning that was recovered upon co-administration of SD208. Brain tissue from Nef-treated rats given SD208 showed reduced CCL2, phospho-SMAD2, cluster of differentiation 163 (CD163), and GFAP immunoreactivity compared to the placebo group. CONCLUSIONS Consistent with our previous findings, rats treated with Nef showed deficits in spatial learning and memory in the novel location recognition task. In contrast, rats treated with Nef + SD208 showed better spatial learning suggesting that Nef disrupts memory formation in a TGFβ-1-dependent manner. The TGFβRI inhibitor further reduced the induction of inflammation by Nef which was concomitant with decreased TGFβ signaling. Our findings suggest that TGFβ-1 signaling is an intriguing target to reduce neuroHIV.
Collapse
Affiliation(s)
- Gladys Chompre
- Biology Department, Pontifical Catholic University of Puerto Rico, Ponce, Puerto Rico
| | - Neysha Martinez-Orengo
- Department of Basic Sciences, Ponce Health Sciences University-Ponce Medical School, Ponce Research Institute, P.O. Box 7004, Ponce, PR, 00731, USA
| | - Myrella Cruz
- Department of Basic Sciences, Ponce Health Sciences University-Ponce Medical School, Ponce Research Institute, P.O. Box 7004, Ponce, PR, 00731, USA
| | - James T Porter
- Department of Basic Sciences, Ponce Health Sciences University-Ponce Medical School, Ponce Research Institute, P.O. Box 7004, Ponce, PR, 00731, USA
| | - Richard J Noel
- Department of Basic Sciences, Ponce Health Sciences University-Ponce Medical School, Ponce Research Institute, P.O. Box 7004, Ponce, PR, 00731, USA.
| |
Collapse
|
59
|
Circulating levels of ATP is a biomarker of HIV cognitive impairment. EBioMedicine 2019; 51:102503. [PMID: 31806564 PMCID: PMC7000317 DOI: 10.1016/j.ebiom.2019.10.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND In developed countries, Human Immunodeficiency Virus type-1 (HIV-1) infection has become a chronic disease despite the positive effects of anti-retroviral therapies (ART), but still at least half of the HIV infected population shown signs of cognitive impairment. Therefore, biomarkers of HIV cognitive decline are urgently needed. METHODS We analyze the opening of one of the larger channels expressed by humans, pannexin-1 (Panx-1) channels, in the uninfected and HIV infected population (n = 175). We determined channel opening and secretion of intracellular second messengers released through the channel such as PGE2 and ATP. Also, we correlated the opening of Panx-1 channels with the circulating levels of PGE2 and ATP as well as cogntive status of the individuals analyzed. FINDINGS Here, we demonstrate that Panx-1 channels on fresh PBMCs obtained from uninfected individuals are closed and no significant amounts of PGE2 and ATP are detected in the circulation. In contrast, in all HIV-infected individuals analyzed, even the ones under effective ART, a spontaneous opening of Panx-1 channels and increased circulating levels of PGE2 and ATP were detected. Circulating levels of ATP were correlated with cognitive decline in the HIV-infected population supporting that ATP is a biomarker of cognitive disease in the HIV-infected population. INTERPRETATION We propose that circulating levels of ATP could predict CNS compromise and lead to the breakthroughs necessary to detect and prevent brain compromise in the HIV-infected population.
Collapse
|
60
|
Rivera J, Isidro RA, Loucil-Alicea RY, Cruz ML, Appleyard CB, Isidro AA, Chompre G, Colon-Rivera K, Noel RJ. Infusion of HIV-1 Nef-expressing astrocytes into the rat hippocampus induces enteropathy and interstitial pneumonitis and increases blood-brain-barrier permeability. PLoS One 2019; 14:e0225760. [PMID: 31774879 PMCID: PMC6881014 DOI: 10.1371/journal.pone.0225760] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 11/12/2019] [Indexed: 12/16/2022] Open
Abstract
Even though HIV-1 replication can be suppressed by combination antiretroviral therapy (cART) inflammatory processes still occur, contributing to comorbidities. Comorbidities are attributed to variety of factors, including HIV-1 mediated inflammation. Several HIV-1 proteins mediate central nervous system (CNS) inflammation, including Nef. Nef is an early HIV-1 protein, toxic to neurons and glia and is sufficient to cause learning impairment similar to some deficits observed in HIV-1 associated neurocognitive disorders. To determine whether hippocampal Nef expression by astrocytes contributes to comorbidities, specifically peripheral inflammation, we infused Sprague Dawley rats with GFP- (control) or Nef-transfected astrocytes into the right hippocampus. Brain, lung, and ileum were collected postmortem for the measurement of inflammatory markers. Increased blood-brain-barrier permeability and serum IL-1β levels were detected in the Nef-treated rats. The lungs of Nef-treated rats demonstrated leukocyte infiltration, macrophage upregulation, and enhanced vascular permeability. Ileal tissue showed reactive follicular lymphoid hyperplasia, increased permeability and macrophage infiltration. The intracerebroventricular application of IL-1 receptor antagonist reduced infiltration of immune cells into ileum and lung, indicating the important role of IL-1β in mediating the spread of inflammation from the brain to other tissues. This suggests that localized expression of a single viral protein, HIV-1 Nef, can contribute to a broader inflammatory response by upregulation of IL-1β. Further, these results suggest that Nef contributes to the chronic inflammation seen in HIV patients, even in those whose viremia is controlled by cART.
Collapse
Affiliation(s)
- Jocelyn Rivera
- HIV-1 Immunopathogenesis Laboratory, The Wistar Institute, Philadelphia, PA, United States of America
| | - Raymond A. Isidro
- Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico, United States of America
| | - Raisa Y. Loucil-Alicea
- Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico, United States of America
| | - Myrella L. Cruz
- Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico, United States of America
| | - Caroline B. Appleyard
- Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico, United States of America
| | - Angel A. Isidro
- Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico, United States of America
| | - Gladys Chompre
- Department of Biology, Pontifical Catholic University of Puerto Rico, Ponce, Puerto Rico, United States of America
| | - Krystal Colon-Rivera
- HIV-1 Immunopathogenesis Laboratory, The Wistar Institute, Philadelphia, PA, United States of America
| | - Richard J. Noel
- Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico, United States of America
- * E-mail:
| |
Collapse
|
61
|
Murphy A, Barbaro J, Martínez-Aguado P, Chilunda V, Jaureguiberry-Bravo M, Berman JW. The Effects of Opioids on HIV Neuropathogenesis. Front Immunol 2019; 10:2445. [PMID: 31681322 PMCID: PMC6813247 DOI: 10.3389/fimmu.2019.02445] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/01/2019] [Indexed: 12/13/2022] Open
Abstract
HIV associated neurocognitive disorders (HAND) are a group of neurological deficits that affect approximately half of people living with HIV (PLWH) despite effective antiretroviral therapy (ART). There are currently no reliable molecular biomarkers or treatments for HAND. Given the national opioid epidemic, as well as illegal and prescription use of opioid drugs among PLWH, it is critical to characterize the molecular interactions between HIV and opioids in cells of the CNS. It is also important to study the role of opioid substitution therapies in the context of HIV and CNS damage in vitro and in vivo. A major mechanism contributing to HIV neuropathogenesis is chronic, low-level inflammation in the CNS. HIV enters the brain within 4–8 days after peripheral infection and establishes CNS reservoirs, even in the context of ART, that are difficult to identify and eliminate. Infected cells, including monocytes, macrophages, and microglia, produce chemokines, cytokines, neurotoxic mediators, and viral proteins that contribute to chronic inflammation and ongoing neuronal damage. Opioids have been shown to impact these immune cells through a variety of molecular mechanisms, including opioid receptor binding and cross desensitization with chemokine receptors. The effects of opioid use on cognitive outcomes in individuals with HAND in clinical studies is variable, and thus multiple biological mechanisms are likely to contribute to the complex relationship between opioids and HIV in the CNS. In this review, we will examine what is known about both HIV and opioid mediated neuropathogenesis, and discuss key molecular processes that may be impacted by HIV and opioids in the context of neuroinflammation and CNS damage. We will also assess what is known about the effects of ART on these processes, and highlight areas of study that should be addressed in the context of ART.
Collapse
Affiliation(s)
- Aniella Murphy
- Laboratory of Dr. Joan W. Berman, Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - John Barbaro
- Laboratory of Dr. Joan W. Berman, Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Pablo Martínez-Aguado
- Laboratory of Dr. Joan W. Berman, Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Vanessa Chilunda
- Laboratory of Dr. Joan W. Berman, Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Matias Jaureguiberry-Bravo
- Laboratory of Dr. Joan W. Berman, Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Joan W Berman
- Laboratory of Dr. Joan W. Berman, Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States.,Laboratory of Dr. Joan W. Berman, Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
62
|
Rojas-Celis V, Valiente-Echeverría F, Soto-Rifo R, Toro-Ascuy D. New Challenges of HIV-1 Infection: How HIV-1 Attacks and Resides in the Central Nervous System. Cells 2019; 8:cells8101245. [PMID: 31614895 PMCID: PMC6829584 DOI: 10.3390/cells8101245] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/05/2019] [Accepted: 10/11/2019] [Indexed: 12/15/2022] Open
Abstract
Acquired immunodeficiency syndrome (AIDS) has become one of the most devastating pandemics in recorded history. The main causal agent of AIDS is the human immunodeficiency virus (HIV), which infects various cell types of the immune system that express the CD4 receptor on their surfaces. Today, combined antiretroviral therapy (cART) is the standard treatment for all people with HIV; although it has improved the quality of life of people living with HIV (PLWH), it cannot eliminate the latent reservoir of the virus. Therefore HIV/AIDS has turned from a fatal disease to a chronic disease requiring lifelong treatment. Despite significant viral load suppression, it has been observed that at least half of patients under cART present HIV-associated neurocognitive disorders (HAND), which have been related to HIV-1 infection and replication in the central nervous system (CNS). Several studies have focused on elucidating the mechanism by which HIV-1 can invade the CNS and how it can generate the effects seen in HAND. This review summarizes the research on HIV-1 and its interaction with the CNS with an emphasis on the generation of HAND, how the virus enters the CNS, the relationship between HIV-1 and cells of the CNS, and the effect of cART on these cells.
