51
|
Kawanishi K. Diverse properties of the mesothelial cells in health and disease. Pleura Peritoneum 2016; 1:79-89. [PMID: 30911611 DOI: 10.1515/pp-2016-0009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/19/2016] [Indexed: 12/17/2022] Open
Abstract
Mesothelial cells (MCs) form the superficial anatomic layer of serosal membranes, including pleura, pericardium, peritoneum, and the tunica of the reproductive organs. MCs produce a protective, non-adhesive barrier against physical and biochemical damages. MCs express a wide range of phenotypic markers, including vimentin and cytokeratins. MCs play key roles in fluid transport and inflammation, as reflected by the modulation of biochemical markers such as transporters, adhesion molecules, cytokines, growth factors, reactive oxygen species and their scavengers. MCs synthesize extracellular matrix related molecules, and the surface of MC microvilli secretes a highly hydrophilic protective barrier, "glycocalyx", consisting mainly of glycosaminoglycans. MCs maintain a balance between procoagulant and fibrinolytic activation by producing a whole range of regulators, can synthetize fibrin and therefore form adhesions. Synthesis and recognition of hyaluronan and sialic acids might be a new insight to explain immunoactive and immunoregulatory properties of MCs. Epithelial to mesenchymal transition of MCs may involve serosal repair and remodeling. MCs might also play a role in the development and remodeling of visceral adipose tissue. Taken together, MCs play important roles in health and disease in serosal cavities of the body. The mesothelium is not just a membrane and should be considered as an organ.
Collapse
|
52
|
Zhou Q, Bajo MA, Del Peso G, Yu X, Selgas R. Preventing peritoneal membrane fibrosis in peritoneal dialysis patients. Kidney Int 2016; 90:515-24. [PMID: 27282936 DOI: 10.1016/j.kint.2016.03.040] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 03/13/2016] [Accepted: 03/24/2016] [Indexed: 12/11/2022]
Abstract
Long-term peritoneal dialysis causes morphologic and functional changes in the peritoneal membrane. Although mesothelial-mesenchymal transition of peritoneal mesothelial cells is a key process leading to peritoneal fibrosis, and bioincompatible peritoneal dialysis solutions (glucose, glucose degradation products, and advanced glycation end products or a combination) are responsible for altering mesothelial cell function and proliferation, mechanisms underlying these processes remain largely unclear. Peritoneal fibrosis has 2 cooperative parts, the fibrosis process itself and the inflammation. The link between these 2 processes is frequently bidirectional, with each one inducing the other. This review outlines our current understanding about the definition and pathophysiology of peritoneal fibrosis, recent studies on key fibrogenic molecular machinery in peritoneal fibrosis, such as the role of transforming growth factor-β/Smads, transforming growth factor-β β/Smad independent pathways, and noncoding RNAs. The diagnosis of peritoneal fibrosis, including effluent biomarkers and the histopathology of a peritoneal biopsy, which is the gold standard for demonstrating peritoneal fibrosis, is introduced in detail. Several interventions for peritoneal fibrosis based on biomarkers, cytology, histology, functional studies, and antagonists are presented in this review. Recent experimental trials in animal models, including pharmacology and gene therapy, which could offer novel insights into the treatment of peritoneal fibrosis in the near future, are also discussed in depth.
Collapse
Affiliation(s)
- Qin Zhou
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - M-Auxiliadora Bajo
- Nephrology Service, Hospital Universitario La Paz, IdiPAZ, REDinREN, Fibroteam, IRSIN, Madrid, Spain
| | - Gloria Del Peso
- Nephrology Service, Hospital Universitario La Paz, IdiPAZ, REDinREN, Fibroteam, IRSIN, Madrid, Spain
| | - Xueqing Yu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rafael Selgas
- Nephrology Service, Hospital Universitario La Paz, IdiPAZ, REDinREN, Fibroteam, IRSIN, Madrid, Spain
| |
Collapse
|
53
|
Xiang S, Li M, Xie X, Xie Z, Zhou Q, Tian Y, Lin W, Zhang X, Jiang H, Shou Z, Chen J. Rapamycin inhibits epithelial-to-mesenchymal transition of peritoneal mesothelium cells through regulation of Rho GTPases. FEBS J 2016; 283:2309-25. [PMID: 27093550 DOI: 10.1111/febs.13740] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/01/2016] [Accepted: 04/18/2016] [Indexed: 12/26/2022]
Abstract
Epithelial-mesenchymal transition (EMT) of peritoneal mesothelial cells (PMCs) is a key process of peritoneal fibrosis. Rapamycin has been previously shown to inhibit EMT of PMCs and prevent peritoneal fibrosis. In this study, we investigated the undefined molecular mechanisms by which rapamycin inhibits EMT of PMCs. To define the protective effect of rapamycin, we initially used a rat PD model which was daily infused with 20 mL of 4.25% high glucose (HG) dialysis solution for 6 weeks to induce fibrosis. The HG rats showed decreased ultrafiltration volume and obvious fibroproliferative response, with markedly increased peritoneal thickness and higher expression of α-smooth muscle actin (α-SMA) and transforming growth factor-β1. Rapamycin significantly ameliorated those pathological changes. Next, we treated rat PMCs with HG to induce EMT and/or rapamycin for indicated time. Rapamycin significantly inhibited HG-induced EMT, which manifests as increased expression of α-SMA, fibronectin, and collagen I, decreased expression of E-cadherin, and increased mobility. HG increased the phosphorylation of PI3K, Akt, and mTOR. Importantly, rapamycin inhibits the RhoA, Rac1, and Cdc42 activated by HG. Moreover, rapamycin repaired the pattern of F-actin distribution induced by HG, reducing the formation of stress fiber, focal adhesion, lamellipodia, and filopodia. Thus, rapamycin shows an obvious protective effect on HG-induced EMT, by inhibiting the activation of Rho GTPases (RhoA, Rac1, and Cdc42).
Collapse
Affiliation(s)
- Shilong Xiang
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Meng Li
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xishao Xie
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhoutao Xie
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qin Zhou
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuanshi Tian
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weiqiang Lin
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Xiaohui Zhang
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hong Jiang
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhangfei Shou
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Nephrology department, Zhejiang University International Hospital, Hangzhou, China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
54
|
Yung S, Lui SL, Ng CKF, Yim A, Ma MKM, Lo KY, Chow CC, Chu KH, Chak WL, Lam MF, Yung CY, Yip TPS, Wong S, Tang CSO, Ng FSK, Chan TM. Impact of a low-glucose peritoneal dialysis regimen on fibrosis and inflammation biomarkers. Perit Dial Int 2016; 35:147-58. [PMID: 25904773 DOI: 10.3747/pdi.2014.00125] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The impact of a low-glucose peritoneal dialysis (PD) regimen on biomarkers of peritoneal inflammation, fibrosis and membrane integrity remains to be investigated. METHODS In a randomized, prospective study, 80 incident PD patients received either a low-glucose regimen comprising Physioneal (P), Extraneal (E) and Nutrineal (N) (Baxter Healthcare Corporation, Deerfield, IL, USA) (PEN group), or Dianeal (control group) for 12 months, after which both groups continued with Dianeal dialysis for 6 months. Serum and dialysate levels of vascular endothelial growth factor (VEGF), decorin, hepatocyte growth factor (HGF), interleukin-6 (IL-6), macrophage migration inhibitory factor (MIF), hyaluronan (HA), adiponectin, soluble-intracellular adhesion molecule (s-ICAM), vascular cell adhesion molecule-1 (VCAM-1) and P-selectin, and dialysate cancer antigen 125 (CA125), were measured after 12 and 18 months. This paper focuses on results after 12 months, when patients in the PEN group changed to glucose-based PD fluid (PDF). RESULTS At the end of 12 months, effluent dialysate levels of CA125, decorin, HGF, IL-6, adiponectin and adhesion molecules were significantly higher in the PEN group compared to controls, but all decreased after patients switched to glucose-based PDF. Macrophage migration inhibitory factor level was lower in the PEN group but increased after changing to glucose-based PDF and was similar to controls at 18 months. Serum adiponectin level was higher in the PEN group at 12 months, but was similar in the 2 groups at 18 months. Body weight, residual renal function, ultrafiltration volume and total Kt/V did not differ between both groups. Dialysate-to-plasma creatinine ratio at 4 h was higher in the PEN group at 12 months and remained so after switching to glucose-based PDF. CONCLUSION Changes in the biomarkers suggest that the PEN PD regimen may be associated with better preservation of peritoneal membrane integrity and reduced systemic vascular endothelial injury.
Collapse
Affiliation(s)
- Susan Yung
- Department of Medicine, University of Hong Kong, Hong Kong
| | | | - Chris K F Ng
- Department of Medicine, University of Hong Kong, Hong Kong
| | - Andrew Yim
- Department of Medicine, University of Hong Kong, Hong Kong
| | | | | | | | | | | | | | | | | | | | - Colin S O Tang
- Department of Medicine, University of Hong Kong, Hong Kong
| | - Flora S K Ng
- Department of Medicine, University of Hong Kong, Hong Kong Tung Wah Hospital, Hong Kong
| | - Tak Mao Chan
- Department of Medicine, University of Hong Kong, Hong Kong Queen Mary Hospital, Hong Kong
| |
Collapse
|
55
|
Molecular Mechanisms Underlying Peritoneal EMT and Fibrosis. Stem Cells Int 2016; 2016:3543678. [PMID: 26941801 PMCID: PMC4752998 DOI: 10.1155/2016/3543678] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/10/2016] [Indexed: 12/26/2022] Open
Abstract
Peritoneal dialysis is a form of renal replacement alternative to the hemodialysis. During this treatment, the peritoneal membrane acts as a permeable barrier for exchange of solutes and water. Continual exposure to dialysis solutions, as well as episodes of peritonitis and hemoperitoneum, can cause acute/chronic inflammation and injury to the peritoneal membrane, which undergoes progressive fibrosis, angiogenesis, and vasculopathy, eventually leading to discontinuation of the peritoneal dialysis. Among the different events controlling this pathological process, epithelial to mesenchymal transition of mesothelial cells plays a main role in the induction of fibrosis and in subsequent functional deterioration of the peritoneal membrane. Here, the main extracellular inducers and cellular players are described. Moreover, signaling pathways acting during this process are elucidated, with emphasis on signals delivered by TGF-β family members and by Toll-like/IL-1β receptors. The understanding of molecular mechanisms underlying fibrosis of the peritoneal membrane has both a basic and a translational relevance, since it may be useful for setup of therapies aimed at counteracting the deterioration as well as restoring the homeostasis of the peritoneal membrane.
Collapse
|
56
|
Fan YP, Hsia CC, Tseng KW, Liao CK, Fu TW, Ko TL, Chiu MM, Shih YH, Huang PY, Chiang YC, Yang CC, Fu YS. The Therapeutic Potential of Human Umbilical Mesenchymal Stem Cells From Wharton's Jelly in the Treatment of Rat Peritoneal Dialysis-Induced Fibrosis. Stem Cells Transl Med 2015; 5:235-47. [PMID: 26718649 DOI: 10.5966/sctm.2015-0001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 10/08/2015] [Indexed: 11/16/2022] Open
Abstract
A major complication in continuous, ambulatory peritoneal dialysis in patients with end-stage renal disease who are undergoing long-term peritoneal dialysis (PD) is peritoneal fibrosis, which can result in peritoneal structural changes and functional ultrafiltration failure. Human umbilical mesenchymal stem cells (HUMSCs) in Wharton's jelly possess stem cell properties and are easily obtained and processed. This study focuses on the effects of HUMSCs on peritoneal fibrosis in in vitro and in vivo experiments. After 24-hour treatment with mixture of Dulbecco's modified Eagle's medium and PD solution at a 1:3 ratio, primary human peritoneal mesothelial cells became susceptible to PD-induced cell death. Such cytotoxic effects were prevented by coculturing with primary HUMSCs. In a rat model, intraperitoneal injections of 20 mM methylglyoxal (MGO) in PD solution for 3 weeks (the PD/MGO 3W group) markedly induced abdominal cocoon formation, peritoneal thickening, and collagen accumulation. Immunohistochemical analyses indicated neoangiogenesis and significant increase in the numbers of ED-1- and α-smooth muscle actin (α-SMA)-positive cells in the thickened peritoneum in the PD/MGO 3W group, suggesting that PD/MGO induced an inflammatory response. Furthermore, PD/MGO treatment for 3 weeks caused functional impairments in the peritoneal membrane. However, in comparison with the PD/MGO group, intraperitoneal administration of HUMSCs into the rats significantly ameliorated the PD/MGO-induced abdominal cocoon formation, peritoneal fibrosis, inflammation, neoangiogenesis, and ultrafiltration failure. After 3 weeks of transplantation, surviving HUMSCs were found in the peritoneum in the HUMSC-grafted rats. Thus, xenografts of HUMSCs might provide a potential therapeutic strategy in the prevention of peritoneal fibrosis. Significance: This study demonstrated that direct intraperitoneal transplantation of human umbilical mesenchymal stem cells into the rat effectively prevented peritoneal dialysis/methylglyoxal-induced abdominal cocoon formation, ultrafiltration failure, and peritoneal membrane alterations such as peritoneal thickening, fibrosis, and inflammation. These findings provide a basis for a novel approach for therapeutic benefits in the treatment of encapsulating peritoneal sclerosis.
