51
|
Liu X, Bautista J, Liu E, Zikopoulos B. Imbalance of laminar-specific excitatory and inhibitory circuits of the orbitofrontal cortex in autism. Mol Autism 2020; 11:83. [PMID: 33081829 PMCID: PMC7574354 DOI: 10.1186/s13229-020-00390-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The human orbitofrontal cortex (OFC) is involved in assessing the emotional significance of events and stimuli, emotion-based learning, allocation of attentional resources, and social cognition. Little is known about the structure, connectivity and excitatory/inhibitory circuit interactions underlying these diverse functions in human OFC, as well as how the circuit is disrupted in individuals with autism spectrum disorder (ASD). METHODS We used post-mortem brain tissue from neurotypical adults and individuals with ASD. We examined the morphology and distribution of myelinated axons across cortical layers in OFC, at the single axon level, as a proxy of excitatory pathways. In the same regions, we also examined the laminar distribution of all neurons and neurochemically- and functionally-distinct inhibitory neurons that express the calcium-binding proteins parvalbumin (PV), calbindin (CB), and calretinin (CR). RESULTS We found that the density of myelinated axons increased consistently towards layer 6, while the average axon diameter did not change significantly across layers in both groups. However, both the density and diameter of myelinated axons were significantly lower in the ASD group compared with the Control group. The distribution pattern and density of the three major types of inhibitory neurons was comparable between groups, but there was a significant reduction in the density of excitatory neurons across OFC layers in ASD. LIMITATIONS This study is limited by the availability of human post-mortem tissue optimally processed for high-resolution microscopy and immunolabeling, especially from individuals with ASD. CONCLUSIONS The balance between excitation and inhibition in OFC is at the core of its function, assessing and integrating emotional and social cues with internal states and external inputs. Our preliminary results provide evidence for laminar-specific changes in the ratio of excitation/inhibition in OFC of adults with ASD, with an overall weakening and likely disorganization of excitatory signals and a relative strengthening of local inhibition. These changes likely underlie pathology of major OFC communications with limbic or other cortices and the amygdala in individuals with ASD, and may provide the anatomic basis for disrupted transmission of signals for social interactions and emotions in autism.
Collapse
Affiliation(s)
- Xuefeng Liu
- Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, 635 Commonwealth Ave., Room 401D, Boston, MA, 02215, USA
| | - Julied Bautista
- Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, 635 Commonwealth Ave., Room 401D, Boston, MA, 02215, USA
| | - Edward Liu
- Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, 635 Commonwealth Ave., Room 401D, Boston, MA, 02215, USA
| | - Basilis Zikopoulos
- Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, 635 Commonwealth Ave., Room 401D, Boston, MA, 02215, USA. .,Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA. .,Graduate Program in Neuroscience, Boston University, Boston, MA, USA.
| |
Collapse
|
52
|
Contreras-Huerta LS, Pisauro MA, Apps MAJ. Effort shapes social cognition and behaviour: A neuro-cognitive framework. Neurosci Biobehav Rev 2020; 118:426-439. [PMID: 32818580 DOI: 10.1016/j.neubiorev.2020.08.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/13/2020] [Accepted: 08/08/2020] [Indexed: 01/10/2023]
Abstract
Theoretical accounts typically posit that variability in social behaviour is a function of capacity limits. We argue that many social behaviours are goal-directed and effortful, and thus variability is not just a function of capacity, but also motivation. Leveraging recent work examining the cognitive, computational and neural basis of effort processing, we put forward a framework for motivated social cognition. We argue that social cognition is demanding, people avoid its effort costs, and a core-circuit of brain areas that guides effort-based decisions in non-social situations may similarly evaluate whether social behaviours are worth the effort. Thus, effort sensitivity dissociates capacity limits from social motivation, and may be a driver of individual differences and pathological impairments in social cognition.
Collapse
Affiliation(s)
- Luis Sebastian Contreras-Huerta
- Department of Experimental Psychology, University of Oxford, OX2 6GG, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, UK.
| | - M Andrea Pisauro
- Department of Experimental Psychology, University of Oxford, OX2 6GG, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, UK; Centre for Human Brain Health, School of Psychology, University of Birmingham, UK.
| | - Matthew A J Apps
- Department of Experimental Psychology, University of Oxford, OX2 6GG, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, UK; Centre for Human Brain Health, School of Psychology, University of Birmingham, UK; Christ Church College, University of Oxford, UK.
| |
Collapse
|
53
|
Individual differences in envy experienced through perspective-taking involves functional connectivity of the superior frontal gyrus. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2020; 20:783-797. [PMID: 32557135 PMCID: PMC7395029 DOI: 10.3758/s13415-020-00802-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Envy is the painful or resentful awareness of another’s advantage combined with a desire to possess that same advantage. Recent neuroscientific research has begun to shed light on the brain regions that process the experience of envy, including regions of the prefrontal cortex involved in emotional processing and social cognition. It is still unclear, however, which regions of the brain are functionally connected during the experience of envy. We recorded functional neuroimaging data while inducing simulated envy in participants, experienced through a perspective-taking hypothetical scenario task. In this task, participants took the perspective of a protagonist portrayed in a written description and compared themselves to either i) a self-similar/superior individual, ii) a self-dissimilar/superior individual, or iii) a self-dissimilar/average individual. During each comparison, participants also reported how much envy they experienced while taking the protagonists perspective. We demonstrate an inverse relationship in the connectivity of the left superior frontal gyrus to both the right supramarginal gyrus and the precuneus with respect to self-reported envy ratings across participants. In other words, we show that the greater the functional connectivity that the left superior frontal gyrus shares with the right supramarginal gyrus and precuneus, the less reported envy a participant experiences. Overall, our results are in line with previous research implicating the superior frontal gyrus in the reappraisal of negative emotions and extend these findings by showing this region is also involved in modulating the simulated experience of the social comparative, negative emotion of envy.
Collapse
|
54
|
Chase HW, Grace AA, Fox PT, Phillips ML, Eickhoff SB. Functional differentiation in the human ventromedial frontal lobe: A data-driven parcellation. Hum Brain Mapp 2020; 41:3266-3283. [PMID: 32314470 PMCID: PMC7375078 DOI: 10.1002/hbm.25014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/06/2020] [Accepted: 04/07/2020] [Indexed: 12/18/2022] Open
Abstract
Ventromedial regions of the frontal lobe (vmFL) are thought to play a key role in decision-making and emotional regulation. However, aspects of this area's functional organization, including the presence of a multiple subregions, their functional and anatomical connectivity, and the cross-species homologies of these subregions with those of other species, remain poorly understood. To address this uncertainty, we employed a two-stage parcellation of the region to identify six distinct structures within the region on the basis of data-driven classification of functional connectivity patterns obtained using the meta-analytic connectivity modeling (MACM) approach. From anterior to posterior, the derived subregions included two lateralized posterior regions, an intermediate posterior region, a dorsal and ventral central region, and a single anterior region. The regions were characterized further by functional connectivity derived using resting-state fMRI and functional decoding using the Brain Map database. In general, the regions could be differentiated on the basis of different patterns of functional connectivity with canonical "default mode network" regions and/or subcortical regions such as the striatum. Together, the findings suggest the presence of functionally distinct neural structures within vmFL, consistent with data from experimental animals as well prior demonstrations of anatomical differences within the region. Detailed correspondence with the anterior cingulate, medial orbitofrontal cortex, and rostroventral prefrontal cortex, as well as specific animal homologs are discussed. The findings may suggest future directions for resolving potential functional and structural correspondence of subregions within the frontal lobe across behavioral contexts, and across mammalian species.
Collapse
Affiliation(s)
- Henry W Chase
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Anthony A Grace
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Neuroscience and Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, Texas, USA.,Department of Radiology, University of Texas Health Science Center, San Antonio, Texas, USA.,Department of Psychiatry, University of Texas Health Science Center, San Antonio, Texas, USA.,Research and Development Service, South Texas Veterans Health Care System, San Antonio, Texas, USA
| | - Mary L Phillips
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| |
Collapse
|
55
|
Bramson B, Folloni D, Verhagen L, Hartogsveld B, Mars RB, Toni I, Roelofs K. Human Lateral Frontal Pole Contributes to Control over Emotional Approach-Avoidance Actions. J Neurosci 2020; 40:2925-2934. [PMID: 32034069 PMCID: PMC7117901 DOI: 10.1523/jneurosci.2048-19.2020] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 12/28/2022] Open
Abstract
Regulation of emotional behavior is essential for human social interactions. Recent work has exposed its cognitive complexity, as well as its unexpected reliance on portions of the anterior PFC (aPFC) also involved in exploration, relational reasoning, and counterfactual choice, rather than on dorsolateral and medial prefrontal areas involved in several forms of cognitive control. This study anatomically qualifies the contribution of aPFC territories to the regulation of prepotent approach-avoidance action tendencies elicited by emotional faces, and explores a possible structural pathway through which this emotional action regulation might be implemented. We provide converging evidence from task-based fMRI, diffusion-weighted imaging, and functional connectivity fingerprints for a novel neural element in emotional regulation. Task-based fMRI in human male participants (N = 40) performing an emotional approach-avoidance task identified aPFC territories involved in the regulation of action tendencies elicited by emotional faces. Connectivity fingerprints, based on diffusion-weighted imaging and resting-state connectivity, localized those task-defined frontal regions to the lateral frontal pole (FPl), an anatomically defined portion of the aPFC that lacks a homologous counterpart in macaque brains. Probabilistic tractography indicated that 10%-20% of interindividual variation in emotional regulation abilities is accounted for by the strength of structural connectivity between FPl and amygdala. Evidence from an independent replication sample (N = 50; 10 females) further substantiated this result. These findings provide novel neuroanatomical evidence for incorporating FPl in models of control over human action tendencies elicited by emotional faces.SIGNIFICANCE STATEMENT Successful regulation of emotional behaviors is a prerequisite for successful participation in human society, as is evidenced by the social isolation and loss of occupational opportunities often encountered by people suffering from emotion regulation disorders, such as social-anxiety disorder and psychopathy. Knowledge about the precise cortical regions and connections supporting this control is crucial for understanding both the nature of computations needed to successfully traverse the space of possible actions in social situations, and the potential interventions that might result in efficient treatment of social-emotional disorders. This study provides evidence for a precise cortical region (lateral frontal pole) and a structural pathway (the ventral amygdalofugal bundle) through which a cognitively complex form of emotional action regulation might be implemented in the human brain.
Collapse
Affiliation(s)
- Bob Bramson
- Donders Institute for Brain, Cognition and Behavior, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, 6525 EN Nijmegen, The Netherlands,
| | - Davide Folloni
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX1 3SR, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, United Kingdom, and
| | - Lennart Verhagen
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford OX1 3SR, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, United Kingdom, and
| | - Bart Hartogsveld
- Department of Clinical Psychological Science, Faculty of Psychology and Neuroscience, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Rogier B Mars
- Donders Institute for Brain, Cognition and Behavior, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, 6525 EN Nijmegen, The Netherlands
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, United Kingdom, and
| | - Ivan Toni
- Donders Institute for Brain, Cognition and Behavior, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, 6525 EN Nijmegen, The Netherlands
| | - Karin Roelofs
- Donders Institute for Brain, Cognition and Behavior, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, 6525 EN Nijmegen, The Netherlands
- Behavioral Science Institute, Radboud University Nijmegen, 6525 HR Nijmegen, The Netherlands
| |
Collapse
|
56
|
Rechtman E, Curtin P, Onyebeke LC, Wang VX, Papazaharias DM, Hazeltine D, de Water E, Nabeel I, Mani V, Zuckerman N, Lucchini RG, Gaughan D, Tang CY, Horton MK. Respirator usage protects brain white matter from welding fume exposure: A pilot magnetic resonance imaging study of welders. Neurotoxicology 2020; 78:202-208. [PMID: 32217185 DOI: 10.1016/j.neuro.2020.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/07/2020] [Accepted: 03/14/2020] [Indexed: 10/24/2022]
Abstract
Welding fume exposure has been associated with structural brain changes and a wide variety of clinical and sub-clinical outcomes including cognitive, behavioral and motor abnormalities. Respirator use has been shown to decrease exposure to welding fumes; however, the associations between respirator use and health outcomes, particularly neurologic health, have been understudied. In this preliminary study, we used diffusion tensor imaging (DTI) to investigate the effectiveness of respirator use in protecting workers' white matter (WM) from the harmful effects related to welding fume exposure. Fractional anisotropy (FA), a common DTI measurement of water diffusion properties, was used as a marker of WM microstructure integrity. We hypothesized that FA in brain regions involved in motor and neurocognitive functions would differ between welders reporting respirator use compared to those not using a respirator. We enrolled a pilot cohort of 19 welders from labor unions in the New York City area. All welders completed questionnaires to assess welding history and occupational health. All completed a DTI acquisition on a 3 T Siemens scanner. Partial least squares discriminant analysis (PLS-DA), a bioinformatic analytical strategy, was used to model the divergence of WM microstructures in 48 regions defined by the ICBM-DTI-81 atlas between respirator users compared to non-users. This yielded an effective discrimination of respirator users from non-users, with the uncinate fasciculus, the cerebellar peduncle and the superior longitudinal fasciculus contributing most to the discrimination of these groups. These white matter tracts are involved in widespread motor and cognitive functions. To our knowledge, this study is the first to suggest a protective effect of respirator on WM microstructure, indicating that the lack of respirator may present unsafe working conditions for welders. These preliminary findings may inform a larger, longitudinal intervention study that would be more appropriate to investigate the potential protective effect of respirator usage on brain white matter in welders.
