51
|
Lee SB, Lee HW, Singh TD, Li Y, Kim SK, Cho SJ, Lee SW, Jeong SY, Ahn BC, Choi S, Lee IK, Lim DK, Lee J, Jeon YH. Visualization of Macrophage Recruitment to Inflammation Lesions using Highly Sensitive and Stable Radionuclide-Embedded Gold Nanoparticles as a Nuclear Bio-Imaging Platform. Theranostics 2017; 7:926-934. [PMID: 28382164 PMCID: PMC5381254 DOI: 10.7150/thno.17131] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 12/08/2016] [Indexed: 12/20/2022] Open
Abstract
Reliable and sensitive imaging tools are required to track macrophage migration and provide a better understating of their biological roles in various diseases. Here, we demonstrate the possibility of radioactive iodide-embedded gold nanoparticles (RIe-AuNPs) as a cell tracker for nuclear medicine imaging. To demonstrate this utility, we monitored macrophage migration to carrageenan-induced sites of acute inflammation in living subjects and visualized the effects of anti-inflammatory agents on this process. Macrophage labeling with RIe-AuNPs did not alter their biological functions such as cell proliferation, phenotype marker expression, or phagocytic activity. In vivo imaging with positron-emission tomography revealed the migration of labeled macrophages to carrageenan-induced inflammation lesions 3 h after transfer, with highest recruitment at 6 h and a slight decline of radioactive signal at 24 h; these findings were highly consistent with the data of a bio-distribution study. Treatment with dexamethasone (an anti-inflammation drug) or GSK5182 (an ERRγ inverse agonist) hindered macrophage recruitment to the inflamed sites. Our findings suggest that a cell tracking strategy utilizing RIe-AuNPs will likely be highly useful in research related to macrophage-related disease and cell-based therapies.
Collapse
|
52
|
Tanida T, Matsuda KI, Yamada S, Kawata M, Tanaka M. Immunohistochemical profiling of estrogen-related receptor gamma in rat brain and colocalization with estrogen receptor alpha in the preoptic area. Brain Res 2017; 1659:71-80. [PMID: 28119057 DOI: 10.1016/j.brainres.2017.01.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/19/2016] [Accepted: 01/18/2017] [Indexed: 01/03/2023]
Abstract
Estrogen-related receptor (ERR) is a member of the nuclear receptor superfamily that has strong homology with estrogen receptor (ER) α. Despite the lack of endogenous ligands, ERR serves as transcription factors through their constitutively active structure with or without interaction with ERα. Among the three subtypes of ERR (α, β, and γ), ERRγ is highly expressed in brain, but the distribution of ERRγ is poorly characterized. Therefore, we investigated ERRγ immunoreactivity throughout the rostro-caudal axis in rat brain. Immunohistochemistry revealed localization of ERRγ protein in the cell nucleus, and a ubiquitous distribution of ERRγ in brain regions including the olfactory bulb, cerebrum, brain stem, and cerebellum. Selective intense immunoreactivity was observed in the reticular thalamic nucleus, zona incerta, circular nucleus, interpeduncular nucleus, pontine nucleus, and parasolitary nucleus. Most ERRγ-immunoreactive (ir) regions were also positive for ERα and/or ERβ, which suggests that ERRγ is involved in modulation of estrogen signaling in adult rat brain. Double immunofluorescence demonstrated colocalization of ERRγ with ERα within the anteroventral periventricular nucleus of the preoptic area (AVPV) and medial preoptic nucleus (MPO), which are major target sites for estrogen action. The results of this study suggest that ERRγ function in the brain is affected by estrogens through an interaction with ERα. The findings also provide basic information on brain region-specific ERRγ function.
Collapse
Affiliation(s)
- Takashi Tanida
- Department of Anatomy and Neurobiology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Ken Ichi Matsuda
- Department of Anatomy and Neurobiology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Shunji Yamada
- Department of Anatomy and Neurobiology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Mitsuhiro Kawata
- Department of Anatomy and Neurobiology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; Department of Physical Therapy, School of Health Sciences, Bukkyo University, 96, Kitahananobo-cho, Murasakino, Kita-ku, Kyoto 603-8301, Japan
| | - Masaki Tanaka
- Department of Anatomy and Neurobiology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| |
Collapse
|
53
|
Kim J, Woo SY, Im CY, Yoo EK, Lee S, Kim HJ, Hwang HJ, Cho JH, Lee WS, Yoon H, Kim S, Kwon OB, Hwang H, Kim KH, Jeon JH, Singh TD, Kim SW, Hwang SY, Choi HS, Lee IK, Kim SH, Jeon YH, Chin J, Cho SJ. Insights of a Lead Optimization Study and Biological Evaluation of Novel 4-Hydroxytamoxifen Analogs as Estrogen-Related Receptor γ (ERRγ) Inverse Agonists. J Med Chem 2016; 59:10209-10227. [DOI: 10.1021/acs.jmedchem.6b01204] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jina Kim
- New
Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea
| | - Seo Yeon Woo
- New
Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea
| | - Chun Young Im
- New
Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea
| | - Eun Kyung Yoo
- Leading-Edge
Research Center for Drug Discovery and Development for Diabetes and
Metabolic Disease, Kyungpook National University Hospital, Daegu 41404, Korea
| | - Seungmi Lee
- Leading-Edge
Research Center for Drug Discovery and Development for Diabetes and
Metabolic Disease, Kyungpook National University Hospital, Daegu 41404, Korea
| | - Hyo-Ji Kim
- New
Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea
| | - Hee-Jong Hwang
- New
Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea
| | - Joong-heui Cho
- New
Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea
| | - Won Seok Lee
- New
Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea
| | - Heeseok Yoon
- New
Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea
| | - Shinae Kim
- New
Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea
| | - Oh-bin Kwon
- New
Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea
| | - Hayoung Hwang
- New
Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea
| | - Kyung-Hee Kim
- New
Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea
| | - Jae-Han Jeon
- Leading-Edge
Research Center for Drug Discovery and Development for Diabetes and
Metabolic Disease, Kyungpook National University Hospital, Daegu 41404, Korea
- Department
of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Thoudam Debraj Singh
- Department
of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Sang Wook Kim
- Korea Bio-Medical Science Institute, Seoul 06106, Republic of Korea
| | - Sung Yeoun Hwang
- Korea Bio-Medical Science Institute, Seoul 06106, Republic of Korea
| | - Hueng-Sik Choi
- National
Creative Research Initiatives Center for Nuclear Receptor Signals
and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - In-Kyu Lee
- Leading-Edge
Research Center for Drug Discovery and Development for Diabetes and
Metabolic Disease, Kyungpook National University Hospital, Daegu 41404, Korea
- Department
of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Seong Heon Kim
- New
Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea
| | - Yong Hyun Jeon
- Leading-Edge
Research Center for Drug Discovery and Development for Diabetes and
Metabolic Disease, Kyungpook National University Hospital, Daegu 41404, Korea
- Department
of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Jungwook Chin
- New
Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea
| | - Sung Jin Cho
- New
Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea
- Leading-Edge
Research Center for Drug Discovery and Development for Diabetes and
Metabolic Disease, Kyungpook National University Hospital, Daegu 41404, Korea
| |
Collapse
|
54
|
Jin HS, Kim TS, Jo EK. Emerging roles of orphan nuclear receptors in regulation of innate immunity. Arch Pharm Res 2016; 39:1491-1502. [PMID: 27699647 DOI: 10.1007/s12272-016-0841-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/23/2016] [Indexed: 01/25/2023]
Abstract
Innate immunity constitutes the first line of defense against pathogenic and dangerous insults. However, it is a double-edged sword, as it functions in both clearance of infection and inflammatory damage. It is therefore important that innate immune responses are tightly controlled to prevent harmful excessive inflammation. Nuclear receptors (NRs) are a family of transcription factors that play critical roles in various physiological responses. Orphan NRs are a subset of NRs for which the ligands and functions are unclear. Accumulating evidence has revealed that orphan NRs play essential roles in innate immune responses to prevent pathogenic inflammatory responses and to enhance antimicrobial host defenses. In this review, we describe current knowledge on the roles and mechanisms of orphan NRs in the regulation of innate immune responses. Discovery of new functions of orphan NRs would facilitate development of novel preventive and therapeutic strategies against human inflammatory diseases.
Collapse
Affiliation(s)
- Hyo Sun Jin
- Department of Microbiology, Department of Medical Science, Chungnam National University School of Medicine, 6 Munhwa-dong, Jungku, Daejeon, 301-747, South Korea
| | - Tae Sung Kim
- Department of Microbiology, Department of Medical Science, Chungnam National University School of Medicine, 6 Munhwa-dong, Jungku, Daejeon, 301-747, South Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Department of Medical Science, Chungnam National University School of Medicine, 6 Munhwa-dong, Jungku, Daejeon, 301-747, South Korea.
| |
Collapse
|
55
|
Carnesecchi J, Vanacker JM. Estrogen-Related Receptors and the control of bone cell fate. Mol Cell Endocrinol 2016; 432:37-43. [PMID: 26206717 DOI: 10.1016/j.mce.2015.07.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 06/23/2015] [Accepted: 07/17/2015] [Indexed: 11/17/2022]
Abstract
Bone loss is naturally occurring in aging males and females and exacerbated in the latter after menopause, altogether leading to cumulative skeleton fragility and increased fracture risk. Two types of therapeutic strategies can be envisioned to counteract age- or menopause-associated bone loss, aiming at either reducing bone resorption exerted by osteoclasts or, alternatively, promoting bone formation by osteoblasts. We here summarize data suggesting that inhibition of the Estrogen-Related Receptors α and/or γ could promote bone formation and compensate for bone loss induced by ageing or estrogen-deficiency.
Collapse
Affiliation(s)
- Julie Carnesecchi
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon I, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Jean-Marc Vanacker
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon I, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France.
| |
Collapse
|
56
|
Kim J, Chin J, Im CY, Yoo EK, Woo S, Hwang HJ, Cho JH, Seo KA, Song J, Hwang H, Kim KH, Kim ND, Yoon SK, Jeon JH, Yoon SY, Jeon YH, Choi HS, Lee IK, Kim SH, Cho SJ. Synthesis and biological evaluation of novel 4-hydroxytamoxifen analogs as estrogen-related receptor gamma inverse agonists. Eur J Med Chem 2016; 120:338-52. [DOI: 10.1016/j.ejmech.2016.04.076] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/27/2016] [Accepted: 04/28/2016] [Indexed: 01/25/2023]
|
57
|
Molecular cloning, expression, and stress response of the estrogen-related receptor gene (AccERR) from Apis cerana cerana. Naturwissenschaften 2016; 103:24. [PMID: 26922780 DOI: 10.1007/s00114-016-1340-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/24/2016] [Accepted: 02/01/2016] [Indexed: 10/22/2022]
Abstract
Estrogen-related receptor (ERR), which belongs to the nuclear receptor superfamily, has been implicated in diverse physiological processes involving the estrogen signaling pathway. However, little information is available on ERR in Apis cerana cerana. In this report, we isolated the ERR gene and investigated its involvement in antioxidant defense. Quantitative real-time polymerase chain reaction (qPCR) revealed that the highest mRNA expression occurred in eggs during different developmental stages. The expression levels of AccERR were highest in the muscle, followed by the rectum. The predicted transcription factor binding sites in the promoter of AccERR suggested that AccERR potentially functions in early development and in environmental stress responses. The expression of AccERR was induced by cold (4 °C), heat (42 °C), ultraviolet light (UV), HgCl2, and various types of pesticides (phoxim, deltamethrin, triadimefon, and cyhalothrin). Western blot was used to measure the expression levels of AccERR protein. These data suggested that AccERR might play a vital role in abiotic stress responses.