Collapse
Affiliation(s)
- Yu-Pei Fan
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Ching-Chih Hsia
- Division of Nephrology, Department of Internal Medicine, Taipei City Hospital, Ren-Ai Branch, Taipei, Taiwan, Republic of China
| | - Kuang-Wen Tseng
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan, Republic of China
| | - Chih-Kai Liao
- School of Medicine, I-Shou University, Kaohsiung City, Taiwan, Republic of China
| | - Tz-Win Fu
- Laboratory Medicine Department, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
| | - Tsui-Ling Ko
- Department of Optometry, Shu-Zen College of Medicine and Management, Kaohsiung City, Taiwan, Republic of China
| | - Mei-Miao Chiu
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China Department of Medicine, Mackay Medical College, New Taipei, Taiwan, Republic of China
| | - Yang-Hsin Shih
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China School of Medicine, Taipei Medical University, Taipei, Taiwan, Republic of China
| | - Pei-Yu Huang
- Institute of Physiology, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Yi-Chia Chiang
- Taipei Municipal Zhong Shan Girls High School, Taipei, Taiwan, Republic of China
| | - Chih-Ching Yang
- Department of Planning, Ministry of Health and Welfare, Executive Yuan, Taipei, Taiwan, Republic of China Department of Internal Medicine
| | - Yu-Show Fu
- Department of Anatomy and Cell Biology, School of Medicine, Department of Education and Research, Taipei City Hospital, Taipei, Taiwan, Republic of China
| |
Collapse
|
57
|
Liu Y, Dong Z, Liu H, Zhu J, Liu F, Chen G. Transition of mesothelial cell to fibroblast in peritoneal dialysis: EMT, stem cell or bystander? Perit Dial Int 2015; 35:14-25. [PMID: 25700459 DOI: 10.3747/pdi.2014.00188] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Long-term peritoneal dialysis (PD) can lead to fibrotic changes in the peritoneum, characterized by loss of mesothelial cells (MCs) and thickening of the submesothelial area with an accumulation of collagen and myofibroblasts. The origin of myofibroblasts is a central question in peritoneal fibrosis that remains unanswered at present. Numerous clinical and experimental studies have suggested that MCs, through epithelial-mesenchymal transition (EMT), contribute to the pool of peritoneal myofibroblasts. However, recent work has placed significant doubts on the paradigm of EMT in organ fibrogenesis (in the kidney particularly), highlighting the need to reconsider the role of EMT in the generation of myofibroblasts in peritoneal fibrosis. In particular, selective cell isolation and lineage-tracing experiments have suggested the existence of progenitor cells in the peritoneum, which are able to switch to fibroblast-like cells when stimulated by the local environment. These findings highlight the plastic nature of MCs and its contribution to peritoneal fibrogenesis. In this review, we summarize the key findings and caveats of EMT in organ fibrogenesis, with a focus on PD-related peritoneal fibrosis, and discuss the potential of peritoneal MCs as a source of myofibroblasts.
Collapse
Affiliation(s)
- Yu Liu
- Department of Nephrology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Department of Cellular Biology and Anatomy, Georgia Regents University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, USA
| | - Zheng Dong
- Department of Nephrology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Department of Cellular Biology and Anatomy, Georgia Regents University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, USA Department of Nephrology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Department of Cellular Biology and Anatomy, Georgia Regents University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, USA
| | - Hong Liu
- Department of Nephrology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Department of Cellular Biology and Anatomy, Georgia Regents University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, USA
| | - Jiefu Zhu
- Department of Nephrology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Department of Cellular Biology and Anatomy, Georgia Regents University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, USA
| | - Fuyou Liu
- Department of Nephrology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Department of Cellular Biology and Anatomy, Georgia Regents University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, USA
| | - Guochun Chen
- Department of Nephrology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Department of Cellular Biology and Anatomy, Georgia Regents University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, USA
| |
Collapse
|
58
|
New developments in peritoneal fibroblast biology: implications for inflammation and fibrosis in peritoneal dialysis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:134708. [PMID: 26495280 PMCID: PMC4606153 DOI: 10.1155/2015/134708] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/11/2015] [Accepted: 08/25/2015] [Indexed: 01/19/2023]
Abstract
Uraemia and long-term peritoneal dialysis (PD) can lead to fibrotic thickening of the peritoneal membrane, which may limit its dialytic function. Peritoneal fibrosis is associated with the appearance of myofibroblasts and expansion of extracellular matrix. The extent of contribution of resident peritoneal fibroblasts to these changes is a matter of debate. Recent studies point to a significant heterogeneity and complexity of the peritoneal fibroblast population. Here, we review recent developments in peritoneal fibroblast biology and summarize the current knowledge on the involvement of peritoneal fibroblasts in peritoneal inflammation and fibrosis.
Collapse
|
59
|
Endoplasmic reticulum stress as a novel target to ameliorate epithelial-to-mesenchymal transition and apoptosis of human peritoneal mesothelial cells. J Transl Med 2015; 95:1157-73. [PMID: 26192086 DOI: 10.1038/labinvest.2015.91] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/18/2015] [Accepted: 05/12/2015] [Indexed: 02/06/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) and apoptosis of peritoneal mesothelial cells are known to be the earliest mechanisms of peritoneal fibrosis in peritoneal dialysis (PD). Endoplasmic reticulum (ER) stress with an unfolded protein response is regarded to have a role in the development of organ fibrosis. To investigate the potential role of ER stress as a target to prevent and/or delay the development of peritoneal fibrosis, we examined the effect of ER stress on EMT or apoptosis of human peritoneal mesothelial cells (HPMCs) and elucidated the mechanisms underlying the protective effect of ER stress preconditioning on TGF-β1-induced EMT. ER stress inducers, tunicamycin (TM) and thapsigargin (TG), induced EMT with Smad2/3 phosphorylation, an increased nuclear translocation of β-catenin and Snail expression. Low concentrations of TM and TG did not induce apoptosis within 48 h; however, high concentrations of TM- (>1 ng/ml) and TG- (>1 nM) induced apoptosis at 12 h with a persistent increase in C/EBP homologous protein. TGF-β1 induced EMT and apoptosis in HPMCs, which was ameliorated by taurine-conjugated ursodeoxycholic acid, an ER stress blocker. Interestingly, pre-treatment with TM or TG for 4 h also protected the cells from TGF-β1-induced EMT and apoptosis, demonstrating the role of ER stress as an adaptive response to protect HPMCs from EMT and apoptosis. Peritoneal mesothelial cells isolated from PD patients displayed an increase in GRP78/94, which was correlated with the degree of EMT. These findings suggest that the modulation of ER stress in HPMCs could serve as a novel approach to ameliorate peritoneal damage in PD patients.
Collapse
|
60
|
Ditsawanon P, Aramwit P. Preserving the peritoneal membrane in long-term peritoneal dialysis patients. J Clin Pharm Ther 2015; 40:508-516. [PMID: 26280248 DOI: 10.1111/jcpt.12318] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/20/2015] [Indexed: 12/24/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Peritoneal dialysis (PD) has been widely used by patients with end-stage renal disease. However, chronic exposure of the peritoneal membrane to bioincompatible PD solutions, and peritonitis and uraemia during long-term dialysis result in peritoneal membrane injury and thereby contribute to membrane changes, ultrafiltration (UF) failure, inadequate dialysis and technical failure. Therefore, preserving the peritoneal membrane is important to maintain the efficacy of PD. This article reviews the current literature on therapeutic agents for preserving the peritoneal membrane. METHODS A literature search of PubMed was conducted using the search terms peritoneal fibrosis, peritoneal sclerosis, membrane, integrity, preserve, therapy and peritoneal dialysis, but not including peritonitis. Published clinical trials, in vitro studies, experimental trials in animal models, meta-analyses and review articles were identified and reviewed for relevance. RESULTS AND DISCUSSION We focus on understanding how factors cause peritoneal membrane changes, the characteristics and mechanisms of peritoneal membrane changes in patients undergoing PD and the types of therapeutic agents for peritoneal membrane preservation. There have been many investigations into the preservation of the peritoneal membrane, including PD solution improvement, the inhibition of cytokine and growth factor expression using renin-angiotensin-aldosterone system (RAAS) blockade, glycosaminoglycans (GAGs), L-carnitine and taurine additives. In addition, there are potential future therapeutic agents that are still in experimental investigations. WHAT IS NEW AND CONCLUSION The efficacy of many of the therapeutic agents is uncertain because there are insufficient good-quality clinical studies. Overall membrane preservation and patient survival remain unproven in using more biocompatible PD solutions. With RAAS blockade, results are still inconclusive, as many of the clinical studies were retrospective. With GAGs, L-carnitine and taurine additives, there is no sufficiently long follow-up clinical study with a large sample size to support its efficacy. Therefore, better quality clinical studies within this area should be performed.
Collapse
Affiliation(s)
- P Ditsawanon
- Bioactive Resources for Innovative Clinical Applications Research Unit, Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - P Aramwit
- Bioactive Resources for Innovative Clinical Applications Research Unit, Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
61
|
Zhou Y, Wang Y, Wang S, Shen L. Hyperglycemia Promotes Human Gastric Carcinoma Progression via Aquaporin 3. Dig Dis Sci 2015; 60:2338-45. [PMID: 25777259 DOI: 10.1007/s10620-015-3625-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 03/03/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND Hyperglycemia plays an important role in the development of gastric carcinoma (GC). Aquaporin 3 (AQP3) is overexpressed in GC and involved in carcinogenesis and progression of GC. Hyperglycemia promotes AQP3 expression in human peritoneal mesothelial cells. AIMS To investigate whether hyperglycemia promotes progression of GC via AQP3. METHODS We enrolled 978 patients with GC and evaluated the correlation between preoperative fasting plasma glucose and clinicopathological features. AQP3 was detected by immunohistochemistry in human GC specimens. Western blotting and real-time quantitative polymerase chain reaction evaluated changes in AQP3 expression in human GC MGC803 and SGC7901 cells after co-culture with high glucose. Transwell migration and Cell Counting Kit-8 assays were used to determine migration and proliferation of GC cells. RESULTS Hyperglycemia (fasting plasma glucose ≥6.1 mM) correlated with tumor size, location, and pTNM stage. AQP3 expression in tumor tissue was associated with fasting plasma glucose levels. High glucose concentration upregulated AQP3 expression in a dose- and time-dependent manner. High glucose concentration promoted GC cell migration markedly, and AQP3 knockdown with siRNA could abolish the increase in cell migration. However, high glucose concentration inhibited cell proliferation, and AQP3 knockdown significantly enhanced the inhibitory effect of high glucose. The ERK and PI3K/AKT signaling pathways were involved in high glucose regulation of AQP3 in human GC cells. CONCLUSION Hyperglycemia promotes GC progress via AQP3. This improves our understanding of the mechanism of hyperglycemia-induced carcinogenesis and provides a potential therapeutic strategy for GC.
Collapse
Affiliation(s)
- Yangchun Zhou
- Division of Gastrointestinal Surgery, Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China,
| | | | | | | |
Collapse
|
62
|
He L, Che M, Hu J, Li S, Jia Z, Lou W, Li C, Yang J, Sun S, Wang H, Chen X. Twist contributes to proliferation and epithelial-to-mesenchymal transition-induced fibrosis by regulating YB-1 in human peritoneal mesothelial cells. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:2181-93. [PMID: 26055210 DOI: 10.1016/j.ajpath.2015.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 04/05/2015] [Accepted: 04/23/2015] [Indexed: 10/23/2022]
Abstract
Twist is overexpressed in high glucose (HG) damage of human peritoneal mesothelial cells (HPMCs) in vitro. Herein, we further identified its precise function related to fibrosis of peritoneal membranes (PMs). The overexpression and activation of Twist and YB-1 (official name, YBX1) and a transformed fibroblastic phenotype of HPMCs were found to be positively related to epithelial-mesenchymal transition progress and PM fibrosis ex vivo in 93 patients who underwent continuous ambulatory peritoneal dialysis (PD), and also in HG-induced immortal HPMCs and an animal model of PD. Evidence from chromatin immunoprecipitation and luciferase reporter assays supported that YBX1 is transcriptionally regulated by the direct binding of Twist to E-box. Overexpression of Twist and YB-1 led to an increase in epithelial-mesenchymal transition, proliferation, and cell cycle progress of HPMCs, which might contribute to PM fibrosis. In contrast, the silencing of Twist or YB-1 inhibited HG-induced growth and cell cycle progression of HPMCs; this led to a down-regulation in the expression of cyclin Ds and cyclin-dependent kinases, finally inhibiting PM fibrosis. Twist contributes to PM fibrosis during PD treatment, mainly through regulation of YB-1.
