51
|
Effects of central administration of gonadotropin-releasing hormone agonists and antagonist on elevated plus-maze and social interaction behavior in rats. Behav Pharmacol 2008; 19:308-16. [PMID: 18622178 DOI: 10.1097/fbp.0b013e328308f1fb] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The correlation between neuronal mechanism of anxiety and neuroanatomic expression/neuromodulatory role of gonadotropin-releasing hormone (GnRH), points to a role of GnRH in the modulation of anxiety. Therefore, we investigated the influence of GnRH agonists and antagonist on the anxiety-like behavior of rats in the elevated plus-maze and social interaction tests. GnRH agonists, leuprolide [100 or 200 ng/rat, intracerebroventricularly (i.c.v.)] or 6-D-tryptophan luteinizing hormone-releasing hormone (400 ng/rat, i.c.v.), significantly increased percentage of open arms entries, time spent in open arms, and time spent in social interaction. The observed anxiolytic effect of these agents was comparable with diazepam (0.5-1.0 mg/kg, intraperitoneally). Treatment with a GnRH antagonist [pGlu-D-Phe-Trp-Ser-Tyr-D-Ala-Leu-Arg-Pro-Gly-NH2, (100 ng/rat, i.c.v.)], significantly reduced percentage of open arm indices and decreased time spent in social interaction, indicating an anxiogenic-like effect. Further, castrated rats exhibited anxiogenic-like behavior in these tests, which was significantly attenuated by leuprolide (200 ng/rat, i.c.v.) or 6-D-tryptophan luteinizing hormone-releasing hormone (400 ng/rat, i.c.v.), indicating the noninvolvement of peripheral sex hormone in their anxiolytic-like effect, at least in castrated rats. In conclusion, this study indicated a putative role of GnRH in the control of anxiety, and further adds to the importance of investigating the possible role of the hypothalamus-pituitary-gonadal axis in regulating the anxiety-related disorders arising out of hypothalamus-pituitary-adrenal axis dysregulation.
Collapse
|
52
|
Blume A, Bosch OJ, Miklos S, Torner L, Wales L, Waldherr M, Neumann ID. Oxytocin reduces anxiety via ERK1/2 activation: local effect within the rat hypothalamic paraventricular nucleus. Eur J Neurosci 2008; 27:1947-56. [PMID: 18412615 DOI: 10.1111/j.1460-9568.2008.06184.x] [Citation(s) in RCA: 195] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The neuropeptide oxytocin (OT) modulates social behaviours and is an important anxiolytic substance of the brain. However, sites of action and the intracellular signalling pathways downstream of OT receptors (OTR) within the brain remain largely unknown. In the present studies, we localized the anxiolytic effect of OT by bilateral microinfusion of OT (0.01 nmol/0.5 microL) into the hypothalamic paraventricular nucleus (PVN) in male rats using both the elevated plus-maze and the light-dark box. Moreover, intracerebroventricular administration of OT, but not of the related neuropeptide vasopressin (VP), dose-dependently activated the extracellular signal-regulated kinase 1/2 (ERK1/2) cascade. Specifically, OT induced the phosphorylation of Raf-1, MEK1/2 and ERK1/2 in the hypothalamus in vivo and in hypothalamic H32 neurons via EGF receptors. OT-induced ERK1/2 phosphorylation was immunohistochemically localized within VP neurons of the PVN and the supraoptic nucleus. Importantly, the anxiolytic effect of OT within the PVN was prevented by local inhibition of the MAP kinase cascade with a MEK1/2 inhibitor (U0126, 0.5 nmol/0.5 microL) locally infused prior to OT, indicating the causal involvement of this intracellular signalling cascade in the behavioural effect of OT. OT effects within the hypothalamus may have far-reaching implications for the regulation of emotionality and social behaviours and, consequently, for the development of possible therapeutic strategies to treat affective disorders. Thus, OTR agonism or activation of the ERK1/2 cascade, specifically within the hypothalamus, may provide therapeutically relevant mechanisms.
Collapse
Affiliation(s)
- Annegret Blume
- Department of Behavioural and Molecular Neuroendocrinology, Institute of Zoology, University of Regensburg, Germany
| | | | | | | | | | | | | |
Collapse
|
53
|
Miragaya JR, Harris RBS. Antagonism of corticotrophin-releasing factor receptors in the fourth ventricle modifies responses to mild but not restraint stress. Am J Physiol Regul Integr Comp Physiol 2008; 295:R404-16. [PMID: 18550868 DOI: 10.1152/ajpregu.00565.2007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Repeated restraint stress (RRS; 3 h of restraint on 3 consecutive days) in rodents produces temporary hypophagia, but a long-term downregulation of body weight. The mild stress (MS) of an intraperitoneal injection of saline and housing in a novel room for 2 h also inhibits food intake and weight gain, but the effects are smaller than for RRS. Previous exposure to RRS exaggerates hypophagia, glucocorticoid release, and anxiety-type behavior caused by MS. Here we tested the involvement of brain stem corticotrophin-releasing factor receptors (CRFR) in mediating energetic and glucocorticoid responses to RRS or MS and in promoting stress hyperresponsiveness in RRS rats. Administration of 1.3 nmol alphahCRF(9-41), a nonspecific CRFR antagonist, exaggerated hypophagia and weight loss in both RRS and MS rats, whereas 0.26 nmol had no effect in RRS or MS rats. In contrast, 2 nmol of the nonspecific antagonist astressin had no effect on weight loss or hypersensitivity to subsequent MS in RRS rats, but blocked weight loss and inhibition of food intake caused by MS alone. MS rats infused with 3 nmol antisauvagine-30, a CRFR2 antagonist, did not lose weight in the 48 h after MS, but 0.3 nmol did not prevent weight loss in MS rats. These data suggest that inhibition of food intake and weight loss induced by RRS or by MS involve different pathways, with hindbrain CRFR mediating the effect of MS on body weight and food intake. Hindbrain CRFR do not appear to influence stress-induced corticosterone release in RRS rats.
Collapse
Affiliation(s)
- Joanna R Miragaya
- Department of Foods and Nutrition, Dawson Hall, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
54
|
Lukkes JL, Forster GL, Renner KJ, Summers CH. Corticotropin-releasing factor 1 and 2 receptors in the dorsal raphé differentially affect serotonin release in the nucleus accumbens. Eur J Pharmacol 2008; 578:185-93. [PMID: 17945210 PMCID: PMC2276644 DOI: 10.1016/j.ejphar.2007.09.024] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 09/17/2007] [Accepted: 09/23/2007] [Indexed: 11/18/2022]
Abstract
Corticotropin-releasing factor (CRF) is a neurohormone that mediates stress, anxiety, and affects serotonergic activity. Studies have shown that CRF has dose-dependent opposing effects on serotonergic activity. This effect has been hypothesized to be differentially mediated by CRF(1) and CRF(2) receptors in the dorsal raphé nucleus. We directly tested this hypothesis by using in vivo microdialysis to determine the effects of CRF and CRF receptor antagonists in the dorsal raphé nucleus on serotonin (5-HT) release in the nucleus accumbens, a brain region implicated in the neuropathology of stress-related psychiatric disorders. Male urethane-anesthetized rats were implanted with a microdialysis probe into the nucleus accumbens, and CRF (0, 100 or 500 ng) was infused into the dorsal raphé. Infusion of CRF into the dorsal raphé nucleus had dose-dependent opposite effects, with 100 ng of CRF significantly decreasing 5-HT levels in the nucleus accumbens and 500 ng CRF significantly increasing accumbal 5-HT levels. In subsequent experiments, the raphé was pre-treated with the CRF(1) receptor antagonist antalarmin (0.25 microg) or the CRF(2) receptor antagonist antisauvagine-30 (ASV-30; 2 microg) prior to CRF infusion. Antagonism of CRF(1) receptors in the dorsal raphé nucleus abolished the decrease in accumbal 5-HT levels elicited by 100 ng CRF, and CRF(2) receptor antagonism in the raphé blocked the increase in accumbal 5-HT levels elicited by 500 ng CRF. These results suggest that the opposing effects of dorsal raphé CRF on 5-HT release in the nucleus accumbens are dependent on differential activation of CRF(1) and CRF(2) receptors in the dorsal raphé nucleus.
Collapse
Affiliation(s)
- Jodi L. Lukkes
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 East Clark St, Vermillion, SD, USA
| | - Gina L. Forster
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 East Clark St, Vermillion, SD, USA
| | - Kenneth J. Renner
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 East Clark St, Vermillion, SD, USA
- Department of Biology, University of South Dakota, 414 East Clark St, Vermillion, SD, USA
| | - Cliff H. Summers
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 East Clark St, Vermillion, SD, USA
- Department of Biology, University of South Dakota, 414 East Clark St, Vermillion, SD, USA
| |
Collapse
|
55
|
Jászberényi M, Bagosi Z, Thurzó B, Földesi I, Telegdy G. Endocrine and behavioral effects of neuromedin S. Horm Behav 2007; 52:631-9. [PMID: 17900576 DOI: 10.1016/j.yhbeh.2007.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 07/13/2007] [Accepted: 07/30/2007] [Indexed: 11/28/2022]
Abstract
The present experiments focused on the effects of neuromedin S on hypothalamic-pituitary-adrenal (HPA) activation and behavior. The peptide (0.25-1 nmol) was administered intracerebroventricularly to rats, the behavior of which was monitored by means of telemetry, open field observations and an elevated plus-maze (EPM) test. Autonomic functions such as the temperature and the heart rate were recorded by telemetry. The action on the HPA axis was assessed via measurements of the plasma corticosterone and ACTH levels. To reveal the transmission of the endocrine responses, animals were pretreated with corticotrophin releasing hormone receptor (CRHR) antagonists (1 nmol). In the open field test, the animals were pretreated with either a CRHR(1) antagonist (antalarmin) or haloperidol (10 microg/kg), while in the EPM test they were pretreated with antalarmin or diazepam (1 mg/kg). The dopamine release from striatal and amygdala slices after peptide treatment was measured with a superfusion apparatus. Neuromedin S exerted dose-dependent effects on the HPA system, which were inhibited by antalarmin. It also activated grooming and decreased the entries to and time spent in the open arms during the EPM test. The grooming response was abolished by haloperidol and antalarmin pretreatment, while diazepam and antalarmin showed a tendency to attenuate the response evoked in the EPM test. In the superfusion studies, neuromedin S enhanced the dopamine release from the amygdala slices. These results demonstrate that neuromedin S stimulates the HPA axis through the CRHR(1) pathway and evokes stereotyped behavior and anxiety through mesolimbic dopamine and corticotrophin releasing hormone release.
Collapse
Affiliation(s)
- Miklós Jászberényi
- Department of Pathophysiology, University of Szeged, H-6701, Szeged, Semmelweis u. 1., PO Box 427, Hungary
| | | | | | | | | |
Collapse
|
56
|
Ryabinin AE, Yoneyama N, Tanchuck MA, Mark GP, Finn DA. Urocortin 1 microinjection into the mouse lateral septum regulates the acquisition and expression of alcohol consumption. Neuroscience 2007; 151:780-90. [PMID: 18164138 DOI: 10.1016/j.neuroscience.2007.11.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 11/09/2007] [Accepted: 12/12/2007] [Indexed: 01/09/2023]
Abstract
Previous studies using genetic and lesion approaches have shown that the neuropeptide urocortin 1 (Ucn1) is involved in regulating alcohol consumption. Ucn1 is a corticotropin releasing factor (CRF) -like peptide that binds CRF1 and CRF2 receptors. Perioculomotor urocortin-containing neurons (pIIIu), also known as the non-preganglionic Edinger-Westphal nucleus, are the major source of Ucn1 in the brain and are known to innervate the lateral septum. Thus, the present study tested whether Ucn1 could regulate alcohol consumption through the lateral septum. In a series of experiments Ucn1 or CRF was bilaterally injected at various doses into the lateral septum of male C57BL/6J mice. Consumption of 20% volume/volume ethanol or water was tested immediately after the injections using a modification of a 2-h limited access sweetener-free "drinking-in-the-dark" procedure. Ucn1 significantly suppressed ethanol consumption when administered prior to the third ethanol drinking session (the expression phase of ethanol drinking) at doses as low as 6 pmol. Ethanol intake was differentially sensitive to Ucn1, as equivalent doses of this peptide did not suppress water consumption. In contrast, CRF suppressed both ethanol and water intake at 40 and 60 pmol, but not at lower doses. Repeated administration of Ucn1 during the acquisition of alcohol consumption showed that 40 pmol (but not 2 or 0.1 pmol) significantly attenuated ethanol intake. Repeated administration of Ucn1 also resulted in a decrease of ethanol intake in sham-injected animals, a finding suggesting that the suppressive effect of Ucn1 on ethanol intake can be conditioned. Taken together, these studies confirm the importance of lateral septum innervation by Ucn1 in the regulation of alcohol consumption.
