51
|
Tsuji K, Kitamura S, Wada J. Immunomodulatory and Regenerative Effects of Mesenchymal Stem Cell-Derived Extracellular Vesicles in Renal Diseases. Int J Mol Sci 2020; 21:ijms21030756. [PMID: 31979395 PMCID: PMC7037711 DOI: 10.3390/ijms21030756] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have immunomodulatory and regenerative effects in many organs, including the kidney. Emerging evidence has shown that the trophic effects from MSCs are mainly mediated by the paracrine mechanism rather than the direct differentiation of MSCs into injured tissues. These secretomes from MSCs include cytokines, growth factors, chemokines and extracellular vesicles (EVs) containing microRNAs, mRNAs, and proteins. Many research studies have revealed that secretomes from MSCs have potential to ameliorate renal injury in renal disease models, including acute kidney injury and chronic kidney disease through a variety of mechanisms. These trophic mechanisms include immunomodulatory and regenerative effects. In addition, accumulating evidence has uncovered the specific factors and therapeutic mechanisms in MSC-derived EVs. In this article, we summarize the recent advances of immunomodulatory and regenerative effects of EVs from MSCs, especially focusing on the microRNAs.
Collapse
Affiliation(s)
| | - Shinji Kitamura
- Correspondence: ; Tel.: +81-86-235-7235; Fax: +81-86-222-5214
| | | |
Collapse
|
52
|
Zeng R, Song XJ, Liu CW, Ye W. LncRNA ANRIL promotes angiogenesis and thrombosis by modulating microRNA-99a and microRNA-449a in the autophagy pathway. Am J Transl Res 2019; 11:7441-7448. [PMID: 31934291 PMCID: PMC6943445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
The objective of the present study was to investigate the mechanism whereby long-chain non-coding RNA (LncRNA) antisense non-coding RNA (ANRIL) in the INK4 locus promotes angiogenesis and thrombosis by the miR-99a and miR-449a interventional autophagy pathway. The expression of LncRNA ANRIL, autophagy-related gene beclin1, and miR-99a and miR-449a in human umbilical vein endothelial cells (HUVECs) was determined by qRT-PCR. Thrombomodulin expression was examined by Western blotting assays. The levels of autophagy-related factors were determined by ELISA. CCK-8 assays were used to assess cell viabilities. Apoptosis was detected by flow cytometry via annexin V-FITC/propidium iodide double labeling and TUNEL assays. The interaction between ANRIL, miR-99a and miR-449a was studied using luciferase reporter assays. The role of ANRIL in autophagy was assessed in rats. Our data revealed that ANRIL and beclin-1 were highly expressed, while miR-99a and miR-449a were down-regulated in HUVECs serum of the autophagy model. Luciferase reporter assays, in vitro rescue assays, and Matrigel assays demonstrated that ANRIL increased beclin-1 expression via miR-99a and miR-449a sponges to upregulate thrombomodulin and promote angiogenesis. In addition, in vivo experiments confirmed that knockdown of ANRIL reduced thrombosis in rats. In conclusion, ANRIL promotes angiogenesis and thrombosis by upregulating the expression of miR-99a and miR-449a during autophagy.
Collapse
Affiliation(s)
- Rong Zeng
- Department of Vascular Surgery, Peking Union Medical College Hospital Beijing, China
| | - Xiao-Jun Song
- Department of Vascular Surgery, Peking Union Medical College Hospital Beijing, China
| | - Chang-Wei Liu
- Department of Vascular Surgery, Peking Union Medical College Hospital Beijing, China
| | - Wei Ye
- Department of Vascular Surgery, Peking Union Medical College Hospital Beijing, China
| |
Collapse
|
53
|
Ni S, Luo Z, Jiang L, Guo Z, Li P, Xu X, Cao Y, Duan C, Wu T, Li C, Lu H, Hu J. UTX/KDM6A Deletion Promotes Recovery of Spinal Cord Injury by Epigenetically Regulating Vascular Regeneration. Mol Ther 2019; 27:2134-2146. [PMID: 31495776 PMCID: PMC6904668 DOI: 10.1016/j.ymthe.2019.08.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/30/2019] [Accepted: 08/12/2019] [Indexed: 12/19/2022] Open
Abstract
The regeneration of the blood vessel system post spinal cord injury (SCI) is essential for the repair of neurological function. As a significant means to regulate gene expression, epigenetic regulation of angiogenesis in SCI is still largely unknown. Here, we found that Ubiquitously Transcribed tetratricopeptide repeat on chromosome X (UTX), the histone H3K27 demethylase, increased significantly in endothelial cells post SCI. Knockdown of UTX can promote the migration and tube formation of endothelial cells. The specific knockout of UTX in endothelial cells enhanced angiogenesis post SCI accompanied with improved neurological function. In addition, we found regulation of UTX expression can change the level of microRNA 24 (miR-24) in vitro. The physical binding of UTX to the promotor of miR-24 was indicated by chromatin immunoprecipitation (ChIP) assay. Meanwhile, methylation sequencing of endothelial cells demonstrated that UTX could significantly decrease the level of methylation in the miR-24 promotor. Furthermore, miR-24 significantly abolished the promoting effect of UTX deletion on angiogenesis in vitro and in vivo. Finally, we predicted the potential target mRNAs of miR-24 related to angiogenesis. We indicate that UTX deletion can epigenetically promote the vascular regeneration and functional recovery post SCI by forming a regulatory network with miR-24.
Collapse
Affiliation(s)
- Shuangfei Ni
- Department of Spine Surgery, Xiangya Hospital, Central South University, 410008 Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, 410008 Changsha, China; Research Centre of Sports Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Zixiang Luo
- Department of Spine Surgery, Xiangya Hospital, Central South University, 410008 Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, 410008 Changsha, China; Research Centre of Sports Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Liyuan Jiang
- Department of Spine Surgery, Xiangya Hospital, Central South University, 410008 Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, 410008 Changsha, China; Research Centre of Sports Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Zhu Guo
- Department of Spine Surgery, Xiangya Hospital, Central South University, 410008 Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, 410008 Changsha, China; Research Centre of Sports Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China; Spine Surgery Department of the Affiliated Hospital of Qingdao University, 266000 Qingdao, China
| | - Ping Li
- Department of Spine Surgery, Xiangya Hospital, Central South University, 410008 Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, 410008 Changsha, China; Research Centre of Sports Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Xiang Xu
- Department of Spine Surgery, Xiangya Hospital, Central South University, 410008 Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, 410008 Changsha, China; Research Centre of Sports Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China; Department of Minimally Invasive Spinal Surgery, The Second Affiliated Hospital of Inner Mongolia Medical College, Huhhot 010030, Inner Mongolia, China
| | - Yong Cao
- Department of Spine Surgery, Xiangya Hospital, Central South University, 410008 Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, 410008 Changsha, China; Research Centre of Sports Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Chunyue Duan
- Department of Spine Surgery, Xiangya Hospital, Central South University, 410008 Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, 410008 Changsha, China; Research Centre of Sports Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Tianding Wu
- Department of Spine Surgery, Xiangya Hospital, Central South University, 410008 Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, 410008 Changsha, China; Research Centre of Sports Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Chengjun Li
- Department of Spine Surgery, Xiangya Hospital, Central South University, 410008 Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, 410008 Changsha, China; Research Centre of Sports Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Hongbin Lu
- Department of Sports Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, 410008 Changsha, China; Research Centre of Sports Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China.
| | - Jianzhong Hu
- Department of Spine Surgery, Xiangya Hospital, Central South University, 410008 Changsha, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, 410008 Changsha, China; Research Centre of Sports Medicine, Xiangya Hospital, Central South University, 410008 Changsha, China.
| |
Collapse
|
54
|
Kamel NM, Abd El Fattah MA, El-Abhar HS, Abdallah DM. Novel repair mechanisms in a renal ischaemia/reperfusion model: Subsequent saxagliptin treatment modulates the pro-angiogenic GLP-1/cAMP/VEGF, ANP/eNOS/NO, SDF-1α/CXCR4, and Kim-1/STAT3/HIF-1α/VEGF/eNOS pathways. Eur J Pharmacol 2019; 861:172620. [PMID: 31437429 DOI: 10.1016/j.ejphar.2019.172620] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 12/21/2022]
Abstract
The reno-protective effects of antidiabetic dipeptidyl peptidase (DPP)-4 inhibitors have been studied regarding their antioxidant and anti-inflammatory properties. However, the potential ability of saxagliptin to ameliorate renal injury by enhancing neovascularization has not been elucidated. To address this issue, saxagliptin (10 and 30 mg/kg) was administered to Wistar rats after the induction of renal ischaemia/reperfusion (I/R). Our results showed that saxagliptin operated through different axes to ameliorate I/R injury. By inhibiting DPP-4, saxagliptin maintained stromal cell-derived factor-1α expression and upregulated its chemokine receptor CXCR4 to trigger vasculogenesis through the enhanced migration of endothelial progenitor cells (EPCs). Additionally, this compound rescued the levels of glucagon-like peptide-1 and its downstream mediator cAMP to increase vascular endothelial growth factor (VEGF) and CXCR4 levels. Moreover, saxagliptin stimulated atrial natriuretic peptide/endothelial nitric oxide synthase to increase nitric oxide levels and provoke angiogenesis and renal vasodilation. In addition to inhibiting DPP-4, saxagliptin increased the renal kidney injury molecule-1/pY705-STAT3/hypoxia-inducible factor-1α/VEGF pathway to enhance angiogenesis. Similar to other gliptins, saxagliptin exerted its anti-inflammatory and antioxidant effects by suppressing the renal contents of p (S536)-nuclear factor-κB p65, tumour necrosis factor-α, monocyte chemoattractant protein-1, myeloperoxidase, and malondialdehyde while boosting the glutathione content. These events improved the histological structure and function of the kidney, as evidenced by decreased serum creatinine, blood urea nitrogen, and cystatin C and increased serum albumin. Accordingly, in addition to its anti-inflammatory and antioxidant activities, saxagliptin dose-dependently ameliorated I/R-induced renal damage by enhancing neovascularization through improved tissue perfusion and homing of bone marrow-derived EPCs to mediate repair processes.