Collapse
Affiliation(s)
- Elza Rechtman
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Paul Curtin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Lynn C Onyebeke
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Victoria X Wang
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Demetrios M Papazaharias
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Danielle Hazeltine
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Erik de Water
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ismail Nabeel
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Venkatesh Mani
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Norman Zuckerman
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Roberto G Lucchini
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Denise Gaughan
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Cheuk Y Tang
- Department of Radiology and Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Megan K Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
57
|
Maurer JM, Paul S, Anderson NE, Nyalakanti PK, Kiehl KA. Youth with elevated psychopathic traits exhibit structural integrity deficits in the uncinate fasciculus. Neuroimage Clin 2020; 26:102236. [PMID: 32182577 PMCID: PMC7076567 DOI: 10.1016/j.nicl.2020.102236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 01/09/2023]
Abstract
Youth with elevated psychopathic traits represent a particularly severe subgroup of adolescents characterized by extreme behavioral problems and exhibit comparable neurocognitive deficits as adult offenders with psychopathic traits. A consistent finding among adults with elevated psychopathic traits is reduced white matter structural integrity of the right uncinate fasciculus (UF). The UF is a major white matter tract that connects regions of the anterior temporal lobe (i.e., the amygdala) to higher-order executive control regions, including the ventromedial prefrontal cortex. However, the relationship between youth psychopathic traits and structural integrity of the UF has been mixed, with some studies identifying a negative relationship between adolescent psychopathy scores and FA in the UF, and others identifying a positive relationship. Here, we investigated structural integrity of the left and right UF using fractional anisotropy (FA) in a large sample of n = 254 male adolescent offenders recruited from maximum-security juvenile correctional facilities. Psychopathic traits were assessed using the Hare Psychopathy Checklist: Youth Version (PCL:YV). Consistent with hypotheses, interpersonal and affective traits (i.e., PCL:YV Factor 1 and Facet 1 scores) were associated with reduced FA in the right UF. Additionally, lifestyle traits (i.e., PCL:YV Facet 3 scores) were associated with increased FA in the left UF. Results are consistent with previously published studies reporting reduced FA in the right UF in adult psychopathic offenders and increased left UF FA in youth meeting criteria for certain externalizing disorders.
Collapse
Affiliation(s)
- J Michael Maurer
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA; The Mind Research Network (MRN) & Lovelace Biomedical and Environmental Research Institute (LBERI), Albuquerque, NM, USA.
| | - Subhadip Paul
- The Mind Research Network (MRN) & Lovelace Biomedical and Environmental Research Institute (LBERI), Albuquerque, NM, USA
| | - Nathaniel E Anderson
- The Mind Research Network (MRN) & Lovelace Biomedical and Environmental Research Institute (LBERI), Albuquerque, NM, USA
| | - Prashanth K Nyalakanti
- The Mind Research Network (MRN) & Lovelace Biomedical and Environmental Research Institute (LBERI), Albuquerque, NM, USA
| | - Kent A Kiehl
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA; The Mind Research Network (MRN) & Lovelace Biomedical and Environmental Research Institute (LBERI), Albuquerque, NM, USA.
| |
Collapse
|
58
|
Haber SN, Tang W, Choi EY, Yendiki A, Liu H, Jbabdi S, Versace A, Phillips M. Circuits, Networks, and Neuropsychiatric Disease: Transitioning From Anatomy to Imaging. Biol Psychiatry 2020; 87:318-327. [PMID: 31870495 DOI: 10.1016/j.biopsych.2019.10.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/24/2019] [Accepted: 10/24/2019] [Indexed: 12/14/2022]
Abstract
Since the development of cellular and myelin stains, anatomy has formed the foundation for understanding circuitry in the human brain. However, recent functional and structural studies using magnetic resonance imaging have taken the lead in this endeavor. These innovative and noninvasive approaches have the advantage of studying connectivity patterns under different conditions directly in the human brain. They demonstrate dynamic and structural changes within and across networks linked to normal function and to a wide range of psychiatric illnesses. However, these indirect methods are unable to link networks to the hardwiring that underlies them. In contrast, anatomic invasive experimental studies can. Following a brief review of prefrontal cortical, anterior cingulate, and striatal connections and the different methodologies used, this article discusses how data from anatomic studies can help inform how hardwired connections are linked to the functional and structural networks identified in imaging studies.
Collapse
Affiliation(s)
- Suzanne N Haber
- Department of Pharmacology and Physiology, University of Rochester School of Medicine, Rochester, New York; Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts.
| | - Wei Tang
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts
| | - Eun Young Choi
- Department of Neuroscience, Stanford University, Palo Alto, California
| | - Anastasia Yendiki
- Athinoula A. Martinos Center for Biomedical Imaging, Harvard University & Massachusetts General Hospital, Boston, Massachusetts
| | - Hesheng Liu
- Department of Radiology, Medical University of South Carolina, Charleston, South Carolina
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Amelia Versace
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mary Phillips
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
59
|
Liu C, Ye FQ, Newman JD, Szczupak D, Tian X, Yen CCC, Majka P, Glen D, Rosa MGP, Leopold DA, Silva AC. A resource for the detailed 3D mapping of white matter pathways in the marmoset brain. Nat Neurosci 2020; 23:271-280. [PMID: 31932765 PMCID: PMC7007400 DOI: 10.1038/s41593-019-0575-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 12/10/2019] [Indexed: 12/19/2022]
Abstract
While the fundamental importance of the white matter in supporting neuronal communication is well known, existing publications of primate brains do not feature a detailed description of its complex anatomy. The main barrier to achieving this is that existing primate neuroimaging data have insufficient spatial resolution to resolve white matter pathways fully. Here we present a resource that allows detailed descriptions of white matter structures and trajectories of fiber pathways in the marmoset brain. The resource includes: (1) the highest-resolution diffusion-weighted MRI data available to date, which reveal white matter features not previously described; (2) a comprehensive three-dimensional white matter atlas depicting fiber pathways that were either omitted or misidentified in previous atlases; and (3) comprehensive fiber pathway maps of cortical connections combining diffusion-weighted MRI tractography and neuronal tracing data. The resource, which can be downloaded from marmosetbrainmapping.org, will facilitate studies of brain connectivity and the development of tractography algorithms in the primate brain.
Collapse
Affiliation(s)
- Cirong Liu
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
- Department of Neurobiology, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA.
| | - Frank Q Ye
- Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, and National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - John D Newman
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Section on Quantitative Imaging and Tissue Sciences, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Diego Szczupak
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Department of Neurobiology, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
| | - Xiaoguang Tian
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Department of Neurobiology, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
| | - Cecil Chern-Chyi Yen
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Piotr Majka
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
- ARC Centre of Excellence for Integrative Brain Function, Clayton, Melbourne, Victoria, Australia
| | - Daniel Glen
- Scientific and Statistical Computing Core, National Institute of Mental Health, National Institutes of Health (NIMH/NIH), Bethesda, MD, USA
| | - Marcello G P Rosa
- ARC Centre of Excellence for Integrative Brain Function, Clayton, Melbourne, Victoria, Australia
- Neuroscience Program, Monash Biomedicine Discovery Institute, Clayton, Melbourne, Victoria, Australia
| | - David A Leopold
- Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, and National Eye Institute, National Institutes of Health, Bethesda, MD, USA
- Section on Cognitive Neurophysiology and Imaging, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Afonso C Silva
- Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
- Department of Neurobiology, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA.
| |
Collapse
|
60
|
Yang S, Wu M, Ajilore O, Lamar M, Kumar A. Impaired biophysical integrity of macromolecular protein pools in the uncinate circuit in late-life depression. Mol Psychiatry 2019; 24:1844-1855. [PMID: 29880885 PMCID: PMC8806152 DOI: 10.1038/s41380-018-0085-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 04/03/2018] [Accepted: 04/09/2018] [Indexed: 02/02/2023]
Abstract
Major depressive disorder is a common mood disorder in the elderly. Although the neuroanatomical abnormalities have been identified in patients with late-life depression (LLD), the precise biological basis of LLD remains largely unknown. The purpose of this study was to examine the biophysical integrity of macromolecular protein pools in the nodal regions of the "uncinate circuit," a component of fronto-limbic circuitry that is connected by the uncinate fasciculus and is critical in the regulation of mood and emotions, using novel magnetization transfer (MT) imaging. Twenty-four patients with LLD and 27 non-depressed healthy control subjects (HCs) of comparable age, sex, and race were recruited from the communities of the greater Chicago Area. The nodal regions of the uncinate circuit, i.e., bilateral amygdala, hippocampus, and lateral and medial orbitofrontal cortices (OFCs), were examined. Compared with HCs, patients with LLD had significantly lower magnetization transfer ratio (MTR), a measure of the biophysical integrity of macromolecular protein pools, in bilateral amygdala and hippocampus. The lower MTR was negatively correlated with the depression score. Moreover, the MTR of these regions decreased with age and positively correlated with neuropsychological performance in the LLD group but not in the HC group. These findings suggest that LLD is associated with compromised biophysical integrity of macromolecular protein pools in nodal regions of the uncinate circuit, and that major depression may accentuate age-related attenuation of the biophysical integrity of macromolecular protein pools in this circuit. These findings provide important new insights into the neurobiological mechanisms of the pathophysiology of LLD.
Collapse
Affiliation(s)
- Shaolin Yang
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, 60612, USA. .,Department of Radiology, University of Illinois at Chicago, Chicago, Illinois, 60612, USA. .,Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, 60612, USA.
| | - Minjie Wu
- Department of Psychiatry, University of Pittsburgh, Pittsburgh PA 15213, USA
| | - Olusola Ajilore
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | - Melissa Lamar
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | - Anand Kumar
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, 60612, USA.
| |
Collapse
|
61
|
Folloni D, Sallet J, Khrapitchev AA, Sibson N, Verhagen L, Mars RB. Dichotomous organization of amygdala/temporal-prefrontal bundles in both humans and monkeys. eLife 2019; 8:e47175. [PMID: 31689177 PMCID: PMC6831033 DOI: 10.7554/elife.47175] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 09/12/2019] [Indexed: 12/23/2022] Open
Abstract
The interactions of anterior temporal structures, and especially the amygdala, with the prefrontal cortex are pivotal to learning, decision-making, and socio-emotional regulation. A clear anatomical description of the organization and dissociation of fiber bundles linking anterior temporal cortex/amygdala and prefrontal cortex in humans is still lacking. Using diffusion imaging techniques, we reconstructed fiber bundles between these anatomical regions in human and macaque brains. First, by studying macaques, we assessed which aspects of connectivity known from tracer studies could be identified with diffusion imaging. Second, by comparing diffusion imaging results in humans and macaques, we estimated the patterns of fibers coursing between human amygdala and prefrontal cortex and compared them with those in the monkey. In posterior prefrontal cortex, we observed a prominent and well-preserved bifurcation of bundles into primarily two fiber systems-an amygdalofugal path and an uncinate path-in both species. This dissociation fades away in more rostral prefrontal regions.
Collapse
Affiliation(s)
- Davide Folloni
- Wellcome Centre for Integrative Neuroimaging (WIN),Department of Experimental PsychologyUniversity of OxfordOxfordUnited Kingdom
- Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB),Nuffield Department of Clinical NeurosciencesJohn Radcliffe Hospital, University of OxfordOxfordUnited Kingdom
| | - Jerome Sallet
- Wellcome Centre for Integrative Neuroimaging (WIN),Department of Experimental PsychologyUniversity of OxfordOxfordUnited Kingdom
- Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB),Nuffield Department of Clinical NeurosciencesJohn Radcliffe Hospital, University of OxfordOxfordUnited Kingdom
| | - Alexandre A Khrapitchev
- Department of Oncology, Cancer Research UK and Medical Research Council Oxford Institute for Radiation OncologyUniversity of OxfordOxfordUnited Kingdom
| | - Nicola Sibson
- Department of Oncology, Cancer Research UK and Medical Research Council Oxford Institute for Radiation OncologyUniversity of OxfordOxfordUnited Kingdom
| | - Lennart Verhagen
- Wellcome Centre for Integrative Neuroimaging (WIN),Department of Experimental PsychologyUniversity of OxfordOxfordUnited Kingdom
- Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB),Nuffield Department of Clinical NeurosciencesJohn Radcliffe Hospital, University of OxfordOxfordUnited Kingdom
- Donders Institute for Brain, Cognition and BehaviourRadboud University NijmegenNijmegenNetherlands
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB),Nuffield Department of Clinical NeurosciencesJohn Radcliffe Hospital, University of OxfordOxfordUnited Kingdom
- Donders Institute for Brain, Cognition and BehaviourRadboud University NijmegenNijmegenNetherlands
| |
Collapse
|
62
|
Abstract
Throughout evolution the frontal lobes have progressively acquired a central role in most aspects of cognition and behavior. In humans, frontal lobe functions are conditional on the development of an intricate set of short- and long-range connections that guarantee direct access to sensory information and control over regions dedicated to planning and motor execution. Here the frontal cortical anatomy and the major connections that constitute the local and extended frontal connectivity are reviewed in the context of diffusion tractography studies, contemporary models of frontal lobe functions, and clinical syndromes. A particular focus of this chapter is the use of comparative anatomy and neurodevelopmental data to address the question of how frontal networks evolved and what this signified for unique human abilities.