Collapse
Affiliation(s)
- A E Ryabinin
- Department of Behavioral Neuroscience, Oregon Health and Sciences University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA.
| | | | | | | | | |
Collapse
|
57
|
Slattery DA, Neumann ID. No stress please! Mechanisms of stress hyporesponsiveness of the maternal brain. J Physiol 2007; 586:377-85. [PMID: 17974588 DOI: 10.1113/jphysiol.2007.145896] [Citation(s) in RCA: 206] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The time around birth is accompanied by behavioural and physiological adaptations of the maternal brain, which ensure reproductive functions, maternal care and the survival of the offspring. In addition, profound neuroendocrine and neurobiological adaptations have been described with respect to behavioural and neuroendocrine stress responsiveness in rodents and human mothers. Thus, the hormonal response of the hypothalamo-pituitary-adrenal (HPA) axis and the response of the sympathetic nervous system to emotional and physical stressors are severely attenuated. Moreover, anxiety-related behaviour and emotional responsiveness to stressful stimuli are reduced with the result of general calmness. These complex adaptations of the maternal brain are likely to be a consequence of an increased activity of brain systems with inhibitory effects on the HPA axis (such as the oxytocin and prolactin systems) and of a reduced activity of excitatory pathways (noradrenaline (norepinephrine), corticotrophin-releasing factor and opioids). Experimental manipulation of these systems using complementary approaches indeed demonstrates their importance in these maternal brain adaptations. Maternal stress adaptations are not only important for the healthy prenatal development of the offspring by preventing excessive glucocorticoid responses and in the promotion of postnatal maternal behaviour, but are also vital for the well-being of the mother and her mental health.
Collapse
Affiliation(s)
- David A Slattery
- Department of Behavioural & Molecular Neuroendocrinology, Institute of Zoology, University of Regensburg, Universitätsstrasse 31, D-93053 Regensburg, Germany
| | | |
Collapse
|
58
|
Hubbard DT, Nakashima BR, Lee I, Takahashi LK. Activation of basolateral amygdala corticotropin-releasing factor 1 receptors modulates the consolidation of contextual fear. Neuroscience 2007; 150:818-28. [PMID: 17988803 DOI: 10.1016/j.neuroscience.2007.10.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2007] [Revised: 09/28/2007] [Accepted: 10/04/2007] [Indexed: 11/30/2022]
Abstract
The basolateral amygdala complex (BLA) and central amygdala nucleus (CeA) are involved in fear and anxiety. In addition, the BLA contains a high density of corticotropin-releasing factor 1 (CRF(1)) receptors in comparison to the CeA. However, the role of BLA CRF(1) receptors in contextual fear conditioning is poorly understood. In the present study, we first demonstrated in rats that oral administration of DMP696, the selective CRF(1) receptor antagonist, had no significant effects on the acquisition of contextual fear but produced a subsequent impairment in contextual freezing suggesting a role of CRF(1) receptors in the fear memory consolidation process. In addition, oral administration of DMP696 significantly reduced phosphorylation of cyclic AMP response element-binding protein (pCREB) in the lateral and basolateral amygdala nuclei, but not in the CeA, during the post-fear conditioning period. We then demonstrated that bilateral microinjections of DMP696 into the BLA produced no significant effects on the acquisition of conditioned fear but reduced contextual freezing in a subsequent drug-free conditioned fear test. Importantly, bilateral microinjections of DMP696 into the BLA at 5 min or 3 h, but not 9 h, after exposure to contextual fear conditioning was also effective in reducing contextual freezing in the conditioned fear test. Finally, microinfusions of either DMP696 into the CeA or a specific corticotropin-releasing factor 2 receptor antagonist in the BLA were shown to have no major effects on disrupting either contextual fear conditioning or performance of contextual freezing in the drug-free conditioned fear test. Collectively, results implicate a role of BLA CRF(1) receptors in activating the fear memory consolidation process, which may involve BLA pCREB-induced synaptic plasticity.
Collapse
Affiliation(s)
- D T Hubbard
- Department of Psychology, University of Hawaii, Honolulu, HI 96822, USA
| | | | | | | |
Collapse
|
59
|
Cooper MA, Huhman KL. Corticotropin-releasing factor receptors in the dorsal raphe nucleus modulate social behavior in Syrian hamsters. Psychopharmacology (Berl) 2007; 194:297-307. [PMID: 17581742 PMCID: PMC2714987 DOI: 10.1007/s00213-007-0849-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Accepted: 06/01/2007] [Indexed: 10/23/2022]
Abstract
RATIONALE In Syrian hamsters (Mesocricetus auratus), social defeat produces a prolonged change in subsequent agonistic behavior termed conditioned defeat. This stress-induced change in behavior is marked by increased submissive and defensive behavior toward a novel, nonaggressive opponent and a complete loss of normal territorial aggression. Corticotropin-releasing factor (CRF) has been shown to affect serotonergic neurons in the dorsal raphe nucleus (DRN) and to modulate learned helplessness via a CRF type-2 receptor (CRF-R2) mechanism. OBJECTIVES In this study, we tested the hypothesis that a nonselective CRF receptor antagonist (experiment 1: 250 or 500 ng D: -Phe CRF in 200 nl saline), or a selective CRF-R2 antagonist (experiment 2: 500 ng anti-Svg-30 in 200 nl saline), injected into the DRN would reduce the acquisition of conditioned defeat in male hamsters. We also tested similar hypotheses for the expression of conditioned defeat (experiments 3 and 4). RESULTS Infusion of D: -Phe CRF into the DRN significantly reduced both the acquisition and expression of conditioned defeat compared to vehicle controls, whereas infusion of anti-Svg-30 into the DRN reduced expression but not acquisition. In particular, CRF antagonism in the DRN decreased fleeing from novel opponents but did not reinstate normal territorial aggression after social defeat. CONCLUSIONS Our results suggest that the increased flight associated with conditioned defeat is modulated by CRF-R2 activation within the DRN. Overall, social defeat is an ethologically relevant stressor that appears to activate at least some of the same neural substrates that have been implicated in the control of learned helplessness.
Collapse
Affiliation(s)
- Matthew A Cooper
- Department of Psychology, Austin Peay Building, University of Tennessee, Knoxville, TN 37996-0900, USA.
| | | |
Collapse
|
60
|
Jaferi A, Bhatnagar S. Corticotropin-releasing hormone receptors in the medial prefrontal cortex regulate hypothalamic-pituitary-adrenal activity and anxiety-related behavior regardless of prior stress experience. Brain Res 2007; 1186:212-23. [PMID: 18001698 DOI: 10.1016/j.brainres.2007.07.100] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 07/09/2007] [Accepted: 07/14/2007] [Indexed: 11/24/2022]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis habituates, or gradually decreases its activity, with repeated exposure to the same stressor. During habituation, the HPA axis likely requires input from cortical and limbic regions involved in the processing of cognitive information that is important in coping to stress. Brain regions such as the medial prefrontal cortex (mPFC) are recognized as important in mediating these processes. The mPFC modulates stress-related behavior and some evidence suggests that the mPFC regulates acute and repeated stress-induced HPA responses. Interestingly, corticotropin-releasing hormone (CRH)-1 receptors, which integrate neuroendocrine, behavioral and autonomic responses to stress, are localized in the mPFC but have not been specifically examined with respect to HPA regulation. We hypothesized that CRH receptor activity in the mPFC contributes to stress-induced regulation of HPA activity and anxiety-related behavior and that CRH release in the mPFC may differentially regulate HPA responses in acutely compared to repeatedly stressed animals. In the present experiments, we found that blockade of CRH receptors in the mPFC with the non-selective receptor antagonist d-Phe-CRH (50 ng or 100 ng) significantly inhibited HPA responses compared to vehicle regardless of whether animals were exposed to a single, acute 30 min restraint or to the eighth 30 min restraint. We also found that intra-mPFC injections of CRH (20 ng) significantly increased anxiety-related behavior in the elevated plus maze in both acutely and repeatedly restrained groups compared to vehicle. Together, these results suggest an excitatory influence of CRH in the mPFC on stress-induced HPA activity and anxiety-related behavior regardless of prior stress experience.
Collapse
Affiliation(s)
- Azra Jaferi
- Department of Psychology, University of Michigan, MI, USA
| | | |
Collapse
|
61
|
Todorovic C, Radulovic J, Jahn O, Radulovic M, Sherrin T, Hippel C, Spiess J. Differential activation of CRF receptor subtypes removes stress-induced memory deficit and anxiety. Eur J Neurosci 2007; 25:3385-97. [PMID: 17553007 DOI: 10.1111/j.1460-9568.2007.05592.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The objective of this study was to investigate the role of corticotropin-releasing factor receptors 1 (CRF(1)) and 2 (CRF(2)) in anxiety-like behavior and learning of C57BL/6J mice after exposure to a stressful stimulus. When C57BL/6J mice were exposed to immobilization (1 h) serving as stressful stimulus, context- and tone-dependent fear conditioning were impaired if the training followed immediately after immobilization. The stress-induced impairment of context-dependent fear conditioning was prevented by specific blockade of CRF(2) of the lateral septum (LS) with anti-sauvagine-30. Immobilization did not only affect conditioned fear, but also enhanced, through CRF(2) of the LS, anxiety-like behavior determined with the elevated plus maze. Recovery from stress-induced anxiety and impairment of context-dependent fear conditioning was observed after 1 h delay of training and required hippocampal CRF(1), as indicated by the finding that this recovery was prevented by blockade of intrahippocampal CRF(1). It was concluded that exposure to a stressor initially affected both anxiety-like behavior and contextual conditioned fear through septal CRF(2), while the later activation of hippocampal CRF(1) resulted in the return to baseline levels of both processes. Intraventricular injection of mouse urocortin 2, a CRF(2)-selective agonist, removed the stress-induced anxiety and learning impairment, but did not reduce the activation of the hypothalamic pituitary adrenal axis indicative of the hormonal stress response. We propose that the enhanced anxiety is the component of the stress response responsible for the memory deficit.
