51
|
Arc/Arg3.1 mediates a critical period for spatial learning and hippocampal networks. Proc Natl Acad Sci U S A 2018; 115:12531-12536. [PMID: 30442670 DOI: 10.1073/pnas.1810125115] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During early postnatal development, sensory regions of the brain undergo periods of heightened plasticity which sculpt neural networks and lay the foundation for adult sensory perception. Such critical periods were also postulated for learning and memory but remain elusive and poorly understood. Here, we present evidence that the activity-regulated and memory-linked gene Arc/Arg3.1 is transiently up-regulated in the hippocampus during the first postnatal month. Conditional removal of Arc/Arg3.1 during this period permanently alters hippocampal oscillations and diminishes spatial learning capacity throughout adulthood. In contrast, post developmental removal of Arc/Arg3.1 leaves learning and network activity patterns intact. Long-term memory storage continues to rely on Arc/Arg3.1 expression throughout life. These results demonstrate that Arc/Arg3.1 mediates a critical period for spatial learning, during which Arc/Arg3.1 fosters maturation of hippocampal network activity necessary for future learning and memory storage.
Collapse
|
52
|
Murru L, Moretto E, Martano G, Passafaro M. Tetraspanins shape the synapse. Mol Cell Neurosci 2018; 91:76-81. [DOI: 10.1016/j.mcn.2018.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/29/2018] [Accepted: 04/01/2018] [Indexed: 01/01/2023] Open
|
53
|
Seipold L, Altmeppen H, Koudelka T, Tholey A, Kasparek P, Sedlacek R, Schweizer M, Bär J, Mikhaylova M, Glatzel M, Saftig P. In vivo regulation of the A disintegrin and metalloproteinase 10 (ADAM10) by the tetraspanin 15. Cell Mol Life Sci 2018; 75:3251-3267. [PMID: 29520422 PMCID: PMC11105247 DOI: 10.1007/s00018-018-2791-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/26/2018] [Accepted: 03/06/2018] [Indexed: 12/26/2022]
Abstract
A disintegrin and metalloproteinase 10 (ADAM10) plays a major role in the ectodomain shedding of important surface molecules with physiological and pathological relevance including the amyloid precursor protein (APP), the cellular prion protein, and different cadherins. Despite its therapeutic potential, there is still a considerable lack of knowledge how this protease is regulated. We have previously identified tetraspanin15 (Tspan15) as a member of the TspanC8 family to specifically associate with ADAM10. Cell-based overexpression experiments revealed that this binding affected the maturation process and surface expression of the protease. Our current study shows that Tspan15 is abundantly expressed in mouse brain, where it specifically interacts with endogenous ADAM10. Tspan15 knockout mice did not reveal an overt phenotype but showed a pronounced decrease of the active and mature form of ADAM10, an effect which augmented with aging. The decreased expression of active ADAM10 correlated with an age-dependent reduced shedding of neuronal (N)-cadherin and the cellular prion protein. APP α-secretase cleavage and the expression of Notch-dependent genes were not affected by the loss of Tspan15, which is consistent with the hypothesis that different TspanC8s cause ADAM10 to preferentially cleave particular substrates. Analyzing spine morphology revealed no obvious differences between Tspan15 knockout and wild-type mice. However, Tspan15 expression was elevated in brains of an Alzheimer's disease mouse model and of patients, suggesting that upregulation of Tspan15 expression reflects a cellular response in a disease state. In conclusion, our data show that Tspan15 and most likely also other members of the TspanC8 family are central modulators of ADAM10-mediated ectodomain shedding in vivo.
Collapse
Affiliation(s)
- Lisa Seipold
- Institute of Biochemistry, Christian Albrechts University Kiel, Olshausenstrasse 40, 24118, Kiel, Germany
| | - Hermann Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Tomas Koudelka
- Systematic Proteome Research and Bioanalytics, Institute for Experimental Medicine, Christian Albrechts University Kiel, Niemannsweg 11, Kiel, 24105, Germany
| | - Andreas Tholey
- Systematic Proteome Research and Bioanalytics, Institute for Experimental Medicine, Christian Albrechts University Kiel, Niemannsweg 11, Kiel, 24105, Germany
| | - Petr Kasparek
- Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, Division BIOCEV, Institute of Molecular Genetics of the CAS, v. v. i, Vestec, Czech Republic
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, Division BIOCEV, Institute of Molecular Genetics of the CAS, v. v. i, Vestec, Czech Republic
| | - Michaela Schweizer
- Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, 20251, Hamburg, Germany
| | - Julia Bär
- Center for Molecular Neurobiology Hamburg (ZMNH), Emmy-Noether Group "Neuronal Protein Transport", University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, 20251, Hamburg, Germany
| | - Marina Mikhaylova
- Center for Molecular Neurobiology Hamburg (ZMNH), Emmy-Noether Group "Neuronal Protein Transport", University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, 20251, Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Paul Saftig
- Institute of Biochemistry, Christian Albrechts University Kiel, Olshausenstrasse 40, 24118, Kiel, Germany.
| |
Collapse
|
54
|
Muskelin Coordinates PrP C Lysosome versus Exosome Targeting and Impacts Prion Disease Progression. Neuron 2018; 99:1155-1169.e9. [PMID: 30174115 DOI: 10.1016/j.neuron.2018.08.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/04/2018] [Accepted: 08/06/2018] [Indexed: 01/01/2023]
Abstract
Cellular prion protein (PrPC) modulates cell adhesion and signaling in the brain. Conversion to its infectious isoform causes neurodegeneration, including Creutzfeldt-Jakob disease in humans. PrPC undergoes rapid plasma membrane turnover and extracellular release via exosomes. However, the intracellular transport of PrPC and its potential impact on prion disease progression is barely understood. Here we identify critical components of PrPC trafficking that also link intracellular and extracellular PrPC turnover. PrPC associates with muskelin, dynein, and KIF5C at transport vesicles. Notably, muskelin coordinates bidirectional PrPC transport and facilitates lysosomal degradation over exosomal PrPC release. Muskelin gene knockout consequently causes PrPC accumulation at the neuronal surface and on secreted exosomes. Moreover, prion disease onset is accelerated following injection of pathogenic prions into muskelin knockout mice. Our data identify an essential checkpoint in PrPC turnover. They propose a novel connection between neuronal intracellular lysosome targeting and extracellular exosome trafficking, relevant to the pathogenesis of neurodegenerative conditions.
Collapse
|
55
|
Zhu X, Li X, Zhu M, Xu K, Yang L, Han B, Huang R, Zhang A, Yao H. Metalloprotease Adam10 suppresses epilepsy through repression of hippocampal neuroinflammation. J Neuroinflammation 2018; 15:221. [PMID: 30075790 PMCID: PMC6091106 DOI: 10.1186/s12974-018-1260-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/19/2018] [Indexed: 12/16/2022] Open
Abstract
Background Mice with pilocarpine-induced temporal lobe epilepsy (TLE) are characterized by intense hippocampal neuroinflammation, a prominent pathological hallmark of TLE that is known to contribute to neuronal hyperexcitability. Recent studies indicate that Adam10, a member of a disintegrin and metalloproteinase domain-containing protein (Adam) family, has been involved in the neuroinflammation response. However, it remains unclear whether and how Adam10 modulates neuroinflammation responses in the context of an epileptic brain or whether Adam10 affects epileptogenesis via the neuroinflammation pathway. Methods Adult male C57BL/6J mice were subjected to intraperitoneal injection of pilocarpine to induce TLE. Adeno-associated viral (AAV) vectors carrying Adam10 (AAV-Adam10) or lentiviral vectors carrying short hairpin RNA, which is specific to the mouse Adam10 mRNA (shRNA-Adam10), were bilaterally injected into the hippocampus to induce overexpression or knockdown of Adam10, respectively. The specific anti-inflammatory agent minocycline was administered following status epilepticus (SE) to block hippocampal neuroinflammation. Continuous video EEG recording was performed to analyze epileptic behavior. Western blot, immunofluorescence staining, and ELISA were performed to determine Adam10 expression as well as hippocampal neuroinflammation. Results In this study, we demonstrate that overexpression of Adam10 in the hippocampus suppresses neuroinflammation and reduces seizure activity in TLE mice, whereas knockdown of Adam10 exacerbates hippocampal neuroinflammation and increases seizure activity. Furthermore, increased seizure activity in Adam10 knockdown TLE mice is dependent on hippocampal neuroinflammation. Conclusion These results suggest that Adam10 suppresses epilepsy through repression of hippocampal neuroinflammation. Our findings provide new insights into the Adam10 regulation of development of epilepsy via the neuroinflammation pathway and identify a potential therapeutic target for epilepsy.
Collapse
Affiliation(s)
- Xinjian Zhu
- Department of Pharmacology, Medical School of Southeast University, Dingjiaqiao 87th, Nanjing, 210009, China.
| | - Xiaolin Li
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mengyi Zhu
- Department of Pharmacology, Medical School of Southeast University, Dingjiaqiao 87th, Nanjing, 210009, China
| | - Kangni Xu
- Department of Pharmacology, Medical School of Southeast University, Dingjiaqiao 87th, Nanjing, 210009, China
| | - Li Yang
- Department of Pharmacology, Medical School of Southeast University, Dingjiaqiao 87th, Nanjing, 210009, China
| | - Bing Han
- Department of Pharmacology, Medical School of Southeast University, Dingjiaqiao 87th, Nanjing, 210009, China
| | - Rongrong Huang
- Department of Pharmacology, Medical School of Southeast University, Dingjiaqiao 87th, Nanjing, 210009, China
| | - Aifeng Zhang
- Department of Pathology, Medical School of Southeast University, Nanjing, China
| | - Honghong Yao
- Department of Pharmacology, Medical School of Southeast University, Dingjiaqiao 87th, Nanjing, 210009, China
| |
Collapse
|
56
|
Lichtenthaler SF, Lemberg MK, Fluhrer R. Proteolytic ectodomain shedding of membrane proteins in mammals-hardware, concepts, and recent developments. EMBO J 2018; 37:e99456. [PMID: 29976761 PMCID: PMC6068445 DOI: 10.15252/embj.201899456] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/05/2018] [Accepted: 06/18/2018] [Indexed: 12/14/2022] Open
Abstract
Proteolytic removal of membrane protein ectodomains (ectodomain shedding) is a post-translational modification that controls levels and function of hundreds of membrane proteins. The contributing proteases, referred to as sheddases, act as important molecular switches in processes ranging from signaling to cell adhesion. When deregulated, ectodomain shedding is linked to pathologies such as inflammation and Alzheimer's disease. While proteases of the "a disintegrin and metalloprotease" (ADAM) and "beta-site APP cleaving enzyme" (BACE) families are widely considered as sheddases, in recent years a much broader range of proteases, including intramembrane and soluble proteases, were shown to catalyze similar cleavage reactions. This review demonstrates that shedding is a fundamental process in cell biology and discusses the current understanding of sheddases and their substrates, molecular mechanisms and cellular localizations, as well as physiological functions of protein ectodomain shedding. Moreover, we provide an operational definition of shedding and highlight recent conceptual advances in the field. While new developments in proteomics facilitate substrate discovery, we expect that shedding is not a rare exception, but rather the rule for many membrane proteins, and that many more interesting shedding functions await discovery.