Collapse
Affiliation(s)
- Victoria Rojas-Celis
- Instituto de Ciencias Biomedicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile.
| | - Fernando Valiente-Echeverría
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad of Chile, Santiago 8389100, Chile.
| | - Ricardo Soto-Rifo
- Molecular and Cellular Virology Laboratory, Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad of Chile, Santiago 8389100, Chile.
| | - Daniela Toro-Ascuy
- Instituto de Ciencias Biomedicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile.
| |
Collapse
|
63
|
Nishikawa H, Liu L, Nakano F, Kawakita F, Kanamaru H, Nakatsuka Y, Okada T, Suzuki H. Modified Citrus Pectin Prevents Blood-Brain Barrier Disruption in Mouse Subarachnoid Hemorrhage by Inhibiting Galectin-3. Stroke 2019; 49:2743-2751. [PMID: 30355205 DOI: 10.1161/strokeaha.118.021757] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background and Purpose- Plasma levels of galectin-3-a matricellular protein-are increased after aneurysmal subarachnoid hemorrhage (SAH), but the functional significance remains undetermined. This study was conducted to evaluate whether modified citrus pectin (MCP; galectin-3 inhibitor) prevents post-SAH early brain injury, focusing on blood-brain barrier disruption. Methods- C57BL/6 male adult mice (n=251) underwent sham or filament perforation SAH modeling, followed by a random intracerebroventricular injection of vehicle or drug at 30 minutes post-modeling. First, vehicle-treated and 0.8, 4, 16, or 32 µg MCP-treated mice were assessed by neuroscore and brain water content at 24 and 48 hours post-modeling. Second, Evans blue extravasation, Western blotting, coimmunoprecipitation and immunostaining were performed in vehicle-treated or 4 µg MCP-treated mice at 24 hours post-modeling. Third, vehicle or R-galectin-3 (recombinant galectin-3) was administered to SAH mice simultaneously with vehicle or MCP, and neuroscore and Evans blue extravasation were evaluated at 24 hours post-modeling. Fourth, vehicle or R-galectin-3 was administered to MCP-treated SAH mice at 24 hours, and neuroscore and IgG immunostaining were evaluated at 48 hours post-SAH. Results- Among tested dosages, 4 µg MCP showed the best neuroprotective effects as to preventing neurological impairments and brain edema at 24 to 48 hours post-SAH. Four micrograms MCP attenuated post-SAH blood-brain barrier disruption and galectin-3 upregulation in brain capillary endothelial cells, associated with inactivation of ERK (extracellular signal-related kinase) 1/2, STAT (signal transducer and activator of transcription)-3, and MMP (matrix metalloproteinase)-9, and the consequent preservation of a tight junction protein ZO-1 (zonula occludens-1). Coimmunoprecipitation assay demonstrated physical interactions between galectin-3 and TLR (Toll-like receptor) 4. R-galectin-3 blocked the neuroprotective effects of MCP. Conclusions- MCP prevents post-SAH blood-brain barrier disruption possibly by inhibiting galectin-3, of which the mechanisms may include binding to TLR4 and activating ERK1/2, STAT-3, and MMP-9. This study suggests galectin-3 to be a novel therapeutic target against post-SAH early brain injury.
Collapse
Affiliation(s)
- Hirofumi Nishikawa
- From the Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Lei Liu
- From the Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Fumi Nakano
- From the Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Fumihiro Kawakita
- From the Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hideki Kanamaru
- From the Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yoshinari Nakatsuka
- From the Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Takeshi Okada
- From the Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hidenori Suzuki
- From the Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
64
|
Xie J, Shen Z, Anraku Y, Kataoka K, Chen X. Nanomaterial-based blood-brain-barrier (BBB) crossing strategies. Biomaterials 2019; 224:119491. [PMID: 31546096 DOI: 10.1016/j.biomaterials.2019.119491] [Citation(s) in RCA: 289] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/31/2019] [Accepted: 09/11/2019] [Indexed: 12/14/2022]
Abstract
Increasing attention has been paid to the diseases of central nervous system (CNS). The penetration efficiency of most CNS drugs into the brain parenchyma is rather limited due to the existence of blood-brain barrier (BBB). Thus, BBB crossing for drug delivery to CNS remains a significant challenge in the development of neurological therapeutics. Because of the advantageous properties (e.g., relatively high drug loading content, controllable drug release, excellent passive and active targeting, good stability, biodegradability, biocompatibility, and low toxicity), nanomaterials with BBB-crossability have been widely developed for the treatment of CNS diseases. This review summarizes the current understanding of the physiological structure of BBB, and provides various nanomaterial-based BBB-crossing strategies for brain delivery of theranostic agents, including intranasal delivery, temporary disruption of BBB, local delivery, cell penetrating peptide (CPP) mediated BBB-crossing, receptor mediated BBB-crossing, shuttle peptide mediated BBB-crossing, and cells mediated BBB-crossing. Clinicians, biologists, material scientists and chemists are expected to be interested in this review.
Collapse
Affiliation(s)
- Jinbing Xie
- Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, China; Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan
| | - Zheyu Shen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Yasutaka Anraku
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan; Policy Alternatives Research Institute, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
65
|
Monocyte activation, HIV, and cognitive performance in East Africa. J Neurovirol 2019; 26:52-59. [PMID: 31468471 DOI: 10.1007/s13365-019-00794-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/02/2019] [Accepted: 08/14/2019] [Indexed: 02/06/2023]
Abstract
Chronic inflammation associated with monocyte activation has been linked to HIV-related cognitive outcomes in resource-rich settings. Few studies have investigated this relationship in the African context where endemic non-HIV infections may modulate effects. We characterized immune activation biomarkers in Kenyan and Ugandan participants in relation to neuropsychological testing performance (NTP) from the African Cohort Study (AFRICOS). We focused on activation markers associated with monocytes (sCD14, sCD163, neopterin), T cells (HLA-DR+CD38+ on CD4+ and CD8+ T lymphocytes), and microbial translocation (intestinal fatty acid-binding protein, I-FABP). The HIV-infected (n = 290) vs. HIV-uninfected (n = 104) groups were similar in age with mean (SD) of 41 (9.5) vs. 39 (9.9) years, respectively (p = 0.072). Among HIV-infected participants, the mean (SD) current CD4+ count was 402 (232); 217 (75%) were on combination antiretroviral therapy (cART) and 199 (69%) had suppressed plasma HIV RNA. sCD14 was inversely correlated to NTP (r = - 0.14, p = 0.037) in models that included both HIV-infected and uninfected individuals, adjusted for HIV status and research site, whereas sCD163 was not (r = 0.041, p = 0.938). Neither of the T cell activation markers correlated with NTP. In the HIV-infected group, I-FABP was inversely associated with NTP (r = - 0.147, p = 0.049), even among those with suppressed plasma virus (r = - 0.0004, p = 0.025). Among the full group, HIV status did not appear to modulate the effects observed. In this cohort from East Africa, sCD14, but not sCD163, is associated with cognitive performance regardless of HIV status. Findings among both HIV-infected and HIV-uninfected groups is supportive that HIV and non-HIV-related inflammatory sources contribute to cognitive performance in this setting.
Collapse
|
66
|
Dopaminergic impact of cART and anti-depressants on HIV neuropathogenesis in older adults. Brain Res 2019; 1723:146398. [PMID: 31442412 DOI: 10.1016/j.brainres.2019.146398] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 01/21/2023]
Abstract
The success of combination antiretroviral therapy (cART) has transformed HIV infection into a chronic condition, resulting in an increase in the number of older, cART-treated adults living with HIV. This has increased the incidence of age-related, non-AIDS comorbidities in this population. One of the most common comorbidities is depression, which is also associated with cognitive impairment and a number of neuropathologies. In older people living with HIV, treating these overlapping disorders is complex, often creating pill burden or adverse drug-drug interactions that can exacerbate these neurologic disorders. Depression, NeuroHIV and many of the neuropsychiatric therapeutics used to treat them impact the dopaminergic system, suggesting that dopaminergic dysfunction may be a common factor in the development of these disorders. Further, changes in dopamine can influence the development of inflammation and the regulation of immune function, which are also implicated in the progression of NeuroHIV and depression. Little is known about the optimal clinical management of drug-drug interactions between cART drugs and antidepressants, particularly in regard to dopamine in older people living with HIV. This review will discuss those interactions, first examining the etiology of NeuroHIV and depression in older adults, then discussing the interrelated effects of dopamine and inflammation on these disorders, and finally reviewing the activity and interactions of cART drugs and antidepressants on each of these factors. Developing better strategies to manage these comorbidities is critical to the health of the aging, HIV-infected population, as the older population may be particularly vulnerable to drug-drug interactions affecting dopamine.
Collapse
|
67
|
Leibrand CR, Paris JJ, Jones AM, Masuda QN, Halquist MS, Kim WK, Knapp PE, Kashuba ADM, Hauser KF, McRae M. HIV-1 Tat and opioids act independently to limit antiretroviral brain concentrations and reduce blood-brain barrier integrity. J Neurovirol 2019; 25:560-577. [PMID: 31102185 PMCID: PMC6750988 DOI: 10.1007/s13365-019-00757-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 03/28/2019] [Accepted: 04/25/2019] [Indexed: 12/11/2022]
Abstract
Poor antiretroviral penetration may contribute to human immunodeficiency virus (HIV) persistence within the brain and to neurocognitive deficits in opiate abusers. To investigate this problem, HIV-1 Tat protein and morphine effects on blood-brain barrier (BBB) permeability and drug brain penetration were explored using a conditional HIV-1 Tat transgenic mouse model. Tat and morphine effects on the leakage of fluorescently labeled dextrans (10-, 40-, and 70-kDa) into the brain were assessed. To evaluate effects on antiretroviral brain penetration, Tat+ and Tat- mice received three antiretroviral drugs (dolutegravir, abacavir, and lamivudine) with or without concurrent morphine exposure. Antiretroviral and morphine brain and plasma concentrations were determined by LC-MS/MS. Morphine exposure, and, to a lesser extent, Tat, significantly increased tracer leakage from the vasculature into the brain. Despite enhanced BBB breakdown evidenced by increased tracer leakiness, morphine exposure led to significantly lower abacavir concentrations within the striatum and significantly less dolutegravir within the hippocampus and striatum (normalized to plasma). P-glycoprotein, an efflux transporter for which these drugs are substrates, expression and function were significantly increased in the brains of morphine-exposed mice compared to mice not exposed to morphine. These findings were consistent with lower antiretroviral concentrations in brain tissues examined. Lamivudine concentrations were unaffected by Tat or morphine exposure. Collectively, our investigations indicate that Tat and morphine differentially alter BBB integrity. Morphine decreased brain concentrations of specific antiretroviral drugs, perhaps via increased expression of the drug efflux transporter, P-glycoprotein.