Collapse
MESH Headings
- Adrenocorticotropic Hormone/metabolism
- Amphibian Proteins
- Animals
- Antibodies/pharmacology
- Anxiety/drug therapy
- Anxiety/etiology
- Anxiety/pathology
- Autoradiography
- Behavior, Animal
- Conditioning, Classical/drug effects
- Conditioning, Classical/physiology
- Corticotropin-Releasing Hormone/pharmacology
- Dose-Response Relationship, Drug
- Fear
- Immobilization/methods
- Male
- Maze Learning/drug effects
- Memory Disorders/drug therapy
- Memory Disorders/etiology
- Memory Disorders/pathology
- Mice
- Mice, Inbred C57BL
- Peptide Fragments/pharmacology
- Peptide Hormones
- Peptides/immunology
- Receptors, Corticotropin-Releasing Hormone/agonists
- Receptors, Corticotropin-Releasing Hormone/antagonists & inhibitors
- Receptors, Corticotropin-Releasing Hormone/physiology
- Septal Nuclei/drug effects
- Stress, Physiological/complications
- Stress, Physiological/etiology
- Time Factors
- Urocortins
Collapse
Affiliation(s)
- Cedomir Todorovic
- John A Burns School of Medicine, SNRP2, 651, Ilalo St, Honolulu, Hawaii-96813, USA.
| | | | | | | | | | | | | |
Collapse
|
62
|
Funk CK, Koob GF. A CRF(2) agonist administered into the central nucleus of the amygdala decreases ethanol self-administration in ethanol-dependent rats. Brain Res 2007; 1155:172-8. [PMID: 17512918 PMCID: PMC2741495 DOI: 10.1016/j.brainres.2007.04.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 04/03/2007] [Accepted: 04/03/2007] [Indexed: 11/15/2022]
Abstract
Alcohol dependence is characterized by excessive consumption, loss of control over intake and the presence of a withdrawal syndrome, including both motivational and physical symptoms. Previous studies have implicated the brain corticotropin-releasing factor (CRF) stress systems in mediating the negative emotional state associated with ethanol withdrawal. CRF(1) receptor-specific antagonists, administered systemically, and CRF receptor subtype nonspecific antagonists, administered into the central nucleus of the amygdala (CeA), selectively decrease the anxiety-like behaviors and increased ethanol self-administration associated with ethanol withdrawal. In the present study, we investigated the role of CRF(2) receptors within the CeA in mediating ethanol self-administration in ethanol-dependent and nondependent animals. Male Wistar rats were made dependent on ethanol using an intermittent ethanol vapor exposure paradigm. Nondependent animals received similar conditions but were exposed to air only. Following 2 h of withdrawal from ethanol vapors, ethanol and water self-administration were measured following administration of urocortin 3, a highly selective CRF(2) agonist, in the CeA. In dependent rats, urocortin 3 (0.1 microg/microl and 0.5 microg/microl) decreased ethanol self-administration, with no effect on water self-administration. In nondependent rats, urocortin 3 (0.5 microg/microl) increased ethanol self-administration, with no effect on water self-administration. These data demonstrate an opposing role of the CRF(2) receptor subtype within the CeA in mediating ethanol self-administration in withdrawn, dependent and nondependent rats.
Collapse
Affiliation(s)
- Cindy K Funk
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
63
|
Bosch OJ, Müsch W, Bredewold R, Slattery DA, Neumann ID. Prenatal stress increases HPA axis activity and impairs maternal care in lactating female offspring: implications for postpartum mood disorder. Psychoneuroendocrinology 2007; 32:267-78. [PMID: 17337328 DOI: 10.1016/j.psyneuen.2006.12.012] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Revised: 12/15/2006] [Accepted: 12/18/2006] [Indexed: 10/23/2022]
Abstract
Early life stress is believed to constitute a risk factor for the development of mood disorders later in life. In the present study, we hypothesized that prenatal stress (PS) exerts long-lasting effects in female rat offspring, resulting in impaired adaptations to stress during lactation and, as such, may be a contributory factor to postpartum mood disorders. PS increased anxiety in adult virgin females compared with controls. During lactation, PS dams nursed significantly less and spent less time with pups compared with controls, whereas dams did not differ in pup retrieval or maternal aggression. HPA axis reactivity was elevated in response to a mild stressor in PS dams compared to their controls, but not in virgins, with the delta corticosterone response returning to the higher level seen in virgins. Moreover, corticotropin-releasing hormone (CRH) mRNA expression within the parvocellular region of the paraventricular nucleus (PVN) was increased in both virgins and dams exposed to PS compared with the relative controls, while the attenuation in expression in lactating controls was abolished following PS. In addition, arginine vasopressin (AVP) mRNA was increased in the parvocellular, but not magnocellular part of the PVN, in both PS-exposed virgins and lactating dams compared with their relative controls; although expression was also higher in controls during lactation compared with virgins. Thus, the present study demonstrates that exposure to PS results in long-lasting behavioural and neuroendocrine alterations in the female offspring, which are manifested during the lactation period. Furthermore, it implicates PS as a potential risk factor for the development of postpartum mood disorders, and that alterations in the HPA axis reactivity, at least partially, are involved.
Collapse
Affiliation(s)
- Oliver J Bosch
- Department of Zoology, Institute of Zoology, University of Regensburg, 93040 Regensburg, Germany
| | | | | | | | | |
Collapse
|
64
|
Fekete ÉM, Zorrilla EP. Physiology, pharmacology, and therapeutic relevance of urocortins in mammals: ancient CRF paralogs. Front Neuroendocrinol 2007; 28:1-27. [PMID: 17083971 PMCID: PMC2730896 DOI: 10.1016/j.yfrne.2006.09.002] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Revised: 09/05/2006] [Accepted: 09/06/2006] [Indexed: 12/13/2022]
Abstract
Urocortins, three paralogs of the stress-related peptide corticotropin-releasing factor (CRF) found in bony fish, amphibians, birds, and mammals, have unique phylogenies, pharmacologies, and tissue distributions. As a result and despite a structural family resemblance, the natural functions of urocortins and CRF in mammalian homeostatic responses differ substantially. Endogenous urocortins are neither simply counterpoints nor mimics of endogenous CRF action. In their own right, urocortins may be clinically relevant molecules in the pathogenesis or management of many conditions, including congestive heart failure, hypertension, gastrointestinal and inflammatory disorders (irritable bowel syndrome, active gastritis, gastroparesis, and rheumatoid arthritis), atopic/allergic disorders (dermatitis, urticaria, and asthma), pregnancy and parturition (preeclampsia, spontaneous abortion, onset, and maintenance of effective labor), major depression and obesity. Safety trials for intravenous urocortin treatment have already begun for the treatment of congestive heart failure. Further understanding the unique functions of urocortin 1, urocortin 2, and urocortin 3 action may uncover other therapeutic opportunities.
Collapse
Affiliation(s)
- Éva M. Fekete
- Molecular and Integrative Neurosciences Department, The Scripps
Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
- Pécs University Medical School, 7602 Pécs,
Hungary
| | - Eric P. Zorrilla
- Molecular and Integrative Neurosciences Department, The Scripps
Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
- Harold L. Dorris Neurological Research Institute, The Scripps
Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| |
Collapse
|
65
|
Grigoriadis DE. The corticotropin-releasing factor receptor: a novel target for the treatment of depression and anxiety-related disorders. Expert Opin Ther Targets 2007; 9:651-84. [PMID: 16083336 DOI: 10.1517/14728222.9.4.651] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The treatment of mood disorders has been the subject of intense study for more than half a century and has resulted in the discovery and availability of a number of compounds that have seen tremendous success in the management of major depression and anxiety-related disorders. In spite of this success, these drugs have not provided a complete therapeutic solution for all patients and this has revitalised the need for a greater understanding of the underlying molecular mechanisms and targets involved in these disorders. Elucidation of these novel targets will enable the development of a better class of compounds which could benefit a greater majority of the patient population and be devoid of the current side effect liabilities. Towards that end, this review examines, in detail, the prospect of one such target, the corticotropin-releasing factor system, as having an enhanced therapeutic profile with the potential of a broader range of efficacy with reduced side effect liabilities.
Collapse
Affiliation(s)
- Dimitri E Grigoriadis
- Department of Pharmacology and Lead Discovery, Neurocrine Biosciences, Inc., 12790 El Camino Real, San Diego, CA 92130, USA.
| |
Collapse
|
66
|
Roseboom PH, Nanda SA, Bakshi VP, Trentani A, Newman SM, Kalin NH. Predator threat induces behavioral inhibition, pituitary-adrenal activation and changes in amygdala CRF-binding protein gene expression. Psychoneuroendocrinology 2007; 32:44-55. [PMID: 17116372 PMCID: PMC1847640 DOI: 10.1016/j.psyneuen.2006.10.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 09/29/2006] [Accepted: 10/02/2006] [Indexed: 10/23/2022]
Abstract
Behavioral inhibition (BI) is an adaptive defensive response to threat; however, extreme BI is associated with anxiety-related psychopathology. When rats are exposed to a natural predator they display stress- and anxiety-related behavioral alterations and physiological activation. To develop a preclinical rodent model to study mechanisms underlying human BI and anxiety, we examined the extent to which ferret exposure elicits anxiety-related BI and HPA and amygdala activation of the CRF system. In the first experiment, BI and other behaviors were assessed in the presence or absence of a ferret. In the second experiment, ferret-induced corticosterone release and changes in brain c-fos expression were assessed. In the final experiment, gene chip and quantitative real time-PCR analyses were performed on amygdala tissue from control and ferret-exposed rats. Ferret exposure increased BI and submissive posturing, as well as plasma corticosterone and the number of Fos-positive cells in several brain regions including the amygdala. Gene expression analysis revealed increased amygdalar mRNA for CRF-binding protein, but not the CRF1 receptor, CRF2 receptor or CRF. In rodents, ferret exposure can be used to elicit anxiety-related BI, which is associated with HPA and amygdala activation. Since the amygdala and the CRF system have been implicated in adaptive and maladaptive anxiety responses in humans, these data support use of our rodent model to further investigate mechanisms underlying anxiety-related psychopathology in humans.
Collapse
Affiliation(s)
- Patrick H Roseboom
- Neuroscience Training Program, University of Wisconsin-Madison, 6001 Research Park Blvd., Madison, WI 53719, USA.
| | | | | | | | | | | |
Collapse
|
67
|
Dallman MF, Pecoraro NC, La Fleur SE, Warne JP, Ginsberg AB, Akana SF, Laugero KC, Houshyar H, Strack AM, Bhatnagar S, Bell ME. Glucocorticoids, chronic stress, and obesity. PROGRESS IN BRAIN RESEARCH 2006; 153:75-105. [PMID: 16876569 DOI: 10.1016/s0079-6123(06)53004-3] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Glucocorticoids either inhibit or sensitize stress-induced activity in the hypothalamo-pituitary-adrenal (HPA) axis, depending on time after their administration, the concentration of the steroids, and whether there is a concurrent stressor input. When there are high glucocorticoids together with a chronic stressor, the steroids act in brain in a feed-forward fashion to recruit a stress-response network that biases ongoing autonomic, neuroendocrine, and behavioral outflow as well as responses to novel stressors. We review evidence for the role of glucocorticoids in activating the central stress-response network, and for mediation of this network by corticotropin-releasing factor (CRF). We briefly review the effects of CRF and its receptor antagonists on motor outflows in rodents, and examine the effects of glucocorticoids and CRF on monoaminergic neurons in brain. Corticosteroids stimulate behaviors that are mediated by dopaminergic mesolimbic "reward" pathways, and increase palatable feeding in rats. Moreover, in the absence of corticosteroids, the typical deficits in adrenalectomized rats are normalized by providing sucrose solutions to drink, suggesting that there is, in addition to the feed-forward action of glucocorticoids on brain, also a feedback action that is based on metabolic well being. Finally, we briefly discuss the problems with this network that normally serves to aid in responses to chronic stress, in our current overindulged, and underexercised society.
Collapse
Affiliation(s)
- Mary F Dallman
- University of California at San Francisco, San Francisco, CA 94143-0444, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Risbrough VB, Stein MB. Role of corticotropin releasing factor in anxiety disorders: a translational research perspective. Horm Behav 2006; 50:550-61. [PMID: 16870185 PMCID: PMC1884405 DOI: 10.1016/j.yhbeh.2006.06.019] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 06/19/2006] [Accepted: 06/21/2006] [Indexed: 12/11/2022]
Abstract
Anxiety disorders are a group of mental disorders that include generalized anxiety disorder (GAD), panic disorder, phobic disorders (e.g., specific phobias, agoraphobia, social phobia) and posttraumatic stress disorder (PTSD). Anxiety disorders are among the most common of all mental disorders and, when coupled with an awareness of the disability and reduced quality of life they convey, they must be recognized as a serious public health problem. Over 20 years of preclinical studies point to a role for the CRF system in anxiety and stress responses. Clinical studies have supported a model of CRF dysfunction in depression and more recently a potential contribution to specific anxiety disorders (i.e., panic disorder and PTSD). Much work remains in both the clinical and preclinical fields to inform models of CRF function and its contribution to anxiety. First, we will review the current findings of CRF and HPA axis abnormalities in anxiety disorders. Second, we will discuss startle reflex measures as a tool for translational research to determine the role of the CRF system in development and maintenance of clinical anxiety.
