51
|
Control of mechanical pain hypersensitivity in mice through ligand-targeted photoablation of TrkB-positive sensory neurons. Nat Commun 2018; 9:1640. [PMID: 29691410 PMCID: PMC5915601 DOI: 10.1038/s41467-018-04049-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/28/2018] [Indexed: 01/24/2023] Open
Abstract
Mechanical allodynia is a major symptom of neuropathic pain whereby innocuous touch evokes severe pain. Here we identify a population of peripheral sensory neurons expressing TrkB that are both necessary and sufficient for producing pain from light touch after nerve injury in mice. Mice in which TrkB-Cre-expressing neurons are ablated are less sensitive to the lightest touch under basal conditions, and fail to develop mechanical allodynia in a model of neuropathic pain. Moreover, selective optogenetic activation of these neurons after nerve injury evokes marked nociceptive behavior. Using a phototherapeutic approach based upon BDNF, the ligand for TrkB, we perform molecule-guided laser ablation of these neurons and achieve long-term retraction of TrkB-positive neurons from the skin and pronounced reversal of mechanical allodynia across multiple types of neuropathic pain. Thus we identify the peripheral neurons which transmit pain from light touch and uncover a novel pharmacological strategy for its treatment. There are several classes of sensory neuron that contribute to pain states. Here, the authors demonstrate that TrkB+ sensory neurons detect light touch under normal conditions in mice but contribute to hypersensitivity in models of chronic pain, and that ligand-guided laser ablation of TrkB+ sensory neurons in the mouse skin attenuates this hypersensitivity.
Collapse
|
52
|
Narayanan P, Hütte M, Kudryasheva G, Taberner FJ, Lechner SG, Rehfeldt F, Gomez-Varela D, Schmidt M. Myotubularin related protein-2 and its phospholipid substrate PIP 2 control Piezo2-mediated mechanotransduction in peripheral sensory neurons. eLife 2018. [PMID: 29521261 PMCID: PMC5898911 DOI: 10.7554/elife.32346] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Piezo2 ion channels are critical determinants of the sense of light touch in vertebrates. Yet, their regulation is only incompletely understood. We recently identified myotubularin related protein-2 (Mtmr2), a phosphoinositide (PI) phosphatase, in the native Piezo2 interactome of murine dorsal root ganglia (DRG). Here, we demonstrate that Mtmr2 attenuates Piezo2-mediated rapidly adapting mechanically activated (RA-MA) currents. Interestingly, heterologous Piezo1 and other known MA current subtypes in DRG appeared largely unaffected by Mtmr2. Experiments with catalytically inactive Mtmr2, pharmacological blockers of PI(3,5)P2 synthesis, and osmotic stress suggest that Mtmr2-dependent Piezo2 inhibition involves depletion of PI(3,5)P2. Further, we identified a PI(3,5)P2 binding region in Piezo2, but not Piezo1, that confers sensitivity to Mtmr2 as indicated by functional analysis of a domain-swapped Piezo2 mutant. Altogether, our results propose local PI(3,5)P2 modulation via Mtmr2 in the vicinity of Piezo2 as a novel mechanism to dynamically control Piezo2-dependent mechanotransduction in peripheral sensory neurons. We often take our sense of touch for granted. Yet, our every-day life greatly depends on the ability to perceive our environment to alert us of danger or to further social interactions, such as mother-child bonding. Our sense of touch relies on the conversion of mechanical stimuli to electrical signals (this is known as mechanotransduction), which then travel to brain to be processed. This task is fulfilled by specific ion channels called Piezo2, which are activated when cells are exposed to pressure and other mechanical forces. These channels can be found in sensory nerves and specialized structures in the skin, where they help to detect physical contact, roughness of surfaces and the position of our body parts. It is still not clear how Piezo2 channels are regulated but previous research by several laboratories suggests that they work in conjunction with other proteins. One of these proteins is the myotubularin related protein-2, or Mtmr2 for short. Now, Narayanan et al. – including some of the researchers involved in the previous research – set out to advance our understanding of the molecular basis of touch and looked more closely at Mtmr2. To test if Mtmr2 played a role in mechanotransduction, Narayanan et al. both increased and reduced the levels of this protein in sensory neurons of mice grown in the laboratory. When Mtmr2 levels were low, the activity of Piezo2 channels increased. However, when the protein levels were high, Piezo2 channels were inhibited. These results suggest that Mtmr2 can control the activity of Piezo2. Further experiments, in which Mtmr2 was genetically modified or sensory neurons were treated with chemicals, revealed that Mtmr2 reduces a specific fatty acid in the membrane of nerve cells, which in turn attenuates the activity of Piezo2. This study identified Mtmr2 and distinct fatty acids in the cell membrane as new components of the complex setup required for the sense of touch. A next step will be to test if these molecules also influence the activity of Piezo2 when the skin has become injured or upon inflammation.
Collapse
Affiliation(s)
- Pratibha Narayanan
- Emmy Noether-Group Somatosensory Signaling and Systems Biology, Max Planck Institute for Experimental Medicine, Goettingen, Germany
| | - Meike Hütte
- Emmy Noether-Group Somatosensory Signaling and Systems Biology, Max Planck Institute for Experimental Medicine, Goettingen, Germany
| | - Galina Kudryasheva
- Third Institute of Physics - Biophysics, University of Goettingen, Goettingen, Germany
| | | | | | - Florian Rehfeldt
- Third Institute of Physics - Biophysics, University of Goettingen, Goettingen, Germany
| | - David Gomez-Varela
- Emmy Noether-Group Somatosensory Signaling and Systems Biology, Max Planck Institute for Experimental Medicine, Goettingen, Germany
| | - Manuela Schmidt
- Emmy Noether-Group Somatosensory Signaling and Systems Biology, Max Planck Institute for Experimental Medicine, Goettingen, Germany
| |
Collapse
|
53
|
Schneider ER, Anderson EO, Mastrotto M, Matson JD, Schulz VP, Gallagher PG, LaMotte RH, Gracheva EO, Bagriantsev SN. Molecular basis of tactile specialization in the duck bill. Proc Natl Acad Sci U S A 2017; 114:13036-13041. [PMID: 29109250 PMCID: PMC5724259 DOI: 10.1073/pnas.1708793114] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Tactile-foraging ducks are specialist birds known for their touch-dependent feeding behavior. They use dabbling, straining, and filtering to find edible matter in murky water, relying on the sense of touch in their bill. Here, we present the molecular characterization of embryonic duck bill, which we show contains a high density of mechanosensory corpuscles innervated by functional rapidly adapting trigeminal afferents. In contrast to chicken, a visually foraging bird, the majority of duck trigeminal neurons are mechanoreceptors that express the Piezo2 ion channel and produce slowly inactivating mechano-current before hatching. Furthermore, duck neurons have a significantly reduced mechano-activation threshold and elevated mechano-current amplitude. Cloning and electrophysiological characterization of duck Piezo2 in a heterologous expression system shows that duck Piezo2 is functionally similar to the mouse ortholog but with prolonged inactivation kinetics, particularly at positive potentials. Knockdown of Piezo2 in duck trigeminal neurons attenuates mechano current with intermediate and slow inactivation kinetics. This suggests that Piezo2 is capable of contributing to a larger range of mechano-activated currents in duck trigeminal ganglia than in mouse trigeminal ganglia. Our results provide insights into the molecular basis of mechanotransduction in a tactile-specialist vertebrate.
Collapse
Affiliation(s)
- Eve R Schneider
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520
| | - Evan O Anderson
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520
| | - Marco Mastrotto
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06520
| | - Jon D Matson
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520
| | - Vincent P Schulz
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520
| | - Patrick G Gallagher
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520
| | - Robert H LaMotte
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT 06520
| | - Elena O Gracheva
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520;
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06520
| | - Sviatoslav N Bagriantsev
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520;
| |
Collapse
|
54
|
Dabbling with Piezo2 for mechanosensation. Proc Natl Acad Sci U S A 2017; 114:12853-12855. [DOI: 10.1073/pnas.1718337114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
55
|
Ren L, Chang MJ, Zhang Z, Dhaka A, Guo Z, Cao YQ. Quantitative Analysis of Mouse Dural Afferent Neurons Expressing TRPM8, VGLUT3, and NF200. Headache 2017; 58:88-101. [PMID: 28925503 DOI: 10.1111/head.13188] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2017] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To quantify the abundance of dural afferent neurons expressing transient receptor potential channel melastatin 8 (TRPM8), vesicular glutamate transporter 3 (VGLUT3), and neurofilament 200 (NF200) in adult mice. BACKGROUND With the increasing use of mice as a model system to study headache mechanisms, it is important to understand the composition of dural afferent neurons in mice. In a previous study, we have measured the abundance of mouse dural afferent neurons that express neuropeptide calcitonin gene-related peptide as well as two TRP channels TRPV1 and TRPA1, respectively. Here, we conducted quantitative analysis of three other dural afferent subpopulations in adult mice. METHODS We used the fluorescent tracer Fluoro-Gold to retrogradely label dural afferent neurons in adult mice expressing enhanced green fluorescent protein in discrete subpopulations of trigeminal ganglion (TG) neurons. Mechanoreceptors with myelinated fibers were identified by NF200 immunoreactivity. We also conducted Ca2+ -imaging experiments to test the overlap between TRPM8 and VGLUT3 expression in mouse primary afferent neurons (PANs). RESULTS The abundance of TRPM8-expressing neurons in dural afferent neurons was significantly lower than that in total TG neurons. The percentages of dural afferent neurons expressing VGLUT3 and NF200 were comparable to those of total TG neurons, respectively. TRPM8 agonist menthol evoked Ca2+ influx in less than 7% VGLUT3-expressing PANs in adult mice. CONCLUSIONS TG neurons expressing TRPM8, VGLUT3, and NF200 all innervate adult mouse dura. TRPM8 and VGLUT3 are expressed in distinct subpopulations of PANs in adult mice. These results provide an anatomical basis to investigate headache mechanisms in mouse models.
Collapse
Affiliation(s)
- Lynn Ren
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Michelle Jaehee Chang
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Zhiyu Zhang
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ajay Dhaka
- Department of Biological Structure, Neurobiology and Behavior Graduate Program, University of Washington, Seattle, WA, USA
| | - Zhaohua Guo
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yu-Qing Cao
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
56
|
Ono K, Viet CT, Ye Y, Dang D, Hitomi S, Toyono T, Inenaga K, Dolan JC, Schmidt BL. Cutaneous pigmentation modulates skin sensitivity via tyrosinase-dependent dopaminergic signalling. Sci Rep 2017; 7:9181. [PMID: 28835637 PMCID: PMC5569050 DOI: 10.1038/s41598-017-09682-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/27/2017] [Indexed: 12/19/2022] Open
Abstract
We propose a new mechanism of sensory modulation through cutaneous dopaminergic signalling. We hypothesize that dopaminergic signalling contributes to differential cutaneous sensitivity in darker versus lighter pigmented humans and mouse strains. We show that thermal and mechanical cutaneous sensitivity is pigmentation dependent. Meta-analyses in humans and mice, along with our own mouse behavioural studies, reveal higher thermal sensitivity in pigmented skin relative to less-pigmented or albino skin. We show that dopamine from melanocytes activates the D1-like dopamine receptor on primary sensory neurons. Dopaminergic activation increases expression of the heat-sensitive TRPV1 ion channel and reduces expression of the mechanically-sensitive Piezo2 channel; thermal threshold is lower and mechanical threshold is higher in pigmented skin.