Collapse
Affiliation(s)
- Crystal R Leibrand
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Jason J Paris
- Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Austin M Jones
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Quamrun N Masuda
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Matthew S Halquist
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Woong-Ki Kim
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, 23507, USA
| | - Pamela E Knapp
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Angela D M Kashuba
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7569, USA
| | - Kurt F Hauser
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - MaryPeace McRae
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
68
|
The malaria toxin hemozoin induces apoptosis in human neurons and astrocytes: Potential role in the pathogenesis of cerebral malaria. Brain Res 2019; 1720:146317. [PMID: 31276637 DOI: 10.1016/j.brainres.2019.146317] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/11/2019] [Accepted: 07/01/2019] [Indexed: 02/07/2023]
Abstract
Malaria, caused by an intracellular protozoan parasite of the genus Plasmodium, is one of the most important infectious diseases worldwide. In 2017, a total of 219 millions cases were reported with 435,000 deaths related to malaria. A major complication of malaria infection is cerebral malaria (CM), characterized by enhanced blood-brain barrier permeability, leukocyte infiltration and/or activation, and neuronal dropout resulting in coma and death in significant numbers of individuals, especially children. Despite the high incidence and mortality, the pathogenesis of cerebral malaria is not well characterized. Hemozoin (HMZ) or "malaria pigment," a by-product of intraerythrocytic parasite-mediated hemoglobin catabolism, is released into the bloodstream after lysis of the host infected erythrocyte. The effects of HMZ on brain cells has not been studied due to the contamination/adhesion/aggregation of the HMZ with host and toxic parasitic factors. We now demonstrate that extracellular purified HMZ is taken up by human neurons and astrocytes, resulting in cellular dysfunction and toxicity. These findings contribute to a better understanding of the neuropathogenesis of CM and provide evidence that HMZ accumulation in the bloodstream could result in CNS compromise. Thus, alternative approaches to reducing circulating HMZ could serve as a potential treatment.
Collapse
|
69
|
Pandey HS, Seth P. Friends Turn Foe-Astrocytes Contribute to Neuronal Damage in NeuroAIDS. J Mol Neurosci 2019; 69:286-297. [PMID: 31236774 DOI: 10.1007/s12031-019-01357-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/12/2019] [Indexed: 02/07/2023]
Abstract
Astrocytes play a wide variety of roles in the central nervous system (CNS). Various facets of astrocyte-neuron interplay, investigated for the past few decades, have placed these most abundant and important glial cell types to be of supreme importance for the maintenance of the healthy CNS. Interestingly, glial dysfunctions have proven to be the major contributor to neuronal loss in several CNS disorders and pathologies. Specifically, in the field of neuroAIDS, glial dysfunction-mediated neuronal stress is a major factor contributing to the HIV-1 neuropathogenesis. As there is increasing evidence that astrocytes harbor HIV-1 and serve as "safe haven" for the dormant virus in the brain, the indirect pathway of neuronal damage has taken over the direct neuronal damage in its contribution to HIV-1 neuropathogenesis. In this review, we provide a brief insight into the astrocyte functions and dysfunctions in different CNS conditions with an elaborated insight into neuroAIDS. Detailed understanding of the role of astrocytes in neuroAIDS will help in the better therapeutic management of the neurological problems associated with HIV-1 patients.
Collapse
Affiliation(s)
- Hriday Shanker Pandey
- Department of Cellular and Molecular Neuroscience, Neurovirology Section, National Brain Research Centre (NBRC), Nainwal Road, NH-8, Manesar, Gurgaon, Haryana, 122052, India
| | - Pankaj Seth
- Department of Cellular and Molecular Neuroscience, Neurovirology Section, National Brain Research Centre (NBRC), Nainwal Road, NH-8, Manesar, Gurgaon, Haryana, 122052, India.
| |
Collapse
|
70
|
Zottel A, Videtič Paska A, Jovčevska I. Nanotechnology Meets Oncology: Nanomaterials in Brain Cancer Research, Diagnosis and Therapy. MATERIALS 2019; 12:ma12101588. [PMID: 31096609 PMCID: PMC6567262 DOI: 10.3390/ma12101588] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 01/08/2023]
Abstract
Advances in technology of the past decades led to development of new nanometer scale diagnosis and treatment approaches in cancer medicine leading to establishment of nanooncology. Inorganic and organic nanomaterials have been shown to improve bioimaging techniques and targeted drug delivery systems. Their favorable physico-chemical characteristics, like small sizes, large surface area compared to volume, specific structural characteristics, and possibility to attach different molecules on their surface transform them into excellent transport vehicles able to cross cell and/or tissue barriers, including the blood–brain barrier. The latter is one of the greatest challenges in diagnosis and treatment of brain cancers. Application of nanomaterials can prolong the circulation time of the drugs and contrasting agents in the brain, posing an excellent opportunity for advancing the treatment of the most aggressive form of the brain cancer—glioblastomas. However, possible unwanted side-effects and toxicity issues must be considered before final clinical translation of nanoparticles.
Collapse
Affiliation(s)
- Alja Zottel
- Medical Center for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia.
| | - Alja Videtič Paska
- Medical Center for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia.
| | - Ivana Jovčevska
- Medical Center for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia.
| |
Collapse
|
71
|
Madhombiro M, Cha R, Sawyer J, Przybyla S, Burstein G, Morse GD. Why do young adults living with HIV perform poorly on combined antiretroviral therapy (CART)? – a Zimbabwean perspective. Future Virol 2019. [DOI: 10.2217/fvl-2019-0020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Munyaradzi Madhombiro
- University of Zimbabwe, College of Health Sciences, Department of Psychiatry, Parirenyatwa Group of Health Sciences, Mazowe Street, Belgravia, Harare, Zimbabwe
| | - Raymond Cha
- University at Buffalo, The State University of New York, School of Pharmacy & Pharmaceutical Sciences, Buffalo, NY 14414, USA
| | - Joshua Sawyer
- University at Buffalo, The State University of New York, School of Pharmacy & Pharmaceutical Sciences, Buffalo, NY 14414, USA
| | - Sarahmona Przybyla
- University at Buffalo, The State University of New York, School of Public Health, Buffalo, NY 14214, USA
| | - Gale Burstein
- Commissioner of Health Erie County, Health 95 Franklin St, Room 910, Buffalo, NY 14202, USA
| | - Gene D Morse
- University at Buffalo, The State University of New York, Pharmacy Practice (Medicine, Pediatrics), SUNY Global Health Institute, UB Center for Integrated Global Biomedical Sciences, Drug Development Core, UB Clinical & Translational Science Institute, Translational Pharmacology Research Core, NYS Center of Excellence in Bioinformatics & Life Sciences, University at Buffalo, 701 Ellicott Street, Buffalo, NY 14203, 716-881-7464
| |
Collapse
|
72
|
Katuri A, Bryant J, Heredia A, Makar TK. Role of the inflammasomes in HIV-associated neuroinflammation and neurocognitive disorders. Exp Mol Pathol 2019; 108:64-72. [PMID: 30922769 DOI: 10.1016/j.yexmp.2019.03.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 02/01/2023]
Abstract
HIV associated neurocognitive disorders (HAND) is a unique form of neurological impairment that stems from HIV. This disease and its characteristics can be accredited to incorporation of DNA and mRNA of HIV-1 into the CNS. A proper understanding of the intricacies of HAND and the underlying mechanisms associated with corresponding immune reactions are vital for the potential development of a reliable treatment for HAND. A common phenomenon observed in CNS cells, specifically microglia, that are infected with HAND is inflammation, which is a consequence of the activation of innate immune response due to a variety of stimuli, in this case, being the HIV infection. The CNS based inflammation is mediated by the production of cytokines, chemokines, reactive oxygen species, and secondary messengers, which occurs at CNS glia, endothelial cells and peripherally derived immune cells. Inflammasomes play a significant role with regard to neuroinflammation due to their ability to dictate the activation of various inflammatory responses. Certain stimuli can result in the activation of caspase-1; hence, leading to the processing of interleukin-1β and interleukin-18 pro-inflammatory cytokines. The processed IL-1β and IL-18 activate signaling pathways that begin the process of neuroinflammation. Due to the fact that the NLRP3 inflammasome is the most abundant in the CNS, it is the most extensively investigated inflammasome with regard to the nervous system. Due to the importance of neuroinflammation in the evolution of HAND and proliferation of neuroinflammation due to HAND, it can be concluded that there exists a relationship between HAND and inflammasomes. The aim of our review is to consolidate current knowledge of important mechanisms in HAND, specifically related to its relationship with neuroinflammation and inflammasomes to shed light on a possible improved treatment for HAND.
Collapse
Affiliation(s)
- Akhil Katuri
- Department of Neurology, University of Maryland, Baltimore, MD 21201, United States of America
| | - Joseph Bryant
- Institute of Human Virology, University of Maryland, Baltimore, MD 21201, United States of America
| | - Alonso Heredia
- Institute of Human Virology, University of Maryland, Baltimore, MD 21201, United States of America
| | - Tapas K Makar
- Department of Neurology, University of Maryland, Baltimore, MD 21201, United States of America; VA Medical Center, Baltimore, MD 21201, United States of America.
| |
Collapse
|
73
|
Bhalerao A, Cucullo L. Impact of Tobacco Smoke in HIV Progression: a Major Risk Factor for the Development of NeuroAIDS and Associated of CNS Disorders. JOURNAL OF PUBLIC HEALTH-HEIDELBERG 2019; 28:259-270. [PMID: 33738180 DOI: 10.1007/s10389-019-01062-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Aim With the advent of highly active and combination antiretroviral therapy have substantially increased the life expectancy of patients infected with human immunodeficiency virus (HIV). However, this has brought into sharp contrast the incidence of several 'Non-acquired immunodeficiency syndrome (AIDS) diseases such as NeuroAIDS which identifies a group of neurological disorders caused primarily by HIV-mediated damage to the central and peripheral nervous systems. Given the patients depleted immune condition, the use and abuse of drug and addictive substances such as tobacco smoking can further deteriorates their overall health and accelerate the progression and severity of the disease. In this review we detail the pathogenesis, progression and characteristics of HIV and the impact of tobacco smoking as a risk factor for the progression of the disease to NeuroAIDS. This is a poorly understood aspect of HIV-related complications that needs to be addressed. Subjects and methods Review of theoretical approaches and knowledge synthesis. Results Tobacco smoking is highly prevalent in HIV patients when compared to the general population. The oxidative damage and inflammatory stress caused by chronic smoking on the cerebrovascular system have been well established. Considering that HIV patients have an impaired immune system and smokers per se are more susceptible to viral and bacterial inflammatory neuropathologies than non-smokers, it is conceivable that tobacco smoking as a risk factor for the progression of HIV into NeuroAIDS and related neurological impairments. Conclusion Tobacco smoke (TS) may bring about a synergistic effect in the context of persistent inflammatory state and cerebrovascular damage which facilitate HIV infection and progression to NeuroAIDS when compared to non-smokers.