Collapse
|
58
|
Kim J, Im CY, Yoo EK, Ma MJ, Kim SB, Hong E, Chin J, Hwang H, Lee S, Kim ND, Jeon JH, Lee IK, Jeon YH, Choi HS, Kim SH, Cho SJ. Identification of Selective ERRγ Inverse Agonists. Molecules 2016; 21:80. [PMID: 26771593 PMCID: PMC6273807 DOI: 10.3390/molecules21010080] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/05/2016] [Accepted: 01/07/2016] [Indexed: 01/14/2023] Open
Abstract
GSK5182 (4) is currently one of the lead compounds for the development of estrogen-related receptor gamma (ERRγ) inverse agonists. Here, we report the design, synthesis, pharmacological and in vitro absorption, distribution, metabolism, excretion, toxicity (ADMET) properties of a series of compounds related to 4. Starting from 4, a series of analogs were structurally modified and their ERRγ inverse agonist activity was measured. A key pharmacophore feature of this novel class of ligands is the introduction of a heterocyclic group for A-ring substitution in the core scaffold. Among the tested compounds, several of them are potent ERRγ inverse agonists as determined by binding and functional assays. The most promising compound, 15g, had excellent binding selectivity over related subtypes (IC50 = 0.44, >10, >10, and 10 μM at the ERRγ, ERRα, ERRβ, and ERα subtypes, respectively). Compound 15g also resulted in 95% transcriptional repression at a concentration of 10 μM, while still maintaining an acceptable in vitro ADMET profile. This novel class of ERRγ inverse agonists shows promise in the development of drugs targeting ERRγ-related diseases.
Collapse
Affiliation(s)
- Jina Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea.
| | - Chun Young Im
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea.
| | - Eun Kyung Yoo
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu 41404, Korea.
| | - Min Jung Ma
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea.
| | - Sang-Bum Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea.
| | - Eunmi Hong
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea.
| | - Jungwook Chin
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea.
| | - Hayoung Hwang
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea.
| | - Sungwoo Lee
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea.
| | - Nam Doo Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea.
| | - Jae-Han Jeon
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu 41404, Korea.
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea.
| | - In-Kyu Lee
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu 41404, Korea.
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea.
| | - Yong Hyun Jeon
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea.
| | - Hueng-Sik Choi
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea.
| | - Seong Heon Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea.
| | - Sung Jin Cho
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea.
| |
Collapse
|
59
|
Tiwari A, Swamy S, Gopinath KS, Kumar A. Genomic amplification upregulates estrogen-related receptor alpha and its depletion inhibits oral squamous cell carcinoma tumors in vivo. Sci Rep 2015; 5:17621. [PMID: 26639757 PMCID: PMC4671026 DOI: 10.1038/srep17621] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 11/03/2015] [Indexed: 12/12/2022] Open
Abstract
The ESRRA gene encodes a transcription factor and regulates several genes, such as WNT11 and OPN, involved in tumorigenesis. It is upregulated in several cancers, including OSCC. We have previously shown that the tumor suppressor miR-125a targets ESRRA, and its downregulation causes upregulation of ESRRA in OSCC. Upregulation of ESRRA in the absence of downregulation of miR-125a in a subset of OSCC samples suggests the involvement of an alternative mechanism. Using TaqMan(®) copy number assay, here we report for the first time that the genomic amplification of ESRRA causes its upregulation in a subset of OSCC samples. Ectopic overexpression of ESRRA led to accelerated cell proliferation, anchorage-independent cell growth and invasion, and inhibited apoptosis. Whereas, knockdown of ESRRA expression by siRNA led to reduced cell proliferation, anchorage-independent cell growth and invasion, and accelerated apoptosis. Furthermore, the delivery of a synthetic biostable ESRRA siRNA to OSCC cells resulted in regression of xenografts in nude mice. Thus, the genomic amplification of ESRRA is another novel mechanism for its upregulation in OSCC. Based on our in vitro and in vivo experiments, we suggest that targeting ESRRA by siRNA could be a novel therapeutic strategy for OSCC and other cancers.
Collapse
Affiliation(s)
- Ankana Tiwari
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Shivananda Swamy
- Department of Surgery, Bangalore Institute of Oncology, Bangalore 560027, India
| | | | - Arun Kumar
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
60
|
Lagerstedt M, Huotari-Orava R, Nyberg R, Mäenpää JU, Snellman E, Laasanen SL. Reduction in ERRα is associated with lichen sclerosus and vulvar squamous cell carcinoma. Gynecol Oncol 2015; 139:536-40. [PMID: 26499936 DOI: 10.1016/j.ygyno.2015.10.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 10/16/2015] [Accepted: 10/18/2015] [Indexed: 02/07/2023]
Abstract
OBJECTIVE ERRs (estrogen-related receptors) regulate energy metabolism, the cell cycle and inflammatory processes in both normal and cancer cells. Chronic inflammation induced by lichen sclerosus (LS) or human papilloma virus (HPV) precedes vulvar squamous cell carcinoma (vulvar SCC). We investigated the expression of ERRα, ERRβ and ERRγ in normal vulvar skin, LS as well as LS-dependent and LS-independent/HPV-related vulvar SCC. METHODS A total of 203 samples were analyzed for ERRα, ERRβ and ERRγ by using immunohistochemistry. These included 37 normal vulvar skin samples, 110 LS samples, 6 vulvar intraepithelial neoplasia (VIN) samples and 50 vulvar SCC samples. RESULTS A substantial reduction in or disappearance of ERRα was detected in all vulvar SCC samples. A total of 79% of childhood-onset LS and 51% of adulthood-onset LS lesions showed decreases in ERRα staining. A gradual reduction in ERRα cytoplasmic staining was observed from healthy vulvar skin to precursor lesions and further to SCC. Nuclear ERRα staining was observed in 8/33 (24%) LS-dependent and 10/17 (59%) LS-independent SCC samples. CONCLUSIONS ERRα, a key regulator of cell energy metabolism, may play a role in the pathogenesis of both LS and vulvar SCC.
Collapse
Affiliation(s)
- M Lagerstedt
- Department of Dermatology, Tampere University Hospital, Finland; School of Medicine, University of Tampere, Finland.
| | - R Huotari-Orava
- School of Medicine, University of Tampere, Finland; Fimlab Laboratories, Tampere, Finland
| | - R Nyberg
- Department of Obstetrics and Gynecology, Tampere University Hospital, Finland
| | - J U Mäenpää
- School of Medicine, University of Tampere, Finland; Department of Obstetrics and Gynecology, Tampere University Hospital, Finland
| | - E Snellman
- Department of Dermatology, Tampere University Hospital, Finland; School of Medicine, University of Tampere, Finland
| | - S-L Laasanen
- Department of Dermatology, Tampere University Hospital, Finland
| |
Collapse
|
61
|
Singh TD, Jeong SY, Lee SW, Ha JH, Lee IK, Kim SH, Kim J, Cho SJ, Ahn BC, Lee J, Jeon YH. Inverse Agonist of Estrogen-Related Receptor γ Enhances Sodium Iodide Symporter Function Through Mitogen-Activated Protein Kinase Signaling in Anaplastic Thyroid Cancer Cells. J Nucl Med 2015; 56:1690-6. [PMID: 26338896 DOI: 10.2967/jnumed.115.160366] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/27/2015] [Indexed: 01/18/2023] Open
Abstract
UNLABELLED Anaplastic thyroid cancer (ATC), a rare thyroid cancer with poor prognosis, is associated with insufficient function of the sodium iodide symporter (NIS). Estrogen-related receptor γ (ERRγ) is a member of the orphan nuclear receptors with important functions in cell development and homeostasis. However, there are no reports that demonstrate whether ERRγ is related to NIS function. Here, we evaluated the role of ERRγ in the regulation of NIS function in ATC cells using GSK5182, an inverse agonist of ERRγ. METHODS Two ATC cell lines, BHT-101 and CAL62, were incubated with GSK5182 at various time points and doses. The NIS function in the ATC cells was serially assessed by their uptake of radioiodine. The effects of GSK5182 on ERRγ and the mitogen-activated protein (MAP) kinase pathway, as well as on NIS protein, were evaluated by immunoblot assay. To examine whether the GSK5182-induced NIS functional activity can be affected by inhibition of the MAP kinase pathway, the MAP kinase activity and levels of radioiodine uptake were determined after application of a mitogen-activated protein kinase kinase (MEK) inhibitor to GSK5182-treated cells. Finally, the cytotoxic effect of (131)I was determined by clonogenic assay. RESULTS Treatment with GSK5182 resulted in dose- and time-dependent increases in iodide uptake in ATC cells, which were accompanied by both the downregulation of ERRγ protein and the activation of extracellular signal-regulated kinase (ERK) 1/2. Both the increased radioiodine uptake and ERK1/2 activation of ATC cells were completely inhibited by the specific MEK inhibitor. GSK5182 treatment enhanced the membrane localization of NIS in both ATC cell lines. Accordingly, preexposure to GSK5182 enhanced the cytotoxic effects of (131)I treatment in ATC cells. CONCLUSION These findings suggest that the inverse agonist of ERRγ enhances the responsiveness of radioiodine therapy by modulating NIS function in ATC cells via the regulation of ERRγ and the MAP kinase signaling pathway.