Collapse
Affiliation(s)
- Marco Catani
- NatBrainLab, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
| |
Collapse
|
63
|
The brain’s default network: updated anatomy, physiology and evolving insights. Nat Rev Neurosci 2019; 20:593-608. [DOI: 10.1038/s41583-019-0212-7] [Citation(s) in RCA: 421] [Impact Index Per Article: 84.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2019] [Indexed: 12/15/2022]
|
64
|
Bryant KL, Glasser MF, Li L, Jae-Cheol Bae J, Jacquez NJ, Alarcón L, Fields A, Preuss TM. Organization of extrastriate and temporal cortex in chimpanzees compared to humans and macaques. Cortex 2019; 118:223-243. [PMID: 30910223 PMCID: PMC6697630 DOI: 10.1016/j.cortex.2019.02.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/31/2018] [Accepted: 02/13/2019] [Indexed: 01/11/2023]
Abstract
There is evidence for enlargement of association cortex in humans compared to other primate species. Expansion of temporal association cortex appears to have displaced extrastriate cortex posteriorly and inferiorly in humans compared to macaques. However, the details of the organization of these recently expanded areas are still being uncovered. Here, we used diffusion tractography to examine the organization of extrastriate and temporal association cortex in chimpanzees, humans, and macaques. Our goal was to characterize the organization of visual and auditory association areas with respect to their corresponding primary areas (primary visual cortex and auditory core) in humans and chimpanzees. We report three results: (1) Humans, chimpanzees, and macaques show expected retinotopic organization of primary visual cortex (V1) connectivity to V2 and to areas immediately anterior to V2; (2) In contrast to macaques, chimpanzee and human V1 shows apparent connectivity with lateral, inferior, and anterior temporal regions, beyond the retinotopically organized extrastriate areas; (3) Also in contrast to macaques, chimpanzee and human auditory core shows apparent connectivity with temporal association areas, with some important differences between humans and chimpanzees. Diffusion tractography reconstructs diffusion patterns that reflect white matter organization, but does not definitively represent direct anatomical connectivity. Therefore, it is important to recognize that our findings are suggestive of species differences in long-distance white matter organization rather than demonstrations of direct connections. Our data support the conclusion that expansion of temporal association cortex, and the resulting posterior displacement of extrastriate cortex, occurred in the human lineage after its separation from the chimpanzee lineage. It is possible, however, that some expansion of the temporal lobe occurred prior to the separation of humans and chimpanzees, reflected in the reorganization of long white matter tracts in the temporal lobe that connect occipital areas to the fusiform gyrus, middle temporal gyrus, and anterior temporal lobe.
Collapse
Affiliation(s)
- Katherine L Bryant
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA; Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Matthew F Glasser
- Departments of Radiology and Neuroscience, Washington University Medical School, St. Louis, MO, USA
| | - Longchuan Li
- Marcus Autism Center, Children's Healthcare of Atlanta, Emory University, Atlanta, GA, USA
| | - Jason Jae-Cheol Bae
- Neuroscience and Behavioral Biology, Emory University, Atlanta, GA, USA; College of Medicine, American University of Antigua, USA
| | - Nadine J Jacquez
- Neuroscience and Behavioral Biology, Emory University, Atlanta, GA, USA
| | - Laura Alarcón
- Neuroscience and Behavioral Biology, Emory University, Atlanta, GA, USA
| | - Archie Fields
- Department of Philosophy, University of Calgary, Calgary, Alberta, Canada
| | - Todd M Preuss
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA; Center for Translational Social Neuroscience, Emory University, Atlanta, GA, USA; Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
65
|
Howell BR, Ahn M, Shi Y, Godfrey JR, Hu X, Zhu H, Styner M, Sanchez MM. Disentangling the effects of early caregiving experience and heritable factors on brain white matter development in rhesus monkeys. Neuroimage 2019; 197:625-642. [PMID: 30978495 PMCID: PMC7179761 DOI: 10.1016/j.neuroimage.2019.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 03/30/2019] [Accepted: 04/03/2019] [Indexed: 10/27/2022] Open
Abstract
Early social experiences, particularly maternal care, shape behavioral and physiological development in primates. Thus, it is not surprising that adverse caregiving, such as child maltreatment leads to a vast array of poor developmental outcomes, including increased risk for psychopathology across the lifespan. Studies of the underlying neurobiology of this risk have identified structural and functional alterations in cortico-limbic brain circuits that seem particularly sensitive to these early adverse experiences and are associated with anxiety and affective disorders. However, it is not understood how these neurobiological alterations unfold during development as it is very difficult to study these early phases in humans, where the effects of maltreatment experience cannot be disentangled from heritable traits. The current study examined the specific effects of experience ("nurture") versus heritable factors ("nature") on the development of brain white matter (WM) tracts with putative roles in socioemotional behavior in primates from birth through the juvenile period. For this we used a randomized crossfostering experimental design in a naturalistic rhesus monkey model of infant maltreatment, where infant monkeys were randomly assigned at birth to either a mother with a history of maltreating her infants, or a competent mother. Using a longitudinal diffusion tensor imaging (DTI) atlas-based tract-profile approach we identified widespread, but also specific, maturational changes on major brain tracts, as well as alterations in a measure of WM integrity (fractional anisotropy, FA) in the middle longitudinal fasciculus (MdLF) and the inferior longitudinal fasciculus (ILF), of maltreated animals, suggesting decreased structural integrity in these tracts due to early adverse experience. Exploratory voxelwise analyses confirmed the tract-based approach, finding additional effects of early adversity, biological mother, social dominance rank, and sex in other WM tracts. These results suggest tract-specific effects of postnatal maternal care experience versus heritable or biological factors on primate WM microstructural development. Further studies are needed to determine the specific behavioral outcomes and biological mechanisms associated with these alterations in WM integrity.
Collapse
Affiliation(s)
- Brittany R Howell
- Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta, GA, USA; Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA; Institute of Child Development, University of Minnesota, Minneapolis, MN, USA.
| | - Mihye Ahn
- Department of Mathematics and Statistics, University of Nevada, Reno, NV, USA; Department of Biostatistics and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Yundi Shi
- Department. of Psychiatry and Computer Science, University of North Carolina, Chapel Hill, NC, USA
| | - Jodi R Godfrey
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Xiaoping Hu
- Biomedical Imaging Technology Center, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Hongtu Zhu
- Department of Biostatistics and Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Martin Styner
- Department. of Psychiatry and Computer Science, University of North Carolina, Chapel Hill, NC, USA
| | - Mar M Sanchez
- Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta, GA, USA; Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| |
Collapse
|
66
|
Li L, Bachevalier J, Hu X, Klin A, Preuss TM, Shultz S, Jones W. Topology of the Structural Social Brain Network in Typical Adults. Brain Connect 2019; 8:537-548. [PMID: 30280929 DOI: 10.1089/brain.2018.0592] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Although a large body of research has identified discrete neuroanatomical regions involved in social cognition and behavior (the "social brain"), the existing findings are based largely on studies of specific brain structures defined within the context of particular tasks or for specific types of social behavior. The objective of the current work was to view these regions as nodes of a larger collective network and to quantitatively characterize both the topology of that network and the relative criticality of its many nodes. Large-scale data mining was performed to generate seed regions of the social brain. High-quality diffusion MRI data of typical adults were used to map anatomical networks of the social brain. Network topology and nodal centrality were analyzed using graph theory. The structural social brain network demonstrates a high degree of global functional integration with strong local segregation. Bilateral dorsomedial prefrontal cortices and amygdala play the most central roles in the network. Strong probabilistic evidence supports modular divisions of the social brain into subnetworks bearing good resemblance to functionally classified clusters. The present network-driven approach quantifies the structural topology of the social brain as a whole. This work can serve as a critical benchmark against which to compare (1) developmental change in social brain topology over time (from infancy through adolescence and beyond) and (2) atypical network topologies that may be a sign or symptom of disorder (as in conditions such as autism, Williams syndrome, schizophrenia, and others).
Collapse
Affiliation(s)
- Longchuan Li
- 1 Marcus Autism Center , Children's Healthcare of Atlanta, Atlanta, Georgia .,2 Division of Autism and Related Disabilities, Department of Pediatrics, Emory University School of Medicine , Atlanta, Georgia .,3 Center for Translational Social Neuroscience, Emory University , Atlanta, Georgia
| | - Jocelyne Bachevalier
- 4 Department of Psychology, Yerkes National Primate Research Center, Emory University , Atlanta, Georgia
| | - Xiaoping Hu
- 5 Department of Bioengineering, University of California Riverside , California
| | - Ami Klin
- 1 Marcus Autism Center , Children's Healthcare of Atlanta, Atlanta, Georgia .,2 Division of Autism and Related Disabilities, Department of Pediatrics, Emory University School of Medicine , Atlanta, Georgia .,3 Center for Translational Social Neuroscience, Emory University , Atlanta, Georgia
| | - Todd M Preuss
- 3 Center for Translational Social Neuroscience, Emory University , Atlanta, Georgia .,4 Department of Psychology, Yerkes National Primate Research Center, Emory University , Atlanta, Georgia .,6 Department of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center , Atlanta, Georgia
| | - Sarah Shultz
- 1 Marcus Autism Center , Children's Healthcare of Atlanta, Atlanta, Georgia .,2 Division of Autism and Related Disabilities, Department of Pediatrics, Emory University School of Medicine , Atlanta, Georgia
| | - Warren Jones
- 1 Marcus Autism Center , Children's Healthcare of Atlanta, Atlanta, Georgia .,2 Division of Autism and Related Disabilities, Department of Pediatrics, Emory University School of Medicine , Atlanta, Georgia .,3 Center for Translational Social Neuroscience, Emory University , Atlanta, Georgia
| |
Collapse
|
67
|
Oechslin MS, Gschwind M, James CE. Tracking Training-Related Plasticity by Combining fMRI and DTI: The Right Hemisphere Ventral Stream Mediates Musical Syntax Processing. Cereb Cortex 2019; 28:1209-1218. [PMID: 28203797 DOI: 10.1093/cercor/bhx033] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 01/25/2017] [Indexed: 12/25/2022] Open
Abstract
As a functional homolog for left-hemispheric syntax processing in language, neuroimaging studies evidenced involvement of right prefrontal regions in musical syntax processing, of which underlying white matter connectivity remains unexplored so far. In the current experiment, we investigated the underlying pathway architecture in subjects with 3 levels of musical expertise. Employing diffusion tensor imaging tractography, departing from seeds from our previous functional magnetic resonance imaging study on music syntax processing in the same participants, we identified a pathway in the right ventral stream that connects the middle temporal lobe with the inferior frontal cortex via the extreme capsule, and corresponds to the left hemisphere ventral stream, classically attributed to syntax processing in language comprehension. Additional morphometric consistency analyses allowed dissociating tract core from more dispersed fiber portions. Musical expertise related to higher tract consistency of the right ventral stream pathway. Specifically, tract consistency in this pathway predicted the sensitivity for musical syntax violations. We conclude that enduring musical practice sculpts ventral stream architecture. Our results suggest that training-related pathway plasticity facilitates the right hemisphere ventral stream information transfer, supporting an improved sound-to-meaning mapping in music.
Collapse
Affiliation(s)
- Mathias S Oechslin
- Faculty of Psychology and Educational Sciences, University of Geneva, CH-1211 Geneva, Switzerland.,Department of Education and Culture of the Canton of Thurgau, CH-8500, Frauenfeld, Switzerland
| | - Markus Gschwind
- Department of Neurology, Geneva University Hospitals, CH-1211 Geneva, Switzerland.,Department of Neuroscience, Campus Biotech, University of Geneva, CH-1202 Geneva, Switzerland
| | - Clara E James
- Faculty of Psychology and Educational Sciences, University of Geneva, CH-1211 Geneva, Switzerland.,Geneva Neuroscience Center, University of Geneva, CH-1211 Geneva, Switzerland.,HES-SO University of Applied Sciences and Arts Western Switzerland, School of Health Sciences, CH-1206 Geneva, Switzerland
| |
Collapse
|
68
|
Davis AD, Hassel S, Arnott SR, Harris J, Lam RW, Milev R, Rotzinger S, Zamyadi M, Frey BN, Minuzzi L, Strother SC, MacQueen GM, Kennedy SH, Hall GB. White Matter Indices of Medication Response in Major Depression: A Diffusion Tensor Imaging Study. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:913-924. [PMID: 31471185 DOI: 10.1016/j.bpsc.2019.05.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 05/28/2019] [Indexed: 01/17/2023]
Abstract
BACKGROUND While response to antidepressants in major depressive disorder is difficult to predict, characterizing the organization and integrity of white matter in the brain with diffusion tensor imaging (DTI) may provide the means to distinguish between antidepressant responders and nonresponders. METHODS DTI data were collected at 6 sites (Canadian Biomarker Integration Network in Depression-1 [CAN-BIND-1 study]) from 200 (127 women) depressed and 112 (71 women) healthy participants at 3 time points: at baseline, 2 weeks, and 8 weeks following initiation of selective serotonin reuptake inhibitor treatment. Therapeutic response was established by a 50% reduction of symptoms at 8 weeks. Analysis on responders, nonresponders, and control subjects yielded 4 scalar metrics: fractional anisotropy and mean, axial, and radial diffusivity. Region-of-interest analysis was carried out on 40 white matter regions using a skeletonization approach. Mixed-effects regression was incorporated to test temporal trends. RESULTS The data acquired at baseline showed that axial diffusivity in the external capsule, which overlaps the superior longitudinal fasciculus, was significantly associated with medication response. Regression analysis revealed further baseline differences of responders compared with nonresponders in the cingulum regions, sagittal stratum, and corona radiata. Additional group differences relative to control subjects were seen in the internal capsule, posterior thalamic radiation, and uncinate fasciculus. Most effect sizes were moderate (near 0.5), with a maximum of 0.76 in the cingulum-hippocampus region. No temporal changes in DTI metrics were observed over the 8-week study period. CONCLUSIONS Several DTI measures of altered white matter specifically distinguished medication responders and nonresponders at baseline and show promise for predicting treatment response in depression.
