51
|
Abstract
Face perception relies on computations carried out in face-selective cortical areas. These areas have been intensively investigated for two decades, and this work has been guided by an influential neural model suggested by Haxby and colleagues in 2000. Here, we review new findings about face-selective areas that suggest the need for modifications and additions to the Haxby model. We suggest a revised framework based on (a) evidence for multiple routes from early visual areas into the face-processing system, (b) information about the temporal characteristics of these areas, (c) indications that the fusiform face area contributes to the perception of changeable aspects of faces, (d) the greatly elevated responses to dynamic compared with static faces in dorsal face-selective brain areas, and (e) the identification of three new anterior face-selective areas. Together, these findings lead us to suggest that face perception depends on two separate pathways: a ventral stream that represents form information and a dorsal stream driven by motion and form information.
Collapse
Affiliation(s)
- Brad Duchaine
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire 03755;
| | - Galit Yovel
- School of Psychological Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel 69987;
| |
Collapse
|
52
|
Xu J. Implications of cortical balanced excitation and inhibition, functional heterogeneity, and sparseness of neuronal activity in fMRI. Neurosci Biobehav Rev 2015; 57:264-70. [PMID: 26341939 PMCID: PMC4623927 DOI: 10.1016/j.neubiorev.2015.08.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 08/25/2015] [Accepted: 08/30/2015] [Indexed: 11/15/2022]
Abstract
Blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) studies often report inconsistent findings, probably due to brain properties such as balanced excitation and inhibition and functional heterogeneity. These properties indicate that different neurons in the same voxels may show variable activities including concurrent activation and deactivation, that the relationships between BOLD signal and neural activity (i.e., neurovascular coupling) are complex, and that increased BOLD signal may reflect reduced deactivation, increased activation, or both. The traditional general-linear-model-based-analysis (GLM-BA) is a univariate approach, cannot separate different components of BOLD signal mixtures from the same voxels, and may contribute to inconsistent findings of fMRI. Spatial independent component analysis (sICA) is a multivariate approach, can separate the BOLD signal mixture from each voxel into different source signals and measure each separately, and thus may reconcile previous conflicting findings generated by GLM-BA. We propose that methods capable of separating mixed signals such as sICA should be regularly used for more accurately and completely extracting information embedded in fMRI datasets.
Collapse
Affiliation(s)
- Jiansong Xu
- Department of Psychiatry, Yale University, School of Medicine, 1 Church St., Room 729, New Haven, CT 06519, USA.
| |
Collapse
|
53
|
Abstract
Compelling evidence that our sensitivity to facial structure is conserved across the primate order comes from studies of the "Thatcher face illusion": humans and monkeys notice changes in the orientation of facial features (e.g., the eyes) only when faces are upright, not when faces are upside down. Although it is presumed that face perception in primates depends on face-selective neurons in the inferior temporal (IT) cortex, it is not known whether these neurons respond differentially to upright faces with inverted features. Using microelectrodes guided by functional MRI mapping, we recorded cell responses in three regions of monkey IT cortex. We report an interaction in the middle lateral face patch (ML) between the global orientation of a face and the local orientation of its eyes, a response profile consistent with the perception of the Thatcher illusion. This increased sensitivity to eye orientation in upright faces resisted changes in screen location and was not found among face-selective neurons in other areas of IT cortex, including neurons in another face-selective region, the anterior lateral face patch. We conclude that the Thatcher face illusion is correlated with a pattern of activity in the ML that encodes faces according to a flexible holistic template.
Collapse
|
54
|
Jacques C, Witthoft N, Weiner KS, Foster BL, Rangarajan V, Hermes D, Miller KJ, Parvizi J, Grill-Spector K. Corresponding ECoG and fMRI category-selective signals in human ventral temporal cortex. Neuropsychologia 2015. [PMID: 26212070 DOI: 10.1016/j.neuropsychologia.2015.07.024] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Functional magnetic resonance imaging (fMRI) and electrocorticography (ECoG) research have been influential in revealing the functional characteristics of category-selective responses in human ventral temporal cortex (VTC). One important, but unanswered, question is how these two types of measurements might be related with respect to the VTC. Here we examined which components of the ECoG signal correspond to the fMRI response by using a rare opportunity to measure both fMRI and ECoG responses from the same individuals to images of exemplars of various categories including faces, limbs, cars and houses. Our data reveal three key findings. First, we discovered that the coupling between fMRI and ECoG responses is frequency and time dependent. The strongest and most sustained correlation is observed between fMRI and high frequency broadband (HFB) ECoG responses (30-160 hz). In contrast, the correlation between fMRI and ECoG signals in lower frequency bands is temporally transient, where the correlation is initially positive, but then tapers off or becomes negative. Second, we find that the strong and positive correlation between fMRI and ECoG signals in all frequency bands emerges rapidly around 100 ms after stimulus onset, together with the onset of the first stimulus-driven neural signals in VTC. Third, we find that the spatial topology and representational structure of category-selectivity in VTC reflected in ECoG HFB responses mirrors the topology and structure observed with fMRI. These findings of a strong and rapid coupling between fMRI and HFB responses validate fMRI measurements of functional selectivity with recordings of direct neural activity and suggest that fMRI category-selective signals in VTC are associated with feed-forward neural processing.