Collapse
Affiliation(s)
- Kentaro Ono
- Bluestone Centre for Clinical Research, New York University College of Dentistry, New York, NY, 10010, USA
| | - Chi T Viet
- Bluestone Centre for Clinical Research, New York University College of Dentistry, New York, NY, 10010, USA.,Department of Oral Maxillofacial Surgery, New York University College of Dentistry, New York, NY, 10010, USA
| | - Yi Ye
- Bluestone Centre for Clinical Research, New York University College of Dentistry, New York, NY, 10010, USA
| | - Dongmin Dang
- Bluestone Centre for Clinical Research, New York University College of Dentistry, New York, NY, 10010, USA
| | - Suzuro Hitomi
- Division of Physiology, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan
| | - Takashi Toyono
- Division of Oral Anatomy, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan
| | - Kiyotoshi Inenaga
- Division of Physiology, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan
| | - John C Dolan
- Bluestone Centre for Clinical Research, New York University College of Dentistry, New York, NY, 10010, USA.,Department of Oral Maxillofacial Surgery, New York University College of Dentistry, New York, NY, 10010, USA
| | - Brian L Schmidt
- Bluestone Centre for Clinical Research, New York University College of Dentistry, New York, NY, 10010, USA. .,Department of Oral Maxillofacial Surgery, New York University College of Dentistry, New York, NY, 10010, USA.
| |
Collapse
|
57
|
Nectow AR, Schneeberger M, Zhang H, Field BC, Renier N, Azevedo E, Patel B, Liang Y, Mitra S, Tessier-Lavigne M, Han MH, Friedman JM. Identification of a Brainstem Circuit Controlling Feeding. Cell 2017; 170:429-442.e11. [DOI: 10.1016/j.cell.2017.06.045] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 05/30/2017] [Accepted: 06/28/2017] [Indexed: 01/19/2023]
|
58
|
Huang C, Lu F, Li P, Cao C, Liu Z. Tlx3 Function in the Dorsal Root Ganglion is Pivotal to Itch and Pain Sensations. Front Mol Neurosci 2017; 10:205. [PMID: 28701920 PMCID: PMC5487456 DOI: 10.3389/fnmol.2017.00205] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/12/2017] [Indexed: 12/12/2022] Open
Abstract
Itch, a sensation eliciting a desire to scratch, is distinct from but not completely independent of pain. Inspiring achievements have been made in the characterization of itch-related receptors and neurotransmitters, but the molecular mechanisms controlling the development of pruriceptors remain poorly understood. Here, our RNAseq and in situ hybridization data show that the transcription factor Tlx3 is required for the expression of a majority of itch-related molecules in the dorsal root ganglion (DRG). As a result, Tlx3F/F;Nav1.8-cre mice exhibit significantly attenuated acute and dry skin-induced chronic itch. Furthermore, our study indicates that TRPV1 plays a pivotal role in the chronic itch evoked by dry skin and allergic contact dermatitis (ACD). The mutants also display impaired response to cold and inflammatory pain and elevated response to capsaicin, whereas the responses to acute mechanical, thermal stimuli and neuropathic pain remain normal. In Tlx3F/F;Nav1.8-cre mice, TRPV1 is derepressed and expands predominantly into IB4+ non-peptidergic (NP) neurons. Collectively, our data reveal a molecular mechanism in regulating the development of pruriceptors and controlling itch and pain sensations.
Collapse
Affiliation(s)
| | - Fumin Lu
- School of Life Sciences, Anhui Agricultural UniversityHefei, China
| | - Ping Li
- Beijing Institute of BiotechnologyBeijing, China
| | - Cheng Cao
- Beijing Institute of BiotechnologyBeijing, China
| | - Zijing Liu
- Beijing Institute of BiotechnologyBeijing, China
| |
Collapse
|
59
|
Hierarchical Specification of Pruriceptors by Runt-Domain Transcription Factor Runx1. J Neurosci 2017; 37:5549-5561. [PMID: 28476948 DOI: 10.1523/jneurosci.0094-17.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/11/2017] [Accepted: 04/26/2017] [Indexed: 02/04/2023] Open
Abstract
The somatic sensory neurons in dorsal root ganglia (DRG) detect and transmit a diverse array of sensory modalities, such as pain, itch, cold, warm, touch, and others. Recent genetic and single-cell RNA sequencing studies have revealed a group of DRG neurons that could be particularly relevant for acute and chronic itch information transmission. They express the natriuretic peptide type B (NPPB), as well as a cohort of receptors and neuropeptides that have been implicated in chronic itch manifestation, including the interleukin-31 receptor A (IL-31ra) and its coreceptor oncostatin M receptor (Osmr), the cysteinyl leukotriene receptor 2 (Cysltr2), somatostatin, and neurotensin. However, how these neurons are generated during development remains unclear. Here we report that Runx1 is required to establish all these molecular features of NPPB+ neurons. We further show that while early embryonic Runx1 activity is required for the formation of NPPB+ cells, at later stages Runx1 switches to a genetic repressor and thus its downregulation becomes a prerequisite for the proper development of these pruriceptors. This mode by Runx1 is analogous to that in controlling another group of pruriceptors that specifically express the chloroquine receptor MrgprA3. Finally, behavioral studies using both sexes of mice revealed marked deficits in processing acute and chronic itch in Runx1 conditional knock-out mice, possibly attributable to impaired development of various pruriceptors.SIGNIFICANCE STATEMENT Our studies reveal a generalized control mode by Runx1 for pruriceptor development and consolidate a hierarchical control mechanism for the formation of sensory neurons transmitting distinct modalities. Among dorsal root ganglion neurons that initially express the neurotrophin receptor TrkA, Runx1 is necessary for the proper development of those neurons that innervate tissues derived from the ectoderm such as skin epidermis and hair follicles. These Runx1-dependent cutaneous sensory neurons are then divided into two groups based on persistent or transient Runx1 expression. The Runx1-persistent group is involved in transmitting mechanical and thermal information, whereas the Runx1-transient group transmits pruriceptive information. Such hierarchical control mechanisms may provide a developmental solution for the formation of sensory circuits that transmit distinct modalities.
Collapse
|
60
|
Identification of spinal circuits involved in touch-evoked dynamic mechanical pain. Nat Neurosci 2017; 20:804-814. [PMID: 28436981 PMCID: PMC5470641 DOI: 10.1038/nn.4549] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/21/2017] [Indexed: 12/20/2022]
Abstract
Mechanical hypersensitivity is a debilitating symptom associated with millions of chronic pain patients. It exists in distinct forms, including brush-evoked dynamic and filament-evoked punctate. Here we report that dynamic mechanical hypersensitivity induced by nerve injury or inflammation was compromised in mice with ablation of spinal VT3Lbx1 neurons defined by coexpression of VGLUT3Cre and Lbx1Flpo, as indicated by the loss of brush-evoked nocifensive responses and conditional place aversion. Electrophysiological recordings show that VT3Lbx1 neurons form morphine-resistant polysynaptic pathways relaying inputs from low-threshold Aβ mechanoreceptors to lamina I output neurons. Meanwhile, the subset of somatostatin (SOM) lineage neurons preserved in VT3Lbx1 neuron-ablated mice is largely sufficient to mediate von Frey filament-evoked punctate mechanical hypersensitivity, including both morphine-sensitive and morphine-resistant forms. Furthermore, acute silencing of VT3Lbx1 neurons attenuated pre-established dynamic mechanical hypersensitivity induced by nerve injury, suggesting these neurons as a potential cellular target for treating this form of neuropathic pain.
Collapse
|
61
|
Schneider ER, Gracheva EO, Bagriantsev SN. Evolutionary Specialization of Tactile Perception in Vertebrates. Physiology (Bethesda) 2017; 31:193-200. [PMID: 27053733 DOI: 10.1152/physiol.00036.2015] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Evolution has endowed vertebrates with the remarkable tactile ability to explore the world through the perception of physical force. Yet the sense of touch remains one of the least well understood senses at the cellular and molecular level. Vertebrates specializing in tactile perception can highlight general principles of mechanotransduction. Here, we review cellular and molecular adaptations that underlie the sense of touch in typical and acutely mechanosensitive vertebrates.
Collapse
Affiliation(s)
- Eve R Schneider
- Department of Cellular & Molecular Physiology, Yale University, New Haven, Connecticut
| | - Elena O Gracheva
- Department of Cellular & Molecular Physiology, Yale University, New Haven, Connecticut; Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University, New Haven, Connecticut; and Department of Neuroscience, Yale University, New Haven, Connecticut
| | - Slav N Bagriantsev
- Department of Cellular & Molecular Physiology, Yale University, New Haven, Connecticut;
| |
Collapse
|
62
|
Anderson E, Schneider E, Bagriantsev S. Piezo2 in Cutaneous and Proprioceptive Mechanotransduction in Vertebrates. CURRENT TOPICS IN MEMBRANES 2017; 79:197-217. [PMID: 28728817 PMCID: PMC5630267 DOI: 10.1016/bs.ctm.2016.11.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mechanosensitivity is a fundamental physiological capacity, which pertains to all life forms. Progress has been made with regard to understanding mechanosensitivity in bacteria, flies, and worms. In vertebrates, however, the molecular identity of mechanotransducers in somatic and neuronal cells has only started to appear. The Piezo family of mechanogated ion channels marks a pivotal milestone in understanding mechanosensitivity. Piezo1 and Piezo2 have now been shown to participate in a number of processes, ranging from arterial modeling to sensing muscle stretch. In this review, we focus on Piezo2 and its role in mediating mechanosensation and proprioception in vertebrates.
Collapse
|
63
|
Wang JW, Stifani S. Roles of Runx Genes in Nervous System Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:103-116. [PMID: 28299654 DOI: 10.1007/978-981-10-3233-2_8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Runt-related (Runx) transcription factors play essential roles during development and adult tissue homeostasis and are responsible for several human diseases. They regulate a variety of biological mechanisms in numerous cell lineages. Recent years have seen significant progress in our understanding of the functions performed by Runx proteins in the developing and postnatal mammalian nervous system. In both central and peripheral nervous systems, Runx1 and Runx3 display remarkably specific expression in mostly non-overlapping groups of postmitotic neurons. In the central nervous system, Runx1 is involved in the development of selected motor neurons controlling neural circuits mediating vital functions such as chewing, swallowing, breathing, and locomotion. In the peripheral nervous system, Runx1 and Runx3 play essential roles during the development of sensory neurons involved in circuits mediating pain, itch, thermal sensation and sense of relative position. Runx1 and Runx3 orchestrate complex gene expression programs controlling neuronal subtype specification and axonal connectivity. Runx1 is also important in the olfactory system, where it regulates the progenitor-to-neuron transition in undifferentiated neural progenitor cells in the olfactory epithelium as well as the proliferation and developmental maturation of specific glial cells termed olfactory ensheathing cells. Moreover, upregulated Runx expression is associated with brain injury and disease. Increasing knowledge of the functions of Runx proteins in the developing and postnatal nervous system is therefore expected to improve our understanding of nervous system development, homeostasis and disease.
Collapse
Affiliation(s)
- Jae Woong Wang
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A2B4, Canada
| | - Stefano Stifani
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A2B4, Canada.
| |
Collapse
|
64
|
Ventéo S, Laffray S, Wetzel C, Rivat C, Scamps F, Méchaly I, Bauchet L, Raoul C, Bourinet E, Lewin GR, Carroll P, Pattyn A. Fxyd2 regulates Aδ- and C-fiber mechanosensitivity and is required for the maintenance of neuropathic pain. Sci Rep 2016; 6:36407. [PMID: 27805035 PMCID: PMC5090990 DOI: 10.1038/srep36407] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 10/12/2016] [Indexed: 01/24/2023] Open
Abstract
Identification of the molecular mechanisms governing sensory neuron subtype excitability is a key requisite for the development of treatments for somatic sensory disorders. Here, we show that the Na,K-ATPase modulator Fxyd2 is specifically required for setting the mechanosensitivity of Aδ-fiber low-threshold mechanoreceptors and sub-populations of C-fiber nociceptors, a role consistent with its restricted expression profile in the spinal somatosensory system. We also establish using the spared nerve injury model of neuropathic pain, that loss of Fxyd2 function, either constitutively in Fxyd2−/− mice or acutely in neuropathic rats, efficiently alleviates mechanical hypersensitivity induced by peripheral nerve lesions. The role of Fxyd2 in modulating Aδ- and C-fibers mechanosensitivity likely accounts for the anti-allodynic effect of Fxyd2 knockdown. Finally, we uncover the evolutionarily conserved restricted expression pattern of FXYD2 in human dorsal root ganglia, thus identifying this molecule as a potentially promising therapeutic target for peripheral neuropathic pain management.