Collapse
Affiliation(s)
- Thoudam Debraj Singh
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Shin Young Jeong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Sang-Woo Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Jeoung-Hee Ha
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - In-Kyu Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Seong Heon Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Korea; and
| | - Jina Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Korea; and
| | - Sung Jin Cho
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Korea; and
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Jaetae Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Korea New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Korea; and
| | - Young Hyun Jeon
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Korea Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, Korea
| |
Collapse
|
62
|
Constitutive activities of estrogen-related receptors: Transcriptional regulation of metabolism by the ERR pathways in health and disease. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1912-27. [PMID: 26115970 DOI: 10.1016/j.bbadis.2015.06.016] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 06/15/2015] [Accepted: 06/17/2015] [Indexed: 12/17/2022]
Abstract
The estrogen-related receptors (ERRs) comprise a small group of orphan nuclear receptor transcription factors. The ERRα and ERRγ isoforms play a central role in the regulation of metabolic genes and cellular energy metabolism. Although less is known about ERRβ, recent studies have revealed the importance of this isoform in the maintenance of embryonic stem cell pluripotency. Thus, ERRs are essential to many biological processes. The development of several ERR knockout and overexpression models and the application of advanced functional genomics have allowed rapid advancement of our understanding of the physiology regulated by ERR pathways. Moreover, it has enabled us to begin to delineate the distinct programs regulated by ERRα and ERRγ that have overlapping effects on metabolism and growth. The current review primarily focuses on the physiologic roles of ERR isoforms related to their metabolic regulation; therefore, the ERRα and ERRγ are discussed in the greatest detail. We emphasize findings from gain- and loss-of-function models developed to characterize ERR control of skeletal muscle, heart and musculoskeletal physiology. These models have revealed that coordinating metabolic capacity with energy demand is essential for seemingly disparate processes such as muscle differentiation and hypertrophy, innate immune function, thermogenesis, and bone remodeling. Furthermore, the models have revealed that ERRα- and ERRγ-deficiency in mice accelerates progression of pathologic processes and implicates ERRs as etiologic factors in disease. We highlight the human diseases in which ERRs and their downstream metabolic pathways are perturbed, including heart failure and diabetes. While no natural ligand has been identified for any of the ERR isoforms, the potential for using synthetic small molecules to modulate their activity has been demonstrated. Based on our current understanding of their transcriptional mechanisms and physiologic relevance, the ERRs have emerged as potential therapeutic targets for treatment of osteoporosis, muscle atrophy, insulin resistance and heart failure in humans.
Collapse
|
63
|
Ranhotra HS. The orphan estrogen-related receptor alpha and metabolic regulation: new frontiers. J Recept Signal Transduct Res 2015; 35:565-8. [PMID: 26037200 DOI: 10.3109/10799893.2015.1024853] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Metabolic homeostasis during long-term adaptation in animals is primarily achieved by controlling the expression of metabolic genes by a plethora of cellular transcription factors. The nuclear receptor (NR) superfamily in eukaryotes is an assembly of diverse receptors working as transcriptional regulators of multiple genes. The orphan estrogen-related receptor alpha (ERRα) is one such receptor of the NR superfamily with significant influence on numerous metabolic and other genes. Although it is presently unknown as to which endogenous hormones or ligands activate ERRα, nevertheless it regulates a host of genes whose products participate in various metabolic pathways. Studies over the years show new and interesting data that add to the growing knowledge on ERRα and metabolic regulation. For instance, novel findings indicate existence of mTOR/ERRα regulatory axis and also that ERRα control PGC-1α expression which potentially have significant impact on cellular metabolism. Data show that ERRα exerts its metabolic control by regulating the expression of SIRT5 that influences oxygen consumption and ATP generation. Moreover, ERRα has a role in creatine and lactate uptake in skeletal muscle which is important towards energy generation and contraction. This review is focused on the new insights gained into ERRα regulation of metabolism, networks and pathways that have important consequences in maintaining metabolic homeostasis including development of cancer.
Collapse
Affiliation(s)
- Harmit S Ranhotra
- a Orphan Nuclear Receptors Laboratory, Department of Biochemistry , St. Edmund's College , Shillong, Meghalaya , India
| |
Collapse
|
64
|
Wong WL, Chow CF. A new bisphenol A derivative for estrogen receptor binding studies with surface plasmon resonance. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:1390-1396. [PMID: 25690832 DOI: 10.1002/etc.2939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 02/02/2015] [Accepted: 02/13/2015] [Indexed: 06/04/2023]
Abstract
A new bisphenol A (BPA) derivative was synthesized and immobilized onto the surface of a CM5 sensor chip for a binding study with orphan estrogen-related receptor γ using the surface plasmon resonance technique. The kinetic parameters, including dissociation and association constants and dissociation and association rate constants, were investigated. Moreover, a competitive inhibition assay was conducted to understand the competition relationship between the free BPA molecules in solution and the immobilized BPA molecules on the sensor chip surface. The CM5 sensor chip immobilized with the BPA derivative can be regenerated by using a high-concentration running buffer for repeated use more than 150 times without any adverse effect on its performance in the binding studies. The results indicate that the system has potential for further development as a sensitive surface plasmon resonance-based biosensor for endocrine-disrupting chemicals.
Collapse
Affiliation(s)
- Wing-Leung Wong
- Department of Science and Environmental Studies, Centre for Education in Environmental Sustainability, The Hong Kong Institute of Education, Tai Po, Hong Kong, China
| | - Cheuk-Fai Chow
- Department of Science and Environmental Studies, Centre for Education in Environmental Sustainability, The Hong Kong Institute of Education, Tai Po, Hong Kong, China
| |
Collapse
|
65
|
Sun W, Valero MC, Seong KM, Steele LD, Huang IT, Lee CH, Clark JM, Qiu X, Pittendrigh BR. A glycine insertion in the estrogen-related receptor (ERR) is associated with enhanced expression of three cytochrome P450 genes in transgenic Drosophila melanogaster. PLoS One 2015; 10:e0118779. [PMID: 25761142 PMCID: PMC4356566 DOI: 10.1371/journal.pone.0118779] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 01/16/2015] [Indexed: 01/09/2023] Open
Abstract
Insecticide-resistant Drosophila melanogaster strains represent a resource for the discovery of the underlying molecular mechanisms of cytochrome P450 constitutive over-expression, even if some of these P450s are not directly involved in the resistance phenotype. For example, in select 4,4'-dichlorodiphenyltrichloroethane (DDT) resistant strains the glucocorticoid receptor-like (GR-like) potential transcription factor binding motifs (TFBMs) have previously been shown to be associated with constitutively differentially-expressed cytochrome P450s, Cyp12d1, Cyp6g2 and Cyp9c1. However, insects are not known to have glucocorticoids. The only ortholog to the mammalian glucocorticoid receptor (GR) in D. melanogaster is an estrogen-related receptor (ERR) gene, which has two predicted alternative splice isoforms (ERRa and ERRb). Sequencing of ERRa and ERRb in select DDT susceptible and resistant D. melanogaster strains has revealed a glycine (G) codon insertion which was only observed in the ligand binding domain of ERR from the resistant strains tested (ERR-G). Transgenic flies, expressing the ERRa-G allele, constitutively over-expressed Cyp12d1, Cyp6g2 and Cyp9c1. Only Cyp12d1 and Cyp6g2 were over-expressed in the ERRb-G transgenic flies. Phylogenetic studies show that the G-insertion appeared to be located in a less conserved domain in ERR and this insertion is found in multiple species across the Sophophora subgenera.
Collapse
Affiliation(s)
- Weilin Sun
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illionois, 61801, United States of America
| | - M. Carmen Valero
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illionois, 61801, United States of America
| | - Keon Mook Seong
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illionois, 61801, United States of America
| | - Laura D. Steele
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illionois, 61801, United States of America
| | - I-Ting Huang
- Chung Hwa University of Medical Technology, Tainan, Taiwan, R. O. C.
| | - Chien-Hui Lee
- Chung Hwa University of Medical Technology, Tainan, Taiwan, R. O. C.
| | - John M. Clark
- Department of Veterinary & Animal Science, University of Massachusetts, Amherst, Massachusetts, 01003, United States of America
| | - Xinghui Qiu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Barry R. Pittendrigh
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illionois, 61801, United States of America
| |
Collapse
|
66
|
Audet-walsh É, Giguére V. The multiple universes of estrogen-related receptor α and γ in metabolic control and related diseases. Acta Pharmacol Sin 2015; 36:51-61. [PMID: 25500872 PMCID: PMC4571319 DOI: 10.1038/aps.2014.121] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 10/10/2014] [Indexed: 01/13/2023] Open
Abstract
The identification of the estrogen-related receptors (ERRs) as the first orphan nuclear receptors ignited a new era in molecular endocrinology, which led to the discovery of new ligand-dependent response systems. Although ERR subfamily members have yet to be associated with a natural ligand, the characterization of these orphan receptors has demonstrated that they occupy a strategic node in the transcriptional control of cellular energy metabolism. In particular, ERRs are required for the response to various environmental challenges that require high energy levels by the organism. As central regulators of energy homeostasis, ERRs may also be implicated in the etiology of metabolic disorders, such as type 2 diabetes and metabolic syndrome. Here, we review the recent evidence that further highlights the role of ERRs in metabolic control, particularly in liver and skeletal muscle, and their likely involvement in metabolic diseases. Consequently, we also explore the promises and pitfalls of ERRs as potential therapeutic targets.
Collapse
Affiliation(s)
- Étienne Audet-walsh
- Goodman Cancer Research Center, McGill University, Montréal, Québec, H3G 1Y6, Canada
| | - Vincent Giguére
- Goodman Cancer Research Center, McGill University, Montréal, Québec, H3G 1Y6, Canada
- Departments of Biochemistry, Medicine and Oncology, McGill University, Montréal, Québec, H3G 1Y6, Canada
| |
Collapse
|
67
|
Kim DK, Kim YH, Hynx D, Wang Y, Yang KJ, Ryu D, Kim KS, Yoo EK, Kim JS, Koo SH, Lee IK, Chae HZ, Park J, Lee CH, Biddinger SB, Hemmings BA, Choi HS. PKB/Akt phosphorylation of ERRγ contributes to insulin-mediated inhibition of hepatic gluconeogenesis. Diabetologia 2014; 57:2576-85. [PMID: 25205222 DOI: 10.1007/s00125-014-3366-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 08/06/2014] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS Insulin resistance, a major contributor to the pathogenesis of type 2 diabetes, leads to increased hepatic glucose production (HGP) owing to an impaired ability of insulin to suppress hepatic gluconeogenesis. Nuclear receptor oestrogen-related receptor γ (ERRγ) is a major transcriptional regulator of hepatic gluconeogenesis. In this study, we investigated insulin-dependent post-translational modifications (PTMs) altering the transcriptional activity of ERRγ for the regulation of hepatic gluconeogenesis. METHODS We examined insulin-dependent phosphorylation and subcellular localisation of ERRγ in cultured cells and in the liver of C57/BL6, leptin receptor-deficient (db/db), liver-specific insulin receptor knockout (LIRKO) and protein kinase B (PKB) β-deficient (Pkbβ (-/-)) mice. To demonstrate the role of ERRγ in the inhibitory action of insulin on hepatic gluconeogenesis, we carried out an insulin tolerance test in C57/BL6 mice expressing wild-type or phosphorylation-deficient mutant ERRγ. RESULTS We demonstrated that insulin suppressed the transcriptional activity of ERRγ by promoting PKB/Akt-mediated phosphorylation of ERRγ at S179 and by eliciting translocation of ERRγ from the nucleus to the cytoplasm through interaction with 14-3-3, impairing its ability to promote hepatic gluconeogenesis. In addition, db/db, LIRKO and Pkbβ (-/-) mice displayed enhanced ERRγ transcriptional activity due to a block in PKBβ-mediated ERRγ phosphorylation during refeeding. Finally, the phosphorylation-deficient mutant ERRγ S179A was resistant to the inhibitory action of insulin on HGP. CONCLUSIONS/INTERPRETATION These results suggest that ERRγ is a major contributor to insulin action in maintaining hepatic glucose homeostasis.