Collapse
Affiliation(s)
- Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, Klinikum rechts der Isar, School of Medicine, and Institute for Advanced Study, Technical University Munich, Munich, Germany
- Munich Center for Systems Neurology (SyNergy), Munich, Germany
| | - Marius K Lemberg
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Regina Fluhrer
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Biomedizinisches Centrum (BMC), Ludwig-Maximilians University of Munich, Munich, Germany
| |
Collapse
|
57
|
Linsenmeier L, Mohammadi B, Wetzel S, Puig B, Jackson WS, Hartmann A, Uchiyama K, Sakaguchi S, Endres K, Tatzelt J, Saftig P, Glatzel M, Altmeppen HC. Structural and mechanistic aspects influencing the ADAM10-mediated shedding of the prion protein. Mol Neurodegener 2018; 13:18. [PMID: 29625583 PMCID: PMC5889536 DOI: 10.1186/s13024-018-0248-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/21/2018] [Indexed: 11/10/2022] Open
Abstract
Background Proteolytic processing of the prion protein (PrPC) by endogenous proteases generates bioactive membrane-bound and soluble fragments which may help to explain the pleiotropic roles of this protein in the nervous system and in brain diseases. Shedding of almost full-length PrPC into the extracellular space by the metalloprotease ADAM10 is of peculiar relevance since soluble PrP stimulates axonal outgrowth and is protective in neurodegenerative conditions such as Alzheimer’s and prion disease. However, molecular determinates and mechanisms regulating the shedding of PrP are entirely unknown. Methods We produced an antibody recognizing the neo-epitope of shed PrP generated by ADAM10 in biological samples and used it to study structural and mechanistic aspects affecting the shedding. For this, we investigated genetically modified cellular and murine models by biochemical and morphological approaches. Results We show that the novel antibody specifically detects shed PrP in cell culture supernatants and murine brain. We demonstrate that ADAM10 is the exclusive sheddase of PrPC in the nervous system and reveal that the glycosylation state and type of membrane-anchorage of PrPC severely affect its shedding. Furthermore, we provide evidence that PrP shedding can be modulated by pharmacological inhibition and stimulation and present data suggesting that shedding is a relevant part of a compensatory network ensuring PrPC homeostasis of the cell. Conclusions With the new antibody, our study introduces a new tool to reliably investigate PrP-shedding. In addition, this study provides novel and important insight into the regulation of this cleavage event, which is likely to be relevant for diagnostic and therapeutic approaches even beyond neurodegeneration.
Collapse
Affiliation(s)
- Luise Linsenmeier
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Behnam Mohammadi
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Sebastian Wetzel
- Institute of Biochemistry, Christian Albrechts University, Kiel, Germany
| | - Berta Puig
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | | | - Alexander Hartmann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Keiji Uchiyama
- Division of Molecular Neurobiology, Institute of Enzyme Research, Tokushima University, Tokushima, Japan
| | - Suehiro Sakaguchi
- Division of Molecular Neurobiology, Institute of Enzyme Research, Tokushima University, Tokushima, Japan
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Jörg Tatzelt
- Institute of Biochemistry and Pathobiochemistry, Ruhr University, Bochum, Germany
| | - Paul Saftig
- Institute of Biochemistry, Christian Albrechts University, Kiel, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Hermann C. Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| |
Collapse
|
58
|
Abstract
As a member of the A Disintegrin And Metalloproteinase (ADAM) family, ADAM10 has been identified as the constitutive α-secretase in the process of amyloid-β protein precursor (AβPP) cleavage and plays a critical role in reducing the generation of the amyloid-β (Aβ) peptides. Recent studies have demonstrated its beneficial role in alleviating the pathologic impairment in Alzheimer's disease (AD) both in vitro and in vivo. However, the role of ADAM10 in AD and the underlying molecular mechanisms are still not well established. Increasing evidence indicates that ADAM10 not only reduces the generation of Aβ but may also affect the pathology of AD through potential mechanisms including reducing tau pathology, maintaining normal synaptic functions, and promoting hippocampal neurogenesis and the homeostasis of neuronal networks. Mechanistically, ADAM10 regulates these functions by interacting with postsynaptic substrates in brain, especially synaptic cell receptors and adhesion molecules. Furthermore, ADAM10 protein in platelets seems to be a promising biomarker for AD diagnosis. This review will summarize the role of ADAM10 in AD and highlight its functions besides its role as the α-secretase in AβPP cleavage. Meanwhile, we will discuss the therapeutic potential of ADAM10 in treating AD.
Collapse
Affiliation(s)
- Xiang-Zhen Yuan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Sen Sun
- Qingdao Blood Center, Qingdao, China
| | - Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| |
Collapse
|
59
|
Colombo A, Hsia HE, Wang M, Kuhn PH, Brill MS, Canevazzi P, Feederle R, Taveggia C, Misgeld T, Lichtenthaler SF. Non-cell-autonomous function of DR6 in Schwann cell proliferation. EMBO J 2018; 37:embj.201797390. [PMID: 29459438 DOI: 10.15252/embj.201797390] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 12/20/2017] [Accepted: 01/16/2018] [Indexed: 12/21/2022] Open
Abstract
Death receptor 6 (DR6) is an orphan member of the TNF receptor superfamily and controls cell death and differentiation in a cell-autonomous manner in different cell types. Here, we report an additional non-cell-autonomous function for DR6 in the peripheral nervous system (PNS). DR6-knockout (DR6 KO) mice showed precocious myelination in the PNS Using an in vitro myelination assay, we demonstrate that neuronal DR6 acts in trans on Schwann cells (SCs) and reduces SC proliferation and myelination independently of its cytoplasmic death domain. Mechanistically, DR6 was found to be cleaved in neurons by "a disintegrin and metalloprotease 10" (ADAM10), releasing the soluble DR6 ectodomain (sDR6). Notably, in the in vitro myelination assay, sDR6 was sufficient to rescue the DR6 KO phenotype. Thus, in addition to the cell-autonomous receptor function of full-length DR6, the proteolytically released sDR6 can unexpectedly also act as a paracrine signaling factor in the PNS in a non-cell-autonomous manner during SC proliferation and myelination. This new mode of DR6 signaling will be relevant in future attempts to target DR6 in disease settings.
Collapse
Affiliation(s)
- Alessio Colombo
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Hung-En Hsia
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, Klinikum rechts der Isar, and Institute for Advanced Study, Technical University Munich, Munich, Germany
| | - Mengzhe Wang
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
| | - Peer-Hendrik Kuhn
- Neuroproteomics, Klinikum rechts der Isar, and Institute for Advanced Study, Technical University Munich, Munich, Germany
| | - Monika S Brill
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
| | - Paolo Canevazzi
- Division of Neuroscience, INSPE at San Raffaele Scientific Institute, Milan, Italy
| | - Regina Feederle
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Institute for Diabetes and Obesity, Monoclonal Antibody Research Group, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Munich, Germany.,Munich Center for Systems Neurology (SyNergy), Munich, Germany
| | - Carla Taveggia
- Division of Neuroscience, INSPE at San Raffaele Scientific Institute, Milan, Italy
| | - Thomas Misgeld
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany.,Munich Center for Systems Neurology (SyNergy), Munich, Germany.,Center for Integrated Protein Sciences (CIPSM), Munich, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany .,Neuroproteomics, Klinikum rechts der Isar, and Institute for Advanced Study, Technical University Munich, Munich, Germany.,Munich Center for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
60
|
Kitamura Y, Inden M, Kimoto Y, Takata K, Yanagisawa D, Hijioka M, Ashihara E, Tooyama I, Shimohama S, Ariga H. Effects of a DJ-1-Binding Compound on Spatial Learning and Memory Impairment in a Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2018; 55:67-72. [PMID: 27662308 DOI: 10.3233/jad-160574] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Previously, DJ-1 modulator UCP0054278/comp-B was identified by virtual screening, where comp-B interacts with DJ-1 to produce antioxidant and neuroprotective responses in Parkinson's disease models. However, the effect of comp-B in an in vivo Alzheimer's disease (AD) model is yet undetermined. Thus, we examined the effect of comp-B on spatial learning, memory, and amyloid-β (Aβ) clearance in a transgenic mouse model of AD. We found that comp-B resolved the cognitive deficits, reduced insoluble Aβ42 levels, and prevented the degeneration of synaptic functions, thereby suggesting that comp-B may become a major compound for AD treatment.
Collapse
Affiliation(s)
- Yoshihisa Kitamura
- Pharmacology and Neurobiology Laboratory, College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan.,Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Masatoshi Inden
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Yasuto Kimoto
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Kazuyuki Takata
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Daijiro Yanagisawa
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Shiga, Japan
| | - Masanori Hijioka
- Pharmacology and Neurobiology Laboratory, College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan
| | - Eishi Ashihara
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Ikuo Tooyama
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Shiga, Japan
| | - Shun Shimohama
- Department of Neurology, Sapporo Medical University, Sapporo, Japan
| | - Hiroyoshi Ariga
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
61
|
Brummer T, Pigoni M, Rossello A, Wang H, Noy PJ, Tomlinson MG, Blobel CP, Lichtenthaler SF. The metalloprotease ADAM10 (a disintegrin and metalloprotease 10) undergoes rapid, postlysis autocatalytic degradation. FASEB J 2018; 32:3560-3573. [PMID: 29430990 DOI: 10.1096/fj.201700823rr] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The transmembrane protein, ADAM10 (a disintegrin and metalloprotease 10), has key physiologic functions-for example, during embryonic development and in the brain. During transit through the secretory pathway, immature ADAM10 (proADAM10) is converted into its proteolytically active, mature form (mADAM10). Increasing or decreasing the abundance and/or activity of mADAM10 is considered to be a therapeutic approach for the treatment of such diseases as Alzheimer's disease and cancer. Yet biochemical detection and characterization of mADAM10 has been difficult. In contrast, proADAM10 is readily detected-for example, in immunoblots-which suggests that mADAM10 is only a fraction of total cellular ADAM10. Here, we demonstrate that mADAM10, but not proADAM10, unexpectedly undergoes rapid, time-dependent degradation upon biochemical cell lysis in different cell lines and in primary neurons, which prevents the detection of the majority of mADAM10 in immunoblots. This degradation required the catalytic activity of ADAM10, was efficiently prevented by adding active site inhibitors to the lysis buffer, and did not affect proADAM10, which suggests that ADAM10 degradation occurred in an intramolecular and autoproteolytic manner. Inhibition of postlysis autoproteolysis demonstrated efficient cellular ADAM10 maturation with higher levels of mADAM10 than proADAM10. Moreover, a cycloheximide chase experiment revealed that mADAM10 is a long-lived protein with a half-life of approximately 12 h. In summary, our study demonstrates that mADAM10 autoproteolysis must be blocked to allow for the proper detection of mADAM10, which is essential for the correct interpretation of biochemical and cellular studies of ADAM10.-Brummer, T., Pigoni, M., Rossello, A., Wang, H., Noy, P. J., Tomlinson, M. G., Blobel, C. P., Lichtenthaler, S. F. The metalloprotease ADAM10 (a disintegrin and metalloprotease 10) undergoes rapid, postlysis autocatalytic degradation.