Collapse
Affiliation(s)
- Lijie He
- Department of Nephrology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China; State Key Laboratory of Cancer Biology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Mingwen Che
- Department of Nephrology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China; State Key Laboratory of Cancer Biology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China; Department of Medicine, No. 273 Hospital of PLA, Korla, Xinjiang, People's Republic of China
| | - Jinping Hu
- Department of Nephrology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China; State Key Laboratory of Cancer Biology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Sutong Li
- Department of Nephrology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China; Department of Nephrology, the Central Hospital of Xi'an, Xi'an, Shaanxi, People's Republic of China
| | - Zhen Jia
- Department of Nephrology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China; Department of Nephrology, the First Hospital of Xi'an, Xi'an, Shaanxi, People's Republic of China
| | - Weijuan Lou
- Department of Nephrology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Cuixiang Li
- Department of Nephrology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Jun Yang
- Department of Nephrology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Shiren Sun
- Department of Nephrology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China.
| | - Hanmin Wang
- Department of Nephrology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China.
| | - Xiangmei Chen
- Department of Nephrology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China; Department of Nephrology, State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital and Medical College, Beijing, People's Republic of China
| |
Collapse
|
63
|
Kim SW, Kim SJ, Langley RR, Fidler IJ. Modulation of the cancer cell transcriptome by culture media formulations and cell density. Int J Oncol 2015; 46:2067-75. [PMID: 25776572 PMCID: PMC4383016 DOI: 10.3892/ijo.2015.2930] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 10/13/2014] [Indexed: 12/12/2022] Open
Abstract
We investigated how varying the composition of cell culture formulations and growing cancer cells at different densities might affect tumor cell genotype. Specifically, we compared gene expression profiles generated by human MDA‑MB‑231 breast cancer cells cultured in different media [minimum essential medium (MEM), Dulbecco's modified Eagle's medium (DMEM), or Roswell Park Memorial Institute (RPMI)‑1640 medium] containing different concentrations of fetal bovine serum (FBS) or different sera (equine or bovine) that were grown at different cell densities. More than 2,000 genes were differentially modulated by at least a 2‑fold difference when MDA‑MB‑231 cancer cells were 90% confluent and compared with cultures that were 50% confluent. Altering the concentration of serum produced an even more pronounced effect on MDA‑MB‑231 cancer cell gene expression in that 2,981 genes were differentially expressed in a comparison between cells cultured in 0.1% FBS and same cell density cultures that were maintained in 10% FBS. A comparison between MDA‑MB‑231 cancer cells that were 90% confluent in MEM, DMEM, or RPMI‑1640 media, all containing 10% FBS, resulted in 8,925 differentially expressed genes. Moreover, one‑quarter (25.6%) of genes from our genome‑wide expression analysis were expressed at significantly different levels by cells grown in MEM, DMEM, or RPMI‑1640 media. Genes associated with epithelial‑mes-enchymal transition (EMT) were among the genes that were differentially modulated by cells grown in different cell culture formulations and these genes were verified at the protein level. Collectively, these results underscore the importance of accurate reporting and maintenance of uniform culture conditions to ensure reproducible results.
Collapse
Affiliation(s)
- Seung Wook Kim
- Department of Cancer Biology, Metastasis Research Laboratory, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sun-Jin Kim
- Department of Cancer Biology, Metastasis Research Laboratory, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert R Langley
- Department of Cancer Biology, Metastasis Research Laboratory, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Isaiah J Fidler
- Department of Cancer Biology, Metastasis Research Laboratory, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
64
|
Antoine MH, Debelle F, Piccirilli J, El Kaddouri F, Declèves AE, De Prez E, Husson C, Mies F, Bourgeade MF, Nortier JL. Human bone morphogenetic protein-7 does not counteract aristolochic acid-induced renal toxicity. J Appl Toxicol 2015; 35:1520-30. [PMID: 25663515 DOI: 10.1002/jat.3116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 11/08/2022]
Abstract
Aristolochic acids (AA) are nephrotoxic and profibrotic agents, leading to chronic kidney disease. As some controversial studies have reported a nephroprotective effect of exogenous recombinant human bone morphogenetic protein (rhBMP)-7 in several models of renal fibrosis, we investigated the putative effect of rhBMP-7 to prevent progressive tubulointerstitial damage after AA intoxication in vitro and in vivo. In vitro, the toxicity of AA on renal tubular cells was demonstrated by an increase in vimentin as well as a decrease in β-catenin expressions, reflecting a dedifferentiation process. Increased fibronectin and interleukin-6 levels were measured in the supernatants. Enhanced α-SMA mRNA levels associated to decreased E-cadherin mRNA levels were also measured. Incubation with rhBMP-7 only prevented the increase in vimentin and the decrease in β-catenin expressions. In vivo, in a rat model of AA nephropathy, severe tubulointerstitial lesions induced by AA after 10 and 35 days (collagen IV deposition and tubular atrophy), were not prevented by the rhBMP-7 treatment. Similarly, rhBMP-7 did not ameliorate the significant increase in urinary concentrations of transforming growth factor-β. In summary, our in vitro data demonstrated a poor beneficial effect of rhBMP-7 to reverse cell toxicity while, in vivo, there was no beneficial effect of rhBMP-7. Therefore, further investigations are needed to confirm the exact role of BMP-7 in progressive chronic kidney disease.
Collapse
Affiliation(s)
- Marie-Hélène Antoine
- Laboratory of Experimental Nephrology, Faculty of Medicine, Université Libre de Bruxelles, Brussels
| | - Frédéric Debelle
- Laboratory of Experimental Nephrology, Faculty of Medicine, Université Libre de Bruxelles, Brussels
| | - Julie Piccirilli
- Laboratory of Experimental Nephrology, Faculty of Medicine, Université Libre de Bruxelles, Brussels
| | - Fadoua El Kaddouri
- Laboratory of Experimental Nephrology, Faculty of Medicine, Université Libre de Bruxelles, Brussels
| | - Anne-Emilie Declèves
- Laboratory of Experimental Nephrology, Faculty of Medicine, Université Libre de Bruxelles, Brussels.,Laboratory of Molecular Physiology (URPhyM), University of Namur, Namur
| | - Eric De Prez
- Laboratory of Experimental Nephrology, Faculty of Medicine, Université Libre de Bruxelles, Brussels
| | - Cécile Husson
- Laboratory of Experimental Nephrology, Faculty of Medicine, Université Libre de Bruxelles, Brussels
| | - Frédérique Mies
- Laboratory of Physiology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Joëlle L Nortier
- Laboratory of Experimental Nephrology, Faculty of Medicine, Université Libre de Bruxelles, Brussels
| |
Collapse
|
65
|
Reza AMMT, Lee S, Shiwani S, Singh NK. KGF and BMP-6 intervene in cellular reprogramming and in mesenchymal-epithelial transition (MET) of 3T3L1 mouse adipose cells. Cell Biol Int 2015; 39:400-10. [PMID: 25492426 DOI: 10.1002/cbin.10407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 10/14/2014] [Indexed: 11/12/2022]
Abstract
Mesenchymal-epithelial transition (MET) is an inevitable process for cellular reprogramming. MET could be induced by suppressing epithelial-mesenchymal transition (EMT) signaling and activating an epithelial program within the cells. Aiming at MET, we investigated the potential of keratinocyte growth factor (KGF) and bone morphogenetic protein (BMP)-6 separately for the induction of MET in 3T3L1 mouse adipose cells and to trace the molecular events that probably upregulate during MET induction. KGF successfully induced MET through upregulation of epithelial related genes and transcript expression on 3T3L1 cells. In contrast, BMP-6 plays completely the reverse role through downregulation of all epithelial related genes and transcript expression. In KGF based treatment, seven genes (K8, K18, EpCAM, K5, K14, SMN1 and α-SMA) out of a total of eight genes were significantly (P < 0.05/P < 0.01) upregulated. Immunostaining and immunoblotting also revealed significant (P < 0.05/P < 0.01) expression of several epithelial-specific surface antigens and transcripts. Moreover, Ayoub Shaklar staining (specific to keratin) of KGF treated cells showed formation of keratin (reddish brown color) within cytoplasm of the cells, whereas control and BMP-6 treated cells did not. Conclusively, KGF was observed to have the potential to enhance MET and these clues could be used in future research into cellular reprogramming and regenerative medicine.
Collapse
Affiliation(s)
- Abu M M T Reza
- Laboratory of Stem Cell and Regenerative Biotechnology, Department of Animal Biotechnology, College of Animal Life Sciences, Kangwon National University, Chuncheon, Kangwon-do, Republic of Korea
| | | | | | | |
Collapse
|
66
|
Moinuddin Z, Summers A, Van Dellen D, Augustine T, Herrick SE. Encapsulating peritoneal sclerosis-a rare but devastating peritoneal disease. Front Physiol 2015; 5:470. [PMID: 25601836 PMCID: PMC4283512 DOI: 10.3389/fphys.2014.00470] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/16/2014] [Indexed: 01/08/2023] Open
Abstract
Encapsulating peritoneal sclerosis (EPS) is a devastating but, fortunately, rare complication of long-term peritoneal dialysis. The disease is associated with extensive thickening and fibrosis of the peritoneum resulting in the formation of a fibrous cocoon encapsulating the bowel leading to intestinal obstruction. The incidence of EPS ranges between 0.7 and 3.3% and increases with duration of peritoneal dialysis therapy. Dialysis fluid is hyperosmotic, hyperglycemic, and acidic causing chronic injury and inflammation in the peritoneum with loss of mesothelium and extensive tissue fibrosis. The pathogenesis of EPS, however, still remains uncertain, although a widely accepted hypothesis is the "two-hit theory," where, the first hit is chronic peritoneal membrane injury from long standing peritoneal dialysis followed by a second hit such as an episode of peritonitis, genetic predisposition and/or acute cessation of peritoneal dialysis, leading to EPS. Recently, EPS has been reported in patients shortly after transplantation suggesting that this procedure may also act as a possible second insult. The process of epithelial-mesenchymal transition of mesothelial cells is proposed to play a central role in the development of peritoneal sclerosis, a common characteristic of patients on dialysis, however, its importance in EPS is less clear. There is no established treatment for EPS although evidence from small case studies suggests that corticosteroids and tamoxifen may be beneficial. Nutritional support is essential and surgical intervention (peritonectomy and enterolysis) is recommended in later stages to relieve bowel obstruction.
Collapse
Affiliation(s)
- Zia Moinuddin
- Department of Transplantation, Manchester Royal Infirmary Manchester, UK ; Faculty of Medical and Human Sciences, Institute of Inflammation and Repair, University of Manchester, Manchester Academic Health Science Centre Manchester, UK
| | - Angela Summers
- Department of Transplantation, Manchester Royal Infirmary Manchester, UK
| | - David Van Dellen
- Department of Transplantation, Manchester Royal Infirmary Manchester, UK
| | - Titus Augustine
- Department of Transplantation, Manchester Royal Infirmary Manchester, UK
| | - Sarah E Herrick
- Faculty of Medical and Human Sciences, Institute of Inflammation and Repair, University of Manchester, Manchester Academic Health Science Centre Manchester, UK
| |
Collapse
|
67
|
Bernardo AP, Oliveira JC, Santos O, Carvalho MJ, Cabrita A, Rodrigues A. Hepatocyte growth factor signalizes peritoneal membrane failure in peritoneal dialysis. BMC Nephrol 2014; 15:201. [PMID: 25519900 PMCID: PMC4277824 DOI: 10.1186/1471-2369-15-201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 12/11/2014] [Indexed: 11/10/2022] Open
Abstract
Background Hepatocyte growth factor (HGF) counteracts peritoneal fibrosis in animal models and in-vitro studies, but no study explored effluent HGF in peritoneal dialysis (PD) patients with ultrafiltration failure (UFF). Our aim was to assess the relationship between effluent HGF with UF profile, free water transport (FWT) and small-solute transport. Methods We performed 4-hour, 3.86% PET with additional UF measurement at 60 minutes in 68 PD patients. MTACcreatinine, FWT, small-pore ultrafiltration, and effluent HGF were quantified. Results Effluent HGF negatively correlated with UF (r = −0.80, p = 0.009) and FWT (r = −0.69, p = 0.04). Patients with UFF had higher dialysate HGF (103 pg/mL vs 77 pg/mL, p = 0.018) and, although not statistically significant, those with FWT compromise had also higher dialysate HGF compared with subgroup of UFF without FWT compromise (104 pg/mL vs 88 pg/mL, p = 0.08). FWT ≤ 45% without clinical UFF was documented in some patients who also had increased effluent HGF. Conclusions Dialysate HGF concentration is significantly higher among patients with UFF, specially, if FWT is impaired, being a sign of peritoneal membrane deterioration.
Collapse
Affiliation(s)
- Ana Paula Bernardo
- Nephrology Department, St, António Hospital - Oporto Hospital Center, Oporto, Portugal.
| | | | | | | | | | | |
Collapse
|
68
|
Liu J, Zeng L, Zhao Y, Zhu B, Ren W, Wu C. Selenium suppresses lipopolysaccharide-induced fibrosis in peritoneal mesothelial cells through inhibition of epithelial-to-mesenchymal transition. Biol Trace Elem Res 2014; 161:202-9. [PMID: 25108639 DOI: 10.1007/s12011-014-0091-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/22/2014] [Indexed: 01/12/2023]
Abstract
Peritoneal fibrosis resulting from long-term clinical peritoneal dialysis has been the main reason of dropout from peritoneal dialysis. Peritonitis as a common complication of peritoneal dialysis treatment may lead to the occurrences of peritoneal fibrosis. We cultured peritoneal mesothelial cells with lipopolysaccharides (LPS) in order to stimulate the environment of peritonitis and investigate whether lipopolysaccharides could induce epithelial-to-mesenchymal transition (EMT). Oxidative stress could stimulate fibrogenesis while selenium has antioxidant properties. So, this study also explored whether selenium supplementation affects lipopolysaccharide-induced EMT and fibrosis. We found that lipopolysaccharides could activate EMT changes such as the loss of E-cadherin and the increase of α-smooth muscle actin (α-SMA), collagen I, vimentin, and fibronectin (FN), while selenium inhibits EMT by modulating reactive oxygen species (ROS) generation and ROS/MMP-9 signaling pathways in peritoneal mesothelial cells. Moreover, it was revealed that selenium decreased the EMT events of peritoneal mesothelial cells via inhibition of PI3k/AKT pathways. In conclusion, these findings enable a better understanding of the mechanism of peritoneal fibrosis and explore a new idea for the prevention and treatment.