Collapse
Affiliation(s)
- Don-Kyu Kim
- National Creative Research Initiatives Center for Nuclear Receptor Signals and Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju, 500-757, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Tiwari A, Shivananda S, Gopinath KS, Kumar A. MicroRNA-125a reduces proliferation and invasion of oral squamous cell carcinoma cells by targeting estrogen-related receptor α: implications for cancer therapeutics. J Biol Chem 2014; 289:32276-32290. [PMID: 25266720 DOI: 10.1074/jbc.m114.584136] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Estrogen-related receptor α (ESRRA) functions as a transcription factor and regulates the expression of several genes, such as WNT11 and OPN. Up-regulation of ESRRA has been reported in several cancers. However, the mechanism underlying its up-regulation is unclear. Furthermore, the reports regarding the role and regulation of ESRRA in oral squamous cell carcinoma (OSCC) are completely lacking. Here, we show that tumor suppressor miR-125a directly binds to the 3'UTR of ESRRA and represses its expression. Overexpression of miR-125a in OSCC cells drastically reduced the level of ESRRA, decreased cell proliferation, and increased apoptosis. Conversely, the delivery of an miR-125a inhibitor to these cells drastically increased the level of ESRRA, increased cell proliferation, and decreased apoptosis. miR-125a-mediated down-regulation of ESRRA impaired anchorage-independent colony formation and invasion of OSCC cells. Reduced cell proliferation and increased apoptosis of OSCC cells were dependent on the presence of the 3'UTR in ESRRA. The delivery of an miR-125a mimic to OSCC cells resulted in marked regression of xenografts in nude mice, whereas the delivery of an miR-125a inhibitor to OSCC cells resulted in a significant increase of xenografts and abrogated the tumor suppressor function of miR-125a. We observed an inverse correlation between the expression levels of miR-125a and ESRRA in OSCC samples. In summary, up-regulation of ESRRA due to down-regulation of miR-125a is not only a novel mechanism for its up-regulation in OSCC, but decreasing the level of ESRRA by using a synthetic miR-125a mimic may have an important role in therapeutic intervention of OSCC and other cancers.
Collapse
Affiliation(s)
- Ankana Tiwari
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012 and
| | - Swamy Shivananda
- Department of Surgery, Bangalore Institute of Oncology, Bangalore 560027, India
| | | | - Arun Kumar
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012 and.
| |
Collapse
|
69
|
Ranhotra HS. Estrogen-related receptor alpha and mitochondria: tale of the titans. J Recept Signal Transduct Res 2014; 35:386-90. [DOI: 10.3109/10799893.2014.959592] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
70
|
van der Laan S, Golfetto E, Vanacker JM, Maiorano D. Cell cycle-dependent expression of Dub3, Nanog and the p160 family of nuclear receptor coactivators (NCoAs) in mouse embryonic stem cells. PLoS One 2014; 9:e93663. [PMID: 24695638 PMCID: PMC3973558 DOI: 10.1371/journal.pone.0093663] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/08/2014] [Indexed: 01/29/2023] Open
Abstract
Pluripotency of embryonic stem cells (ESC) is tightly regulated by a network of transcription factors among which the estrogen-related receptor β (Esrrb). Esrrb contributes to the relaxation of the G1 to S-phase (G1/S) checkpoint in mouse ESCs by transcriptional control of the deubiquitylase Dub3 gene, contributing to Cdc25A persistence after DNA damage. We show that in mESCs, Dub3 gene expression is cell cycle regulated and is maximal prior G1/S transition. In addition, following UV-induced DNA damage in G1, Dub3 expression markedly increases in S-phase also suggesting a role in checkpoint recovery. Unexpectedly, we also observed cell cycle-regulation of Nanog expression, and not Oct4, reaching high levels prior to G1/S transition, finely mirroring Cyclin E1 fluctuations. Curiously, while Esrrb showed only limited cell-cycle oscillations, transcript levels of the p160 family of nuclear receptor coactivators (NCoAs) displayed strong cell cycle-dependent fluctuations. Since NCoAs function in concert with Esrrb in transcriptional activation, we focussed on NCoA1 whose levels specifically increase prior onset of Dub3 transcription. Using a reporter assay, we show that NCoA1 potentiates Esrrb-mediated transcription of Dub3 and we present evidence of protein interaction between the SRC1 splice variant NCoA1 and Esrrb. Finally, we show a differential developmental regulation of all members of the p160 family during neural conversion of mESCs. These findings suggest that in mouse ESCs, changes in the relative concentration of a coactivator at a given cell cycle phase, may contribute to modulation of the transcriptional activity of the core transcription factors of the pluripotent network and be implicated in cell fate decisions upon onset of differentiation.
Collapse
Affiliation(s)
- Siem van der Laan
- Genome Surveillance and Stability laboratory, Department “Molecular Bases of Human Diseases”, CNRS-UPR1142, Institute of Human Genetics, Montpellier, France
| | - Eleonora Golfetto
- Genome Surveillance and Stability laboratory, Department “Molecular Bases of Human Diseases”, CNRS-UPR1142, Institute of Human Genetics, Montpellier, France
| | - Jean-Marc Vanacker
- Physiopathology of orphan nuclear receptors, Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Domenico Maiorano
- Genome Surveillance and Stability laboratory, Department “Molecular Bases of Human Diseases”, CNRS-UPR1142, Institute of Human Genetics, Montpellier, France
| |
Collapse
|
71
|
Di Micco S, Renga B, Carino A, D'Auria MV, Zampella A, Riccio R, Fiorucci S, Bifulco G. Structural insights into Estrogen Related Receptor-β modulation: 4-methylenesterols from Theonella swinhoei sponge as the first example of marine natural antagonists. Steroids 2014; 80:51-63. [PMID: 24315836 DOI: 10.1016/j.steroids.2013.11.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 11/18/2013] [Accepted: 11/20/2013] [Indexed: 12/25/2022]
Abstract
In this paper, we report the first evidence of 4-methylenesterols, isolated from the marine sponge Theonella swinhoei, as antagonists of Estrogen Related Receptors (ERRs). The interactions of 4-methylenesterols with ERRs were investigated through a multi-parametric approach involving biological assays and molecular modelling. Here the first homology model of active and inactive conformations of the Estrogen Related Receptor β (ERRβ) is also reported, benchmarked with the well known agonists gsk4716 and genistein, and the antagonists 4-hydroxytamoxifen and diethylstilbestrol. Our proposed model could contribute to the clarification of small molecule interaction mode in the ERRβ and, notably, to the rational design of new potential and selective modulators of this emerging therapeutic target.
Collapse
Affiliation(s)
- Simone Di Micco
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Barbara Renga
- Dipartimento di Medicina Clinica e Sperimentale, Università di Perugia, Nuova Facoltà di Medicina e Chirurgia, Via Gerardo Dottori 1 S. Andrea delle Fratte, 06132 Perugia, Italy
| | - Adriana Carino
- Dipartimento di Medicina Clinica e Sperimentale, Università di Perugia, Nuova Facoltà di Medicina e Chirurgia, Via Gerardo Dottori 1 S. Andrea delle Fratte, 06132 Perugia, Italy
| | - Maria Valeria D'Auria
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Via D. Montesano 49, 80131 Napoli, Italy
| | - Angela Zampella
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Via D. Montesano 49, 80131 Napoli, Italy
| | - Raffaele Riccio
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Stefano Fiorucci
- Dipartimento di Medicina Clinica e Sperimentale, Università di Perugia, Nuova Facoltà di Medicina e Chirurgia, Via Gerardo Dottori 1 S. Andrea delle Fratte, 06132 Perugia, Italy
| | - Giuseppe Bifulco
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy.
| |
Collapse
|
72
|
Liang J, Han F, Chen Y. Transcriptional regulation of VEGF expression by estrogen-related receptor γ. Acta Pharm Sin B 2013. [DOI: 10.1016/j.apsb.2013.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
73
|
Abstract
The nuclear receptor superfamily includes many receptors, identified based on their similarity to steroid hormone receptors but without a known ligand. The study of how these receptors are diversely regulated to interact with genomic regions to control a plethora of biological processes has provided critical insight into development, physiology, and the molecular pathology of disease. Here we provide a compendium of these so-called orphan receptors and focus on what has been learned about their modes of action, physiological functions, and therapeutic promise.
Collapse
Affiliation(s)
- Shannon E Mullican
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, and The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
74
|
Nolan LS, Maier H, Hermans-Borgmeyer I, Girotto G, Ecob R, Pirastu N, Cadge BA, Hübner C, Gasparini P, Strachan DP, Davis A, Dawson SJ. Estrogen-related receptor gamma and hearing function: evidence of a role in humans and mice. Neurobiol Aging 2013; 34:2077.e1-9. [PMID: 23540940 PMCID: PMC4330334 DOI: 10.1016/j.neurobiolaging.2013.02.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 02/05/2013] [Accepted: 02/15/2013] [Indexed: 12/05/2022]
Abstract
Since estrogen is thought to protect pre-menopausal women from age-related hearing loss, we investigated whether variation in estrogen-signalling genes is linked to hearing status in the 1958 British Birth Cohort. This analysis implicated the estrogen-related receptor gamma (ESRRG) gene in determining adult hearing function and was investigated further in a total of 6134 individuals in 3 independent cohorts: (i) the 1958 British Birth Cohort; (ii) a London ARHL case-control cohort; and (iii) a cohort from isolated populations of Italy and Silk Road countries. Evidence of an association between the minor allele of single nucleotide polymorphism (SNP) rs2818964 and hearing status was found in females, but not in males in 2 of these cohorts: p = 0.0058 (London ARHL) and p = 0.0065 (Carlantino, Italy). Furthermore, assessment of hearing in Esrrg knock-out mice revealed a mild 25-dB hearing loss at 5 weeks of age. At 12 weeks, average hearing thresholds in female mice((-/-)) were 15 dB worse than in males((-/-)). Together these data indicate ESRRG plays a role in maintenance of hearing in both humans and mice.