Collapse
|
69
|
Crabbe JC, Phillips TJ, Harris RA, Arends MA, Koob GF. Alcohol-related genes: contributions from studies with genetically engineered mice. Addict Biol 2006; 11:195-269. [PMID: 16961758 DOI: 10.1111/j.1369-1600.2006.00038.x] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Since 1996, nearly 100 genes have been studied for their effects related to ethanol in mice using genetic modifications including gene deletion, gene overexpression, gene knock-in, and occasionally by studying existing mutants. Nearly all such studies have concentrated on genes expressed in brain, and the targeted genes range widely in their function, including most of the principal neurotransmitter systems, several neurohormones, and a number of signaling molecules. We review 141 published reports of effects (or lack thereof) of 93 genes on responses to ethanol. While most studies have focused on ethanol self-administration and reward, and/or sedative effects, other responses studied include locomotor stimulation, anxiolytic effects, and neuroadaptation (tolerance, sensitization, withdrawal). About 1/4 of the engineered mutations increase self-administration, 1/3 decrease it, and about 40% have no significant effect. In many cases, the effects on self-administration are rather modest and/or depend on the specific experimental procedures. In some cases, genes in the background strains on which the mutant is placed are important for results. Not surprisingly, review of the systems affected further supports roles for serotonin, gamma-aminobutyric acid, opioids and dopamine, all of which have long been foci of alcohol research. Novel modulatory effects of protein kinase C and G protein-activated inwardly rectifying K+ (GIRK) channels are also suggested. Some newer research with cannabinoid systems is promising, and has led to ongoing clinical trials.
Collapse
Affiliation(s)
- John C Crabbe
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, and Department of Veterans Affairs Medical Center, USA
| | | | | | | | | |
Collapse
|
70
|
Calfa G, Volosin M, Molina VA. Glucocorticoid receptors in lateral septum are involved in the modulation of the emotional sequelae induced by social defeat. Behav Brain Res 2006; 172:324-32. [PMID: 16814878 DOI: 10.1016/j.bbr.2006.05.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Revised: 05/19/2006] [Accepted: 05/22/2006] [Indexed: 11/24/2022]
Abstract
The current research studied the behavior adopted in the elevated plus maze (EPM) of rats previously subjected to a social defeat using the resident-intruder paradigm. One day after defeat, intruder animals exhibited an anxiogenic-like behavior in the EPM. In addition, we also evaluated the role of the corticosteroid receptor system (minerlocorticoid - MR - and glucocorticoid - GR - receptors) from the lateral septum (LS) on the anxiety generated by social defeat. The LS is an area of the aversive circuitry that is preferentially activated in passive defensive postures, and participates - together with other brain areas - in the modulation of aversive states. Intruder animals were infused into the LS with the MR or GR antagonist (ZK 91587 and RU 38486, respectively) and then submitted to social stress. All rats were tested in the EPM 1 day later. Only the administration of the GR antagonist, but not the MR antagonist, into the LS normalized the anxiogenic response induced by defeat. Furthermore, we examined whether a single injection of corticosterone (CS) could induce the same influence on the behavior in the EPM as that observed after social defeat. Moreover, we explored the effect of local infusions of MR or GR antagonists into the LS on the behavior exhibited by CS-treated rats in a subsequent EPM exposure. CS administration also exerted an increased anxiogenic-like behavior, which was normalized only by the local infusion of the GR antagonist. Based on these findings, we suggest that CS secreted by emotionally relevant stimuli acting via GR in LS plays an important role in the modulation of the emotional sequelae induced by social defeat.
Collapse
Affiliation(s)
- Gastón Calfa
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| | | | | |
Collapse
|
71
|
Goodson JL, Evans AK, Wang Y. Neuropeptide binding reflects convergent and divergent evolution in species-typical group sizes. Horm Behav 2006; 50:223-36. [PMID: 16643915 PMCID: PMC2570780 DOI: 10.1016/j.yhbeh.2006.03.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2005] [Revised: 03/13/2006] [Accepted: 03/13/2006] [Indexed: 11/19/2022]
Abstract
Neuroendocrine factors that produce species differences in aggregation behavior ("sociality") are largely unknown, although relevant studies should yield important insights into mechanisms of affiliation and social evolution. We here focused on five species in the avian family Estrildidae that differ selectively in their species-typical group sizes (all species are monogamous and occupy similar habitats). These include two highly gregarious species that independently evolved coloniality; two territorial species that independently evolved territoriality; and an intermediate, modestly gregarious species that is a sympatric congener of one of the territorial species. Using males and females of each species, we examined binding sites for (125)I-vasoactive intestinal polypeptide (VIP), (125)I-sauvagine (SG; a ligand for corticotropin releasing factor, CRF, receptors) and a linear (125)I-V(1a) vasopressin antagonist (to localize receptors for vasotocin, VT). VIP, CRF and VT are neuropeptides that influence stress, anxiety and/or various social behaviors. For numerous areas (particularly within the septal complex), binding densities in the territorial species differed significantly from binding in the more gregarious species, and in most of these cases, binding densities for the moderately gregarious species were either comparable to the two colonial species or were intermediate to the territorial and colonial species. Such patterns were observed for (125)I-VIP binding in the medial bed nucleus of the stria terminalis, medial septum, septohippocampal septum, and subpallial zones of the lateral septum; for (125)I-SG binding in the infundibular hypothalamus, and lateral and medial divisions of the ventromedial hypothalamus; and for the linear (125)I-V(1a) antagonist in the medial septum, and the pallial and subpallial zones of the caudal lateral septum. With the exception of (125)I-SG binding in the infundibular hypothalamus, binding densitites are positively related to sociality.
Collapse
Affiliation(s)
- James L Goodson
- Psychology Department, University of California-San Diego, La Jolla, CA 92093-0109, USA.
| | | | | |
Collapse
|
72
|
Li XF, Bowe JE, Kinsey-Jones JS, Brain SD, Lightman SL, O'Byrne KT. Differential role of corticotrophin-releasing factor receptor types 1 and 2 in stress-induced suppression of pulsatile luteinising hormone secretion in the female rat. J Neuroendocrinol 2006; 18:602-10. [PMID: 16867181 DOI: 10.1111/j.1365-2826.2006.01450.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Corticotrophin-releasing factor (CRF) plays a pivotal role in stress-induced suppression of the gonadotrophin-releasing hormone pulse generator. We have previously shown that type 2 CRF receptors (CRF(2)) mediate restraint stress-induced suppression of luteinising hormone (LH) pulses in the rat. The present study aimed: (i) to determine whether type 1 CRF receptors (CRF(1)) are also involved in this response to restraint and (ii) to investigate the differential involvement of CRF(1) and CRF(2) in the suppression of LH pulses in response to the metabolic perturbation of insulin-induced hypoglycemia and the innate immunological challenge of lipopolysaccharide (LPS). Ovariectomised rats with oestrogen replacement were implanted with intracerebroventricular (i.c.v.) and intravenous (i.v.) cannulae. Blood samples (25 microl) were collected every 5 min for 5 h for LH measurement. After 2 h of controlled blood sampling, rats were either exposed to restraint (1 h) or injected intravenously with insulin (0.25 IU/kg) or LPS (5 microg/kg). All three stressors suppressed LH pulses. The CRF(1) antagonist SSR125543Q (11.5 micromol/rat i.v., 30 min before stressor) blocked the inhibitory response to restraint, but not hypoglycaemia or LPS stress. In addition to its effect on restraint, the CRF(2) antagonist astressin(2)-B (28 nmol/rat i.c.v., 10 min before insulin or LPS) blocked hypoglycaemia or LPS stress-induced suppression of LH pulses. These results suggest that hypoglycaemia and LPS stress-induced LH suppression involves activation of CRF(2) while restraint stress-induced inhibition of LH pulses involves both CRF(1) and CRF(2).
Collapse
Affiliation(s)
- X F Li
- Division of Reproductive Health, Endocrinology and Development, King's College London, Guy's Campus, London, UK
| | | | | | | | | | | |
Collapse
|
73
|
Gammie SC, Stevenson SA. Intermale aggression in corticotropin-releasing factor receptor 1 deficient mice. Behav Brain Res 2006; 171:63-9. [PMID: 16621057 PMCID: PMC2409113 DOI: 10.1016/j.bbr.2006.03.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Revised: 03/08/2006] [Accepted: 03/15/2006] [Indexed: 10/24/2022]
Abstract
The anxiogenic neuropeptide, corticotropin-releasing factor (CRF), has a complex effect on intermale aggression. CRF receptor 1 (CRFR1) is the primary receptor for CRF and in this study, we examined in detail isolation-induced intermale aggression in CRFR1 deficient mice. All mice contained a mixed 50:50 inbred/outbred background to improve aggressive performance. Mice were isolated for 4 weeks prior to 2 consecutive days of aggression testing using the resident-intruder paradigm. Mice were also tested for anxiety on the elevated plus maze. Relative to littermate wild-type (WT) controls, CRFR1-mutant mice exhibited normal levels of intermale aggression over the 2 test days in terms of percentage showing aggression, number of attacks, time aggressive, and latency to first attack. In terms of sites of attacks on intruders, CRFR1-deficient mice attacked the ventral portion of the mid-section (including belly) significantly less frequently than WT males on test day 1, but these differences did not reach significance on test day 2. No other differences in sites of attacks were observed. Tail rattling also did not differ between groups. Importantly, KO males showed decreased anxiety relative to WT mice (consistent with previous reports) as evidenced by spending significantly more time on the open arms and significantly less time on the closed arms of the elevated plus maze. Plus maze performance did not correlate with any measure of levels of aggression, suggesting a dissociation between altered levels of anxiety and aggressive performance. Taken together, the results suggest that the activation CRFR1 is not necessary for the normal production of isolation-induced intermale aggression.
Collapse
Affiliation(s)
- Stephen C Gammie
- Department of Zoology, University of Wisconsin, Madison, 53706, USA.
| | | |
Collapse
|
74
|
Maruyama K, Miura T, Uchiyama M, Shioda S, Matsuda K. Relationship between anorexigenic action of pituitary adenylate cyclase-activating polypeptide (PACAP) and that of corticotropin-releasing hormone (CRH) in the goldfish, Carassius auratus. Peptides 2006; 27:1820-6. [PMID: 16519959 DOI: 10.1016/j.peptides.2006.01.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Revised: 01/12/2006] [Accepted: 01/17/2006] [Indexed: 11/24/2022]
Abstract
Our recent research has indicated that intracerebroventricular (ICV) injection of pituitary adenylate cyclase-activating polypeptide (PACAP) suppresses food intake and locomotor activity in the goldfish. However, the anorexigenic mechanism of PACAP has not yet been clarified. The aim of this study was to investigate the relationship between the anorexigenic action of PACAP and that of corticotropin-releasing hormone (CRH), which is implicated in the regulation of energy homeostasis as a powerful anorexigenic peptide in the goldfish brain. We first examined feeding-induced changes in the expression of CRH mRNA, and the effect of ICV administration of PACAP on the expression of CRH mRNA in the goldfish brain. Semiquantitative analysis revealed that the expression of CRH mRNA was significantly increased by excessive feeding for 7 days. ICV administration of PACAP at a dose sufficient to suppress food intake induced a significant increase in the expression of CRH mRNA. We also examined the effect of alpha-helical CRH(9-41), a CRH antagonist, on the anorexigenic action of PACAP in the goldfish. The inhibitory effect of PACAP was completely suppressed by treatment with alpha-helical CRH(9-41). We finally investigated the effect of ICV-administered CRH on locomotor activity in the goldfish. CRH at a dose sufficient to suppress food intake induced a significant increase in locomotor activity, unlike ICV-injected PACAP. These results suggest that, in the goldfish, the anorexigenic action of PACAP is related to the CRH neuronal pathway, but that the modulation of locomotor activity by PACAP is independent of modulation by CRH.