Collapse
Affiliation(s)
- Jinyan Liu
- Department of Nephrology, Jining No.1 People's Hospital, Jining, 272100, Shandong, People's Republic of China
| | | | | | | | | | | |
Collapse
|
69
|
Xu H, Wu X, Qin H, Tian W, Chen J, Sun L, Fang M, Xu Y. Myocardin-Related Transcription Factor A Epigenetically Regulates Renal Fibrosis in Diabetic Nephropathy. J Am Soc Nephrol 2014; 26:1648-60. [PMID: 25349198 DOI: 10.1681/asn.2014070678] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/09/2014] [Indexed: 11/03/2022] Open
Abstract
Diabetic nephropathy (DN) is one of the most common complications associated with diabetes and characterized by renal microvascular injury along with accelerated synthesis of extracellular matrix proteins causing tubulointerstitial fibrosis. Production of type I collagen, the major component of extracellular matrix, is augmented during renal fibrosis after chronic exposure to hyperglycemia. However, the transcriptional modulator responsible for the epigenetic manipulation leading to induction of type I collagen genes is not clearly defined. We show here that tubulointerstitial fibrosis as a result of DN was diminished in myocardin-related transcription factor A (MRTF-A) -deficient mice. In cultured renal tubular epithelial cells and the kidneys of mice with DN, MRTF-A was induced by glucose and synergized with glucose to activate collagen transcription. Notably, MRTF-A silencing led to the disappearance of prominent histone modifications indicative of transcriptional activation, including acetylated histone H3K18/K27 and trimethylated histone H3K4. Detailed analysis revealed that MRTF-A recruited p300, a histone acetyltransferase, and WD repeat-containing protein 5 (WDR5), a key component of the histone H3K4 methyltransferase complex, to the collagen promoters and engaged these proteins in transcriptional activation. Estradiol suppressed collagen production by dampening the expression and binding activity of MRTF-A and interfering with the interaction between p300 and WDR5 in renal epithelial cells. Therefore, targeting the MRTF-A-associated epigenetic machinery might yield interventional strategies against DN-associated renal fibrosis.
Collapse
Affiliation(s)
- Huihui Xu
- State Key Laboratory of Reproductive Medicine, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology and
| | - Xiaoyan Wu
- State Key Laboratory of Reproductive Medicine, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology and Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Hao Qin
- State Key Laboratory of Reproductive Medicine, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology and
| | - Wenfang Tian
- State Key Laboratory of Reproductive Medicine, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology and
| | - Junliang Chen
- State Key Laboratory of Reproductive Medicine, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology and School of Basic Medical Sciences, Jiangnan University, Wuxi, China
| | - Lina Sun
- State Key Laboratory of Reproductive Medicine, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology and Department of Pathology and Pathophysiology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China; and
| | - Mingming Fang
- State Key Laboratory of Reproductive Medicine, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology and Department of Medicine and Nursing, Jiangsu Jiankang Vocational University, Nanjing, China
| | - Yong Xu
- State Key Laboratory of Reproductive Medicine, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology and
| |
Collapse
|
70
|
He L, Lou W, Ji L, Liang W, Zhou M, Xu G, Zhao L, Huang C, Li R, Wang H, Chen X, Sun S. Serum response factor accelerates the high glucose-induced Epithelial-to-Mesenchymal Transition (EMT) via snail signaling in human peritoneal mesothelial cells. PLoS One 2014; 9:e108593. [PMID: 25303231 PMCID: PMC4193747 DOI: 10.1371/journal.pone.0108593] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 09/01/2014] [Indexed: 01/06/2023] Open
Abstract
Background Epithelial-to-Mesenchymal Transition (EMT) induced by glucose in human peritoneal mesothelial cells (HPMCs) is a major cause of peritoneal membrane (PM) fibrosis and dysfunction. Methods To investigate serum response factor (SRF) impacts on EMT-derived fibrosis in PM, we isolated HPMCs from the effluents of patients with end-stage renal disease (ESRD) to analyze alterations during peritoneal dialysis (PD) and observe the response of PM to SRF in a rat model. Results Our results demonstrated the activation and translocation of SRF into the nuclei of HPMCs under extensive periods of PD. Accordingly, HPMCs lost their epithelial morphology with a decrease in E-cadherin expression and an increase in α-smooth muscle actin (α-SMA) expression, implying a transition in phenotype. PD with 4.25% glucose solution significantly induced SRF up-regulation and increased peritoneal thickness. In immortal HPMCs, high glucose (HG, 60 mmol/L) stimulated SRF overexpression in transformed fibroblastic HPMCs. SRF-siRNA preserved HPMC morphology, while transfection of SRF plasmid into HPMCs caused the opposite effects. Evidence from electrophoretic mobility shift, chromatin immunoprecipitation and reporter assays further supported that SRF transcriptionally regulated Snail, a potent inducer of EMT, by directly binding to its promoter. Conclusions Our data suggested that activation of SRF/Snail pathway might contribute to the progressive PM fibrosis during PD.
Collapse
Affiliation(s)
- Lijie He
- Department of Nephrology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaan xi, China
- State Key Laboratory of Cancer Biology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaan xi, China
| | - Weijuan Lou
- Department of Nephrology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaan xi, China
- State Key Laboratory of Cancer Biology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaan xi, China
| | - Lihua Ji
- Department of Nephrology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaan xi, China
- State Key Laboratory of Cancer Biology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaan xi, China
- Department of Nephrology, Xingyuan Hospital, the Fourth Hospital of Yulin, Yulin, Shaan xi, China
| | - Wei Liang
- Department of Nephrology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaan xi, China
- State Key Laboratory of Cancer Biology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaan xi, China
- Department of Nephrology, the Ninth Hospital of Xi'an, Xi'an, Shaan xi, China
| | - Meilan Zhou
- Department of Nephrology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaan xi, China
| | - Guoshang Xu
- Department of Nephrology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaan xi, China
| | - Lijuan Zhao
- Department of Nephrology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaan xi, China
| | - Chen Huang
- Department of Nephrology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaan xi, China
| | - Rong Li
- Department of Nephrology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaan xi, China
| | - Hanmin Wang
- Department of Nephrology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaan xi, China
- State Key Laboratory of Cancer Biology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaan xi, China
| | - Xiangmei Chen
- Department of Nephrology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaan xi, China
- Department of Nephrology, State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital and Medical College, Beijing, China
- * E-mail: (SRS); (XMC)
| | - Shiren Sun
- Department of Nephrology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaan xi, China
- State Key Laboratory of Cancer Biology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaan xi, China
- * E-mail: (SRS); (XMC)
| |
Collapse
|
71
|
Shin HS, Yu M, Kim M, Choi HS, Kang DH. Renoprotective effect of red ginseng in gentamicin-induced acute kidney injury. J Transl Med 2014; 94:1147-60. [PMID: 25111692 DOI: 10.1038/labinvest.2014.101] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 05/26/2014] [Accepted: 06/13/2014] [Indexed: 12/21/2022] Open
Abstract
Aminoglycoside-induced nephrotoxicity is one of the prevalent causes of acute kidney injury (AKI). Oxidative stress-mediated apoptosis of renal tubular cells is known to be a major mechanism of renal injury. Red ginseng extract (RGE) has been reported to possess antioxidant and immune-modulatory activities. We investigated the effect of RGE on gentamicin (GM)-induced apoptosis and oxidative stress in cultured renal tubular cells and animal model of GM-induced AKI. GM induced the generation of reactive oxygen species (ROS) with an increase in NADPH oxidase (NOX) activity and mitochondrial oxidation in NRK-52E cells that were ameliorated with RGE. GM-induced apoptosis of NRK-52E cells, which was associated with an increased expression of mitochondrial Bax, cytosolic cytochrome c, and cleaved caspase-9 and -3, along with a decrease in bcl-2 expression, was also blocked by RGE. In an animal model of GM-induced AKI, RGE treatment significantly attenuated renal dysfunction, cell apoptosis, and tubular damage. RGE ameliorated ROS production in rats with GM-induced AKI, as demonstrated by an increase in the reduced form of glutathione in renal cortex and a decrease in urinary excretion of 8-hydroxy-2'-deoxyguanosine. Our results suggest that RGE protects the kidney from GM-induced AKI via the mechanism of modulation of oxidative stress.
Collapse
Affiliation(s)
- Hyun-Soo Shin
- Division of Nephrology, Department of Internal Medicine, Ewha Womans University School of Medicine, Ewha Medical Research Center, Seoul, Korea
| | - Mina Yu
- Division of Nephrology, Department of Internal Medicine, Ewha Womans University School of Medicine, Ewha Medical Research Center, Seoul, Korea
| | - Mijin Kim
- Division of Nephrology, Department of Internal Medicine, Ewha Womans University School of Medicine, Ewha Medical Research Center, Seoul, Korea
| | - Hack Sun Choi
- Division of Nephrology, Department of Internal Medicine, Ewha Womans University School of Medicine, Ewha Medical Research Center, Seoul, Korea
| | - Duk-Hee Kang
- Division of Nephrology, Department of Internal Medicine, Ewha Womans University School of Medicine, Ewha Medical Research Center, Seoul, Korea
| |
Collapse
|
72
|
Busnadiego O, Loureiro-Álvarez J, Sandoval P, Lagares D, Dotor J, Pérez-Lozano ML, López-Armada MJ, Lamas S, López-Cabrera M, Rodríguez-Pascual F. A pathogenetic role for endothelin-1 in peritoneal dialysis-associated fibrosis. J Am Soc Nephrol 2014; 26:173-82. [PMID: 25012164 DOI: 10.1681/asn.2013070799] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In patients undergoing peritoneal dialysis (PD), chronic exposure to nonphysiologic PD fluids elicits low-grade peritoneal inflammation, leading to fibrosis and angiogenesis. Phenotype conversion of mesothelial cells into myofibroblasts, the so-called mesothelial-to-mesenchymal transition (MMT), significantly contributes to the peritoneal dysfunction related to PD. A number of factors have been described to induce MMT in vitro and in vivo, of which TGF-β1 is probably the most important. The vasoconstrictor peptide endothelin-1 (ET-1) is a transcriptional target of TGF-β1 and mediates excessive scarring and fibrosis in several tissues. This work studied the contribution of ET-1 to the development of peritoneal damage and failure in a mouse model of PD. ET-1 and its receptors were expressed in the peritoneal membrane and upregulated on PD fluid exposure. Administration of an ET receptor antagonist, either bosentan or macitentan, markedly attenuated PD-induced MMT, fibrosis, angiogenesis, and peritoneal functional decline. Adenovirus-mediated overexpression of ET-1 induced MMT in human mesothelial cells in vitro and promoted the early cellular events associated with peritoneal dysfunction in vivo. Notably, TGF-β1-blocking peptides prevented these actions of ET-1. Furthermore, a positive reciprocal relationship was observed between ET-1 expression and TGF-β1 expression in human mesothelial cells. These results strongly support a role for an ET-1/TGF-β1 axis as an inducer of MMT and subsequent peritoneal damage and fibrosis, and they highlight ET-1 as a potential therapeutic target in the treatment of PD-associated dysfunction.
Collapse
Affiliation(s)
- Oscar Busnadiego
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jesús Loureiro-Álvarez
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain; Laboratorio de Envejecimiento e Inflamación, Instituto de Investigación Biomédica, A Coruña, A Coruña, Spain; and
| | - Pilar Sandoval
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - David Lagares
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - María Luisa Pérez-Lozano
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - María J López-Armada
- Laboratorio de Envejecimiento e Inflamación, Instituto de Investigación Biomédica, A Coruña, A Coruña, Spain; and
| | - Santiago Lamas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Manuel López-Cabrera
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Fernando Rodríguez-Pascual
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain;
| |
Collapse
|
73
|
MiR-30b is involved in methylglyoxal-induced epithelial-mesenchymal transition of peritoneal mesothelial cells in rats. Cell Mol Biol Lett 2014; 19:315-29. [PMID: 24898602 PMCID: PMC6276001 DOI: 10.2478/s11658-014-0199-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 05/25/2014] [Indexed: 12/18/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) of peritoneal mesothelial cells (PMC) is a major contributor to the pathogenesis of peritoneal fibrosis. EMT is at least in part caused by repeated exposure to glucose degradation products (GDPs), such as methylglyoxal (MGO). MiRNA contributes greatly to the EMT of PMCs. In this study, we tried to profile whether differences exist between the peritoneal membrane (PM) miRNA expression seen in control rats and that seen in rats injected intraperitoneally with MGO. We assessed whether miR-30b has a possible role in MGO-induced EMT of PMCs in rats. Comparative miRNA expression array and real-time PCR analyses were conducted for the control group at the start of the experiment and for the MGO group after 1 and 2 weeks. During the second week, the MGO rats were treated with: a chemically modified antisense RNA oligonucleotide (ASO) complementary to the mature miR-30b (ASO group); an miR-30b mismatch control sequence (MIS group); or a citrate buffer (EMT group). Bioinformatic analyses indicated that the 3′ untranslated region (3′-UTR) of bone morphogenetic protein 7 (BMP7) mRNA did contain a putative binding site for miR-30b. We also tried to investigate whether miR-30b targeted BMP7 in vitro by transfection. Of the upregulated miRNAs, miR-30b expression demonstrated the greatest increase. The administration of miR-30b ASO for two weeks significantly reduced α-SMA excretion and upregulated E-cadherin and BMP-7 expression. Our in vitro study showed that miR-30b directly targeted and inhibited BMP7 by binding to its 3’-UTR. Our results revealed that miR-30b is involved in MGO-induced EMT of PMCs in rats.