Collapse
Affiliation(s)
- Lisa S. Nolan
- UCL Ear Institute, University College London, London, UK
| | - Hannes Maier
- Institute of Audioneurotechnology (VIANNA) and Department of Experimental Otology, ENT-Clinics, Medical University Hannover, Hannover, Germany
| | - Irm Hermans-Borgmeyer
- Centre for Molecular Neurobiology (ZMNH), Hamburg and Institute of Human Genetics, Jena, Germany
| | - Giorgia Girotto
- Institute for Maternal and Child Health- IRCCS “Burlo Garofolo”-DMS, University of Trieste, Trieste, Italy
| | - Russell Ecob
- UCL Ear Institute, University College London, London, UK
| | - Nicola Pirastu
- Institute for Maternal and Child Health- IRCCS “Burlo Garofolo”-DMS, University of Trieste, Trieste, Italy
| | | | - Christian Hübner
- Centre for Molecular Neurobiology (ZMNH), Hamburg and Institute of Human Genetics, Jena, Germany
| | - Paolo Gasparini
- Institute for Maternal and Child Health- IRCCS “Burlo Garofolo”-DMS, University of Trieste, Trieste, Italy
| | - David P. Strachan
- Division of Community Health Sciences, St George's University of London, London, UK
| | - Adrian Davis
- UCL Ear Institute, University College London, London, UK
| | | |
Collapse
|
75
|
Deblois G, St-Pierre J, Giguère V. The PGC-1/ERR signaling axis in cancer. Oncogene 2013; 32:3483-90. [PMID: 23208510 DOI: 10.1038/onc.2012.529] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/15/2012] [Accepted: 10/15/2012] [Indexed: 12/20/2022]
Abstract
Proliferating cells need to produce a large amount of energy and, at the same time, need to maintain a constant supply of biosynthetic precursors of macromolecules that are used as building blocks for generating new cells. Indeed, many cancer cells undergo a switch from mitochondrial to glycolytic metabolism and display a truncated tricarboxylic acid cycle to match these specific metabolic requirements of proliferation. Understanding the mechanisms by which cancer cells reprogram various metabolic pathways to satisfy their unique bioenergetic requirements has become an active field of research. Concomitantly, it has emerged that members of a family of orphan nuclear receptors known as the estrogen-related receptors (ERRs), working in concert with members of the PPARγ coactivator (PGC)-1 family, act as central transcriptional regulators of metabolic gene networks involved in maintaining energy homeostasis in normal cells. Recent studies have suggested that the PGC-1/ERR transcriptional axis is also important in the metabolic reprogramming of cancer cells. This review focuses on the functional integration of the PGC-1/ERR axis with known oncogenes and the observation that modulation of the activity of this axis can have both pro- and anti-proliferative properties.
Collapse
Affiliation(s)
- G Deblois
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
76
|
Wang L, Liu Q, Li F, Qiu J, Fan H, Ma H, Zhu Y, Wu L, Han X, Yang Z, Jiang H, Wei J, Xia H. Apoptosis induced by PGC-1β in breast cancer cells is mediated by the mTOR pathway. Oncol Rep 2013; 30:1631-8. [PMID: 23877360 DOI: 10.3892/or.2013.2628] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 04/19/2013] [Indexed: 11/06/2022] Open
Abstract
The peroxisome proliferator-activated receptor-γ (PPAR-γ) coactivator-1β (PGC-1β) is a well-established regulator of mitochondrial biogenesis. However, the underlying mechanism of PGC-1β action remains elusive. This study reveals that knockdown of endogenous PGC-1β by short-hairpin RNA (shRNA) leads to a decrease in the expression of mammalian target of rapamycin (mTOR) pathway-related genes in MDA-MB-231 cells. After knockdown of PGC-1β, phosphorylation of AMP-activated protein kinase (AMPK), phosphorylation of Rictor on Thr1135, Raptor and S6 protein was inhibited. However, Akt phosphorylation on Ser473 was upregulated and cell apoptosis occurred. In particular, we demonstrate that the levels of PGC-1β and mTOR correlated with overall mitochondrial activity. These results provide new evidence that cell apoptosis is orchestrated by the balance between several signaling pathways, and that PGC-1β takes part in these events in breast cancer cells mediated by the mTOR signaling pathway.
Collapse
Affiliation(s)
- Libin Wang
- Life Science College, Shaanxi Normal University, Xi'an 710062, P.R. China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Imai Y, Youn MY, Inoue K, Takada I, Kouzmenko A, Kato S. Nuclear receptors in bone physiology and diseases. Physiol Rev 2013; 93:481-523. [PMID: 23589826 PMCID: PMC3768103 DOI: 10.1152/physrev.00008.2012] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
During the last decade, our view on the skeleton as a mere solid physical support structure has been transformed, as bone emerged as a dynamic, constantly remodeling tissue with systemic regulatory functions including those of an endocrine organ. Reflecting this remarkable functional complexity, distinct classes of humoral and intracellular regulatory factors have been shown to control vital processes in the bone. Among these regulators, nuclear receptors (NRs) play fundamental roles in bone development, growth, and maintenance. NRs are DNA-binding transcription factors that act as intracellular transducers of the respective ligand signaling pathways through modulation of expression of specific sets of cognate target genes. Aberrant NR signaling caused by receptor or ligand deficiency may profoundly affect bone health and compromise skeletal functions. Ligand dependency of NR action underlies a major strategy of therapeutic intervention to correct aberrant NR signaling, and significant efforts have been made to design novel synthetic NR ligands with enhanced beneficial properties and reduced potential negative side effects. As an example, estrogen deficiency causes bone loss and leads to development of osteoporosis, the most prevalent skeletal disorder in postmenopausal women. Since administration of natural estrogens for the treatment of osteoporosis often associates with undesirable side effects, several synthetic estrogen receptor ligands have been developed with higher therapeutic efficacy and specificity. This review presents current progress in our understanding of the roles of various nuclear receptor-mediated signaling pathways in bone physiology and disease, and in development of advanced NR ligands for treatment of common skeletal disorders.
Collapse
Affiliation(s)
- Yuuki Imai
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
78
|
Felizola SJ, Nakamura Y, Hui XG, Satoh F, Morimoto R, Midorikawa S, Suzuki S, Rainey WE, Sasano H. Estrogen-related receptor α in normal adrenal cortex and adrenocortical tumors: involvement in development and oncogenesis. Mol Cell Endocrinol 2013; 365:207-11. [PMID: 23123734 PMCID: PMC4097865 DOI: 10.1016/j.mce.2012.10.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 10/16/2012] [Accepted: 10/19/2012] [Indexed: 12/20/2022]
Abstract
AIMS The nuclear hormone receptor estrogen-related receptor α (ERRα) regulates the activation of mitochondrial genes in various human tissues, but its role in the adrenal gland and its disorders has not been defined. Therefore, we examined ERRα expression in both normal adrenal cortex (NAC) and adrenocortical tumor (ACT) in order to study the possible correlation of ERRα with adrenal development and tumor development. METHODS Human adrenal specimens (non-pathological fetal n=7; non-pathological post-birth n=40; aldosterone producing adenoma (APA) n=11; cortisol producing adenoma (CPA) n=11; adrenocortical carcinoma (ACC) n=8) were immunohistochemically examined in this study. NAC (n=13) and ACT (n=28) frozen tissue specimens were also available for studying ERRα mRNA levels. KEY FINDINGS In fetal NAC tissues, ERRα labeling index (LI) in fetal zone (FZ) was significantly higher that that in neocortex (NC), and the differences among age groups for overall mean LI was statistically significant when analyzed according to individual cortical layers. ERRα LI was also significantly higher in ACC than in other types of ACT. ERRα mRNA was detected in NAC and all types of ACT. SIGNIFICANCE Results of our present study suggest a possible role of ERRα in adrenal development and ACC.
Collapse
Affiliation(s)
- Saulo J.A. Felizola
- Tohoku University Graduate School of Medicine, Department of Pathology, Sendai, Japan
| | - Yasuhiro Nakamura
- Tohoku University Graduate School of Medicine, Department of Pathology, Sendai, Japan
| | - Xiao-Gang Hui
- Tohoku University Graduate School of Medicine, Department of Pathology, Sendai, Japan
| | - Fumitoshi Satoh
- Tohoku University Hospital, Division of Nephrology and Hypertension, Sendai, Japan
| | - Ryo Morimoto
- Tohoku University Hospital, Division of Nephrology and Hypertension, Sendai, Japan
| | - Sanae Midorikawa
- Fukushima Medical University, Department of Radiation Health Management, Fukushima, Japan
| | - Shinichi Suzuki
- Fukushima Medical University, Department of Organ Regulatory Surgery, Fukushima, Japan
| | - William E. Rainey
- University of Michigan, Department of Physiology and Medicine, Ann Arbor, Michigan, USA
| | - Hironobu Sasano
- Tohoku University Graduate School of Medicine, Department of Pathology, Sendai, Japan
| |
Collapse
|
79
|
Gallet M, Saïdi S, Haÿ E, Photsavang J, Marty C, Sailland J, Carnesecchi J, Tribollet V, Barenton B, Forcet C, Birling MC, Sorg T, Chassande O, Cohen-Solal M, Vanacker JM. Repression of osteoblast maturation by ERRα accounts for bone loss induced by estrogen deficiency. PLoS One 2013; 8:e54837. [PMID: 23359549 PMCID: PMC3554601 DOI: 10.1371/journal.pone.0054837] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 12/17/2012] [Indexed: 01/09/2023] Open
Abstract
ERRα is an orphan member of the nuclear receptor family, the complete inactivation of which confers resistance to bone loss induced by ageing and estrogen withdrawal to female mice in correlation with increased bone formation in vivo. Furthermore ERRα negatively regulates the commitment of mesenchymal cells to the osteoblast lineage ex vivo as well as later steps of osteoblast maturation. We searched to determine whether the activities of ERRα on osteoblast maturation are responsible for one or both types of in vivo induced bone loss. To this end we have generated conditional knock out mice in which the receptor is normally present during early osteoblast differentiation but inactivated upon osteoblast maturation. Bone ageing in these animals was similar to that observed for control animals. In contrast conditional ERRαKO mice were completely resistant to bone loss induced by ovariectomy. We conclude that the late (maturation), but not early (commitment), negative effects of ERRα on the osteoblast lineage contribute to the reduced bone mineral density observed upon estrogen deficiency.
Collapse
Affiliation(s)
- Marlène Gallet
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Centre national de la recherche scientifique UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Soraya Saïdi
- Institut National de la Santé et de la Recherche Médicale U606, Hôpital Lariboisière, Paris, France
| | - Eric Haÿ
- Institut National de la Santé et de la Recherche Médicale U606, Hôpital Lariboisière, Paris, France
| | - Johann Photsavang
- Institut National de la Santé et de la Recherche Médicale U1026, Bordeaux, France
| | - Caroline Marty
- Institut National de la Santé et de la Recherche Médicale U606, Hôpital Lariboisière, Paris, France
| | - Juliette Sailland
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Centre national de la recherche scientifique UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Julie Carnesecchi
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Centre national de la recherche scientifique UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Violaine Tribollet
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Centre national de la recherche scientifique UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Bruno Barenton
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Centre national de la recherche scientifique UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Christelle Forcet
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Centre national de la recherche scientifique UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | | | - Tania Sorg
- Institut Clinique de la Souris, Illkirch-Graffenstaden, France
| | - Olivier Chassande
- Institut National de la Santé et de la Recherche Médicale U1026, Bordeaux, France
| | - Martine Cohen-Solal
- Institut National de la Santé et de la Recherche Médicale U606, Hôpital Lariboisière, Paris, France
| | - Jean-Marc Vanacker
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Centre national de la recherche scientifique UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
- * E-mail:
| |
Collapse
|
80
|
Deblois G, Giguère V. Oestrogen-related receptors in breast cancer: control of cellular metabolism and beyond. Nat Rev Cancer 2013; 13:27-36. [PMID: 23192231 DOI: 10.1038/nrc3396] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oestrogen-related receptors (ERRs) are orphan nuclear receptors that were initially investigated in breast cancer because of their structural relationship to oestrogen receptors. Recent data have shown that the ERRs control vast gene networks that are involved in glycolysis, glutaminolysis, oxidative phosphorylation, nutrient sensing and biosynthesis pathways. In the context of breast cancer, the ERRs affect cellular metabolism in a manner that promotes a Warburg-like phenotype. The ERRs also modulate breast cancer cell metabolism, growth and proliferation through the regulation of key oncoproteins. We discuss the value but also the implications of the complexity of targeting the ERRs for the development of cancer therapeutics.