Collapse
Affiliation(s)
- Corentin Jacques
- Department of Psychology, Stanford University, Stanford, CA 94305, USA; Psychological Sciences Research Institute (IPSY), Université Catholique de Louvain, 10 Place du Cardinal Mercier, 1348 Louvain-la-Neuve, Belgium; Stanford Human Intracranial Cognitive Electrophysiology Program (SHICEP), USA.
| | - Nathan Witthoft
- Department of Psychology, Stanford University, Stanford, CA 94305, USA
| | - Kevin S Weiner
- Department of Psychology, Stanford University, Stanford, CA 94305, USA; Stanford Human Intracranial Cognitive Electrophysiology Program (SHICEP), USA
| | - Brett L Foster
- Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Human Intracranial Cognitive Electrophysiology Program (SHICEP), USA
| | - Vinitha Rangarajan
- Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Human Intracranial Cognitive Electrophysiology Program (SHICEP), USA
| | - Dora Hermes
- Department of Psychology, Stanford University, Stanford, CA 94305, USA; Stanford Human Intracranial Cognitive Electrophysiology Program (SHICEP), USA
| | - Kai J Miller
- Stanford Human Intracranial Cognitive Electrophysiology Program (SHICEP), USA; Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Josef Parvizi
- Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Human Intracranial Cognitive Electrophysiology Program (SHICEP), USA; Stanford Neuroscience Institute, SNI, Stanford University, Stanford, CA 94305, USA
| | - Kalanit Grill-Spector
- Department of Psychology, Stanford University, Stanford, CA 94305, USA; Stanford Human Intracranial Cognitive Electrophysiology Program (SHICEP), USA; Stanford Neuroscience Institute, SNI, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
55
|
Single-unit activity during natural vision: diversity, consistency, and spatial sensitivity among AF face patch neurons. J Neurosci 2015; 35:5537-48. [PMID: 25855170 DOI: 10.1523/jneurosci.3825-14.2015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Several visual areas within the STS of the macaque brain respond strongly to faces and other biological stimuli. Determining the principles that govern neural responses in this region has proven challenging, due in part to the inherently complex stimulus domain of dynamic biological stimuli that are not captured by an easily parameterized stimulus set. Here we investigated neural responses in one fMRI-defined face patch in the anterior fundus (AF) of the STS while macaques freely view complex videos rich with natural social content. Longitudinal single-unit recordings allowed for the accumulation of each neuron's responses to repeated video presentations across sessions. We found that individual neurons, while diverse in their response patterns, were consistently and deterministically driven by the video content. We used principal component analysis to compute a family of eigenneurons, which summarized 24% of the shared population activity in the first two components. We found that the most prominent component of AF activity reflected an interaction between visible body region and scene layout. Close-up shots of faces elicited the strongest neural responses, whereas far away shots of faces or close-up shots of hindquarters elicited weak or inhibitory responses. Sensitivity to the apparent proximity of faces was also observed in gamma band local field potential. This category-selective sensitivity to spatial scale, together with the known exchange of anatomical projections of this area with regions involved in visuospatial analysis, suggests that the AF face patch may be specialized in aspects of face perception that pertain to the layout of a social scene.
Collapse
|
56
|
Functional network overlap as revealed by fMRI using sICA and its potential relationships with functional heterogeneity, balanced excitation and inhibition, and sparseness of neuron activity. PLoS One 2015; 10:e0117029. [PMID: 25714362 PMCID: PMC4340936 DOI: 10.1371/journal.pone.0117029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 10/27/2014] [Indexed: 12/11/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) studies traditionally use general linear model-based analysis (GLM-BA) and regularly report task-related activation, deactivation, or no change in activation in separate brain regions. However, several recent fMRI studies using spatial independent component analysis (sICA) find extensive overlap of functional networks (FNs), each exhibiting different task-related modulation (e.g., activation vs. deactivation), different from the dominant findings of GLM-BA. This study used sICA to assess overlap of FNs extracted from four datasets, each related to a different cognitive task. FNs extracted from each dataset overlapped with each other extensively across most or all brain regions and showed task-related concurrent increases, decreases, or no changes in activity. These findings indicate that neural substrates showing task-related concurrent but different modulations in activity intermix with each other and distribute across most of the brain. Furthermore, spatial correlation analyses found that most FNs were highly consistent in spatial patterns across different datasets. This finding indicates that these FNs probably reflect large-scale patterns of task-related brain activity. We hypothesize that FN overlaps as revealed by sICA might relate to functional heterogeneity, balanced excitation and inhibition, and population sparseness of neuron activity, three fundamental properties of the brain. These possibilities deserve further investigation.
Collapse
|
57
|
ARCARO M, KASTNER S. Topographic organization of areas V3 and V4 and its relation to supra-areal organization of the primate visual system. Vis Neurosci 2015; 32:E014. [PMID: 26241035 PMCID: PMC4900470 DOI: 10.1017/s0952523815000115] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Areas V3 and V4 are commonly thought of as individual entities in the primate visual system, based on definition criteria such as their representation of visual space, connectivity, functional response properties, and relative anatomical location in cortex. Yet, large-scale functional and anatomical organization patterns not only emphasize distinctions within each area, but also links across visual cortex. Specifically, the visuotopic organization of V3 and V4 appears to be part of a larger, supra-areal organization, clustering these areas with early visual areas V1 and V2. In addition, connectivity patterns across visual cortex appear to vary within these areas as a function of their supra-areal eccentricity organization. This complicates the traditional view of these regions as individual functional "areas." Here, we will review the criteria for defining areas V3 and V4 and will discuss functional and anatomical studies in humans and monkeys that emphasize the integration of individual visual areas into broad, supra-areal clusters that work in concert for a common computational goal. Specifically, we propose that the visuotopic organization of V3 and V4, which provides the criteria for differentiating these areas, also unifies these areas into the supra-areal organization of early visual cortex. We propose that V3 and V4 play a critical role in this supra-areal organization by filtering information about the visual environment along parallel pathways across higher-order cortex.
Collapse
Affiliation(s)
- M.J. ARCARO
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544
- Department of Psychology, Princeton University, Princeton, New Jersey 08544
| | - S. KASTNER
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544
- Department of Psychology, Princeton University, Princeton, New Jersey 08544
| |
Collapse
|
58
|
Abstract
In 1998 several groups reported the feasibility of fMRI experiments in monkeys, with the goal to bridge the gap between invasive nonhuman primate studies and human functional imaging. These studies yielded critical insights in the neuronal underpinnings of the BOLD signal. Furthermore, the technology has been successful in guiding electrophysiological recordings and identifying focal perturbation targets. Finally, invaluable information was obtained concerning human brain evolution. We here provide a comprehensive overview of awake monkey fMRI studies mainly confined to the visual system. We review the latest insights about the topographic organization of monkey visual cortex and discuss the spatial relationships between retinotopy and category- and feature-selective clusters. We briefly discuss the functional layout of parietal and frontal cortex and continue with a summary of some fascinating functional and effective connectivity studies. Finally, we review recent comparative fMRI experiments and speculate about the future of nonhuman primate imaging.