Collapse
Affiliation(s)
- Nada M Kamel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Mai A Abd El Fattah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Hanan S El-Abhar
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt.
| | - Dalaal M Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
55
|
Li CM, Li M, Ye ZC, Huang JY, Li Y, Yao ZY, Peng H, Lou TQ. Circular RNA expression profiles in cisplatin-induced acute kidney injury in mice. Epigenomics 2019; 11:1191-1207. [PMID: 31339054 DOI: 10.2217/epi-2018-0167] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Aim: This study was carried out to identify the expression profile and role of circRNAs in cisplatin-induced acute kidney injury (AKI). Materials & methods: In this study, an AKI model was established in cisplatin-treated mice, and the expression of circRNAs was profiled by next-generation sequencing. The differential expression levels of selected circRNAs were determined by quantitative real-time polymerase chain reaction. Bioinformatics analysis was conducted to predict the functions. Results: In total, 368 circRNAs were detected to be differentially expressed in response to cisplatin treatment. Bioinformatics analysis indicated that the parental genes of the differentially expressed circRNAs were predominantly implicated in the cell and cell part, cellular process and cancer pathways. Conclusion: CircRNAs might be differentially expressed in AKI, which are potentially involved in pathophysiology of cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Can-Ming Li
- Department of Nephrology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, PR China
| | - Ming Li
- Department of Nephrology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, PR China
| | - Zeng-Chun Ye
- Department of Nephrology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, PR China
| | - Jia-Yan Huang
- Department of Nephrology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, PR China
| | - Yin Li
- Department of Nephrology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, PR China
| | - Zi-Ying Yao
- Department of Nephrology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, PR China
| | - Hui Peng
- Department of Nephrology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, PR China
| | - Tan-Qi Lou
- Department of Nephrology, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, PR China
| |
Collapse
|
56
|
Brandenburger T, Salgado Somoza A, Devaux Y, Lorenzen JM. Noncoding RNAs in acute kidney injury. Kidney Int 2019; 94:870-881. [PMID: 30348304 DOI: 10.1016/j.kint.2018.06.033] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/30/2018] [Accepted: 06/11/2018] [Indexed: 02/09/2023]
Abstract
Acute kidney injury (AKI) is an important health issue concerning ∼50% of patients treated in intensive care units. AKI mainly occurs after sepsis, acute ischemia, nephrotoxicity, or hypoxia and leads to severe damage of the kidney and to an increased risk of mortality. The diagnosis of AKI is currently based on creatinine urea levels and diuresis. Yet, novel markers may improve the accuracy of this diagnosis at an early stage of the disease, thereby allowing early prevention and therapy, ultimately leading to a reduction in the need for renal replacement therapy and decreased mortality. Non-protein-coding RNAs or noncoding RNAs are central players in development and disease. They are important regulatory molecules that allow a fine-tuning of gene expression and protein synthesis. This regulation is necessary to maintain homeostasis, and its dysregulation is often associated with disease development. Noncoding RNAs are present in the kidney and in body fluids and their expression is modulated during AKI. This review article assembles the current knowledge of the role of noncoding RNAs, including microRNAs, long noncoding RNAs and circular RNAs, in the pathogenesis of AKI. Their potential as biomarkers and therapeutic targets as well as the challenges to translate research findings to clinical application are discussed. Although microRNAs have entered clinical testing, preclinical and clinical trials are needed before long noncoding RNAs and circular RNAs may be considered as useful biomarkers or therapeutic targets of AKI.
Collapse
Affiliation(s)
- Timo Brandenburger
- Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany.
| | - Antonio Salgado Somoza
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Johan M Lorenzen
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
57
|
Exosomal miRNA-19b-3p of tubular epithelial cells promotes M1 macrophage activation in kidney injury. Cell Death Differ 2019; 27:210-226. [PMID: 31097789 DOI: 10.1038/s41418-019-0349-y] [Citation(s) in RCA: 246] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 04/25/2019] [Accepted: 05/03/2019] [Indexed: 12/22/2022] Open
Abstract
Tubulointerstitial inflammation is a common characteristic of acute and chronic kidney injury. However, the mechanism by which the initial injury of tubular epithelial cells (TECs) drives interstitial inflammation remains unclear. This paper aims to explore the role of exosomal miRNAs derived from TECs in the development of tubulointerstitial inflammation. Global microRNA(miRNA) expression profiling of renal exosomes was examined in a LPS induced acute kidney injury (AKI) mouse model and miR-19b-3p was identified as the miRNA that was most notably increased in TEC-derived exosomes compared to controls. Similar results were also found in an adriamycin (ADR) induced chronic proteinuric kidney disease model in which exosomal miR-19b-3p was markedly released. Interestingly, once released, TEC-derived exosomal miR-19b-3p was internalized by macrophages, leading to M1 phenotype polarization through targeting NF-κB/SOCS-1. A dual-luciferase reporter assay confirmed that SOCS-1 was the direct target of miR-19b-3p. Importantly, the pathogenic role of exosomal miR-19b-3p in initiating renal inflammation was revealed by the ability of adoptively transferred of purified TEC-derived exosomes to cause tubulointerstitial inflammation in mice, which was reversed by inhibition of miR-19b-3p. Clinically, high levels of miR-19b-3p were found in urinary exosomes and were correlated with the severity of tubulointerstitial inflammation in patients with diabetic nephropathy. Thus, our studies demonstrated that exosomal miR-19b-3p mediated the communication between injured TECs and macrophages, leading to M1 macrophage activation. The exosome/miR-19b-3p/SOCS1 axis played a critical pathologic role in tubulointerstitial inflammation, representing a new therapeutic target for kidney disease.
Collapse
|
58
|
Zhang L, Liu H, Xu K, Ling Z, Huang Y, Hu Q, Lu K, Liu C, Wang Y, Liu N, Zhang X, Xu B, Wu J, Chen S, Zhang G, Chen M. Hypoxia preconditioned renal tubular epithelial cell-derived extracellular vesicles alleviate renal ischaemia-reperfusion injury mediated by the HIF-1α/Rab22 pathway and potentially affected by microRNAs. Int J Biol Sci 2019; 15:1161-1176. [PMID: 31223277 PMCID: PMC6567810 DOI: 10.7150/ijbs.32004] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/16/2019] [Indexed: 02/06/2023] Open
Abstract
We previously found that hypoxia induced renal tubular epithelial cells (RTECs) release functional extracellular vesicles (EVs), which mediate the protection of remote ischaemic preconditioning (RIPC) for kidney ischaemia-reperfusion (I/R) injury. We intend to investigate whether the EVs were regulated by hypoxia-inducible factor 1α (HIF-1α) and Rab22 during RIPC. We also attempted to determine the potentially protective cargo of the EVs and reveal their underlying mechanism. Hypoxia preconditioning (HPC) of human kidney 2 (HK2) cells was conducted at 1% oxygen (O2) for different amounts of time to simulate IPC in vitro. EVs were isolated and then quantified. HIF-1α- and Rab22-inhibited HK2 cells were used to investigate the role of the HIF-1α/Rab22 pathway in HPC-induced EV production. Both normoxic and HPC EVs were treated in vivo to assess the protective effect of I/R injury. Moreover, microRNA (miRNA) sequencing analysis and bioinformatics analysis was performed. We revealed that the optimal conditions for simulating IPC in vitro was no more than 12 h under the 1% O2 culture circumstance. HPC enhanced the production of EVs, and the production of EVs was regulated by the HIF-1α/Rab22 pathway during HPC. Moreover, HPC EVs were found to be more effective at attenuating mice renal I/R injury. Furthermore, 16 miRNAs were upregulated in HPC EVs. Functional and pathway analysis indicated that the miRNAs may participate in multiple processes and pathways by binding their targets to influence the biochemical results during RIPC. We demonstrated that HIF-1α/Rab22 pathway mediated RTEC-derived EVs during RIPC. The HPC EVs protected renal I/R injury potentially through differentially expressed miRNAs. Further study is needed to verify the effective EV-miRNAs and their underlying mechanism.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China.,Institute of Urology, Surgical Research Center, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Han Liu
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Kai Xu
- Institute of Urology, Surgical Research Center, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Zhixin Ling
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Yeqing Huang
- Department of Urology, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Qiang Hu
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China.,Institute of Urology, Surgical Research Center, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Kai Lu
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China.,Institute of Urology, Surgical Research Center, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Chunhui Liu
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Yiduo Wang
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China.,Institute of Urology, Surgical Research Center, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Ning Liu
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Xiaowen Zhang
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Bin Xu
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China.,Institute of Urology, Surgical Research Center, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Jianping Wu
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Shuqiu Chen
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Guangyuan Zhang
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China.,Institute of Urology, Surgical Research Center, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Ming Chen
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China.,Institute of Urology, Surgical Research Center, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
59
|
Sun IO, Lerman LO. Urinary microRNA in kidney disease: utility and roles. Am J Physiol Renal Physiol 2019; 316:F785-F793. [PMID: 30759023 PMCID: PMC6580242 DOI: 10.1152/ajprenal.00368.2018] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 01/29/2019] [Accepted: 02/11/2019] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) are small, noncoding single-stranded RNA oligonucleotides that modulate physiological and pathological processes by modulating target gene expression. Many miRNAs display tissue-specific expression patterns, the dysregulation of which has been associated with various disease states, including kidney disease. Mounting evidence implicates miRNAs in various biological processes, such as cell proliferation and differentiation and cancer. Because miRNAs are relatively stable in tissue and biological fluids, particularly when carried by extracellular vesicles, changes in their levels may reflect the development of human disease. Urinary miRNAs originate from primary kidney and urinary tract cells, cells infiltrating the renal tissue and shed in the urine, or the systemic circulation. Although their validity as biomarkers for kidney disease has not been fully established, studies have been applying analysis of miRNAs in the urine in an attempt to detect and monitor acute and chronic renal diseases. Because appreciation of the significance of miRNAs in the renal field is on the rise, an understanding of miRNA pathways that regulate renal physiology and pathophysiology is becoming critically important. This review aims to summarize new data obtained in this field of research. It is hoped that new developments in the use of miRNAs as biomarkers and/or therapy will help manage and contain kidney disease in affected subjects.