Collapse
Affiliation(s)
- Geneviève Deblois
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, Canada
| | | |
Collapse
|
81
|
Kawashima H, Nakatani T. Involvement of estrogen receptors in prostatic diseases. Int J Urol 2012; 19:512-22; author reply 522-3. [PMID: 22375605 DOI: 10.1111/j.1442-2042.2012.02987.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Accumulating evidence shows that estrogens participate in the pathogenesis and development of benign prostatic hyperplasia and prostate cancer by activating estrogen receptor α. In contrast, estrogen receptor β is involved in the differentiation and maturation of prostatic epithelial cells, and thus possesses antitumor effects in prostate cancer. However, the natural ligands of estrogen receptor β are not fully understood, and its mode of action according to its ligands and the binding sites located in the promoter regions of downstream genes remains to be elucidated. Here, we review recent experimental investigations of estrogen receptors and their urological relevance. Estrogen receptor-mediated signaling in the prostate is essential together with the androgen receptor-mediated pathway, providing a new therapeutic target for prostatic diseases.
Collapse
Affiliation(s)
- Hidenori Kawashima
- Department of Urology, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | | |
Collapse
|
82
|
Gibson DA, Saunders PTK. Estrogen dependent signaling in reproductive tissues - a role for estrogen receptors and estrogen related receptors. Mol Cell Endocrinol 2012; 348:361-72. [PMID: 21964318 DOI: 10.1016/j.mce.2011.09.026] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 09/03/2011] [Accepted: 09/12/2011] [Indexed: 12/20/2022]
Abstract
Estrogens play a fundamental role in the development and normal physiological function of multiple tissue systems and have been implicated in the ontogeny of cancers. The biological effects of estrogens are classically mediated via interaction with cognate nuclear receptors. The relative expression of ER subtypes/variants varies between cells within different tissues and this alters the response to natural and synthetic ligands. This review focuses on the role of estrogen and estrogen related receptors in reproductive tissues.
Collapse
Affiliation(s)
- Douglas A Gibson
- MRC/UoE Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| | | |
Collapse
|
83
|
Ranhotra HS. The estrogen-related receptors: orphans orchestrating myriad functions. J Recept Signal Transduct Res 2012; 32:47-56. [PMID: 22268851 DOI: 10.3109/10799893.2011.647350] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Coordinated and tight regulation of gene expression in metazoans is essential for cellular homeostasis and functions. Tissue- and cell-specific regulatory factors are indispensable and a wide variety of them exist to regulate genes. A family of transcriptional factors was identified in the past two decades through gene cloning studies and was informally referred as "orphan receptors", as appropriate endogenous ligands for such receptors were unknown. One of the subclasses of such receptors is known as the estrogen-related receptors (ERRs), which include three isoforms, namely ERRα, ERRβ and ERRγ. Over the past one decade, unprecedented knowledge about the ERRs biology has been generated, indicating their vital roles in various metabolic and physiological activities in animals. The ERRs cellular action is largely attributed to its interaction with a wide variety of other nuclear receptors, including some orphan nuclear receptors, and thereby can modulate diverse array of genes involved in metabolism and animal physiology. Studies using genome-wide location analyses, microarray and functional genomics, including ERR-specific null mice have revealed a number of pathways controlled by the ERRs. In this context, new and recent information on the biological functions of ERRs are being reviewed.
Collapse
Affiliation(s)
- Harmit S Ranhotra
- Department of Biochemistry, Orphan Nuclear Receptors Laboratory, St. Edmund's College, Shillong, India.
| |
Collapse
|
84
|
Cleve A, Fritzemeier KH, Haendler B, Heinrich N, Möller C, Schwede W, Wintermantel T. Pharmacology and clinical use of sex steroid hormone receptor modulators. Handb Exp Pharmacol 2012:543-587. [PMID: 23027466 DOI: 10.1007/978-3-642-30726-3_24] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Sex steroid receptors are ligand-triggered transcription factors. Oestrogen, progesterone and androgen receptors form, together with the glucocorticoid and mineralocorticoid receptors, a subgroup of the superfamily of nuclear receptors. They share a common mode of action, namely translating a hormone-i.e. a small-molecule signal-from outside to changes in gene expression and cell fate, and thereby represent "natural" pharmacological targets.For pharmacological therapy, these receptors have originally been addressed by hormones and synthetic hormone analogues in order to overcome pathologies related to deficiencies in the natural ligands. Another major use for female sex hormone receptor modulators is oral contraception, i.e. birth control.On the other side, blocking the activity of sex steroid receptors has become an established way to treat hormone-dependent malignancies, such as breast and prostate cancer.In this review, we will discuss how the experience gained from the classical pharmacology of these receptors and their molecular similarities led to new options for the treatment of gender-specific diseases and highlight recent progress in medicinal chemistry of sex hormone-modulating drugs.
Collapse
Affiliation(s)
- A Cleve
- Bayer Pharma AG, Muellerstr. 178, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
85
|
Saili KS, Corvi MM, Weber DN, Patel AU, Das SR, Przybyla J, Anderson KA, Tanguay RL. Neurodevelopmental low-dose bisphenol A exposure leads to early life-stage hyperactivity and learning deficits in adult zebrafish. Toxicology 2011; 291:83-92. [PMID: 22108044 DOI: 10.1016/j.tox.2011.11.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 10/25/2011] [Accepted: 11/07/2011] [Indexed: 01/20/2023]
Abstract
Developmental bisphenol A (BPA) exposure has been implicated in adverse behavior and learning deficits. The mode of action underlying these effects is unclear. The objectives of this study were to identify whether low-dose, developmental BPA exposure affects larval zebrafish locomotor behavior and whether learning deficits occur in adults exposed during development. Two control compounds, 17β-estradiol (an estrogen receptor ligand) and GSK4716 (a synthetic estrogen-related receptor gamma ligand), were included. Larval toxicity assays were used to determine appropriate BPA, 17β-estradiol, and GSK4716 concentrations for behavior testing. BPA tissue uptake was analyzed using HPLC and lower doses were extrapolated using a linear regression analysis. Larval behavior tests were conducted using a ViewPoint Zebrabox. Adult learning tests were conducted using a custom-built T-maze. BPA exposure to <30μM was non-teratogenic. Neurodevelopmental BPA exposure to 0.01, 0.1, or 1μM led to larval hyperactivity or learning deficits in adult zebrafish. Exposure to 0.1μM 17β-estradiol or GSK4716 also led to larval hyperactivity. This study demonstrates the efficacy of using the zebrafish model for studying the neurobehavioral effects of low-dose developmental BPA exposure.
Collapse
Affiliation(s)
- Katerine S Saili
- Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97333, USA
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Salzman J, Marinelli RJ, Wang PL, Green AE, Nielsen JS, Nelson BH, Drescher CW, Brown PO. ESRRA-C11orf20 is a recurrent gene fusion in serous ovarian carcinoma. PLoS Biol 2011; 9:e1001156. [PMID: 21949640 PMCID: PMC3176749 DOI: 10.1371/journal.pbio.1001156] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 08/10/2011] [Indexed: 11/25/2022] Open
Abstract
Every year, ovarian cancer kills approximately 14,000 women in the United States and more than 140,000 women worldwide. Most of these deaths are caused by tumors of the serous histological type, which is rarely diagnosed before it has disseminated. By deep paired-end sequencing of mRNA from serous ovarian cancers, followed by deep sequencing of the corresponding genomic region, we identified a recurrent fusion transcript. The fusion transcript joins the 5' exons of ESRRA, encoding a ligand-independent member of the nuclear-hormone receptor superfamily, to the 3' exons of C11orf20, a conserved but uncharacterized gene located immediately upstream of ESRRA in the reference genome. To estimate the prevalence of the fusion, we tested 67 cases of serous ovarian cancer by RT-PCR and sequencing and confirmed its presence in 10 of these. Targeted resequencing of the corresponding genomic region from two fusion-positive tumor samples identified a nearly clonal chromosomal rearrangement positioning ESRRA upstream of C11orf20 in one tumor, and evidence of local copy number variation in the ESRRA locus in the second tumor. We hypothesize that the recurrent novel fusion transcript may play a role in pathogenesis of a substantial fraction of serous ovarian cancers and could provide a molecular marker for detection of the cancer. Gene fusions involving adjacent or nearby genes can readily escape detection but may play important roles in the development and progression of cancer.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Sequence
- Biomarkers, Tumor/genetics
- Canada
- Carcinoma, Ovarian Epithelial
- Case-Control Studies
- Chromosome Aberrations
- Chromosomes, Human, Pair 11/chemistry
- Chromosomes, Human, Pair 11/genetics
- Cystadenocarcinoma, Serous/epidemiology
- Cystadenocarcinoma, Serous/genetics
- Cystadenocarcinoma, Serous/pathology
- DNA Copy Number Variations
- Exons
- Female
- Humans
- Molecular Sequence Data
- Neoplasm Staging
- Neoplasms, Glandular and Epithelial/epidemiology
- Neoplasms, Glandular and Epithelial/genetics
- Neoplasms, Glandular and Epithelial/pathology
- Oncogene Proteins, Fusion/genetics
- Ovarian Neoplasms/epidemiology
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/pathology
- Prevalence
- RNA, Messenger
- Receptors, Estrogen/genetics
- Sequence Analysis, DNA
- Sequence Analysis, RNA
- United States
- ERRalpha Estrogen-Related Receptor
Collapse
Affiliation(s)
- Julia Salzman
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Statistics, Stanford University, Stanford, California, United States of America
| | - Robert J. Marinelli
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Peter L. Wang
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
| | - Ann E. Green
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Julie S. Nielsen
- Trev and Joyce Deeley Research Centre, BC Cancer Agency, Victoria, British Columbia, Canada
| | - Brad H. Nelson
- Trev and Joyce Deeley Research Centre, BC Cancer Agency, Victoria, British Columbia, Canada
| | - Charles W. Drescher
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Patrick O. Brown
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
87
|
Deblois G, Giguère V. Functional and physiological genomics of estrogen-related receptors (ERRs) in health and disease. Biochim Biophys Acta Mol Basis Dis 2011; 1812:1032-40. [DOI: 10.1016/j.bbadis.2010.12.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 12/09/2010] [Accepted: 12/10/2010] [Indexed: 12/11/2022]
|
88
|
Eichner LJ, Giguère V. Estrogen related receptors (ERRs): a new dawn in transcriptional control of mitochondrial gene networks. Mitochondrion 2011; 11:544-52. [PMID: 21497207 DOI: 10.1016/j.mito.2011.03.121] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 02/07/2011] [Accepted: 03/23/2011] [Indexed: 01/12/2023]
Abstract
Mitochondrial dysfunction contributes to the etiology of numerous diseases. Consequently, improving our knowledge of how to modulate mitochondrial activity is of considerable interest. One means to achieve this goal would be to control in a global and comprehensive manner the expression of most if not all nuclear encoded mitochondrial genes. The advent of genome-wide location analysis of transcription factor occupancy coupled with functional studies in cell and animal models has recently shown that three transcription factors possess this unique attribute. Unexpectedly, these factors are orphan members of the superfamily of nuclear receptors known as estrogen-related receptors (ERRs) α, β and γ. In this review, we will integrate current knowledge gathered through several functional and physiological genomic studies to provide persuasive evidence that the ERRs are indeed master regulators of mitochondrial biogenesis and function.