Collapse
Affiliation(s)
- Andrew D Davis
- Department of Psychology, Neuroscience & Behavior, McMaster University, Hamilton, Ontario, Canada; Imaging Research Center, St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Stefanie Hassel
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Stephen R Arnott
- Rotman Research Institute, Baycrest Centre, Toronto, Ontario, Canada
| | - Jacqueline Harris
- Department of Computer Science, University of Alberta, Edmonton, Alberta, Canada
| | - Raymond W Lam
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Roumen Milev
- Department of Psychology, Queen's University, Kingston, Ontario, Canada; Department of Psychiatry, Queen's University and Providence Care Hospital, Kingston, Ontario, Canada
| | - Susan Rotzinger
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, St. Michael's Hospital, Toronto, Ontario, Canada; Department of Psychiatry, Krembil Research Centre, University Health Network, Toronto, Ontario, Canada; Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Mojdeh Zamyadi
- Rotman Research Institute, Baycrest Centre, Toronto, Ontario, Canada
| | - Benicio N Frey
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada; Women's Health Concerns Clinic, St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Luciano Minuzzi
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada; Women's Health Concerns Clinic, St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Stephen C Strother
- Rotman Research Institute, Baycrest Centre, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Glenda M MacQueen
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sidney H Kennedy
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, St. Michael's Hospital, Toronto, Ontario, Canada; Department of Psychiatry, Krembil Research Centre, University Health Network, Toronto, Ontario, Canada; Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Geoffrey B Hall
- Department of Psychology, Neuroscience & Behavior, McMaster University, Hamilton, Ontario, Canada; Imaging Research Center, St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada.
| |
Collapse
|
69
|
Riva-Posse P, Inman CS, Choi KS, Crowell AL, Gross RE, Hamann S, Mayberg HS. Autonomic arousal elicited by subcallosal cingulate stimulation is explained by white matter connectivity. Brain Stimul 2019; 12:743-751. [DOI: 10.1016/j.brs.2019.01.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 12/11/2018] [Accepted: 01/22/2019] [Indexed: 12/30/2022] Open
|
70
|
Buckner RL, Margulies DS. Macroscale cortical organization and a default-like apex transmodal network in the marmoset monkey. Nat Commun 2019; 10:1976. [PMID: 31036823 PMCID: PMC6488644 DOI: 10.1038/s41467-019-09812-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 03/28/2019] [Indexed: 12/13/2022] Open
Abstract
Networks of widely distributed regions populate human association cortex. One network, often called the default network, is positioned at the apex of a gradient of sequential networks that radiate outward from primary cortex. Here, extensive anatomical data made available through the Marmoset Brain Architecture Project are explored to show a homologue exists in marmoset. Results reveal that a gradient of networks extend outward from primary cortex to progressively higher-order transmodal association cortex in both frontal and temporal cortex. The apex transmodal network comprises frontopolar and rostral temporal association cortex, parahippocampal areas TH / TF, the ventral posterior midline, and lateral parietal association cortex. The positioning of this network in the gradient and its composition of areas make it a candidate homologue to the human default network. That the marmoset, a physiologically- and genetically-accessible primate, might possess a default-network-like candidate creates opportunities for study of higher cognitive and social functions.
Collapse
Affiliation(s)
- Randy L Buckner
- Department of Psychology and Center for Brain Science, Harvard University, Cambridge, MA, 02138, USA.
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA.
| | - Daniel S Margulies
- Centre National de la Recherche Scientifique, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, Paris, 75013, France
| |
Collapse
|
71
|
Rosa MGP, Soares JGM, Chaplin TA, Majka P, Bakola S, Phillips KA, Reser DH, Gattass R. Cortical Afferents of Area 10 in Cebus Monkeys: Implications for the Evolution of the Frontal Pole. Cereb Cortex 2019; 29:1473-1495. [PMID: 29697775 PMCID: PMC6676977 DOI: 10.1093/cercor/bhy044] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/12/2018] [Accepted: 02/07/2018] [Indexed: 01/26/2023] Open
Abstract
Area 10, located in the frontal pole, is a unique specialization of the primate cortex. We studied the cortical connections of area 10 in the New World Cebus monkey, using injections of retrograde tracers in different parts of this area. We found that injections throughout area 10 labeled neurons in a consistent set of areas in the dorsolateral, ventrolateral, orbital, and medial parts of the frontal cortex, superior temporal association cortex, and posterior cingulate/retrosplenial region. However, sites on the midline surface of area 10 received more substantial projections from the temporal lobe, including clear auditory connections, whereas those in more lateral parts received >90% of their afferents from other frontal areas. This difference in anatomical connectivity reflects functional connectivity findings in the human brain. The pattern of connections in Cebus is very similar to that observed in the Old World macaque monkey, despite >40 million years of evolutionary separation, but lacks some of the connections reported in the more closely related but smaller marmoset monkey. These findings suggest that the clearer segregation observed in the human frontal pole reflects regional differences already present in early simian primates, and that overall brain mass influences the pattern of cortico-cortical connectivity.
Collapse
Affiliation(s)
- Marcello G P Rosa
- Department of Physiology, Monash University, Clayton, VIC, Australia
- Neuroscience Program, Biomedicine Research Institute, Monash University, Clayton, VIC, Australia
- Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, Australia
| | - Juliana G M Soares
- Programa de Neurobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tristan A Chaplin
- Department of Physiology, Monash University, Clayton, VIC, Australia
- Neuroscience Program, Biomedicine Research Institute, Monash University, Clayton, VIC, Australia
- Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, Australia
| | - Piotr Majka
- Department of Physiology, Monash University, Clayton, VIC, Australia
- Neuroscience Program, Biomedicine Research Institute, Monash University, Clayton, VIC, Australia
- Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, Australia
- Laboratory of Neuroinformatics, Department of Neurophysiology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, Warsaw, Poland
| | - Sophia Bakola
- Department of Physiology, Monash University, Clayton, VIC, Australia
- Neuroscience Program, Biomedicine Research Institute, Monash University, Clayton, VIC, Australia
- Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, Australia
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Kimberley A Phillips
- Department of Psychology, Trinity University, San Antonio, TX, USA
- USA Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - David H Reser
- Department of Physiology, Monash University, Clayton, VIC, Australia
- Neuroscience Program, Biomedicine Research Institute, Monash University, Clayton, VIC, Australia
- Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, VIC, Australia
- Monash Rural Health, Monash University, Churchill, VIC, Australia
| | - Ricardo Gattass
- Programa de Neurobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
72
|
The Human Ventromedial Prefrontal Cortex: Sulcal Morphology and Its Influence on Functional Organization. J Neurosci 2019; 39:3627-3639. [PMID: 30833514 PMCID: PMC6510347 DOI: 10.1523/jneurosci.2060-18.2019] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 11/21/2018] [Accepted: 01/09/2019] [Indexed: 01/25/2023] Open
Abstract
The ventromedial prefrontal cortex (vmPFC), which comprises several distinct cytoarchitectonic areas, is a key brain region supporting decision-making processes, and it has been shown to be one of the main hubs of the Default Mode Network, a network classically activated during resting state. We here examined the interindividual variability in the vmPFC sulcal morphology in 57 humans (37 females) and demonstrated that the presence/absence of the inferior rostral sulcus and the subgenual intralimbic sulcus influences significantly the sulcal organization of this region. Furthermore, the sulcal organization influences the location of the vmPFC peak of the Default Mode Network, demonstrating that the location of functional activity can be affected by local sulcal patterns. These results are critical for the investigation of the function of the vmPFC and show that taking into account the sulcal variability might be essential to guide the interpretation of neuroimaging studies. SIGNIFICANCE STATEMENT The ventromedial prefrontal cortex (vmPFC) is one of the main hubs of the Default Mode Network and plays a central role in value coding and decision-making. The present study provides a complete description of the interindividual variability of anatomical morphology of this large portion of prefrontal cortex and its relation to functional organization. We have shown that two supplementary medial sulci predominantly determine the organization of the vmPFC, which in turn affects the location of the functional peak of activity in this region. Those results show that taking into account the variability in sulcal patterns might be essential to guide the interpretation of neuroimaging studies of the human brain and of the vmPFC in particular.
Collapse
|
73
|
Verhagen L, Gallea C, Folloni D, Constans C, Jensen DE, Ahnine H, Roumazeilles L, Santin M, Ahmed B, Lehericy S, Klein-Flügge MC, Krug K, Mars RB, Rushworth MF, Pouget P, Aubry JF, Sallet J. Offline impact of transcranial focused ultrasound on cortical activation in primates. eLife 2019; 8:40541. [PMID: 30747105 DOI: 10.7554/elife.40541.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 01/26/2019] [Indexed: 05/23/2023] Open
Abstract
To understand brain circuits it is necessary both to record and manipulate their activity. Transcranial ultrasound stimulation (TUS) is a promising non-invasive brain stimulation technique. To date, investigations report short-lived neuromodulatory effects, but to deliver on its full potential for research and therapy, ultrasound protocols are required that induce longer-lasting 'offline' changes. Here, we present a TUS protocol that modulates brain activation in macaques for more than one hour after 40 s of stimulation, while circumventing auditory confounds. Normally activity in brain areas reflects activity in interconnected regions but TUS caused stimulated areas to interact more selectively with the rest of the brain. In a within-subject design, we observe regionally specific TUS effects for two medial frontal brain regions - supplementary motor area and frontal polar cortex. Independently of these site-specific effects, TUS also induced signal changes in the meningeal compartment. TUS effects were temporary and not associated with microstructural changes.
Collapse
Affiliation(s)
- Lennart Verhagen
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Cécile Gallea
- Institute du Cerveau et de la Moelle épinière (ICM), Centre for NeuroImaging Research (CENIR), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| | - Davide Folloni
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Charlotte Constans
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Daria Ea Jensen
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Harry Ahnine
- Institute du Cerveau et de la Moelle épinière (ICM), Centre for NeuroImaging Research (CENIR), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| | - Léa Roumazeilles
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Mathieu Santin
- Institute du Cerveau et de la Moelle épinière (ICM), Centre for NeuroImaging Research (CENIR), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| | - Bashir Ahmed
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Stéphane Lehericy
- Institute du Cerveau et de la Moelle épinière (ICM), Centre for NeuroImaging Research (CENIR), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| | - Miriam C Klein-Flügge
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Kristine Krug
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Matthew Fs Rushworth
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Pierre Pouget
- Institute du Cerveau et de la Moelle épinière (ICM), UMRS 975 INSERM, CNRS 7225, UMPC, Paris, France
| | - Jean-François Aubry
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, Paris, France
| | - Jerome Sallet
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
74
|
Verhagen L, Gallea C, Folloni D, Constans C, Jensen DEA, Ahnine H, Roumazeilles L, Santin M, Ahmed B, Lehericy S, Klein-Flügge MC, Krug K, Mars RB, Rushworth MFS, Pouget P, Aubry JF, Sallet J. Offline impact of transcranial focused ultrasound on cortical activation in primates. eLife 2019; 8:e40541. [PMID: 30747105 PMCID: PMC6372282 DOI: 10.7554/elife.40541] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 01/26/2019] [Indexed: 12/17/2022] Open
Abstract
To understand brain circuits it is necessary both to record and manipulate their activity. Transcranial ultrasound stimulation (TUS) is a promising non-invasive brain stimulation technique. To date, investigations report short-lived neuromodulatory effects, but to deliver on its full potential for research and therapy, ultrasound protocols are required that induce longer-lasting 'offline' changes. Here, we present a TUS protocol that modulates brain activation in macaques for more than one hour after 40 s of stimulation, while circumventing auditory confounds. Normally activity in brain areas reflects activity in interconnected regions but TUS caused stimulated areas to interact more selectively with the rest of the brain. In a within-subject design, we observe regionally specific TUS effects for two medial frontal brain regions - supplementary motor area and frontal polar cortex. Independently of these site-specific effects, TUS also induced signal changes in the meningeal compartment. TUS effects were temporary and not associated with microstructural changes.
Collapse
Affiliation(s)
- Lennart Verhagen
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental PsychologyUniversity of OxfordOxfordUnited Kingdom
- Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical NeurosciencesJohn Radcliffe Hospital, University of OxfordOxfordUnited Kingdom
| | - Cécile Gallea
- Institute du Cerveau et de la Moelle épinière (ICM), Centre for NeuroImaging Research (CENIR)Inserm U 1127, CNRS UMR 7225, Sorbonne UniversitéParisFrance
| | - Davide Folloni
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental PsychologyUniversity of OxfordOxfordUnited Kingdom
- Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical NeurosciencesJohn Radcliffe Hospital, University of OxfordOxfordUnited Kingdom
| | - Charlotte Constans
- Physics for Medicine ParisInserm, ESPCI Paris, CNRS, PSL Research University, Université Paris Diderot, Sorbonne Paris CitéParisFrance
| | - Daria EA Jensen
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental PsychologyUniversity of OxfordOxfordUnited Kingdom
- Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical NeurosciencesJohn Radcliffe Hospital, University of OxfordOxfordUnited Kingdom
| | - Harry Ahnine
- Institute du Cerveau et de la Moelle épinière (ICM), Centre for NeuroImaging Research (CENIR)Inserm U 1127, CNRS UMR 7225, Sorbonne UniversitéParisFrance
| | - Léa Roumazeilles
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental PsychologyUniversity of OxfordOxfordUnited Kingdom
- Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical NeurosciencesJohn Radcliffe Hospital, University of OxfordOxfordUnited Kingdom
| | - Mathieu Santin
- Institute du Cerveau et de la Moelle épinière (ICM), Centre for NeuroImaging Research (CENIR)Inserm U 1127, CNRS UMR 7225, Sorbonne UniversitéParisFrance
| | - Bashir Ahmed
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUnited Kingdom
| | - Stéphane Lehericy
- Institute du Cerveau et de la Moelle épinière (ICM), Centre for NeuroImaging Research (CENIR)Inserm U 1127, CNRS UMR 7225, Sorbonne UniversitéParisFrance
| | - Miriam C Klein-Flügge
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental PsychologyUniversity of OxfordOxfordUnited Kingdom
- Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical NeurosciencesJohn Radcliffe Hospital, University of OxfordOxfordUnited Kingdom
| | - Kristine Krug
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUnited Kingdom
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical NeurosciencesJohn Radcliffe Hospital, University of OxfordOxfordUnited Kingdom
- Donders Institute for Brain, Cognition and BehaviourRadboud University NijmegenNijmegenThe Netherlands
| | - Matthew FS Rushworth
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental PsychologyUniversity of OxfordOxfordUnited Kingdom
- Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical NeurosciencesJohn Radcliffe Hospital, University of OxfordOxfordUnited Kingdom
| | - Pierre Pouget
- Institute du Cerveau et de la Moelle épinière (ICM)UMRS 975 INSERM, CNRS 7225, UMPCParisFrance
| | - Jean-François Aubry
- Physics for Medicine ParisInserm, ESPCI Paris, CNRS, PSL Research UniversityParisFrance
| | - Jerome Sallet
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental PsychologyUniversity of OxfordOxfordUnited Kingdom
- Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical NeurosciencesJohn Radcliffe Hospital, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
75
|
Inhibitory control mediates a negative relationship between body mass index and intelligence: A neurocognitive investigation. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2019; 19:392-408. [PMID: 30725324 DOI: 10.3758/s13415-019-00695-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The structure and function of the human brain is closely related to cognitive processes of the mind and physiological processes of the body, suggesting that an intricate relationship exists between cognitive health, body health, and underlying neural architecture. In the current study, morphometric differences in cortical and subcortical gray matter regions, white matter integrity, and resting-state functional connectivity was assessed to determine what combinations of neural variables best explain an interconnected behavioral relationship between body mass index (BMI), general intelligence, and specific measures of executive function. Data for 82 subjects were obtained from the Nathan Kline Institute Rockland Sample. Behavioral results indicated a negative relationship between BMI and intelligence, which exhibited mediation by an inhibitory measure of executive function. Neural analyses further revealed generally contrasting associations of BMI, intelligence, and executive function with cortical morphometric regions important for inhibitory control and directed attention. Moreover, BMI related to morphometric alterations in components of a frontolimbic network, namely reduced thickness in the anterior cingulate cortex and ventromedial prefrontal cortex, whereas intelligence and inhibitory control primarily related to increased thickness and volume in parietal regions, as well as significantly increased across-network connectivity of visual and default mode resting-state networks. These results propose that medial prefrontal structure and interconnected frontolimbic and frontoparietal networks are important to consider in the relationship between BMI, intelligence, and executive function.