Collapse
Affiliation(s)
- Stéphanie Ventéo
- INSERM U1051, Institut des Neurosciences de Montpellier, Hôpital St Eloi, 80 rue Augustin Fliche, 34091 Montpellier, France
| | - Sophie Laffray
- UMR5203, INSERM U1191, Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, 34094 Montpellier, France.,Université de Montpellier, Place Eugène Bataillon, 34090 Montpellier, France
| | - Christiane Wetzel
- Department of Neuroscience, Max-Delbrück Center for Molecular Medicine, Robert-Rössle Str. 10, D-13125 Berlin, Germany
| | - Cyril Rivat
- INSERM U1051, Institut des Neurosciences de Montpellier, Hôpital St Eloi, 80 rue Augustin Fliche, 34091 Montpellier, France.,Université de Montpellier, Place Eugène Bataillon, 34090 Montpellier, France
| | - Frédérique Scamps
- INSERM U1051, Institut des Neurosciences de Montpellier, Hôpital St Eloi, 80 rue Augustin Fliche, 34091 Montpellier, France
| | - Ilana Méchaly
- INSERM U1051, Institut des Neurosciences de Montpellier, Hôpital St Eloi, 80 rue Augustin Fliche, 34091 Montpellier, France.,Université de Montpellier, Place Eugène Bataillon, 34090 Montpellier, France
| | - Luc Bauchet
- INSERM U1051, Institut des Neurosciences de Montpellier, Hôpital St Eloi, 80 rue Augustin Fliche, 34091 Montpellier, France.,Département de Neurochirurgie, Hôpital Gui de Chauliac, CHU, 80 avenue Augustin Fliche, 34295 Montpellier, France
| | - Cédric Raoul
- INSERM U1051, Institut des Neurosciences de Montpellier, Hôpital St Eloi, 80 rue Augustin Fliche, 34091 Montpellier, France
| | - Emmanuel Bourinet
- UMR5203, INSERM U1191, Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, 34094 Montpellier, France
| | - Gary R Lewin
- Department of Neuroscience, Max-Delbrück Center for Molecular Medicine, Robert-Rössle Str. 10, D-13125 Berlin, Germany
| | - Patrick Carroll
- INSERM U1051, Institut des Neurosciences de Montpellier, Hôpital St Eloi, 80 rue Augustin Fliche, 34091 Montpellier, France
| | - Alexandre Pattyn
- INSERM U1051, Institut des Neurosciences de Montpellier, Hôpital St Eloi, 80 rue Augustin Fliche, 34091 Montpellier, France
| |
Collapse
|
65
|
Morrison I. Keep Calm and Cuddle on: Social Touch as a Stress Buffer. ADAPTIVE HUMAN BEHAVIOR AND PHYSIOLOGY 2016. [DOI: 10.1007/s40750-016-0052-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
66
|
Vogl C, Panou I, Yamanbaeva G, Wichmann C, Mangosing SJ, Vilardi F, Indzhykulian AA, Pangršič T, Santarelli R, Rodriguez-Ballesteros M, Weber T, Jung S, Cardenas E, Wu X, Wojcik SM, Kwan KY, Del Castillo I, Schwappach B, Strenzke N, Corey DP, Lin SY, Moser T. Tryptophan-rich basic protein (WRB) mediates insertion of the tail-anchored protein otoferlin and is required for hair cell exocytosis and hearing. EMBO J 2016; 35:2536-2552. [PMID: 27458190 DOI: 10.15252/embj.201593565] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 05/29/2016] [Accepted: 06/10/2016] [Indexed: 12/21/2022] Open
Abstract
The transmembrane recognition complex (TRC40) pathway mediates the insertion of tail-anchored (TA) proteins into membranes. Here, we demonstrate that otoferlin, a TA protein essential for hair cell exocytosis, is inserted into the endoplasmic reticulum (ER) via the TRC40 pathway. We mutated the TRC40 receptor tryptophan-rich basic protein (Wrb) in hair cells of zebrafish and mice and studied the impact of defective TA protein insertion. Wrb disruption reduced otoferlin levels in hair cells and impaired hearing, which could be restored in zebrafish by transgenic Wrb rescue and otoferlin overexpression. Wrb-deficient mouse inner hair cells (IHCs) displayed normal numbers of afferent synapses, Ca2+ channels, and membrane-proximal vesicles, but contained fewer ribbon-associated vesicles. Patch-clamp of IHCs revealed impaired synaptic vesicle replenishment. In vivo recordings from postsynaptic spiral ganglion neurons showed a use-dependent reduction in sound-evoked spiking, corroborating the notion of impaired IHC vesicle replenishment. A human mutation affecting the transmembrane domain of otoferlin impaired its ER targeting and caused an auditory synaptopathy. We conclude that the TRC40 pathway is critical for hearing and propose that otoferlin is an essential substrate of this pathway in hair cells.
Collapse
Affiliation(s)
- Christian Vogl
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
| | - Iliana Panou
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Collaborative Research Center 889, University of Göttingen, Göttingen, Germany.,Göttingen Graduate School for Neurosciences, Biophysics and Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Gulnara Yamanbaeva
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany.,Auditory Systems Physiology Group and InnerEarLab, Department of Otolaryngology, University of Göttingen Medical Center, Göttingen, Germany
| | - Carolin Wichmann
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany.,Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Sara J Mangosing
- Otolaryngology Division, Department of Surgery, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Fabio Vilardi
- Institute of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| | - Artur A Indzhykulian
- Howard Hughes Medical Institute and Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Tina Pangršič
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany.,Synaptic Physiology of Mammalian Vestibular Hair Cells Junior Research Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Rosamaria Santarelli
- Department of Neurosciences, University of Padova, Padova, Italy.,Audiology and Phoniatrics Service, Treviso Regional Hospital, Treviso, Italy
| | | | - Thomas Weber
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Sangyong Jung
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Synaptic Nanophysiology Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Elena Cardenas
- Otolaryngology Division, Department of Surgery, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Xudong Wu
- Howard Hughes Medical Institute and Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Sonja M Wojcik
- Department of Molecular Neurobiology, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany
| | - Kelvin Y Kwan
- W. M. Keck Center for Collaborative Neuroscience, Nelson Lab-D250, Rutgers University, Piscataway, NJ, USA
| | - Ignacio Del Castillo
- Servicio de Genetica, Hospital Universitario Ramon y Cajal, IRYCIS, Madrid, Spain.,Centro de Investigacion Biomedica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Blanche Schwappach
- Institute of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| | - Nicola Strenzke
- Collaborative Research Center 889, University of Göttingen, Göttingen, Germany.,Auditory Systems Physiology Group and InnerEarLab, Department of Otolaryngology, University of Göttingen Medical Center, Göttingen, Germany
| | - David P Corey
- Howard Hughes Medical Institute and Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Shuh-Yow Lin
- Otolaryngology Division, Department of Surgery, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany .,Collaborative Research Center 889, University of Göttingen, Göttingen, Germany.,Synaptic Nanophysiology Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
67
|
Seal RP. Do the distinct synaptic properties of VGLUTs shape pain? Neurochem Int 2016; 98:82-8. [PMID: 27180049 DOI: 10.1016/j.neuint.2016.04.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 04/26/2016] [Accepted: 04/28/2016] [Indexed: 11/25/2022]
Abstract
The somatosensory system transmits touch, temperature, itch and pain. Three vesicular glutamate transporter isoforms mediate the release of glutamate throughout the mammalian nervous system with largely non-overlapping distributions and unique roles at the synapse. This review discusses the contribution of each of these essential transporters to circuits underlying pain and other somatosensory behaviors throughout postnatal development and in the adult. A better understanding of the individual contributions of the VGLUT isoforms could provide new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Rebecca P Seal
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
68
|
Olson W, Dong P, Fleming M, Luo W. The specification and wiring of mammalian cutaneous low-threshold mechanoreceptors. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:389-404. [PMID: 26992078 DOI: 10.1002/wdev.229] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 01/04/2016] [Accepted: 01/12/2016] [Indexed: 11/08/2022]
Abstract
The mammalian cutaneous low-threshold mechanoreceptors (LTMRs) are a diverse set of primary somatosensory neurons that function to sense external mechanical force. Generally, LTMRs are composed of Aβ-LTMRs, Aδ-LTMRs, and C-LTMRs, which have distinct molecular, physiological, anatomical, and functional features. The specification and wiring of each type of mammalian cutaneous LTMRs is established during development by the interplay of transcription factors with trophic factor signalling. In this review, we summarize the cohort of extrinsic and intrinsic factors generating the complex mammalian cutaneous LTMR circuits that mediate our tactile sensations and behaviors. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- William Olson
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter Dong
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Fleming
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wenqin Luo
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
69
|
Djouhri L. Electrophysiological evidence for the existence of a rare population of C-fiber low threshold mechanoreceptive (C-LTM) neurons in glabrous skin of the rat hindpaw. Neurosci Lett 2016; 613:25-9. [DOI: 10.1016/j.neulet.2015.12.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 12/17/2015] [Accepted: 12/18/2015] [Indexed: 12/31/2022]
|
70
|
Chakraborty S, Rebecchi M, Kaczocha M, Puopolo M. Dopamine modulation of transient receptor potential vanilloid type 1 (TRPV1) receptor in dorsal root ganglia neurons. J Physiol 2016; 594:1627-42. [PMID: 26563747 DOI: 10.1113/jp271198] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 11/04/2015] [Indexed: 01/11/2023] Open
Abstract
The transient receptor potential vanilloid type 1 (TRPV1) receptor plays a key role in the modulation of nociceptor excitability. To address whether dopamine can modulate the activity of TRPV1 channels in nociceptive neurons, the effects of dopamine and dopamine receptor agonists were tested on the capsaicin-activated current recorded from acutely dissociated small diameter (<27 μm) dorsal root ganglia (DRG) neurons. Dopamine or SKF 81297 (an agonist at D1/D5 receptors), caused inhibition of both inward and outward currents by ∼60% and ∼48%, respectively. The effect of SKF 81297 was reversed by SCH 23390 (an antagonist at D1/D5 receptors), confirming that it was mediated by activation of D1/D5 dopamine receptors. In contrast, quinpirole (an agonist at D2 receptors) had no significant effect on the capsaicin-activated current. Inhibition of the capsaicin-activated current by SKF 81297 was mediated by G protein coupled receptors (GPCRs), and highly dependent on external calcium. The inhibitory effect of SKF 81297 on the capsaicin-activated current was not affected when the protein kinase A (PKA) activity was blocked with H89, or when the protein kinase C (PKC) activity was blocked with bisindolylmaleimide II (BIM). In contrast, when the calcium-calmodulin-dependent protein kinase II (CaMKII) was blocked with KN-93, the inhibitory effect of SKF 81297 on the capsaicin-activated current was greatly reduced, suggesting that activation of D1/D5 dopamine receptors may be preferentially linked to CaMKII activity. We suggest that modulation of TRPV1 channels by dopamine in nociceptive neurons may represent a way for dopamine to modulate incoming noxious stimuli.