Collapse
Affiliation(s)
- Keisuke Maruyama
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, 3190-Gofuku, Toyama, Toyama 930-8555, Japan
| | | | | | | | | |
Collapse
|
75
|
Keck ME. Corticotropin-releasing factor, vasopressin and receptor systems in depression and anxiety. Amino Acids 2006; 31:241-50. [PMID: 16733617 DOI: 10.1007/s00726-006-0333-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Accepted: 03/06/2006] [Indexed: 10/24/2022]
Abstract
Affective disorders tend to be chronic and life-threatening diseases: suicide is estimated to be the cause of death in 10-15% of individuals with major depressive disorders. Major depression is one of the most prevalent and costly brain diseases with up to 20% of the worldwide population suffering from moderate to severe forms of the disease. Only 50% of individuals with depression show full remission in response to currently available antidepressant drug therapies which are based on serendipitous discoveries made in the 1950s. Previously underestimated, other severe depression-associated deleterious health-related effects have increasingly been recognized. Epidemiological studies have provided substantial evidence that patients with depression have a 2-4-fold increased risk both of developing cardiovascular disease and of mortality after experiencing a myocardial infarction. The majority of patients suffering from affective disorders have measurable shifts in their stress hormone regulation as reflected by elevated secretion of central and peripheral stress hormones or by altered hormonal responses to neuroendocrine challenge tests. In recent years, these alterations have increasingly been translated into testable hypotheses addressing the pathogenesis of illness. Refined molecular technologies and the creation of genetically engineered mice have allowed to specifically target individual genes involved in regulation of corticotropin releasing factor (CRF) and vasopressin (AVP) system elements. The cumulative evidence makes a strong case implicating dysfunction of these systems in the etiology and pathogenesis of depression and pathological anxiety. Translation of these advances into novel therapeutic strategies has already been started.
Collapse
Affiliation(s)
- M E Keck
- Division of Psychiatry Research, University Hospital of Psychiatry Zurich, Zurich, Switzerland.
| |
Collapse
|
76
|
Coste SC, Heard AD, Phillips TJ, Stenzel-Poore MP. Corticotropin-releasing factor receptor type 2-deficient mice display impaired coping behaviors during stress. GENES BRAIN AND BEHAVIOR 2006; 5:131-8. [PMID: 16507004 DOI: 10.1111/j.1601-183x.2005.00142.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two cognate receptors (CRF(1) and CRF(2)) mediate the actions of the stress-regulatory corticotropin-releasing factor (CRF) family of peptides. Defining the respective roles of these receptors in the central nervous system is critical in understanding stress neural circuitry and the development of psychiatric disorders. Here, we examined the role of CRF(2) in several paradigms that assess coping responses to stress. We report that CRF(2) knockout mice responded to a novel setting with increased aggressive behavior toward a bulbectomized conspecific male and show increased immobility during acute swim stress compared with wild-type mice. In addition, CRF(2)-deficient mice exhibited impaired adaptation to isolation stress as evinced by prolonged hypophagia and associated weight loss. Collectively, these results point toward a role for CRF(2) pathways in neural circuits that subserve stress-coping behaviors.
Collapse
MESH Headings
- Adaptation, Physiological/physiology
- Adaptation, Psychological/physiology
- Aggression/physiology
- Animals
- Behavior, Animal/physiology
- Body Weight/physiology
- Brain/metabolism
- Brain/physiopathology
- Brain Chemistry/genetics
- Corticotropin-Releasing Hormone/metabolism
- Depressive Disorder/etiology
- Depressive Disorder/physiopathology
- Disease Models, Animal
- Feeding Behavior/psychology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neuropsychological Tests
- Receptors, Corticotropin-Releasing Hormone/genetics
- Social Isolation/psychology
- Stress, Psychological/genetics
- Stress, Psychological/metabolism
- Stress, Psychological/physiopathology
Collapse
Affiliation(s)
- S C Coste
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University and Research Service, Portland, 97239, USA
| | | | | | | |
Collapse
|
77
|
Sahuque L, Kullberg EF, Mcgeehan AJ, Kinder JR, Hicks MP, Blanton MG, Janak PH, Olive MF. Anxiogenic and aversive effects of corticotropin-releasing factor (CRF) in the bed nucleus of the stria terminalis in the rat: role of CRF receptor subtypes. Psychopharmacology (Berl) 2006; 186:122-32. [PMID: 16568282 PMCID: PMC1473306 DOI: 10.1007/s00213-006-0362-y] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Accepted: 02/27/2006] [Indexed: 11/27/2022]
Abstract
RATIONALE Corticotropin-releasing factor (CRF) produces anxiety-like and aversive effects when infused directly into the various regions of the brain, including the bed nucleus of the stria terminalis (BNST). However, the CRF receptor subtypes within the BNST mediating these phenomena have not been established. OBJECTIVES We used selective CRF receptor antagonists to determine the receptor subtypes involved in the anxiogenic-like and aversive effects CRF in the BNST. MATERIALS AND METHODS Male Long-Evans rats were bilaterally infused with CRF (0.2 or 1.0 nmol) either alone or in combination with the CRF1 receptor antagonist CP154,526 or the CRF2 receptor antagonist anti-sauvagine 30 (AS30) before behavioral testing in the elevated plus maze or place conditioning paradigms. RESULTS Intra-BNST administration of CRF produced a dose-dependent reduction in open arm entries and open arm time in the elevated plus maze, indicating an anxiogenic-like effect. These effects were inhibited by co-infusion of CP154,526 but not of AS30, indicating that the anxiogenic-like effects of CRF in the BNST are mediated by CRF1 receptors. Place conditioning with intra-BNST administration of CRF produced a dose-dependent aversion to the CRF-paired environment that was prevented by co-infusion of either CP154,526 or AS30, indicating that both CRF receptor subtypes mediate the aversive effects of this peptide. Intra-BNST infusions of the CRF receptor antagonists alone produced no effects in either behavioral paradigm. CONCLUSIONS CRF1 receptors in the BNST mediate the anxiogenic-like effects of CRF in this region, whereas both CRF1 and CRF2 receptor subtypes mediate the conditioned aversive effects of this peptide within the BNST.
Collapse
Affiliation(s)
- Lacey Sahuque
- Ernest Gallo Clinic and Research Center, Department of Neurology, University of California at San Francisco, Emeryville, California 94608 USA
| | - Erika F. Kullberg
- Center for Drug and Alcohol Programs, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina 29425 USA
| | - Andrew J. Mcgeehan
- Ernest Gallo Clinic and Research Center, Department of Neurology, University of California at San Francisco, Emeryville, California 94608 USA
| | - Jennifer R. Kinder
- Ernest Gallo Clinic and Research Center, Department of Neurology, University of California at San Francisco, Emeryville, California 94608 USA
| | - Megan P. Hicks
- Center for Drug and Alcohol Programs, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina 29425 USA
| | - Mary G. Blanton
- Center for Drug and Alcohol Programs, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina 29425 USA
| | - Patricia H. Janak
- Ernest Gallo Clinic and Research Center, Department of Neurology, University of California at San Francisco, Emeryville, California 94608 USA
| | - M. Foster Olive
- Center for Drug and Alcohol Programs, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina 29425 USA
| |
Collapse
|
78
|
Yang M, Farrokhi C, Vasconcellos A, Blanchard RJ, Blanchard DC. Central infusion of ovine CRF (oCRF) potentiates defensive behaviors in CD-1 mice in the Mouse Defense Test Battery (MDTB). Behav Brain Res 2006; 171:1-8. [PMID: 16621042 PMCID: PMC3237397 DOI: 10.1016/j.bbr.2006.03.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 03/02/2006] [Accepted: 03/07/2006] [Indexed: 12/28/2022]
Abstract
Following intracerebroventricular (i.c.v.) injection of ovine CRF (oCRF), an endogenous peptide agonist at both CRF1 and CRF2 receptors, defensive behaviors of CD-1 mice were evaluated in the Mouse Defensive Test Battery (MDTB). Behavioral measures taken before, during, and after predator (a hand-held anesthetized rat) confrontation included exploratory activity, risk assessment, avoidance, flight, freezing, defensive threat/attack, and residual emotional responses. Both low (0.1 nmol) and high (0.2 nmol) doses of oCRF robustly suppressed exploratory activities and increased risk assessment during the initial familiarization period. Flight speed and jump escapes when the mouse was chased were significantly elevated by the 0.2 nmol dose. Both doses enhanced freezing and avoidance to a distant predator when the escape route was blocked. The 0.2 nmol dose also potentiated flight responses to a contacting predator in a highly confined space. Both oCRF groups traveled shorter distances and exhibited less escape attempts following the removal of the threat stimulus. These findings indicate that non-selective activation of corticotropin-releasing factor (CRF) receptors via ventricular infusion of oCRF potentiates defensive behaviors relevant to the demand of specific challenges, generally enhancing the predominant defensive behavior in each specific situation.
Collapse
Affiliation(s)
- Mu Yang
- Department of Psychology, University of Hawaii at Manoa, Honolulu, 96822, USA.
| | | | | | | | | |
Collapse
|
79
|
Taylor FB, Lowe K, Thompson C, McFall MM, Peskind ER, Kanter ED, Allison N, Williams J, Martin P, Raskind MA. Daytime prazosin reduces psychological distress to trauma specific cues in civilian trauma posttraumatic stress disorder. Biol Psychiatry 2006; 59:577-81. [PMID: 16460691 DOI: 10.1016/j.biopsych.2005.09.023] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Revised: 09/13/2005] [Accepted: 09/16/2005] [Indexed: 11/20/2022]
Abstract
BACKGROUND Persons with posttraumatic stress disorder (PTSD) whose trauma-related nightmares improve or resolve with bedtime administration of the alpha-1 adrenergic antagonist prazosin often continue to experience PTSD symptoms during the day. This study addressed whether daytime prazosin compared to placebo would alleviate psychological distress provoked experimentally by a trauma-related word list included in the emotional Stroop (E-Stroop) paradigm. METHODS Eleven persons with civilian trauma PTSD who continued to experience daytime PTSD symptoms despite a stable bedtime prazosin dose that suppressed trauma-related nightmares were studied. Prazosin and placebo were administered on two different occasions in the early afternoon followed two hours later by the E-Stroop. Effects of drug on psychological distress were assessed by the Profile of Mood States (POMS). RESULTS POMS total score and an "emotional distress" POMS subscale score following trauma-related words were significantly lower in the prazosin than placebo condition. There were no treatment effects on E-Stroop completion time. In 10 subjects who continued open label daytime prazosin, there was a reduction in global PTSD illness severity at 2-week follow-up. CONCLUSIONS Daytime prazosin pretreatment reduced psychological distress specifically to trauma cues. Adding daytime prazosin to bedtime prazosin may further reduce overall PTSD illness severity and distress.
Collapse
|
80
|
Vit JP, Clauw DJ, Moallem T, Boudah A, Ohara PT, Jasmin L. Analgesia and hyperalgesia from CRF receptor modulation in the central nervous system of Fischer and Lewis rats. Pain 2006; 121:241-260. [PMID: 16495007 DOI: 10.1016/j.pain.2005.12.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 12/22/2005] [Accepted: 12/22/2005] [Indexed: 11/21/2022]
Abstract
This study examines the contribution of central corticotropin-releasing factor (CRF) to pain behavior. CRF is the principal modulator of the hypothalamo-pituitary-adrenal (HPA) axis, in addition to acting on many other areas of the central nervous system. We compared nociceptive thresholds (heat and mechanical) and pain behavior in response to a sustained stimulus (formalin test) between Fischer and Lewis rats that have different HPA axis activity. Intracerebroventricular (i.c.v.) administration of CRF produced dose-dependent antinociception at a lower dose in Lewis (40 ng, paw pinch 71+/-0 g) compared to Fischer rats (200 ng, 112+/-3 g). The antinociceptive effect of CRF was mostly preserved in adrenalectomized Fischer rats. The i.c.v. administration of the CRF receptor antagonist, astressin, had a hyperalgesic effect, suggesting that CRF is tonically active. Lewis rats required higher doses of astressin (5 ng, paw pinch 51+/-1 g) to show nociceptive effects compared to Fischer rats (1 ng, 79+/-1 g). Only Lewis rats vocalized during mechanical stimulus, and this behavior was prevented by diazepam or morphine but was worsened by CRF, despite its antinociceptive property. In the formalin test, CRF and astressin had the largest effect on the interphase suggesting that they act on the endogenous pain inhibitory system. CRF also increased anxiety/fear-like behaviors in the forced swim and predator odor tests. Our results establish that central CRF is a key modulator of pain behavior and indicates that CRF effects on nociception are largely independent of its mood modulating effect as well as its control of the HPA axis.