Collapse
Affiliation(s)
- Tobias Brummer
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Martina Pigoni
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | | | - Huanhuan Wang
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Munich, Germany.,School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Peter J Noy
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | | | - Carl P Blobel
- Hospital for Special Surgery, Research Institute, New York, New York, USA.,Department of Medicine, Weill Cornell Medicine, New York, New York, USA.,Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, New York, USA.,Institute for Advanced Study, Technische Universität München, Munich, Germany
| | - Stefan F Lichtenthaler
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.,Institute for Advanced Study, Technische Universität München, Munich, Germany.,Munich Cluster for Systems Neurology, Munich, Germany
| |
Collapse
|
62
|
Abstract
We examined whether established metabolic risk genetic variants in the population confer a risk for increased waist circumference in patients with schizophrenia spectrum disorders and also an association with schizophrenia spectrum disorders irrespective of waist circumference.
Collapse
|
63
|
Llufriu-Dabén G, Carrete A, Chierto E, Mailleux J, Camand E, Simon A, Vanmierlo T, Rose C, Allinquant B, Hendriks JJ, Massaad C, Meffre D, Jafarian-Tehrani M. Targeting demyelination via α-secretases promoting sAPPα release to enhance remyelination in central nervous system. Neurobiol Dis 2018; 109:11-24. [DOI: 10.1016/j.nbd.2017.09.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 09/07/2017] [Accepted: 09/14/2017] [Indexed: 12/01/2022] Open
|
64
|
Marsh J, Alifragis P. Synaptic dysfunction in Alzheimer's disease: the effects of amyloid beta on synaptic vesicle dynamics as a novel target for therapeutic intervention. Neural Regen Res 2018; 13:616-623. [PMID: 29722304 PMCID: PMC5950662 DOI: 10.4103/1673-5374.230276] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The most prevalent form of dementia in the elderly is Alzheimer's disease. A significant contributing factor to the progression of the disease appears to be the progressive accumulation of amyloid-β42 (Aβ42), a small hydrophobic peptide. Unfortunately, attempts to develop therapies targeting the accumulation of Aβ42 have not been successful to treat or even slow down the disease. It is possible that this failure is an indication that targeting downstream effects rather than the accumulation of the peptide itself might be a more effective approach. The accumulation of Aβ42 seems to affect various aspects of physiological cell functions. In this review, we provide an overview of the evidence that implicates Aβ42 in synaptic dysfunction, with a focus on how it contributes to defects in synaptic vesicle dynamics and neurotransmitter release. We discuss data that provide new insights on the Aβ42 induced pathology of Alzheimer's disease and a more detailed understanding of its contribution to the synaptic deficiencies that are associated with the early stages of the disease. Although the precise mechanisms that trigger synaptic dysfunction are still under investigation, the available data so far has enabled us to put forward a model that could be used as a guide to generate new therapeutic targets for pharmaceutical intervention.
Collapse
Affiliation(s)
- Jade Marsh
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Pavlos Alifragis
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, UK
| |
Collapse
|
65
|
Polanco JC, Li C, Bodea LG, Martinez-Marmol R, Meunier FA, Götz J. Amyloid-β and tau complexity — towards improved biomarkers and targeted therapies. Nat Rev Neurol 2017; 14:22-39. [DOI: 10.1038/nrneurol.2017.162] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
66
|
Proteolytic Processing of Neurexins by Presenilins Sustains Synaptic Vesicle Release. J Neurosci 2017; 38:901-917. [PMID: 29229705 DOI: 10.1523/jneurosci.1357-17.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 11/03/2017] [Accepted: 11/26/2017] [Indexed: 11/21/2022] Open
Abstract
Proteolytic processing of synaptic adhesion components can accommodate the function of synapses to activity-dependent changes. The adhesion system formed by neurexins (Nrxns) and neuroligins (Nlgns) bidirectionally orchestrate the function of presynaptic and postsynaptic terminals. Previous studies have shown that presenilins (PS), components of the gamma-secretase complex frequently mutated in familial Alzheimer's disease, clear from glutamatergic terminals the accumulation of Nrxn C-terminal fragments (Nrxn-CTF) generated by ectodomain shedding. Here, we characterized the synaptic consequences of the proteolytic processing of Nrxns in cultured hippocampal neurons from mice and rats of both sexes. We show that activation of presynaptic Nrxns with postsynaptic Nlgn1 or inhibition of ectodomain shedding in axonal Nrxn1-β increases presynaptic release at individual terminals, likely reflecting an increase in the number of functional release sites. Importantly, inactivation of PS inhibits presynaptic release downstream of Nrxn activation, leaving synaptic vesicle recruitment unaltered. Glutamate-receptor signaling initiates the activity-dependent generation of Nrxn-CTF, which accumulate at presynaptic terminals lacking PS function. The sole expression of Nrxn-CTF decreases presynaptic release and calcium flux, recapitulating the deficits due to loss of PS function. Our data indicate that inhibition of Nrxn processing by PS is deleterious to glutamatergic function.SIGNIFICANCE STATEMENT To gain insight into the role of presenilins (PS) in excitatory synaptic function, we address the relevance of the proteolytic processing of presynaptic neurexins (Nrxns) in glutamatergic differentiation. Using synaptic fluorescence probes in cultured hippocampal neurons, we report that trans-synaptic activation of Nrxns produces a robust increase in presynaptic calcium levels and neurotransmitter release at individual glutamatergic terminals by a mechanism that depends on normal PS activity. Abnormal accumulation of Nrxn C-terminal fragments resulting from impaired PS activity inhibits presynaptic calcium signal and neurotransmitter release, assigning synaptic defects to Nrxns as a specific PS substrate. These data may provide links into how loss of PS activity inhibits glutamatergic synaptic function in Alzheimer's disease patients.
Collapse
|
67
|
Musardo S, Marcello E. Synaptic dysfunction in Alzheimer's disease: From the role of amyloid β-peptide to the α-secretase ADAM10. Eur J Pharmacol 2017. [DOI: 10.1016/j.ejphar.2017.06.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
68
|
Zunke F, Rose-John S. The shedding protease ADAM17: Physiology and pathophysiology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2059-2070. [DOI: 10.1016/j.bbamcr.2017.07.001] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/08/2017] [Accepted: 07/09/2017] [Indexed: 02/07/2023]
|
69
|
Marcello E, Borroni B, Pelucchi S, Gardoni F, Di Luca M. ADAM10 as a therapeutic target for brain diseases: from developmental disorders to Alzheimer's disease. Expert Opin Ther Targets 2017; 21:1017-1026. [PMID: 28960088 DOI: 10.1080/14728222.2017.1386176] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION In the central nervous system a disintegrin and metalloproteinase 10 (ADAM10) controls several functions such as neurodevelopment, synaptic plasticity and dendritic spine morphology thanks to its activity towards a high number of substrates, including the synaptic cell adhesion molecules as the Amyloid Precursor Protein, N-cadherin, Notch and Ephrins. In particular, ADAM10 plays a key role in the modulation of the molecular mechanisms responsible for dendritic spine formation, maturation and stabilization and in the regulation of the molecular organization of the glutamatergic synapse. Consequently, an alteration of ADAM10 activity is strictly correlated to the onset of different types of synaptopathies, ranging from neurodevelopmental disorders, i.e. autism spectrum disorders, to neurodegenerative diseases, i.e. Alzheimer's Disease. Areas covered: We describe the most recent discoveries in understanding of the role of ADAM10 activity at the glutamatergic excitatory synapse and its involvement in the onset of neurodevelopmental and neurodegenerative disorders. Expert opinion: A progress in the understanding of the molecular mechanisms driving ADAM10 activity at synapses and its alterations in brain disorders is the first step before designing a specific drug able to modulate ADAM10 activity.
Collapse
Affiliation(s)
- Elena Marcello
- a Department of Pharmacological and Biomolecular Sciences , Università degli Studi di Milano , Milan , Italy
| | - Barbara Borroni
- b Neurology Unit, Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences , University of Brescia , Brescia , Italy
| | - Silvia Pelucchi
- a Department of Pharmacological and Biomolecular Sciences , Università degli Studi di Milano , Milan , Italy.,c Department of Neurosciences, Psychology, Drug Research, and Child Health , University of Florence , Florence , Italy
| | - Fabrizio Gardoni
- a Department of Pharmacological and Biomolecular Sciences , Università degli Studi di Milano , Milan , Italy
| | - Monica Di Luca
- a Department of Pharmacological and Biomolecular Sciences , Università degli Studi di Milano , Milan , Italy
| |
Collapse
|
70
|
Regulation of the trafficking and the function of the metalloprotease ADAM10 by tetraspanins. Biochem Soc Trans 2017; 45:937-44. [PMID: 28687716 DOI: 10.1042/bst20160296] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/15/2017] [Accepted: 04/03/2017] [Indexed: 12/11/2022]
Abstract
By interacting directly with partner proteins and with one another, tetraspanins organize a network of interactions referred to as the tetraspanin web. ADAM10 (A Disintegrin And Metalloprotease 10), an essential membrane-anchored metalloprotease that cleaves off the ectodomain of a large variety of cell surface proteins including cytokines, adhesion molecules, the precursor of the β-amyloid peptide APP or Notch, has emerged as a major component of the tetraspanin web. Recent studies have shown that ADAM10 associates directly with all members (Tspan5, Tspan10, Tspan14, Tspan15, Tspan17 and Tspan33) of a subgroup of tetraspanins having eight cysteines in the large extracellular domain and referred to as TspanC8. All TspanC8 regulate ADAM10 exit from the endoplasmic reticulum, but differentially regulate its subsequent trafficking and its function, and have notably a different impact on Notch signaling. TspanC8 orthologs in invertebrates also regulate ADAM10 trafficking and Notch signaling. It may be possible to target TspanC8 tetraspanins to modulate in a tissue- or substrate-restricted manner ADAM10 function in pathologies such as cardiovascular diseases, cancer or Alzheimer's disease.