Collapse
Affiliation(s)
- Aditya Bhalerao
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Luca Cucullo
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.,Center for Blood Brain Barrier Research, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| |
Collapse
|
74
|
HIV infection and latency induce a unique metabolic signature in human macrophages. Sci Rep 2019; 9:3941. [PMID: 30850623 PMCID: PMC6408492 DOI: 10.1038/s41598-019-39898-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 01/29/2019] [Indexed: 12/31/2022] Open
Abstract
Currently, a major barrier to curing HIV infection is the generation of tissue-associated, non-replicating, long-lasting viral reservoirs that are refractory to therapy and can be reactivated upon anti-retroviral therapy interruption. One of these reservoirs are latently HIV-infected macrophages. Here, we show that HIV infection of macrophages results in survival of a small population of infected cells that are metabolically altered and characterized by mitochondrial fusion, lipid accumulation, and reduced mitochondrial ATP production. No changes in glycolysis were detected. Metabolic analysis indicated an essential role of succinate and other TCA metabolites in the tricarboxylic acid (TCA) cycle in mediating lipid accumulation and oxidative phosphorylation (OXPHOS) in the mitochondria. Furthermore, we show that while uninfected and HIV infected macrophages use fatty acids and glucose as primary sources of energy, surviving HIV infected macrophages also use glutamine/glutamate as a major energy source, and blocking these new sources of energy resulted in the killing of latent HIV infected macrophages. Together, our data provide a new understanding of the formation, properties, and potential novel ways to eliminate macrophage viral reservoirs.
Collapse
|
75
|
Abstract
The gap junctions (GJs), which form intercellular communicating channels between two apposing cells or form hemichannel with extracellular environment, perform crucial functions to maintain small molecule homeostasis. The central nervous system (CNS) GJs are important for maintenance of myelin sheath and neuronal activity. Connexin (Cx) proteins are building blocks of GJs. Recent cell-biological investigations show that amongst the CNS specific Cxs, the most abundant Cx protein, Cx43 and its oligodendrocytic coupling partner Cx47 primarily important for maintenance of CNS myelin. Recent investigations elucidate that the expression of Cx43 and Cx47 is very important to maintain K+ buffering and nutrient homeostasis in oligodendrocytes, CNS myelin and oligodendrocyte function. The investigations on Multiple Sclerosis (MS) patient samples and EAE hypothesized that the functional loss of Cx43/Cx47 could be associated with spread of chronic MS lesions. Exploring the mechanism of initial GJ alteration and its effect on demyelination in this model of MS might play a primary role to understand the basis of altered CNS homeostasis, observed during MS. In this review, we mainly discuss the role of CNS GJs, specifically the Cx43/Cx47 axis in the perspective of demyelination.
Collapse
|
76
|
Hermansson L, Yilmaz A, Axelsson M, Blennow K, Fuchs D, Hagberg L, Lycke J, Zetterberg H, Gisslén M. Cerebrospinal fluid levels of glial marker YKL-40 strongly associated with axonal injury in HIV infection. J Neuroinflammation 2019; 16:16. [PMID: 30678707 PMCID: PMC6345016 DOI: 10.1186/s12974-019-1404-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/09/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND HIV-1 infects the central nervous system (CNS) shortly after transmission. This leads to a chronic intrathecal immune activation. YKL-40, a biomarker that mainly reflects activation of astroglial cells, has not been thoroughly investigated in relation to HIV. The objective of our study was to characterize cerebrospinal fluid (CSF) YKL-40 in chronic HIV infection, with and without antiretroviral treatment (ART). METHODS YKL-40, neopterin, and the axonal marker neurofilament light protein (NFL) were analyzed with ELISA in archived CSF samples from 120 HIV-infected individuals (85 untreated neuroasymptomatic patients, 7 with HIV-associated dementia, and 28 on effective ART) and 39 HIV-negative controls. RESULTS CSF YKL-40 was significantly higher in patients with HIV-associated dementia compared to all other groups. It was also higher in untreated neuroasymptomatic individuals with CD4 cell count < 350 compared to controls. Significant correlations were found between CSF YKL-40 and age (r = 0.38, p < 0.001), CD4 (r = - 0.36, p < 0.001), plasma HIV RNA (r = 0.35, p < 0.001), CSF HIV RNA (r = 0.35, p < 0.001), CSF neopterin (r = 0.40, p < 0.001), albumin ratio (r = 0.44, p < 0.001), and CSF NFL (r = 0.71, p < 0.001). Age, CD4 cell count, albumin ratio, and CSF HIV RNA were found as independent predictors of CSF YKL-40 concentrations in multivariable analysis. In addition, CSF YKL-40 was revealed as a strong independent predictor of CSF NFL together with age, CSF neopterin, and CD4 cell count. CONCLUSIONS CSF YKL-40 is a promising biomarker candidate for understanding the pathogenesis of HIV in the CNS. The strong correlation between CSF YKL-40 and NFL suggests a pathogenic association between astroglial activation and axonal injury, and implies its utility in assessing the prognostic value of YKL-40.
Collapse
Affiliation(s)
- Linn Hermansson
- Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden
| | - Aylin Yilmaz
- Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden
| | - Markus Axelsson
- Department of Neurology, University of Gothenburg, Gothenburg, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Lab, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Lars Hagberg
- Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden
| | - Jan Lycke
- Department of Neurology, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Lab, Sahlgrenska University Hospital, Mölndal, Sweden
- Institute of Neurology, University College London, London, UK
| | - Magnus Gisslén
- Department of Infectious Diseases, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
77
|
Fernandes N, Pulliam L. Inflammatory Mechanisms and Cascades Contributing to Neurocognitive Impairment in HIV/AIDS. Curr Top Behav Neurosci 2019; 50:77-103. [PMID: 31385260 DOI: 10.1007/7854_2019_100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neurocognitive impairment caused by chronic human immunodeficiency virus (HIV) infection is a growing concern. In this chapter we discuss the inflammatory mechanisms underlying the pathology of asymptomatic and mild neurocognitive impairment in the context of antiretroviral therapy. We discuss the role of HIV, viral proteins, and virally infected cells on the development of neuroinflammation and the effect of viral proteins on the cells of the central nervous system.We examine how these collective factors result in an inflammatory context that triggers the development of neurocognitive impairment in HIV. We assess the contribution of antiretrovirals and drugs of abuse, including methamphetamine, cannabis, and opioids, to the neurotoxic and neuroinflammatory milieu that leads to the development of neurocognitive impairment in HIV-infected individuals. We also examined circulating biomarkers, NF-L, sCD163, and sCD14, pertinent to identifying changes in the CNS that could indicate real-time changes in patient physiology. Lastly, we discuss future studies, such as exosomes and the microbiome, which could play a role in the HIV-induced neuroinflammation that eventually manifests as cognitive impairment.
Collapse
Affiliation(s)
- Nicole Fernandes
- Department of Laboratory Medicine, San Francisco VA Health Care System, San Francisco, CA, USA.,University of California, San Francisco, San Francisco, CA, USA
| | - Lynn Pulliam
- Department of Laboratory Medicine, San Francisco VA Health Care System, San Francisco, CA, USA. .,University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
78
|
Basu R, Sarma JDAS. Connexin 43/47 channels are important for astrocyte/ oligodendrocyte cross-talk in myelination and demyelination. J Biosci 2018; 43:1055-1068. [PMID: 30541963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2022]
Abstract
The gap junctions (GJs), which form intercellular communicating channels between two apposing cells or form hemichannel with extracellular environment, perform crucial functions to maintain small molecule homeostasis. The central nervous system (CNS) GJs are important for maintenance of myelin sheath and neuronal activity. Connexin (Cx) proteins are building blocks of GJs. Recent cell-biological investigations show that amongst the CNS specific Cxs, the most abundant Cx protein, Cx43 and its oligodendrocytic coupling partner Cx47 primarily important for maintenance of CNS myelin. Recent investigations elucidate that the expression of Cx43 and Cx47 is very important to maintain K? buffering and nutrient homeostasis in oligodendrocytes, CNS myelin and oligodendrocyte function. The investigations on Multiple Sclerosis (MS) patient samples and EAE hypothesized that the functional loss of Cx43/Cx47 could be associated with spread of chronic MS lesions. Exploring the mechanism of initial GJ alteration and its effect on demyelination in this model of MS might play a primary role to understand the basis of altered CNS homeostasis, observed during MS. In this review, we mainly discuss the role of CNS GJs, specifically the Cx43/Cx47 axis in the perspective of demyelination.
Collapse
Affiliation(s)
- Rahul Basu
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | | |
Collapse
|
79
|
Piekna-Przybylska D, Nagumotu K, Reid DM, Maggirwar SB. HIV-1 infection renders brain vascular pericytes susceptible to the extracellular glutamate. J Neurovirol 2018; 25:114-126. [PMID: 30402824 DOI: 10.1007/s13365-018-0693-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/28/2018] [Accepted: 10/25/2018] [Indexed: 12/18/2022]
Abstract
Reduced pericytes' coverage of endothelium in the brain is one of the structural changes leading to breach of the blood-brain barrier during HIV infection. We previously showed in central memory T (TCM) cells that HIV latency increases cellular susceptibility to DNA damage. In this study, we investigated susceptibility of primary brain pericytes infected with HIV-1 to DNA damage in response to glutamate and TNF-α, both known to induce neuronal death during chronic inflammatory conditions. To infect pericytes, we used a single-cycle HIV-1 pseudotyped with VSV-G envelope glycoprotein and maintained the cultures until latency was established. Our data indicate that pericytes silence HIV-1 expression at similar rate compared to primary TCM cells. TNF-α and IL-1β caused partial reactivation of the virus suggesting that progression of disease and neuroinflammation might facilitate virus reactivation from latency. Significant increases in the level of γH2AX, which reflect DNA damage, were observed in infected cultures exposed to TNF-α and glutamate at day 2 post-infection. Glutamate, an excitatory neurologic stimuli, also caused increases in the γH2AX level in latently infected pericytes, whereas PARP and DNA-PK inhibitors caused reductions in cell population suggesting that HIV-1 latency affects repairs of single- and double-strand DNA breaks. For comparison, we also analyzed latently infected astrocytes and determined that DNA damage response in astrocytes is less affected by HIV-1. In conclusion, our results indicate that productive infection and HIV-1 latency in pericytes interfere with DNA damage response, rendering them vulnerable to the agents that are characteristic of chronic neuroinflammatory disease conditions.