Collapse
Affiliation(s)
- Wim Vanduffel
- Laboratory for Neuro- and Psychophysiology, KU Leuven Medical School, Campus Gasthuisberg, Leuven, 3000, Belgium; Department of Radiology, Harvard Medical School, Boston, MA 02129, USA; A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA.
| | - Qi Zhu
- Laboratory for Neuro- and Psychophysiology, KU Leuven Medical School, Campus Gasthuisberg, Leuven, 3000, Belgium
| | - Guy A Orban
- Laboratory for Neuro- and Psychophysiology, KU Leuven Medical School, Campus Gasthuisberg, Leuven, 3000, Belgium; Department of Neuroscience, University of Parma, Parma, 43125, Italy
| |
Collapse
|
59
|
Taubert J, Van Belle G, Vanduffel W, Rossion B, Vogels R. The effect of face inversion for neurons inside and outside fMRI-defined face-selective cortical regions. J Neurophysiol 2014; 113:1644-55. [PMID: 25520434 DOI: 10.1152/jn.00700.2014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is widely believed that face processing in the primate brain occurs in a network of category-selective cortical regions. Combined functional MRI (fMRI)-single-cell recording studies in macaques have identified high concentrations of neurons that respond more to faces than objects within face-selective patches. However, cells with a preference for faces over objects are also found scattered throughout inferior temporal (IT) cortex, raising the question whether face-selective cells inside and outside of the face patches differ functionally. Here, we compare the properties of face-selective cells inside and outside of face-selective patches in the IT cortex by means of an image manipulation that reliably disrupts behavior toward face processing: inversion. We recorded IT neurons from two fMRI-defined face-patches (ML and AL) and a region outside of the face patches (herein labeled OUT) during upright and inverted face stimulation. Overall, turning faces upside down reduced the firing rate of face-selective cells. However, there were differences among the recording regions. First, the reduced neuronal response for inverted faces was independent of stimulus position, relative to fixation, in the face-selective patches (ML and AL) only. Additionally, the effect of inversion for face-selective cells in ML, but not those in AL or OUT, was impervious to whether the neurons were initially searched for using upright or inverted stimuli. Collectively, these results show that face-selective cells differ in their functional characteristics depending on their anatomicofunctional location, suggesting that upright faces are preferably coded by face-selective cells inside but not outside of the fMRI-defined face-selective regions of the posterior IT cortex.
Collapse
Affiliation(s)
- Jessica Taubert
- Psychological Sciences Research Institute and Neuroscience Institute, University of Louvain, Louvain-La-Neuve, Belgium; Laboratorium voor Neuro- en Psychofysiologie, KU Leuven, Leuven, Belgium;
| | - Goedele Van Belle
- Psychological Sciences Research Institute and Neuroscience Institute, University of Louvain, Louvain-La-Neuve, Belgium
| | - Wim Vanduffel
- Laboratorium voor Neuro- en Psychofysiologie, KU Leuven, Leuven, Belgium; MGH Martinos Center, Charlestown, Massachusetts; and Harvard Medical School, Boston, Massachusetts
| | - Bruno Rossion
- Psychological Sciences Research Institute and Neuroscience Institute, University of Louvain, Louvain-La-Neuve, Belgium
| | - Rufin Vogels
- Laboratorium voor Neuro- en Psychofysiologie, KU Leuven, Leuven, Belgium
| |
Collapse
|
60
|
Nasr S, Stemmann H, Vanduffel W, Tootell RBH. Increased Visual Stimulation Systematically Decreases Activity in Lateral Intermediate Cortex. Cereb Cortex 2014; 25:4009-28. [PMID: 25480358 PMCID: PMC4585529 DOI: 10.1093/cercor/bhu290] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Previous studies have attributed multiple diverse roles to the posterior superior temporal cortex (STC), both visually driven and cognitive, including part of the default mode network (DMN). Here, we demonstrate a unifying property across this multimodal region. Specifically, the lateral intermediate (LIM) portion of STC showed an unexpected feature: a progressively decreasing fMRI response to increases in visual stimulus size (or number). Such responses are reversed in sign, relative to well-known responses in classic occipital temporal visual cortex. In LIM, this "reversed" size function was present across multiple object categories and retinotopic eccentricities. Moreover, we found a significant interaction between the LIM size function and the distribution of subjects' attention. These findings suggest that LIM serves as a part of the DMN. Further analysis of functional connectivity, plus a meta-analysis of previous fMRI results, suggests that LIM is a heterogeneous area including different subdivisions. Surprisingly, analogous fMRI tests in macaque monkeys did not reveal a clear homolog of LIM. This interspecies discrepancy supports the idea that self-referential thinking and theory of mind are more prominent in humans, compared with monkeys.
Collapse
Affiliation(s)
- Shahin Nasr
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA Department of Radiology, Harvard Medical School, Charlestown, MA 02129, USA
| | - Heiko Stemmann
- Laboratory of Neuro and Psychophysiology, KU Leuven Medical School, 3000 Leuven, Belgium
| | - Wim Vanduffel
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA Department of Radiology, Harvard Medical School, Charlestown, MA 02129, USA Laboratory of Neuro and Psychophysiology, KU Leuven Medical School, 3000 Leuven, Belgium
| | - Roger B H Tootell
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA Department of Radiology, Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
61
|
Brandman T, Yovel G. Bodies are Represented as Wholes Rather Than Their Sum of Parts in the Occipital-Temporal Cortex. Cereb Cortex 2014; 26:530-43. [PMID: 25217470 DOI: 10.1093/cercor/bhu205] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Behavioral studies suggested that bodies are represented as wholes rather than in a part-based manner. However, neural selectivity for body stimuli is found for both whole bodies and body parts. It is therefore undetermined whether the neural representation of bodies is configural or part-based. We used functional MRI to test the role of first-order configuration on body representation in the human occipital-temporal cortex by comparing the response to a whole body versus the sum of its parts. Results show that body-selective areas, whether defined by selectivity to headless bodies or body parts, preferred whole bodies over their sum of parts and successfully decoded body configuration. This configural representation was specific to body stimuli and not found for faces. In contrast, general object areas showed no preference for wholes over parts and decoded the configuration of both bodies and faces. Finally, whereas effects of inversion on configural face representation were specific to face-selective mechanisms, effects of body inversion were not unique to body-selective mechanisms. We conclude that the neural representation of body parts is strengthened by their arrangement into an intact body, thereby demonstrating a central role of first-order configuration in the neural representation of bodies in their category-selective areas.