Collapse
Affiliation(s)
- In O Sun
- Division of Nephrology and Hypertension, Mayo Clinic , Rochester, Minnesota
- Division of Nephrology, Department of Internal Medicine, Presbyterian Medical Center, Jeonju, Korea
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic , Rochester, Minnesota
| |
Collapse
|
60
|
Fan PC, Chen CC, Peng CC, Chang CH, Yang CH, Yang C, Chu LJ, Chen YC, Yang CW, Chang YS, Chu PH. A circulating miRNA signature for early diagnosis of acute kidney injury following acute myocardial infarction. J Transl Med 2019; 17:139. [PMID: 31039814 PMCID: PMC6492315 DOI: 10.1186/s12967-019-1890-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/23/2019] [Indexed: 12/31/2022] Open
Abstract
Background Acute kidney injury (AKI) is a common complication of acute myocardial infarction (AMI), and is associated with adverse outcomes. The study aimed to identify a miRNA signature for the early diagnosis of post-AMI AKI. Methods A total of 108 patients admitted to a coronary care unit (CCU) were divided into four subgroups: AMI−AKI−, AMI+AKI−, AMI+AKI+, and AMI−AKI+. Thirty-six miRNA candidates were selected based on an extensive literature review. Real-time quantitative RT-PCR analysis was used to determine the expression levels of these miRNAs in the serum collected on the day of CCU admittance. TargetScan 7.1 and miRDB databases were used for target prediction and Metacore 6.13 was used for pathway analysis. Results Through a stepwise selection based on abundance, hemolytic effect and differential expression between four groups, 9 miRNAs were found to have significantly differential expression levels as potential biomarkers for post-AMI AKI specifically. Noticeably, the expression levels of miR-24, miR-23a and miR-145 were significantly down-regulated in AMI+AKI+ patients compared to those in AMI+AKI− patients. Combination of the three miRNAs as a panel showed the best performance in the early detection of AKI following AMI (AUC = 0.853, sensitivity 95.65%), compared to the analysis of serum neutrophil gelatinase-associated lipocalin (AUC = 0.735, sensitivity 63.16%). Furthermore, bioinformatic analysis indicated that these three miRNAs regulate the transforming growth factor beta signaling pathway and involve in apoptosis and fibrosis in AKI. Conclusions For the first time, this study identify a unique circulating miRNA signature (miR-24-3p, miR-23a-3p, miR-145-5p) that can potentially early detect AKI following AMI and may be involved in renal injury and fibrosis in post-AMI AKI pathogenesis. Electronic supplementary material The online version of this article (10.1186/s12967-019-1890-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pei-Chun Fan
- Department of Nephrology, Kidney Research Center, Chang Gung Memorial Hospital, Linkou Medical Center, Chang Gung University College of Medicine, No. 5 Fusing Street, Gueishan Dist., Taoyuan City, 333, Taiwan, ROC.,Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 5 Fusing Street, Gueishan Dist., Taoyuan City, 333, Taiwan, ROC
| | - Chia-Chun Chen
- Molecular Medicine Research Center, Chang Gung University, No 259 Wen-Hwa 1st Road, Kwei-Shan, Taoyuan City, 33302, Taiwan, ROC.,Department of Colorectal Surgery, Chang Gung Memorial Hospital, No 259 Wen-Hwa 1st Road, Kwei-Shan, Linkou, Taoyuan City, 33302, Taiwan, ROC
| | - Chen-Ching Peng
- Molecular Medicine Research Center, Chang Gung University, No 259 Wen-Hwa 1st Road, Kwei-Shan, Taoyuan City, 33302, Taiwan, ROC
| | - Chih-Hsiang Chang
- Department of Nephrology, Kidney Research Center, Chang Gung Memorial Hospital, Linkou Medical Center, Chang Gung University College of Medicine, No. 5 Fusing Street, Gueishan Dist., Taoyuan City, 333, Taiwan, ROC.,Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 5 Fusing Street, Gueishan Dist., Taoyuan City, 333, Taiwan, ROC
| | - Chia-Hung Yang
- Department of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No. 5 Fusing Street, Gueishan Dist., Taoyuan City, 333, Taiwan, ROC
| | - Chi Yang
- Molecular Medicine Research Center, Chang Gung University, No 259 Wen-Hwa 1st Road, Kwei-Shan, Taoyuan City, 33302, Taiwan, ROC
| | - Lichieh Julie Chu
- Molecular Medicine Research Center, Chang Gung University, No 259 Wen-Hwa 1st Road, Kwei-Shan, Taoyuan City, 33302, Taiwan, ROC
| | - Yung-Chang Chen
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung Branch, Chang Gung University College of Medicine, No. 222, Maijin Rd., Anle Dist., Keelung City, 20401, Taiwan, ROC
| | - Chih-Wei Yang
- Department of Nephrology, Kidney Research Center, Chang Gung Memorial Hospital, Linkou Medical Center, Chang Gung University College of Medicine, No. 5 Fusing Street, Gueishan Dist., Taoyuan City, 333, Taiwan, ROC
| | - Yu-Sun Chang
- Molecular Medicine Research Center, Chang Gung University, No 259 Wen-Hwa 1st Road, Kwei-Shan, Taoyuan City, 33302, Taiwan, ROC
| | - Pao-Hsien Chu
- Department of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 199 Tung Hwa North Road, Taipei, 105, Taiwan.
| |
Collapse
|
61
|
Chen S, Yao Y, Lin F, Bian F, Zhu C, Jiang G. MiR-424 is over-expressed and attenuates ischemia-reperfusion kidney injury via p53 and death receptor 6 pathway. Am J Transl Res 2019; 11:1965-1979. [PMID: 31105811 PMCID: PMC6511784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 01/07/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Ischemic reperfusion injury of kidney is major cause for renal failure, however the involved pathogenesis remains unclear creating an void for its effective treatment. Here we studied involvement of microRNA-424 in renal injury. METHODS For the study, p53 or HIF-1α mice were used, ischemic renal injury was induced using clamping of renal pedicles bilateraly. Proximal kidney tubular cells were used for in vitro studies. Hoechst 33342 analysis was done for apoptosis. Blood urea nitrogen (BUN) and serum creatinine was done for renal function, Hematoxylin-eosin tissue damage and Terminal transferase-dUTP nick-end labeling assay for apoptosis. RT-PCR was done for miRNA and ChIP assay to identify the binding of p53 to miR-424. TargetScan and miRanda data base were scanned to find targets of miR-424. Protein expression was done by western blot analysis. RESULTS We discovered that, miR-424 was over-expressed in ischemic renal injury mice and in hypoxia exposed renal cells. In cells, miR-424 suppressed the expression levels of death receptor 6 (DR6) and halted the apoptosis mediated by hypoxia. Blocking of miR-424 halted the inhibition of DR6 and caused apoptosis and activation of caspase. In mice, miR-424 mimic inhibited expression of DR6 and attenuated ischemic renal injury. We established that, up-regulation of miR-424 in ischemic reperfusion injury was p53 dependent, also inhibition of p53 caused repression of miR-424 levels in hypoxia induced cells in vitro. The p53 knockout mice showed attenuation in levels of miR-424 confirming role of p53 behind up-regulation of miR-424 in vivo. CONCLUSION The study confirmed p53/miR-424/DR6 as a protective cascade during ischemic-reperfusion injury.
Collapse
Affiliation(s)
- Shunjie Chen
- Department of Nephrology, Xinhua Hospital Affiliated to Medicine School of Shanghai Jiaotong UniversityShanghai 200092, China
| | - Yao Yao
- Department of Nephrology, Xinhua Hospital Affiliated to Medicine School of Shanghai Jiaotong UniversityShanghai 200092, China
| | - Fujun Lin
- Department of Nephrology, Xinhua Hospital Affiliated to Medicine School of Shanghai Jiaotong UniversityShanghai 200092, China
| | - Fan Bian
- Department of Nephrology, Xinhua Hospital Affiliated to Medicine School of Shanghai Jiaotong UniversityShanghai 200092, China
| | - Chun Zhu
- Department of Nephrology, Xinhua Hospital (Chongming Branch) Affiliated to Medicine School of Shanghai Jiaotong UniversityShanghai 200092, China
| | - Gengru Jiang
- Department of Nephrology, Xinhua Hospital Affiliated to Medicine School of Shanghai Jiaotong UniversityShanghai 200092, China
| |
Collapse
|
62
|
Liu Z, Wang Y, Shu S, Cai J, Tang C, Dong Z. Non-coding RNAs in kidney injury and repair. Am J Physiol Cell Physiol 2019; 317:C177-C188. [PMID: 30969781 DOI: 10.1152/ajpcell.00048.2019] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Acute kidney injury (AKI) is a major kidney disease featured by a rapid decline of renal function. Pathologically, AKI is characterized by tubular epithelial cell injury and death. Besides its acute consequence, AKI contributes critically to the development and progression of chronic kidney disease (CKD). After AKI, surviving tubular cells regenerate to repair. Normal repair restores tubular integrity, while maladaptive or incomplete repair results in renal fibrosis and eventually CKD. Non-coding RNAs (ncRNAs) are functional RNA molecules that are transcribed from DNA but not translated into proteins, which mainly include microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), small nucleolar RNAs (snoRNAs), and tRNAs. Accumulating evidence suggests that ncRNAs play important roles in kidney injury and repair. In this review, we summarize the recent advances in the understanding of the roles of ncRNAs, especially miRNAs and lncRNAs in kidney injury and repair, discuss the potential application of ncRNAs as biomarkers of AKI as well as therapeutic targets for treating AKI and impeding AKI-CKD transition, and highlight the future research directions of ncRNAs in kidney injury and repair.
Collapse
Affiliation(s)
- Zhiwen Liu
- Department of Nephrology, The Key Laboratory of Kidney Disease and Blood Purification of Hunan Province, Second Xiangya Hospital at Central South University , Changsha , China
| | - Ying Wang
- Department of Nephrology, The Key Laboratory of Kidney Disease and Blood Purification of Hunan Province, Second Xiangya Hospital at Central South University , Changsha , China
| | - Shaoqun Shu
- Department of Nephrology, The Key Laboratory of Kidney Disease and Blood Purification of Hunan Province, Second Xiangya Hospital at Central South University , Changsha , China
| | - Juan Cai
- Department of Nephrology, The Key Laboratory of Kidney Disease and Blood Purification of Hunan Province, Second Xiangya Hospital at Central South University , Changsha , China
| | - Chengyuan Tang
- Department of Nephrology, The Key Laboratory of Kidney Disease and Blood Purification of Hunan Province, Second Xiangya Hospital at Central South University , Changsha , China
| | - Zheng Dong
- Department of Nephrology, The Key Laboratory of Kidney Disease and Blood Purification of Hunan Province, Second Xiangya Hospital at Central South University , Changsha , China.,Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veterans Affairs Medical Center , Augusta, Georgia
| |
Collapse
|
63
|
Guo C, Dong G, Liang X, Dong Z. Epigenetic regulation in AKI and kidney repair: mechanisms and therapeutic implications. Nat Rev Nephrol 2019; 15:220-239. [PMID: 30651611 PMCID: PMC7866490 DOI: 10.1038/s41581-018-0103-6] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Acute kidney injury (AKI) is a major public health concern associated with high morbidity and mortality. Despite decades of research, the pathogenesis of AKI remains incompletely understood and effective therapies are lacking. An increasing body of evidence suggests a role for epigenetic regulation in the process of AKI and kidney repair, involving remarkable changes in histone modifications, DNA methylation and the expression of various non-coding RNAs. For instance, increases in levels of histone acetylation seem to protect kidneys from AKI and promote kidney repair. AKI is also associated with changes in genome-wide and gene-specific DNA methylation; however, the role and regulation of DNA methylation in kidney injury and repair remains largely elusive. MicroRNAs have been studied quite extensively in AKI, and a plethora of specific microRNAs have been implicated in the pathogenesis of AKI. Emerging research suggests potential for microRNAs as novel diagnostic biomarkers of AKI. Further investigation into these epigenetic mechanisms will not only generate novel insights into the mechanisms of AKI and kidney repair but also might lead to new strategies for the diagnosis and therapy of this disease.