Collapse
Affiliation(s)
- Dorota Piekna-Przybylska
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA.
| | - Kavyasri Nagumotu
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - Danielle M Reid
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - Sanjay B Maggirwar
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA
| |
Collapse
|
80
|
Al-Harti L, Joseph J, Nath A. Astrocytes as an HIV CNS reservoir: highlights and reflections of an NIMH-sponsored symposium. J Neurovirol 2018; 24:665-669. [PMID: 30397827 DOI: 10.1007/s13365-018-0691-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 10/24/2018] [Indexed: 12/30/2022]
Abstract
This a summary of a National Institute of Mental Health (NIMH) sponsored symposium that was focused on the role of astrocytes as a reservoir of the human immunodeficiency virus in the brain. The talks were grouped into four themes. The first theme reviewed the evidence for HIV infection of astrocytes and discussed the challenges in the use of traditional methods of immunostaining and in situ hybridization for detection of infected astrocytes. The second theme focused on mechanisms of HIV entry into astrocytes and discussed CD4 independent mechanisms, such as receptor-mediated endocytosis and transmission of HIV by cell-to-cell contact with infected lymphocytes. The third theme focused on epigenetic regulation of HIV latency in astrocytes and other factors, such as cytokines and transcriptional factors regulating HIV replication in astrocytes. The fourth theme focused on therapeutic approaches, such as gene editing to block persistently infected astrocytes. A discussion that followed was focused on major unanswered questions in the field and future directions for research.
Collapse
Affiliation(s)
- Lena Al-Harti
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, 1735 West Harrison Street, Room 614 Cohn, Chicago, IL, 60612, USA.
| | - Jeymohan Joseph
- Section of Infections of the Nervous System, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Avindra Nath
- HIV Neuropathogenesis, Genetics and Therapeutics Branch, Division of AIDS Research, National Institute of Mental Health, Bldg 10, Room 7C-103, Bethesda, MD, 20892, USA.
| |
Collapse
|
81
|
In vitro and ex vivo systems at the forefront of infection modeling and drug discovery. Biomaterials 2018; 198:228-249. [PMID: 30384974 PMCID: PMC7172914 DOI: 10.1016/j.biomaterials.2018.10.030] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 10/05/2018] [Accepted: 10/23/2018] [Indexed: 12/11/2022]
Abstract
Bacterial infections and antibiotic resistant bacteria have become a growing problem over the past decade. As a result, the Centers for Disease Control predict more deaths resulting from microorganisms than all cancers combined by 2050. Currently, many traditional models used to study bacterial infections fail to precisely replicate the in vivo bacterial environment. These models often fail to incorporate fluid flow, bio-mechanical cues, intercellular interactions, host-bacteria interactions, and even the simple inclusion of relevant physiological proteins in culture media. As a result of these inadequate models, there is often a poor correlation between in vitro and in vivo assays, limiting therapeutic potential. Thus, the urgency to establish in vitro and ex vivo systems to investigate the mechanisms underlying bacterial infections and to discover new-age therapeutics against bacterial infections is dire. In this review, we present an update of current in vitro and ex vivo models that are comprehensively changing the landscape of traditional microbiology assays. Further, we provide a comparative analysis of previous research on various established organ-disease models. Lastly, we provide insight on future techniques that may more accurately test new formulations to meet the growing demand of antibiotic resistant bacterial infections.
Collapse
|
82
|
Mechanisms of neuropathogenesis in HIV and HCV: similarities, differences, and unknowns. J Neurovirol 2018; 24:670-678. [PMID: 30291565 DOI: 10.1007/s13365-018-0678-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/20/2018] [Accepted: 09/07/2018] [Indexed: 12/17/2022]
Abstract
HIV and hepatitis C virus (HCV) have both been associated with cognitive impairment. Combination antiretroviral therapy (cART) has dramatically changed the nature of cognitive impairment in HIV-infected persons, while the role of direct-acting antivirals (DAA) in neurocognition of HCV-infected individuals remains unclear. Also, whether HIV and HCV interact to promote neurocognitive decline or whether they each contribute an individual effect continues to be an open question. In this work, we review the virally mediated mechanisms of HIV- and HCV-mediated neuropathogenesis, with an emphasis on the role of dual infection, and discuss observed changes with HIV viral suppression and HCV functional cure on neurocognitive impairments.
Collapse
|
83
|
Megra BW, Eugenin EA, Berman JW. Inflammatory mediators reduce surface PrP c on human BMVEC resulting in decreased barrier integrity. J Transl Med 2018; 98:1347-1359. [PMID: 29959417 PMCID: PMC6163073 DOI: 10.1038/s41374-018-0090-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 05/03/2018] [Accepted: 05/05/2018] [Indexed: 12/18/2022] Open
Abstract
The cellular prion protein (PrPc) is a surface adhesion molecule expressed at junctions of various cell types including brain microvascular endothelial cells (BMVEC) that are important components of the blood-brain barrier (BBB). PrPc is involved in several physiological processes including regulation of epithelial cell barrier function and monocyte migration across BMVEC. BBB dysfunction and disruption are significant events in central nervous system (CNS) inflammatory processes including HIV neuropathogenesis. Tumor necrosis factor (TNF)-α and vascular endothelial growth factor (VEGF) are two inflammatory factors that have been implicated in the processes that affect BBB integrity. To examine the effect of inflammation on PrPc expression in BMVEC, we used these mediators and found that TNF-α and VEGF decrease surface PrPc on primary human BMVEC. We also showed that these factors decrease total PrPc protein as well as mRNA, indicating that they regulate expression of this protein by de novo synthesis. To determine the effect of PrPc loss from the surface of BMVEC on barrier integrity, we used small hairpin RNAs to knockdown PrPc. We found that the absence of PrPc from BMVEC causes increased permeability as determined by a fluorescein isothiocyanate (FITC)-dextran permeability assay. This suggests that cell surface PrPc is essential for endothelial monolayer integrity. To determine the mechanism by which PrPc downregulation leads to increased permeability of an endothelial monolayer, we examined changes in expression and localization of tight junction proteins, occludin and claudin-5, and found that decreased PrPc leads to decreased total and membrane-associated occludin and claudin-5. We propose that an additional mechanism by which inflammatory factors affect endothelial monolayer permeability is by decreasing cell-associated PrPc. This increase in permeability may have subsequent consequences that lead to CNS damage.
Collapse
Affiliation(s)
- Bezawit W. Megra
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Eliseo A. Eugenin
- Public Health Research Institute (PHRI), Newark, NJ 07103,Department of Microbiology and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers The State University of New Jersey, Newark, NJ 07103
| | - Joan W. Berman
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461,Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
84
|
Canet G, Dias C, Gabelle A, Simonin Y, Gosselet F, Marchi N, Makinson A, Tuaillon E, Van de Perre P, Givalois L, Salinas S. HIV Neuroinfection and Alzheimer's Disease: Similarities and Potential Links? Front Cell Neurosci 2018; 12:307. [PMID: 30254568 PMCID: PMC6141679 DOI: 10.3389/fncel.2018.00307] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/23/2018] [Indexed: 12/30/2022] Open
Abstract
Environmental factors such as chemicals, stress and pathogens are now widely believed to play important roles in the onset of some brain diseases, as they are associated with neuronal impairment and acute or chronic inflammation. Alzheimer’s disease (AD) is characterized by progressive synaptic dysfunction and neurodegeneration that ultimately lead to dementia. Neuroinflammation also plays a prominent role in AD and possible links to viruses have been proposed. In particular, the human immunodeficiency virus (HIV) can pass the blood-brain barrier and cause neuronal dysfunction leading to cognitive dysfunctions called HIV-associated neurocognitive disorders (HAND). Similarities between HAND and HIV exist as numerous factors involved in AD such as members of the amyloid and Tau pathways, as well as stress-related pathways or blood brain barrier (BBB) regulators, seem to be modulated by HIV brain infection, leading to the accumulation of amyloid plaques or neurofibrillary tangles (NFT) in some patients. Here, we summarize findings regarding how HIV and some of its proteins such as Tat and gp120 modulate signaling and cellular pathways also impaired in AD, suggesting similarities and convergences of these two pathologies.
Collapse
Affiliation(s)
- Geoffrey Canet
- Molecular Mechanisms in Neurodegenerative Dementia, INSERM, University of Montpellier/EPHE, Montpellier, France
| | - Chloé Dias
- Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement français du Sang, Montpellier, France
| | - Audrey Gabelle
- Memory Research and Resources Center, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Yannick Simonin
- Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement français du Sang, Montpellier, France
| | - Fabien Gosselet
- Laboratoire de la Barrière Hémato-Encéphalique, Université d'Artois, Lens, France
| | - Nicola Marchi
- Cerebrovascular Mechanisms of Brain Disorders, Department of Neuroscience, Institute of Functional Genomics, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Alain Makinson
- Department of Infectious Diseases CHU Montpellier, INSERM, IRD, University of Montpellier, Montpellier, France
| | - Edouard Tuaillon
- Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement français du Sang, Montpellier, France.,Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement français du Sang, CHU Montpellier, Montpellier, France
| | - Philippe Van de Perre
- Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement français du Sang, Montpellier, France.,Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement français du Sang, CHU Montpellier, Montpellier, France
| | - Laurent Givalois
- Molecular Mechanisms in Neurodegenerative Dementia, INSERM, University of Montpellier/EPHE, Montpellier, France
| | - Sara Salinas
- Pathogenesis and Control of Chronic Infections, INSERM, University of Montpellier, Etablissement français du Sang, Montpellier, France
| |
Collapse
|
85
|
Lu Y, Wang XM, Yang P, Han L, Wang YZ, Zheng ZH, Wu F, Zhang WJ, Zhang L. Effect of gap junctions on RAW264.7 macrophages infected with H37Rv. Medicine (Baltimore) 2018; 97:e12125. [PMID: 30170447 PMCID: PMC6392813 DOI: 10.1097/md.0000000000012125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 08/07/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Apoptosis and inflammation have been shown to play an important role in the mechanisms involved in the pathogenesis of Mycobacterium tuberculosis (MTB) infection. When macrophages undergo apoptosis and polarization, gap junctions (GJs) may be needed to provide conditions for their functions. Connexin 43 (Cx43) and connexin 37 (Cx37) are the main connexins in macrophages that participate in the formation of GJ channels. METHODS An H37Rv infection RAW264.7 macrophage model was established to investigate the associate between connexins and host macrophage immune defense response after MTB infection. First, Real-time Polymerase Chian Reaction (RT-PCR) was used to detect the mRNA expression of Cx43 and Cx37. Cx43 protein expression and location was detected by western blotting and immunofluorescence. Confocal microscope was used to assay the gap junctional intercellular communication (GJIC). Then, electron microscope used to observe the morphology of macrophages. Finally, RAW264.7 macrophage apoptosis and mitochondrial membrane potential was detected by flow cytometry, and the expression of inflammation factors such as CD86, CD206, and IL-6, IL-10, TNF-α, and TGF-β were detected by Real-time PCR and enzyme-linked-immunosorbent serologic assay (ELISA). RESULTS H37Rv infection significantly promoted host macrophage Cx43 mRNA and protein expression (increased 1.6-fold and 0.3-fold respectively), and enhanced host macrophage GJIC. When host macrophage cell-to-cell communication induced by H37Rv infection, the apoptosis rate and inflammatory factors expression also increased. CONCLUSIONS The results confirm that H37Rv infection can obviously induce host macrophage Cx43 expression and enhance GJIC, which may implicated in host macrophage inflammatory reaction, to regulate the release of inflammatory factors and/or initiate apoptosis to activate host immune defense response.