Collapse
Affiliation(s)
- Talia Brandman
- School of Psychological Sciences and Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Galit Yovel
- School of Psychological Sciences and Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 6997801, Israel
| |
Collapse
|
62
|
Caspari N, Popivanov ID, De Mazière PA, Vanduffel W, Vogels R, Orban GA, Jastorff J. Fine-grained stimulus representations in body selective areas of human occipito-temporal cortex. Neuroimage 2014; 102 Pt 2:484-97. [PMID: 25109529 DOI: 10.1016/j.neuroimage.2014.07.066] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 07/30/2014] [Indexed: 10/24/2022] Open
Abstract
Neurophysiological and functional imaging studies have investigated the representation of animate and inanimate stimulus classes in monkey inferior temporal (IT) and human occipito-temporal cortex (OTC). These studies proposed a distributed representation of stimulus categories across IT and OTC and at the same time highlighted category specific modules for the processing of bodies, faces and objects. Here, we investigated whether the stimulus representation within the extrastriate (EBA) and the fusiform (FBA) body areas differed from the representation across OTC. To address this question, we performed an event-related fMRI experiment, evaluating the pattern of activation elicited by 200 individual stimuli that had already been extensively tested in our earlier monkey imaging and single cell studies (Popivanov et al., 2012, 2014). The set contained achromatic images of headless monkey and human bodies, two sets of man-made objects, monkey and human faces, four-legged mammals, birds, fruits, and sculptures. The fMRI response patterns within EBA and FBA primarily distinguished bodies from non-body stimuli, with subtle differences between the areas. However, despite responding on average stronger to bodies than to other categories, classification performance for preferred and non-preferred categories was comparable. OTC primarily distinguished animate from inanimate stimuli. However, cluster analysis revealed a much more fine-grained representation with several homogeneous clusters consisting entirely of stimuli of individual categories. Overall, our data suggest that category representation varies with location within OTC. Nevertheless, body modules contain information to discriminate also non-preferred stimuli and show an increasing specificity in a posterior to anterior gradient.
Collapse
Affiliation(s)
- Natalie Caspari
- Laboratorium voor Neuro-en Psychofysiologie, KU Leuven, Leuven, Belgium
| | - Ivo D Popivanov
- Laboratorium voor Neuro-en Psychofysiologie, KU Leuven, Leuven, Belgium
| | - Patrick A De Mazière
- Department of Healthcare & Technology, KH Leuven, Leuven, Belgium; Department of Computer Sciences, KU Leuven, Leuven, Belgium
| | - Wim Vanduffel
- Laboratorium voor Neuro-en Psychofysiologie, KU Leuven, Leuven, Belgium; Harvard Med. Sch., Boston, MA, USA; MGH Martinos Ctr., Charlestown, MA, USA
| | - Rufin Vogels
- Laboratorium voor Neuro-en Psychofysiologie, KU Leuven, Leuven, Belgium
| | - Guy A Orban
- Department of Neuroscience, University of Parma, Parma, Italy
| | - Jan Jastorff
- Laboratorium voor Neuro-en Psychofysiologie, KU Leuven, Leuven, Belgium; Division of Psychiatry, Department of Neuroscience, KU Leuven, Leuven, Belgium.
| |
Collapse
|
63
|
Abstract
Our visual environment abounds with curved features. Thus, the goal of understanding visual processing should include the processing of curved features. Using functional magnetic resonance imaging in behaving monkeys, we demonstrated a network of cortical areas selective for the processing of curved features. This network includes three distinct hierarchically organized regions within the ventral visual pathway: a posterior curvature-biased patch (PCP) located in the near-foveal representation of dorsal V4, a middle curvature-biased patch (MCP) located on the ventral lip of the posterior superior temporal sulcus (STS) in area TEO, and an anterior curvature-biased patch (ACP) located just below the STS in anterior area TE. Our results further indicate that the processing of curvature becomes increasingly complex from PCP to ACP. The proximity of the curvature-processing network to the well-known face-processing network suggests a possible functional link between them.
Collapse
|
64
|
Orban GA, Zhu Q, Vanduffel W. The transition in the ventral stream from feature to real-world entity representations. Front Psychol 2014; 5:695. [PMID: 25071663 PMCID: PMC4079243 DOI: 10.3389/fpsyg.2014.00695] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 06/16/2014] [Indexed: 11/29/2022] Open
Abstract
We propose that the ventral visual pathway of human and non-human primates is organized into three levels: (1) ventral retinotopic cortex including what is known as TEO in the monkey but corresponds to V4A and PITd/v, and the phPIT cluster in humans, (2) area TE in the monkey and its homolog LOC and neighboring fusiform regions, and more speculatively, (3) TGv in the monkey and its possible human equivalent, the temporal pole. We attribute to these levels the visual representations of features, partial real-world entities (RWEs), and known, complete RWEs, respectively. Furthermore, we propose that the middle level, TE and its homolog, is organized into three parallel substreams, lower bank STS, dorsal convexity of TE, and ventral convexity of TE, as are their corresponding human regions. These presumably process shape in depth, 2D shape and material properties, respectively, to construct RWE representations.