Collapse
Affiliation(s)
- Chunyuan Guo
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Guie Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Xinling Liang
- Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatrics Institute, Guangzhou, China
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, USA.
| |
Collapse
|
64
|
Wei W, Peng J, Shen T. Rosuvastatin Alleviates Ischemia/Reperfusion Injury in Cardiomyocytes by Downregulating Hsa-miR-24-3p to Target Upregulated Uncoupling Protein 2. Cell Reprogram 2019; 21:99-107. [PMID: 30835496 DOI: 10.1089/cell.2018.0039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Statins could reduce the risks of coronary heart disease death and ischemic cardiovascular events. In this study, we aim to explore the role of rosuvastatin in ischemia/reperfusion (I/R)-injured cardiomyocytes and the possible mechanism. An I/R model was established by oxygen-glucose deprivation/reperfusion (OGD/R). The protective effects of rosuvastatin pretreatment on OGD/R-injured cardiomyocytes were performed using MTT assay, lactate dehydrogenase (LDH) release assay, and quantitative real-time polymerase chain reaction (qRT-PCR). Bioinformatics software TargetScan and miRTarBase were used to predict the targeted miRNAs with uncoupling protein (UCP)2. Furthermore, verify the binding capacity of hsa-miR-24-3p and UCP2 with qRT-PCR and dual-luciferase reporter assay. The expression of UCP2, cell viability, LDH level, and apoptosis level affected by downregulated hsa-miR-24-3p were assessed using qRT-PCR, western blotting, MTT, the LDH kit, and flow cytometry. Pretreatment with rosuvastatin could significantly augment cell viability, reduce LDH level, increase the expression of UCP2, and downregulate hsa-miR-24-3p in OGD/R-injured H9c2 cells. miR-24-3p was closely connected with UCP2, and downregulated miR-24-3p could promote UCP2 expression, which presented cell viability increasing, LDH release and cell apoptosis inhibition in OGD/R condition. Moreover, it decreased the protein expression of Cleaved-Caspase-9 and Cyto C. This is the first time our study suggests that rosuvastatin pretreatment protects cardiomyocytes from OGD/R through upregulating UCP2 through downregulation of hsa-miR-24-3p.
Collapse
Affiliation(s)
- Wenjuan Wei
- 1 Department of Cardiovascular Medicine, The First People's Hospital of Xiaoshan Hangzhou, Hangzhou, China
| | - Jun Peng
- 1 Department of Cardiovascular Medicine, The First People's Hospital of Xiaoshan Hangzhou, Hangzhou, China
| | - Ting Shen
- 2 Electrocardiogram Room of Department of Functional Examination, Zhejiang Province Tongde Hospital, Hangzhou, China
| |
Collapse
|
65
|
Fuschi P, Maimone B, Gaetano C, Martelli F. Noncoding RNAs in the Vascular System Response to Oxidative Stress. Antioxid Redox Signal 2019; 30:992-1010. [PMID: 28683564 DOI: 10.1089/ars.2017.7229] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE Redox homeostasis plays a pivotal role in vascular cell function and its imbalance has a causal role in a variety of vascular diseases. Accordingly, the response of mammalian cells to redox cues requires precise transcriptional and post-transcriptional modulation of gene expression patterns. Recent Advances: Mounting evidence shows that nonprotein-coding RNAs (ncRNAs) are important for the functional regulation of most, if not all, cellular processes and tissues. Not surprisingly, a prominent role of ncRNAs has been identified also in the vascular system response to oxidative stress. CRITICAL ISSUES The highly heterogeneous family of ncRNAs has been divided into several groups. In this article we focus on two classes of regulatory ncRNAs: microRNAs and long ncRNAs (lncRNAs). Although knowledge in many circumstances, and especially for lncRNAs, is still fragmentary, ncRNAs are clinically interesting because of their diagnostic and therapeutic potential. We outline ncRNAs that are regulated by oxidative stress as well as ncRNAs that modulate reactive oxygen species production and scavenging. More importantly, we describe the role of these ncRNAs in vascular physiopathology and specifically in disease conditions wherein oxidative stress plays a crucial role, such as hypoxia and ischemia, ischemia reperfusion, inflammation, diabetes mellitus, and atherosclerosis. FUTURE DIRECTIONS The therapeutic potential of ncRNAs in vascular diseases and in redox homeostasis is discussed.
Collapse
Affiliation(s)
- Paola Fuschi
- 1 Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, Milan, Italy
| | - Biagina Maimone
- 1 Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, Milan, Italy
| | - Carlo Gaetano
- 2 Division of Cardiovascular Epigenetics, Department of Cardiology, Goethe University, Frankfurt am Main, Germany
| | - Fabio Martelli
- 1 Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, Milan, Italy
| |
Collapse
|
66
|
Zhang X, Yang Z, Heng Y, Miao C. MicroRNA‑181 exerts an inhibitory role during renal fibrosis by targeting early growth response factor‑1 and attenuating the expression of profibrotic markers. Mol Med Rep 2019; 19:3305-3313. [PMID: 30816527 DOI: 10.3892/mmr.2019.9964] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 02/07/2019] [Indexed: 11/06/2022] Open
Abstract
Progressive renal fibrosis is a common complication of chronic kidney disease that results in end‑stage renal disorder. It is well established that several microRNAs (miRs) function as critical regulators implicated in fibrotic diseases. However, the role of miR‑181 in the development and progression of renal fibrosis remains unclear, and the precise mechanism has not yet been fully defined. The present study identified the functional implications of miR‑181 expression during renal fibrosis. miR‑181 exhibited significantly reduced expression in the serum of renal fibrosis patients and in the kidneys of mice with unilateral ureteral obstruction (UUO). In addition, miR‑181 downregulated the expression of human α‑smooth muscle actin (α‑SMA) in response to angiotensin II stimulation. Transfection with miR‑181 mimics significantly suppressed the expression levels of α‑SMA, connective tissue growth factor, collagen type I α1 (COL1A1) and collagen type III α1 (COL3A1) in NRK49F cells. Notably, early growth response factor‑1 (Egr1) was identified as a direct target gene of miR‑181. Furthermore, in vivo experiments revealed that treatment with miR‑181 agonist strongly rescued kidney impairment induced by UUO, as supported by Masson's trichrome staining of kidney tissues and reverse transcription‑quantitative polymerase chain reaction analysis of COL1A1 and COL3A1 mRNA levels. Therefore, miR‑181 may be regarded as an important mediator in the control of profibrotic markers during renal fibrosis via binding to Egr1, and may be a promising new target in the diagnosis and therapy of renal fibrosis.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Nephrology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Zhenning Yang
- School of Clinical Medicine, Norman Bethune Health Science Center of Jilin University, Changchun, Jilin 130022, P.R. China
| | - Yanyan Heng
- Department of Nephrology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Congxiu Miao
- Department of Scientific Research, Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| |
Collapse
|
67
|
Liu Y, Bi X, Xiong J, Han W, Xiao T, Xu X, Yang K, Liu C, Jiang W, He T, Yu Y, Li Y, Zhang J, Zhang B, Zhao J. MicroRNA-34a Promotes Renal Fibrosis by Downregulation of Klotho in Tubular Epithelial Cells. Mol Ther 2019; 27:1051-1065. [PMID: 30853453 DOI: 10.1016/j.ymthe.2019.02.009] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 02/01/2019] [Accepted: 02/06/2019] [Indexed: 12/28/2022] Open
Abstract
Renal fibrosis is the main pathological characteristic of chronic kidney disease (CKD), whereas the underlying mechanisms of renal fibrosis are not clear yet. Herein, we found an increased expression of microRNA-34a (miR-34a) in renal tubular epithelial cells of patients with renal fibrosis and mice undergoing unilateral ureteral obstruction (UUO). In miR-34a-/- mice, miR-34a deficiency attenuated the progression of renal fibrosis following UUO surgery. The miR-34a overexpression promoted epithelial-to-mesenchymal transition (EMT) in cultured human renal tubular epithelial HK-2 cells, which was accompanied by sharp downregulation of Klotho, an endogenous inhibitor of renal fibrosis. Luciferase reporter assay revealed that miR-34a downregulated Klotho expression though direct binding with the 3' UTR of Klotho. Conversely, overexpression of Klotho prevented miR-34a-induced EMT in HK-2 cells. Furthermore, results showed that miR-34a was induced by transforming growth factor β1 (TGF-β1) through p53 activation, whereas dihydromyricetin could inhibit TGF-β1-induced miR-34a overexpression. Accordingly, dihydromyricetin administration dramatically restored the aberrant upregulation of miR-34a and Klotho reduction in obstructed kidney, and markedly ameliorated renal fibrosis in the Adriamycin nephropathy and UUO model mice. These findings suggested that miR-34a plays an important role in the progression of renal fibrosis, which provides new insights into the pathogenesis and treatment of CKD.
Collapse
Affiliation(s)
- Yong Liu
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Xianjin Bi
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Jiachuan Xiong
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Wenhao Han
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Tangli Xiao
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Xinli Xu
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Ke Yang
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Chi Liu
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Wei Jiang
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Ting He
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Yanlin Yu
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Yan Li
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Jingbo Zhang
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Bo Zhang
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Jinghong Zhao
- Department of Nephrology, Institute of Nephrology of Chongqing and Kidney Center of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| |
Collapse
|
68
|
Tian X, Ji Y, Liang Y, Zhang J, Guan L, Wang C. LINC00520 targeting miR-27b-3p regulates OSMR expression level to promote acute kidney injury development through the PI3K/AKT signaling pathway. J Cell Physiol 2019; 234:14221-14233. [PMID: 30684280 DOI: 10.1002/jcp.28118] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/11/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Acute kidney injury (AKI) shows several kinds of disorders, which acutely harm the kidney. However, the current medical methods have limited therapeutic effects. The present study aimed to find out the molecular mechanism of AKI pathogenesis, which may provide new insights for future therapy. METHODS Bioinformatic analysis was conducted using the R language (AT&T BellLaboratories, University of Auckland, New Zealand) to acquire the differentially expressed long noncoding RNAs (lncRNAs) and messenger RNAs (mRNAs) in AKI. The expression levels of RNAs and related proteins in tissues and cells were detected by quantitative real-time PCR (qRT-PCR) and western blot. Dual-luciferase reporter gene assays were performed to verify the target relationship between microRNA (miRNA) and lncRNA as well as miRNA and mRNA. Flow cytometry and tunnel assay were used to detect the cell apoptotic rate in AKI. RESULTS LINC00520, miR-27b-3p, and OSMR form an axis to regulate AKI. Knockdown of LINC00520 reduced acute renal injury both in vitro and in vivo. LINC00520 activated the PI3K/AKT pathway to aggravate renal ischemia/reperfusion injury, while upregulation of miR-27b-3p or downregulation of OSMR could accelerate the recovery of AKI. CONCLUSION Overexpression of LINC00520 contributes to the aggravation of AKI by targeting miR-27b-3p/ OSMR.