Collapse
|
71
|
Brzdak P, Nowak D, Wiera G, Mozrzymas JW. Multifaceted Roles of Metzincins in CNS Physiology and Pathology: From Synaptic Plasticity and Cognition to Neurodegenerative Disorders. Front Cell Neurosci 2017; 11:178. [PMID: 28713245 PMCID: PMC5491558 DOI: 10.3389/fncel.2017.00178] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/12/2017] [Indexed: 12/31/2022] Open
Abstract
The extracellular matrix (ECM) and membrane proteolysis play a key role in structural and functional synaptic plasticity associated with development and learning. A growing body of evidence underscores the multifaceted role of members of the metzincin superfamily, including metalloproteinases (MMPs), A Disintegrin and Metalloproteinases (ADAMs), A Disintegrin and Metalloproteinase with Thrombospondin Motifs (ADAMTSs) and astacins in physiological and pathological processes in the central nervous system (CNS). The expression and activity of metzincins are strictly controlled at different levels (e.g., through the regulation of translation, limited activation in the extracellular space, the binding of endogenous inhibitors and interactions with other proteins). Thus, unsurprising is that the dysregulation of proteolytic activity, especially the greater expression and activation of metzincins, is associated with neurodegenerative disorders that are considered synaptopathies, especially Alzheimer's disease (AD). We review current knowledge of the functions of metzincins in the development of AD, mainly the proteolytic processing of amyloid precursor protein, the degradation of amyloid β (Aβ) peptide and several pathways for Aβ clearance across brain barriers (i.e., blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB)) that contain specific receptors that mediate the uptake of Aβ peptide. Controlling the proteolytic activity of metzincins in Aβ-induced pathological changes in AD patients' brains may be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Patrycja Brzdak
- Department of Physiology and Molecular Neurobiology, Wroclaw UniversityWroclaw, Poland.,Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical UniversityWroclaw, Poland
| | - Daria Nowak
- Department of Physiology and Molecular Neurobiology, Wroclaw UniversityWroclaw, Poland.,Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical UniversityWroclaw, Poland
| | - Grzegorz Wiera
- Department of Physiology and Molecular Neurobiology, Wroclaw UniversityWroclaw, Poland.,Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical UniversityWroclaw, Poland
| | - Jerzy W Mozrzymas
- Department of Physiology and Molecular Neurobiology, Wroclaw UniversityWroclaw, Poland.,Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical UniversityWroclaw, Poland
| |
Collapse
|
72
|
Meng T, Cao Q, Lei P, Bush AI, Xiang Q, Su Z, He X, Rogers JT, Chiu IM, Zhang Q, Huang Y. Tat-haFGF 14-154 Upregulates ADAM10 to Attenuate the Alzheimer Phenotype of APP/PS1 Mice through the PI3K-CREB-IRE1α/XBP1 Pathway. MOLECULAR THERAPY-NUCLEIC ACIDS 2017. [PMID: 28624220 PMCID: PMC5443968 DOI: 10.1016/j.omtn.2017.05.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Acid fibroblast growth factor (aFGF) has shown neuroprotection in Alzheimer’s disease (AD) models in previous studies, yet its mechanism is still uncertain. Here we report that the efficacy of Tat-haFGF14–154 is markedly increased when loaded cationic liposomes for intranasal delivery are intranasally administered to APP/PS1 mice. Our results demonstrated that liposomal Tat-haFGF14–154 treatment significantly ameliorated behavioral deficits, relieved brain Aβ burden, and increased the expression and activity of disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) in the brain. Tat-haFGF14–154 antagonized Aβ1–42-induced cell death and structural damage in rat primary neurons in an ADAM10-dependent manner, which, in turn, was promoted by the activation of XBP1 splicing and modulated by the PI3K-CREB pathway. Both knockdown of ADAM10 and inhibition of PI3K (LY294002) negated Tat-haFGF14–154 rescue. Thus, Tat-haFGF14–154 activates the IRE1α/XBP1 pathway of the unfolded protein response (UPR) against the endoplasmic reticulum (ER) stress induced by Aβ, and, subsequently, the nuclear translocation of spliced XBP1 (XBP1s) promotes transcription of ADAM10. These results highlight the important role of ADAM10 and its activation through the PI3K-CREB-IRE1α/XBP1 pathway as a key factor in the mechanism of neuroprotection for Tat-haFGF14–154.
Collapse
Affiliation(s)
- Tian Meng
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Qin Cao
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Peng Lei
- Oxidation Biology Unit, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ashley I Bush
- Oxidation Biology Unit, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Qi Xiang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China; Cell Biology Department and National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China
| | - Zhijian Su
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China; Cell Biology Department and National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China
| | - Xiang He
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Jack T Rogers
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02114, USA
| | - Ing-Ming Chiu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Qihao Zhang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China; Cell Biology Department and National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China.
| | - Yadong Huang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China; Cell Biology Department and National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
73
|
Not just amyloid: physiological functions of the amyloid precursor protein family. Nat Rev Neurosci 2017; 18:281-298. [PMID: 28360418 DOI: 10.1038/nrn.2017.29] [Citation(s) in RCA: 409] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyloid precursor protein (APP) gives rise to the amyloid-β peptide and thus has a key role in the pathogenesis of Alzheimer disease. By contrast, the physiological functions of APP and the closely related APP-like proteins (APLPs) remain less well understood. Studying these physiological functions has been challenging and has required a careful long-term strategy, including the analysis of different App-knockout and Aplp-knockout mice. In this Review, we summarize these findings, focusing on the in vivo roles of APP family members and their processing products for CNS development, synapse formation and function, brain injury and neuroprotection, as well as ageing. In addition, we discuss the implications of APP physiology for therapeutic approaches.
Collapse
|
74
|
Guénette S, Strecker P, Kins S. APP Protein Family Signaling at the Synapse: Insights from Intracellular APP-Binding Proteins. Front Mol Neurosci 2017; 10:87. [PMID: 28424586 PMCID: PMC5371672 DOI: 10.3389/fnmol.2017.00087] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/13/2017] [Indexed: 12/17/2022] Open
Abstract
Understanding the molecular mechanisms underlying amyloid precursor protein family (APP/APP-like proteins, APLP) function in the nervous system can be achieved by studying the APP/APLP interactome. In this review article, we focused on intracellular APP interacting proteins that bind the YENPTY internalization motif located in the last 15 amino acids of the C-terminal region. These proteins, which include X11/Munc-18-interacting proteins (Mints) and FE65/FE65Ls, represent APP cytosolic binding partners exhibiting different neuronal functions. A comparison of FE65 and APP family member mutant mice revealed a shared function for APP/FE65 protein family members in neurogenesis and neuronal positioning. Accumulating evidence also supports a role for membrane-associated APP/APLP proteins in synapse formation and function. Therefore, it is tempting to speculate that APP/APLP C-terminal interacting proteins transmit APP/APLP-dependent signals at the synapse. Herein, we compare our current knowledge of the synaptic phenotypes of APP/APLP mutant mice with those of mice lacking different APP/APLP interaction partners and discuss the possible downstream effects of APP-dependent FE65/FE65L or X11/Mint signaling on synaptic vesicle release, synaptic morphology and function. Given that the role of X11/Mint proteins at the synapse is well-established, we propose a model highlighting the role of FE65 protein family members for transduction of APP/APLP physiological function at the synapse.
Collapse
Affiliation(s)
| | - Paul Strecker
- Department of Biology, Division of Human Biology, University of KaiserslauternKaiserslautern, Germany
| | - Stefan Kins
- Department of Biology, Division of Human Biology, University of KaiserslauternKaiserslautern, Germany
| |
Collapse
|
75
|
Vasques JF, Heringer PVB, Gonçalves RGDJ, Campello-Costa P, Serfaty CA, Faria-Melibeu ADC. Monocular denervation of visual nuclei modulates APP processing and sAPPα production: A possible role on neural plasticity. Int J Dev Neurosci 2017; 60:16-25. [PMID: 28323038 DOI: 10.1016/j.ijdevneu.2017.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 12/13/2022] Open
Abstract
Amyloid precursor protein (APP) is essential to physiological processes such as synapse formation and neural plasticity. Sequential proteolysis of APP by beta- and gamma-secretases generates amyloid-beta peptide (Aβ), the main component of senile plaques in Alzheimer Disease. Alternative APP cleavage by alpha-secretase occurs within Aβ domain, releasing soluble α-APP (sAPPα), a neurotrophic fragment. Among other functions, sAPPα is important to synaptogenesis, neural survival and axonal growth. APP and sAPPα levels are increased in models of neuroplasticity, which suggests an important role for APP and its metabolites, especially sAPPα, in the rearranging brain. In this work we analyzed the effects of monocular enucleation (ME), a classical model of lesion-induced plasticity, upon APP content, processing and also in secretases levels. Besides, we addressed whether α-secretase activity is crucial for retinotectal remodeling after ME. Our results showed that ME induced a transient reduction in total APP content. We also detected an increase in α-secretase expression and in sAPP production concomitant with a reduction in Aβ and β-secretase contents. These data suggest that ME facilitates APP processing by the non-amyloidogenic pathway, increasing sAPPα levels. Indeed, the pharmacological inhibition of α-secretase activity reduced the axonal sprouting of ipsilateral retinocollicular projections from the intact eye after ME, suggesting that sAPPα is necessary for synaptic structural rearrangement. Understanding how APP processing is regulated under lesion conditions may provide new insights into APP physiological role on neural plasticity.
Collapse
Affiliation(s)
- Juliana Ferreira Vasques
- Programa de Neurociências, Departamento de Neurobiologia, Instituto de Biologia, Universidade Federal Fluminense, CEP 24001-970, Niterói 100180, RJ, Brazil
| | - Pedro Vinícius Bastos Heringer
- Programa de Neurociências, Departamento de Neurobiologia, Instituto de Biologia, Universidade Federal Fluminense, CEP 24001-970, Niterói 100180, RJ, Brazil
| | - Renata Guedes de Jesus Gonçalves
- Programa de Neurociências, Departamento de Neurobiologia, Instituto de Biologia, Universidade Federal Fluminense, CEP 24001-970, Niterói 100180, RJ, Brazil
| | - Paula Campello-Costa
- Programa de Neurociências, Departamento de Neurobiologia, Instituto de Biologia, Universidade Federal Fluminense, CEP 24001-970, Niterói 100180, RJ, Brazil
| | - Claudio Alberto Serfaty
- Programa de Neurociências, Departamento de Neurobiologia, Instituto de Biologia, Universidade Federal Fluminense, CEP 24001-970, Niterói 100180, RJ, Brazil
| | - Adriana da Cunha Faria-Melibeu
- Programa de Neurociências, Departamento de Neurobiologia, Instituto de Biologia, Universidade Federal Fluminense, CEP 24001-970, Niterói 100180, RJ, Brazil.
| |
Collapse
|
76
|
Conant K, Daniele S, Bozzelli PL, Abdi T, Edwards A, Szklarczyk A, Olchefske I, Ottenheimer D, Maguire-Zeiss K. Matrix metalloproteinase activity stimulates N-cadherin shedding and the soluble N-cadherin ectodomain promotes classical microglial activation. J Neuroinflammation 2017; 14:56. [PMID: 28302163 PMCID: PMC5356362 DOI: 10.1186/s12974-017-0827-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 02/27/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Matrix metalloproteinases (MMPs) are a family of enzymes that are typically released from intracellular stores to act on specific extracellular substrates. MMP expression and activity can be increased in a neuronal activity-dependent manner, and further increased in response to tissue injury. MMP substrates include cell adhesion molecules (CAMs) that are abundantly expressed in the brain and well positioned for membrane proximal cleavage. Importantly, CAM integrity is important to synaptic structure and axon-myelin interactions, and shed ectodomains may themselves influence cellular function. METHODS In the present study, we have examined proteolysis of N-cadherin (N-cdh) by MMP-7, a family member that has been implicated in disorders including HIV dementia, multiple sclerosis, and major depression. With in vitro digest assays, we tested N-cdh cleavage by increasing concentrations of recombinant enzyme. We also tested MMP-7 for its potential to stimulate N-cdh shedding from cultured neural cells. Since select CAM ectodomains may interact with cell surface receptors that are expressed on microglial cells, we subsequently tested the N-cdh ectodomain for its ability to stimulate activation of this cell type as determined by nuclear translocation of NF-κB, Iba-1 expression, and TNF-α release. RESULTS We observed that soluble N-cdh increased Iba-1 levels in microglial lysates, and also increased microglial release of the cytokine TNF-α. Effects were associated with increased NF-κB immunoreactivity in microglial nuclei and diminished by an inhibitor of the toll-like receptor adaptor protein, MyD88. CONCLUSIONS Together, these in vitro results suggest that soluble N-cdh may represent a novel effector of microglial activation, and that disorders with increased MMP levels may stimulate a cycle in which the products of excess proteolysis further exacerbate microglial-mediated tissue injury. Additional in vivo studies are warranted to address this issue.