Collapse
Affiliation(s)
- Yang Lu
- Department of Pathophysiology/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases
| | - Xin-min Wang
- Department of Urinary Surgery, The First Affiliated Hospital, Medical College of Shihezi University, Shihezi, Xinjiang, China
| | - Pu Yang
- Department of Pathophysiology/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases
| | - Ling Han
- Department of Pathophysiology/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases
| | - Ying-zi Wang
- Department of Pathophysiology/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases
| | - Zhi-hong Zheng
- Department of Pathophysiology/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases
| | - Fang Wu
- Department of Pathophysiology/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases
| | - Wan-jiang Zhang
- Department of Pathophysiology/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases
| | - Le Zhang
- Department of Pathophysiology/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases
| |
Collapse
|
86
|
Rubin LH, Sacktor N, Creighton J, Du Y, Endres CJ, Pomper MG, Coughlin JM. Microglial activation is inversely associated with cognition in individuals living with HIV on effective antiretroviral therapy. AIDS 2018; 32:1661-1667. [PMID: 29746297 DOI: 10.1097/qad.0000000000001858] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Despite viral suppression, HIV-associated cognitive impairment persists and may be partially due to persistent immune signalling by cells of the myeloid-lineage. Here, we aimed to understand the contribution of activated microglia located in vulnerable brain regions (e.g. frontal, subcortical) of HIV-infected, virally suppressed (HIV+VS) individuals in relation to cognitive and motor function. DESIGN Twenty-one HIV+VS individuals underwent PET with [11C]DPA-713 to image the translocator protein 18 kDa (TSPO), a marker of microglial activation, and completed a comprehensive neuropsychological test battery. METHODS Multivariable linear regressions were used to examine the contribution of [11C]DPA-713 binding to cognitive performance. RESULTS Higher [11C]DPA-713 binding was associated with lower cognition among HIV+VS individuals. [11C]DPA-713 binding in middle frontal gyrus/frontal cortex, hippocampus/temporal cortex and occipital cortex was inversely associated with performance on a number of cognitive domains, including verbal memory, processing speed/attention/concentration, executive function, working memory and motor function. [C]DPA-713 binding in parietal cortex, cerebellum and thalamus was associated with only specific cognitive domains including visual construction and verbal memory. Binding was not associated with global cognitive performance. CONCLUSION The findings add to the growing body of evidence that immune-mediated brain injury may contribute to domain specific, HIV-associated, cognitive vulnerabilities despite viral suppression.
Collapse
|
87
|
Geng M, Xiao H, Liu J, Song Y, Fu P, Cheng X, Zhang J, Wang G. The diagnostic role and dynamic changes in cerebrospinal fluid neopterin during treatment of patients with primary central nervous system lymphoma. Cancer Med 2018; 7:3889-3898. [PMID: 29982995 PMCID: PMC6089159 DOI: 10.1002/cam4.1581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/03/2018] [Accepted: 05/06/2018] [Indexed: 12/28/2022] Open
Abstract
This study aimed at evaluating the diagnostic and prognostic role of neopterin (Npt) concentration in the cerebrospinal fluid (CSF) of patients with primary central nervous system lymphoma (PCNSL). Ninety‐nine patients were enrolled in this retrospective study; these included patients with PCNSL (n = 21), other brain tumors (n = 44), and inflammatory diseases (n = 34). CSF Npt concentration was measured using ELISA. Receiver operating characteristic (ROC) curve analysis was performed to assess the discriminative ability of CSF Npt concentration for the diagnosis of PCNSL. CSF Npt concentration in patients with PCNSL was significantly higher than that in patients with other brain tumors and inflammatory diseases (P < .001). On ROC curve analysis, the optimal cutoff CSF Npt level of 10.77 ng/mL for the diagnosis of PCNSL and the diagnostic yield of MRI were increased when used in conjunction with CSF Npt concentration. The CSF Npt concentrations in PCNSL patients with multiple lesions were significantly higher than those in patients with a single lesion. Changes in CSF Npt concentration were consistent with post‐treatment changes in tumor sizes. The CSF Npt concentration may be a good biomarker for the diagnosis, for monitoring of disease course, and for prognostic evaluation of patients with PCNSL.
Collapse
Affiliation(s)
- Mingying Geng
- Cancer Center, Institute of Surgery Research, Third Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - He Xiao
- Cancer Center, Institute of Surgery Research, Third Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiaqi Liu
- Department of Clinical Laboratory, Institute of Surgery Research, Third Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yang Song
- Cancer Center, Institute of Surgery Research, Third Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ping Fu
- Department of Pathology, Institute of Surgery Research, Third Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqin, China
| | - Xing Cheng
- Department of Neurosurgery, Chongqing Cancer Hospital, Chongqing, China
| | - Jinwei Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ge Wang
- Cancer Center, Institute of Surgery Research, Third Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
88
|
Function of Connexins in the Interaction between Glial and Vascular Cells in the Central Nervous System and Related Neurological Diseases. Neural Plast 2018; 2018:6323901. [PMID: 29983707 PMCID: PMC6015683 DOI: 10.1155/2018/6323901] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/06/2018] [Accepted: 05/14/2018] [Indexed: 02/05/2023] Open
Abstract
Neuronal signaling together with synapse activity in the central nervous system requires a precisely regulated microenvironment. Recently, the blood-brain barrier is considered as a “neuro-glia-vascular unit,” a structural and functional compound composed of capillary endothelial cells, glial cells, pericytes, and neurons, which plays a pivotal role in maintaining the balance of the microenvironment in and out of the brain. Tight junctions and adherens junctions, which function as barriers of the blood-brain barrier, are two well-known kinds in the endothelial cell junctions. In this review, we focus on the less-concerned contribution of gap junction proteins, connexins in blood-brain barrier integrity under physio-/pathology conditions. In the neuro-glia-vascular unit, connexins are expressed in the capillary endothelial cells and prominent in astrocyte endfeet around and associated with maturation and function of the blood-brain barrier through a unique signaling pathway and an interaction with tight junction proteins. Connexin hemichannels and connexin gap junction channels contribute to the physiological or pathological progress of the blood-brain barrier; in addition, the interaction with other cell-cell-adhesive proteins is also associated with the maintenance of the blood-brain barrier. Lastly, we explore the connexins and connexin channels involved in the blood-brain barrier in neurological diseases and any programme for drug discovery or delivery to target or avoid the blood-brain barrier.
Collapse
|
89
|
Barat C, Proust A, Deshiere A, Leboeuf M, Drouin J, Tremblay MJ. Astrocytes sustain long-term productive HIV-1 infection without establishment of reactivable viral latency. Glia 2018; 66:1363-1381. [PMID: 29464785 DOI: 10.1002/glia.23310] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 01/19/2018] [Accepted: 01/29/2018] [Indexed: 12/22/2022]
Abstract
The "shock and kill" HIV-1 cure strategy proposes eradication of stable cellular reservoirs by clinical treatment with latency-reversing agents (LRAs). Although resting CD4+ T cells latently infected with HIV-1 constitute the main reservoir that is targeted by these approaches, their consequences on other reservoirs such as the central nervous system are still unknown and should be taken into consideration. We performed experiments aimed at defining the possible role of astrocytes in HIV-1 persistence in the brain and the effect of LRA treatments on this viral sanctuary. We first demonstrate that the diminished HIV-1 production in a proliferating astrocyte culture is due to a reduced proliferative capacity of virus-infected cells compared with uninfected astrocytes. In contrast, infection of non-proliferating astrocytes led to a robust HIV-1 infection that was sustained for over 60 days. To identify astrocytes latently infected with HIV-1, we designed a new dual-color reporter virus called NL4.3 eGFP-IRES-Crimson that is fully infectious and encodes for all viral proteins. Although we detected a small fraction of astrocytes carrying silent HIV-1 proviruses, we did not observe any reactivation using various LRAs and even strong inducers such as tumor necrosis factor, thus suggesting that these proviruses were either not transcriptionally competent or in a state of deep latency. Our findings imply that astrocytes might not constitute a latent reservoir per se but that relentless virus production by this brain cell population could contribute to the neurological disorders seen in HIV-1-infected persons subjected to combination antiretroviral therapy.
Collapse
Affiliation(s)
- Corinne Barat
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, Canada
| | - Alizé Proust
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, Canada
| | - Alexandre Deshiere
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, Canada
| | - Mathieu Leboeuf
- Département d'Obstétrique, Gynécologie et Reproduction, Faculté de Médecine, Université Laval, Québec, Canada
| | - Jean Drouin
- Département de Médecine Familiale et d'urgence, Faculté de Médecine, Université Laval, Québec, Canada
| | - Michel J Tremblay
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, Canada.,Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| |
Collapse
|
90
|
Bowen KE, Mathew SO, Borgmann K, Ghorpade A, Mathew PA. A novel ligand on astrocytes interacts with natural cytotoxicity receptor NKp44 regulating immune response mediated by NK cells. PLoS One 2018; 13:e0193008. [PMID: 29447242 PMCID: PMC5814005 DOI: 10.1371/journal.pone.0193008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/16/2018] [Indexed: 12/29/2022] Open
Abstract
NK cells play important role in immunity against pathogens and cancer. NK cell functions are regulated by inhibitory and activating receptors binding corresponding ligands on the surface of target cells. NK cells were shown to be recruited to the CNS following several pathological conditions. NK cells could impact CNS physiology by killing glial cells and by secreting IFN-γ. Astrocytes are intimately involved in immunological and inflammatory events occurring in the CNS and reactive astrogliosis is a key feature in HIV-associated neurocognitive disorders. There is little data on NK-astrocyte interactions and ligands expressed on astrocytes that could impact NK cell function. Natural cytotoxicity receptors (NCRs) play a critical role in the cytolytic function of NK cells. Among the NCRs, NKp44 is unique in expression and signal transduction. NKp44 is expressed only upon activation of NK cells and it can mediate both activating and inhibitory signals to NK cells. Here, we have studied the expression and function of natural cytotoxicity receptor NKp44 upon NK-astrocytes interactions in the presence or absence of an HIV peptide (HIV-3S peptide) shown to induce NK cell killing of CD4+ T cells during HIV–infection. Using a fusion protein consisting of the extracellular domain of NKp44 fused to Fc portion of human IgG, we determined the expression of a novel ligand for NKp44 (NKp44L) on astrocytes. Incubation of astrocytes with HIV-3S peptide downregulated NKp44L expression on astrocytes implicating protection from NK mediated killing. Thus, our study showed that NKp44 have a protective effect on astrocytes from NK cell mediated killing during HIV infection and impact astrocyte role in HAND.