Collapse
|
74
|
Io K, Nishino T, Obata Y, Kitamura M, Koji T, Kohno S. SAHA Suppresses Peritoneal Fibrosis in Mice. Perit Dial Int 2014; 35:246-58. [PMID: 24584598 DOI: 10.3747/pdi.2013.00089] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 09/07/2013] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE Long-term peritoneal dialysis causes peritoneal fibrosis in submesothelial areas. However, the mechanism of peritoneal fibrosis is unclear. Epigenetics is the mechanism to induce heritable changes without any changes in DNA sequences. Among epigenetic modifications, histone acetylation leads to the transcriptional activation of genes. Recent studies indicate that histone acetylation is involved in the progression of fibrosis. Therefore, we examined the effect of suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, on the progression of peritoneal fibrosis in mice. METHODS Peritoneal fibrosis was induced by the injection of chlorhexidine gluconate (CG) into the peritoneal cavity of mice every other day for 3 weeks. SAHA, or a dimethylsulfoxide and saline vehicle, was administered subcutaneously every day from the start of the CG injections for 3 weeks. Morphologic peritoneal changes were assessed by Masson's trichrome staining, and fibrosis-associated factors were assessed by immunohistochemistry. RESULTS In CG-injected mice, a marked thickening of the submesothelial compact zone was observed. In contrast, the administration of SAHA suppressed the progression of submesothelial thickening and type III collagen accumulation in CG-injected mice. The numbers of fibroblast-specific protein-1-positive cells and α-smooth muscle actin α-positive cells were significantly decreased in the CG + SAHA group compared to that of the CG group. The level of histone acetylation was reduced in the peritoneum of the CG group, whereas it was increased in the CG + SAHA group. CONCLUSIONS Our results indicate that SAHA can suppress peritoneal thickening and fibrosis in mice through up-regulation of histone acetylation. These results suggest that SAHA may have therapeutic potential for treating peritoneal fibrosis.
Collapse
Affiliation(s)
- Kumiko Io
- Second Department of Internal Medicine, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Tomoya Nishino
- Second Department of Internal Medicine, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Yoko Obata
- Second Department of Internal Medicine, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Mineaki Kitamura
- Second Department of Internal Medicine, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Takehiko Koji
- Department of Histology and Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shigeru Kohno
- Second Department of Internal Medicine, Nagasaki University School of Medicine, Nagasaki, Japan
| |
Collapse
|
75
|
Lee YC, Tsai YS, Hung SY, Lin TM, Lin SH, Liou HH, Liu HC, Chang MY, Wang HH, Ho LC, Chen YT, Chen HP, Fan HA, Liu KW, Kung YT, Wang HK, Chiou YY. Shorter daily dwelling time in peritoneal dialysis attenuates the epithelial-to-mesenchymal transition of mesothelial cells. BMC Nephrol 2014; 15:35. [PMID: 24555732 PMCID: PMC4015532 DOI: 10.1186/1471-2369-15-35] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 02/14/2014] [Indexed: 01/08/2023] Open
Abstract
Background Peritoneal dialysis (PD) therapy is known to induce morphological and functional changes in the peritoneal membrane. Long-term exposure to conventional bio-incompatible dialysate and peritonitis is the main etiology of inflammation. Consequently, the peritoneal membrane undergoes structural changes, including angiogenesis, fibrosis, and hyalinizing vasculopathy, which ultimately results in technique failure. The epithelial-to-mesenchymal transition (EMT) of mesothelial cells (MCs) plays an important role during the above process; however, the clinical parameters associated with the EMT process of MCs remain to be explored. Methods To investigate the parameters impacting EMT during PD therapy, 53 clinical stable PD patients were enrolled. EMT assessments were conducted through human peritoneal MCs cultured from dialysate effluent with one consistent standard criterion (MC morphology and the expression of an epithelial marker, cytokeratin 18). The factors potentially associated with EMT were analyzed using logistic regression analysis. Primary MCs derived from the omentum were isolated for the in vitro study. Results Forty-seven percent of the patients presented with EMT, 28% with non-EMT, and 15% with a mixed presentation. Logistic regression analysis showed that patients who received persistent PD therapy (dwelling time of 24 h/day) had significantly higher EMT tendency. These results were consistent in vitro. Conclusions Dwelling time had a significant effect on the occurrence of EMT on MCs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Yuan-Yow Chiou
- Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
76
|
Mesenchymal Conversion of Mesothelial Cells Is a Key Event in the Pathophysiology of the Peritoneum during Peritoneal Dialysis. Adv Med 2014; 2014:473134. [PMID: 26556413 PMCID: PMC4590954 DOI: 10.1155/2014/473134] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 11/09/2013] [Accepted: 11/18/2013] [Indexed: 12/03/2022] Open
Abstract
Peritoneal dialysis (PD) is a therapeutic option for the treatment of end-stage renal disease and is based on the use of the peritoneum as a semipermeable membrane for the exchange of toxic solutes and water. Long-term exposure of the peritoneal membrane to hyperosmotic PD fluids causes inflammation, loss of the mesothelial cells monolayer, fibrosis, vasculopathy, and angiogenesis, which may lead to peritoneal functional decline. Peritonitis may further exacerbate the injury of the peritoneal membrane. In parallel with these peritoneal alterations, mesothelial cells undergo an epithelial to mesenchymal transition (EMT), which has been associated with peritoneal deterioration. Factors contributing to the bioincompatibility of classical PD fluids include the high content of glucose/glucose degradation products (GDPs) and their acidic pH. New generation low-GDPs-neutral pH fluids have improved biocompatibility resulting in better preservation of the peritoneum. However, standard glucose-based fluids are still needed, as biocompatible solutions are expensive for many potential users. An alternative approach to preserve the peritoneal membrane, complementary to the efforts to improve fluid biocompatibility, is the use of pharmacological agents protecting the mesothelium. This paper provides a comprehensive review of recent advances that point to the EMT of mesothelial cells as a potential therapeutic target to preserve membrane function.
Collapse
|
77
|
Grabias BM, Konstantopoulos K. The physical basis of renal fibrosis: effects of altered hydrodynamic forces on kidney homeostasis. Am J Physiol Renal Physiol 2013; 306:F473-85. [PMID: 24352503 DOI: 10.1152/ajprenal.00503.2013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Healthy kidneys are continuously exposed to an array of physical forces as they filter the blood: shear stress along the inner lumen of the tubules, distension of the tubular walls in response to changing fluid pressures, and bending moments along both the cilia and microvilli of individual epithelial cells that comprise the tubules. Dysregulation of kidney homeostasis via underlying medical conditions such as hypertension, diabetes, or glomerulonephritis fundamentally elevates the magnitudes of each principle force in the kidney and leads to fibrotic scarring and eventual loss of organ function. The purpose of this review is to summarize the progress made characterizing the response of kidney cells to pathological levels of mechanical stimuli. In particular, we examine important, mechanically responsive signaling cascades and explore fundamental changes in renal cell homeostasis after cyclic strain or fluid shear stress exposure. Elucidating the effects of these disease-related mechanical imbalances on endogenous signaling events in kidney cells presents a unique opportunity to better understand the fibrotic process.
Collapse
Affiliation(s)
- Bryan M Grabias
- Dept. of Chemical and Biomolecular Engineering, The Johns Hopkins Univ., New Engineering Bldg. 114, 3400 N. Charles St., Baltimore, MD 21218.
| | | |
Collapse
|
78
|
Kitamura S, Horimoto N, Tsuji K, Inoue A, Takiue K, Sugiyama H, Makino H. The selection of peritoneal mesothelial cells is important for cell therapy to prevent peritoneal fibrosis. Tissue Eng Part A 2013; 20:529-39. [PMID: 24007428 DOI: 10.1089/ten.tea.2013.0130] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Long-term peritoneal dialysis (PD) causes chronic peritoneal damage. Peritoneal mesothelial cells (PMCs) play an important role in peritoneal function. We investigated the possibility of cell therapy using the PMCs to prevent peritoneal damage in PD patients. We harvested human PMCs from the PD effluent of PD patients. The PMCs were separated based on morphological characteristics into epithelial-like (Epi) cells and fibroblast-like (Fib) cells by the limiting dilution method. We transplanted these cells into nude mice whose parietal and visceral peritoneum were scratched by mechanical scraping. The transplanted cells were detected at the parietal and visceral peritoneum. Compared with the positive control, the Epi cell therapy group showed very few adhesions and exhibited no thickening of the parietal and visceral peritoneum. However, the group with Fib cell therapy could not inhibit peritoneal adhesion and thickening. In addition, hepatocyte growth factor was expressed by the grafted Epi cells but not Fib cells. Fib cells expressed vascular endothelial growth factor stronger than Epi cells. These two types of cells from the same patient showed different characteristics and effects for cell therapy. These findings suggest that the PMCs from the PD patient showed different characteristics, such as Epi cells and Fib cells, and the selection of PMCs is important for cell therapy on the point of not only the direct cellular interactions but also cytokine secretion from the grafted cells. Furthermore, the differences in the morphological cell characteristics may influence their role in peritoneal regeneration.
Collapse
Affiliation(s)
- Shinji Kitamura
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama, Japan
| | | | | | | | | | | | | |
Collapse
|
79
|
Peritoneal fibrosis and the putative role of decorin. Int J Organ Transplant Med 2013. [DOI: 10.1016/j.hkjn.2013.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
80
|
Zhang J, Bi M, Zhong F, Jiao X, Zhang D, Dong Q. Role of CIP4 in high glucose induced epithelial--mesenchymal transition of rat peritoneal mesothelial cells. Ren Fail 2013; 35:989-95. [PMID: 23819628 DOI: 10.3109/0886022x.2013.808957] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Peritoneal mesothelial cell (PMC) plays a key role in the process of peritoneal fibrosis. Epithelial-mesenchymal transition (EMT) of PMCs is an important mechanism of peritoneal fibrosis. Prolonged exposure to peritoneal dialysis fluid containing a high concentration of glucose may lead to EMT of PMCs. Cdc42-interacting protein-4 (CIP4) is a critical regulator of cell skeleton and downstream effector of Cdc42 and participates in EMT of tubular epithelial cells. In the present study, we investigate the possible role of CIP4 in EMT of PMC under high glucose (HG) condition in vitro and further explore the potential therapeutic point for peritoneal fibrosis. METHODS Rat peritoneal mesothelial cells (RPMCs) were isolated from the peritonea of rats by enzymatic digestion. Under HG conditions (1.5%, 2.5% and 4.25%), E-cadherin, α-SMA and CIP4 expression were assessed by Western blot. Effect of CIP4-siRNA and pcDNA3.1-CIP4 transfection on E-cadherin, α-SMA and CIP4 expression were also assessed respectively under 2.5% HG concentration. Cells were pretreated for 24 h with PI3K/Akt signaling inhibitor perifosine and effect of perifosine on CIP4 expression were detected by Western blot. RESULTS EMT induction by HG was confirmed by the prevalence of morphological changes, loss of E-cadherin, increase in α-SMA expression. CIP4-siRNA transfection can reverse EMT of RPMCs. Over-expression of CIP4 promoted characteristics similar to those commonly observed in EMT. Furthermore, the increased CIP4 in response to HG was efficiently inhibited by perifosine. CONCLUSION This study shows that CIP4 promotes high glucose-induced EMT through PI3K-Akt signaling pathway in RPMCs.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Surgery, Affiliated Hospital of Medical College Qingdao University, 16 Jiangsu Road, Qingdao, Shandong Province, P.R. China
| | | | | | | | | | | |
Collapse
|
81
|
Pérez-Lozano ML, Sandoval P, Rynne-Vidal Á, Aguilera A, Jiménez-Heffernan JA, Albar-Vizcaíno P, Majano PL, Sánchez-Tomero JA, Selgas R, López-Cabrera M. Functional relevance of the switch of VEGF receptors/co-receptors during peritoneal dialysis-induced mesothelial to mesenchymal transition. PLoS One 2013; 8:e60776. [PMID: 23585849 PMCID: PMC3621952 DOI: 10.1371/journal.pone.0060776] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 03/02/2013] [Indexed: 12/17/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is up-regulated during mesothelial to mesenchymal transition (MMT) and has been associated with peritoneal membrane dysfunction in peritoneal dialysis (PD) patients. It has been shown that normal and malignant mesothelial cells (MCs) express VEGF receptors (VEGFRs) and co-receptors and that VEGF is an autocrine growth factor for mesothelioma. Hence, we evaluated the expression patterns and the functional relevance of the VEGF/VEGFRs/co-receptors axis during the mesenchymal conversion of MCs induced by peritoneal dialysis. Omentum-derived MCs treated with TGF-β1 plus IL-1β (in vitro MMT) and PD effluent-derived MCs with non-epithelioid phenotype (ex vivo MMT) showed down-regulated expression of the two main receptors Flt-1/VEGFR-1 and KDR/VEGFR-2, whereas the co-receptor neuropilin-1 (Nrp-1) was up-regulated. The expression of the Nrp-1 ligand semaphorin-3A (Sema-3A), a functional VEGF competitor, was repressed throughout the MMT process. These expression pattern changes were accompanied by a reduction of the proliferation capacity and by a parallel induction of the invasive capacity of MCs that had undergone an in vitro or ex vivo MMT. Treatment with neutralizing anti-VEGF or anti-Nrp-1 antibodies showed that these molecules played a relevant role in cellular proliferation only in naïve omentum-derived MCs. Conversely, treatment with these blocking antibodies, as well as with recombinant Sema-3A, indicated that the switched VEGF/VEGFRs/co-receptors axis drove the enhanced invasion capacity of MCs undergoing MMT. In conclusion, the expression patterns of VEGFRs and co-receptors change in MCs during MMT, which in turn would determine their behaviour in terms of proliferation and invasion in response to VEGF.