Collapse
Affiliation(s)
- Katherine Conant
- Department of Neuroscience, Georgetown University School of Medicine, Washington, D.C., USA
| | - Stefano Daniele
- Department of Neuroscience, Georgetown University School of Medicine, Washington, D.C., USA
| | - P. Lorenzo Bozzelli
- Department of Neuroscience, Georgetown University School of Medicine, Washington, D.C., USA
| | - Tsion Abdi
- Department of Neuroscience, Georgetown University School of Medicine, Washington, D.C., USA
| | - Amanda Edwards
- Department of Neuroscience, Georgetown University School of Medicine, Washington, D.C., USA
| | | | - India Olchefske
- Department of Neuroscience, Georgetown University School of Medicine, Washington, D.C., USA
| | - David Ottenheimer
- Department of Neuroscience, Georgetown University School of Medicine, Washington, D.C., USA
| | - Kathleen Maguire-Zeiss
- Department of Neuroscience, Georgetown University School of Medicine, Washington, D.C., USA
| |
Collapse
|
77
|
Endres K, Deller T. Regulation of Alpha-Secretase ADAM10 In vitro and In vivo: Genetic, Epigenetic, and Protein-Based Mechanisms. Front Mol Neurosci 2017; 10:56. [PMID: 28367112 PMCID: PMC5355436 DOI: 10.3389/fnmol.2017.00056] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/20/2017] [Indexed: 12/21/2022] Open
Abstract
ADAM10 (A Disintegrin and Metalloproteinase 10) has been identified as the major physiological alpha-secretase in neurons, responsible for cleaving APP in a non-amyloidogenic manner. This cleavage results in the production of a neuroprotective APP-derived fragment, APPs-alpha, and an attenuated production of neurotoxic A-beta peptides. An increase in ADAM10 activity shifts the balance of APP processing toward APPs-alpha and protects the brain from amyloid deposition and disease. Thus, increasing ADAM10 activity has been proposed an attractive target for the treatment of neurodegenerative diseases and it appears to be timely to investigate the physiological mechanisms regulating ADAM10 expression. Therefore, in this article, we will (1) review reports on the physiological regulation of ADAM10 at the transcriptional level, by epigenetic factors, miRNAs and/or protein interactions, (2) describe conditions, which change ADAM10 expression in vitro and in vivo, (3) report how neuronal ADAM10 expression may be regulated in humans, and (4) discuss how this knowledge on the physiological and pathophysiological regulation of ADAM10 may help to preserve or restore brain function.
Collapse
Affiliation(s)
- Kristina Endres
- Clinic of Psychiatry and Psychotherapy, University Medical Center Johannes Gutenberg-University Mainz Mainz, Germany
| | - Thomas Deller
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt/Main, Germany
| |
Collapse
|
78
|
Mockett BG, Richter M, Abraham WC, Müller UC. Therapeutic Potential of Secreted Amyloid Precursor Protein APPsα. Front Mol Neurosci 2017; 10:30. [PMID: 28223920 PMCID: PMC5293819 DOI: 10.3389/fnmol.2017.00030] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 01/25/2017] [Indexed: 11/26/2022] Open
Abstract
Cleavage of the amyloid precursor protein (APP) by α-secretase generates an extracellularly released fragment termed secreted APP-alpha (APPsα). Not only is this process of interest due to the cleavage of APP within the amyloid-beta sequence, but APPsα itself has many physiological properties that suggest its great potential as a therapeutic target. For example, APPsα is neurotrophic, neuroprotective, neurogenic, a stimulator of protein synthesis and gene expression, and enhances long-term potentiation (LTP) and memory. While most early studies have been conducted in vitro, effectiveness in animal models is now being confirmed. These studies have revealed that either upregulating α-secretase activity, acutely administering APPsα or chronic delivery of APPsα via a gene therapy approach can effectively treat mouse models of Alzheimer's disease (AD) and other disorders such as traumatic head injury. Together these findings suggest the need for intensifying research efforts to harness the therapeutic potential of this multifunctional protein.
Collapse
Affiliation(s)
- Bruce G. Mockett
- Department of Psychology, Brain Health Research Centre, Brain Research New Zealand, University of OtagoOtago, New Zealand
| | - Max Richter
- Department of Functional Genomics, Institute for Pharmacy and Molecular Biotechnology, Heidelberg UniversityHeidelberg, Germany
| | - Wickliffe C. Abraham
- Department of Psychology, Brain Health Research Centre, Brain Research New Zealand, University of OtagoOtago, New Zealand
| | - Ulrike C. Müller
- Department of Functional Genomics, Institute for Pharmacy and Molecular Biotechnology, Heidelberg UniversityHeidelberg, Germany
| |
Collapse
|
79
|
Ludewig S, Korte M. Novel Insights into the Physiological Function of the APP (Gene) Family and Its Proteolytic Fragments in Synaptic Plasticity. Front Mol Neurosci 2017; 9:161. [PMID: 28163673 PMCID: PMC5247455 DOI: 10.3389/fnmol.2016.00161] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/14/2016] [Indexed: 12/31/2022] Open
Abstract
The amyloid precursor protein (APP) is well known to be involved in the pathophysiology of Alzheimer's disease (AD) via its cleavage product amyloid ß (Aß). However, the physiological role of APP, its various proteolytic products and the amyloid precursor-like proteins 1 and 2 (APLP1/2) are still not fully clarified. Interestingly, it has been shown that learning and memory processes represented by functional and structural changes at synapses are altered in different APP and APLP1/2 mouse mutants. In addition, APP and its fragments are implicated in regulating synaptic strength further reinforcing their modulatory role at the synapse. While APLP2 and APP are functionally redundant, the exclusively CNS expressed APLP1, might have individual roles within the synaptic network. The proteolytic product of non-amyloidogenic APP processing, APPsα, emerged as a neurotrophic peptide that facilitates long-term potentiation (LTP) and restores impairments occurring with age. Interestingly, the newly discovered η-secretase cleavage product, An-α acts in the opposite direction, namely decreasing LTP. In this review we summarize recent findings with emphasis on the physiological role of the APP gene family and its proteolytic products on synaptic function and plasticity, especially during processes of hippocampal LTP. Therefore, we focus on literature that provide electrophysiological data by using different mutant mouse strains either lacking full-length or parts of the APP proteins or that utilized secretase inhibitors as well as secreted APP fragments.
Collapse
Affiliation(s)
- Susann Ludewig
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig Braunschweig, Germany
| | - Martin Korte
- Division of Cellular Neurobiology, Zoological Institute, TU BraunschweigBraunschweig, Germany; Helmholtz Centre for Infection Research, AG NINDBraunschweig, Germany
| |
Collapse
|
80
|
Westmark CJ, Chuang SC, Hays SA, Filon MJ, Ray BC, Westmark PR, Gibson JR, Huber KM, Wong RKS. APP Causes Hyperexcitability in Fragile X Mice. Front Mol Neurosci 2016; 9:147. [PMID: 28018172 PMCID: PMC5156834 DOI: 10.3389/fnmol.2016.00147] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/01/2016] [Indexed: 01/06/2023] Open
Abstract
Amyloid-beta protein precursor (APP) and metabolite levels are altered in fragile X syndrome (FXS) patients and in the mouse model of the disorder, Fmr1KO mice. Normalization of APP levels in Fmr1KO mice (Fmr1KO /APPHET mice) rescues many disease phenotypes. Thus, APP is a potential biomarker as well as therapeutic target for FXS. Hyperexcitability is a key phenotype of FXS. Herein, we determine the effects of APP levels on hyperexcitability in Fmr1KO brain slices. Fmr1KO /APPHET slices exhibit complete rescue of UP states in a neocortical hyperexcitability model and reduced duration of ictal discharges in a CA3 hippocampal model. These data demonstrate that APP plays a pivotal role in maintaining an appropriate balance of excitation and inhibition (E/I) in neural circuits. A model is proposed whereby APP acts as a rheostat in a molecular circuit that modulates hyperexcitability through mGluR5 and FMRP. Both over- and under-expression of APP in the context of the Fmr1KO increases seizure propensity suggesting that an APP rheostat maintains appropriate E/I levels but is overloaded by mGluR5-mediated excitation in the absence of FMRP. These findings are discussed in relation to novel treatment approaches to restore APP homeostasis in FXS.
Collapse
Affiliation(s)
- Cara J. Westmark
- Department of Neurology, University of Wisconsin-Madison, MadisonMadison, WI, USA
| | - Shih-Chieh Chuang
- Department of Physiology and Pharmacology, State University of New York Downstate Medical CenterBrooklyn, NY, USA
| | - Seth A. Hays
- Department of Neuroscience, University of Texas Southwestern Medical CenterDallas, TX, USA
| | - Mikolaj J. Filon
- Department of Neurology, University of Wisconsin-Madison, MadisonMadison, WI, USA
| | - Brian C. Ray
- Department of Neurology, University of Wisconsin-Madison, MadisonMadison, WI, USA
| | - Pamela R. Westmark
- Department of Medicine, University of Wisconsin-Madison, MadisonMadison, WI, USA
| | - Jay R. Gibson
- Department of Neuroscience, University of Texas Southwestern Medical CenterDallas, TX, USA
| | - Kimberly M. Huber
- Department of Neuroscience, University of Texas Southwestern Medical CenterDallas, TX, USA
| | - Robert K. S. Wong
- Department of Physiology and Pharmacology, State University of New York Downstate Medical CenterBrooklyn, NY, USA
| |
Collapse
|
81
|
Seipold L, Damme M, Prox J, Rabe B, Kasparek P, Sedlacek R, Altmeppen H, Willem M, Boland B, Glatzel M, Saftig P. Tetraspanin 3: A central endocytic membrane component regulating the expression of ADAM10, presenilin and the amyloid precursor protein. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:217-230. [PMID: 27818272 DOI: 10.1016/j.bbamcr.2016.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/28/2016] [Accepted: 11/02/2016] [Indexed: 12/31/2022]
Abstract
Despite existing knowledge about the role of the A Disintegrin and Metalloproteinase 10 (ADAM10) as the α-secretase involved in the non-amyloidogenic processing of the amyloid precursor protein (APP) and Notch signalling we have only limited information about its regulation. In this study, we have identified ADAM10 interactors using a split ubiquitin yeast two hybrid approach. Tetraspanin 3 (Tspan3), which is highly expressed in the murine brain and elevated in brains of Alzheimer´s disease (AD) patients, was identified and confirmed to bind ADAM10 by co-immunoprecipitation experiments in mammalian cells in complex with APP and the γ-secretase protease presenilin. Tspan3 expression increased the cell surface levels of its interacting partners and was mainly localized in early and late endosomes. In contrast to the previously described ADAM10-binding tetraspanins, Tspan3 did not affect the endoplasmic reticulum to plasma membrane transport of ADAM10. Heterologous Tspan3 expression significantly increased the appearance of carboxy-terminal cleavage products of ADAM10 and APP, whereas N-cadherin ectodomain shedding appeared unaffected. Inhibiting the endocytosis of Tspan3 by mutating a critical cytoplasmic tyrosine-based internalization motif led to increased surface expression of APP and ADAM10. After its downregulation in neuroblastoma cells and in brains of Tspan3-deficient mice, ADAM10 and APP levels appeared unaltered possibly due to a compensatory increase in the expression of Tspans 5 and 7, respectively. In conclusion, our data suggest that Tspan3 acts in concert with other tetraspanins as a stabilizing factor of active ADAM10, APP and the γ-secretase complex at the plasma membrane and within the endocytic pathway.