Collapse
Affiliation(s)
- Xinghan Tian
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Department of Critical Care Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Yongqiang Ji
- Department of Nephrology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Yafeng Liang
- Department of Critical Care Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Jing Zhang
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Lina Guan
- Department of Neurology Intensive Care Unit, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Chunting Wang
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| |
Collapse
|
69
|
Ramezani Ali Akbari F, Badavi M, Dianat M, Mard SA, Ahangarpour A. GALLIC ACID IMPROVES OXIDATIVE STRESS AND INFLAMMATION THROUGH REGULATING MICRORNAS EXPRESSIONS IN THE BLOOD OF DIABETIC RATS. ACTA ENDOCRINOLOGICA-BUCHAREST 2019; 15:187-194. [PMID: 31508175 DOI: 10.4183/aeb.2019.187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Context Endothelial dysfunction and diabetic cardiomyopathy are critical complications of diabetes. Gallic acid (GA) plays a significant role in cardiovascular disorders resulted from diabetes. In addition, increased plasma miR-24, miR-126 associated with endothelial dysfunction. Aim The current study was designed to assess the effects of GA on plasma miR-24, miR-126 levels in the diabetic rats. Animals and Methods Adult male Sprague-Dawley rats were divided into three groups (n=8): control (C), diabetic (D) and diabetic group treated with GA (D+G, 25 mg/kg, by gavage) for eight weeks. The blood glucose level, body weight, lipid profile, blood pressure, plasma miR-24 and miR-126 levels, antioxidant and inflammatory biomarkers were measured. Results The plasma levels of miR-24, miR-126, body weight, high-density lipoprotein cholesterol (HDL-c), total anti-oxidant capacity (TAC) and the systolic blood pressure significantly reduced and blood glucose, total cholesterol (TC), triglycerides (TG), very low-density lipoprotein cholesterol (VLDL-c), malondialdehyde (MDA), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α) and low-density lipoprotein cholesterol (LDL-c) significantly elevated among the diabetic rats compared with the control group. However, GA restored body weight, blood pressure, TC, TG, VLDL-c, TNF-α, miR-126, blood glucose, HDL-c, MDA, TAC, miR-24 and IL-6 among the GA treated rats compared with the diabetic group. Conclusion GA improves inflammation, oxidative stress and hypotension result from diabetes. These protective effects are probably mediated via increasing plasma miR-24 and miR-126 levels.
Collapse
Affiliation(s)
- F Ramezani Ali Akbari
- Ahvaz Jundishapur University of Medical Sciences, Ahvaz Physiology Research Center, Ahvaz, Iran.,Ahvaz Jundishapur University of Medical Sciences, School of Medicine, Dept. of Physiology, Ahvaz, Iran
| | - M Badavi
- Ahvaz Jundishapur University of Medical Sciences, Ahvaz Physiology Research Center, Ahvaz, Iran.,Ahvaz Jundishapur University of Medical Sciences, School of Medicine, Dept. of Physiology, Ahvaz, Iran.,Ahvaz Jundishapur University of Medical Sciences, Atherosclerosis Research Center, Ahvaz, Iran
| | - M Dianat
- Ahvaz Jundishapur University of Medical Sciences, Ahvaz Physiology Research Center, Ahvaz, Iran.,Ahvaz Jundishapur University of Medical Sciences, School of Medicine, Dept. of Physiology, Ahvaz, Iran
| | - S A Mard
- Ahvaz Jundishapur University of Medical Sciences, Ahvaz Physiology Research Center, Ahvaz, Iran.,Ahvaz Jundishapur University of Medical Sciences, School of Medicine, Dept. of Physiology, Ahvaz, Iran
| | - A Ahangarpour
- Ahvaz Jundishapur University of Medical Sciences, Ahvaz Physiology Research Center, Ahvaz, Iran.,Ahvaz Jundishapur University of Medical Sciences, School of Medicine, Dept. of Physiology, Ahvaz, Iran.,Ahvaz Jundishapur University of Medical Sciences, Diabetes Research Center, Ahvaz, Iran
| |
Collapse
|
70
|
Zheng Z, Hu H, Tong Y, Hu Z, Cao S, Shan C, Lin W, Yin Y, Li Z. MiR-27b regulates podocyte survival through targeting adenosine receptor 2B in podocytes from non-human primate. Cell Death Dis 2018; 9:1133. [PMID: 30429458 PMCID: PMC6235956 DOI: 10.1038/s41419-018-1178-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 10/21/2018] [Accepted: 10/24/2018] [Indexed: 12/17/2022]
Abstract
MicroRNAs are a group of small non-coding RNAs that play key roles in almost every aspect of mammalian cell. In kidney, microRNAs are required for maintaining normal function of renal cells, disruption of which contributes to pathogenesis of renal diseases. In this study, we investigated the potential role of miRNAs as key regulators of podocyte survival by using a primary cell culture model from non-human primates (NHPs). Through microRNA profile comparison in glomeruli from mouse, rat and NHP, miR-27b was found to be among a list of glomeruli-enriched miRNA conserved across species. In NHP primary podocyte culture, significant downregulation of miR-27b was observed during treatment of puromycin aminonucleoside (PAN), a classic nephrotoxin. Overexpression of miR-27b enhanced PAN-induced apoptosis and cytoskeleton destruction in podocytes while its inhibition had a protective effect. Target identification analysis identified Adora2b as a potential direct target of miR-27b. Ectopic expression of miR-27b suppressed both Adora2b mRNA and protein expression, whereas inhibition of miR-27b increased the transcript and protein expression levels of Adora2B. Dual luciferase assay further confirmed Adora2b as a direct target of miR-27b. Furthermore, knockdown of Adora2b by siRNAs enhanced PAN-induced apoptosis, similar to the phenotypes we had observed with miR-27b overexpression. In addition, stimulating the adenosine signaling by an Adora2b agonist, NECA, improved podocyte survival upon PAN treatment. Taken together, our data identified a novel role of miR-27b-adora2b axis in primary podocyte survival upon injury and suggested a critical role of adenosine signaling pathway in podocyte protection.
Collapse
Affiliation(s)
- Zuokang Zheng
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, State Key Laboratory of Biotherapy, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Hong Hu
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, State Key Laboratory of Biotherapy, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Yanrong Tong
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, State Key Laboratory of Biotherapy, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Zhixia Hu
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, State Key Laboratory of Biotherapy, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Shiyu Cao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, State Key Laboratory of Biotherapy, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Ce Shan
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, State Key Laboratory of Biotherapy, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Wenhe Lin
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, State Key Laboratory of Biotherapy, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Yike Yin
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, State Key Laboratory of Biotherapy, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Zhonghan Li
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, State Key Laboratory of Biotherapy, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610064, China.
| |
Collapse
|
71
|
Wei Q, Sun H, Song S, Liu Y, Liu P, Livingston MJ, Wang J, Liang M, Mi QS, Huo Y, Nahman NS, Mei C, Dong Z. MicroRNA-668 represses MTP18 to preserve mitochondrial dynamics in ischemic acute kidney injury. J Clin Invest 2018; 128:5448-5464. [PMID: 30325740 DOI: 10.1172/jci121859] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 10/04/2018] [Indexed: 01/02/2023] Open
Abstract
The pathogenesis of ischemic diseases remains unclear. Here we demonstrate the induction of microRNA-668 (miR-668) in ischemic acute kidney injury (AKI) in human patients, mice, and renal tubular cells. The induction was HIF-1 dependent, as HIF-1 deficiency in cells and kidney proximal tubules attenuated miR-668 expression. We further identified a functional HIF-1 binding site in the miR-668 gene promoter. Anti-miR-668 increased apoptosis in renal tubular cells and enhanced ischemic AKI in mice, whereas miR-668 mimic was protective. Mechanistically, anti-miR-668 induced mitochondrial fragmentation, whereas miR-668 blocked mitochondrial fragmentation during hypoxia. We analyzed miR-668 target genes through immunoprecipitation of microRNA-induced silencing complexes followed by RNA deep sequencing and identified 124 protein-coding genes as likely targets of miR-668. Among these genes, only mitochondrial protein 18 kDa (MTP18) has been implicated in mitochondrial dynamics. In renal cells and mouse kidneys, miR-668 mimic suppressed MTP18, whereas anti-miR-668 increased MTP18 expression. Luciferase microRNA target reporter assay further verified MTP18 as a direct target of miR-668. In renal tubular cells, knockdown of MTP18 suppressed mitochondrial fragmentation and apoptosis. Together, the results suggest that miR-668 is induced via HIF-1 in ischemic AKI and that, upon induction, miR-668 represses MTP18 to preserve mitochondrial dynamics for renal tubular cell survival and kidney protection.
Collapse
Affiliation(s)
- Qingqing Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Haipeng Sun
- Department of Nephrology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Shuwei Song
- Department of Nephrology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yong Liu
- Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Pengyuan Liu
- Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Man Jiang Livingston
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Jianwen Wang
- Department of Nephrology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Mingyu Liang
- Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Qing-Sheng Mi
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, Michigan, USA
| | | | - Norris Stanley Nahman
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Changlin Mei
- Department of Nephrology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA.,Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, China.,Charlie Norwood VA Medical Center, Augusta, Georgia, USA
| |
Collapse
|
72
|
Axmann M, Meier SM, Karner A, Strobl W, Stangl H, Plochberger B. Serum and Lipoprotein Particle miRNA Profile in Uremia Patients. Genes (Basel) 2018; 9:genes9110533. [PMID: 30400676 PMCID: PMC6265992 DOI: 10.3390/genes9110533] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 01/30/2023] Open
Abstract
microRNAs (miRNAs) are post-transcriptional regulators of messenger RNA (mRNA), and transported through the whole organism by—but not limited to—lipoprotein particles. Here, we address the miRNA profile in serum and lipoprotein particles of healthy individuals in comparison with patients with uremia. Moreover, we quantitatively determined the cellular lipoprotein-particle-uptake dependence on the density of lipoprotein particle receptors and present a method for enhancement of the transfer efficiency. We observed a significant increase of the cellular miRNA level using reconstituted high-density lipoprotein (HDL) particles artificially loaded with miRNA, whereas incubation with native HDL particles yielded no measurable effect. Thus, we conclude that no relevant effect of lipoprotein-particle-mediated miRNA-transfer exists under in vivo conditions though the miRNA profile of lipoprotein particles can be used as a diagnostic marker.