Collapse
Affiliation(s)
- Saikat Chakraborty
- Department of Anesthesiology, Stony Brook Medicine, Stony Brook, NY, 11794, USA
| | - Mario Rebecchi
- Department of Anesthesiology, Stony Brook Medicine, Stony Brook, NY, 11794, USA
| | - Martin Kaczocha
- Department of Anesthesiology, Stony Brook Medicine, Stony Brook, NY, 11794, USA
| | - Michelino Puopolo
- Department of Anesthesiology, Stony Brook Medicine, Stony Brook, NY, 11794, USA
| |
Collapse
|
71
|
Ellingsen DM, Leknes S, Løseth G, Wessberg J, Olausson H. The Neurobiology Shaping Affective Touch: Expectation, Motivation, and Meaning in the Multisensory Context. Front Psychol 2016; 6:1986. [PMID: 26779092 PMCID: PMC4701942 DOI: 10.3389/fpsyg.2015.01986] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 12/12/2015] [Indexed: 01/01/2023] Open
Abstract
Inter-individual touch can be a desirable reward that can both relieve negative affect and evoke strong feelings of pleasure. However, if other sensory cues indicate it is undesirable to interact with the toucher, the affective experience of the same touch may be flipped to disgust. While a broad literature has addressed, on one hand the neurophysiological basis of ascending touch pathways, and on the other hand the central neurochemistry involved in touch behaviors, investigations of how external context and internal state shapes the hedonic value of touch have only recently emerged. Here, we review the psychological and neurobiological mechanisms responsible for the integration of tactile “bottom–up” stimuli and “top–down” information into affective touch experiences. We highlight the reciprocal influences between gentle touch and contextual information, and consider how, and at which levels of neural processing, top-down influences may modulate ascending touch signals. Finally, we discuss the central neurochemistry, specifically the μ-opioids and oxytocin systems, involved in affective touch processing, and how the functions of these neurotransmitters largely depend on the context and motivational state of the individual.
Collapse
Affiliation(s)
- Dan-Mikael Ellingsen
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical SchoolBoston, MA, USA; Department of Psychology, University of OsloOslo, Norway
| | - Siri Leknes
- Department of Psychology, University of Oslo Oslo, Norway
| | - Guro Løseth
- Department of Psychology, University of Oslo Oslo, Norway
| | - Johan Wessberg
- Institute of Neuroscience and Physiology, University of Gothenburg Gothenburg, Sweden
| | - Håkan Olausson
- Department of Clinical and Experimental Medicine, Linköping University Linköping, Sweden
| |
Collapse
|
72
|
|
73
|
Malet M, Brumovsky PR. VGLUTs and Glutamate Synthesis-Focus on DRG Neurons and Pain. Biomolecules 2015; 5:3416-37. [PMID: 26633536 PMCID: PMC4693284 DOI: 10.3390/biom5043416] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 11/13/2015] [Accepted: 11/17/2015] [Indexed: 12/14/2022] Open
Abstract
The amino acid glutamate is the principal excitatory transmitter in the nervous system, including in sensory neurons that convey pain sensation from the periphery to the brain. It is now well established that a family of membrane proteins, termed vesicular glutamate transporters (VGLUTs), serve a critical function in these neurons: they incorporate glutamate into synaptic vesicles. VGLUTs have a central role both under normal neurotransmission and pathological conditions, such as neuropathic or inflammatory pain. In the present short review, we will address VGLUTs in the context of primary afferent neurons. We will focus on the role of VGLUTs in pain triggered by noxious stimuli, peripheral nerve injury, and tissue inflammation, as mostly explored in transgenic mice. The possible interplay between glutamate biosynthesis and VGLUT-dependent packaging in synaptic vesicles, and its potential impact in various pain states will be presented.
Collapse
Affiliation(s)
- Mariana Malet
- Institute of Research on Translational Medicine, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Austral University, Avenida Juan D. Perón 1500, Pilar, Buenos Aires 1629AHJ, Argentina.
| | - Pablo R Brumovsky
- Institute of Research on Translational Medicine, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Austral University, Avenida Juan D. Perón 1500, Pilar, Buenos Aires 1629AHJ, Argentina.
| |
Collapse
|
74
|
Peirs C, Williams SPG, Zhao X, Walsh CE, Gedeon JY, Cagle NE, Goldring AC, Hioki H, Liu Z, Marell PS, Seal RP. Dorsal Horn Circuits for Persistent Mechanical Pain. Neuron 2015; 87:797-812. [PMID: 26291162 DOI: 10.1016/j.neuron.2015.07.029] [Citation(s) in RCA: 226] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 06/24/2015] [Accepted: 07/29/2015] [Indexed: 11/19/2022]
Abstract
Persistent mechanical hypersensitivity that occurs in the setting of injury or disease remains a major clinical problem largely because the underlying neural circuitry is still not known. Here we report the functional identification of key components of the elusive dorsal horn circuit for mechanical allodynia. We show that the transient expression of VGLUT3 by a discrete population of neurons in the deep dorsal horn is required for mechanical pain and that activation of the cells in the adult conveys mechanical hypersensitivity. The cells, which receive direct low threshold input, point to a novel location for circuit initiation. Subsequent analysis of c-Fos reveals the circuit extends dorsally to nociceptive lamina I projection neurons, and includes lamina II calretinin neurons, which we show also convey mechanical allodynia. Lastly, using inflammatory and neuropathic pain models, we show that multiple microcircuits in the dorsal horn encode this form of pain.
Collapse
Affiliation(s)
- Cedric Peirs
- Departments of Neurobiology and Otolaryngology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, BST3, Pittsburgh, PA 15213, USA; Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Sean-Paul G Williams
- Departments of Neurobiology and Otolaryngology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, BST3, Pittsburgh, PA 15213, USA; Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Xinyi Zhao
- Departments of Neurobiology and Otolaryngology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, BST3, Pittsburgh, PA 15213, USA; Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15213, USA; Tsinghua M.D. Program, Tsinghua University School of Medicine, 30 Shuang Qing Road, Haidian District, Beijing 100084, China
| | - Claire E Walsh
- Departments of Neurobiology and Otolaryngology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, BST3, Pittsburgh, PA 15213, USA
| | - Jeremy Y Gedeon
- Departments of Neurobiology and Otolaryngology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, BST3, Pittsburgh, PA 15213, USA
| | - Natalie E Cagle
- Departments of Neurobiology and Otolaryngology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, BST3, Pittsburgh, PA 15213, USA
| | - Adam C Goldring
- Departments of Neurobiology and Otolaryngology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, BST3, Pittsburgh, PA 15213, USA
| | - Hiroyuki Hioki
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Zheng Liu
- Departments of Neurobiology and Otolaryngology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, BST3, Pittsburgh, PA 15213, USA
| | - Paulina S Marell
- Departments of Neurobiology and Otolaryngology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, BST3, Pittsburgh, PA 15213, USA
| | - Rebecca P Seal
- Departments of Neurobiology and Otolaryngology, University of Pittsburgh School of Medicine, 3501 Fifth Avenue, BST3, Pittsburgh, PA 15213, USA; Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15213, USA.
| |
Collapse
|
75
|
Abstract
Distinct subsets of sensory nerve fibres are involved in mediating mechanical and thermal pain hypersensitivity. They may also differentially respond to analgesics. Heat-sensitive C-fibres, for example, are thought to respond to μ-opioid receptor (MOR) activation while mechanoreceptive fibres are supposedly sensitive to δ-opioid receptor (DOR) or GABAB receptor (GABABR) activation. The suggested differential distribution of inhibitory neurotransmitter receptors on different subsets of sensory fibres is, however, heavily debated. In this study, we quantitatively compared the degree of presynaptic inhibition exerted by opioids and the GABABR agonist baclofen on (1) vesicular glutamate transporter subtype 3-positive (VGluT3) non-nociceptive primary afferent fibres and (2) putative nociceptive C-fibres. To investigate VGluT3 sensory fibres, we evoked excitatory postsynaptic currents with blue light at the level of the dorsal root ganglion (DRG) in spinal cord slices of mice, expressing channelrhodopsin-2. Putative nociceptive C-fibres were explored in VGluT3-knockout mice through electrical stimulation. The MOR agonist DAMGO strongly inhibited both VGluT3 and VGluT3 C-fibres innervating lamina I neurons but generally had less influence on fibres innervating lamina II neurons. The DOR agonist SNC80 did not have any pronounced effect on synaptic transmission in any fibre type tested. Baclofen, in striking contrast, powerfully inhibited all fibre populations investigated. In summary, we report optogenetic stimulation of DRG neurons in spinal slices as a capable approach for the subtype-selective investigation of primary afferent nerve fibres. Overall, pharmacological accessibility of different subtypes of sensory fibres considerably overlaps, indicating that MOR, DOR, and GABABR expressions are not substantially segregated between heat and mechanosensitive fibres.
Collapse
|
76
|
Huang S, O'Donovan KJ, Turner EE, Zhong J, Ginty DD. Extrinsic and intrinsic signals converge on the Runx1/CBFβ transcription factor for nonpeptidergic nociceptor maturation. eLife 2015; 4:e10874. [PMID: 26418744 PMCID: PMC4657622 DOI: 10.7554/elife.10874] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 09/28/2015] [Indexed: 01/16/2023] Open
Abstract
The generation of diverse neuronal subtypes involves specification of neural progenitors and, subsequently, postmitotic neuronal differentiation, a relatively poorly understood process. Here, we describe a mechanism whereby the neurotrophic factor NGF and the transcription factor Runx1 coordinate postmitotic differentiation of nonpeptidergic nociceptors, a major nociceptor subtype. We show that the integrity of a Runx1/CBFβ holocomplex is crucial for NGF-dependent nonpeptidergic nociceptor maturation. NGF signals through the ERK/MAPK pathway to promote expression of Cbfb but not Runx1 prior to maturation of nonpeptidergic nociceptors. In contrast, transcriptional initiation of Runx1 in nonpeptidergic nociceptor precursors is dependent on the homeodomain transcription factor Islet1, which is largely dispensable for Cbfb expression. Thus, an NGF/TrkA-MAPK-CBFβ pathway converges with Islet1-Runx1 signaling to promote Runx1/CBFβ holocomplex formation and nonpeptidergic nociceptor maturation. Convergence of extrinsic and intrinsic signals to control heterodimeric transcription factor complex formation provides a robust mechanism for postmitotic neuronal subtype specification. DOI:http://dx.doi.org/10.7554/eLife.10874.001 Animals detect and respond to their environment using their sensory nervous system, which forms through a complex, multi-step process. A precursor nerve cell’s fate is set early in its development, and determines the different nerve types it can become. As development progresses, sensory nerve cells develop further into distinct subtypes that perform particular tasks, such as responding to touch or pain. Nociceptors are the specialised sensory nerves that respond to potentially harmful stimuli. They form two distinct subtypes: peptidergic nerves detect potentially dangerous temperatures, whereas non-peptidergic nerves detect potentially dangerous mechanical sensations. Both subtypes originate from the same precursor nerve cell and both initially depend on an external molecule called NGF for their development and survival. During their development, non-peptidergic neurons stop responding to NGF and start producing a protein called Runx1, considered to be the ‘master regulator’ of non-peptidergic nerve cell development. Runx1 works by forming a complex with another protein called CBFbβ, and this complex activates a program of gene expression that is specific to non-peptidergic nerves. However it was unclear how an external signal, like NGF, can coordinate with or influence a nerve cell’s internal genetic program during the nerve’s development. It was also not known whether NGF and Runx1 interact with each other. By studying non-peptidergic nerve cell development in mice that lack NGF, Runx1 and other associated proteins, Huang et al. have now established the sequence of events that regulate the development of this nerve cell subtype. Two signalling pathways converge to switch on non-peptidergic nerve cell development. An NGF-driven signalling pathway activates the production of CBFβ, while another protein binds to the Runx1 gene to switch it on. This leads to the production of the Runx1 and CBFβ proteins that complex together to activate the non-peptidergic neuronal genetic program. These findings demonstrate how two different mechanisms converge to produce the component parts of a complex, which then activates a genetic program that drives the development of a particular neuronal subtype. Whether this mechanism is involved in determining the fate of other cell types remains a question for future work. DOI:http://dx.doi.org/10.7554/eLife.10874.002
Collapse
Affiliation(s)
- Siyi Huang
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States.,Department of Neuroscience, Howard Hughes Medical Institute, Johns Hopkins School of Medicine, Baltimore, United States
| | - Kevin J O'Donovan
- Burke Medical Research Institute, Weill Medical College of Cornell University, White Plains, United States
| | - Eric E Turner
- Seattle Children's Hospital, Seattle Children's Research Institute, Seattle, United States
| | - Jian Zhong
- Burke Medical Research Institute, Weill Medical College of Cornell University, White Plains, United States
| | - David D Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States.,Department of Neuroscience, Howard Hughes Medical Institute, Johns Hopkins School of Medicine, Baltimore, United States
| |
Collapse
|
77
|
Walsh CM, Bautista DM, Lumpkin EA. Mammalian touch catches up. Curr Opin Neurobiol 2015; 34:133-9. [PMID: 26100741 DOI: 10.1016/j.conb.2015.05.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 05/22/2015] [Indexed: 11/17/2022]
Abstract
An assortment of touch receptors innervate the skin and encode different tactile features of the environment. Compared with invertebrate touch and other sensory systems, our understanding of the molecular and cellular underpinnings of mammalian touch lags behind. Two recent breakthroughs have accelerated progress. First, an arsenal of cell-type-specific molecular markers allowed the functional and anatomical properties of sensory neurons to be matched, thereby unraveling a cellular code for touch. Such markers have also revealed key roles of non-neuronal cell types, such as Merkel cells and keratinocytes, in touch reception. Second, the discovery of Piezo genes as a new family of mechanically activated channels has fueled the discovery of molecular mechanisms that mediate and mechanotransduction in mammalian touch receptors.