Collapse
Affiliation(s)
| | - Pilar Sandoval
- Centro de Biología Molecular-Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain
| | - Ángela Rynne-Vidal
- Centro de Biología Molecular-Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain
| | - Abelardo Aguilera
- Unidad de Biología Molecular and Servicio de Nefrología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
| | - José Antonio Jiménez-Heffernan
- Servicio de Anatomía Patológica, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
| | - Patricia Albar-Vizcaíno
- Unidad de Biología Molecular and Servicio de Nefrología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
| | - Pedro L. Majano
- Unidad de Biología Molecular and Servicio de Nefrología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
| | - José Antonio Sánchez-Tomero
- Unidad de Biología Molecular and Servicio de Nefrología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
| | - Rafael Selgas
- Servicio de Nefrología. Hospital Universitario La Paz, Instituto de Investigación Sanitaria la Paz (IdiPAZ), Madrid, Spain
| | - Manuel López-Cabrera
- Centro de Biología Molecular-Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain
- * E-mail:
| |
Collapse
|
82
|
Mesenchymal stem cells ameliorate experimental peritoneal fibrosis by suppressing inflammation and inhibiting TGF-β1 signaling. Kidney Int 2013; 84:297-307. [PMID: 23486522 PMCID: PMC3731556 DOI: 10.1038/ki.2013.81] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 12/18/2012] [Accepted: 01/10/2013] [Indexed: 12/28/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent adult stem cells that have regenerative capability and exert paracrine actions on damaged tissues. Since peritoneal fibrosis is a serious complication of peritoneal dialysis, we tested whether MSCs suppress this using a chlorhexidine gluconate model in rats. Although MSCs isolated from green fluorescent protein–positive rats were detected for only 3 days following their injection, immunohistochemical staining showed that MSCs suppressed the expression of mesenchymal cells, their effects on the deposition of extracellular matrix proteins, and the infiltration of macrophages for 14 days. Moreover, MSCs reduced the functional impairment of the peritoneal membrane. Cocultures of MSCs and human peritoneal mesothelial cells using a Transwell system indicated that the beneficial effects of MSCs on the glucose-induced upregulation of transforming growth factor-β1(TGF-β1) and fibronectin mRNA expression in the human cells were likely due to paracrine actions. Preincubation in MSC-conditioned medium suppressed TGF-β1-induced epithelial-to-mesenchymal transition, α-smooth muscle actin, and the decrease in zonula occludens-1 in cultured human peritoneal mesothelial cells. Although bone morphogenic protein 7 was not detected, MSCs secreted hepatocyte growth factor and a neutralizing antibody to this inhibited TGF-β1 signaling. Thus, our findings imply that MSCs ameliorate experimental peritoneal fibrosis by suppressing inflammation and TGF-β1 signaling in a paracrine manner.
Collapse
|
83
|
Velioglu A, Tugtepe H, Asicioglu E, Yilmaz N, Filinte D, Arikan H, Koc M, Tuglular S, Kaya H, Ozener C. Role of tyrosine kinase inhibition with imatinib in an encapsulating peritoneal sclerosis rat model. Ren Fail 2013; 35:531-7. [PMID: 23473055 DOI: 10.3109/0886022x.2013.773915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Encapsulating peritoneal sclerosis (EPS) is characterized by neovascularization, increased inflammation, and interstitial fibrosis of the peritoneum. We investigated the effects of imatinib on the peritoneal membrane in an experimental EPS model. METHODS We separated 24 non-uremic Wistar rats into four groups: the control group which was injected with 2 mL isotonic saline intraperitoneally (IP) daily for 3 weeks, the CG group which was injected with chlorhexidine gluconate (CG) IP daily for 3 weeks, the resting group which was injected with CG IP between weeks 0-3 followed by a peritoneal rest period between weeks 3-6, and the CG + Imatinib mesylate group (CG + IMA) which received CG through weeks 0-3 followed by 50 mg/kg imatinib mesylate through weeks 3-6. At the end of the study, we performed a 1-h-peritoneal equilibration test and examined the peritoneal function and transforming growth factor-β1 (TGF-β1) in dialysate. Morphologic changes were evaluated by microscopy and immunohistochemistry. RESULTS An increased ultrafiltration, dialysate/plasma-creatinine-ratio, end-to-initial-dialysate-glucose-ratio, decreased active mesothelial cell ratio and inflammation, and a slightly decreased TGF-β1 of dialysate were found in the CG + IMA group compared to CG alone. Furthermore, the CG + IMA group had a lower concentration of active mesothelial cells than did the resting group. Ultrafiltration was improved in CG + IMA group compared to resting group, however, significant decrease in peritoneal thickness and inflammation were not found compared to those in resting group. Furthermore, there was no significant difference in fibrosis or TGF-β1-positivity on immunohistochemistry between the groups. CONCLUSIONS Tyrosine kinase inhibition with imatinib may lead to a decrease in mesothelial cell activity and an increase in ultrafiltration. However, peritoneal fibrosis was unchanged by imatinib in EPS model.
Collapse
Affiliation(s)
- Arzu Velioglu
- Division of Nephrology, Department of Internal Medicine, Marmara University School of Medicine, Istanbul, Turkey.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Loureiro J, Gónzalez-Mateo G, Jimenez-Heffernan J, Selgas R, López-Cabrera M, Aguilera Peralta A. Are the Mesothelial-to-Mesenchymal Transition, Sclerotic Peritonitis Syndromes, and Encapsulating Peritoneal Sclerosis Part of the Same Process? Int J Nephrol 2013; 2013:263285. [PMID: 23476771 PMCID: PMC3582112 DOI: 10.1155/2013/263285] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 11/13/2012] [Accepted: 12/31/2012] [Indexed: 02/01/2023] Open
Abstract
Mesothelial-to-mesenchymal transition (MMT) is an autoregulated physiological process of tissue repair that in uncontrolled conditions, such as peritoneal dialysis (PD), can lead to peritoneal fibrosis. The maximum expression of sclerotic peritoneal syndromes (SPS) is the encapsulating peritoneal sclerosis (EPS) for which no specific treatment exists. The SPS includes a wide range of peritoneal fibrosis that appears progressively and is considered as a reversible process, while EPS does not. EPS is a serious complication of PD characterized by a progressive intra-abdominal inflammatory process that results in bridles and severe fibrous tissue formation which cover and constrict the viscera. Recent studies show that transdifferentiated mesothelial cells isolated from the PD effluent correlate very well with the clinical events such as the number of hemoperitoneum and peritonitis, as well as with PD function (lower ultrafiltration and high Cr-MTC). In addition, in peritoneal biopsies from PD patients, the MMT correlates very well with anatomical changes (fibrosis and angiogenesis). However, the pathway to reach EPS from SPS has not been fully and completely established. Herein, we present important evidence pointing to the MMT that is present in the initial peritoneal fibrosis stages and it is perpetual over time, with at least theoretical possibility that MMT initiated the fibrosing process to reach EPS.
Collapse
Affiliation(s)
- Jesús Loureiro
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Campus de Cantoblanco, Calle de Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Guadalupe Gónzalez-Mateo
- Servicio de Nefrología, Hospital Universitario La Paz, Instituto de Investigación Sanitaria La Paz (IdiPAZ), Paseo de la Castellana, 261, 28046 Madrid, Spain
| | - José Jimenez-Heffernan
- Servicio de Anatomía Patológica, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IP), Calle de Diego de León 62, 28006 Madrid, Spain
| | - Rafael Selgas
- Servicio de Nefrología, Hospital Universitario La Paz, Instituto de Investigación Sanitaria La Paz (IdiPAZ), Paseo de la Castellana, 261, 28046 Madrid, Spain
| | - Manuel López-Cabrera
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Campus de Cantoblanco, Calle de Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Abelardo Aguilera Peralta
- Unidad de Biología Molecular and Servicio de Nefrología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IP), Calle de Diego de León 62, 28006 Madrid, Spain
| |
Collapse
|
85
|
Effects of dexamethasone on the TGF-β1-induced epithelial-to-mesenchymal transition in human peritoneal mesothelial cells. J Transl Med 2013; 93:194-206. [PMID: 23207448 DOI: 10.1038/labinvest.2012.166] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) is known to have a role in appropriate embryonic development, the physiological response to injury and pathological events such as organ fibrosis and cancer progression. Glucocorticoid (GC), one of the most commonly used anti-inflammatory drugs, inhibits the deposition of extracellular matrix independent of its anti-inflammatory effect. The EMT of human peritoneal mesothelial cells (HPMCs) is a key mechanism of peritoneal fibrosis; however, it has not yet been investigated whether GC imposes any effect on the EMT of HPMCs. To investigate the therapeutic potential of GC on preserving peritoneal membrane function, we studied the effect of dexamethasone (DEXA), a synthetic GC, on the transforming growth factor-β1 (TGF-β1)-induced EMT in HPMCs. As assessed by changes in cell morphology, the expression of epithelial and mesenchymal cell markers (such as E-cadherin, ZO-1 and α-SMA, α-smooth muscle actin) and cell migration, DEXA inhibited the TGF-β1-induced EMT. RU486, a glucocorticoid receptor (GR) antagonist, blocked the effect of DEXA on the TGF-β1-induced EMT. Importantly, DEXA also induced the mesenchymal-to-epithelial transition of TGF-β1-stimulated HPMCs. The beneficial effect of DEXA on the TGF-β1-induced EMT was mediated through the amelioration of ERK and p38 mitogen-activated protein kinase (MAPK) phosphorylation; however, this effect was not related to the TGF-β1-induced activation of Smad2/3 signaling. DEXA inhibited glycogen synthase kinase-3β (GSK-3β) phosphorylation and the Snail upregulation induced by TGF-β1, which were also ameliorated by inhibitors of MAPK. In conclusion, this is the first study demonstrating the protective effect of DEXA on the EMT in TGF-β1-stimulated HPMCs by inhibiting MAPK activation, GSK-3β phosphorylation and Snail upregulation.
Collapse
|
86
|
Zhang X, Liang D, Guo B, Sun L, Chi ZH, Cai Y, Wang L, Ma J. Zinc transporter 7 induced by high glucose attenuates epithelial-to-mesenchymal transition of peritoneal mesothelial cells. Biol Trace Elem Res 2013; 151:138-47. [PMID: 23104082 DOI: 10.1007/s12011-012-9533-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Accepted: 10/17/2012] [Indexed: 02/06/2023]
Abstract
Zinc (Zn) is an essential micronutrient and cytoprotectant involved in preventing many types of epithelial-to-mesenchymal transition (EMT)-driven fibrosis in vivo. The zinc-transporter family SLC30A (ZnT) is a pivotal factor in the regulation of Zn homeostasis. However, its function in EMT in peritoneal mesothelial cells (PMCs) remains unknown. This study explored the regulation of zinc transporters and the role they play in cell EMT, particularly in rat peritoneal mesothelial cells (RPMCs), surrounding glucose concentrations and the molecular mechanism involved. The effects of high glucose (HG) on zinc transporter gene expression were measured in RPMCs by real-time PCR. We explored ZnT7 (Slc30A7): the effect of ZnT7 over-expression and siRNA-mediated knock-down on HG-induced EMT was investigated as well as the underlying molecular mechanisms. Over-expression of ZnT7 resulted in significantly inhibited HG-induced EMT in RPMCs, while inhibition of ZnT7 expression using a considerable siRNA-mediated knock-down of RPMCs increased the levels of EMT. Furthermore, over-expression of ZnT7 is accompanied by down-regulation of TGF-β/Smad pathway, phospho-Smad3,4 expression levels. The finding suggests that the zinc-transporting system in RPMCs is influenced by the exposure to HG. The ZnT7 may account for the inhibition of HG-induced EMT in RPMCs, likely through targeting TGF-β/Smad signaling.
Collapse
Affiliation(s)
- Xiuli Zhang
- Department of Nephrology, The First Affiliated Hospital, China Medical University, 155th Nanjing North Street, Shenyang, Liaoning, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Zhang X, Wang J, Fan Y, Yang L, Wang L, Ma J. Zinc supplementation attenuates high glucose-induced epithelial-to-mesenchymal transition of peritoneal mesothelial cells. Biol Trace Elem Res 2012; 150:229-35. [PMID: 22639383 DOI: 10.1007/s12011-012-9451-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 05/10/2012] [Indexed: 01/12/2023]
Abstract
Zinc (Zn) plays an important role in preventing many types of epithelial-to-mesenchymal transition (EMT)-driven fibrosis in vivo. But its function in the EMT of the peritoneal mesothelial cells (PMCs) remains unknown. Here, we studied the Zn effect on the high glucose (HG)-induced EMT in the rat PMCs (RPMCs) and the underlying molecular mechanisms. We found that Zn supplementation significantly inhibited TGF-β1 and ROS production, and attenuated the HG-induced EMT in the RPMCs, likely through inhibition of MAPK, NF-κB, and TGF-β/Smad pathways.
Collapse
Affiliation(s)
- Xiuli Zhang
- Department of Nephrology, the First Affiliated Hospital, China Medical University, 155th Nanjing North Street, Shenyang, Liaoning, 110001, People's Republic of China
| | | | | | | | | | | |
Collapse
|
88
|
Zhang X, Liang D, Guo B, Yang L, Wang L, Ma J. Zinc inhibits high glucose-induced apoptosis in peritoneal mesothelial cells. Biol Trace Elem Res 2012; 150:424-32. [PMID: 22826039 DOI: 10.1007/s12011-012-9473-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 06/26/2012] [Indexed: 10/28/2022]
Abstract
Zinc (Zn) plays an important role in influencing many types of apoptosis. However, its function in apoptosis in peritoneal mesothelial cells (PMCs) remains unknown. Here, we studied the effects of Zn on high glucose (HG)-induced apoptosis in rat PMCs (RPMCs) and examined the underlying molecular mechanisms. We found that Zn supplementation inhibited HG-induced RPMC apoptosis significantly, by attenuating reactive oxygen species (ROS) production, inhibiting HG-induced sFasR and sFasL over-expression, caspase-8 and caspase-3 activation, and inhibiting release of cytochrome c from mitochondria to the cytosol. Further analysis revealed that Zn supplementation facilitated cell survival through activation of the phosphatidylinositol 3-kinase/Akt signaling pathway and MAPK/ERK pathways. These results indicate that Zn can inhibit apoptosis in HG-induced RPMCs by several independent mechanisms, including an indirect antioxidative effect and probably by inhibition of caspase-8 and caspase-3 activation.