Collapse
Affiliation(s)
- Markus Axmann
- Center for Pathobiochemistry and Genetics, Institute of Medical Chemistry and Pathobiochemistry, Medical University Vienna, 1090 Vienna, Austria.
| | - Sabine M Meier
- Center for Pathobiochemistry and Genetics, Institute of Medical Chemistry and Pathobiochemistry, Medical University Vienna, 1090 Vienna, Austria.
| | - Andreas Karner
- University of Applied Sciences Upper Austria, School of Medical Engineering and Applied Social Sciences, 4020 Linz, Austria.
| | - Witta Strobl
- Center for Pathobiochemistry and Genetics, Institute of Medical Chemistry and Pathobiochemistry, Medical University Vienna, 1090 Vienna, Austria.
| | - Herbert Stangl
- Center for Pathobiochemistry and Genetics, Institute of Medical Chemistry and Pathobiochemistry, Medical University Vienna, 1090 Vienna, Austria.
| | - Birgit Plochberger
- University of Applied Sciences Upper Austria, School of Medical Engineering and Applied Social Sciences, 4020 Linz, Austria.
| |
Collapse
|
73
|
Khazraee SP, Marashi SM, Kaviani M, Azarpira N. Stem Cell-Based Therapies and Tissue Engineering of Trachea as Promising Therapeutic Methods in Mustard Gas Exposed Patients. Int J Organ Transplant Med 2018; 9:145-154. [PMID: 30863517 PMCID: PMC6409095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Tissue engineering and cell-based therapies are promising therapeutic approaches in structural and functional defects of the trachea. Researchers have focused on these approaches to overcome the complications related to such diseases. Patients exposed to mustard gas suffer from massive damage to the respiratory system. Current treatment plans are only palliative and include anti-inflammatory drugs, broncholytics, long-acting β2-agonists, and inhaled corticosteroids. As mustard gas exposure leads to chronic airway inflammation, it seems that tracheobronchomalacia, because of chronic inflammation and weakness of the supporting cartilage, is an important factor in the development of chronic and refractory respiratory symptoms. The previous studies show that regenerative medicine approaches have promising potential to improve the life quality of patients suffering from tracheal defects. It seems that the engineered tracheal graft may improve the respiratory function and decrease symptoms in patients who suffer from asthma-like attacks due to mustard gas exposure. There are several successful case reports on the transplantation of stem cell-based bioartificial grafts in structural airway diseases. Therefore, we hope that the reconstruction of tracheobronchial structure can lead to a decrease in respiratory difficulties in mustard gas-exposed patients who suffer from tracheomalacia. In the present review, we summarize the main aspects of tracheal tissue engineering and cell-based therapies and the possibilities of the application of these approaches in mustard gas-exposed patients.
Collapse
Affiliation(s)
- S. P. Khazraee
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - S. M, Marashi
- Trauma Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - M. Kaviani
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - N. Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
74
|
Didar G, Delpazir F, Kaviani M, Azarpira N, Sepehrara L, Ebadi P, Koohpeyma F. Influence of mesenchymal stem cells and royal jelly on kidney damage triggered by ischemia-reperfusion injury: comparison with ischemic preconditioning in an animal model. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s00580-018-2842-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
75
|
Gong YY, Luo JY, Wang L, Huang Y. MicroRNAs Regulating Reactive Oxygen Species in Cardiovascular Diseases. Antioxid Redox Signal 2018; 29:1092-1107. [PMID: 28969427 DOI: 10.1089/ars.2017.7328] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Oxidative stress caused by overproduction of reactive oxygen species (ROS) in cells is one of the most important contributors to the pathogenesis of cardiovascular and metabolic diseases such as hypertension and atherosclerosis. Excessive accumulation of ROS impairs, while limiting oxidative stress protects cardiovascular and metabolic function through various cellular mechanisms. Recent Advances: MicroRNAs (miRNAs) are novel regulators of oxidative stress in cardiovascular cells that modulate the expression of redox-related genes. This article summarizes recent advances in our understanding of how miRNAs target major ROS generators, antioxidant signaling pathways, and effectors in cells of the cardiovascular system. CRITICAL ISSUES The role of miRNAs in regulating ROS in cardiovascular cells is complicated because miRNAs can target multiple redox-related genes, act on redox regulatory pathways indirectly, and display context-dependent pro- or antioxidant effects. The complex regulatory network of ROS and the plethora of targets make it difficult to pin point the role of miRNAs and develop them as therapeutics. Therefore, these properties should be considered when designing strategies for therapeutic or diagnostic development. FUTURE DIRECTIONS Future studies can gain a better understanding of redox-related miRNAs by investigating their own regulatory mechanisms and the dual role of ROS in the cardiovascular systems. The combination of improved study design and technical advancements will reveal newer pathophysiological importance of redox-related miRNAs.
Collapse
Affiliation(s)
- Yao-Yu Gong
- 1 School of Life Sciences, The Chinese University of Hong Kong , Hong Kong SAR, China .,2 School of Biomedical Sciences, The Chinese University of Hong Kong , Hong Kong SAR, China
| | - Jiang-Yun Luo
- 2 School of Biomedical Sciences, The Chinese University of Hong Kong , Hong Kong SAR, China .,3 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong , Hong Kong SAR, China
| | - Li Wang
- 2 School of Biomedical Sciences, The Chinese University of Hong Kong , Hong Kong SAR, China .,3 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong , Hong Kong SAR, China
| | - Yu Huang
- 2 School of Biomedical Sciences, The Chinese University of Hong Kong , Hong Kong SAR, China .,3 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong , Hong Kong SAR, China
| |
Collapse
|
76
|
Ren G, Zhu J, Li J, Meng X. Noncoding RNAs in acute kidney injury. J Cell Physiol 2018; 234:2266-2276. [PMID: 30146769 DOI: 10.1002/jcp.27203] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 07/16/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Gui‐Ling Ren
- Department of PharmacyThe 105 Hospital of Chinese People’s Liberation ArmyHefei China
| | - Jie Zhu
- Department of PharmacyThe 105 Hospital of Chinese People’s Liberation ArmyHefei China
| | - Jun Li
- Department of PharmacologySchool of Pharmacy, Anhui Medical UniversityHefei China
- Anhui Institute of Innovative Drugs, Anhui Medical UniversityHefei China
| | - Xiao‐Ming Meng
- Department of PharmacologySchool of Pharmacy, Anhui Medical UniversityHefei China
- Anhui Institute of Innovative Drugs, Anhui Medical UniversityHefei China
| |
Collapse
|
77
|
Abstract
PURPOSE OF REVIEW Recent studies indicate that acute kidney injury (AKI) and chronic kidney disease (CKD) are interconnected syndromes. Although the majority of patients who suffer an episode of AKI will recover laboratory indices suggesting complete or near complete recovery of renal function, a significant portion of post-AKI survivors will develop major kidney events, including development of late-stage CKD, need for renal replacement therapies, and death. RECENT FINDINGS Our review highlights epidemiology of adverse post-AKI events, association of AKI with late development of nonrenal adverse outcomes, use of bedside equations that facilitate prognostication of adverse renal outcomes of AKI, and how variability in serum creatinine values in individual patients, even among those with normal baseline renal function may indicate risk for the development of CKD. Use of common laboratory parameters such as serum creatinine and albumin, along with certain clinical and demographic markers, individualize patients at high risk of complications and in need of close postdischarge follow-up. Evidence that 'organ crosstalk' following a major AKI episode may increase the risk of heart failure, stroke, and hypertension, places its survivors in a special patient category deserving active efforts to minimize risk for cardiovascular events. SUMMARY AKI is a major cause for acute in-hospital mortality and development of both late-stage CKD and cardiovascular events. Perioperative care to prevent AKI must challenge the notion that a single normal point of contact serum creatinine value substantially reduces the likelihood of its occurrence.
Collapse
|
78
|
Li Z, Wang G, Feng D, Zu G, Li Y, Shi X, Zhao Y, Jing H, Ning S, Le W, Yao J, Tian X. Targeting the miR-665-3p-ATG4B-autophagy axis relieves inflammation and apoptosis in intestinal ischemia/reperfusion. Cell Death Dis 2018; 9:483. [PMID: 29706629 PMCID: PMC5924757 DOI: 10.1038/s41419-018-0518-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 02/08/2023]
Abstract
Autophagy is an essential cytoprotective response against pathologic stresses that selectively degrades damaged cellular components. Impaired autophagy contributes to organ injury in multiple diseases, including ischemia/reperfusion (I/R), but the exact mechanism by which impaired autophagy is regulated remains unclear. Several researchers have demonstrated that microRNAs (miRNAs) negatively regulate autophagy by targeting autophagy-related genes (ATGs). Therefore, the effect of ATG-related miRNAs on I/R remains a promising research avenue. In our study, we found that autophagy flux is impaired during intestinal I/R. A miRNA microarray analysis showed that miR-665-3p was highly expressed in the I/R group, which was confirmed by qRT-PCR. Then, we predicted and proved that miR-665-3p negatively regulates ATG4B expression in Caco-2 and IEC-6 cells. In ileum biopsy samples from patients with intestinal infarction, there was an inverse correlation between miR-665-3p and ATG4B expression, which supports the in vitro findings. Moreover, based on miR-665-3p regulation of autophagy in response to hypoxia/reoxygenation in vitro, gain-of-function and loss-of-function approaches were used to investigate the therapeutic potential of miR-665-3p. Additionally, we provide evidence that ATG4B is indispensable for protection upon inhibition of miR-665-3p. Finally, we observed that locked nucleic acid-modified inhibition of miR-665-3p in vivo alleviates I/R-induced systemic inflammation and apoptosis via recovery of autophagic flux. Our study highlights miR-665-3p as a novel small molecule that regulates autophagy by targeting ATG4B, suggesting that miR-665-3p inhibition may be a potential therapeutic approach against inflammation and apoptosis for the clinical treatment of intestinal I/R.