Collapse
Affiliation(s)
- Lillian J Eichner
- Goodman Cancer Research Centre, McGill University, Montréal, QC, Canada H3A 1A3
| | | |
Collapse
|
89
|
Vela L, Lowe PN, Gerstenmaier J, Laing LG, Stimmel JB, Orband-Miller LA, Martin JJ. Validation of an optical microplate label-free platform in the screening of chemical libraries for direct binding to a nuclear receptor. Assay Drug Dev Technol 2011; 9:532-48. [PMID: 21438675 DOI: 10.1089/adt.2010.0345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Optical microplate-based biosensors combine the advantages of label-free detection with industry-standard assay laboratory infrastructure and scalability. A plate-based label-free platform allows the same basic platform to be used to quantify molecular interactions of macromolecules and to screen and characterize drug-like small-molecule interactions. The ligand-binding domain of orphan estrogen-related nuclear receptor-γ (ERRγ) is utilized, as a model system of a challenging type of target, to illustrate the rapid development and utility of a range of biochemical assay formats on these biosensors. Formats in which either the domain, or a peptide derived from its cognate corepressor, RIP140, were immobilized were utilized. The direct binding of small drug molecules to the domain was characterized using immobilized domain. Subsequent addition of peptide distinguished whether compounds acted as either antagonists of peptide binding, or as agonists promoting a ternary complex. The format with peptide immobilized gave a more sensitive procedure for establishing the effect of compounds on the domain-peptide interaction. Using a direct-binding format, a diverse chemical library of 1,408 compounds in DMSO was screened for ability to bind to biosensors coated with ERRγ ligand-binding domain. Hits were then characterized using the other biosensor assay formats. The standard requirements for a full primary screening campaign were fulfilled by the acceptable hit-rate, quality-performance parameters, and throughput of the direct-binding assay format. Such a format allows direct screening of targets, such as orphan receptors, without the requirement for prior knowledge of a validated ligand.
Collapse
Affiliation(s)
- Laura Vela
- Screening and Compound Profiling, GlaxoSmithKline, Tres Cantos, Spain
| | | | | | | | | | | | | |
Collapse
|
90
|
Tiraby C, Hazen BC, Gantner ML, Kralli A. Estrogen-related receptor gamma promotes mesenchymal-to-epithelial transition and suppresses breast tumor growth. Cancer Res 2011; 71:2518-28. [PMID: 21339306 DOI: 10.1158/0008-5472.can-10-1315] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Estrogen-related receptors (ERR), ERR alpha (ERRα) and ERR gamma (ERRγ), are orphan nuclear receptors implicated in breast cancer that function similarly in the regulation of oxidative metabolism genes. Paradoxically, in clinical studies, high levels of ERRα are associated with poor outcomes whereas high levels of ERRγ are associated with a favorable course. Recent studies suggest that ERRα may indeed promote breast tumor growth. The roles of ERRγ in breast cancer progression and how ERRα and ERRγ may differentially affect cancer growth are unclear. In mammary carcinoma cells that do not express endogenous ERRγ, we found that ectopic expression of ERRγ enhanced oxidative metabolism in vitro and inhibited the growth of tumor xenografts in vivo. In contrast, ectopic expression of the ERRα coactivator PGC-1α enhanced oxidative metabolism but did not affect tumor growth. Notably, ERRγ activated expression of a genetic program characteristic of mesenchymal-to-epithelial transition (MET). This program was apparent by changes in cellular morphology, upregulation of epithelial cell markers, downregulation of mesenchymal markers, and decreased cellular invasiveness. We determined that this program was also associated with upregulation of E-cadherin, which is activated directly by ERRγ. In contrast, PGC-1α activated only a subset of genes characteristic of the MET program and, unlike ERRγ, did not upregulate E-cadherin. In conclusion, these results show that ERRγ induces E-cadherin, promotes MET, and suppresses breast cancer growth. Our findings suggest that ERRγ agonists may have applications in the treatment of breast cancer.
Collapse
Affiliation(s)
- Claire Tiraby
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA
| | | | | | | |
Collapse
|
91
|
Tennessen JM, Baker KD, Lam G, Evans J, Thummel CS. The Drosophila estrogen-related receptor directs a metabolic switch that supports developmental growth. Cell Metab 2011; 13:139-48. [PMID: 21284981 PMCID: PMC3072597 DOI: 10.1016/j.cmet.2011.01.005] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 11/10/2010] [Accepted: 12/07/2010] [Indexed: 12/25/2022]
Abstract
Metabolism must be coordinated with development to provide the appropriate energetic needs for each stage in the life cycle. Little is known, however, about how this temporal control is achieved. Here, we show that the Drosophila ortholog of the estrogen-related receptor (ERR) family of nuclear receptors directs a critical metabolic transition during development. dERR mutants die as larvae with low ATP levels and elevated levels of circulating sugars. The expression of active dERR protein in mid-embryogenesis triggers a coordinate switch in gene expression that drives a metabolic program normally associated with proliferating cells, supporting the dramatic growth that occurs during larval development. This study shows that dERR plays a central role in carbohydrate metabolism, demonstrates that a proliferative metabolic program is used in normal developmental growth, and provides a molecular context to understand the close association between mammalian ERR family members and cancer.
Collapse
Affiliation(s)
- Jason M. Tennessen
- Department of Human Genetics, University of Utah School of Medicine, 15 N 2030 E Rm 2100, Salt Lake City, UT 84112-5330 USA
| | - Keith D. Baker
- Department of Human Genetics, University of Utah School of Medicine, 15 N 2030 E Rm 2100, Salt Lake City, UT 84112-5330 USA
| | - Geanette Lam
- Department of Human Genetics, University of Utah School of Medicine, 15 N 2030 E Rm 2100, Salt Lake City, UT 84112-5330 USA
| | - Janelle Evans
- Department of Human Genetics, University of Utah School of Medicine, 15 N 2030 E Rm 2100, Salt Lake City, UT 84112-5330 USA
| | - Carl S. Thummel
- Department of Human Genetics, University of Utah School of Medicine, 15 N 2030 E Rm 2100, Salt Lake City, UT 84112-5330 USA
- Correspondence:
| |
Collapse
|
92
|
Chao WR, Amin K, Shi Y, Hobbs P, Tanabe M, Tanga M, Jong L, Collins N, Peters R, Laderoute K, Dinh D, Yean D, Hou C, Sato B, Alt C, Sambucetti L. SR16388: a steroidal antiangiogenic agent with potent inhibitory effect on tumor growth in vivo. Angiogenesis 2010; 14:1-16. [PMID: 21104121 DOI: 10.1007/s10456-010-9191-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 10/18/2010] [Indexed: 12/15/2022]
Abstract
Angiogenesis is one of the major processes controlling growth and metastasis of tumors. Angiogenesis inhibitors have been targeted for the treatment of various cancers for more than 2 decades. We have developed a novel class of steroidal compounds aimed at blocking the angiogenic process in cancerous tissues. Our lead compound, SR16388, is a potent antiangiogenic agent with binding affinity to estrogen receptor-α (ER-α) and -β (ER-β) at the nanomolar range. This compound inhibited the proliferation of human microvascular endothelial cells (HMVEC) and various types of human cancer cells in vitro. SR16388 inhibited embryonic angiogenesis as measured in the chick chorioallantoic membrane (CAM) assay. The blood vessel density in the CAM was greatly reduced after the embryos were treated with 3 μg/CAM of SR16388 for 24 h. SR16388 at a dose of 2 μM prevented tube formation in Matrigel after HMVEC cells were treated for 8 h. In a modified Boyden chamber assay, SR16388 inhibited the migration of HMVECs by 80% at 500 nM. Using a novel in vivo Fibrin Z-chamber model, we demonstrated that SR16388 at a single daily oral dose of 3 mg/kg for 12 days significantly inhibited the granulation tissue (GT) thickness and the microvessel density of the GT as compared to control. More importantly, SR16388 down-regulated the pro-angiogenic transcription factors, hypoxia inducible factor 1α (HIF-1α) and signal transducer and activator of transcription 3 (STAT3) in non-small cell lung cancer (NSCLC) cells. Together, these effects of SR16388 can lead to the reduction of vascularization and tumor growth in vivo.
Collapse
Affiliation(s)
- Wan-Ru Chao
- Drug Discovery Department, Biosciences Division, SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Abstract
The beating heart requires a constant flux of ATP to maintain contractile function, and there is increasing evidence that energetic defects contribute to the development of heart failure. The last 10 years have seen a resurgent interest in cardiac intermediary metabolism and a dramatic increase in our understanding of transcriptional networks that regulate cardiac energetics. The PPAR-γ coactivator (PGC)-1 family of proteins plays a central role in these pathways. The mechanisms by which PGC-1 proteins regulate transcriptional networks and are regulated by physiological cues, as well as the roles they play in cardiac development and disease, are reviewed here.
Collapse
Affiliation(s)
- Glenn C Rowe
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | | |
Collapse
|
94
|
Gallet M, Vanacker JM. ERR receptors as potential targets in osteoporosis. Trends Endocrinol Metab 2010; 21:637-41. [PMID: 20674386 DOI: 10.1016/j.tem.2010.06.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 06/18/2010] [Accepted: 06/28/2010] [Indexed: 01/12/2023]
Abstract
The bone fragility and increased fracture risk associated with osteoporosis in post-menopausal women is a major public health concern. Current treatments for osteoporosis relying on hormone replacement therapies are suspected to have an association with increased breast cancer risk, highlighting the need for identifying new potential targets in bone. Recent data suggest that the estrogen-related receptor (ERR)α, an orphan nuclear receptor, represses osteoblast differentiation, and that its deletion in knockout mouse models results in increased mineral density. Furthermore, modulation of ERRα activity reduces proliferation and tumorigenesis of breast cancer cells. These results indicated that inhibition of ERRα might provide a treatment for osteoporosis without displaying adverse effects in breast cancer. This review focuses on the role of the ERR receptors, and in particular ERRα, in the differentiation of bone precursor cells and its consequences on bone homeostasis, and discusses the possible grounds for the discrepancies reported in the literature.