Collapse
Affiliation(s)
- Xiuli Zhang
- Department of Nephrology, The First Affiliated Hospital of China Medical University, 155th Nanjing North Street, Shenyang, Liaoning, 110001, People's Republic of China
| | | | | | | | | | | |
Collapse
|
89
|
Lee SH, Kang HY, Kim KS, Nam BY, Paeng J, Kim S, Li JJ, Park JT, Kim DK, Han SH, Yoo TH, Kang SW. The monocyte chemoattractant protein-1 (MCP-1)/CCR2 system is involved in peritoneal dialysis-related epithelial-mesenchymal transition of peritoneal mesothelial cells. J Transl Med 2012; 92:1698-711. [PMID: 23007133 DOI: 10.1038/labinvest.2012.132] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) of peritoneal mesothelial cells (PMCs) has a role in the process of peritoneal fibrosis (PF), a serious complication in peritoneal dialysis (PD) patients. Even though monocyte chemoattractant protein-1 (MCP-1) was demonstrated to directly increase extracellular matrix (ECM) synthesis, the role of the MCP-1/CCR2 system in PD-related EMT and ECM synthesis in cultured human PMCs (HPMCs) and in an animal model of PD has never been elucidated. In vitro, HPMCs were exposed to 5.6 mM glucose (NG), NG+MCP-1 (10 ng/ml) (NG+MCP-1), or 100 mM glucose (HG) with or without CCR2 inhibitor (RS102895) (CCR2i) or a dominant-negative mutant MCP-1-expressing lentivirus (LV-mMCP-1). In vivo, PD catheters were inserted into 60 Sprague-Dawley rats, and saline (Control, C) (N=30) or 4.25% PD solution (PD) (N=30) was infused for 4 weeks. Twenty rats from each group were treated with empty LV or LV-mMCP-1 intraperitoneally. Snail, E-cadherin, α-smooth muscle actin (α-SMA), and fibronectin protein expression in HPMCs and the peritoneum was evaluated by western blot analysis. Compared with NG cells, Snail, α-SMA, and fibronectin expression was significantly increased, while E-cadherin expression was significantly decreased in HPMCs exposed to HG and NG+MCP-1, and these changes were significantly abrogated by CCR2i (P<0.05). In addition, MCP-1-induced EMT was significantly attenuated by anti-TGF-β1 antibody. In PD rats, Snail and fibronectin expression was significantly increased in the peritoneum, whereas the ratios of E-cadherin/α-SMA protein expression were significantly decreased (P<0.05). The thickness of the peritoneum and the intensity of Masson's trichrome staining in the peritoneum were also significantly higher in PD rats than in C rats (P<0.05). These changes in PD rats were significantly abrogated by LV-mMCP-1. These findings suggest that the MCP-1/CCR2 system is directly involved in PD-related EMT and ECM synthesis and that this is mediated, at least in part, via TGF-β1.
Collapse
Affiliation(s)
- Sun Ha Lee
- Department of Internal Medicine, College of Medicine, Brain Korea 21, Severance Biomedical Science Institute, Yonsei University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Heme oxygenase-1 attenuates epithelial-to-mesenchymal transition of human peritoneal mesothelial cells. Clin Exp Nephrol 2012; 17:284-93. [PMID: 23150184 DOI: 10.1007/s10157-012-0699-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 09/24/2012] [Indexed: 01/01/2023]
Abstract
BACKGROUND Epithelial-to-mesenchymal transition (EMT) of peritoneal mesothelial cells has been regarded as an early mechanism of peritoneal fibrosis. A substantial and rapidly growing literature indicates that HO-1 provides the provenance for pathways that can interrupt virtually all major mechanisms of tissue injury. The effects of HO-1 expression on EMT, which plays a critical role in the development of peritoneal membrane (PM) fibrosis, are unknown and its roles in peritoneal fibrosis has not been studied, yet. METHODS A piece of human omentum obtained from consenting patients undergoing elective abdominal surgery was used for study. We treated the human peritoneal mesothelial cells (HPMCs) with high glucose solution and HO-1 inducer (hemin, 10 μmol/L). To further investigate the pure effect of HO-1 on EMT of mesothelium, gene transfer of recombinant Adenovirus-harboring human HO-1 (Adv-HO-1 gene) to HPMCs was done. RESULTS Exposure of HPMCs to HG solution resulted in an increase of the expression of mesenchymal markers such as α-smooth muscle actin (α-SMA) and was associated with a decrease in the expression of epithelial markers, E-cadherin. HO-1 protein expression was decreased in the same situation. Treatment of HPMCs with HO-1 inducer, hemin showed a dosage-dependent amelioration of HG induced changes in markers of EMT with increase of expression of HO-1. Human HO-1 gene transfection resulted in a significant increase in HO-1 expression and ameliorated HG-induced changes in expression of E-cadherin and α-SMA. CONCLUSION Taken together, our results suggest that HO-1 has a critical role in the modulation of peritoneal fibrosis, and, more important, the suppression of EMT. This study is the first to show the beneficial effect of HO-1 on reversing EMT in MC.
Collapse
|
91
|
Ryu HM, Oh EJ, Park SH, Kim CD, Choi JY, Cho JH, Kim IS, Kwon TH, Chung HY, Yoo M, Kim YL. Aquaporin 3 expression is up-regulated by TGF-β1 in rat peritoneal mesothelial cells and plays a role in wound healing. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:2047-57. [PMID: 23041062 DOI: 10.1016/j.ajpath.2012.08.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 08/08/2012] [Accepted: 08/13/2012] [Indexed: 12/21/2022]
Abstract
Aquaporin 3 (AQP3) is expressed in many tissues including the peritoneum and kidney. In cultured mesothelial cells, glucose up-regulates AQP3, which may be important for water transport through the peritoneal membrane. However, there has been no research into the role of AQP3 in human peritoneal mesothelial cell (HPMC) migration or peritoneal fibrosis. We investigated the effects of transforming growth factor-β1 (TGF-β1) on AQP3 expression in HPMCs. We also investigated the role of AQP3 in the peritoneal wound healing process in rats. Chronic exposure to glucose-containing solution increased peritoneal myofibroblasts, with TGF-β1 and AQP3 expression in a model of long-term peritoneal dialysis. In vitro, TGF-β1 induced AQP3 expression in HPMCs. AQP3 knockdown by small-interfering RNA inhibited TGF-β1-induced AQP3 and α-smooth muscle actin expression and also slowed HPMC migration. AQP3 overexpression induced faster migration of HPMCs. Treatment with an extracellular signal-regulated kinase inhibitor and p38 kinase inhibitor attenuated TGF-β1-induced AQP3 expression in HPMCs. These data suggest that TGF-β1 induces AQP3 and that AQP3 has a critical role in TGF-β-induced HPMC migration. These findings provide evidence of a novel role for AQP3 in peritoneal fibrosis and wound healing. The effect of TGF-β1 on AQP3 expression in HPMCs is mediated, at least in part, by ERK and p38 signaling.
Collapse
Affiliation(s)
- Hye-Myung Ryu
- Division of Nephrology, Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Selection of a MCF-7 Breast Cancer Cell Subpopulation with High Sensitivity to IL-1β: Characterization of and Correlation between Morphological and Molecular Changes Leading to Increased Invasiveness. Int J Breast Cancer 2012; 2012:609148. [PMID: 22655200 PMCID: PMC3357940 DOI: 10.1155/2012/609148] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 02/26/2012] [Indexed: 11/18/2022] Open
Abstract
Cancer and inflammation are closely related in tumor malignancy prognosis. Breast cancer MCF-7 cells have a poor invasive phenotype, although, under IL-1β stimulus, acquire invasive features. Cell response heterogeneity has precluded precise evaluation of the malignant transition. MCF-7A3 cells were selected for high sensitivity to IL-1β stimulus, uniform expression of CXCR4, and stability of IL1-RI. Structural changes, colony formation ability, proliferation rate, chemotaxis, Matrigel invasion, E-cadherin mRNA expression and protein localization were determined in these cells and in MCF-7 parental cells under the stimulus of IL-1β. Selected MCF-7A3 cells showed a uniform response to IL-1β stimulation increasing features of invasive cells such as scattering, colony formation, proliferation, chemokinesis and invasion. Basal expression of E-cadherin mRNA was higher, and IL-1β stimulus had no further effect at early times of cytokine exposure. Total E-cadherin levels remained unchanged in parental cells, whereas levels decreased, as MCF-7A3 cells became fibroblastoid or scattered. Triton X-100 soluble/insoluble E-cadherin ratios were highly increased in these cells, while, in MCF-7pl cells, ratios could not be correlated with morphology changes. MCF-7A3 cells uniform response to IL-1β allowed characterization of changes induced by the cytokine that had not been assessed when using heterogeneous cell lines.
Collapse
|
93
|
Li C, Ren Y, Jia X, Liang P, Lou W, He L, Li M, Sun S, Wang H. Twist overexpression promoted epithelial-to-mesenchymal transition of human peritoneal mesothelial cells under high glucose. Nephrol Dial Transplant 2012; 27:4119-24. [PMID: 22498918 DOI: 10.1093/ndt/gfs049] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Long-term peritoneal dialysis (PD) results in functional and structural alterations of the peritoneal membrane. Previous studies have suggested that high glucose (HG) could induce transdifferentiation of peritoneal mesothelial cells into myofibroblasts, but the molecular mechanisms of HG-induced epithelial-to-mesenchymal transition (EMT) of human peritoneal mesothelial cells (HPMCs) are unclear. This study was undertaken to elucidate the effects and mechanisms of Twist on HG-induced EMT of HPMCs. METHODS HPMCs were exposed to 5.6 mM glucose [normal glucose (NG)], 50 mM glucose (HG) or 50 mM glucose with Si-Twist or pcDNA3.1-Twist. Western blot and immuocytochemistry were performed to determine Twist, E-cadherin and α-smooth muscle actin (α-SMA) protein expression. MMP2 and MMP9 were detected by zymography. Rats were daily instilled with PD fluid and lipopolysaccharide (LPS) or sodium chloride during 6 weeks. Histological analyses were carried out in parietal peritoneum. Twist was detected by western blotting. RESULTS Twist and α-SMA protein and immuocytochemistry were significantly increased in HG-conditioned media compared to NG media. E-cadherin protein was lower in pcDNA3.1-Twist-transfected HPMCs compared to pcDNA3.1 cells. Twist protein was upregulated 12 h after HG stimulation. MMP9 was increased in pcDNA3.1-Twist-transfected HPMCs compared to pcDNA3.1 cells. Exposure of rat peritoneum to PD fluid and LPS resulted in an increase of extracellular matrix deposition. Twist and α-SMA were stained in the PD fluid group and compared to the control group. Twist protein was significantly increased in the PD group. CONCLUSIONS In conclusion, HG-induced Twist expression might contribute to EMT of HPMCs. Twist may control EMT of HPMCs by regulating MMP9.
Collapse
Affiliation(s)
- Cuixiang Li
- Department of Nephrology, Yangquan Coalmine Group General Hospital, Shanxi, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Kim SH, Yu MA, Ryu ES, Jang YH, Kang DH. Indoxyl sulfate-induced epithelial-to-mesenchymal transition and apoptosis of renal tubular cells as novel mechanisms of progression of renal disease. J Transl Med 2012; 92:488-98. [PMID: 22231736 DOI: 10.1038/labinvest.2011.194] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Indoxyl sulfate (IS), one of the uremic toxins, is regarded to have a substantial role in the progression of chronic kidney disease (CKD). Epithelial-to-mesenchymal transition (EMT) and apoptosis of renal tubular cells are known to be the critical mechanisms of the development and aggravation of CKD. We investigated the effect of IS on EMT and apoptosis in renal proximal tubular cells, NRK-52E cells. IS significantly inhibited cell proliferation and induced cell migration with a morphological transition from cuboidal epithelial cells to spindle-shaped scattered fibroblast-like cells. IS downregulated the expressions of zonula occluden-1 and E-cadherin, whereas upregulated α-SMA expression at 48 h, which was blocked by a pretreatment of the organic anion transporter, probenecid. IS also induced apoptosis of NRK cells from a concentration of 25 μg/ml with an activation of ERK1/2 and p38 MAP kinase (MAPK). Pretreatment of ERK1/2 or p38 MAPK inhibitors, PD98059 or SB203580, resulted in no significant effect on IS-induced EMT, whereas it ameliorated IS-induced apoptosis of NRK cells. These findings suggested phenotypic transition and apoptosis as potential mechanisms of IS-induced renal damage and the differential role of MAPK activation in IS-induced EMT and apoptosis of renal tubular cells.