Collapse
Affiliation(s)
- Zhenlu Li
- Department of General Surgery, The Second Hospital of Dalian Medical University, 116023, Dalian, China
| | - Guangzhi Wang
- Department of General Surgery, The Second Hospital of Dalian Medical University, 116023, Dalian, China
| | - Dongcheng Feng
- Department of General Surgery, The Second Hospital of Dalian Medical University, 116023, Dalian, China
| | - Guo Zu
- Department of General Surgery, The Second Hospital of Dalian Medical University, 116023, Dalian, China
| | - Yang Li
- Department of General Surgery, The Second Hospital of Dalian Medical University, 116023, Dalian, China
| | - Xue Shi
- Department of Pharmacology, Dalian Medical University, 116044, Dalian, China
| | - Yan Zhao
- Department of Pharmacology, Dalian Medical University, 116044, Dalian, China
| | - Huirong Jing
- Department of General Surgery, The Second Hospital of Dalian Medical University, 116023, Dalian, China
| | - Shili Ning
- Department of General Surgery, The Second Hospital of Dalian Medical University, 116023, Dalian, China
| | - Weidong Le
- Clinical Research Center on Neurological Diseases, the First Affiliated Hospital of Dalian Medical University, 116011, Dalian, China
| | - Jihong Yao
- Department of Pharmacology, Dalian Medical University, 116044, Dalian, China.
| | - Xiaofeng Tian
- Department of General Surgery, The Second Hospital of Dalian Medical University, 116023, Dalian, China.
| |
Collapse
|
79
|
Lv Y, Que Y, Su Q, Li Q, Chen X, Lu H. Bioinformatics facilitating the use of microarrays to delineate potential miRNA biomarkers in aristolochic acid nephropathy. Oncotarget 2018; 7:52270-52280. [PMID: 27418141 PMCID: PMC5239550 DOI: 10.18632/oncotarget.10586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/30/2016] [Indexed: 01/28/2023] Open
Abstract
Aristolochic acid nephropathy (AAN) is a rapidly progressive acute or chronic tubulointerstitial nephritis (TIN). The present study attempted to explore the molecular mechanisms underlying the miRNA-directed development of AAN. Our differentially expressed analysis identified 11 DE-miRNAs and retrieved the target genes of these DE-miRNAs; then, network analysis and functional analysis further identified 6 DE-miRNAs (has-miR-192, has-miR-194, has-miR-542-3p, has-miR-450a, has-miR-584, has-miR-33a) as phenotypic biomarkers of AAN. Surprisingly, of has-miR-192 has been reported to be associated with the pathogenesis of AAN, and has-miR-194, has-miR-542-3p and has-miR-450a was first-time identified to link to the development of AAN. In addition, the expressional changes of has-miR-584 and has-miR-33a may be associated with the development of AAN as well, which must be further confirmed by the associated experiments. Taken together, our work reveals for the first time the regulatory mechanisms of miRNAs in the development of AAN and this will contribute to miRNA-based diagnosis and treatment of AAN.
Collapse
Affiliation(s)
- Yana Lv
- Key Laboratory of Dai and Southern Medicine of Xishuangbanna Dai Autonomous Prefecture, Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Jinghong 666100, P.R. China
| | - Yumei Que
- Innovative Drug Research Centre and School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P.R. China
| | - Qiao Su
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, P.R. China.,Innovative Drug Research Centre and School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P.R. China
| | - Qiang Li
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, P.R. China.,Innovative Drug Research Centre and School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P.R. China
| | - Xi Chen
- Key Laboratory of Dai and Southern Medicine of Xishuangbanna Dai Autonomous Prefecture, Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Jinghong 666100, P.R. China
| | - Haitao Lu
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, P.R. China.,Tissue Repair and Regeneration Program, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane 4059, Australia
| |
Collapse
|
80
|
Ichii O, Horino T. MicroRNAs associated with the development of kidney diseases in humans and animals. J Toxicol Pathol 2018; 31:23-34. [PMID: 29479137 PMCID: PMC5820100 DOI: 10.1293/tox.2017-0051] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 09/10/2017] [Indexed: 12/20/2022] Open
Abstract
Mature microRNAs (miRNAs) are single-stranded RNAs with approximately 18-25 bases, and their sequences are highly conserved among animals. miRNAs act as posttranscriptional regulators by binding mRNAs, and their main function involves the degradation of their target mRNAs. Recent studies revealed altered expression of miRNAs in the kidneys during the progression of acute kidney injury (AKI) and chronic kidney disease (CKD) in humans and experimental rodent models by using high-throughput screening techniques including microarray and small RNA sequencing. Particularly, miR-21 seems to be strongly associated with renal pathogenesis both in the glomerulus and tubulointerstitium. Furthermore, abundant evidence has been gathered showing the involvement of miRNAs in renal fibrosis. Because of the complex morphofunctional organization of the mammalian kidneys, it is crucial both to determine the exact localization of the kidney cells that express the miRNAs, which has been addressed mainly using in situ hybridization methods, and to identify precisely which mRNAs are bound and degraded by these miRNAs, which has been studied mostly through in vitro analysis. To discover novel biomarker candidates, miRNA levels in urine supernatant, sediment, and exosomal fraction were comprehensively investigated in different types of kidney disease, including drug-induced AKI, ischemia-induced AKI, diabetic nephropathy, lupus nephritis, and IgA nephropathy. Recent studies also demonstrated the therapeutic effect of miRNA and/or anti-miRNA administrations. The intent of this review is to illustrate the state-of-the-art research in the field of miRNAs associated with renal pathogenesis, especially focusing on AKI and CKD in humans and animal models.
Collapse
Affiliation(s)
- Osamu Ichii
- Laboratory of Anatomy, Department of Basic Veterinary
Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18-Nishi 9, Kita-ku,
Sapporo, Hokkaido 060-0818, Japan
| | - Taro Horino
- Laboratory of Anatomy, Department of Basic Veterinary
Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18-Nishi 9, Kita-ku,
Sapporo, Hokkaido 060-0818, Japan
| |
Collapse
|
81
|
Wei X, Duan X, Zhou X, Wu J, Xu H, Min X, Ding S. A highly sensitive SPRi biosensing strategy for simultaneous detection of multiplex miRNAs based on strand displacement amplification and AuNP signal enhancement. Analyst 2018; 143:3134-3140. [DOI: 10.1039/c8an00549d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Herein, a dual channel SPRi biosensor has been developed for the simultaneous and highly sensitive detection of multiplex miRNAs based on SDA and DNA-functionalized AuNP signal enhancement.
Collapse
Affiliation(s)
- Xiaotong Wei
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education)
- College of Laboratory Medicine
- Chongqing Medical University
- Chongqing 400016
- China
| | - Xiaolei Duan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education)
- College of Laboratory Medicine
- Chongqing Medical University
- Chongqing 400016
- China
| | - Xiaoyan Zhou
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education)
- College of Laboratory Medicine
- Chongqing Medical University
- Chongqing 400016
- China
| | - Jiangling Wu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education)
- College of Laboratory Medicine
- Chongqing Medical University
- Chongqing 400016
- China
| | - Hongbing Xu
- Department of Obstetrics and Gynecology
- The First Affiliated Hospital of Chongqing Medical University
- Chongqing 400016
- China
| | - Xun Min
- Department of Laboratory Medicine
- The Affiliated Hospital of Zunyi Medical University
- Zunyi, Guizhou 563000
- China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education)
- College of Laboratory Medicine
- Chongqing Medical University
- Chongqing 400016
- China
| |
Collapse
|
82
|
Attenuation of miR-34a protects cardiomyocytes against hypoxic stress through maintenance of glycolysis. Biosci Rep 2017; 37:BSR20170925. [PMID: 28894025 PMCID: PMC5672082 DOI: 10.1042/bsr20170925] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 08/01/2017] [Accepted: 09/05/2017] [Indexed: 12/23/2022] Open
Abstract
MiRNAs are a class of endogenous, short, single-stranded, non-coding RNAs, which are tightly linked to cardiac disorders such as myocardial ischemia/reperfusion (I/R) injury. MiR-34a is known to be involved in the hypoxia-induced cardiomyocytes apoptosis. However, the molecular mechanisms are unclear. In the present study, we demonstrate that under low glucose supply, rat cardiomyocytes are susceptible to hypoxia. Under short-time hypoxia, cellular glucose uptake and lactate product are induced but under long-time hypoxia, the cellular glucose metabolism is suppressed. Interestingly, an adaptive up-regulation of miR-34a by long-time hypoxia was observed both in vitro and in vivo, leading to suppression of glycolysis in cardiomyocytes. We identified lactate dehydrogenase-A (LDHA) as a direct target of miR-34a, which binds to the 3′-UTR region of LDHA mRNA in cardiomyocytes. Moreover, inhibition of miR-34a attenuated hypoxia-induced cardiomyocytes dysfunction through restoration of glycolysis. The present study illustrates roles of miR-34a in the hypoxia-induced cardiomyocytes dysfunction and proposes restoration of glycolysis of dysfunctional cardiomyocytes by inhibiting miR-34a during I/R might be an effectively therapeutic approach against I/R injury.
Collapse
|
83
|
Chamnanchanunt S, Fucharoen S, Umemura T. Circulating microRNAs in malaria infection: bench to bedside. Malar J 2017; 16:334. [PMID: 28807026 PMCID: PMC5557074 DOI: 10.1186/s12936-017-1990-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/10/2017] [Indexed: 02/06/2023] Open
Abstract
Severe malaria has a poor prognosis with a morbidity rate of 80% in tropical areas. The early parasite detection is one of the effective means to prevent severe malaria of which specific treatment strategies are limited. Many clinical characteristics and laboratory testings have been used for the early diagnosis and prediction of severe disease. However, a few of these factors could be applied to clinical practice. MicroRNAs (miRNAs) were demonstrated as useful biomarkers in many diseases such as malignant diseases and cardiovascular diseases. Recently it was found that plasma miR-451 and miR-16 were downregulated in malaria infection at parasitic stages or with multi-organ failure involvement. MiR-125b, -27a, -23a, -150, 17-92 and -24 are deregulated in malaria patients with multiple organ failures. Here, the current findings of miRNAs were reviewed in relation to clinical severity of malaria infection and emphasized that miRNAs are potential biomarkers for severe malaria infection.
Collapse
Affiliation(s)
- Supat Chamnanchanunt
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Suthat Fucharoen
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Bangkok, Thailand
| | - Tsukuru Umemura
- Department of Medical Technology and Sciences, International University of Health and Welfare, Ohkawa, Japan.,Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
84
|
Abstract
Organ damage and resulting pathologies often involve multiple deregulated pathways. MicroRNAs (miRNAs) are short, non-coding RNAs that regulate a multitude of genes at the post-transcriptional level. Since their discovery over two decades ago, miRNAs have been established as key players in the molecular mechanisms of mammalian biology including the maintenance of normal homeostasis and the regulation of disease pathogenesis. In recent years, there has been substantial progress in innovative techniques to measure miRNAs along with advances in targeted delivery of agents modulating their expression. This has expanded the scope of miRNAs from being important mediators of cell signaling to becoming viable quantitative biomarkers and therapeutic targets. Currently, miRNA therapeutics are in clinical trials for multiple disease areas and vast numbers of patents have been filed for miRNAs involved in various pathological states. In this review, we summarize miRNAs involved in organ injury and repair, specifically with regard to organs that are the most susceptible to injury: the liver, heart and kidney. In addition, we review the current state of knowledge on miRNA biology, miRNA biomarkers and nucleotide-based therapeutics designed to target miRNAs to prevent organ injury and promote repair.