Collapse
Affiliation(s)
- Marlène Gallet
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, INRA, Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon cedex 07, France
| | | |
Collapse
|
95
|
Duellman SJ, Calaoagan JM, Sato BG, Fine R, Klebansky B, Chao WR, Hobbs P, Collins N, Sambucetti L, Laderoute KR. A novel steroidal inhibitor of estrogen-related receptor alpha (ERR alpha). Biochem Pharmacol 2010; 80:819-26. [PMID: 20513360 PMCID: PMC2918268 DOI: 10.1016/j.bcp.2010.05.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 05/20/2010] [Accepted: 05/21/2010] [Indexed: 01/15/2023]
Abstract
The orphan nuclear receptor estrogen-related receptor alpha (ERRalpha) has been implicated in the development of various human malignancies, including breast, prostate, ovary, and colon cancer. ERRalpha, bound to a co-activator protein (e.g., peroxisome proliferator receptor gamma co-activator-1alpha, PGC-1alpha), regulates cellular energy metabolism by activating transcription of genes involved in various metabolic processes, such as mitochondrial genesis, oxidative phosphorylation, and fatty acid oxidation. Accumulating evidence suggests that ERRalpha is a novel target for solid tumor therapy, conceivably through effects on the regulation of tumor cell energy metabolism associated with energy stress within solid tumor microenvironments. This report describes a novel steroidal antiestrogen (SR16388) that binds selectively to ERRalpha, but not to ERRbeta or ERRgamma, as determined using a time-resolved fluorescence resonance energy transfer assay. SR16388 potently inhibits ERRalpha's transcriptional activity in reporter gene assays, and prevents endogenous PGC-1alpha and ERRalpha from being recruited to the promoters or enhancers of target genes. Representative in vivo results show that SR16388 inhibited the growth of human prostate tumor xenografts in nude mice as a single agent at 30mg/kg given once daily and 100mg/kg given once weekly. In a combination study, SR16388 (10mg/kg, once daily) and paclitaxel (7.5mg/kg, twice weekly) inhibited the growth of prostate tumor xenografts in nude mice by 61% compared to untreated xenograft tumors. SR16388 also inhibited the proliferation of diverse human tumor cell lines after a 24-h exposure to the compound. SR16388 thus has utility both as an experimental antitumor agent and as a chemical probe of ERRalpha biology.
Collapse
Affiliation(s)
- Sarah J Duellman
- Biosciences Division, SRI International, 333 Ravenswood Ave., Menlo Park, CA 94025, United States.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Riggins RB, Mazzotta MM, Maniya OZ, Clarke R. Orphan nuclear receptors in breast cancer pathogenesis and therapeutic response. Endocr Relat Cancer 2010; 17:R213-31. [PMID: 20576803 PMCID: PMC3518023 DOI: 10.1677/erc-10-0058] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nuclear receptors comprise a large family of highly conserved transcription factors that regulate many key processes in normal and neoplastic tissues. Most nuclear receptors share a common, highly conserved domain structure that includes a carboxy-terminal ligand-binding domain. However, a subgroup of this gene family is known as the orphan nuclear receptors because to date there are no known natural ligands that regulate their activity. Many of the 25 nuclear receptors classified as orphan play critical roles in embryonic development, metabolism, and the regulation of circadian rhythm. Here, we review the emerging role(s) of orphan nuclear receptors in breast cancer, with a particular focus on two of the estrogen-related receptors (ERRalpha and ERRgamma) and several others implicated in clinical outcome and response or resistance to cytotoxic or endocrine therapies, including the chicken ovalbumin upstream promoter transcription factors, nerve growth factor-induced B, DAX-1, liver receptor homolog-1, and retinoic acid-related orphan receptor alpha. We also propose that a clearer understanding of the function of orphan nuclear receptors in mammary gland development and normal mammary tissues could significantly improve our ability to diagnose, treat, and prevent breast cancer.
Collapse
Affiliation(s)
- Rebecca B. Riggins
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University School of Medicine, 3970 Reservoir Road NW, Washington, DC 20057, USA
| | - Mary M. Mazzotta
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University School of Medicine, 3970 Reservoir Road NW, Washington, DC 20057, USA
| | - Omar Z. Maniya
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University School of Medicine, 3970 Reservoir Road NW, Washington, DC 20057, USA
| | - Robert Clarke
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University School of Medicine, 3970 Reservoir Road NW, Washington, DC 20057, USA
- Department of Physiology and Biophysics, Georgetown University School of Medicine, 3970 Reservoir Road NW, Washington, DC 20057, USA
| |
Collapse
|
97
|
Ranhotra HS. The estrogen-related receptor alpha: the oldest, yet an energetic orphan with robust biological functions. J Recept Signal Transduct Res 2010; 30:193-205. [PMID: 20497091 DOI: 10.3109/10799893.2010.487493] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The estrogen-related receptor alpha (ERRalpha) is an orphan nuclear receptor (ONR) that by binding to DNA sites controls gene expression in association with coactivators and corepressors. ERRalpha was the first ONR to be identified; however, its natural endogenous ligand(s) is still unknown. ERRalpha by acting as a transcription factor has been shown to regulate a large array of genes, thereby controlling numerous metabolic pathways and other biological functions in animals. Of late, the expression of ERRalpha has been detected in several tissues, including those with high metabolic activities and energy demand. Presently, the control of energy balance by ERRalpha seems to be its prime role. The nonavailability of endogenous ligand for ERRalpha has not impeded the study of its functions. In fact, most of the present knowledge of the biological roles of ERRalpha has evolved from in-depth biochemical, overexpression, genomic, including functional genomics studies, and also through the generation of intact ERRalpha knockout (null) mice. Interestingly, over the past few years, growing evidence suggests interplay between ERRalpha and various human metabolic diseases such as diabetes, obesity, and heart disease. Also, there are strong indications of the involvement of ERRalpha in cancer initiation and progression. Interestingly, this makes ERRalpha a suitable, direct target for pharmacological intervention in treating such diseases. This review focuses on the overall developments and recent advances in understanding the role of ERRalpha in metabolism and other biological functions, including its role in human diseases.
Collapse
Affiliation(s)
- Harmit S Ranhotra
- Orphan Receptor Laboratory, Department of Biochemistry, St. Edmund's College, Shillong, India.
| |
Collapse
|
98
|
The orphan nuclear hormone receptor ERRbeta controls rod photoreceptor survival. Proc Natl Acad Sci U S A 2010; 107:11579-84. [PMID: 20534447 DOI: 10.1073/pnas.1000102107] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Mutation of rod photoreceptor-enriched transcription factors is a major cause of inherited blindness. We identified the orphan nuclear hormone receptor estrogen-related receptor beta (ERRbeta) as selectively expressed in rod photoreceptors. Overexpression of ERRbeta induces expression of rod-specific genes in retinas of wild-type as well as Nrl(-/-) mice, which lack rod photoreceptors. Mutation of ERRbeta results in dysfunction and degeneration of rods, whereas inverse agonists of ERRbeta trigger rapid rod degeneration, which is rescued by constitutively active mutants of ERRbeta. ERRbeta coordinates expression of multiple genes that are rate-limiting regulators of ATP generation and consumption in photoreceptors. Furthermore, enhancing ERRbeta activity rescues photoreceptor defects that result from loss of the photoreceptor-specific transcription factor Crx. Our findings demonstrate that ERRbeta is a critical regulator of rod photoreceptor function and survival, and suggest that ERRbeta agonists may be useful in the treatment of certain retinal dystrophies.
Collapse
|
99
|
Alaynick WA, Way JM, Wilson SA, Benson WG, Pei L, Downes M, Yu R, Jonker JW, Holt JA, Rajpal DK, Li H, Stuart J, McPherson R, Remlinger KS, Chang CY, McDonnell DP, Evans RM, Billin AN. ERRgamma regulates cardiac, gastric, and renal potassium homeostasis. Mol Endocrinol 2009; 24:299-309. [PMID: 19965931 DOI: 10.1210/me.2009-0114] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Energy production by oxidative metabolism in kidney, stomach, and heart, is primarily expended in establishing ion gradients to drive renal electrolyte homeostasis, gastric acid secretion, and cardiac muscle contraction, respectively. In addition to orchestrating transcriptional control of oxidative metabolism, the orphan nuclear receptor, estrogen-related receptor gamma (ERRgamma), coordinates expression of genes central to ion homeostasis in oxidative tissues. Renal, gastric, and cardiac tissues subjected to genomic analysis of expression in perinatal ERRgamma null mice revealed a characteristic dysregulation of genes involved in transport processes, exemplified by the voltage-gated potassium channel, Kcne2. Consistently, ERRgamma null animals die during the first 72 h of life with elevated serum potassium, reductions in key gastric acid production markers, and cardiac arrhythmia with prolonged QT intervals. In addition, we find altered expression of several genes associated with hypertension in ERRgamma null mice. These findings suggest a potential role for genetic polymorphisms at the ERRgamma locus and ERRgamma modulators in the etiology and treatment of renal, gastric, and cardiac dysfunction.
Collapse
Affiliation(s)
- William A Alaynick
- Gene Expression Laboratory and the Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California 92037, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Ranhotra HS. Up-regulation of orphan nuclear estrogen-related receptor alpha expression during long-term caloric restriction in mice. Mol Cell Biochem 2009; 332:59-65. [PMID: 19504233 DOI: 10.1007/s11010-009-0174-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2009] [Accepted: 05/21/2009] [Indexed: 01/19/2023]
Abstract
The estrogen-related receptor alpha (ERRalpha) is an orphan receptor belonging to the nuclear receptor superfamily that regulates a number of target genes encoding enzymes that participate in various metabolic pathways involved in maintaining energy balance in animals. In this study, whether long-term caloric restriction (alternate days of fasting for 3 months) in mice modulates the expression of ERRalpha in various tissues was investigated. Western blot analyses showed positive immunoreactive ERRalpha protein (53 kDa) band in various mice tissue extracts, though at varying levels. Heart, kidney, and skeletal muscles expressed significant levels of ERRalpha, with a comparatively lower level detected in the intestine, brain, and liver. Cardiac ERRalpha expression was the highest, with the least detected in the liver. Caloric restricted mice exhibited a significant increase in ERRalpha level in the heart (5.45-fold), kidney (3.70-fold), skeletal muscle (3.0-fold), small intestine (2.72-fold), and liver (2.44-fold) extracts as compared to ad libitum fed. However, caloric restriction could not evoke any detectable receptor level change in the brain. Notably, the highest ERRalpha up-regulation was detected in the heart. This up-regulation in ERRalpha level especially in highly oxidative tissues such as heart, kidney, small intestine, and skeletal muscle of caloric restricted mice may be helpful in modulating ERRalpha responsive genes that participates in maintaining energy balance. This may potentially strengthen the metabolic and biochemical adaptation in such tissues, which is necessary for animal survival under long-term caloric restriction.
Collapse
Affiliation(s)
- Harmit S Ranhotra
- Department of Biochemistry, St. Edmund's College, Shillong, 793 003, India.
| |
Collapse
|