Collapse
Affiliation(s)
- Lisa Seipold
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany
| | - Markus Damme
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany
| | - Johannes Prox
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany
| | - Björn Rabe
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany
| | - Petr Kasparek
- Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, Division BIOCEV, Institute of Molecular Genetics of the CAS, v. v. i., Vestec, Czech Republic
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, Division BIOCEV, Institute of Molecular Genetics of the CAS, v. v. i., Vestec, Czech Republic
| | - Hermann Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Willem
- Biomedical Center, Ludwig-Maximilians-University, 81337 Munich, Germany
| | - Barry Boland
- Department of Pharmacology and Therapeutics, School of Medicine, University College Cork, Cork, Ireland
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paul Saftig
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany.
| |
Collapse
|
82
|
Tao H, Zhao J, Zhou X, Ma Z, Chen Y, Sun F, Cui L, Zhou H, Cai Y, Chen Y, Zhao S, Yao L, Zhao B, Li K. Promoter Variants of the ADAM10 Gene and Their Roles in Temporal Lobe Epilepsy. Front Neurol 2016; 7:108. [PMID: 27445971 PMCID: PMC4928100 DOI: 10.3389/fneur.2016.00108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/22/2016] [Indexed: 12/31/2022] Open
Abstract
Previous evidence has indicated that downregulated ADAM10 gives rise to epileptic seizures in Alzheimer's disease, and this study investigated the association of ADAM10 with temporal lobe epilepsy (TLE) from a genetic perspective. A total of 496 TLE patients and 528 healthy individuals were enrolled and genotyped for ADAM10 promoter variants (rs653765 G > A and rs514049 A > C). The alleles, genotypes, and haplotypes were then compared with clarify the association of these variants with TLE and their impacts upon age at onset, initial seizure types before treatments, and responses to drug treatments. In cohorts I, II, and I + II, the frequencies of the A allele and AA genotype at rs514049 were consistently increased in the cases compared with the controls (p = 0.020 and p = 0.009; p = 0.008 and p = 0.009; p = 0.000 and p = 0.000; q = 0.003 and q = 0.002, respectively). In contrast, the frequency of the AC haplotype (rs653765-rs514049) decreased in cohorts I + II (p = 0.013). Further analyses of the TLE patients indicated that the AA genotype functioned as a predisposing factor to drug-resistant TLE and the AC haplotype as a protective factor against generalized tonic-clonic seizures (GTCS) and drug-resistant TLE. This study is the first to demonstrate an association of the ADAM10 promoter variants with TLE. In particular, the AA genotype and AC haplotype showed their effects upon GTCS and drug-resistant TLE.
Collapse
Affiliation(s)
- Hua Tao
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China; Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jianghao Zhao
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China; Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xu Zhou
- Clinical Research Center, Guangdong Medical University , Zhanjiang, Guangdong , China
| | - Zhonghua Ma
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University , Beijing , China
| | - Ying Chen
- Department of Neurology, Central People's Hospital of Zhanjiang , Zhanjiang, Guangdong , China
| | - Fuhai Sun
- Department of Neurology, The First People's Hospital of Pingdingshan , Pingdingshan, Hebei , China
| | - Lili Cui
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University , Zhanjiang, Guangdong , China
| | - Haihong Zhou
- Department of Neurology, Affiliated Hospital of Guangdong Medical University , Zhanjiang, Guangdong , China
| | - Yujie Cai
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University , Zhanjiang, Guangdong , China
| | - Yanyan Chen
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University , Zhanjiang, Guangdong , China
| | - Shu Zhao
- Department of Neurology, Affiliated Hospital of Guangdong Medical University , Zhanjiang, Guangdong , China
| | - Lifen Yao
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University , Harbin, Heilongjiang , China
| | - Bin Zhao
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University , Zhanjiang, Guangdong , China
| | - Keshen Li
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, Guangdong, China; Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
83
|
Glatzel M, Linsenmeier L, Dohler F, Krasemann S, Puig B, Altmeppen HC. Shedding light on prion disease. Prion 2016; 9:244-56. [PMID: 26186508 DOI: 10.1080/19336896.2015.1065371] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Proteolytic processing regulates key processes in health and disease. The cellular prion protein (PrP(C)) is subject to at least 3 cleavage events, α-cleavage, β-cleavage and shedding. In contrast to α- and β-cleavage where there is an ongoing controversy on the identity of relevant proteases, the metalloprotease ADAM10 represents the only relevant PrP sheddase. Here we focus on the roles that ADAM10-mediated shedding of PrP(C) and its pathogenic isoform (PrP(Sc)) might play in regulating their physiological and pathogenic functions, respectively. As revealed by our recent study using conditional ADAM10 knockout mice (Altmeppen et al., 2015), shedding of PrP seems to be involved in key processes of prion diseases. These aspects and several open questions arising from them are discussed. Increased knowledge on this topic can shed new light on prion diseases and other neurodegenerative conditions as well.
Collapse
Affiliation(s)
- Markus Glatzel
- a Institute of Neuropathology; University Medical Center Hamburg-Eppendorf ; Hamburg , Germany
| | | | | | | | | | | |
Collapse
|
84
|
The APP Intracellular Domain Is Required for Normal Synaptic Morphology, Synaptic Plasticity, and Hippocampus-Dependent Behavior. J Neurosci 2016; 35:16018-33. [PMID: 26658856 DOI: 10.1523/jneurosci.2009-15.2015] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The amyloid precursor protein family (APP/APLPs) has essential roles for neuromuscular synapse development and for the formation and plasticity of synapses within the CNS. Despite this, it has remained unclear whether APP mediates its functions primarily as a cell surface adhesion and signaling molecule or via its numerous proteolytic cleavage products. To address these questions, we followed a genetic approach and used APPΔCT15 knockin mice lacking the last 15 amino acids of APP, including the highly conserved YENPTY protein interaction motif. To circumvent functional compensation by the closely related APLP2, these mice were bred to an APLP2-KO background to generate APPΔCT15-DM double mutants. These APPΔCT15-DM mice were partially viable and displayed defects in neuromuscular synapse morphology and function with impairments in the ability to sustain transmitter release that resulted in muscular weakness. In the CNS, we demonstrate pronounced synaptic deficits including impairments in LTP that were associated with deficits in spatial learning and memory. Thus, the APP-CT15 domain provides essential physiological functions, likely via recruitment of specific interactors. Together with the well-established role of APPsα for synaptic plasticity, this shows that multiple domains of APP, including the conserved C-terminus, mediate signals required for normal PNS and CNS physiology. In addition, we demonstrate that lack of the APP-CT15 domain strongly impairs Aβ generation in vivo, establishing the APP C-terminus as a target for Aβ-lowering strategies. SIGNIFICANCE STATEMENT Synaptic dysfunction and cognitive decline are early hallmark features of Alzheimer's disease. Thus, it is essential to elucidate the in vivo function(s) of APP at the synapse. At present, it is unknown whether APP family proteins function as cell surface receptors, or mainly via shedding of their secreted ectodomains, such as neurotrophic APPsα. Here, to dissect APP functional domains, we used APP mutant mice lacking the last 15 amino acids that were crossed onto an APLP2-KO background. These APPΔCT15-DM mice showed defects in neuromuscular morphology and function. Synaptic deficits in the CNS included impairments of synaptic plasticity, spatial learning, and memory. Collectively, this indicates that multiple APP domains, including the C-terminus, are required for normal nervous system function.
Collapse
|
85
|
Kuhn PH, Colombo AV, Schusser B, Dreymueller D, Wetzel S, Schepers U, Herber J, Ludwig A, Kremmer E, Montag D, Müller U, Schweizer M, Saftig P, Bräse S, Lichtenthaler SF. Systematic substrate identification indicates a central role for the metalloprotease ADAM10 in axon targeting and synapse function. eLife 2016; 5. [PMID: 26802628 PMCID: PMC4786429 DOI: 10.7554/elife.12748] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/22/2016] [Indexed: 12/11/2022] Open
Abstract
Metzincin metalloproteases have major roles in intercellular communication by modulating the function of membrane proteins. One of the proteases is the a-disintegrin-and-metalloprotease 10 (ADAM10) which acts as alpha-secretase of the Alzheimer's disease amyloid precursor protein. ADAM10 is also required for neuronal network functions in murine brain, but neuronal ADAM10 substrates are only partly known. With a proteomic analysis of Adam10-deficient neurons we identified 91, mostly novel ADAM10 substrate candidates, making ADAM10 a major protease for membrane proteins in the nervous system. Several novel substrates, including the neuronal cell adhesion protein NrCAM, are involved in brain development. Indeed, we detected mistargeted axons in the olfactory bulb of conditional ADAM10-/- mice, which correlate with reduced cleavage of NrCAM, NCAM and other ADAM10 substrates. In summary, the novel ADAM10 substrates provide a molecular basis for neuronal network dysfunctions in conditional ADAM10-/- mice and demonstrate a fundamental function of ADAM10 in the brain.
Collapse
Affiliation(s)
- Peer-Hendrik Kuhn
- Neuroproteomics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Institut für Pathologie und Pathologische Anatomie, Technische Universität München, Munich, Germany.,Institute for Advanced Study, Technische Universität München, Munich, Germany
| | - Alessio Vittorio Colombo
- Neuroproteomics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen, Munich, Germany
| | - Benjamin Schusser
- Department of Animal Science, Institute for Animal Physiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Daniela Dreymueller
- Institute of Pharmacology and Toxicology, Uniklinik RWTH Aachen, Aachen, Germany
| | - Sebastian Wetzel
- Institute of Biochemistry, Christian-Albrechts Universität zu Kiel, Kiel, Germany
| | - Ute Schepers
- Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Julia Herber
- Neuroproteomics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen, Munich, Germany
| | - Andreas Ludwig
- Institute of Pharmacology and Toxicology, Uniklinik RWTH Aachen, Aachen, Germany
| | - Elisabeth Kremmer
- German Research Center for Environmental Health, Institute of Molecular Tumor immunology, Helmholtz Zentrum München, Munich, Germany
| | - Dirk Montag
- Neurogenetics, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Ulrike Müller
- Department of Functional Genomics, Institute for Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Michaela Schweizer
- Service-Gruppe für Elektronenmikroskopie, Zentrum für Molekulare Neurobiologie, Hamburg, Germany
| | - Paul Saftig
- Institute of Biochemistry, Christian-Albrechts Universität zu Kiel, Kiel, Germany
| | - Stefan Bräse
- Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Stefan F Lichtenthaler
- Neuroproteomics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Institute for Advanced Study, Technische Universität München, Munich, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen, Munich, Germany.,Munich Cluster for Systems Neurology, Munich, Germany
| |
Collapse
|
86
|
Wiera G, Mozrzymas JW. Extracellular proteolysis in structural and functional plasticity of mossy fiber synapses in hippocampus. Front Cell Neurosci 2015; 9:427. [PMID: 26582976 PMCID: PMC4631828 DOI: 10.3389/fncel.2015.00427] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/09/2015] [Indexed: 02/04/2023] Open
Abstract
Brain is continuously altered in response to experience and environmental changes. One of the underlying mechanisms is synaptic plasticity, which is manifested by modification of synapse structure and function. It is becoming clear that regulated extracellular proteolysis plays a pivotal role in the structural and functional remodeling of synapses during brain development, learning and memory formation. Clearly, plasticity mechanisms may substantially differ between projections. Mossy fiber synapses onto CA3 pyramidal cells display several unique functional features, including pronounced short-term facilitation, a presynaptically expressed long-term potentiation (LTP) that is independent of NMDAR activation, and NMDA-dependent metaplasticity. Moreover, structural plasticity at mossy fiber synapses ranges from the reorganization of projection topology after hippocampus-dependent learning, through intrinsically different dynamic properties of synaptic boutons to pre- and postsynaptic structural changes accompanying LTP induction. Although concomitant functional and structural plasticity in this pathway strongly suggests a role of extracellular proteolysis, its impact only starts to be investigated in this projection. In the present report, we review the role of extracellular proteolysis in various aspects of synaptic plasticity in hippocampal mossy fiber synapses. A growing body of evidence demonstrates that among perisynaptic proteases, tissue plasminogen activator (tPA)/plasmin system, β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) and metalloproteinases play a crucial role in shaping plastic changes in this projection. We discuss recent advances and emerging hypotheses on the roles of proteases in mechanisms underlying mossy fiber target specific synaptic plasticity and memory formation.