Collapse
Affiliation(s)
- Carolyn M Walsh
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Diana M Bautista
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA.
| | - Ellen A Lumpkin
- Department of Dermatology, Columbia University College of Physicians & Surgeons, New York, NY 10032, USA; Department of Physiology & Cellular Biophysics, Columbia University College of Physicians & Surgeons, New York, NY 10032, USA.
| |
Collapse
|
78
|
Incoherent feed-forward regulatory loops control segregation of C-mechanoreceptors, nociceptors, and pruriceptors. J Neurosci 2015; 35:5317-29. [PMID: 25834056 DOI: 10.1523/jneurosci.0122-15.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mammalian skin is innervated by diverse, unmyelinated C fibers that are associated with senses of pain, itch, temperature, or touch. A key developmental question is how this neuronal cell diversity is generated during development. We reported previously that the runt domain transcription factor Runx1 is required to coordinate the development of these unmyelinated cutaneous sensory neurons, including VGLUT3(+) low-threshold c-mechanoreceptors (CLTMs), MrgprD(+) polymodal nociceptors, MrgprA3(+) pruriceptors, MrgprB4(+) c-mechanoreceptors, and others. However, how these Runx1-dependent cutaneous sensory neurons are further segregated is poorly illustrated. Here, we find that the Runx1-dependent transcription factor gene Zfp521 is expressed in, and required for establishing molecular features that define, VGLUT3(+) CLTMs. Furthermore, Runx1 and Zfp521 form a classic incoherent feedforward loop (I-FFL) in controlling molecular identities that normally belong to MrgprD(+) neurons, with Runx1 and Zfp51 playing activator and repressor roles, respectively (in genetic terms). A knock-out of Zfp521 allows prospective VGLUT3 lineage neurons to acquire MrgprD(+) neuron identities. Furthermore, Runx1 might form other I-FFLs to regulate the expression of MrgprA3 and MrgprB4, a mechanism preventing these genes from being expressed in Runx1-persistent VGLUT3(+) and MrgprD(+) neurons. The evolvement of these I-FFLs provides an explanation for how modality-selective sensory subtypes are formed during development and may also have intriguing implications for sensory neuron evolution and sensory coding.
Collapse
|
79
|
Ikeda R, Ling J, Cha M, Gu JG. In situ patch-clamp recordings from Merkel cells in rat whisker hair follicles, an experimental protocol for studying tactile transduction in tactile-end organs. Mol Pain 2015; 11:23. [PMID: 25907165 PMCID: PMC4437660 DOI: 10.1186/s12990-015-0022-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 04/13/2015] [Indexed: 11/24/2022] Open
Abstract
Mammals use tactile end-organs to perform sensory tasks such as environmental exploration, social interaction, and tactile discrimination. However, cellular and molecular mechanisms underlying tactile transduction in tactile end-organs remain poorly understood. The patch-clamp recording technique may be the most valuable approach for detecting and studying tactile transduction in tactile end-organs, but it is technically challenging because tactile transduction elements in an end-organ are normally inaccessible by patch-clamp recording electrodes. Here we describe an in situ patch-clamp recording protocol for the study of tactile transduction in Merkel cells of rat whisker hair follicles, one of the most sensitive tactile end-organs in mammals. This technique offers an opportunity to explore the identities and properties of ion channels that are involved in tactile transduction in whisker hair follicles, and it may also lend a useful tool for researchers to study other tactile end-organs. The experimental protocol describes procedures for 1) tissue dissection and whisker hair follicle preparation, 2) device setup and steps for performing patch-clamp recordings from Merkel cells in a whisker hair follicle, 3) methods of delivering mechanical stimuli, and 4) intra-follicle microinjection for receptor knockdown in whisker hair follicles. The main procedures in this protocol, from tissue preparation to whole-cell patch-clamp recordings, can be completed in a few hours.
Collapse
Affiliation(s)
- Ryo Ikeda
- Department of Anesthesiology and Perioperative Medicine, College of Medicine, University of Alabama at Birmingham, 901 19TH Street South, BMR II 210, Birmingham, AL, 35294, USA. .,Department of Orthopaedic Surgery, Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo, 105-8461, Japan.
| | - Jennifer Ling
- Department of Anesthesiology and Perioperative Medicine, College of Medicine, University of Alabama at Birmingham, 901 19TH Street South, BMR II 210, Birmingham, AL, 35294, USA.
| | - Myeounghoon Cha
- Department of Anesthesiology and Perioperative Medicine, College of Medicine, University of Alabama at Birmingham, 901 19TH Street South, BMR II 210, Birmingham, AL, 35294, USA.
| | - Jianguo G Gu
- Department of Anesthesiology and Perioperative Medicine, College of Medicine, University of Alabama at Birmingham, 901 19TH Street South, BMR II 210, Birmingham, AL, 35294, USA.
| |
Collapse
|
80
|
Whiteley SJ, Knutsen PM, Matthews DW, Kleinfeld D. Deflection of a vibrissa leads to a gradient of strain across mechanoreceptors in a mystacial follicle. J Neurophysiol 2015; 114:138-45. [PMID: 25855692 DOI: 10.1152/jn.00179.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 04/06/2015] [Indexed: 01/16/2023] Open
Abstract
Rodents use their vibrissae to detect and discriminate tactile features during active exploration. The site of mechanical transduction in the vibrissa sensorimotor system is the follicle sinus complex and its associated vibrissa. We study the mechanics within the ring sinus (RS) of the follicle in an ex vivo preparation of the mouse mystacial pad. The sinus region has a relatively dense representation of Merkel mechanoreceptors and longitudinal lanceolate endings. Two-photon laser-scanning microscopy was used to visualize labeled cell nuclei in an ∼ 100-nl vol before and after passive deflection of a vibrissa, which results in localized displacements of the mechanoreceptor cells, primarily in the radial and polar directions about the vibrissa. These displacements are used to compute the strain field across the follicle in response to the deflection. We observe compression in the lower region of the RS, whereas dilation, with lower magnitude, occurs in the upper region, with volumetric strain ΔV/V ∼ 0.01 for a 10° deflection. The extrapolated strain for a 0.1° deflection, the minimum angle that is reported to initiate a spike by primary neurons, corresponds to the minimum strain that activates Piezo2 mechanoreceptor channels.
Collapse
Affiliation(s)
- Samuel J Whiteley
- Department of Physics, University of Chicago, Chicago, Illinois; Department of Physics, University of California, San Diego, La Jolla, California; and
| | - Per M Knutsen
- Department of Physics, University of California, San Diego, La Jolla, California; and
| | - David W Matthews
- Department of Physics, University of California, San Diego, La Jolla, California; and
| | - David Kleinfeld
- Department of Physics, University of California, San Diego, La Jolla, California; and Section of Neurobiology, University of California, San Diego, La Jolla, California
| |
Collapse
|
81
|
Yoshikawa M, Hirabayashi M, Ito R, Ozaki S, Aizawa S, Masuda T, Senzaki K, Shiga T. Contribution of the Runx1 transcription factor to axonal pathfinding and muscle innervation by hypoglossal motoneurons. Dev Neurobiol 2015; 75:1295-314. [PMID: 25762373 DOI: 10.1002/dneu.22285] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 02/18/2015] [Accepted: 03/01/2015] [Indexed: 11/12/2022]
Abstract
The runt-related transcription factor Runx1 contributes to cell type specification and axonal targeting projections of the nociceptive dorsal root ganglion neurons. Runx1 is also expressed in the central nervous system, but little is known of its functions in brain development. At mouse embryonic day (E) 17.5, Runx1-positive neurons were detected in the ventrocaudal subdivision of the hypoglossal nucleus. Runx1-positive neurons lacked calcitonin gene-related peptide (CGRP) expression, whereas Runx1-negative neurons expressed CGRP. Expression of CGRP was not changed in Runx1-deficient mice at E17.5, suggesting that Runx1 alone does not suppress CGRP expression. Hypoglossal axon projections to the intrinsic vertical (V) and transverse (T) tongue muscles were sparser in Runx1-deficient mice at E17.5 compared to age-matched wild-type littermates. Concomitantly, vesicular acetylcholine transporter-positive axon terminals and acetylcholine receptor clusters were less dense in the V and T tongue muscles of Runx1-deficient mice. These abnormalities in axonal projection were not caused by a reduction in the total number hypoglossal neurons, failed synaptogenesis, or tongue muscles deficits. Our results implicate Runx1 in the targeting of ventrocaudal hypoglossal axons to specific tongue muscles. However, Runx1 deficiency did not alter neuronal survival or the expression of multiple motoneuron markers as in other neuronal populations. Thus, Runx1 appears to have distinct developmental functions in different brain regions.
Collapse
Affiliation(s)
- Masaaki Yoshikawa
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi, Tokyo, 173-8610, Japan.,Doctoral Program in Kansei, Behavioral and Brain Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Mizuki Hirabayashi
- Doctoral Program in Kansei, Behavioral and Brain Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Ryota Ito
- Doctoral Program in Kansei, Behavioral and Brain Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Shigeru Ozaki
- Doctoral Program in Kansei, Behavioral and Brain Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Shin Aizawa
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi, Tokyo, 173-8610, Japan
| | - Tomoyuki Masuda
- Doctoral Program in Kansei, Behavioral and Brain Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Kouji Senzaki
- Doctoral Program in Kansei, Behavioral and Brain Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Takashi Shiga
- Doctoral Program in Kansei, Behavioral and Brain Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| |
Collapse
|
82
|
Reynders A, Mantilleri A, Malapert P, Rialle S, Nidelet S, Laffray S, Beurrier C, Bourinet E, Moqrich A. Transcriptional Profiling of Cutaneous MRGPRD Free Nerve Endings and C-LTMRs. Cell Rep 2015; 10:1007-1019. [PMID: 25683706 PMCID: PMC4542317 DOI: 10.1016/j.celrep.2015.01.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/13/2014] [Accepted: 01/08/2015] [Indexed: 01/06/2023] Open
Abstract
Cutaneous C-unmyelinated MRGPRD+ free nerve endings and C-LTMRs innervating hair follicles convey two opposite aspects of touch sensation: a sensation of pain and a sensation of pleasant touch. The molecular mechanisms underlying these diametrically opposite functions are unknown. Here, we used a mouse model that genetically marks C-LTMRs and MRGPRD+ neurons in combination with fluorescent cell surface labeling, flow cytometry, and RNA deep-sequencing technology (RNA-seq). Cluster analysis of RNA-seq profiles of the purified neuronal subsets revealed 486 and 549 genes differentially expressed in MRGPRD-expressing neurons and C-LTMRs, respectively. We validated 48 MRGPD- and 68 C-LTMRs-enriched genes using a triple-staining approach, and the Cav3.3 channel, found to be exclusively expressed in C-LTMRs, was validated using electrophysiology. Our study greatly expands the molecular characterization of C-LTMRs and suggests that this particular population of neurons shares some molecular features with Aβ and Aδ low-threshold mechanoreceptors.