Collapse
Affiliation(s)
- Jean-Philippe Vit
- Department of Neurological Surgery and the W.M. Keck Foundation Center for Integrative Neuroscience, University of California San Francisco, San Francisco, CA 94143, USA Department of Anatomy and the W.M. Keck Foundation Center for Integrative Neuroscience, University of California San Francisco, San Francisco, CA 94143, USA Department of Internal Medicine, Division of Rheumatology, University of Michigan Health System, Ann Arbor, MI 48109-0723, USA
| | | | | | | | | | | |
Collapse
|
81
|
Zelena D, Filaretova L, Mergl Z, Barna I, Tóth ZE, Makara GB. Hypothalamic paraventricular nucleus, but not vasopressin, participates in chronic hyperactivity of the HPA axis in diabetic rats. Am J Physiol Endocrinol Metab 2006; 290:E243-50. [PMID: 16144820 DOI: 10.1152/ajpendo.00118.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diabetes mellitus (DM), as chronic stress activates the hypothalamo-pituitary-adrenocortical axis. We examined whether arginine vasopressin (AVP) and the hypothalamic paraventricular nucleus (PVN) participate in DM-induced chronic stress symptoms. AVP-deficient Brattleboro or PVN-lesioned Wistar rats were used with heterozygous or sham-operated controls. The rats were studied 2 wk after a single injection of streptozotocin. The appearance of DM (enhanced water consumption and blood glucose elevation) and the chronic stress-like somatic changes (body weight decrease, thymus involution, adrenal gland hypertrophy) were not influenced by the lack of AVP. By contrast, PVN lesion significantly attenuated DM-induced thymus involution and adrenal gland hypertrophy as well as the increase in water consumption. The corticotropin-releasing hormone mRNA in PVN was diminished by DM and elevated by the lack of AVP without interaction. DM elevated the proopiomelanocortin (POMC) mRNA in the anterior lobe of the pituitary. The lack of AVP had no effect, whereas lesioning the PVN significantly diminished the elevation. The elevated basal corticosterone plasma levels detectable in DM were influenced neither by the lack of AVP nor by lesioning the PVN. Thus the lack of AVP had no influence on DM-induced chronic stress symptoms, but lesioning the PVN attenuated part of them. However, the lack of elevation in POMC mRNA after PVN lesion, together with the maintained corticosterone elevation, suggests that direct adrenal gland activation occurs in untreated DM.
Collapse
Affiliation(s)
- Dóra Zelena
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Szigony 43, Hungary.
| | | | | | | | | | | |
Collapse
|
82
|
Abstract
Lactating female mice fiercely defend offspring while exhibiting decreased fear and anxiety. Recent work (J. S. Lonstein & S. C. Gammie, 2002) found that intracerebroventricular (icv) injections of corticotropin releasing factor (CRF), a putative anxiogenic peptide, inhibit maternal defense behavior. This study examines effects of CRF-related peptides, urocortin (Ucn) 1 and Ucn 3, on maternal aggression in mice. Intracerebroventricular injections of both Ucn 1 (0.2 microg) and Ucn 3 (0.5 microg) reduced aggression but not pup retrieval. c-Fos levels were elevated by intracerebroventricular injections of Ucn 1 (0.2 microg) and Ucn 3 (0.5 microg) in 2 and 6 brain regions, respectively; however, both triggered increases in bed nucleus of the stria terminalis dorsal (BNSTd) and lateral septum (LS). These findings suggest that CRF-related peptides similarly modulate maternal aggression and that BNSTd/LS may be critical sites for negative regulation of maternal aggression.
Collapse
Affiliation(s)
- Kimberly L D'Anna
- Department of Zoology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | | | |
Collapse
|
83
|
Bosch OJ, Krömer SA, Neumann ID. Prenatal stress: opposite effects on anxiety and hypothalamic expression of vasopressin and corticotropin-releasing hormone in rats selectively bred for high and low anxiety. Eur J Neurosci 2006; 23:541-51. [PMID: 16420461 DOI: 10.1111/j.1460-9568.2005.04576.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We studied the mechanisms of genetic-early environmental interactions to modulate adult stress-coping and tested the hypothesis that prenatal stress (PS) can differentially alter the consequences of a genetic predisposition to either hyper- or hypo-anxiety. Exposure of male Wistar rats, bred for high (HAB) or low (LAB) anxiety-related behaviour, to PS between pregnancy days 4 and 18 resulted in opposite effects on anxiety in adulthood, i.e. HAB rats became less and LAB rats became more anxious compared with their unstressed controls (plus-maze and holeboard). The high anxiety of HAB controls was accompanied by elevated expression of vasopressin and corticotropin-releasing hormone (CRH) mRNA within the hypothalamic paraventricular nucleus compared with LAB rats. PS reduced CRH mRNA expression in HAB rats but increased vasopressin mRNA expression in LAB rats, which may explain the opposite effects of PS on adult emotionality. Differential effects of PS were also found with respect to hypothalamo-pituitary-adrenal axis reactivity; the hypothalamo-pituitary-adrenal hyper-response in virgin female HAB controls became attenuated after PS, without affecting plasma corticosterone concentrations in LAB rats. Differences in maternal plasma corticosterone measured between pregnancy days 6 and 14 of HAB and LAB dams or differential effects of PS on maternal behaviour can be excluded. In conclusion, exposure of rats with genetically determined high or low emotionality to PS mitigates the extremes in behavioural and neuroendocrine stress-coping, thus allowing adequate and similar behavioural responses to potentially dangerous stimuli in adulthood. Differential effects of PS on the activity of the brain vasopressin and CRH systems might represent possible underlying molecular mechanisms.
Collapse
Affiliation(s)
- Oliver J Bosch
- Department of Zoology, University of Regensburg, 93040 Regensburg, Germany
| | | | | |
Collapse
|
84
|
Seymour PL, Dettloff SL, Jones JE, Wade GN. Corticotropin-releasing factor receptor subtypes mediating nutritional suppression of estrous behavior in Syrian hamsters. Am J Physiol Regul Integr Comp Physiol 2005; 289:R418-R423. [PMID: 15831766 DOI: 10.1152/ajpregu.00168.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Caloric deprivation inhibits reproduction, including copulatory behaviors, in female mammals. Decreases in metabolic fuel availability are detected in the hindbrain, and this information is relayed to the forebrain circuits controlling estrous behavior by neuropeptide Y (NPY) projections. In the forebrain, the nutritional inhibition of estrous behavior appears to be mediated by corticotropin-releasing factor (CRF) or urocortin-signaling systems. Intracerebroventricular (ICV) infusion of the CRF antagonist, astressin, prevents the suppression of lordosis by food deprivation and by NPY treatment in Syrian hamsters. These experiments sought to determine which CRF receptor type(s) is involved. ICV infusion of the CRF receptor subtype CRFR2-selective agonists urocortin 2 and 3 (UCN2, UCN3) inhibited sexual receptivity in hormone-primed, ovariectomized hamsters. Furthermore, the CRFR2-selective antagonist, astressin 2B, prevented the inhibition of estrous behavior by UCN2 and by NPY, consistent with a role for CRFR2. On the other hand, astressin 2B did not prevent the inhibition of behavior induced by 48-h food deprivation or ICV administration of CRF, a mixed CRFR1 and CRFR2 agonist, suggesting that activation of CRFR1 signaling is sufficient to inhibit sexual receptivity in hamsters. Although administration of CRFR1-selective antagonists (NBI-27914 and CP-154,526) failed to reverse the inhibition of receptivity by CRF treatment, we could not confirm their biological effectiveness in hamsters. The most parsimonious interpretation of these findings is that, although NPY inhibits estrous behavior via downstream CRFR2 signaling, food deprivation may exert its inhibition via both CRFR1 and CRFR2 and that redundant neuropeptide systems may be involved.
Collapse
Affiliation(s)
- Patricia L Seymour
- Center for Neuroendocrine Studies, University of Massachusetts, 135 Hicks Way, Amherst, MA 01003, USA
| | | | | | | |
Collapse
|
85
|
Lim MM, Nair HP, Young LJ. Species and sex differences in brain distribution of corticotropin-releasing factor receptor subtypes 1 and 2 in monogamous and promiscuous vole species. J Comp Neurol 2005; 487:75-92. [PMID: 15861459 PMCID: PMC1566192 DOI: 10.1002/cne.20532] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Corticotropin-releasing factor (CRF) receptor subtypes 1 and 2 have been implicated in rodent models of anxiety, but much less is known about the CRF system and social behavior. Both corticosterone and central CRF receptors modulate pair bonding in the monogamous prairie vole. Using receptor autoradiography, we mapped CRFR(1) and CRFR(2) in the brains of two monogamous vole species, the prairie vole and pine vole, and two promiscuous vole species, the meadow vole and montane vole. We found markedly different patterns of brain CRFR(1) and CRFR(2) binding among the four species, including species differences in the olfactory bulb, nucleus accumbens, lateral septum, hippocampus, laterodorsal thalamus, cingulate cortex, superior colliculus, and dorsal raphe. Interestingly, we also observed striking sex differences in voles: CRFR(2) binding was higher in the encapsulated bed nucleus of the stria terminalis in males than females for all four vole species. These results suggest possible sites of action for CRF-induced facilitation of pair bond formation in prairie voles, as well as potential sex differences in the CRF modulation of pair bonding. Further examination of CRF receptors in vole species may reveal a novel role for CRF in social behavior. Ultimately, our results identify several brain regions with conserved CRF receptor patterns across rodent and primate species, in contrast to several brain regions with phylogenetically plastic CRF receptor patterns, and have interesting implications for the evolution of CRF receptor patterns and behavior.
Collapse
Affiliation(s)
- Miranda M Lim
- Center for Behavioral Neuroscience and Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia 30322, USA.
| | | | | |
Collapse
|
86
|
Chung S, Son GH, Park SH, Park E, Lee KH, Geum D, Kim K. Differential adaptive responses to chronic stress of maternally stressed male mice offspring. Endocrinology 2005; 146:3202-10. [PMID: 15802499 DOI: 10.1210/en.2004-1458] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It is well established that stress in early life can alter the activity of the hypothalamus-pituitary-adrenal (HPA) axis, but most studies to date have focused on HPA reactivity in response to a single acute stress. The present study addressed whether stress in pregnant mice could influence the adaptive responses of their offspring to chronic stress. Male offspring were exclusively used in this study. Elevated plus maze tests revealed that 14 d of repeated restraint stress (6 h per day; from postnatal d 50-63) significantly increased anxiety-like behavior in maternally stressed mice. NBI 27914, a CRH receptor antagonist, completely eliminated anxiety-related behaviors in a dose-dependent manner, indicating an involvement of a hyperactive CRH system. In accordance with increased anxiety, CRH contents in the hypothalamus and amygdala were significantly higher in these mice. Despite an increased basal activity of the CRH-ACTH system, the combination of chronic prenatal and postnatal stress resulted in a significant reduction of basal plasma corticosterone level, presumably because of a defect in adrenal function. Along with alterations in hypothalamic and hippocampal corticosteroid receptors, it was also demonstrated that a dysfunction in negative feedback inhibition of the HPA axis could be deteriorated by chronic stress in maternally stressed male mice. Taken together, these results indicate that exposure to maternal stress in the womb can affect an animal's coping capacity to chronic postnatal stress.