Collapse
Affiliation(s)
- Kelly E Bowen
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Stephen O Mathew
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Kathleen Borgmann
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Anuja Ghorpade
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Porunelloor A Mathew
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| |
Collapse
|
91
|
Rubin LH, Benning L, Keating SM, Norris PJ, Burke-Miller J, Savarese A, Kumanan KN, Awadalla S, Springer G, Anastos K, Young M, Milam J, Valcour VG, Weber KM, Maki PM. Variability in C-reactive protein is associated with cognitive impairment in women living with and without HIV: a longitudinal study. J Neurovirol 2018; 24:41-51. [PMID: 29063513 PMCID: PMC6036635 DOI: 10.1007/s13365-017-0590-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/11/2017] [Accepted: 10/11/2017] [Indexed: 12/23/2022]
Abstract
Despite the availability of effective antiretroviral therapies, cognitive impairment (CI) remains prevalent in HIV-infected (HIV+) individuals. Evidence from primarily cross-sectional studies, in predominantly male samples, implicates monocyte- and macrophage-driven inflammatory processes linked to HIV-associated CI. Thus, peripheral systemic inflammatory markers may be clinically useful biomarkers in tracking HIV-associated CI. Given sex differences in immune function, we focused here on whether mean and intra-individual variability in inflammatory marker-predicted CI in HIV+ and HIV- women. Seventy-two HIV+ (36 with CI) and 58 HIV- (29 with CI) propensity-matched women participating in the Women's Interagency HIV Study completed a neuropsychological battery once between 2009 and 2011, and performance was used to determine CI status. Analysis of 13 peripheral immune markers was conducted on stored biospecimens at three time points (7 and 3.5 years before neuropsychological data collection and concurrent with data collection). HIV+ women showed alterations in 8 immune markers compared to HIV- women. The strongest predictors of CI across HIV+ and HIV- women were lower mean soluble tumor necrosis factor receptor I (sTNFRI) levels, higher mean interleukin (IL)-6 levels, and greater variability in C-reactive protein (CRP) and matrix metalloproteinase (MMP)-9 (p values < 0.05). Stratified by HIV, the only significant predictor of CI was greater variability in CRP for both HIV+ and HIV- women (p values < 0.05). This variability predicted lower executive function, attention/working memory, and psychomotor speed in HIV+ but only learning in HIV- women (p values < 0.05). Intra-individual variability in CRP levels over time may be a good predictor of CI in predominately minority low-socioeconomic status midlife women.
Collapse
Affiliation(s)
- Leah H Rubin
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street/Meyer 6-113, Baltimore, MD, 21287-7613, USA.
| | - Lorie Benning
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | | | | | - Jane Burke-Miller
- Cook County Health and Hospitals System/Hektoen Institute of Medicine, Chicago, IL, USA
| | - Antonia Savarese
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Krithika N Kumanan
- School of Public Health, Division of Epidemiology and Biostatistics, University of Illinois at Chicago, Chicago, IL, USA
| | - Saria Awadalla
- School of Public Health, Division of Epidemiology and Biostatistics, University of Illinois at Chicago, Chicago, IL, USA
| | - Gayle Springer
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kathyrn Anastos
- Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Mary Young
- Department of Medicine, Georgetown University, Washington, DC, USA
| | - Joel Milam
- Institute for Health Promotion and Disease Prevention Research, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Victor G Valcour
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Kathleen M Weber
- Cook County Health and Hospitals System/Hektoen Institute of Medicine, Chicago, IL, USA
| | - Pauline M Maki
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
- Department of Psychology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
92
|
Zhou Y, Peng Z, Seven ES, Leblanc RM. Crossing the blood-brain barrier with nanoparticles. J Control Release 2017; 270:290-303. [PMID: 29269142 DOI: 10.1016/j.jconrel.2017.12.015] [Citation(s) in RCA: 440] [Impact Index Per Article: 62.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/14/2017] [Accepted: 12/17/2017] [Indexed: 01/21/2023]
Abstract
The blood-brain barrier (BBB) is one of the most essential protection mechanisms in the central nervous system (CNS). It selectively allows individual molecules such as small lipid-soluble molecules to pass through the capillary endothelial membrane while limiting the passage of pathogens or toxins. However, this protection mechanism is also a major obstacle during disease state since it dramatically hinders the drug delivery. In recent years, various tactics have been applied to assist drugs to cross the BBB including osmotic disruption of the BBB and chemical modification of prodrugs. Additionally, nanoparticles (NPs)-mediated drug delivery is emerging as an effective and non-invasive system to treat cerebral diseases. In this review, we will summarize and analyze the advances in the drug delivery across the BBB using various NPs in the last decade. The NPs will cover both traditional and novel nanocarriers. The traditional nanocarriers consist of poly(butylcyanoacrylate), poly(lactic-co-glycolic acid), poly(lactic acid) NPs, liposomes and inorganic systems. In the meanwhile, novel nanocarriers such as carbon quantum dots with their recent applications in drug delivery will also be introduced. In terms of significance, this review clearly depicts the BBB structure and comprehensively describes various NPs-mediated drug delivery systems according to different NPs species. Also, the BBB penetration mechanisms are concluded in general, emphasized and investigated in each drug delivery system.
Collapse
Affiliation(s)
- Yiqun Zhou
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Zhili Peng
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA; College of Pharmacy and Chemistry, Dali University, Dali, Yunnan 671000, PR China
| | - Elif S Seven
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| |
Collapse
|
93
|
Spengler JR, Kelly Keating M, McElroy AK, Zivcec M, Coleman-McCray JD, Harmon JR, Bollweg BC, Goldsmith CS, Bergeron É, Keck JG, Zaki SR, Nichol ST, Spiropoulou CF. Crimean-Congo Hemorrhagic Fever in Humanized Mice Reveals Glial Cells as Primary Targets of Neurological Infection. J Infect Dis 2017; 216:1386-1397. [PMID: 28482001 PMCID: PMC5853341 DOI: 10.1093/infdis/jix215] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 05/02/2017] [Indexed: 12/21/2022] Open
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is a tick-borne viral hemorrhagic disease seen exclusively in humans. Central nervous system (CNS) infection and neurological involvement have also been reported in CCHF. In the current study, we inoculated NSG-SGM3 mice engrafted with human hematopoietic CD34+ stem cells with low-passage CCHF virus strains isolated from human patients. In humanized mice, lethal disease develops, characterized by histopathological change in the liver and brain. To date, targets of neurological infection and disease have not been investigated in CCHF. CNS disease in humanized mice was characterized by gliosis, meningitis, and meningoencephalitis, and glial cells were identified as principal targets of infection. Humanized mice represent a novel lethal model for studies of CCHF countermeasures, and CCHF-associated CNS disease. Our data suggest a role for astrocyte dysfunction in neurological disease and identify key regions of infection in the CNS for future investigations of CCHF.
Collapse
Affiliation(s)
- Jessica R Spengler
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - M Kelly Keating
- Infectious Diseases Pathology Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Anita K McElroy
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
- Division of Pediatric Infectious Diseases, Emory University, Atlanta, Georgia
| | - Marko Zivcec
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - JoAnn D Coleman-McCray
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jessica R Harmon
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Brigid C Bollweg
- Infectious Diseases Pathology Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Cynthia S Goldsmith
- Infectious Diseases Pathology Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Éric Bergeron
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - James G Keck
- In Vivo Services, The Jackson Laboratory, Sacramento, California
| | - Sherif R Zaki
- Infectious Diseases Pathology Branch, Division of High Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Stuart T Nichol
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
94
|
Cho HJ, Kuo AMS, Bertrand L, Toborek M. HIV Alters Gap Junction-Mediated Intercellular Communication in Human Brain Pericytes. Front Mol Neurosci 2017; 10:410. [PMID: 29311803 PMCID: PMC5732912 DOI: 10.3389/fnmol.2017.00410] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/27/2017] [Indexed: 12/31/2022] Open
Abstract
Despite successful control of viremia by combined antiretroviral therapy, brain infection and its resulting neurocognitive impairment remain a prevalent comorbidity in HIV infected individuals. HIV invades the brain early in the course of infection via penetration through the blood-brain barrier (BBB). While the impact of HIV on BBB astrocytes and endothelial cells is relatively well studied, the role of pericytes in BBB regulation during HIV infection remains unclear; however, it is known that a selective population of pericytes is prone to infection. In the present study, we hypothesize that injury signals are propagated from infected pericytes to neighboring cells via gap junction (GJ)-mediated intercellular communication. Among a variety of studied GJ proteins, HIV infection of human brain pericytes specifically increased expression of connexin 43 as determined by immunoblotting and immunostaining. This effect was confirmed in the brains of mice infected with EcoHIV, a mouse-specific HIV strain. In addition, HIV infection enhanced functional GJ-mediated intercellular communication in pericytes. The importance of this process was confirmed in experiments in which inhibition of GJs by carbenoxolone attenuated HIV infection. In addition to GJs, an extracellular ATP release assay revealed that HIV may also play a role in opening of connexin (Cx)-containing hemichannels (HCs). Overall, these findings indicate an important role of GJs in the propagation of HIV infection in human brain pericytes that may contribute to BBB dysfunction in brain infection and the pathogenesis of NeuroAIDS.