Collapse
Affiliation(s)
- Su Hyun Kim
- Division of Nephrology, Department of Internal Medicine, Chung-Ang University, Seoul, Korea
| | | | | | | | | |
Collapse
|
95
|
Inhibition of transforming growth factor-activated kinase 1 (TAK1) blocks and reverses epithelial to mesenchymal transition of mesothelial cells. PLoS One 2012; 7:e31492. [PMID: 22384029 PMCID: PMC3288041 DOI: 10.1371/journal.pone.0031492] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 01/09/2012] [Indexed: 02/01/2023] Open
Abstract
Peritoneal fibrosis is a frequent complication of peritoneal dialysis following repeated low grade inflammatory and pro-fibrotic insults. This pathological process may lead to ultrafiltration failure and eventually to the discontinuing of the therapy. Fibrosis is linked to epithelial to mesenchymal transition (EMT) of the peritoneal mesothelial cells, which acquire invasive and fibrogenic abilities. Here, we analyzed the role of the transforming growth factor-activated kinase-1 (TAK1) in the EMT of primary mesothelial cells from human peritoneum. The inhibition of TAK1 in mesenchymal-like mesothelial cells from the effluents of patients undergoing peritoneal dialysis led to the reacquisition of the apical to basolateral polarity, to increased expression of epithelial and to down-regulation of mesenchymal markers. TAK1 inhibition also resulted in decreased migratory/invasive abilities of effluent-derived mesothelial cells. Simultaneous inhibition of ERK1/2 and TAK1 pathways did not lead to an additive effect in the reacquisition of the epithelial phenotype. Inhibition of TAK1 also blocked EMT in vitro and reduced the levels of PAI-1, which is involved in fibrosis and invasion. Analysis of signalling pathways downstream of TAK1 involved in EMT induction, showed that TAK1 inhibition reduced the transcriptional activity of NF-κB and Smad3, as well as the phosphorylation of c-jun, while enhancing Smad1–5–8 activity. These results demonstrate that TAK1 is a cross-point in a network including different pro-EMT transcription factors, such as NF-κB, Snail, AP-1 and Smads. The identification of TAK1 as a main biochemical mediator of EMT and fibrosis in mesothelial cells from human peritoneum and the study of signalling pathways induced by its activity may be relevant in the design of new therapies aimed to counteract peritoneal fibrosis.
Collapse
|
96
|
Lai KN, Lam MF, Leung JCK, Chan LY, Lam CWK, Chan IHS, Chan HW, Li CS, Wong SSH, Ho YW, Cheuk A, Tong MKL, Tang SCW. A study of the clinical and biochemical profile of peritoneal dialysis fluid low in glucose degradation products. Perit Dial Int 2011; 32:280-91. [PMID: 22045098 DOI: 10.3747/pdi.2010.00176] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVE Although peritoneal dialysis (PD) is a widely accepted form of renal replacement therapy, concerns remain regarding the bioincompatible nature of standard PD fluid (PDF). Short-term studies of new biocompatible PDFs low in glucose degradation products (GDPs) reveal divergent results with respect to peritoneal integrity. METHODS We studied 125 patients on maintenance PD who were assigned, by simple randomization, to receive either conventional or low-GDP PDF at PD initiation. Parameters of dialysis adequacy and peritoneal transport of small solutes were determined at initiation and after a period of maintenance PD at the time when serum and overnight effluent dialysate were simultaneously collected and assayed for various cytokines, chemokines, adipokines, and cardiac biomarkers. All patients were further followed prospectively for an average of 15 months from the day of serum and effluent collection to determine patient survival and cardiovascular events. RESULTS Patients treated with conventional or low-GDP PDF were matched for sex, age, duration of dialysis, dialysis adequacy, and incidence of cardiovascular disease or diabetes. After an average of 2.3 years of PD treatment, the weekly total and peritoneal creatinine clearance, and the total and peritoneal Kt/V were comparable in the groups. However, urine output was higher in patients using low-GDP PDF despite there having been no difference between the groups at PD initiation. Patients using low-GDP PDF also experienced a slower rate of decline of residual glomerular filtration and urine output than did patients on conventional PDF. Compared with serum concentrations, effluent concentrations of tumor necrosis factor α, hepatocyte growth factor, macrophage migration inhibitory factor, interleukins 8 and 6, C-reactive protein, and leptin were found to be higher in both groups of patients after long-term PD, suggesting that the peritoneal cavity was the major source of those mediators. Compared with patients on low-GDP PDF, patients on conventional fluid showed elevated leptin and reduced adiponectin levels in serum and effluent. The effluent concentration of interleukin 8 was significantly lower in patients using low-GDP PDF. The survival rate and incidence of cardiovascular complications did not differ between these groups after maintenance PD for an average of 3.6 years. CONCLUSIONS It appears that low-GDP PDF results in an improvement of local peritoneal homeostasis through a reduction of chronic inflammatory status in the peritoneum.
Collapse
Affiliation(s)
- Kar Neng Lai
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, PR China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Loureiro J, Aguilera A, Selgas R, Sandoval P, Albar-Vizcaíno P, Pérez-Lozano ML, Ruiz-Carpio V, Majano PL, Lamas S, Rodríguez-Pascual F, Borras-Cuesta F, Dotor J, López-Cabrera M. Blocking TGF-β1 protects the peritoneal membrane from dialysate-induced damage. J Am Soc Nephrol 2011; 22:1682-95. [PMID: 21742730 DOI: 10.1681/asn.2010111197] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
During peritoneal dialysis (PD), mesothelial cells undergo mesothelial-to-mesenchymal transition (MMT), a process associated with peritoneal-membrane dysfunction. Because TGF-β1 can induce MMT, we evaluated the efficacy of TGF-β1-blocking peptides in modulating MMT and ameliorating peritoneal damage in a mouse model of PD. Exposure of the peritoneum to PD fluid induced fibrosis, angiogenesis, functional impairment, and the accumulation of fibroblasts. In addition to expressing fibroblast-specific protein-1 (FSP-1), some fibroblasts co-expressed cytokeratin, indicating their mesothelial origin. These intermediate-phenotype (Cyto(+)/FSP-1(+)) fibroblasts had features of myofibroblasts with fibrogenic capacity. PD fluid treatment triggered the appearance of CD31(+)/FSP-1(+) and CD45(+)/FSP-1(+) cells, suggesting that fibroblasts also originate from endothelial cells and from cells recruited from bone marrow. Administration of blocking peptides significantly ameliorated fibrosis and angiogenesis, improved peritoneal function, and reduced the number of FSP-1(+) cells, especially in the Cyto(+)/FSP-1(+) subpopulation. Conversely, overexpression of TGF-β1 in the peritoneum by adenovirus-mediated gene transfer led to a marked accumulation of fibroblasts, most of which derived from the mesothelium. Taken together, these results demonstrate that TGF-β1 drives the peritoneal deterioration induced by dialysis fluid and highlights a role of TGF-β1-mediated MMT in the pathophysiology of peritoneal-membrane dysfunction.
Collapse
Affiliation(s)
- Jesús Loureiro
- Unidad de Biología Molecular and Servicio de Nefrología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Mizuiri S, Hemmi H, Arita M, Tai R, Hattori Y, Muto A, Suzuki Y, Ohashi Y, Sakai K, Aikawa A. Effluent markers related to epithelial mesenchymal transition with adjusted values for effluent cancer antigen 125 in peritoneal dialysis patients. Int J Nephrol 2011; 2011:261040. [PMID: 21755056 PMCID: PMC3132654 DOI: 10.4061/2011/261040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 04/26/2011] [Indexed: 01/06/2023] Open
Abstract
Objectives. Epithelial mesenchymal transition (EMT) is important for peritoneal deterioration. We evaluated the association between peritoneal solute transport rate (PSTR) and effluent markers related to EMT with adjusted values for effluent cancer antigen 125 (CA125). Methods. One hundred five incident peritoneal dialysis (PD) patients on PD for 25 (12-68) months with biocompatible solutions were included in the study. Fast peritoneal equilibration test was used to evaluate PSTR. Effluent hepatocyte growth factor (HGF), bone morphogenic protein-7 (BMP-7), vascular endothelial growth factor (VEGF), interleukin-6 (IL-6), and CA125 at 4 h were measured. Results. Patients with dialysate/plasma creatinine ≧0.82 showed significantly higher effluent HGF (240 versus 133 pg/mL, P < .001), VEGF, IL-6, and IL6/CA125 levels than the others but no significant differences in effluent HGF/CA125, BMP-7, and BMP7/CA125 were observed. Conclusion. Increase in the effluent HGF levels as a compensatory mechanism is a marker of peritoneal deterioration, but controversy remains regarding adjusted value for CA125.
Collapse
Affiliation(s)
- Sonoo Mizuiri
- Department of Nephrology, Toho University School of Medicine, 6-11-1 Omori-Nishi, Ohta-ku, Tokyo 143-8541, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Yamaguchi Y, Ishigaki T, Sano K, Miyamoto KI, Nomura S, Horiuchi T. Three-Dimensional Invasion of Epithelial–Mesenchymal Transition–Positive Human Peritoneal Mesothelial Cells into Collagen Gel is Promoted by the Concentration Gradient of Fibronectin. Perit Dial Int 2011; 31:477-85. [DOI: 10.3747/pdi.2010.00166] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background In long-term peritoneal dialysis, myofibroblast-like cells found in the interstitium of the peritoneum are assumed to be a transformed type of mesothelial cell—epithelial-mesenchymal transition-positive [EMT(+)] human peritoneal mesothelial cells (HPMCs)—because they express a mesothelial marker, cytokeratin. However, no direct evidence about how these cells are able to invade from the mesothelium has yet been obtained. Aim In this study, we aimed to verify whether EMT(+) HPMCs would, in vitro, invade three-dimensionally along certain chemotactic factors. Methods We used reverse-transcriptase polymerase chain reaction to measure expression of Snail, E-cadherin, α5-integrin, and matrix metalloproteinase 2 (MMP2) messenger RNA (mRNA) in HPMCs exposed to 10 ng/mL transforming growth factor β1 (TGFβ1) and how that expression corresponds to cell motility, as represented by a video movie. We used the Transwell (12 μm pore diameter: Sigma-Aldrich, Tokyo, Japan) to construct a three-dimensional (3D) cell migration chamber. In the lower chamber, a concentration gradient of fibronectin (FN) or albumin(Alb) was formed in 0.1% type I collagen by diffusion ( C0 = 22 nmol/L; concentration gradient: C / C0 = 0.7). All cells beneath the membrane were counted 72 hours after 5x104 EMT(+) HPMCs (HPMCs after a 48-hour exposure to 10 ng/mL TGFβ1) had been spread in the upper chamber. Results After 72 hours, the increased motility of HPMCs resulting from their exposure to 10 ng/mL TGFβ1 had returned to baseline, but they retained an elongated morphology. Expression of Snail and MMP2 mRNA reached maximum at 24 hours. Expression of E-cadherin declined, and expression of α5-integrin increased continuously. In the 3D invasion study, significantly enhanced invasion by EMT(+) but not EMT(-) HPMCs was clearly seen in the presence of a FN concentration gradient ( p < 0.01), although invasion by EMT(+) and EMT(-) HPMCs in the absence of a FN concentration gradient was not statistically significantly different. Compared with the EMT(+) control (no concentration gradient), invasion by EMT(+) HPMCs was 2.1 ± 0.5 times (p < 0.05) and 1.4 ± 0.4 times (p = nonsignificant) higher along the FN and Alb concentration gradients respectively. Increased invasion along the FN concentration gradient was significantly inhibited (p < 0.05) when the HPMCs were pre-incubated with 5 μg/mL RGDS (a blocker for α5-integrin to FN). Conclusions We conclude that EMT(+) HPMCs invade collagen gel along the FN concentration gradient because of specific binding to RGDS receptors, which bind integrins such as α5-integrin, upregulating invasion-related gene expression associated with synthesis of the cytoskeleton protein α smooth muscle actin.
Collapse
Affiliation(s)
- Youhei Yamaguchi
- Division of Chemistry for Materials, Faculty of Engineering, Graduate School of Mie University, Tsu, Japan
| | - Tatsuya Ishigaki
- Division of Chemistry for Materials, Faculty of Engineering, Graduate School of Mie University, Tsu, Japan
| | - Koushi Sano
- Division of Chemistry for Materials, Faculty of Engineering, Graduate School of Mie University, Tsu, Japan
| | - Kei-Ichi Miyamoto
- Division of Chemistry for Materials, Faculty of Engineering, Graduate School of Mie University, Tsu, Japan
| | - Shinsuke Nomura
- Division of Therapeutic Blood Purification, Mie University School of Medicine, Tsu, Japan
| | - Takashi Horiuchi
- Division of Chemistry for Materials, Faculty of Engineering, Graduate School of Mie University, Tsu, Japan
| |
Collapse
|
100
|
Quaggin SE, Kapus A. Scar wars: mapping the fate of epithelial-mesenchymal-myofibroblast transition. Kidney Int 2011; 80:41-50. [PMID: 21430641 DOI: 10.1038/ki.2011.77] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The hypothesis that epithelial-mesenchymal transition (EMT) might be a contributor to the accumulation of fibroblasts and myofibroblasts (MFs) in the kidney during fibrogenesis was postulated 15 years ago. This paradigm offered an elegant explanation of how the loss of epithelial functions is coupled to the gain of deleterious mesenchymal functions; for example, excessive matrix deposition. Moreover, it interpreted chronic kidney disease in a developmental context: because the tubular epithelium originates from the metanephric mesenchyme, EMT can be viewed as a dedifferentiation process in response to injury, which might serve healing or--if dysregulated--might facilitate fibrosis. Several observations support the role of EMT in renal fibrosis: (1) Tubular cells can transform to fibroblasts and MFs in vitro. (2) Histological 'snapshots' reveal the coexistence of epithelial and mesenchymal markers in transitioning tubular cells in fibrosis models and human kidney diseases. (3) Early lineage-tracing experiments detected mesenchymal markers in the genetically tagged epithelium. However, the paradigm has been recently challenged; new fate-mapping studies found no evidence for the expression of (myo)fibroblast markers in the epithelium during fibrogenesis. This review summarizes the key findings and caveats, aiming at a balanced view, which neither overestimates the role of the epithelium in MF generation nor denies the importance of epithelial plasticity in fibrogenesis.
Collapse
Affiliation(s)
- Susan E Quaggin
- Division of Nephrology, St Michael's Hospital, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|