Collapse
Affiliation(s)
- Sooyoung Chung
- School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | |
Collapse
|
87
|
Ladd CO, Thrivikraman KV, Huot RL, Plotsky PM. Differential neuroendocrine responses to chronic variable stress in adult Long Evans rats exposed to handling-maternal separation as neonates. Psychoneuroendocrinology 2005; 30:520-33. [PMID: 15808921 DOI: 10.1016/j.psyneuen.2004.12.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2004] [Accepted: 12/13/2004] [Indexed: 01/08/2023]
Abstract
Burgeoning evidence supports a preeminent role for early- and late-life stressors in the development of physio- and psychopathology. Handling-maternal separation (HMS) in neonatal Long Evans hooded rats leads to stable phenotypes ranging from resilient to vulnerable to later stressor exposure. Handling with 180 min of maternal separation yields a phenotype of stress hyper-responsiveness associated with facilitation of regional CRF neurocircuits and glucocorticoid resistance. This study assessed whether or not prolonged HMS (180 min/day, HMS180) on post-natal days 2-14 sensitizes the adult limbic hypothalamo-pituitary-adrenal (LHPA) axis to chronic variable stress (CS) compared to brief HMS (15 min/day, HMS15). We examined regional mRNA densities of corticotropin-releasing factor (CRF), its receptor CRF1, glucocorticoid receptor (GR), and mineralocorticoid receptor (MR); regional CRF1 and CRF2alpha binding, and pituitary-adrenal responses to an acute air-puff startle (APS) stressor in four groups: HMS15, nonstressed; HMS15, stressed; HMS180, nonstressed; HMS180, stressed. As expected we observed exaggerated pituitary-adrenal responses to APS, increased regional CRF mRNA density, decreased regional CRF1 binding, and decreased cortical GR mRNA density in nonstressed HMS180 vs. HMS15 animals. However, in contrast to our hypothesis, CS decreased pituitary-adrenal reactivity and central amygdala CRF mRNA density in HMS180 rats, while increasing cortical GR mRNA density and CRF1 binding. CS had no effect on the pituitary-adrenal response to APS in HMS15 rats, despite tripling hypothalamic paraventricular CRF mRNA density. The data suggest that many effects of prolonged HMS are reversible in adulthood by CS, while the neuroendocrine adaptations imbued by brief HMS are sufficiently stable to restrain pituitary-adrenal stress responses even following CS.
Collapse
MESH Headings
- Adaptation, Physiological
- Adrenocorticotropic Hormone/blood
- Analysis of Variance
- Animals
- Animals, Newborn/psychology
- Chronic Disease
- Corticosterone/blood
- Corticotropin-Releasing Hormone/genetics
- Corticotropin-Releasing Hormone/metabolism
- Disease Models, Animal
- Female
- Handling, Psychological
- Hypothalamo-Hypophyseal System/metabolism
- Hypothalamo-Hypophyseal System/physiopathology
- Male
- Maternal Deprivation
- Pituitary-Adrenal System/metabolism
- Pituitary-Adrenal System/physiopathology
- RNA, Messenger/analysis
- Random Allocation
- Rats
- Rats, Long-Evans
- Receptors, Corticotropin-Releasing Hormone/genetics
- Receptors, Corticotropin-Releasing Hormone/metabolism
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Receptors, Mineralocorticoid/genetics
- Receptors, Mineralocorticoid/metabolism
- Reflex, Startle/physiology
- Stress, Psychological/metabolism
- Stress, Psychological/physiopathology
- Tissue Distribution
Collapse
Affiliation(s)
- Charlotte O Ladd
- Stress Neurobiology Laboratory, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 1639 Pierce Drive, Ste 4105, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
88
|
Asan E, Yilmazer-Hanke DM, Eliava M, Hantsch M, Lesch KP, Schmitt A. The corticotropin-releasing factor (CRF)-system and monoaminergic afferents in the central amygdala: investigations in different mouse strains and comparison with the rat. Neuroscience 2005; 131:953-67. [PMID: 15749348 DOI: 10.1016/j.neuroscience.2004.11.040] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2004] [Indexed: 11/17/2022]
Abstract
Corticotropin-releasing-factor (CRF) containing systems and monoaminergic afferents of the central amygdaloid nucleus (Ce) are crucial players in central nervous stress responses. For functional analyses of specific roles of these systems, numerous mouse models have been generated which lack or overexpress individual signal transduction components. Since data concerning system morphologies in murine brain are rarely available, mouse studies are usually designed and interpreted based on previous findings in rats, although interspecies differences are frequent. In the present study, in situ hybridization for CRF mRNA and correlative immunocytochemistry for CRF and monoaminergic afferents revealed numerous CRF mRNA-reactive neurons in the lateral Ce subnucleus (CeL) codistributed with dense dopaminergic fiber plexus in mice as has been demonstrated in rats. However, while in rats the lateral capsular Ce (CeLc) displays only scarce CRF immunoreactive (CRF-ir) innervation, particularly dense CRF-ir fiber plexus were observed in the CeLc in mice, with differences in labeling densities between different strains. CRF-ir terminal fibers overlap with the moderate serotonergic innervation of this subnucleus in mice. Additionally, CRF mRNA-reactive neurons were found immediately dorsal to the amygdala in the region of the interstitial nucleus of the posterior limb of the anterior commissure/amygdalostriatal transition area in both species. In mice, this region displayed dense CRF-ir fiber plexus, with variations between the strains. The results indicate that in mice and rats dopaminergic afferents represent the primary monoaminergic input to the CRF neurons in the CeL. In mice only, CRF-ir afferents provide dense innervation of CeLc neurons. Since the CeLc lacks dopaminergic input in both species but possesses moderate serotonergic afferents, CRF/serotonin interactions may occur selectively in mouse CeLc. The observed interspecies and interstrain differences in CRF input and CRF/monoaminergic interactions may influence the interpretation of findings concerning Ce functions in stress and fear in mouse models.
Collapse
Affiliation(s)
- E Asan
- Department of Anatomy and Cell Biology, University of Wuerzburg, Koellikerstr. 6, 97070 Wuerzburg, Germany.
| | | | | | | | | | | |
Collapse
|
89
|
Gammie SC, Hasen NS, Stevenson SA, Bale TL, D'Anna KL. Elevated stress sensitivity in corticotropin-releasing factor receptor 2 deficient mice decreases maternal, but not intermale aggression. Behav Brain Res 2005; 160:169-77. [PMID: 15836912 DOI: 10.1016/j.bbr.2004.11.026] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Revised: 11/19/2004] [Accepted: 11/25/2004] [Indexed: 11/16/2022]
Abstract
Maternal aggression is a form of aggression towards intruders by lactating females that is critical for defense of offspring. During lactation, fear and anxiety are reduced, the CNS is less responsive to the anxiogenic neuropeptide, corticotropin-releasing factor (CRF), and central injections of CRF inhibit maternal aggression. Together, these previous findings suggest that decreased CRF neurotransmission during lactation supports normal maternal aggression expression. Recent work indicates that mice deficient in CRF receptor 2 (CRFR2) display increased anxiety-like behaviors, have a hypersensitive stress response, and overproduce CRF. In this study, we examined both maternal and intermale aggression in wild-type (WT) and CRFR2-deficient mice. CRFR2-mutant mice exhibited significant deficits in maternal aggression on postpartum Day 4 relative to WT mice in terms of percentage displaying aggression, mean number of attacks, and mean time in aggressive encounters. However, time sniffing male intruder, pup retrieval, number of pups, and performance on the elevated plus maze were similar between genotypes. In contrast, intermale aggression did not differ between genotype in any measure on any of three consecutive test days. For neither form of aggression did sites of attacks on the intruder differ between genotype. Taken together, the results suggest that differences in stress sensitivity and the overproduction of CRF of the knockout (KO) mice specifically affects maternal, but not intermale aggression.
Collapse
Affiliation(s)
- Stephen C Gammie
- Department of Zoology, University of Wisconsin, 1117 West Johnson St., Madison, WI 53706, USA.
| | | | | | | | | |
Collapse
|
90
|
Servatius RJ, Beck KD, Moldow RL, Salameh G, Tumminello TP, Short KR. A stress-induced anxious state in male rats: corticotropin-releasing hormone induces persistent changes in associative learning and startle reactivity. Biol Psychiatry 2005; 57:865-72. [PMID: 15820707 DOI: 10.1016/j.biopsych.2005.01.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Revised: 11/08/2004] [Accepted: 01/10/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND Exposure to intense inescapable stressors induces a persistent anxious state in rats. The anxious state is evident as increased sensory reactivity and enhanced associative learning. METHODS We examine whether similar neurobehavioral changes are observed after intracerebroventricular (ICV) administration of corticotropin releasing hormone (CRH). Two behaviors were observed: acoustic startle responses (ASRs) and acquisition of the classically conditioned eyeblink response. Male Sprague-Dawley rats were administered ICV CRH either in a single dose (1.0 microg/rat) or in three doses each separated by 30 min. RESULTS Exaggerated ASRs were evident 2 hours after either CRH treatment; however, only the rats given three injections exhibited a persistently exaggerated ASR apparent 24 hours after CRH treatment. Rats administered three injections of CRH also exhibited faster acquisition of the eyeblink conditioned response beginning 24 hours after treatment. Yet, we did not find evidence for a persistent activation of the HPA-axis response; three CRH injections did not lead to elevated basal plasma corticosterone levels the following morning. CONCLUSIONS Repeated treatment with CRH over a 1.5-hour period models some of the behavioral changes observed after exposure to intense inescapable stressors.
Collapse
Affiliation(s)
- Richard J Servatius
- Department of Veterans Affairs, New Jersey Health Care System, Neurobehavioral Research Laboratory, East Orange, New Jersey Medical School, Newark, New Jersey, USA.
| | | | | | | | | | | |
Collapse
|
91
|
Hogan JB, Hodges DB, Lelas S, Gilligan PJ, McElroy JF, Lindner MD. Effects of CRF1 receptor antagonists and benzodiazepines in the Morris water maze and delayed non-matching to position tests. Psychopharmacology (Berl) 2005; 178:410-9. [PMID: 15765256 DOI: 10.1007/s00213-004-2028-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Accepted: 08/26/2004] [Indexed: 11/24/2022]
Abstract
RATIONALE Benzodiazepines continue to be widely used for the treatment of anxiety, but it is well known that benzodiazepines have undesirable side effects, including sedation, ataxia, cognitive deficits and the risk of addiction and abuse. CRF(1) receptor antagonists are being developed as potential novel anxiolytics, but while CRF(1) receptor antagonists seem to have a better side-effect profile than benzodiazepines with respect to sedation and ataxia, the effects of CRF(1) receptor antagonists on cognitive function have not been well characterized. It is somewhat surprising that the potential cognitive effects of CRF(1) receptor antagonists have not been more fully characterized since there is some evidence to suggest that these compounds may impair cognitive function. OBJECTIVE The Morris water maze and the delayed non-matching to position test are sensitive tests of a range of cognitive functions, including spatial learning, attention and short-term memory, so the objective of the present experiments was to assess the effects of benzodiazepines and CRF(1) receptor antagonists in these tests. RESULTS The benzodiazepines chlordiazepoxide and alprazolam disrupted performance in the Morris water maze and delayed non-matching to position at doses close to their therapeutic, anxiolytic doses. In contrast, the CRF(1) receptor antagonists DMP-904 and DMP-696 produced little or no impairment in the Morris water maze or delayed non-matching to position test even at doses 10-fold higher than were necessary to produce anxiolytic effects. CONCLUSIONS The results of the present experiments suggest that, with respect to their effects on cognitive functions, CRF(1) receptor antagonists seem to have a wider therapeutic index than benzodiazepines.
Collapse
Affiliation(s)
- John B Hogan
- Neuroscience Drug Discovery, Bristol-Myers Squibb Pharmaceutical Research Institute, 5 Research Parkway, Wallingford, CT, 06492, USA
| | | | | | | | | | | |
Collapse
|
92
|
Dautzenberg FM, Higelin J, Wille S, Brauns O. Molecular cloning and functional expression of the mouse CRF2(a) receptor splice variant. ACTA ACUST UNITED AC 2005; 121:89-97. [PMID: 15256278 DOI: 10.1016/j.regpep.2004.04.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2004] [Revised: 04/26/2004] [Accepted: 04/26/2004] [Indexed: 11/30/2022]
Abstract
The mouse corticotropin-releasing factor (CRF) type 2a receptor (CRF2(a)) splice variant was cloned by a PCR-based approach. The corresponding cDNA was found to encode a 411-amino acid polypeptide with highest sequence homology to the rat CRF2(a) receptor. By semiquantitative reverse transcriptase PCR (RT-PCR) analysis, the CRF2(b) mRNA was mainly found in the heart and skeletal muscle with only low level expression in the brain. In contrast, CRF2(a) mRNA was restricted to the brain with major expression sites in the cortex, hippocampus, hypothalamus and telencephalon. Binding and cyclic AMP stimulation studies showed a similar ligand selective profile for both mCRF2 receptor splice variants. A notable exception however, was urotensin I which displayed a approximately 3-fold higher affinity for the CRF2(a) receptor and also stimulated cyclic AMP production in mCRF2(a)-transfected cells with a approximately 3-fold higher potency than in mCRF2(b)-transfected cells. These data show that the mouse like other mammalian species expresses two ligand-selective CRF2 receptor splice variants and that the mCRF2(a) receptor is the predominant central CRF2 receptor in the mouse.