Collapse
Affiliation(s)
- Hyung Joon Cho
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Alyce Mei-Shiuan Kuo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Luc Bertrand
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
95
|
Malik S, Theis M, Eugenin EA. Connexin43 Containing Gap Junction Channels Facilitate HIV Bystander Toxicity: Implications in NeuroHIV. Front Mol Neurosci 2017; 10:404. [PMID: 29259541 PMCID: PMC5723329 DOI: 10.3389/fnmol.2017.00404] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/21/2017] [Indexed: 02/02/2023] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) infection compromises the central nervous system (CNS) in a significant number of infected individuals, resulting in neurological dysfunction that ranges from minor cognitive deficits to frank dementia. While macrophages/microglia are the predominant CNS cells infected by HIV, our laboratory and others have shown that HIV-infected astrocytes, although present in relatively low numbers with minimal to undetectable viral replication, play key role in NeuroAIDS pathogenesis. Our laboratory has identified that HIV "hijacks" connexin (Cx) containing channels, such as gap junctions (GJs) and hemichannels (HCs), to spread toxicity and apoptosis to uninfected cells even in the absence of active viral replication. In this study, using a murine model with an astrocyte-directed deletion of Cx43 gene (hGFAP-cre Cx43fl/fl) and control Cx43fl/fl mice, we examined whether few HIV-infected human astrocytoma cells (U87-CD4-CCR5), microinjected into the mouse cortex, can spread toxicity and apoptosis through GJ-mediated mechanisms, into the mouse cells, which are resistant to HIV infection. In the control Cx43fl/fl mice, microinjection of HIV-infected U87-CD4-CCR5 cells led to apoptosis in 84.28 ± 6.38% of mouse brain cells around the site of microinjection, whereas hGFAP-cre Cx43fl/fl mice exhibited minimal apoptosis (2.78 ± 1.55%). However, simultaneous injection of GJ blocker, 18α-glycyrrhetinic acid, and Cx43 blocking peptide along with microinjection of HIV-infected cells prevented apoptosis in Cx43fl/fl mice, demonstrating the Cx43 is essential for HIV-induced bystander toxicity. In conclusion, our findings demonstrate that Cx43 expression, and formation of GJs is essential for bystander apoptosis during HIV infection. These findings reveal novel potential therapeutic targets to reduce astrocyte-mediated bystander toxicity in HIV-infected individuals because despite low to undetectable viral replication in the CNS, Cx channels hijacked by HIV amplify viral neuropathogenesis.
Collapse
Affiliation(s)
- Shaily Malik
- Public Health Research Institute (PHRI), Newark, NJ, United States.,Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Martin Theis
- Institute of Cellular Neurosciences, University of Bonn, Bonn, Germany
| | - Eliseo A Eugenin
- Public Health Research Institute (PHRI), Newark, NJ, United States.,Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
96
|
Abstract
PURPOSE OF REVIEW This study aimed to evaluate current barriers to HIV cure strategies and interventions for neurocognitive dysfunction with a particular focus on recent advancements over the last 3 years. RECENT FINDINGS Optimal anti-retroviral therapy (ART) poses challenges to minimise neurotoxicity, whilst ensuring blood-brain barrier penetration and minimising the risk of cerebrovascular disease. CSF biomarkers, BCL11B and neurofilament light chain may be implicated with a neuroinflammatory cascade leading to cognitive impairment. Diagnostic imaging with diffusion tensor imaging and resting-state fMRI show promise in future diagnosis and monitoring of HAND. The introduction of ART has resulted in a dramatic decline in HIV-associated dementia. Despite this reduction, milder forms of HIV-associated neurocognitive disorder (HAND) are still prevalent and are clinically significant. The central nervous system (CNS) has been recognised as a probable reservoir and sanctuary for HIV, representing a significant barrier to management interventions.
Collapse
|
97
|
Womersley JS, Seedat S, Hemmings SMJ. Childhood maltreatment and HIV-associated neurocognitive disorders share similar pathophysiology: a potential sensitisation mechanism? Metab Brain Dis 2017; 32:1717-1733. [PMID: 28681198 DOI: 10.1007/s11011-017-0062-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 06/22/2017] [Indexed: 01/16/2023]
Abstract
HIV-associated neurocognitive disorders (HAND) are increasingly prevalent despite the use of antiretroviral therapies. Previous research suggests that individual host factors play an important role in determining susceptibility to HAND. In this review, we propose that childhood trauma (CT) and HAND share several common aetiological mechanisms, namely hypothalamic-pituitary-adrenal axis dysregulation, neuroinflammation and oxidative stress. These convergent and consequent mechanisms may translate into an increased risk of developing HAND in individuals who have experienced early life stress. We provide an overview of basic and clinical research relating to these pathophysiological mechanisms and suggest that further research examine brain-derived neurotrophic factor and telomere length as common mediating factors and potential therapeutic targets for HAND and CT. Graphical abstract Both childhood trauma and HIV-associated neurocognitive disorders are associated with HPA axis dysregulation, inflammation and oxidative stress.
Collapse
Affiliation(s)
- Jacqueline S Womersley
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie van Zijl Drive, Tygerberg, 7505, South Africa
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie van Zijl Drive, Tygerberg, 7505, South Africa
| | - Sian M J Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie van Zijl Drive, Tygerberg, 7505, South Africa.
| |
Collapse
|
98
|
Xing Y, Shepherd N, Lan J, Li W, Rane S, Gupta SK, Zhang S, Dong J, Yu Q. MMPs/TIMPs imbalances in the peripheral blood and cerebrospinal fluid are associated with the pathogenesis of HIV-1-associated neurocognitive disorders. Brain Behav Immun 2017; 65:161-172. [PMID: 28487203 PMCID: PMC5793222 DOI: 10.1016/j.bbi.2017.04.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/13/2017] [Accepted: 04/30/2017] [Indexed: 10/19/2022] Open
Abstract
HIV-1-associated neurocognitive disorders (HAND) continue to be a major concern in the infected population, despite the widespread use of combined antiretroviral therapy (cART). Growing evidence suggests that an imbalance between matrix metalloproteinases (MMPs) and endogenous tissue inhibitors of MMPs (TIMPs) contributes to the pathogenesis of HAND. In our present study, we examined protein levels and enzymatic activities of MMPs and TIMPs in both plasma and cerebrospinal fluid (CSF) samples from HIV-1 patients with or without HAND and HIV-1-negative controls. Imbalances between MMPs and TIMPs with distinct patterns were revealed in both the peripheral blood and CSF of HIV-1 patients, especially those with HAND. In the peripheral blood, the protein levels of MMP-2, MMP-9, TIMP-1, TIMP-2, and the enzymatic activities of MMP-2 and MMP-9 were increased in HIV-1 patients with or without HAND when compared with HIV-1-negative controls. The enzymatic activity of MMP-2, but not MMP-9, was further increased in plasma samples of HAND patients than that of HIV-1 patients without HAND. Notably, the ratio of MMP-2/TIMP-2 in plasma was significantly increased in HAND patients, not in patients without HAND. In the CSF, MMP-2 activity was increased, but the ratio of MMP-2/TIMP-2 was not altered. De novo induction and activation of MMP-9 in the CSF of HAND patients was particularly prominent. The imbalances between MMPs and TIMPs in the blood and CSF were related to the altered profiles of inflammatory cytokines/chemokines and monocyte activation in these individuals. In addition, plasma from HIV-1 patients directly induced integrity disruption of an in vitro blood-brain barrier (BBB) model, leading to increased BBB permeability and robust transmigration of monocytes/macrophages. These results indicate that imbalances between MMPs and TIMPs are involved in BBB disruption and are implicated in the pathogenesis of neurological disorders such as HAND in HIV-1 patients.
Collapse
Affiliation(s)
- Yanyan Xing
- Department of Pathophysiology, Key Laboratory of the State Administration of Traditional Chinese Medicine, Medical College of Jinan University, Guangzhou, Guangdong 510632, China; Indiana Center for AIDS Research and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Nicole Shepherd
- Indiana Center for AIDS Research and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Jie Lan
- Indiana Center for AIDS Research and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Wei Li
- Indiana Center for AIDS Research and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Sushmita Rane
- Indiana Center for AIDS Research and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Samir K Gupta
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Shanxiang Zhang
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Jun Dong
- Department of Pathophysiology, Key Laboratory of the State Administration of Traditional Chinese Medicine, Medical College of Jinan University, Guangzhou, Guangdong 510632, China; Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China.
| | - Qigui Yu
- Indiana Center for AIDS Research and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, United States; Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States.
| |
Collapse
|
99
|
Role of Connexin and Pannexin containing channels in HIV infection and NeuroAIDS. Neurosci Lett 2017; 695:86-90. [PMID: 28886986 DOI: 10.1016/j.neulet.2017.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 07/27/2017] [Accepted: 09/01/2017] [Indexed: 01/31/2023]
Abstract
Neuron-Glia crosstalk is essential for efficient synaptic communication, cell growth and differentiation, neuronal activity, neurotransmitter recycling, and brain immune response. The master regulators of this neuron-glia communication are connexin containing Gap Junctions (GJs) and Hemichannels (HCs) as well as pannexin HCs. However, the role of these channels under pathological conditions, especially in infectious diseases is still in exploratory stages. Human Immunodeficiency Virus-1 (HIV) is one such infectious agent that takes advantage of the host intercellular communication systems, GJs and HCs, to exacerbate viral pathogenesis in the brain in spite of the antiretroviral therapy effectively controlling viral replication in the periphery. Although most infectious agents lead to total "shutdown" of gap junctional communication in parenchymal cells, HIV infection maintains and "hijacks" GJs and HCs to enable few infected cells to spread toxic intracellular agents to neighboring uninfected cells aggravating viral neuropathology even in the absence of viral replication. In this mini-review, we present a comprehensive overview of the role of GJs and HCs in augmenting HIV neuropathogenesis.
Collapse
|
100
|
Abstract
Human immunodeficiency virus (HIV) infection induces neuronal injuries, with almost 50% of infected individuals developing HIV-associated neurocognitive disorders (HAND). Although highly activate antiretroviral therapy (HAART) has significantly reduced the incidence of severe dementia, the overall prevalence of HAND remains high. Synaptic degeneration is emerging as one of the most relevant neuropathologies associate with HAND. Previous studies have reported critical roles of viral proteins and inflammatory responses in this pathogenesis. Infected cells, including macrophages, microglia and astrocytes, may release viral proteins and other neurotoxins to stimulate neurons and cause excessive calcium influx, overproduction of free radicals and disruption of neurotransmitter hemostasis. The dysregulation of neural circuits likely leads to synaptic damage and loss. Identification of the specific mechanism of the synaptic degeneration may facilitate the development of effective therapeutic approaches to treat HAND.
Collapse
Affiliation(s)
- Wenjuan Ru
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Shao-Jun Tang
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|