Collapse
|
76
|
Vahdat S, Darainy M, Thiel A, Ostry DJ. A Single Session of Robot-Controlled Proprioceptive Training Modulates Functional Connectivity of Sensory Motor Networks and Improves Reaching Accuracy in Chronic Stroke. Neurorehabil Neural Repair 2018; 33:70-81. [PMID: 30595082 DOI: 10.1177/1545968318818902] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Passive robot-generated arm movements in conjunction with proprioceptive decision making and feedback modulate functional connectivity (FC) in sensory motor networks and improve sensorimotor adaptation in normal individuals. This proof-of-principle study investigates whether these effects can be observed in stroke patients. METHODS A total of 10 chronic stroke patients with a range of stable motor and sensory deficits (Fugl-Meyer Arm score [FMA] 0-65, Nottingham Sensory Assessment [NSA] 10-40) underwent resting-state functional magnetic resonance imaging before and after a single session of robot-controlled proprioceptive training with feedback. Changes in FC were identified in each patient using independent component analysis as well as a seed region-based approach. FC changes were related to impairment and changes in task performance were assessed. RESULTS A single training session improved average arm reaching accuracy in 6 and proprioception in 8 patients. Two networks showing training-associated FC change were identified. Network C1 was present in all patients and network C2 only in patients with FM scores >7. Relatively larger C1 volume in the ipsilesional hemisphere was associated with less impairment ( r = 0.83 for NSA, r = 0.73 for FMA). This association was driven by specific regions in the contralesional hemisphere and their functional connections (supramarginal gyrus with FM scores r = 0.82, S1 with NSA scores r = 0.70, and cerebellum with NSA score r = -0.82). CONCLUSION A single session of robot-controlled proprioceptive training with feedback improved movement accuracy and induced FC changes in sensory motor networks of chronic stroke patients. FC changes are related to functional impairment and comprise bilateral sensory and motor network nodes.
Collapse
Affiliation(s)
- Shahabeddin Vahdat
- 1 McGill University, Montréal, QC, Canada
- 2 University of Montréal, Montréal, QC, Canada
| | | | - Alexander Thiel
- 1 McGill University, Montréal, QC, Canada
- 3 Jewish General Hospital and Lady Davis Institute for Medical Research, Montréal, QC, Canada
| | - David J Ostry
- 1 McGill University, Montréal, QC, Canada
- 4 Haskins Laboratories, New Haven, CT, USA
| |
Collapse
|
77
|
Hanlon CA, Shannon EE, Porrino LJ. Brain activity associated with social exclusion overlaps with drug-related frontal-striatal circuitry in cocaine users: A pilot study. Neurobiol Stress 2018; 10:100137. [PMID: 30937344 PMCID: PMC6430184 DOI: 10.1016/j.ynstr.2018.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/24/2018] [Accepted: 10/29/2018] [Indexed: 12/31/2022] Open
Abstract
Background Exposure to various types of stress can elevate craving for cocaine and hasten relapse among substance dependent individuals. This investigation evaluated the effects of social exclusion on brain activity in cocaine dependent individuals. Method Forty three individuals (18 crack-cocaine users, 25 controls) were recruited from the community to participate in functional neuroimaging study in which they performed a simulated 3 person ball-tossing game (Cyberball). Each participant was told that the other 2 players were in nearby MRI scanners. Task blocks included: Inclusion (likelihood of our participant receiving the ball = 50%), Exclusion (likelihood gradually decreases to 0%), and Rest. Self-worth variables (e.g self-esteem, locus of control) were measured before and after the ball-tossing game. General linear model-based statistics were used to measure the brain response to inclusion and exclusion within and between the groups with respect to rest. Results Relative to controls, cocaine users had significantly more activity during Exclusion versus Inclusion in 3 areas: the right medial frontal gyrus (Brodmann Area 9,10), left ventral lateral frontal gyrus (Brodmann Area 10,47) and right caudate. This was driven by a higher response to social exclusion in the cocaine users. There was no difference between groups in the brain reactivity to social inclusion. Conclusion Cocaine dependent individuals have an amplified brain response to social exclusion stress in cortical regions associated with emotional regulation, arousal, craving and perception of physical pain. These data suggest that there may be a neurological basis for the well-established relationship between social stress and addiction.
Collapse
Affiliation(s)
- Colleen A Hanlon
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA.,Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Erin E Shannon
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Linda J Porrino
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| |
Collapse
|
78
|
Health, pre-disease and critical transition to disease in the psycho-immune-neuroendocrine network: Are there distinct states in the progression from health to major depressive disorder? Physiol Behav 2018; 198:108-119. [PMID: 30393143 DOI: 10.1016/j.physbeh.2018.10.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/01/2018] [Accepted: 10/25/2018] [Indexed: 01/03/2023]
Abstract
The psycho-immune-neuroendocrine (PINE) network is a regulatory network of interrelated physiological pathways that have been implicated in major depressive disorder (MDD). A model of disease progression for MDD is presented where the stable, healthy state of the PINE network (PINE physiome) undergoes progressive pathophysiological changes to an unstable but reversible pre-disease state (PINE pre-diseasome) with chronic stress. The PINE network may then undergo critical transition to a stable, possibly irreversible disease state of MDD (PINE pathome). Critical transition to disease is heralded by early warning signs which are detectible by biomarkers specific to the PINE network and may be used as a screening test for MDD. Critical transition to MDD may be different for each individual, as it is reliant on diathesis, which comprises genetic predisposition, intrauterine and developmental factors. Finally, we propose the PINE pre-disease state may form a "universal pre-disease state" for several non-communicable diseases (NCDs), and critical transition of the PINE network may lead to one of several frequently associated disease states (influenced by diathesis), supporting the existence of a common Chronic Illness Risk Network (CIRN). This may provide insight into both the puzzle of multifinality and the growing clinical challenge of multimorbidity.
Collapse
|
79
|
Peng K, Yücel MA, Steele SC, Bittner EA, Aasted CM, Hoeft MA, Lee A, George EE, Boas DA, Becerra L, Borsook D. Morphine Attenuates fNIRS Signal Associated With Painful Stimuli in the Medial Frontopolar Cortex (medial BA 10). Front Hum Neurosci 2018; 12:394. [PMID: 30349466 PMCID: PMC6186992 DOI: 10.3389/fnhum.2018.00394] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/12/2018] [Indexed: 11/26/2022] Open
Abstract
Functional near infrared spectroscopy (fNIRS) is a non-invasive optical imaging method that provides continuous measure of cortical brain functions. One application has been its use in the evaluation of pain. Previous studies have delineated a deoxygenation process associated with pain in the medial anterior prefrontal region, more specifically, the medial Brodmann Area 10 (BA 10). Such response to painful stimuli has been consistently observed in awake, sedated and anesthetized patients. In this study, we administered oral morphine (15 mg) or placebo to 14 healthy male volunteers with no history of pain or opioid abuse in a crossover double blind design, and performed fNIRS scans prior to and after the administration to assess the effect of morphine on the medial BA 10 pain signal. Morphine is the gold standard for inhibiting nociceptive processing, most well described for brain effects on sensory and emotional regions including the insula, the somatosensory cortex (the primary somatosensory cortex, S1, and the secondary somatosensory cortex, S2), and the anterior cingulate cortex (ACC). Our results showed an attenuation effect of morphine on the fNIRS-measured pain signal in the medial BA 10, as well as in the contralateral S1 (although observed in a smaller number of subjects). Notably, the extent of signal attenuation corresponded with the temporal profile of the reported plasma concentration for the drug. No clear attenuation by morphine on the medial BA 10 response to innocuous stimuli was observed. These results provide further evidence for the role of medial BA 10 in the processing of pain, and also suggest that fNIRS may be used as an objective measure of drug-brain profiles independent of subjective reports.
Collapse
Affiliation(s)
- Ke Peng
- Center for Pain and the Brain, Harvard Medical School, Boston, MA, United States
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Meryem A. Yücel
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Neurophotonics Center, Boston University, Boston, MA, United States
| | - Sarah C. Steele
- Center for Pain and the Brain, Harvard Medical School, Boston, MA, United States
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Edward A. Bittner
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Christopher M. Aasted
- Center for Pain and the Brain, Harvard Medical School, Boston, MA, United States
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Mark A. Hoeft
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Arielle Lee
- Center for Pain and the Brain, Harvard Medical School, Boston, MA, United States
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Edward E. George
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - David A. Boas
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Neurophotonics Center, Boston University, Boston, MA, United States
| | - Lino Becerra
- Center for Pain and the Brain, Harvard Medical School, Boston, MA, United States
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - David Borsook
- Center for Pain and the Brain, Harvard Medical School, Boston, MA, United States
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
80
|
Joshi G, Arnold Anteraper S, Patil KR, Semwal M, Goldin RL, Furtak SL, Chai XJ, Saygin ZM, Gabrieli JDE, Biederman J, Whitfield-Gabrieli S. Integration and Segregation of Default Mode Network Resting-State Functional Connectivity in Transition-Age Males with High-Functioning Autism Spectrum Disorder: A Proof-of-Concept Study. Brain Connect 2018; 7:558-573. [PMID: 28942672 DOI: 10.1089/brain.2016.0483] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The aim of this study is to assess the resting-state functional connectivity (RsFc) profile of the default mode network (DMN) in transition-age males with autism spectrum disorder (ASD). Resting-state blood oxygen level-dependent functional magnetic resonance imaging data were acquired from adolescent and young adult males with high-functioning ASD (n = 15) and from age-, sex-, and intelligence quotient-matched healthy controls (HCs; n = 16). The DMN was examined by assessing the positive and negative RsFc correlations of an average of the literature-based conceptualized major DMN nodes (medial prefrontal cortex [mPFC], posterior cingulate cortex, bilateral angular, and inferior temporal gyrus regions). RsFc data analysis was performed using a seed-driven approach. ASD was characterized by an altered pattern of RsFc in the DMN. The ASD group exhibited a weaker pattern of intra- and extra-DMN-positive and -negative RsFc correlations, respectively. In ASD, the strength of intra-DMN coupling was significantly reduced with the mPFC and the bilateral angular gyrus regions. In addition, the polarity of the extra-DMN correlation with the right hemispheric task-positive regions of fusiform gyrus and supramarginal gyrus was reversed from typically negative to positive in the ASD group. A wide variability was observed in the presentation of the RsFc profile of the DMN in both HC and ASD groups that revealed a distinct pattern of subgrouping using pattern recognition analyses. These findings imply that the functional architecture profile of the DMN is altered in ASD with weaker than expected integration and segregation of DMN RsFc. Future studies with larger sample sizes are warranted.