Collapse
Affiliation(s)
- Grzegorz Wiera
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University Wroclaw, Poland ; Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical University Wroclaw, Poland
| | - Jerzy W Mozrzymas
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University Wroclaw, Poland ; Laboratory of Neuroscience, Department of Biophysics, Wroclaw Medical University Wroclaw, Poland
| |
Collapse
|
87
|
The alpha secretase ADAM10: A metalloprotease with multiple functions in the brain. Prog Neurobiol 2015; 135:1-20. [PMID: 26522965 DOI: 10.1016/j.pneurobio.2015.10.003] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/23/2015] [Accepted: 10/26/2015] [Indexed: 01/07/2023]
Abstract
Proteins belonging to the 'A Disintegrin And Metalloproteinase' (ADAM) family are membrane-anchored proteases that are able to cleave the extracellular domains of several membrane-bound proteins in a process known as 'ectodomain shedding'. In the central nervous system, ADAM10 has attracted the most attention, since it was described as the amyloid precursor protein α-secretase over ten years ago. Despite the excitement over the potential of ADAM10 as a novel drug target in Alzheimer disease, the physiological functions of ADAM10 in the brain are not yet well understood. This is largely because of the embryonic lethality of ADAM10-deficient mice, which results from the loss of cleavage and signaling of the Notch receptor, another ADAM10 substrate. However, the recent generation of conditional ADAM10-deficient mice and the identification of further ADAM10 substrates in the brain has revealed surprisingly numerous and fundamental functions of ADAM10 in the development of the embryonic brain and also in the homeostasis of adult neuronal networks. Mechanistically, ADAM10 controls these functions by utilizing unique postsynaptic substrates in the central nervous system, in particular synaptic cell adhesion molecules, such as neuroligin-1, N-cadherin, NCAM, Ephrin A2 and A5. Consequently, a dysregulation of ADAM10 activity is linked to psychiatric and neurological diseases, such as epilepsy, fragile X syndrome and Huntington disease. This review highlights the recent progress in understanding the substrates and function as well as the regulation and cell biology of ADAM10 in the central nervous system and discusses the value of ADAM10 as a drug target in brain diseases.
Collapse
|
88
|
The Association of Amyloid-β Protein Precursor With α- and β-Secretases in Mouse Cerebral Cortex Synapses Is Altered in Early Alzheimer’s Disease. Mol Neurobiol 2015; 53:5710-21. [DOI: 10.1007/s12035-015-9491-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 10/14/2015] [Indexed: 10/22/2022]
|
89
|
Pasciuto E, Ahmed T, Wahle T, Gardoni F, D’Andrea L, Pacini L, Jacquemont S, Tassone F, Balschun D, Dotti C, Callaerts-Vegh Z, D’Hooge R, Müller U, Di Luca M, De Strooper B, Bagni C. Dysregulated ADAM10-Mediated Processing of APP during a Critical Time Window Leads to Synaptic Deficits in Fragile X Syndrome. Neuron 2015; 87:382-98. [DOI: 10.1016/j.neuron.2015.06.032] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 04/23/2015] [Accepted: 06/23/2015] [Indexed: 10/23/2022]
|
90
|
CART treatment improves memory and synaptic structure in APP/PS1 mice. Sci Rep 2015; 5:10224. [PMID: 25959573 PMCID: PMC4426675 DOI: 10.1038/srep10224] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 04/07/2015] [Indexed: 01/11/2023] Open
Abstract
Major characteristics of Alzheimer’s disease (AD) include deposits of β-amyloid (Aβ) peptide in the brain, loss of synapses, and cognitive dysfunction. Cocaine- and amphetamine-regulated transcript (CART) has recently been reported to attenuate Aβ-induced toxicity. In this study, CART localization in APP/PS1 mice was characterized and the protective effects of exogenous CART treatment were examined. Compared to age-matched wild type mice, 8-month-old APP/PS1 mice had significantly greater CART immunoreactivity in the hippocampus and cortex. A strikingly similar pattern of Aβ plaque-associated CART immunoreactivity was observed in the cortex of AD cases. Treatment of APP/PS1 mice with exogenous CART ameliorated memory deficits; this effect was associated with improvements in synaptic ultrastructure and long-term potentiation, but not a reduction of the Aβ plaques. Exogenous CART treatment in APP/PS1 mice prevented depolarization of the mitochondrial membrane and stimulated mitochondrial complex I and II activities, resulting in an increase in ATP levels. CART treatment of APP/PS1 mice also reduced reactive oxygen species and 4-hydroxynonenal, and mitigated oxidative DNA damage. In summary, CART treatment reduced multiple neuropathological measures and improved memory in APP/PS1 mice, and may therefore be a promising and novel therapy for AD.
Collapse
|
91
|
Saftig P, Bovolenta P. Proteases at work: cues for understanding neural development and degeneration. Front Mol Neurosci 2015; 8:13. [PMID: 25999813 PMCID: PMC4419857 DOI: 10.3389/fnmol.2015.00013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/21/2015] [Indexed: 12/19/2022] Open
Abstract
Proteolytical processing of membrane bound molecules is a fundamental mechanism for the degradation of these proteins as well as for controlling cell-to-cell communication, which is at the basis of tissue development and homeostasis. Members of families of metalloproteinases and intra-membrane proteases are major effectors of these events. A recent workshop in Baeza, Spain, was devoted to discuss how this mechanism coordinates brain development and how its dysfunction leads to brain pathologies. Herein we summarize the findings presented during this workshop, which illuminate the role of metalloproteinases, including matrix metalloproteinase, A Disintegrin and Metalloproteinase-proteases and intra-membrane proteases, in the regulation of neurogenesis, axon guidance, and synaptogenesis as well as in neurodegeneration. Indeed, there is increasing evidence that proteolysis at the membrane is directly linked to neuropathologies such as Alzheimer Disease and autism spectrum or prion disorders. These proteolytic events are tightly regulated and we are just at the beginning of understanding how these processes could be exploited to design therapeutic treatments aimed at alleviating psychiatric and neurodegenerative pathologies.
Collapse
Affiliation(s)
- Paul Saftig
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Kiel Germany
| | - Paola Bovolenta
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Madrid Spain ; Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid Spain
| |
Collapse
|
92
|
Altmeppen HC, Prox J, Krasemann S, Puig B, Kruszewski K, Dohler F, Bernreuther C, Hoxha A, Linsenmeier L, Sikorska B, Liberski PP, Bartsch U, Saftig P, Glatzel M. The sheddase ADAM10 is a potent modulator of prion disease. eLife 2015; 4. [PMID: 25654651 PMCID: PMC4346534 DOI: 10.7554/elife.04260] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 02/04/2015] [Indexed: 01/10/2023] Open
Abstract
The prion protein (PrPC) is highly expressed in the nervous system and critically involved in prion diseases where it misfolds into pathogenic PrPSc. Moreover, it has been suggested as a receptor mediating neurotoxicity in common neurodegenerative proteinopathies such as Alzheimer's disease. PrPC is shed at the plasma membrane by the metalloprotease ADAM10, yet the impact of this on prion disease remains enigmatic. Employing conditional knockout mice, we show that depletion of ADAM10 in forebrain neurons leads to posttranslational increase of PrPC levels. Upon prion infection of these mice, clinical, biochemical, and morphological data reveal that lack of ADAM10 significantly reduces incubation times and increases PrPSc formation. In contrast, spatiotemporal analysis indicates that absence of shedding impairs spread of prion pathology. Our data support a dual role for ADAM10-mediated shedding and highlight the role of proteolytic processing in prion disease. DOI:http://dx.doi.org/10.7554/eLife.04260.001 Prion proteins are anchored to the surface of brain cells called neurons. Normally, prion proteins are folded into a specific three-dimensional shape that enables them to carry out their normal roles in the brain. However, they can be misfolded into a different shape known as PrPSc, which can cause Creutzfeldt-Jakob disease and other serious conditions that affect brain function and ultimately lead to death. The PrPSc proteins can force normal prion proteins to change into the PrPSc form, so that over time this form accumulates in the brain. They are essential components of infectious particles termed ‘prions’ and this is why prion diseases are infectious: if prions from one individual enter the brain of another individual they can cause disease in the recipient. The UK outbreak of variant Creutzfeldt-Jakob disease in humans in the 1990s is thought to be due to the consumption of meat from cattle with a prion disease known as mad cow disease. An enzyme called ADAM10 can cut normal prion proteins from the surface of neurons. However, it is not clear whether ADAM10 can also target the PrPSc proteins and what impact this may have on the development of prion diseases. Here, Altmeppen et al. studied mutant mice that were missing ADAM10 in neurons in the front portion of their brain. These mice had a higher number of normal prion proteins on the surface of their neurons than normal mice did. When mice missing ADAM10 were infected with prions, more PrPSc accumulated in their brain and disease symptoms developed sooner than when normal mice were infected. This supports the view that mice with higher numbers of prion proteins are more vulnerable to prion disease. However, disease symptoms did not spread as quickly to other parts of the brain in the mice missing ADAM10. This suggests that by releasing prion proteins from the surface of neurons, ADAM10 helps PrPSc proteins to spread around the brain. Recently, it has been suggested that prion proteins may also play a role in Alzheimer's disease and other neurodegenerative conditions. Therefore, Altmeppen et al.'s findings may help to develop new therapies for other forms of dementia. The next challenge is to understand the precise details of how ADAM10 works. DOI:http://dx.doi.org/10.7554/eLife.04260.002
Collapse
Affiliation(s)
- Hermann C Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Prox
- Institute of Biochemistry, Christian Albrechts University, Kiel, Germany
| | - Susanne Krasemann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Berta Puig
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Kruszewski
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Dohler
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Bernreuther
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ana Hoxha
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Luise Linsenmeier
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Beata Sikorska
- Department of Molecular Pathology and Neuropathology, Medical University Lodz, Lodz, Poland
| | - Pawel P Liberski
- Department of Molecular Pathology and Neuropathology, Medical University Lodz, Lodz, Poland
| | - Udo Bartsch
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paul Saftig
- Institute of Biochemistry, Christian Albrechts University, Kiel, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
93
|
Hick M, Herrmann U, Weyer SW, Mallm JP, Tschäpe JA, Borgers M, Mercken M, Roth FC, Draguhn A, Slomianka L, Wolfer DP, Korte M, Müller UC. Acute function of secreted amyloid precursor protein fragment APPsα in synaptic plasticity. Acta Neuropathol 2015; 129:21-37. [PMID: 25432317 DOI: 10.1007/s00401-014-1368-x] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/11/2014] [Accepted: 11/12/2014] [Indexed: 11/24/2022]
Abstract
The key role of APP in the pathogenesis of Alzheimer disease is well established. However, postnatal lethality of double knockout mice has so far precluded the analysis of the physiological functions of APP and the APLPs in the brain. Previously, APP family proteins have been implicated in synaptic adhesion, and analysis of the neuromuscular junction of constitutive APP/APLP2 mutant mice showed deficits in synaptic morphology and neuromuscular transmission. Here, we generated animals with a conditional APP/APLP2 double knockout (cDKO) in excitatory forebrain neurons using NexCre mice. Electrophysiological recordings of adult NexCre cDKOs indicated a strong synaptic phenotype with pronounced deficits in the induction and maintenance of hippocampal LTP and impairments in paired pulse facilitation, indicating a possible presynaptic deficit. These deficits were also reflected in impairments in nesting behavior and hippocampus-dependent learning and memory tasks, including deficits in Morris water maze and radial maze performance. Moreover, while no gross alterations of brain morphology were detectable in NexCre cDKO mice, quantitative analysis of adult hippocampal CA1 neurons revealed prominent reductions in total neurite length, dendritic branching, reduced spine density and reduced spine head volume. Strikingly, the impairment of LTP could be selectively rescued by acute application of exogenous recombinant APPsα, but not APPsβ, indicating a crucial role for APPsα to support synaptic plasticity of mature hippocampal synapses on a rapid time scale. Collectively, our analysis reveals an essential role of APP family proteins in excitatory principal neurons for mediating normal dendritic architecture, spine density and morphology, synaptic plasticity and cognition.