Collapse
Affiliation(s)
- Guy A Orban
- Department of Neuroscience, University of Parma Parma, Italy
| | - Qi Zhu
- Laboratorium voor Neuro-en Psychofysiologie, Department of Neuroscience KU Leuven, Leuven, Belgium
| | - Wim Vanduffel
- Laboratorium voor Neuro-en Psychofysiologie, Department of Neuroscience KU Leuven, Leuven, Belgium
| |
Collapse
|
65
|
The functional architecture of the ventral temporal cortex and its role in categorization. Nat Rev Neurosci 2014; 15:536-48. [PMID: 24962370 DOI: 10.1038/nrn3747] [Citation(s) in RCA: 455] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Visual categorization is thought to occur in the human ventral temporal cortex (VTC), but how this categorization is achieved is still largely unknown. In this Review, we consider the computations and representations that are necessary for categorization and examine how the microanatomical and macroanatomical layout of the VTC might optimize them to achieve rapid and flexible visual categorization. We propose that efficient categorization is achieved by organizing representations in a nested spatial hierarchy in the VTC. This spatial hierarchy serves as a neural infrastructure for the representational hierarchy of visual information in the VTC and thereby enables flexible access to category information at several levels of abstraction.
Collapse
|
66
|
Processing multiple visual objects is limited by overlap in neural channels. Proc Natl Acad Sci U S A 2014; 111:8955-60. [PMID: 24889618 DOI: 10.1073/pnas.1317860111] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
High-level visual categories (e.g., faces, bodies, scenes, and objects) have separable neural representations across the visual cortex. Here, we show that this division of neural resources affects the ability to simultaneously process multiple items. In a behavioral task, we found that performance was superior when items were drawn from different categories (e.g., two faces/two scenes) compared to when items were drawn from one category (e.g., four faces). The magnitude of this mixed-category benefit depended on which stimulus categories were paired together (e.g., faces and scenes showed a greater behavioral benefit than objects and scenes). Using functional neuroimaging (i.e., functional MRI), we showed that the size of the mixed-category benefit was predicted by the amount of separation between neural response patterns, particularly within occipitotemporal cortex. These results suggest that the ability to process multiple items at once is limited by the extent to which those items are represented by separate neural populations.
Collapse
|
67
|
Lin CP, Chen YP, Hung CP. Tuning and spontaneous spike time synchrony share a common structure in macaque inferior temporal cortex. J Neurophysiol 2014; 112:856-69. [PMID: 24848472 DOI: 10.1152/jn.00485.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Investigating the relationship between tuning and spike timing is necessary to understand how neuronal populations in anterior visual cortex process complex stimuli. Are tuning and spontaneous spike time synchrony linked by a common spatial structure (do some cells covary more strongly, even in the absence of visual stimulation?), and what is the object coding capability of this structure? Here, we recorded from spiking populations in macaque inferior temporal (IT) cortex under neurolept anesthesia. We report that, although most nearby IT neurons are weakly correlated, neurons with more similar tuning are also more synchronized during spontaneous activity. This link between tuning and synchrony was not simply due to cell separation distance. Instead, it expands on previous reports that neurons along an IT penetration are tuned to similar but slightly different features. This constraint on possible population firing rate patterns was consistent across stimulus sets, including animate vs. inanimate object categories. A classifier trained on this structure was able to generalize category "read-out" to untrained objects using only a few dimensions (a few patterns of site weightings per electrode array). We suggest that tuning and spike synchrony are linked by a common spatial structure that is highly efficient for object representation.
Collapse
Affiliation(s)
- Chia-Pei Lin
- Institute of Neuroscience and Brain Research Center, National Yang-Ming University, Taipei, Taiwan; RIKEN Brain Science Institute, Saitama, Japan
| | - Yueh-Peng Chen
- Institute of Neuroscience and Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Chou P Hung
- Institute of Neuroscience and Brain Research Center, National Yang-Ming University, Taipei, Taiwan; Department of Neuroscience, Georgetown University, Washington, District of Columbia; and
| |
Collapse
|
68
|
Morin EL, Hadj-Bouziane F, Stokes M, Ungerleider LG, Bell AH. Hierarchical Encoding of Social Cues in Primate Inferior Temporal Cortex. Cereb Cortex 2014; 25:3036-45. [PMID: 24836688 DOI: 10.1093/cercor/bhu099] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Faces convey information about identity and emotional state, both of which are important for our social interactions. Models of face processing propose that changeable versus invariant aspects of a face, specifically facial expression/gaze direction versus facial identity, are coded by distinct neural pathways and yet neurophysiological data supporting this separation are incomplete. We recorded activity from neurons along the inferior bank of the superior temporal sulcus (STS), while monkeys viewed images of conspecific faces and non-face control stimuli. Eight monkey identities were used, each presented with 3 different facial expressions (neutral, fear grin, and threat). All facial expressions were displayed with both a direct and averted gaze. In the posterior STS, we found that about one-quarter of face-responsive neurons are sensitive to social cues, the majority of which being sensitive to only one of these cues. In contrast, in anterior STS, not only did the proportion of neurons sensitive to social cues increase, but so too did the proportion of neurons sensitive to conjunctions of identity with either gaze direction or expression. These data support a convergence of signals related to faces as one moves anteriorly along the inferior bank of the STS, which forms a fundamental part of the face-processing network.
Collapse
Affiliation(s)
- Elyse L Morin
- Laboratory of Brain and Cognition, NIMH/NIH, Bethesda, MD, USA
| | | | - Mark Stokes
- Oxford Centre for Human Brain Activity Department of Experimental Psychology, University of Oxford, Oxford, UK
| | | | - Andrew H Bell
- Laboratory of Brain and Cognition, NIMH/NIH, Bethesda, MD, USA
| |
Collapse
|
69
|
Face-selective neurons maintain consistent visual responses across months. Proc Natl Acad Sci U S A 2014; 111:8251-6. [PMID: 24799679 DOI: 10.1073/pnas.1318331111] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Face perception in both humans and monkeys is thought to depend on neurons clustered in discrete, specialized brain regions. Because primates are frequently called upon to recognize and remember new individuals, the neuronal representation of faces in the brain might be expected to change over time. The functional properties of neurons in behaving animals are typically assessed over time periods ranging from minutes to hours, which amounts to a snapshot compared to a lifespan of a neuron. It therefore remains unclear how neuronal properties observed on a given day predict that same neuron's activity months or years later. Here we show that the macaque inferotemporal cortex contains face-selective cells that show virtually no change in their patterns of visual responses over time periods as long as one year. Using chronically implanted microwire electrodes guided by functional MRI targeting, we obtained distinct profiles of selectivity for face and nonface stimuli that served as fingerprints for individual neurons in the anterior fundus (AF) face patch within the superior temporal sulcus. Longitudinal tracking over a series of daily recording sessions revealed that face-selective neurons maintain consistent visual response profiles across months-long time spans despite the influence of ongoing daily experience. We propose that neurons in the AF face patch are specialized for aspects of face perception that demand stability as opposed to plasticity.