Collapse
Affiliation(s)
- Gagan Joshi
- 1 Alan and Lorraine Bressler Clinical and Research Program for Autism Spectrum Disorder, Massachusetts General Hospital , Boston, Massachusetts
- 2 Department of Psychiatry, Harvard Medical School , Boston, Massachusetts
- 3 McGovern Institute for Brain Research, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | - Sheeba Arnold Anteraper
- 1 Alan and Lorraine Bressler Clinical and Research Program for Autism Spectrum Disorder, Massachusetts General Hospital , Boston, Massachusetts
- 3 McGovern Institute for Brain Research, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | - Kaustubh R Patil
- 1 Alan and Lorraine Bressler Clinical and Research Program for Autism Spectrum Disorder, Massachusetts General Hospital , Boston, Massachusetts
| | - Meha Semwal
- 1 Alan and Lorraine Bressler Clinical and Research Program for Autism Spectrum Disorder, Massachusetts General Hospital , Boston, Massachusetts
| | - Rachel L Goldin
- 1 Alan and Lorraine Bressler Clinical and Research Program for Autism Spectrum Disorder, Massachusetts General Hospital , Boston, Massachusetts
| | - Stephannie L Furtak
- 1 Alan and Lorraine Bressler Clinical and Research Program for Autism Spectrum Disorder, Massachusetts General Hospital , Boston, Massachusetts
| | | | - Zeynep M Saygin
- 3 McGovern Institute for Brain Research, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | - John D E Gabrieli
- 3 McGovern Institute for Brain Research, Massachusetts Institute of Technology , Cambridge, Massachusetts
- 5 Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | - Joseph Biederman
- 1 Alan and Lorraine Bressler Clinical and Research Program for Autism Spectrum Disorder, Massachusetts General Hospital , Boston, Massachusetts
- 2 Department of Psychiatry, Harvard Medical School , Boston, Massachusetts
| | - Susan Whitfield-Gabrieli
- 3 McGovern Institute for Brain Research, Massachusetts Institute of Technology , Cambridge, Massachusetts
- 5 Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology , Cambridge, Massachusetts
| |
Collapse
|
81
|
Hagiwara K, Perchet C, Frot M, Bastuji H, Garcia-Larrea L. Insular-limbic dissociation to intra-epidermal electrical Aδ activation: A comparative study with thermo-nociceptive laser stimulation. Eur J Neurosci 2018; 48:3186-3198. [PMID: 30203624 DOI: 10.1111/ejn.14146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/17/2018] [Accepted: 08/31/2018] [Indexed: 01/12/2023]
Abstract
Intra-epidermal electrical stimulation (IEES) has been shown to activate selectively Aδ fibers subserving spinothalamic-mediated sensations. Owing to electrically induced highly synchronous afferent volleys, IEES induces Aδ-mediated evoked potentials at nonpainful intensities, contrasting with thermo-nociceptive laser pulses which entail painful pricking sensations. Here, we recorded intracortical responses from sensory and limbic-cognitive regions of human subjects in response to IEE and laser stimuli, in order to test the hypothesis that IEES could dissociate the sensory from nonsensory networks of nociceptive processing. Intracortical evoked potentials were obtained in 11 epileptic patients with stereotactically implanted electrodes in sensory regions receiving spinothalamic afferents (posterior insula), limbic regions receiving spino-parabrachial input (amygdalar nucleus), and high-order affective-cognitive regions (anteromedial frontal cortex, including perigenual anterior cingulate and rostromedial prefrontal areas). Responses in the sensory posterior insula were of similar amplitude and latency to IEE and laser stimuli (after accounting for heat-transduction time of laser), and consistent in both cases with spinothalamic activation. However, responses to IEES in the amygdala and the anteromedial frontal regions were inconsistent and significantly smaller compared to those evoked to the laser stimulation. Thus, IEES can effectively activate the spinothalamic-sensory system with little recruitment of affective-motivational networks, including those triggered by spino-parabrachio-amygdalar projections. The fact that identical sensory responses were associated to either painful or nonpainful percepts underscores that subjective pain perception is not solely dependent on the sensory recruitment, but rather on the combined activation of sensory, limbic and cognitive areas with precise spatiotemporal relations.
Collapse
Affiliation(s)
- Koichi Hagiwara
- Central Integration of Pain (NeuroPain) Lab-Lyon Neuroscience Research Center, INSERM U1028, CNRS, UMR5292, Université Claude Bernard, Bron, France.,Department of Clinical Neurophysiology, Neurological Institute, Faculty of Medicine, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | - Caroline Perchet
- Central Integration of Pain (NeuroPain) Lab-Lyon Neuroscience Research Center, INSERM U1028, CNRS, UMR5292, Université Claude Bernard, Bron, France
| | - Maud Frot
- Central Integration of Pain (NeuroPain) Lab-Lyon Neuroscience Research Center, INSERM U1028, CNRS, UMR5292, Université Claude Bernard, Bron, France
| | - Hélène Bastuji
- Central Integration of Pain (NeuroPain) Lab-Lyon Neuroscience Research Center, INSERM U1028, CNRS, UMR5292, Université Claude Bernard, Bron, France.,Unité D'Hypnologie, Service de Neurologie Fonctionnelle et d'Épileptologie, Hôpital Neurologique, Hospices Civils de Lyon, Bron, France
| | - Luis Garcia-Larrea
- Central Integration of Pain (NeuroPain) Lab-Lyon Neuroscience Research Center, INSERM U1028, CNRS, UMR5292, Université Claude Bernard, Bron, France.,Centre D'évaluation et de Traitement de la Douleur, Hôpital Neurologique, Lyon, France
| |
Collapse
|
82
|
Barrash J, Stuss DT, Aksan N, Anderson SW, Jones RD, Manzel K, Tranel D. "Frontal lobe syndrome"? Subtypes of acquired personality disturbances in patients with focal brain damage. Cortex 2018; 106:65-80. [PMID: 29883878 PMCID: PMC6120760 DOI: 10.1016/j.cortex.2018.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/29/2018] [Accepted: 05/02/2018] [Indexed: 11/30/2022]
Abstract
Conceptualizations of the nature of acquired personality disturbances after brain damage, especially to prefrontal cortex, have progressed from clinical observations of a large, disparate set of disturbances to theories concerning neuroanatomically-based subgroups with prefrontal damage. However, hypothesized subtypes have not yet been studied systematically. Based on our previous investigations of acquired personality disturbances, we hypothesized five subtypes of acquired personality disturbances: Executive Disturbances, Disturbed Social Behavior, Emotional Dysregulation, Hypo-emotionality/De-Energization, and Distress, as well as an undisturbed group. Subtypes were investigated in 194 adults with chronic, stable, focal lesions located in various aspects of prefrontal lobes and elsewhere in the brain, using two different cluster analysis techniques applied to ratings on the Iowa Scales of Personality Change. One technique was a hypothesis-driven approach; the other was a set of strictly empirical analyses to assess the robustness of clusters found in the first analysis. The hypothesis-driven analysis largely supported the hypothesized set of subtypes. However, in contrast to the hypothesis, it suggested that disturbed social behavior and emotional dysregulation are not two distinct subtypes, but two aspects of one multifaceted type of disturbance. Additionally, the so-labeled "executive disturbances" group also showed disturbances in other domains. Results from the second (empirical) set of cluster analyses were consistent with findings from the hypothesis-driven cluster analysis. Overall, findings across the two cluster analyses indicated four subtypes of acquired personality disturbances: (1) executive disturbances in association with generalized disturbance, (2) dysregulation of emotions and behavior, (3) hypo-emotionality and de-energization, and (4) distress/anxiety. These findings show strong correspondence with subtypes suggested by prominent models of prefrontal systems based on neuroanatomically-defined circuits. Clarification of distinctive subtypes of acquired personality disturbances is a step toward enhancing our ability to tailor rehabilitative interventions for patients with prefrontal brain injuries.
Collapse
Affiliation(s)
- Joseph Barrash
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA.
| | - Donald T Stuss
- Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Rotman Research Institute of Baycrest, Toronto, Ontario, Canada
| | - Nazan Aksan
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Steven W Anderson
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Robert D Jones
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Kenneth Manzel
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Daniel Tranel
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
83
|
Rizzo G, Milardi D, Bertino S, Basile GA, Di Mauro D, Calamuneri A, Chillemi G, Silvestri G, Anastasi G, Bramanti A, Cacciola A. The Limbic and Sensorimotor Pathways of the Human Amygdala: A Structural Connectivity Study. Neuroscience 2018; 385:166-180. [DOI: 10.1016/j.neuroscience.2018.05.051] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 05/28/2018] [Accepted: 05/31/2018] [Indexed: 12/21/2022]
|
84
|
Ishikuro K, Dougu N, Nukui T, Yamamoto M, Nakatsuji Y, Kuroda S, Matsushita I, Nishimaru H, Araujo MFP, Nishijo H. Effects of Transcranial Direct Current Stimulation (tDCS) Over the Frontal Polar Area on Motor and Executive Functions in Parkinson's Disease; A Pilot Study. Front Aging Neurosci 2018; 10:231. [PMID: 30104971 PMCID: PMC6077209 DOI: 10.3389/fnagi.2018.00231] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/17/2018] [Indexed: 12/19/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder with motor and non-motor symptoms due to degeneration of dopaminergic neurons. The current pharmacological treatments induce complications associated with long-term use. However, current stimulation techniques for PD treatment, such as deep brain stimulation (DBS), are too invasive. In this context, non-invasive brain stimulation including transcranial direct current stimulation (tDCS) may be a safe and effective alternative treatment for PD. We previously reported that anodal tDCS over the frontal polar area (FPA) improved motor functions in heathy subjects. Therefore, in the present study, effects of tDCS over the FPA on motor and cognitive functions of PD patients were analyzed. Nine PD patients (3 men and 6 women) participated in this cross over study with three tDCS protocols; anodal, cathodal or sham tDCS over the FPA. Each tDCS protocol was applied for 1 week (5 times/week). Before and after each protocol, motor and cognitive functions of the patients were assessed using Unified PD Rating Scale [UPDRS (part III: motor examination)], Fugl Meyer Assessment set (FMA), Simple Test for Evaluating hand Function (STEF) and Trail Making Test A (TMT-A). The results indicated that anodal stimulation significantly decreased scores of motor disability in UPDRS-III compared with sham and cathodal stimulation, and significantly increased scores of motor functions in FMA compared with sham stimulation. Furthermore, anodal stimulation significantly decreased time to complete a motor task requiring high dexterity in STEF compared with those requiring low and medium levels of dexterity. In addition, anodal stimulation significantly decreased time to complete the TMT-A task, which requires executive functions, compared with sham stimulation. To the best of our knowledge, this is the first clinical research reporting that tDCS over the FPA successfully improved the motor and non-motor functions in PD patients. These findings suggest that tDCS over the FPA might be a useful alternative for the treatment of PD patients.
Collapse
Affiliation(s)
- Koji Ishikuro
- Rehabilitation Department, Toyama University Hospital, Toyama, Japan
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Nobuhiro Dougu
- Department of Neuropathic Internal Medicine Neurology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Takamasa Nukui
- Department of Neuropathic Internal Medicine Neurology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Mamoru Yamamoto
- Department of Neuropathic Internal Medicine Neurology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yuji Nakatsuji
- Department of Neuropathic Internal Medicine Neurology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Satoshi Kuroda
- Department of Neurosurgery, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Isao Matsushita
- Rehabilitation Department, Toyama University Hospital, Toyama, Japan
| | - Hiroshi Nishimaru
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Mariana F. P. Araujo
- Graduate Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaiba, Brazil
| | - Hisao Nishijo
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
85
|
Gray DT, Umapathy L, Burke SN, Trouard TP, Barnes CA. Tract-Specific White Matter Correlates of Age-Related Reward Devaluation Deficits in Macaque Monkeys. ACTA ACUST UNITED AC 2018; 3:13-26. [PMID: 30198011 PMCID: PMC6126381 DOI: 10.17756/jnpn.2018-023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aim: Cognitive aging is known to alter reward-guided behaviors that require interactions between the orbitofrontal cortex (OFC) and amygdala. In macaques, OFC, but not amygdala volumes decline with age and correlate with performance on a reward devaluation (RD) task. The present study used diffusion magnetic resonance imaging (dMRI) methods to investigate whether the condition of the white matter associated with amygdala-OFC connectivity changes with age and relates to reward devaluation. Methods: Diffusion-, T1- and T2-weighted MRIs were acquired from adult and aged bonnet macaques. Using probabilistic tractography, fractional anisotropy (FA) estimates from two separate white matter tracts associated with amygdala-OFC connectivity, the uncinate fasciculus (UF) and amygdalofugal (AF) pathways, were obtained. Performance measures on RD and reversal learning (RL) tasks were also acquired and related to FA indices from each anatomical tract. Results: Aged monkeys were impaired on both the RD and RL tasks and had lower FA indices in the AF pathway. Higher FA indices from the right hemisphere UF pathway correlated with better performance on an object-based RD task, whereas higher FA indices from the right hemisphere AF were associated with better performance on an object-free version of the task. FA measures from neither tract correlated with RL performance. Conclusions: These results suggest that the condition of the white matter connecting the amygdala and OFC may impact reward devaluation behaviors. Furthermore, the observation that FA indices from the UF and AF differentially relate to reward devaluation suggests that the amygdala-OFC interactions that occur via these separate tracts are partially independent.
Collapse
Affiliation(s)
- Daniel T Gray
- Division of Neural System, Memory & Aging, University of Arizona, Tucson, AZ, USA.,Evelyn F McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | - Lavanya Umapathy
- Electrical and Computer Engineering, University of Arizona, Tucson, AZ, USA
| | - Sara N Burke
- Evelyn F McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Theodore P Trouard
- Evelyn F McKnight Brain Institute, University of Arizona, Tucson, AZ, USA.,Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA
| | - Carol A Barnes
- Division of Neural System, Memory & Aging, University of Arizona, Tucson, AZ, USA.,Evelyn F McKnight Brain Institute, University of Arizona, Tucson, AZ, USA.,Departments of Psychology, Neurology and Neuroscience, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
86
|
Lemaitre AL, Lafargue G, Duffau H, Herbet G. Damage to the left uncinate fasciculus is associated with heightened schizotypal traits: A multimodal lesion-mapping study. Schizophr Res 2018; 197:240-248. [PMID: 29499963 DOI: 10.1016/j.schres.2018.02.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/07/2018] [Accepted: 02/17/2018] [Indexed: 12/11/2022]
Abstract
A growing body of evidence suggests that individuals with pronounced schizotypal traits also display particular neurophysiological and morphological features - notably with regard to left frontotemporal connectivity. However, the studies published to date have focused on subclinical subjects and psychiatric patients, rather than brain-damaged patients. Here, we used the French version of the Schizotypal Personality Questionnaire to assess schizotypal traits in a sample of 97 patients having undergone surgical resection of a diffuse low-grade glioma. Patients having received other neurooncological treatments (including chemotherapy and radiotherapy) were not included. A combination of ROI-based based voxel-wise and tract-wise lesion-symptom mapping and a disconnectome analysis were performed, in order to identify the putative neural network associated with schizotypy. The ROI-based lesion-symptom mapping revealed a significant relationship between the cognitive-perceptual (positive) dimension of schizotypy and the left inferior gyrus (including the pars opercularis and the pars orbitalis). Importantly, we found that disconnection of the left uncinate fasciculus (UF) was a powerful predictor of the positive dimension of schizotypy. Lastly, the disconnection analysis indicated that the positive dimension of schizotypy was significantly associated with the white matter fibres deep in the left orbital and inferior frontal gyri and the left superior temporal pole, which mainly correspond to the spatial topography of the left UF. Taken as a whole, our results suggest that dysconnectivity of the neural network supplied by the left UF is associated with heightened positive schizotypal traits. Our new findings may be of value in interpreting current research in the field of biological psychiatry.