Collapse
Affiliation(s)
- Ana Reynders
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Case 907, 13288 Marseille Cedex 09, France
| | - Annabelle Mantilleri
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Case 907, 13288 Marseille Cedex 09, France
| | - Pascale Malapert
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Case 907, 13288 Marseille Cedex 09, France
| | - Stéphanie Rialle
- Laboratories of Excellence, Ion Channel Science and Therapeutics, Institut de Génomique Fonctionnelle, UMR 5203, CNRS, U1191, INSERM, Université de Montpellier, 141 Rue de la Cardonille, 34094 Montpellier Cedex 05, France
| | - Sabine Nidelet
- Laboratories of Excellence, Ion Channel Science and Therapeutics, Institut de Génomique Fonctionnelle, UMR 5203, CNRS, U1191, INSERM, Université de Montpellier, 141 Rue de la Cardonille, 34094 Montpellier Cedex 05, France
| | - Sophie Laffray
- Laboratories of Excellence, Ion Channel Science and Therapeutics, Institut de Génomique Fonctionnelle, UMR 5203, CNRS, U1191, INSERM, Université de Montpellier, 141 Rue de la Cardonille, 34094 Montpellier Cedex 05, France
| | - Corinne Beurrier
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Case 907, 13288 Marseille Cedex 09, France
| | - Emmanuel Bourinet
- Laboratories of Excellence, Ion Channel Science and Therapeutics, Institut de Génomique Fonctionnelle, UMR 5203, CNRS, U1191, INSERM, Université de Montpellier, 141 Rue de la Cardonille, 34094 Montpellier Cedex 05, France.
| | - Aziz Moqrich
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Case 907, 13288 Marseille Cedex 09, France.
| |
Collapse
|
83
|
|
84
|
François A, Schüetter N, Laffray S, Sanguesa J, Pizzoccaro A, Dubel S, Mantilleri A, Nargeot J, Noël J, Wood JN, Moqrich A, Pongs O, Bourinet E. The Low-Threshold Calcium Channel Cav3.2 Determines Low-Threshold Mechanoreceptor Function. Cell Rep 2015; 10:370-382. [PMID: 25600872 DOI: 10.1016/j.celrep.2014.12.042] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 11/14/2014] [Accepted: 12/18/2014] [Indexed: 12/12/2022] Open
Abstract
The T-type calcium channel Cav3.2 emerges as a key regulator of sensory functions, but its expression pattern within primary afferent neurons and its contribution to modality-specific signaling remain obscure. Here, we elucidate this issue using a unique knockin/flox mouse strain wherein Cav3.2 is replaced by a functional Cav3.2-surface-ecliptic GFP fusion. We demonstrate that Cav3.2 is a selective marker of two major low-threshold mechanoreceptors (LTMRs), Aδ- and C-LTMRs, innervating the most abundant skin hair follicles. The presence of Cav3.2 along LTMR-fiber trajectories is consistent with critical roles at multiple sites, setting their strong excitability. Strikingly, the C-LTMR-specific knockout uncovers that Cav3.2 regulates light-touch perception and noxious mechanical cold and chemical sensations and is essential to build up that debilitates allodynic symptoms of neuropathic pain, a mechanism thought to be entirely A-LTMR specific. Collectively, our findings support a fundamental role for Cav3.2 in touch/pain pathophysiology, validating their critic pharmacological relevance to relieve mechanical and cold allodynia.
Collapse
Affiliation(s)
- Amaury François
- Laboratories of Excellence, Ion Channel Science and Therapeutics, Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, 34094 Montpellier, France; CNRS UMR5203, 34095 Montpellier, France; INSERM, U661, 34095 Montpellier, France; Université de Montpellier, 34095 Montpellier, France
| | - Niklas Schüetter
- Department of Physiology, University of Saarland, School of Medicine, Kirrberger Straße 1, 66424 Homburg, Germany
| | - Sophie Laffray
- Laboratories of Excellence, Ion Channel Science and Therapeutics, Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, 34094 Montpellier, France; CNRS UMR5203, 34095 Montpellier, France; INSERM, U661, 34095 Montpellier, France; Université de Montpellier, 34095 Montpellier, France
| | - Juan Sanguesa
- Laboratories of Excellence, Ion Channel Science and Therapeutics, Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, 34094 Montpellier, France; CNRS UMR5203, 34095 Montpellier, France; INSERM, U661, 34095 Montpellier, France; Université de Montpellier, 34095 Montpellier, France
| | - Anne Pizzoccaro
- Laboratories of Excellence, Ion Channel Science and Therapeutics, Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, 34094 Montpellier, France; CNRS UMR5203, 34095 Montpellier, France; INSERM, U661, 34095 Montpellier, France; Université de Montpellier, 34095 Montpellier, France
| | - Stefan Dubel
- Laboratories of Excellence, Ion Channel Science and Therapeutics, Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, 34094 Montpellier, France; CNRS UMR5203, 34095 Montpellier, France; INSERM, U661, 34095 Montpellier, France; Université de Montpellier, 34095 Montpellier, France
| | - Annabelle Mantilleri
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, 13288 Marseille, France
| | - Joel Nargeot
- Laboratories of Excellence, Ion Channel Science and Therapeutics, Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, 34094 Montpellier, France; CNRS UMR5203, 34095 Montpellier, France; INSERM, U661, 34095 Montpellier, France; Université de Montpellier, 34095 Montpellier, France
| | - Jacques Noël
- Laboratories of Excellence, Ion Channel Science and Therapeutics, Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, 34094 Montpellier, France; Université de Nice Sophia Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275 CNRS, 660 route des lucioles, 06560 Valbonne, France
| | - John N Wood
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK
| | - Aziz Moqrich
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, 13288 Marseille, France
| | - Olaf Pongs
- Department of Physiology, University of Saarland, School of Medicine, Kirrberger Straße 1, 66424 Homburg, Germany
| | - Emmanuel Bourinet
- Laboratories of Excellence, Ion Channel Science and Therapeutics, Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, 34094 Montpellier, France; CNRS UMR5203, 34095 Montpellier, France; INSERM, U661, 34095 Montpellier, France; Université de Montpellier, 34095 Montpellier, France.
| |
Collapse
|
85
|
Ranade SS, Woo SH, Dubin AE, Moshourab RA, Wetzel C, Petrus M, Mathur J, Bégay V, Coste B, Mainquist J, Wilson AJ, Francisco AG, Reddy K, Qiu Z, Wood JN, Lewin GR, Patapoutian A. Piezo2 is the major transducer of mechanical forces for touch sensation in mice. Nature 2015; 516:121-5. [PMID: 25471886 DOI: 10.1038/nature13980] [Citation(s) in RCA: 581] [Impact Index Per Article: 64.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 10/17/2014] [Indexed: 01/05/2023]
Abstract
The sense of touch provides critical information about our physical environment by transforming mechanical energy into electrical signals. It is postulated that mechanically activated cation channels initiate touch sensation, but the identity of these molecules in mammals has been elusive. Piezo2 is a rapidly adapting, mechanically activated ion channel expressed in a subset of sensory neurons of the dorsal root ganglion and in cutaneous mechanoreceptors known as Merkel-cell-neurite complexes. It has been demonstrated that Merkel cells have a role in vertebrate mechanosensation using Piezo2, particularly in shaping the type of current sent by the innervating sensory neuron; however, major aspects of touch sensation remain intact without Merkel cell activity. Here we show that mice lacking Piezo2 in both adult sensory neurons and Merkel cells exhibit a profound loss of touch sensation. We precisely localize Piezo2 to the peripheral endings of a broad range of low-threshold mechanoreceptors that innervate both hairy and glabrous skin. Most rapidly adapting, mechanically activated currents in dorsal root ganglion neuronal cultures are absent in Piezo2 conditional knockout mice, and ex vivo skin nerve preparation studies show that the mechanosensitivity of low-threshold mechanoreceptors strongly depends on Piezo2. This cellular phenotype correlates with an unprecedented behavioural phenotype: an almost complete deficit in light-touch sensation in multiple behavioural assays, without affecting other somatosensory functions. Our results highlight that a single ion channel that displays rapidly adapting, mechanically activated currents in vitro is responsible for the mechanosensitivity of most low-threshold mechanoreceptor subtypes involved in innocuous touch sensation. Notably, we find that touch and pain sensation are separable, suggesting that as-yet-unknown mechanically activated ion channel(s) must account for noxious (painful) mechanosensation.
Collapse
Affiliation(s)
- Sanjeev S Ranade
- Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Seung-Hyun Woo
- Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Adrienne E Dubin
- Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Rabih A Moshourab
- 1] Department of Neuroscience, Max-Delbrück Center for Molecular Medicine, Robert-Rössle Straße 10, D-13092 Berlin, Germany [2] Klinik für Anästhesiologie mit Schwerpunkt Operative Intensivmedizin, Campus Charité Mitte and Virchow-Klinikum Charité, Universitätsmedizin Berlin, Augustburgerplatz 1, 13353 Berlin, Germany
| | - Christiane Wetzel
- Department of Neuroscience, Max-Delbrück Center for Molecular Medicine, Robert-Rössle Straße 10, D-13092 Berlin, Germany
| | - Matt Petrus
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
| | - Jayanti Mathur
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
| | - Valérie Bégay
- Department of Neuroscience, Max-Delbrück Center for Molecular Medicine, Robert-Rössle Straße 10, D-13092 Berlin, Germany
| | - Bertrand Coste
- Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037, USA
| | - James Mainquist
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
| | - A J Wilson
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
| | - Allain G Francisco
- Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Kritika Reddy
- Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Zhaozhu Qiu
- 1] Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037, USA [2] Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
| | - John N Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Gary R Lewin
- Department of Neuroscience, Max-Delbrück Center for Molecular Medicine, Robert-Rössle Straße 10, D-13092 Berlin, Germany
| | - Ardem Patapoutian
- Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California 92037, USA
| |
Collapse
|
86
|
Lin SH, Sun WH, Chen CC. Genetic exploration of the role of acid-sensing ion channels. Neuropharmacology 2015; 94:99-118. [PMID: 25582292 DOI: 10.1016/j.neuropharm.2014.12.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 12/03/2014] [Accepted: 12/04/2014] [Indexed: 12/27/2022]
Abstract
Advanced gene targeting technology and related tools in mice have been incorporated into studies of acid-sensing ion channels (ASICs). A single ASIC subtype can be knocked out specifically and screened thoroughly for expression in the nervous system at the cellular level. Mapping studies have further shed light on the initiation and identification of related behavioral phenotypes. Here we review studies involving genetically engineered mouse models used to investigate the physiological function of individual ASIC subtypes: ASIC1 (and ASIC1a), ASIC2, ASIC3 and ASIC4. We discuss the detailed expression studies and significant phenotypes revealed with gene knockout for most known Asic subtypes. Each strategy designed to manipulate mouse genetics has advantages and disadvantages. We discuss the limitations of these Asic-knockout models and propose future directions to solve the genetic issues. This article is part of the Special Issue entitled 'Acid-Sensing Ion Channels in the Nervous System'.