Collapse
|
70
|
Abstract
Although the visual representation of bodies is essential for reproduction, survival, and social communication, little is known about the mechanisms of body recognition at the single neuron level. Imaging studies showed body-category selective regions in the primate occipitotemporal cortex, but it is difficult to infer the stimulus selectivities of the neurons from the population activity measured in these fMRI studies. To overcome this, we recorded single unit activity and local field potentials (LFPs) in the middle superior temporal sulcus body patch, defined by fMRI in the same rhesus monkeys. Both the spiking activity, averaged across single neurons, and LFP gamma power in this body patch was greater for bodies (including monkey bodies, human bodies, mammals, and birds) compared with other objects, which fits the fMRI activation. Single neurons responded to a small proportion of body images. Thus, the category selectivity at the population level resulted from averaging responses of a heterogeneous population of single units. Despite such strong within-category selectivity at the single unit level, two distinct clusters, bodies and nonbodies, were present when analyzing the responses at the population level, and a classifier that was trained using the responses to a subset of images was able to classify novel images of bodies with high accuracy. The body-patch neurons showed strong selectivity for individual body parts at different orientations. Overall, these data suggest that single units in the fMRI-defined body patch are biased to prefer bodies over nonbody objects, including faces, with a strong selectivity for individual body images.
Collapse
|
71
|
Object representation in inferior temporal cortex is organized hierarchically in a mosaic-like structure. J Neurosci 2013; 33:16642-56. [PMID: 24133267 DOI: 10.1523/jneurosci.5557-12.2013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
There are two dominant models for the functional organization of brain regions underlying object recognition. One model postulates category-specific modules while the other proposes a distributed representation of objects with generic visual features. Functional imaging techniques relying on metabolic signals, such as fMRI and optical intrinsic signal imaging (OISI), have been used to support both models, but due to the indirect nature of the measurements in these techniques, the existing data for one model cannot be used to support the other model. Here, we used large-scale multielectrode recordings over a large surface of anterior inferior temporal (IT) cortex, and densely mapped stimulus-evoked neuronal responses. We found that IT cortex is subdivided into distinct domains characterized by similar patterns of responses to the objects in our stimulus set. Each domain spanned several millimeters on the cortex. Some of these domains represented faces ("face" domains) or monkey bodies ("monkey-body" domains). We also identified domains with low responsiveness to faces ("anti-face" domains). Meanwhile, the recording sites within domains that displayed category selectivity showed heterogeneous tuning profiles to different exemplars within each category. This local heterogeneity was consistent with the stimulus-evoked feature columns revealed by OISI. Taken together, our study revealed that regions with common functional properties (domains) consist of a finer functional structure (columns) in anterior IT cortex. The "domains" and previously proposed "patches" are rather like "mosaics" where a whole mosaic is characterized by overall similarity in stimulus responses and pieces of the mosaic correspond to feature columns.
Collapse
|
72
|
Moskaleva M, Nieder A. Stable numerosity representations irrespective of magnitude context in macaque prefrontal cortex. Eur J Neurosci 2013; 39:866-74. [DOI: 10.1111/ejn.12451] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/28/2013] [Accepted: 11/11/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Maria Moskaleva
- Animal Physiology; Institute of Neurobiology; Auf der Morgenstelle 28; University of Tübingen; 72076 Tübingen Germany
| | - Andreas Nieder
- Animal Physiology; Institute of Neurobiology; Auf der Morgenstelle 28; University of Tübingen; 72076 Tübingen Germany
| |
Collapse
|
73
|
Large-scale, high-resolution neurophysiological maps underlying FMRI of macaque temporal lobe. J Neurosci 2013; 33:15207-19. [PMID: 24048850 DOI: 10.1523/jneurosci.1248-13.2013] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Maps obtained by functional magnetic resonance imaging (fMRI) are thought to reflect the underlying spatial layout of neural activity. However, previous studies have not been able to directly compare fMRI maps to high-resolution neurophysiological maps, particularly in higher level visual areas. Here, we used a novel stereo microfocal x-ray system to localize thousands of neural recordings across monkey inferior temporal cortex (IT), construct large-scale maps of neuronal object selectivity at subvoxel resolution, and compare those neurophysiology maps with fMRI maps from the same subjects. While neurophysiology maps contained reliable structure at the sub-millimeter scale, fMRI maps of object selectivity contained information at larger scales (>2.5 mm) and were only partly correlated with raw neurophysiology maps collected in the same subjects. However, spatial smoothing of neurophysiology maps more than doubled that correlation, while a variety of alternative transforms led to no significant improvement. Furthermore, raw spiking signals, once spatially smoothed, were as predictive of fMRI maps as local field potential signals. Thus, fMRI of the inferior temporal lobe reflects a spatially low-passed version of neurophysiology signals. These findings strongly validate the widespread use of fMRI for detecting large (>2.5 mm) neuronal domains of object selectivity but show that a complete understanding of even the most pure domains (e.g., faces vs nonface objects) requires investigation at fine scales that can currently only be obtained with invasive neurophysiological methods.