Collapse
Affiliation(s)
- Anne-Laure Lemaitre
- Univ. Lille, EA 4072 - PSITEC - Psychologie: Interactions, Temps, Emotions, Cognition, F-59000 Lille, France; Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, F-34295 Montpellier, France
| | - Gilles Lafargue
- Laboratoire Cognition, Santé, Société, C2S, EA 6291, Université de Reims Champagne-Ardenne, F-51096 Reims, France
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, F-34295 Montpellier, France; Institute for Neuroscience of Montpellier, INSERM U1051 (Plasticity of Central Nervous System, Human Stem Cells and Glial Tumors research group), Saint Eloi Hospital, Montpellier University Medical Center, F-34091 Montpellier, France; University of Montpellier, F-34090 Montpellier, France
| | - Guillaume Herbet
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, F-34295 Montpellier, France; Institute for Neuroscience of Montpellier, INSERM U1051 (Plasticity of Central Nervous System, Human Stem Cells and Glial Tumors research group), Saint Eloi Hospital, Montpellier University Medical Center, F-34091 Montpellier, France; University of Montpellier, F-34090 Montpellier, France.
| |
Collapse
|
87
|
Apps MAJ, Ramnani N. Contributions of the Medial Prefrontal Cortex to Social Influence in Economic Decision-Making. Cereb Cortex 2018; 27:4635-4648. [PMID: 28922858 DOI: 10.1093/cercor/bhx183] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Indexed: 01/10/2023] Open
Abstract
Economic decisions are guided by highly subjective reward valuations (SVs). Often these SVs are over-ridden when individuals conform to social norms. Yet, the neural mechanisms that underpin the distinct processing of such normative reward valuations (NVs) are poorly understood. The dorsomedial and ventromedial portions of the prefrontal cortex (dmPFC/vmPFC) are putatively key regions for processing social and economic information respectively. However, the contribution of these regions to economic decisions guided by social norms is unclear. Using functional magnetic resonance imaging and computational modeling we examine the neural mechanisms underlying the processing of SVs and NVs. Subjects (n = 15) indicated either their own economic preferences or made similar choices based on a social norm-learnt during a training session. We found that that the vmPFC and dmPFC make dissociable contributions to the processing of SV and NV. Regions of the dmPFC processed "only" the value of rewards when making normative choices. In contrast, we identify a novel mechanism in the vmPFC for the coding of value. This region signaled both subjective and normative valuations, but activity was scaled positively for SV and negatively for NV. These results highlight some of the key mechanisms that underpin conformity and social influence in economic decision-making.
Collapse
Affiliation(s)
- M A J Apps
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, UK.,Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX3 9DU, UK.,Department of Psychology, Royal Holloway, University of London TWO 0EX, UK
| | - N Ramnani
- Department of Psychology, Royal Holloway, University of London TWO 0EX, UK
| |
Collapse
|
88
|
Cona G, Laera G, Edelstyn N, Bisiacchi PS. Deficits in prospective memory following damage to the medial subdivision of the mediodorsal thalamic nucleus. J Neuropsychol 2018; 13:398-416. [PMID: 29604176 DOI: 10.1111/jnp.12154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/20/2018] [Indexed: 11/27/2022]
Abstract
Identifying the neurocognitive mechanisms that lead individuals remembering to execute an intention at the right moment (prospective memory, PM) and how such mechanisms are influenced by the features of that intention is a fundamental theoretical challenge. In particular, the functional contribution of subcortical regions to PM is still unknown. This study was aimed at investigating the role of the medial subdivision of the mediodorsal thalamic nucleus (mMDT) in PM, with particular focus on the processes that are mediated by the projections from/to this structure. We analysed the performance of a patient (OG) with a right-sided lesion involving the mMDT in a series of PM tasks that varied for focality (i.e., overlapping of processes for the PM and ongoing tasks) and emotional valence of the stimuli, comparing the patient's performance with that of a control group. We found that the mMDT damage led to deficits in PM that were modulated by focality and emotional valence. OG indeed showed: a greater cost in the ongoing performance when a non-focal PM task was added; a slowing down in retrieving the intentions, in particular when these were associated with focal PM cues; an abnormal performance in the task with positive PM cues. Our findings provide evidence of a contribution of mMDT to PM and suggest a modulation of prefrontal-dependent strategic monitoring and a possible interaction with the limbic structures in the integration of emotion and PM processes. They also give support to the still controversial idea that connections with the perirhinal cortex mediate familiarity-based recognition.
Collapse
Affiliation(s)
- Giorgia Cona
- Department of General Psychology, University of Padova, Italy.,Padua Neuroscience Center, Padova, Italy
| | - Gianvito Laera
- School of Psychology, Keele University, Staffordshire, UK
| | | | - Patrizia S Bisiacchi
- Department of General Psychology, University of Padova, Italy.,Padua Neuroscience Center, Padova, Italy
| |
Collapse
|
89
|
Abstract
Activity in a network of areas spanning the superior temporal sulcus, dorsomedial frontal cortex, and anterior cingulate cortex is concerned with how nonhuman primates negotiate the social worlds in which they live. Central aspects of these circuits are retained in humans. Activity in these areas codes for primates' interactions with one another, their attempts to find out about one another, and their attempts to prevent others from finding out too much about themselves. Moreover, important features of the social world, such as dominance status, cooperation, and competition, modulate activity in these areas. We consider the degree to which activity in these regions is simply encoding an individual's own actions and choices or whether this activity is especially and specifically concerned with social cognition. Recent advances in comparative anatomy and computational modeling may help us to gain deeper insights into the nature and boundaries of primate social cognition.
Collapse
Affiliation(s)
- Marco K Wittmann
- Department of Experimental Psychology, University of Oxford, OX1 3UD Oxford, United Kingdom; , , .,Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, OX1 3UD Oxford, United Kingdom
| | - Patricia L Lockwood
- Department of Experimental Psychology, University of Oxford, OX1 3UD Oxford, United Kingdom; , , .,Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, OX1 3UD Oxford, United Kingdom
| | - Matthew F S Rushworth
- Department of Experimental Psychology, University of Oxford, OX1 3UD Oxford, United Kingdom; , , .,Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, OX1 3UD Oxford, United Kingdom
| |
Collapse
|
90
|
Orbitofrontal damage reduces auditory sensory response in humans. Cortex 2018; 101:309-312. [PMID: 29455945 DOI: 10.1016/j.cortex.2017.12.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 12/21/2017] [Accepted: 12/23/2017] [Indexed: 11/24/2022]
|
91
|
Scott BH, Leccese PA, Saleem KS, Kikuchi Y, Mullarkey MP, Fukushima M, Mishkin M, Saunders RC. Intrinsic Connections of the Core Auditory Cortical Regions and Rostral Supratemporal Plane in the Macaque Monkey. Cereb Cortex 2018; 27:809-840. [PMID: 26620266 DOI: 10.1093/cercor/bhv277] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In the ventral stream of the primate auditory cortex, cortico-cortical projections emanate from the primary auditory cortex (AI) along 2 principal axes: one mediolateral, the other caudorostral. Connections in the mediolateral direction from core, to belt, to parabelt, have been well described, but less is known about the flow of information along the supratemporal plane (STP) in the caudorostral dimension. Neuroanatomical tracers were injected throughout the caudorostral extent of the auditory core and rostral STP by direct visualization of the cortical surface. Auditory cortical areas were distinguished by SMI-32 immunostaining for neurofilament, in addition to established cytoarchitectonic criteria. The results describe a pathway comprising step-wise projections from AI through the rostral and rostrotemporal fields of the core (R and RT), continuing to the recently identified rostrotemporal polar field (RTp) and the dorsal temporal pole. Each area was strongly and reciprocally connected with the areas immediately caudal and rostral to it, though deviations from strictly serial connectivity were observed. In RTp, inputs converged from core, belt, parabelt, and the auditory thalamus, as well as higher order cortical regions. The results support a rostrally directed flow of auditory information with complex and recurrent connections, similar to the ventral stream of macaque visual cortex.
Collapse
Affiliation(s)
- Brian H Scott
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health (NIMH/NIH), Bethesda, MD 20892, USA
| | - Paul A Leccese
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health (NIMH/NIH), Bethesda, MD 20892, USA
| | - Kadharbatcha S Saleem
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health (NIMH/NIH), Bethesda, MD 20892, USA
| | - Yukiko Kikuchi
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health (NIMH/NIH), Bethesda, MD 20892, USA.,Present address: Institute of Neuroscience, Newcastle University Medical School, Newcastle Upon Tyne NE2 4HH, UK
| | - Matthew P Mullarkey
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health (NIMH/NIH), Bethesda, MD 20892, USA
| | - Makoto Fukushima
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health (NIMH/NIH), Bethesda, MD 20892, USA
| | - Mortimer Mishkin
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health (NIMH/NIH), Bethesda, MD 20892, USA
| | - Richard C Saunders
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health (NIMH/NIH), Bethesda, MD 20892, USA
| |
Collapse
|
92
|
Cortical Connections Position Primate Area 25 as a Keystone for Interoception, Emotion, and Memory. J Neurosci 2018; 38:1677-1698. [PMID: 29358365 DOI: 10.1523/jneurosci.2363-17.2017] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/10/2017] [Accepted: 12/08/2017] [Indexed: 02/06/2023] Open
Abstract
The structural and functional integrity of subgenual cingulate area 25 (A25) is crucial for emotional expression and equilibrium. A25 has a key role in affective networks, and its disruption has been linked to mood disorders, but its cortical connections have yet to be systematically or fully studied. Using neural tracers in rhesus monkeys, we found that A25 was densely connected with other ventromedial and posterior orbitofrontal areas associated with emotions and homeostasis. A moderate pathway linked A25 with frontopolar area 10, an area associated with complex cognition, which may regulate emotions and dampen negative affect. Beyond the frontal lobe, A25 was connected with auditory association areas and memory-related medial temporal cortices, and with the interoceptive-related anterior insula. A25 mostly targeted the superficial cortical layers of other areas, where broadly dispersed terminations comingled with modulatory inhibitory or disinhibitory microsystems, suggesting a dominant excitatory effect. The architecture and connections suggest that A25 is the consummate feedback system in the PFC. Conversely, in the entorhinal cortex, A25 pathways terminated in the middle-deep layers amid a strong local inhibitory microenvironment, suggesting gating of hippocampal output to other cortices and memory storage. The graded cortical architecture and associated laminar patterns of connections suggest how areas, layers, and functionally distinct classes of inhibitory neurons can be recruited dynamically to meet task demands. The complement of cortical connections of A25 with areas associated with memory, emotion, and somatic homeostasis provide the circuit basis to understand its vulnerability in psychiatric and neurologic disorders.SIGNIFICANCE STATEMENT Integrity of the prefrontal subgenual cingulate cortex is crucial for healthy emotional function. Subgenual area 25 (A25) is mostly linked with other prefrontal areas associated with emotion in a dense network positioned to recruit large fields of cortex. In healthy states, A25 is associated with internal states, autonomic function, and transient negative affect. Constant hyperactivity in A25 is a biomarker for depression in humans and may trigger extensive activation in its dominant connections with areas associated with emotions and internal balance. A pathway between A25 and frontopolar area 10 may provide a critical link to regulate emotions and dampen persistent negative affect, which may be explored for therapeutic intervention in depression.
Collapse
|
93
|
Mito R, Raffelt D, Dhollander T, Vaughan DN, Tournier JD, Salvado O, Brodtmann A, Rowe CC, Villemagne VL, Connelly A. Fibre-specific white matter reductions in Alzheimer’s disease and mild cognitive impairment. Brain 2018; 141:888-902. [DOI: 10.1093/brain/awx355] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 11/08/2017] [Indexed: 12/13/2022] Open
Affiliation(s)
- Remika Mito
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, 3084, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, 3084, Australia
| | - David Raffelt
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, 3084, Australia
| | - Thijs Dhollander
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, 3084, Australia
| | - David N Vaughan
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, 3084, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, 3084, Australia
- Department of Neurology, Austin Health, Heidelberg, Victoria, 3084, Australia
| | - J-Donald Tournier
- Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, WC2R 2LS, UK
- Centre for the Developing Brain, King’s College London, London, WC2R 2LS, UK
| | - Olivier Salvado
- CSIRO, Health and Biosecurity, The Australian eHealth Research Centre, Brisbane, Queensland, 4029, Australia
| | - Amy Brodtmann
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, 3084, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, 3084, Australia
- Eastern Clinical Research Unit, Monash University, Box Hill Hospital, Melbourne, Victoria, 3128, Australia
| | - Christopher C Rowe
- Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Victoria, 3084, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, Victoria, 3084, Australia
| | - Victor L Villemagne
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, 3084, Australia
- Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Victoria, 3084, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, Victoria, 3084, Australia
| | - Alan Connelly
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, 3084, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, 3084, Australia
| |
Collapse
|
94
|
Bezchlibnyk YB, Cheng J, Bijanki KR, Mayberg HS, Gross RE. Subgenual Cingulate Deep Brain Stimulation for Treatment-Resistant Depression. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00091-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
95
|
Prefrontal activation during a working memory task differs between patients with unipolar and bipolar depression: A preliminary exploratory study. J Affect Disord 2018; 225:64-70. [PMID: 28797920 DOI: 10.1016/j.jad.2017.07.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 07/12/2017] [Accepted: 07/17/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUND To identify bipolar disorder during the initial stages of a depressive episode has always been a great clinical challenge. Patterns of functional brain activity may underlie the differences in the neural mechanisms of bipolar depression (BD) and unipolar depression (UD). This study aimed to investigate the differences in neural activity between BD and UD patients during executive task. METHODS We performed a 52-channel near-infrared spectroscopy (NIRS) scan in 39 patients with BD, 35 patients with UD, and 36 healthy controls (HCs). The relative concentration changes in oxygenated hemoglobin ([oxy-Hb]) and deoxygenated hemoglobin ([deoxy-Hb]) during a 1-back working memory task were measured for each channel. Clinical characteristics including current mood were evaluated within one week prior to NIRS examination. RESULTS Compared to HCs, BD (CH34: Z = -2.354, P = 0.019) and UD patients (CH18: Z = -2.358, P = 0.018; CH30: Z = -2.174, P = 0.030; CH34: Z = -1.990, P = 0.047) showed reduced activation of [oxy-Hb] in the inferior prefrontal region. Compared to patients with UD, patients with BD showed less decreased [oxy-Hb] changes in the left frontopolar cortex (FPC) (CH18: Z = -2.366, P = 0.018), left pars opercularis and pars triangularis (POPE/PTRI) regions (Broca's area) (CH30: Z = -2.333, P = 0.020). No correlation existed between clinical characteristics and NIRS measurements. LIMITATIONS The effect of medication could not be excluded, and behavioral data was not systematically collected. CONCLUSION The results from this preliminary exploratory study suggest distinct prefrontal activation patterns underlie BD and UD, especially in the left frontopolar region and Broca's area. The NIRS-based prefrontal activation measurement may serve as a potential marker to aid in differentiating bipolar from unipolar depression.