Collapse
Affiliation(s)
- Shing-Hong Lin
- Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan.
| | - Wei-Hsin Sun
- Department of Life Sciences, National Central University, Jhongli 32054, Taiwan.
| | - Chih-Cheng Chen
- Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan; Taiwan Mouse Clinic, National Comprehensive Mouse Phenotyping and Drug Testing Center, Academia Sinica, Taipei 115, Taiwan.
| |
Collapse
|
87
|
Chiu IM, Barrett LB, Williams EK, Strochlic DE, Lee S, Weyer AD, Lou S, Bryman GS, Roberson DP, Ghasemlou N, Piccoli C, Ahat E, Wang V, Cobos EJ, Stucky CL, Ma Q, Liberles SD, Woolf CJ. Transcriptional profiling at whole population and single cell levels reveals somatosensory neuron molecular diversity. eLife 2014; 3. [PMID: 25525749 PMCID: PMC4383053 DOI: 10.7554/elife.04660] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/18/2014] [Indexed: 12/17/2022] Open
Abstract
The somatosensory nervous system is critical for the organism's ability to respond to
mechanical, thermal, and nociceptive stimuli. Somatosensory neurons are functionally
and anatomically diverse but their molecular profiles are not well-defined. Here, we
used transcriptional profiling to analyze the detailed molecular signatures of dorsal
root ganglion (DRG) sensory neurons. We used two mouse reporter lines and surface IB4
labeling to purify three major non-overlapping classes of neurons: 1)
IB4+SNS-Cre/TdTomato+, 2)
IB4−SNS-Cre/TdTomato+, and 3)
Parv-Cre/TdTomato+ cells, encompassing the majority of
nociceptive, pruriceptive, and proprioceptive neurons. These neurons displayed
distinct expression patterns of ion channels, transcription factors, and GPCRs.
Highly parallel qRT-PCR analysis of 334 single neurons selected by membership of the
three populations demonstrated further diversity, with unbiased clustering analysis
identifying six distinct subgroups. These data significantly increase our knowledge
of the molecular identities of known DRG populations and uncover potentially novel
subsets, revealing the complexity and diversity of those neurons underlying
somatosensation. DOI:http://dx.doi.org/10.7554/eLife.04660.001 In the nervous system, a network of specialized neurons—known as the
somatosensory system—carries information about sensations including touch,
muscle position, temperature and pain. Distinct sets of somatosensory neurons are
thought to carry information about the different types of sensations. In young
animals, the precise switching on, or ‘expression’, of genes controls
the formation of the network of neurons. However, it is not known exactly which genes
are expressed in what types of neurons, where, or when. Here, Chiu et al. used a technique called flow cytometry using different fluorescent
markers to isolate a group of cells called Dorsal Root Ganglion (DRG) neurons in
mice. These neurons have long thread-like fibers that extend from the spinal cord to
the skin, muscles and joints all over the body. These fibers carry sensory
information to the spinal cord, where it can be relayed to the brain and processed.
The experiments compared three distinct types of DRG neuron and found that they
differed in their ability to send information to other cells. Chiu et al. analyzed the expression of all the genes in the three types of DRG
neurons. Each type of neuron had distinct groups of genes that were being expressed.
Also, several genes that are known to be important for sensation were expressed at
different levels in the different types of cells. Next, large numbers of single cells
were analyzed to find out the finer details about the three types of neuron. These
findings made it possible to further divide the DRG neurons into six distinct subsets
that matched previously known groups of somatosensory neurons, and also identified
new ones. Chiu et al.'s findings reveal the complexity and diversity of the neurons involved in
carrying information about sensations towards the brain. This is an important step in
classifying the nervous system, and uncovers many genes previously not linked to
sensation. The next challenges lie in understanding how the expression of these genes
in each type of neuron relates to their unique roles. DOI:http://dx.doi.org/10.7554/eLife.04660.002
Collapse
Affiliation(s)
- Isaac M Chiu
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, United States
| | - Lee B Barrett
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, United States
| | - Erika K Williams
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - David E Strochlic
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Seungkyu Lee
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, United States
| | - Andy D Weyer
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, United States
| | - Shan Lou
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Gregory S Bryman
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, United States
| | - David P Roberson
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, United States
| | - Nader Ghasemlou
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, United States
| | - Cara Piccoli
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, United States
| | - Ezgi Ahat
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, United States
| | - Victor Wang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, United States
| | - Enrique J Cobos
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, United States
| | - Cheryl L Stucky
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, United States
| | - Qiufu Ma
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Stephen D Liberles
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Clifford J Woolf
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, United States
| |
Collapse
|
88
|
Woo SH, Lumpkin EA, Patapoutian A. Merkel cells and neurons keep in touch. Trends Cell Biol 2014; 25:74-81. [PMID: 25480024 DOI: 10.1016/j.tcb.2014.10.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 10/20/2014] [Accepted: 10/24/2014] [Indexed: 11/18/2022]
Abstract
The Merkel cell-neurite complex is a unique vertebrate touch receptor comprising two distinct cell types in the skin. Its presence in touch-sensitive skin areas was recognized more than a century ago, but the functions of each cell type in sensory transduction have been unclear. Three recent studies demonstrate that Merkel cells are mechanosensitive cells that function in touch transduction via Piezo2. One study concludes that Merkel cells, rather than sensory neurons, are principal sites of mechanotransduction, whereas two other studies report that both Merkel cells and neurons encode mechanical inputs. Together, these studies settle a long-standing debate on whether or not Merkel cells are mechanosensory cells, and enable future investigations of how these skin cells communicate with neurons.
Collapse
Affiliation(s)
- Seung-Hyun Woo
- Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ellen A Lumpkin
- Departments of Dermatology & Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA.
| | - Ardem Patapoutian
- Howard Hughes Medical Institute, Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
89
|
Identification of spinal circuits transmitting and gating mechanical pain. Cell 2014; 159:1417-1432. [PMID: 25467445 DOI: 10.1016/j.cell.2014.11.003] [Citation(s) in RCA: 394] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/07/2014] [Accepted: 10/31/2014] [Indexed: 01/16/2023]
Abstract
Pain information processing in the spinal cord has been postulated to rely on nociceptive transmission (T) neurons receiving inputs from nociceptors and Aβ mechanoreceptors, with Aβ inputs gated through feed-forward activation of spinal inhibitory neurons (INs). Here, we used intersectional genetic manipulations to identify these critical components of pain transduction. Marking and ablating six populations of spinal excitatory and inhibitory neurons, coupled with behavioral and electrophysiological analysis, showed that excitatory neurons expressing somatostatin (SOM) include T-type cells, whose ablation causes loss of mechanical pain. Inhibitory neurons marked by the expression of dynorphin (Dyn) represent INs, which are necessary to gate Aβ fibers from activating SOM(+) neurons to evoke pain. Therefore, peripheral mechanical nociceptors and Aβ mechanoreceptors, together with spinal SOM(+) excitatory and Dyn(+) inhibitory neurons, form a microcircuit that transmits and gates mechanical pain. PAPERCLIP:
Collapse
|
90
|
VGluT3⁺ primary afferents play distinct roles in mechanical and cold hypersensitivity depending on pain etiology. J Neurosci 2014; 34:12015-28. [PMID: 25186747 DOI: 10.1523/jneurosci.2157-14.2014] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Sensory nerve fibers differ not only with respect to their sensory modalities and conduction velocities, but also in their relative roles for pain hypersensitivity. It is presently largely unknown which types of sensory afferents contribute to various forms of neuropathic and inflammatory pain hypersensitivity. Vesicular glutamate transporter 3-positive (VGluT3(+)) primary afferents, for example, have been implicated in mechanical hypersensitivity after inflammation, but their role in neuropathic pain remains under debate. Here, we investigated a possible etiology-dependent contribution of VGluT3(+) fibers to mechanical and cold hypersensitivity in different models of inflammatory and neuropathic pain. In addition to VGluT3(-/-) mice, we used VGluT3-channelrhodopsin 2 mice to selectively stimulate VGluT3(+) sensory afferents by blue light, and to assess light-evoked behavior in freely moving mice. We show that VGluT3(-/-) mice develop reduced mechanical hypersensitivity upon carrageenan injection. Both mechanical and cold hypersensitivity were reduced in VGluT3(-/-) mice in neuropathic pain evoked by the chemotherapeutic oxaliplatin, but not in the chronic constriction injury (CCI) model of the sciatic nerve. Further, we provide direct evidence that, despite not mediating painful stimuli in naive mice, activation of VGluT3(+) sensory fibers by light elicits pain behavior in the oxaliplatin but not the CCI model. Immunohistochemical and electrophysiological data support a role of transient receptor potential melastatin 8-mediated facilitation of synaptic strength at the level of the dorsal horn as an underlying mechanism. Together, we demonstrate that VGluT3(+) fibers contribute in an etiology-dependent manner to the development of mechano-cold hypersensitivity.
Collapse
|
91
|
Bagriantsev SN, Gracheva EO, Gallagher PG. Piezo proteins: regulators of mechanosensation and other cellular processes. J Biol Chem 2014; 289:31673-31681. [PMID: 25305018 DOI: 10.1074/jbc.r114.612697] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Piezo proteins have recently been identified as ion channels mediating mechanosensory transduction in mammalian cells. Characterization of these channels has yielded important insights into mechanisms of somatosensation, as well as other mechano-associated biologic processes such as sensing of shear stress, particularly in the vasculature, and regulation of urine flow and bladder distention. Other roles for Piezo proteins have emerged, some unexpected, including participation in cellular development, volume regulation, cellular migration, proliferation, and elongation. Mutations in human Piezo proteins have been associated with a variety of disorders including hereditary xerocytosis and several syndromes with muscular contracture as a prominent feature.
Collapse
Affiliation(s)
- Sviatoslav N Bagriantsev
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Elena O Gracheva
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520; Yale Program in Cellular Neuroscience, Neurodegeneration and Repair, and Yale University School of Medicine, New Haven, Connecticut 06520
| | - Patrick G Gallagher
- Departments of Pediatrics, Pathology, and Genetics, Yale University School of Medicine, New Haven, Connecticut 06520.
| |
Collapse
|
92
|
Goswami SC, Mishra SK, Maric D, Kaszas K, Gonnella GL, Clokie SJ, Kominsky HD, Gross JR, Keller JM, Mannes AJ, Hoon MA, Iadarola MJ. Molecular signatures of mouse TRPV1-lineage neurons revealed by RNA-Seq transcriptome analysis. THE JOURNAL OF PAIN 2014; 15:1338-1359. [PMID: 25281809 DOI: 10.1016/j.jpain.2014.09.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 09/10/2014] [Accepted: 09/19/2014] [Indexed: 12/22/2022]
Abstract
UNLABELLED Disorders of pain neural systems are frequently chronic and, when recalcitrant to treatment, can severely degrade the quality of life. The pain pathway begins with sensory neurons in dorsal root or trigeminal ganglia, and the neuronal subpopulations that express the transient receptor potential cation channel, subfamily V, member 1 (TRPV1) ion channel transduce sensations of painful heat and inflammation and play a fundamental role in clinical pain arising from cancer and arthritis. In the present study, we elucidate the complete transcriptomes of neurons from the TRPV1 lineage and a non-TRPV1 neuroglial population in sensory ganglia through the combined application of next-gen deep RNA-Seq, genetic neuronal labeling with fluorescence-activated cell sorting, or neuron-selective chemoablation. RNA-Seq accurately quantitates gene expression, a difficult parameter to determine with most other methods, especially for very low and very high expressed genes. Differentially expressed genes are present at every level of cellular function from the nucleus to the plasma membrane. We identified many ligand receptor pairs in the TRPV1 population, suggesting that autonomous presynaptic regulation may be a major regulatory mechanism in nociceptive neurons. The data define, in a quantitative, cell population-specific fashion, the molecular signature of a distinct and clinically important group of pain-sensing neurons and provide an overall framework for understanding the transcriptome of TRPV1 nociceptive neurons. PERSPECTIVE Next-gen RNA-Seq, combined with molecular genetics, provides a comprehensive and quantitative measurement of transcripts in TRPV1 lineage neurons and a contrasting transcriptome from non-TRPV1 neurons and cells. The transcriptome highlights previously unrecognized protein families, identifies multiple molecular circuits for excitatory or inhibitory autocrine and paracrine signaling, and suggests new combinatorial approaches to pain control.