Collapse
|
74
|
Abstract
Face perception in humans is governed more by right-hemispheric than left-hemispheric neural correlate. Some but not all neurophysiological studies depict a right-side dominance for face responsive neurons in the brains of macaques. Hence, it is an open question whether and to what extent a right-hemisphere preference of processing faces exists across primate brains. We investigated chimpanzees discriminating chimeric faces of chimpanzees and humans, i.e., the combination of either left or right sides of a face vertically flipped and merged into a whole face. We found an effect of choosing the left-chimeric face more often than the right-chimeric face as being the one of the two that is closer to the original face, reflecting an advantage for the right side of the brain to process faces, as reported in humans. Moreover, we found a modulation by age of the participants, suggesting that the exposure history with a particular category shapes the right-hemispheric neural correlate to a configural/holistic processing strategy. In other words, the findings in chimpanzee participants parallel those in human participants and are suggestive for similar neural machineries in the occipital-temporal cortices in both species.
Collapse
|
75
|
Abstract
One of the most remarkable properties of the visual system is the ability to identify and categorize a wide variety of objects effortlessly. However, the underlying neural mechanisms remain elusive. Specifically, the question of how individual object information is represented and intrinsically organized is still poorly understood. To address this question, we presented images of isolated real-world objects spanning a wide range of categories to awake monkeys using a rapid event-related functional magnetic resonance imaging (fMRI) design and analyzed the responses of multiple areas involved in object processing. We found that the multivoxel response patterns to individual exemplars in the inferior temporal (IT) cortex, especially area TE, encoded the animate-inanimate categorical division, with a subordinate cluster of faces within the animate category. In contrast, the individual exemplar representations in V4, the amygdala, and prefrontal cortex showed either no categorical structure, or a categorical structure different from that in IT cortex. Moreover, in the IT face-selective regions ("face patches"), especially the anterior face patches, (1) the multivoxel response patterns to individual exemplars showed a categorical distinction between faces and nonface objects (i.e., body parts and inanimate objects), and (2) the regionally averaged activations to individual exemplars showed face-selectivity and within-face exemplar-selectivity. Our findings demonstrate that, at both the single-exemplar and the population level, intrinsic object representation and categorization are organized hierarchically as one moves anteriorly along the ventral pathway, reflecting both modular and distributed processing.
Collapse
|
76
|
Temporal components in the parahippocampal place area revealed by human intracerebral recordings. J Neurosci 2013; 33:10123-31. [PMID: 23761907 DOI: 10.1523/jneurosci.4646-12.2013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Many high-level visual regions exhibit complex patterns of stimulus selectivity that make their responses difficult to explain in terms of a single cognitive mechanism. For example, the parahippocampal place area (PPA) responds maximally to environmental scenes during fMRI studies but also responds strongly to nonscene landmark objects, such as buildings, which have a quite different geometric structure. We hypothesized that PPA responses to scenes and buildings might be driven by different underlying mechanisms with different temporal profiles. To test this, we examined broadband γ (50-150 Hz) responses from human intracerebral electroencephalography recordings, a measure that is closely related to population spiking activity. We found that the PPA distinguished scene from nonscene stimuli in ∼80 ms, suggesting the operation of a bottom-up process that encodes scene-specific visual or geometric features. In contrast, the differential PPA response to buildings versus nonbuildings occurred later (∼170 ms) and may reflect a delayed processing of spatial or semantic features definable for both scenes and objects, perhaps incorporating signals from other cortical regions. Although the response preferences of high-level visual regions are usually interpreted in terms of the operation of a single cognitive mechanism, these results suggest that a more complex picture emerges when the dynamics of recognition are considered.
Collapse
|
77
|
Chan AWY. Functional organization and visual representations of human ventral lateral prefrontal cortex. Front Psychol 2013; 4:371. [PMID: 23847558 PMCID: PMC3705197 DOI: 10.3389/fpsyg.2013.00371] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 06/06/2013] [Indexed: 11/13/2022] Open
Abstract
Recent neuroimaging studies in both human and non-human primates have identified face selective activation in the ventral lateral prefrontal cortex (VLPFC) even in the absence of working memory (WM) demands. Further, research has suggested that this face-selective response is largely driven by the presence of the eyes. However, the nature and origin of visual category responses in the VLPFC remain unclear. In a broader sense, how do these findings relate to our current understandings of lateral prefrontal cortex? What do these findings tell us about the underlying function and organization principles of the VLPFC? What is the future direction for investigating visual representations in this cortex? This review focuses on the function, topography, and circuitry of the VLPFC to enhance our understanding of the evolution and development of this cortex.
Collapse
Affiliation(s)
- Annie W-Y Chan
- Unit on Learning and Plasticity, Laboratory of Brain and Cognition, National Institutes of Health, National Institute of Mental Health Bethesda, MD, USA
| |
Collapse
|
78
|
Viswanathan P, Nieder A. Neuronal correlates of a visual "sense of number" in primate parietal and prefrontal cortices. Proc Natl Acad Sci U S A 2013; 110:11187-92. [PMID: 23776242 PMCID: PMC3704030 DOI: 10.1073/pnas.1308141110] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
"Sense of number" refers to the classical idea that we perceive the number of items (numerosity) intuitively. However, whether the brain signals numerosity spontaneously, in the absence of learning, remains unknown; therefore, we recorded from neurons in the ventral intraparietal sulcus and the dorsolateral prefrontal cortex of numerically naive monkeys. Neurons in both brain areas responded maximally to a given number of items, showing tuning to a preferred numerosity. Numerosity was encoded earlier in area ventral intraparietal area, suggesting that numerical information is conveyed from the parietal to the frontal lobe. Visual numerosity is thus spontaneously represented as a perceptual category in a dedicated parietofrontal network. This network may form the biological foundation of a spontaneous number sense, allowing primates to intuitively estimate the number of visual items.