Collapse
|
93
|
Amat J, Tamblyn JP, Paul ED, Bland ST, Amat P, Foster AC, Watkins LR, Maier SF. Microinjection of urocortin 2 into the dorsal raphe nucleus activates serotonergic neurons and increases extracellular serotonin in the basolateral amygdala. Neuroscience 2005; 129:509-19. [PMID: 15541873 DOI: 10.1016/j.neuroscience.2004.07.052] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2004] [Indexed: 10/26/2022]
Abstract
The intra dorsal raphe nucleus (DRN) administration of corticotropin releasing hormone (CRF) inhibits serotonergic (5-HT) activity in this structure, an effect blocked by antagonists selective for the type 1 CRF receptor (CRF1). The DRN has a high density of the type 2 receptor (CRF2), and so the present experiments explored the impact of CRF2 activation within the DRN on 5-HT function. The intra-DRN administration of the selective CRF2 agonist urocortin 2 (Ucn 2) dose dependently increased 5-HT efflux in the basolateral amygdala, a projection region of the DRN. Intra-DRN Ucn 2 also increased c-fos expression in labeled 5-HT neurons. Both of these effects of Ucn 2 were completely blocked by intra-DRN antisauvagine-30 (ASV-30), a relatively selective CRF2 antagonist. These data suggest that CRF1 and CRF2 activation within the DRN affect 5-HT neurons in opponent fashion. Implications of these results for understanding the behavioral effects of CRF and other CRF-like ligands are discussed.
Collapse
Affiliation(s)
- J Amat
- Department of Psychology and Center for Neuroscience, University of Colorado at Boulder, Boulder, CO 80309-0345, USA.
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Yamano Y, Yoshioka M, Toda Y, Oshida Y, Chaki S, Hamamoto K, Morishima I. Regulation of CRF, POMC and MC4R gene expression after electrical foot shock stress in the rat amygdala and hypothalamus. J Vet Med Sci 2005; 66:1323-7. [PMID: 15585943 DOI: 10.1292/jvms.66.1323] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We investigated the effects of electrical foot shock stress on the melanocortin signaling cascade and the hypothalamus-pituitary-adrenal (HPA) system by observing levels of mRNA expression of corticotropin releasing factor (CRF), pro-opiomelanocortin (POMC), and melanocortin receptor subtype 4 (MC4R) in the rat amygdala and hypothalamus. When rats were exposed to electrical shock for 0.5 hr or 1 hr, plasma ACTH and corticosterone concentrations increased, indicating stress. The rats were then sacrificed to obtain RNA preparations from the brain tissue. In the amygdala, the expression of MC4R and POMC mRNA as well as CRF mRNA was significantly increased by electrical foot shock stress. In the hypothalamus, MC4R and POMC mRNA increased, but CRF mRNA remained unchanged. The duration of increased gene expression of MC4R and POMC in the amygdala was more sustained than in the hypothalamus. These results have provided the first evidence that exposure to stress increases expression of the MC4R system in the amygdala and hypothalamus.
Collapse
Affiliation(s)
- Yoshiaki Yamano
- Department of Biochemistry and Biotechnology, Faculty of Agriculture, Tottori University, Japan
| | | | | | | | | | | | | |
Collapse
|
95
|
Herringa RJ, Nanda SA, Hsu DT, Roseboom PH, Kalin NH. The effects of acute stress on the regulation of central and basolateral amygdala CRF-binding protein gene expression. ACTA ACUST UNITED AC 2005; 131:17-25. [PMID: 15530648 DOI: 10.1016/j.molbrainres.2004.08.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2004] [Indexed: 10/26/2022]
Abstract
Corticotropin-releasing factor (CRF) is a key mediator of the behavioral, autonomic, and endocrine responses to stress. CRF binds two receptors and a CRF-binding protein (CRF-BP), which may inactivate or modulate the actions of CRF at its receptors. The amygdala is an important anatomical substrate for CRF and contains CRF, its receptors, and CRF-BP. Few studies have examined the effects of acute stress on the regulation of amygdala CRF-BP with other CRF system genes. Therefore, we examined the time course of the effects of acute restraint stress on central (CeA) and basolateral (BLA) amygdala CRF system genes. Consistent with our previous study, acute stress increased BLA CRF-BP mRNA shortly after stress offset. Surprisingly, BLA CRF-BP mRNA remained elevated up to 21 h after the stressor. This effect was selective in the BLA as stress did not alter CeA CRF-BP mRNA, and there were no changes in CRF or CRF receptor mRNAs in either amygdala nucleus. These results suggest that alterations in BLA CRF-BP gene expression are a primary response of the BLA/CeA CRF system to acute stress. Because CRF-BP can modulate CRF action, changes in amygdala CRF-BP levels after stress exposure may affect the ability of an organism to adapt to future stressors.
Collapse
Affiliation(s)
- Ryan J Herringa
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | | | | |
Collapse
|
96
|
CRF antagonists as novel treatment strategies for stress-related disorders. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s0921-0709(05)80065-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
97
|
Weitemier AZ, Tsivkovskaia NO, Ryabinin AE. Urocortin 1 distribution in mouse brain is strain-dependent. Neuroscience 2005; 132:729-40. [PMID: 15837134 DOI: 10.1016/j.neuroscience.2004.12.047] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2004] [Indexed: 11/29/2022]
Abstract
Urocortin 1 has been implicated in a number of specific behaviors, which include energy balance, stress reactivity and ethanol consumption. To elucidate genetically influenced differences in the mouse urocortin 1 system, we performed immunohistochemical characterization of urocortin 1 distribution in C57BL/6J and DBA/2J mouse brain. Urocortin 1 analysis reveals strain-dependent differences in distribution of urocortin 1 immunoreactive neurons and neuronal fibers. In both strains, the highest number of urocortin 1-positive neurons was observed in the Edinger-Westphal nucleus and lateral superior olive. Urocortin 1-positive neurons were detected in the dorsal nucleus of the lateral lemniscus of DBA/2J mice, but were absent in the C57BL/6J strain. Differences in urocortin 1 fibers were detected in many areas throughout the brain, and were most apparent in the septal areas, thalamic areas, several midbrain regions, and medulla. Strain-dependent distribution of urocortin 1-containing cells and fibers suggests that differences in this neuropeptide system may underlie differences in behavior and physiological responses between these strains. Further, we found that in both mouse strains, urocortin 1 in the Edinger-Westphal nucleus and choline acetyltransferase are not coexpressed. We show that the urocortin 1-positive neurons of this brain area form a separate population of cells that we propose to be called the non-preganglionic Edinger-Westphal nucleus.
Collapse
Affiliation(s)
- A Z Weitemier
- Department of Behavioral Neuroscience, Orego Health and Science University, Portland, OR 97239, USA.
| | | | | |
Collapse
|
98
|
Keck ME, Ohl F, Holsboer F, Müller MB. Listening to mutant mice: a spotlight on the role of CRF/CRF receptor systems in affective disorders. Neurosci Biobehav Rev 2005; 29:867-89. [PMID: 15899517 DOI: 10.1016/j.neubiorev.2005.03.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Genetically engineered mice were originally generated to delineate the role of a specific gene product in behavioral or neuroendocrine phenotypes, rather than to produce classic animal models of depression. To learn more about the neurobiological mechanisms underlying a clinical condition such as depression, it has proven worthwhile to investigate changes in behaviors characteristic of depressed humans, such as anxiety, regardless of whether or not these alterations may also occur in other disorders besides depression. The majority of patients with mood and anxiety disorders have measurable shifts in their stress hormone regulation as reflected by elevated secretion of central and peripheral stress hormones or by altered hormonal responses to neuroendocrine challenge tests. In recent years, these alterations have been increasingly translated into testable hypotheses addressing the pathogenesis of illness. Refined molecular technologies and the creation of genetically engineered mice have allowed to specifically target individual genes involved in regulation of corticotropin releasing factor (CRF) system elements (e.g. CRF and CRF-related peptides, their receptors, binding protein). Studies performed in such mice have complemented and extended our knowledge. The cumulative evidence makes a strong case implicating dysfunction of these systems in the pathogenesis of depression and leads us beyond the monoaminergic synapse in search of eagerly anticipated strategies to discover and develop better therapies for depression.
Collapse
Affiliation(s)
- Martin E Keck
- Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10, 80804 Munich, Germany.
| | | | | | | |
Collapse
|
99
|
Abstract
This review is focused on the involvement of neuropeptides in the modulation of physiological and pathological anxiety. Neuropeptides play a major role as endogenous modulators of complex behaviours, including anxiety-related behaviour and psychopathology, particularly due to their high number and diversity, the dynamics of release patterns in distinct brain areas and the multiple and variable modes of interneuronal communication they are involved in. Manipulations of central neuropeptidergic systems to reveal their role in anxiety (and often comorbid depression-like behaviour) include a broad spectrum of loss-of-function and gain-of-function approaches. This article concentrates on those neuropeptides for which an involvement as endogenous anxiolytic or anxiogenic modulators is well established by such complementary approaches. Particular attention is paid to corticotropin-releasing hormone (CRH) and vasopressin (AVP) which, closely linked to stress, neuroendocrine regulation, social behaviour and learning/memory, play critical roles in the regulation of anxiety-related behaviour of rodents. Provided that their neurobiology, neuroendocrinology and molecular-genetic background are well characterized, these and other neuropeptidergic systems may be promising targets for future anxiolytic strategies.
Collapse
Affiliation(s)
- R Landgraf
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany.
| |
Collapse
|
100
|
Neumann ID, Wigger A, Krömer S, Frank E, Landgraf R, Bosch OJ. Differential effects of periodic maternal separation on adult stress coping in a rat model of extremes in trait anxiety. Neuroscience 2005; 132:867-77. [PMID: 15837146 DOI: 10.1016/j.neuroscience.2005.01.034] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2005] [Indexed: 12/25/2022]
Abstract
We studied interactions of genetic and environmental factors shaping adult emotionality and stress coping, and tested the hypothesis that repeated periodic maternal deprivation (PMD) exerts differential effects on adult behavioral and neuroendocrine stress responsiveness in dependence on the genetic predisposition to either hyper- or hypo-anxiety. Exposure of male Wistar rats bidirectionally bred for either high (HAB) or low (LAB) anxiety-related behavior to PMD between postnatal days 2 and 15 resulted in a behavioral approximation of the selected lines. This was reflected by test-dependent signs of reduced anxiety-related behavior in adult HAB rats and of enhanced levels of anxiety in LAB rats compared with their corresponding unstressed controls. In addition to behavioral parameters, differential effects of PMD were also seen with respect to the responsiveness of the hypothalamo-pituitary-adrenocortical axis to acute stressor exposure (novel environment) in adulthood. The corticotrophin (ACTH) and corticosterone hyper-responses seen in control rats of the HAB line compared with those of the LAB line became attenuated in PMD-HAB rats, whereas PMD did not significantly alter neuroendocrine responses in LAB rats. Thus, as a result of PMD, both ACTH and corticosterone responses became indistinguishable between HAB and LAB rats. Although HAB dams spent more time on the nest with the litter compared with LAB dams during the first 5 days postpartum, licking and grooming behavior did not differ between the lines prior to separation, and was found to be increased to the same extent in both HAB and LAB dams during the first hour immediately after reunion with the pups. In contrast to early life stress, exposure of adult HAB and LAB rats to a 10-day unpredictable stress schedule failed to alter their emotional measures. The mitigating effect of PMD on both behavioral and neuroendocrine parameters in rats representing extremes in trait anxiety might reflect an evolutionary benefit as the genetic variability among individuals of a species is sustained while allowing adequate responses to potentially dangerous stimuli in adulthood dependent on early life conditions.
Collapse
Affiliation(s)
- I D Neumann
- Department of Zoology, University of Regensburg, 93040 Regensburg, Germany.
| | | | | | | | | | | |
Collapse
|