Collapse
|
96
|
Peng K, Steele SC, Becerra L, Borsook D. Brodmann area 10: Collating, integrating and high level processing of nociception and pain. Prog Neurobiol 2017; 161:1-22. [PMID: 29199137 DOI: 10.1016/j.pneurobio.2017.11.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/16/2017] [Accepted: 11/28/2017] [Indexed: 02/08/2023]
Abstract
Multiple frontal cortical brain regions have emerged as being important in pain processing, whether it be integrative, sensory, cognitive, or emotional. One such region, Brodmann Area 10 (BA 10), is the largest frontal brain region that has been shown to be involved in a wide variety of functions including risk and decision making, odor evaluation, reward and conflict, pain, and working memory. BA 10, also known as the anterior prefrontal cortex, frontopolar prefrontal cortex or rostral prefrontal cortex, is comprised of at least two cytoarchitectonic sub-regions, medial and lateral. To date, the explicit role of BA 10 in the processing of pain hasn't been fully elucidated. In this paper, we first review the anatomical pathways and functional connectivity of BA 10. Numerous functional imaging studies of experimental or clinical pain have also reported brain activations and/or deactivations in BA 10 in response to painful events. The evidence suggests that BA 10 may play a critical role in the collation, integration and high-level processing of nociception and pain, but also reveals possible functional distinctions between the subregions of BA 10 in this process.
Collapse
Affiliation(s)
- Ke Peng
- Center for Pain and the Brain, Harvard Medical School, Boston, MA, United States; Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, MA, United States; Department of Psychiatry and Radiology, Massachusetts General Hospital, Charlestown, MA, United States.
| | - Sarah C Steele
- Center for Pain and the Brain, Harvard Medical School, Boston, MA, United States; Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, MA, United States; Department of Psychiatry and Radiology, Massachusetts General Hospital, Charlestown, MA, United States
| | - Lino Becerra
- Center for Pain and the Brain, Harvard Medical School, Boston, MA, United States; Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, MA, United States; Department of Psychiatry and Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Department of Psychiatry, Mclean Hospital, Belmont, MA, United States
| | - David Borsook
- Center for Pain and the Brain, Harvard Medical School, Boston, MA, United States; Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, MA, United States; Department of Psychiatry and Radiology, Massachusetts General Hospital, Charlestown, MA, United States; Department of Psychiatry, Mclean Hospital, Belmont, MA, United States
| |
Collapse
|
97
|
Lippard ETC, Mazure CM, Johnston JAY, Spencer L, Weathers J, Pittman B, Wang F, Blumberg HP. Brain circuitry associated with the development of substance use in bipolar disorder and preliminary evidence for sexual dimorphism in adolescents. J Neurosci Res 2017; 95:777-791. [PMID: 27870392 DOI: 10.1002/jnr.23901] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/29/2016] [Accepted: 08/05/2016] [Indexed: 02/06/2023]
Abstract
Substance use disorders and mood disorders are highly comorbid and confer a high risk for adverse outcomes. However, data are limited on the neurodevelopmental basis of this comorbidity. Substance use initiation typically occurs during adolescence, and sex-specific developmental mechanisms are implicated. In this preliminary study, we review the literature and investigate regional gray matter volume (GMV) associated with subsequent substance use problems in adolescents with bipolar disorder (BD) and explore these associations for females and males. Thirty adolescents with DSM-IV-diagnosed BD and minimal alcohol/substance exposure completed baseline structural magnetic resonance imaging scans. At follow-up (on average 6 years post baseline), subjects were administered the CRAFFT interview and categorized into those scoring at high ( ≥ 2: CRAFFTHIGH ) vs. low ( < 2: CRAFFTLOW ) risk for alcohol/substance problems. Lower GMV in prefrontal, insular, and temporopolar cortices were observed at baseline among adolescents with BD reporting subsequent alcohol and cannabis use compared to adolescents with BD who did not (P < 0.005, clusters ≥ 20 voxels). Lower dorsolateral prefrontal GMV was associated with future substance use in both females and males. In females, lower orbitofrontal and insula GMV was associated with future substance use, while in males, lower rostral prefrontal GMV was associated with future use. Lower orbitofrontal, insular, and temporopolar GMV was observed in those who transitioned to smoking tobacco. Findings indicate that GMV development is associated with risk for future substance use problems in adolescents with BD, with results implicating GMV development in regions subserving emotional regulation in females and regions subserving executive processes and attention in males. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Elizabeth T C Lippard
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut.,Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Carolyn M Mazure
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut.,Women's Health Research at Yale, Yale School of Medicine, New Haven, Connecticut
| | | | - Linda Spencer
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Judah Weathers
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut.,Child Study Center, Yale School of Medicine, New Haven, Connecticut
| | - Brian Pittman
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Fei Wang
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Hilary P Blumberg
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut.,Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut.,Women's Health Research at Yale, Yale School of Medicine, New Haven, Connecticut.,Child Study Center, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
98
|
Coad BM, Postans M, Hodgetts CJ, Muhlert N, Graham KS, Lawrence AD. Structural connections support emotional connections: Uncinate Fasciculus microstructure is related to the ability to decode facial emotion expressions. Neuropsychologia 2017; 145:106562. [PMID: 29122609 PMCID: PMC7534036 DOI: 10.1016/j.neuropsychologia.2017.11.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/22/2017] [Accepted: 11/04/2017] [Indexed: 12/19/2022]
Abstract
The Uncinate Fasciculus (UF) is an association fibre tract connecting regions in the frontal and anterior temporal lobes. UF disruption is seen in several disorders associated with impaired social behaviour, but its functional role is unclear. Here we set out to test the hypothesis that the UF is important for facial expression processing, an ability fundamental to adaptive social behaviour. In two separate experiments in healthy adults, we used high-angular resolution diffusion-weighted imaging (HARDI) and constrained spherical deconvolution (CSD) tractography to virtually dissect the UF, plus a control tract (the corticospinal tract (CST)), and quantify, via fractional anisotropy (FA), individual differences in tract microstructure. In Experiment 1, participants completed the Reading the Mind in the Eyes Task (RMET), a well-validated assay of facial expression decoding. In Experiment 2, a different set of participants completed the RMET, plus an odd-emotion-out task of facial emotion discrimination. In both experiments, participants also completed a control odd-identity-out facial identity discrimination task. In Experiment 1, FA of the right-, but not the left-hemisphere, UF was significantly correlated with performance on the RMET task, specifically for emotional, but not neutral expressions. UF FA was not significantly correlated with facial identity discrimination performance. In Experiment 2, FA of the right-, but not left-hemisphere, UF was again significantly correlated with performance on emotional items from the RMET, together with performance on the facial emotion discrimination task. Again, no significant association was found between UF FA and facial identity discrimination performance. Our findings highlight the contribution of right-hemisphere UF microstructure to inter-individual variability in the ability to decode facial emotion expressions, and may explain why disruption of this pathway affects social behaviour. We studied white matter microstructure correlates of facial emotion decoding skills. Focused on the role of a key limbic tract, the Uncinate Fasciculus (UF). Right UF microstructure linked to facial expression decoding skills. UF microstructure not related to facial identity discrimination skills. Right UF has a distinct role in the processing of facial expressions of emotion.
Collapse
Affiliation(s)
- Bethany M Coad
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, UK
| | - Mark Postans
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, UK
| | - Carl J Hodgetts
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, UK
| | - Nils Muhlert
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, UK; Division of Neuroscience & Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Kim S Graham
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, UK
| | - Andrew D Lawrence
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, UK.
| |
Collapse
|
99
|
Mansouri FA, Koechlin E, Rosa MGP, Buckley MJ. Managing competing goals — a key role for the frontopolar cortex. Nat Rev Neurosci 2017; 18:645-657. [DOI: 10.1038/nrn.2017.111] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
100
|
Caspers J, Mathys C, Hoffstaedter F, Südmeyer M, Cieslik EC, Rubbert C, Hartmann CJ, Eickhoff CR, Reetz K, Grefkes C, Michely J, Turowski B, Schnitzler A, Eickhoff SB. Differential Functional Connectivity Alterations of Two Subdivisions within the Right dlPFC in Parkinson's Disease. Front Hum Neurosci 2017; 11:288. [PMID: 28611616 PMCID: PMC5447710 DOI: 10.3389/fnhum.2017.00288] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 05/16/2017] [Indexed: 02/02/2023] Open
Abstract
Patients suffering from Parkinson's disease (PD) often show impairments in executive function (EF) like decision-making and action control. The right dorsolateral prefrontal cortex (dlPFC) has been strongly implicated in EF in healthy subjects and has repeatedly been reported to show alterations related to EF impairment in PD. Recently, two key regions for cognitive action control have been identified within the right dlPFC by co-activation based parcellation. While the posterior region is engaged in rather basal EF like stimulus integration and working memory, the anterior region has a more abstract, supervisory function. To investigate whether these functionally distinct subdivisions of right dlPFC are differentially affected in PD, we analyzed resting-state functional connectivity (FC) in 39 PD patients and 44 age- and gender-matched healthy controls. Patients were examined both after at least 12 h withdrawal of dopaminergic drugs (OFF) and under their regular dopaminergic medication (ON). We found that only the posterior right dlPFC subdivision shows FC alterations in PD, while the anterior part remains unaffected. PD-related decreased FC with posterior right dlPFC was found in the bilateral medial posterior parietal cortex (mPPC) and left dorsal premotor region (PMd) in the OFF state. In the medical ON, FC with left PMd normalized, while decoupling with bilateral mPPC remained. Furthermore, we observed increased FC between posterior right dlPFC and the bilateral dorsomedial prefrontal cortex (dmPFC) in PD in the ON state. Our findings point to differential disturbances of right dlPFC connectivity in PD, which relate to its hierarchical organization of EF processing by stronger affecting the functionally basal posterior aspect than the hierarchically higher anterior part.
Collapse
Affiliation(s)
- Julian Caspers
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University DüsseldorfDüsseldorf, Germany.,Research Centre Jülich, Institute of Neuroscience and Medicine (INM-1, INM-3, INM-11)Jülich, Germany
| | - Christian Mathys
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University DüsseldorfDüsseldorf, Germany
| | - Felix Hoffstaedter
- Research Centre Jülich, Institute of Neuroscience and Medicine (INM-1, INM-3, INM-11)Jülich, Germany.,Medical Faculty, Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine-UniversityDüsseldorf, Germany
| | - Martin Südmeyer
- Medical Faculty, Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine-UniversityDüsseldorf, Germany.,Department of Neurology, Medical Faculty, Center for Movement Disorders and Neuromodulation, Heinrich-Heine-UniversityDüsseldorf, Germany
| | - Edna C Cieslik
- Research Centre Jülich, Institute of Neuroscience and Medicine (INM-1, INM-3, INM-11)Jülich, Germany.,Medical Faculty, Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine-UniversityDüsseldorf, Germany
| | - Christian Rubbert
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University DüsseldorfDüsseldorf, Germany
| | - Christian J Hartmann
- Medical Faculty, Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine-UniversityDüsseldorf, Germany.,Department of Neurology, Medical Faculty, Center for Movement Disorders and Neuromodulation, Heinrich-Heine-UniversityDüsseldorf, Germany
| | - Claudia R Eickhoff
- Research Centre Jülich, Institute of Neuroscience and Medicine (INM-1, INM-3, INM-11)Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen UniversityAachen, Germany
| | - Kathrin Reetz
- Research Centre Jülich, Institute of Neuroscience and Medicine (INM-1, INM-3, INM-11)Jülich, Germany.,JARA BRAIN and Department of Neurology, RWTH Aachen UniversityAachen, Germany
| | - Christian Grefkes
- Research Centre Jülich, Institute of Neuroscience and Medicine (INM-1, INM-3, INM-11)Jülich, Germany.,Department of Neurology, University of CologneCologne, Germany
| | - Jochen Michely
- Department of Neurology, University of CologneCologne, Germany
| | - Bernd Turowski
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University DüsseldorfDüsseldorf, Germany
| | - Alfons Schnitzler
- Medical Faculty, Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine-UniversityDüsseldorf, Germany.,Department of Neurology, Medical Faculty, Center for Movement Disorders and Neuromodulation, Heinrich-Heine-UniversityDüsseldorf, Germany
| | - Simon B Eickhoff
- Research Centre Jülich, Institute of Neuroscience and Medicine (INM-1, INM-3, INM-11)Jülich, Germany.,Medical Faculty, Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine-UniversityDüsseldorf, Germany
| |
Collapse
|