Collapse
Affiliation(s)
- Pooja Viswanathan
- Animal Physiology, Institute of Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| | - Andreas Nieder
- Animal Physiology, Institute of Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
79
|
The ventral visual pathway: an expanded neural framework for the processing of object quality. Trends Cogn Sci 2012; 17:26-49. [PMID: 23265839 DOI: 10.1016/j.tics.2012.10.011] [Citation(s) in RCA: 670] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 10/24/2012] [Accepted: 10/29/2012] [Indexed: 01/01/2023]
Abstract
Since the original characterization of the ventral visual pathway, our knowledge of its neuroanatomy, functional properties, and extrinsic targets has grown considerably. Here we synthesize this recent evidence and propose that the ventral pathway is best understood as a recurrent occipitotemporal network containing neural representations of object quality both utilized and constrained by at least six distinct cortical and subcortical systems. Each system serves its own specialized behavioral, cognitive, or affective function, collectively providing the raison d'être for the ventral visual pathway. This expanded framework contrasts with the depiction of the ventral visual pathway as a largely serial staged hierarchy culminating in singular object representations and more parsimoniously incorporates attentional, contextual, and feedback effects.
Collapse
|
80
|
Stimulus representations in body-selective regions of the macaque cortex assessed with event-related fMRI. Neuroimage 2012; 63:723-41. [DOI: 10.1016/j.neuroimage.2012.07.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 06/26/2012] [Accepted: 07/06/2012] [Indexed: 11/19/2022] Open
|
81
|
Meehan TP, Bressler SL. Neurocognitive networks: Findings, models, and theory. Neurosci Biobehav Rev 2012; 36:2232-47. [DOI: 10.1016/j.neubiorev.2012.08.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 07/27/2012] [Accepted: 08/08/2012] [Indexed: 11/26/2022]
|
82
|
High-density multielectrode array with independently maneuverable electrodes and silicone oil fluid isolation system for chronic recording from macaque monkey. J Neurosci Methods 2012; 211:114-24. [PMID: 22939944 DOI: 10.1016/j.jneumeth.2012.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 08/21/2012] [Accepted: 08/21/2012] [Indexed: 11/21/2022]
Abstract
Chronic multielectrode recording has become a widely used technique in the past twenty years, and there are multiple standardized methods. As for recording with high-density array, the most common method in macaque monkeys is to use a subdural array with fixed electrodes. In this study, we utilized the electrode array with independently maneuverable electrodes arranged in high-density, which was originally designed for use on small animals, and redesigned it for use on macaque monkeys while maintaining the virtues of maneuverability and high-density. We successfully recorded single and multiunit activities from up to 49 channels in the V1 and inferior temporal (IT) cortex of macaque monkeys. The main change in the surgical procedure was to remove a 5 mm diameter area of dura mater. The main changes in the design were (1) to have a constricted layer of heavy silicone oil at the interface with the animal to isolate the electrical circuit from the cerebrospinal fluid, and (2) to have a fluid draining system that can shunt any potential postsurgical subcranial exudate to the extracranial space.
Collapse
|
83
|
High-resolution imaging of expertise reveals reliable object selectivity in the fusiform face area related to perceptual performance. Proc Natl Acad Sci U S A 2012; 109:17063-8. [PMID: 23027970 DOI: 10.1073/pnas.1116333109] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The fusiform face area (FFA) is a region of human cortex that responds selectively to faces, but whether it supports a more general function relevant for perceptual expertise is debated. Although both faces and objects of expertise engage many brain areas, the FFA remains the focus of the strongest modular claims and the clearest predictions about expertise. Functional MRI studies at standard-resolution (SR-fMRI) have found responses in the FFA for nonface objects of expertise, but high-resolution fMRI (HR-fMRI) in the FFA [Grill-Spector K, et al. (2006) Nat Neurosci 9:1177-1185] and neurophysiology in face patches in the monkey brain [Tsao DY, et al. (2006) Science 311:670-674] reveal no reliable selectivity for objects. It is thus possible that FFA responses to objects with SR-fMRI are a result of spatial blurring of responses from nonface-selective areas, potentially driven by attention to objects of expertise. Using HR-fMRI in two experiments, we provide evidence of reliable responses to cars in the FFA that correlate with behavioral car expertise. Effects of expertise in the FFA for nonface objects cannot be attributed to spatial blurring beyond the scale at which modular claims have been made, and within the lateral fusiform gyrus, they are restricted to a small area (200 mm(2) on the right and 50 mm(2) on the left) centered on the peak of face selectivity. Experience with a category may be sufficient to explain the spatially clustered face selectivity observed in this region.
Collapse
|
84
|
Understanding the Semantic Structure of Human fMRI Brain Recordings with Formal Concept Analysis. FORMAL CONCEPT ANALYSIS 2012. [DOI: 10.1007/978-3-642-29892-9_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
85
|
Weiner KS, Grill-Spector K. Neural representations of faces and limbs neighbor in human high-level visual cortex: evidence for a new organization principle. PSYCHOLOGICAL RESEARCH 2011; 77:74-97. [PMID: 22139022 PMCID: PMC3535411 DOI: 10.1007/s00426-011-0392-x] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 10/18/2011] [Indexed: 11/03/2022]
Abstract
Neurophysiology and optical imaging studies in monkeys and functional magnetic resonance imaging (fMRI) studies in both monkeys and humans have localized clustered neural responses in inferotemporal cortex selective for images of biologically relevant categories, such as faces and limbs. Using higher resolution (1.5 mm voxels) fMRI scanning methods than past studies (3-5 mm voxels), we recently reported a network of multiple face- and limb-selective regions that neighbor one another in human ventral temporal cortex (Weiner and Grill-Spector, Neuroimage, 52(4):1559-1573, 2010) and lateral occipitotemporal cortex (Weiner and Grill-Spector, Neuroimage, 56(4):2183-2199, 2011). Here, we expand on three basic organization principles of high-level visual cortex revealed by these findings: (1) consistency in the anatomical location of functional regions, (2) preserved spatial relationship among functional regions, and (3) a topographic organization of face- and limb-selective regions in adjacent and alternating clusters. We highlight the implications of this structure in comparing functional brain organization between typical and atypical populations. We conclude with a new model of high-level visual cortex consisting of ventral, lateral, and dorsal components, where multimodal processing related to vision, action, haptics, and language converges in the lateral pathway.
Collapse
Affiliation(s)
- Kevin S Weiner
- Department of Psychology, Stanford University, Stanford, CA 94305, USA.
| | | |
Collapse
|