Collapse
Affiliation(s)
- Samridhi C Goswami
- Anesthesia Section, Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Santosh K Mishra
- Molecular Genetics Unit, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research, Bethesda, Maryland
| | - Dragan Maric
- Laboratory of Neurophysiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Krisztian Kaszas
- Anesthesia Section, Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Gian Luigi Gonnella
- Anesthesia Section, Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Samuel J Clokie
- Anesthesia Section, Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Hal D Kominsky
- Anesthesia Section, Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Jacklyn R Gross
- Anesthesia Section, Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Jason M Keller
- Anesthesia Section, Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Andrew J Mannes
- Anesthesia Section, Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Mark A Hoon
- Molecular Genetics Unit, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research, Bethesda, Maryland
| | - Michael J Iadarola
- Anesthesia Section, Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
93
|
Neuronal mechanism for acute mechanosensitivity in tactile-foraging waterfowl. Proc Natl Acad Sci U S A 2014; 111:14941-6. [PMID: 25246547 DOI: 10.1073/pnas.1413656111] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Relying almost exclusively on their acute sense of touch, tactile-foraging birds can feed in murky water, but the cellular mechanism is unknown. Mechanical stimuli activate specialized cutaneous end organs in the bill, innervated by trigeminal afferents. We report that trigeminal ganglia (TG) of domestic and wild tactile-foraging ducks exhibit numerical expansion of large-diameter mechanoreceptive neurons expressing the mechano-gated ion channel Piezo2. These features are not found in visually foraging birds. Moreover, in the duck, the expansion of mechanoreceptors occurs at the expense of thermosensors. Direct mechanical stimulation of duck TG neurons evokes high-amplitude depolarizing current with a low threshold of activation, high signal amplification gain, and slow kinetics of inactivation. Together, these factors contribute to efficient conversion of light mechanical stimuli into neuronal excitation. Our results reveal an evolutionary strategy to hone tactile perception in vertebrates at the level of primary afferents.
Collapse
|
94
|
Kupari J, Airaksinen MS. Different requirements for GFRα2-signaling in three populations of cutaneous sensory neurons. PLoS One 2014; 9:e104764. [PMID: 25111710 PMCID: PMC4128720 DOI: 10.1371/journal.pone.0104764] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 07/15/2014] [Indexed: 01/09/2023] Open
Abstract
Many primary sensory neurons in mouse dorsal root ganglia (DRG) express one or several GFRα’s, the ligand-binding receptors of the GDNF family, and their common signaling receptor Ret. GFRα2, the principal receptor for neurturin, is expressed in most of the small nonpeptidergic DRG neurons, but also in some large DRG neurons that start to express Ret earlier. Previously, GFRα2 has been shown to be crucial for the soma size of small nonpeptidergic nociceptors and for their target innervation of glabrous epidermis. However, little is known about this receptor in other Ret-expressing DRG neuron populations. Here we have investigated two populations of Ret-positive low-threshold mechanoreceptors that innervate different types of hair follicles on mouse back skin: the small C-LTMRs and the large Aβ-LTMRs. Using GFRα2-KO mice and immunohistochemistry we found that, similar to the nonpeptidergic nociceptors, GFRα2 controls the cell size but not the survival of both C-LTMRs and Aβ-LTMRs. In contrast to the nonpeptidergic neurons, GFRα2 is not required for the target innervation of C-LTMRs and Aβ-LTMRs in the back skin. These results suggest that different factors drive target innervation in these three populations of neurons. In addition, the observation that the large Ret-positive DRG neurons lack GFRα2 immunoreactivity in mature animals suggests that these neurons switch their GFRα signaling pathways during postnatal development.
Collapse
Affiliation(s)
- Jussi Kupari
- Institute of Biomedicine, Anatomy, University of Helsinki, Helsinki, Finland
| | - Matti S. Airaksinen
- Institute of Biomedicine, Anatomy, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
95
|
Piezo channels: from structure to function. Pflugers Arch 2014; 467:95-9. [DOI: 10.1007/s00424-014-1578-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/03/2014] [Accepted: 07/08/2014] [Indexed: 10/25/2022]
|
96
|
|
97
|
Le Pichon CE, Chesler AT. The functional and anatomical dissection of somatosensory subpopulations using mouse genetics. Front Neuroanat 2014; 8:21. [PMID: 24795573 PMCID: PMC4001001 DOI: 10.3389/fnana.2014.00021] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/24/2014] [Indexed: 11/13/2022] Open
Abstract
The word somatosensation comes from joining the Greek word for body (soma) with a word for perception (sensation). Somatosensory neurons comprise the largest sensory system in mammals and have nerve endings coursing throughout the skin, viscera, muscle, and bone. Their cell bodies reside in a chain of ganglia adjacent to the dorsal spinal cord (the dorsal root ganglia) and at the base of the skull (the trigeminal ganglia). While the neuronal cell bodies are intermingled within the ganglia, the somatosensory system is in reality composed of numerous sub-systems, each specialized to detect distinct stimuli, such as temperature and touch. Historically, somatosensory neurons have been classified using a diverse host of anatomical and physiological parameters, such as the size of the cell body, degree of myelination, histological labeling with markers, specialization of the nerve endings, projection patterns in the spinal cord and brainstem, receptive tuning, and conduction velocity of their action potentials. While useful, the picture that emerged was one of heterogeneity, with many markers at least partially overlapping. More recently, by capitalizing on advances in molecular techniques, researchers have identified specific ion channels and sensory receptors expressed in subsets of sensory neurons. These studies have proved invaluable as they allow genetic access to small subsets of neurons for further molecular dissection. Data being generated from transgenic mice favor a model whereby an array of dedicated neurons is responsible for selectively encoding different modalities. Here we review the current knowledge of the different sensory neuron subtypes in the mouse, the markers used to study them, and the neurogenetic strategies used to define their anatomical projections and functional roles.
Collapse
Affiliation(s)
- Claire E. Le Pichon
- National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesda, MD, USA
| | - Alexander T. Chesler
- Intramural Pain Program, Section on Sensory Cells and Circuits, National Center for Complementary and Alternative Medicine, National Institutes of HealthBethesda, MD, USA
| |
Collapse
|
98
|
Merkel cells transduce and encode tactile stimuli to drive Aβ-afferent impulses. Cell 2014; 157:664-75. [PMID: 24746027 DOI: 10.1016/j.cell.2014.02.026] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 01/13/2014] [Accepted: 02/11/2014] [Indexed: 11/22/2022]
Abstract
Sensory systems for detecting tactile stimuli have evolved from touch-sensing nerves in invertebrates to complicated tactile end organs in mammals. Merkel discs are tactile end organs consisting of Merkel cells and Aβ-afferent nerve endings and are localized in fingertips, whisker hair follicles, and other touch-sensitive spots. Merkel discs transduce touch into slowly adapting impulses to enable tactile discrimination, but their transduction and encoding mechanisms remain unknown. Using rat whisker hair follicles, we show that Merkel cells rather than Aβ-afferent nerve endings are primary sites of tactile transduction and identify the Piezo2 ion channel as the Merkel cell mechanical transducer. Piezo2 transduces tactile stimuli into Ca(2+)-action potentials in Merkel cells, which drive Aβ-afferent nerve endings to fire slowly adapting impulses. We further demonstrate that Piezo2 and Ca(2+)-action potentials in Merkel cells are required for behavioral tactile responses. Our findings provide insights into how tactile end-organs function and have clinical implications for tactile dysfunctions.
Collapse
|
99
|
Abstract
Human C-tactile (CT) afferents respond vigorously to gentle skin stroking and have gained attention for their importance in social touch. Pharmacogenetic activation of the mouse CT equivalent has positively reinforcing, anxiolytic effects, suggesting a role in grooming and affiliative behavior. We recorded from single CT axons in human participants, using the technique of microneurography, and stimulated a unit's receptive field using a novel, computer-controlled moving probe, which stroked the skin of the forearm over five velocities (0.3, 1, 3, 10, and 30 cm s(-1)) at three temperatures (cool, 18 °C; neutral, 32 °C; warm, 42 °C). We show that CTs are unique among mechanoreceptive afferents: they discharged preferentially to slowly moving stimuli at a neutral (typical skin) temperature, rather than at the cooler or warmer stimulus temperatures. In contrast, myelinated hair mechanoreceptive afferents proportionally increased their firing frequency with stroking velocity and showed no temperature modulation. Furthermore, the CT firing frequency correlated with hedonic ratings to the same mechano-thermal stimulus only at the neutral stimulus temperature, where the stimuli were felt as pleasant at higher firing rates. We conclude that CT afferents are tuned to respond to tactile stimuli with the specific characteristics of a gentle caress delivered at typical skin temperature. This provides a peripheral mechanism for signaling pleasant skin-to-skin contact in humans, which promotes interpersonal touch and affiliative behavior.
Collapse
|
100
|
Bron R, Wood RJ, Brock JA, Ivanusic JJ. Piezo2 expression in corneal afferent neurons. J Comp Neurol 2014; 522:2967-79. [PMID: 24549492 DOI: 10.1002/cne.23560] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 01/22/2014] [Accepted: 02/10/2014] [Indexed: 11/06/2022]
Abstract
Recently, a novel class of mechanically sensitive channels has been identified and have been called Piezo channels. In this study, we explored Piezo channel expression in sensory neurons supplying the guinea pig corneal epithelium, which have well-defined modalities in this species. We hypothesized that a proportion of corneal afferent neurons express Piezo2, and that these neurons are neurochemically distinct from corneal polymodal nociceptors or cold-sensing neurons. We used a combination of retrograde tracing to identify corneal afferent neurons and double label in situ hybridization and/or immunohistochemistry to determine their molecular and/or neurochemical profile. We found that Piezo2 expression occurs in ∼26% of trigeminal ganglion neurons and 30% of corneal afferent neurons. Piezo2 corneal afferent neurons are almost exclusively non-calcitonin gene-related peptide (CGRP)-immunoreactive (-IR), medium- to large-sized neurons that are NF200-IR, suggesting they are not corneal polymodal nociceptors. There was no coexpression of Piezo2 and transient receptor potential cation channel subfamily M member 8 (TRPM8) transcripts in any corneal afferent neurons, further suggesting that Piezo2 is not expressed in corneal cold-sensing neurons. We also noted that TRPM8-IR or CGRP-IR corneal afferent neurons are almost entirely small and lack NF200-IR. Piezo2 expression occurs in a neurochemically distinct subpopulation of corneal afferent neurons that are not polymodal nociceptors or cold-sensing neurons, and is likely confined to a subpopulation of pure mechano-nociceptors in the cornea. This provides the first evidence in an in vivo system that Piezo2 is a strong candidate for a channel that transduces noxious mechanical stimuli.
Collapse
Affiliation(s)
- Romke Bron
- Department of Anatomy and Neuroscience, University of Melbourne, Victoria, 3010, Australia
| | | | | | | |
Collapse
|