Collapse
Affiliation(s)
- Meike Hick
- Department of Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Stahl R, Schilling S, Soba P, Rupp C, Hartmann T, Wagner K, Merdes G, Eggert S, Kins S. Shedding of APP limits its synaptogenic activity and cell adhesion properties. Front Cell Neurosci 2014; 8:410. [PMID: 25520622 PMCID: PMC4253958 DOI: 10.3389/fncel.2014.00410] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 11/11/2014] [Indexed: 01/05/2023] Open
Abstract
The amyloid precursor protein (APP) plays a central role in Alzheimer's disease (AD) and has essential synapse promoting functions. Synaptogenic activity as well as cell adhesion properties of APP presumably depend on trans-cellular dimerization via its extracellular domain. Since neuronal APP is extensively processed by secretases, it raises the question if APP shedding affects its cell adhesion and synaptogenic properties. We show that inhibition of APP shedding using cleavage deficient forms of APP or a dominant negative α-secretase strongly enhanced its cell adhesion and synaptogenic activity suggesting that synapse promoting function of APP is tightly regulated by α-secretase mediated processing, similar to other trans-cellular synaptic adhesion molecules.
Collapse
Affiliation(s)
- Ronny Stahl
- Center of Molecular Biology ZMBH, University of Heidelberg Heidelberg, Germany ; Department of Physiological Genomics, Institute of Physiology, Ludwig-Maximilians University Munich Munich, Germany
| | - Sandra Schilling
- Department of Human Biology and Human Genetics, Technical University of Kaiserslautern Kaiserslautern, Germany
| | - Peter Soba
- Center of Molecular Biology ZMBH, University of Heidelberg Heidelberg, Germany ; Center for Molecular Neurobiology (ZMNH), University of Hamburg Hamburg, Germany
| | - Carsten Rupp
- Department of Human Biology and Human Genetics, Technical University of Kaiserslautern Kaiserslautern, Germany
| | - Tobias Hartmann
- Deutsches Institut für DemenzPrävention, Experimental Neurology, Saarland University Homburg/Saar, Germany
| | - Katja Wagner
- Center of Molecular Biology ZMBH, University of Heidelberg Heidelberg, Germany ; Department of Human Biology and Human Genetics, Technical University of Kaiserslautern Kaiserslautern, Germany
| | - Gunter Merdes
- Center of Molecular Biology ZMBH, University of Heidelberg Heidelberg, Germany ; Department of Biosystems Science and Engineering, ETH Zürich Basel, Switzerland
| | - Simone Eggert
- Department of Human Biology and Human Genetics, Technical University of Kaiserslautern Kaiserslautern, Germany
| | - Stefan Kins
- Center of Molecular Biology ZMBH, University of Heidelberg Heidelberg, Germany ; Department of Human Biology and Human Genetics, Technical University of Kaiserslautern Kaiserslautern, Germany ; Deutsches Institut für DemenzPrävention, Experimental Neurology, Saarland University Homburg/Saar, Germany
| |
Collapse
|
95
|
Oligodendrocyte precursor cells modulate the neuronal network by activity-dependent ectodomain cleavage of glial NG2. PLoS Biol 2014; 12:e1001993. [PMID: 25387269 PMCID: PMC4227637 DOI: 10.1371/journal.pbio.1001993] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 09/29/2014] [Indexed: 01/09/2023] Open
Abstract
This study shows that the activity of neurons can trigger shedding of a protein, NG2, from the surface of oligodendrocyte precursor cells; this protein in turn modulates synaptic transmission, revealing a two-way conversation between neurons and glia. The role of glia in modulating neuronal network activity is an important question. Oligodendrocyte precursor cells (OPC) characteristically express the transmembrane proteoglycan nerve-glia antigen 2 (NG2) and are unique glial cells receiving synaptic input from neurons. The development of NG2+ OPC into myelinating oligodendrocytes has been well studied, yet the retention of a large population of synapse-bearing OPC in the adult brain poses the question as to additional functional roles of OPC in the neuronal network. Here we report that activity-dependent processing of NG2 by OPC-expressed secretases functionally regulates the neuronal network. NG2 cleavage by the α-secretase ADAM10 yields an ectodomain present in the extracellular matrix and a C-terminal fragment that is subsequently further processed by the γ-secretase to release an intracellular domain. ADAM10-dependent NG2 ectodomain cleavage and release (shedding) in acute brain slices or isolated OPC is increased by distinct activity-increasing stimuli. Lack of NG2 expression in OPC (NG2-knockout mice), or pharmacological inhibition of NG2 ectodomain shedding in wild-type OPC, results in a striking reduction of N-methyl-D-aspartate (NMDA) receptor-dependent long-term potentiation (LTP) in pyramidal neurons of the somatosensory cortex and alterations in the subunit composition of their α-amino-3-hydroxy-5-methyl-4-isoxazolepr opionicacid (AMPA) receptors. In NG2-knockout mice these neurons exhibit diminished AMPA and NMDA receptor-dependent current amplitudes; strikingly AMPA receptor currents can be rescued by application of conserved LNS protein domains of the NG2 ectodomain. Furthermore, NG2-knockout mice exhibit altered behavior in tests measuring sensorimotor function. These results demonstrate for the first time a bidirectional cross-talk between OPC and the surrounding neuronal network and demonstrate a novel physiological role for OPC in regulating information processing at neuronal synapses. Although glial cells substantially outnumber neurons in the mammalian brain, much remains to be discovered regarding their functions. Among glial cells, oligodendrocyte precursors differentiate into oligodendrocytes, whose function is to enwrap nerves with myelin to ensure proper impulse conduction. However, oligodendrocyte precursors also comprise a stable population in all major regions of the adult brain, making up around 5% of the total number of neurons and glia. Synapses are classically formed between neurons. Nonetheless, oligodendrocyte precursors are unique among glial cells in that they receive direct synaptic input from different types of neurons; whether OPC also send signals to neurons is still unknown. Here we show a bidirectional communication between neurons and oligodendrocyte precursors: neuronal activity regulates the cleavage of a glial membrane protein and the release of an extracellular domain that in turn modulates synaptic transmission between neurons. Our data thus show that a particular subtype of glial cells, oligodendrocyte precursors, functionally integrate into the neuronal network and we link this bidirectional signaling to mouse behavior and disease.
Collapse
|
96
|
Liang H, Zhang Y, Shi X, Wei T, Lou J. Role of Notch-1 signaling pathway in PC12 cell apoptosis induced by amyloid beta-peptide (25-35). Neural Regen Res 2014; 9:1297-302. [PMID: 25221582 PMCID: PMC4160856 DOI: 10.4103/1673-5374.137577] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2014] [Indexed: 11/12/2022] Open
Abstract
Recent studies have demonstrated that Notch-1 expression is increased in the hippocampus of Alzheimer's disease patients. We speculate that Notch-1 signaling may be involved in PC12 cell apoptosis induced by amyloid beta-peptide (25–35) (Aβ25–35). In the present study, PC12 cells were cultured with different doses (0, 0.1, 1.0, 10 and 100 nmol/L) of N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester, a Notch-1 signaling pathway inhibitor, for 30 minutes. Then cultured cells were induced with Aβ25–35 for 48 hours. Pretreatment of PC12 cells with high doses of N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (> 10 nmol/L) prolonged the survival of PC12 cells after Aβ25–35 induction, decreased the expression of apoptosis-related proteins caspase-3, -8, -9, increased the activity of oxidative stress-related superoxide dismutase and catalase, inhibited the production of active oxygen, and reduced nuclear factor kappa B expression. This study indicates that the Notch-1 signaling pathway plays a pivotal role in Aβ25–35-induced PC12 apoptosis.
Collapse
Affiliation(s)
- Huimin Liang
- Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China ; Huaihe Hospital of Henan University, Kaifeng, Henan Province, China
| | - Yaozhou Zhang
- Department of Biotechnology, Xinyang Agricultural College, Xinyang, Henan Province, China
| | - Xiaoyan Shi
- Pharmaceutical College of Henan University, Zhengzhou, Henan Province, China
| | - Tianxiang Wei
- Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jiyu Lou
- Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
97
|
Shedding the epilepsy comorbidity in Alzheimer's disease. Epilepsy Curr 2014; 14:211-2. [PMID: 25170322 DOI: 10.5698/1535-7597-14.4.211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
98
|
Becker-Pauly C, Broder C, Prox J, Koudelka T, Tholey A. Mapping orphan proteases by proteomics: Meprin metalloproteases deciphered as potential therapeutic targets. Proteomics Clin Appl 2014; 8:382-8. [DOI: 10.1002/prca.201300079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/14/2013] [Accepted: 11/18/2013] [Indexed: 01/02/2023]
Affiliation(s)
- Christoph Becker-Pauly
- Institute of Biochemistry; Unit for Degradomics of the Protease Web; University of Kiel; Kiel Germany
| | - Claudia Broder
- Institute of Biochemistry; Unit for Degradomics of the Protease Web; University of Kiel; Kiel Germany
| | - Johannes Prox
- Institute of Biochemistry; Unit for Degradomics of the Protease Web; University of Kiel; Kiel Germany
| | - Tomas Koudelka
- AG Systematic Proteome Research & Bioanalytics - Institute for Experimental Medicine; Christian-Albrechts-Universität; Kiel Germany
| | - Andreas Tholey
- AG Systematic Proteome Research & Bioanalytics - Institute for Experimental Medicine; Christian-Albrechts-Universität; Kiel Germany
| |
Collapse
|