Collapse
Affiliation(s)
- Cory V Gerlach
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Vishal S Vaidya
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA.
- Department of Medicine, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Harvard Institutes of Medicine, Room 562, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA.
| |
Collapse
|
85
|
Kota SK, Kota SB. Noncoding RNA and epigenetic gene regulation in renal diseases. Drug Discov Today 2017; 22:1112-1122. [PMID: 28487070 DOI: 10.1016/j.drudis.2017.04.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/18/2017] [Accepted: 04/28/2017] [Indexed: 02/07/2023]
Abstract
Kidneys have a major role in normal physiology and metabolic homeostasis. Loss or impairment of kidney function is a common occurrence in several metabolic disorders, including hypertension and diabetes. Chronic kidney disease (CKD) affect nearly 10% of the population worldwide; ranks 18th in the list of causes of death; and contributes to a significant proportion of healthcare costs. The tissue repair and regenerative potential of kidneys are limited and they decline during aging. Recent studies have demonstrated a key role for epigenetic processes and players, such as DNA methylation, histone modifications, noncoding (nc)RNA, and so on, in both kidney development and disease. In this review, we highlight these recent findings with an emphasis on aberrant epigenetic changes that accompany renal diseases, key targets, and their therapeutic value.
Collapse
Affiliation(s)
- Satya K Kota
- Harvard School of Dental Medicine, Boston, MA, USA.
| | - Savithri B Kota
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
86
|
Beermann J, Piccoli MT, Viereck J, Thum T. Non-coding RNAs in Development and Disease: Background, Mechanisms, and Therapeutic Approaches. Physiol Rev 2017; 96:1297-325. [PMID: 27535639 DOI: 10.1152/physrev.00041.2015] [Citation(s) in RCA: 1271] [Impact Index Per Article: 181.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Advances in RNA-sequencing techniques have led to the discovery of thousands of non-coding transcripts with unknown function. There are several types of non-coding linear RNAs such as microRNAs (miRNA) and long non-coding RNAs (lncRNA), as well as circular RNAs (circRNA) consisting of a closed continuous loop. This review guides the reader through important aspects of non-coding RNA biology. This includes their biogenesis, mode of actions, physiological function, as well as their role in the disease context (such as in cancer or the cardiovascular system). We specifically focus on non-coding RNAs as potential therapeutic targets and diagnostic biomarkers.
Collapse
Affiliation(s)
- Julia Beermann
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany; and National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Maria-Teresa Piccoli
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany; and National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Janika Viereck
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany; and National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany; and National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
87
|
Yuan Y, Kluiver J, Koerts J, de Jong D, Rutgers B, Abdul Razak FR, Terpstra M, Plaat BE, Nolte IM, Diepstra A, Visser L, Kok K, van den Berg A. miR-24-3p Is Overexpressed in Hodgkin Lymphoma and Protects Hodgkin and Reed-Sternberg Cells from Apoptosis. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1343-1355. [PMID: 28432871 DOI: 10.1016/j.ajpath.2017.02.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/16/2017] [Indexed: 12/11/2022]
Abstract
miRNAs play important roles in biological processes, such as proliferation, metabolism, differentiation, and apoptosis, whereas altered expression levels contribute to diseases, such as cancers. We identified miRNAs with aberrant expression in Hodgkin lymphoma (HL) and investigated their role in pathogenesis. Small RNA sequencing revealed 84 significantly differentially expressed miRNAs in HL cell lines as compared to germinal center B cells. Three up-regulated miRNAs-miR-23a-3p, miR-24-3p, and miR-27a-3p-were derived from one primary miRNA transcript. Loss-of-function analyses for these miRNAs and their seed family members resulted in decreased growth on miR-24-3p inhibition in three HL cell lines and of miR-27a/b-3p inhibition in one HL cell line. Apoptosis analysis indicated that the effect of miR-24-3p on cell growth is at least in part caused by an increase of apoptotic cells. Argonaute 2 immunoprecipitation revealed 1142 genes consistently targeted by miRNAs in at least three of four HL cell lines. Furthermore, 52 of the 1142 genes were predicted targets of miR-24-3p. Functional annotation analysis revealed a function related to cell growth, cell death, and/or apoptosis for 15 of the 52 genes. Western blotting of the top five genes showed increased protein levels on miR-24-3p inhibition for CDKN1B/P27kip1 and MYC. In summary, we showed that miR-24-3p is up-regulated in HL and its inhibition impairs cell growth possibly via targeting CDKN1B/P27kip1 and MYC.
Collapse
Affiliation(s)
- Ye Yuan
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Institute of Clinical Pharmacology of the Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Joost Kluiver
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jasper Koerts
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Debora de Jong
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Bea Rutgers
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - F Reeny Abdul Razak
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Martijn Terpstra
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Boudewijn E Plaat
- Department of Otorhinolaryngology/Head and Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Arjan Diepstra
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Lydia Visser
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Klaas Kok
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
88
|
Therapeutic miR-21 Silencing Ameliorates Diabetic Kidney Disease in Mice. Mol Ther 2017; 25:165-180. [PMID: 28129112 DOI: 10.1016/j.ymthe.2016.08.001] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 08/18/2016] [Accepted: 08/25/2016] [Indexed: 01/08/2023] Open
Abstract
Diabetic nephropathy is the main cause of end-stage renal disease. MicroRNAs are powerful regulators of the genome, and global expression profiling revealed miR-21 to be among the most highly regulated microRNAs in kidneys of mice with diabetic nephropathy. In kidney biopsies of diabetic patients, miR-21 correlated with tubulointerstitial injury. In situ PCR analysis showed a specific enrichment of miR-21 in glomerular cells. We identified cell division cycle 25a (Cdc25a) and cyclin-dependent kinase 6 (Cdk6) as novel miR-21 targets in mesangial cells. miR-21-mediated repression of Cdc25a and Cdk6 resulted in impaired cell cycle progression and subsequent mesangial cell hypertrophy. miR-21 increased podocyte motility by regulating phosphatase and tensin homolog (Pten). miR-21 antagonism in vitro and in vivo in streptozotocin-induced diabetic mice decreased mesangial expansion, interstitial fibrosis, macrophage infiltration, podocyte loss, albuminuria, and fibrotic- and inflammatory gene expression. In conclusion, miR-21 antagonism rescued various functional and structural parameters in mice with diabetic nephropathy and, thus, might be a viable option in the treatment of patients with diabetic kidney disease.
Collapse
|
89
|
Viñas JL, Burger D, Zimpelmann J, Haneef R, Knoll W, Campbell P, Gutsol A, Carter A, Allan DS, Burns KD. Transfer of microRNA-486-5p from human endothelial colony forming cell–derived exosomes reduces ischemic kidney injury. Kidney Int 2016; 90:1238-1250. [DOI: 10.1016/j.kint.2016.07.015] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 06/09/2016] [Accepted: 07/07/2016] [Indexed: 12/24/2022]
|
90
|
Wilflingseder J, Jelencsics K, Bergmeister H, Sunzenauer J, Regele H, Eskandary F, Reindl-Schwaighofer R, Kainz A, Oberbauer R. miR-182-5p Inhibition Ameliorates Ischemic Acute Kidney Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 187:70-79. [PMID: 27870928 DOI: 10.1016/j.ajpath.2016.09.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 08/23/2016] [Accepted: 09/12/2016] [Indexed: 01/02/2023]
Abstract
Acute kidney injury (AKI) remains a major clinical event with high mortality rates. We previously identified renal miR-182 as the main driver of post-transplantation AKI. Therefore, we tested the causal inference of miR-182 by inhibiting its renal expression in vivo. In 45 rats AKI was induced by right nephrectomy and contralateral clamping of the renal pedicle for 40 minutes. Systemically administered antisense oligonucleotide (ASO) inhibited miR-182 in the kidneys up to 96 hours. The maximum creatinine elevation was on day 2 after injury (mg/dL; median and interquartile range): ASO 2.5mg/kg: 1.9 (1.3; 3.2), ASO 25mg/kg: 2.8 (0.7; 5.0), mismatch oligonucleotide (MM) 25mg/kg: 5.7 (5,0; 5.8), saline: 4.4 (3.5; 5.8) (P = 0.016, analysis of variance). Blinded semiquantitative histologic evaluation of renal biopsies showed better preserved morphology in both ASO groups than saline- and MM-treated kidneys (median and interquartile range of overall injury scores): ASO both concentrations 1 (1, 1), saline 3 (3, 3) and MM 3 (3, 3) (P< 0.001, analysis of variance). ASO facilitated cell proliferation, metabolism, and angiogenesis on a genome-wide level. ASO when applied in normothermic kidney machine perfusion reduced renal miR-182 expression by more than two magnitudes. In summary, we showed that in vivo inhibition of miR-182 by ASO improved kidney function and morphology after AKI. This technique may be applicable to reduce the high rate of AKI in the human renal transplantation setting.
Collapse
Affiliation(s)
- Julia Wilflingseder
- Department of Nephrology and Dialysis, Medical University Vienna, Vienna, Austria
| | - Kíra Jelencsics
- Department of Nephrology and Dialysis, Medical University Vienna, Vienna, Austria
| | - Helga Bergmeister
- Department of Biomedical Research, Medical University Vienna, Vienna, Austria
| | - Judith Sunzenauer
- Department of Nephrology and Dialysis, Medical University Vienna, Vienna, Austria
| | - Heinz Regele
- Department of Pathology, Medical University Vienna, Vienna, Austria
| | - Farsad Eskandary
- Department of Nephrology and Dialysis, Medical University Vienna, Vienna, Austria
| | | | - Alexander Kainz
- Department of Nephrology and Dialysis, Medical University Vienna, Vienna, Austria
| | - Rainer Oberbauer
- Department of Nephrology and Dialysis, Medical University Vienna, Vienna, Austria.
| |
Collapse
|
91
|
Castoldi G, di Gioia C, Giollo F, Carletti R, Bombardi C, Antoniotti M, Roma F, Zerbini G, Stella A. Different regulation of miR-29a-3p in glomeruli and tubules in an experimental model of angiotensin II-dependent hypertension: potential role in renal fibrosis. Clin Exp Pharmacol Physiol 2016; 43:335-42. [PMID: 26700017 DOI: 10.1111/1440-1681.12532] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 11/30/2015] [Accepted: 12/16/2015] [Indexed: 11/30/2022]
Abstract
The aim of this study was to evaluate the role of the angiotensin II (Ang II) induced-differential miRNA expression in renal glomerular and tubulo-interstitial fibrosis in an experimental model of Ang II-dependent hypertension. To clarify this issue, Sprague Dawley rats were treated with Ang II (200 ng/kg per minute, n = 15) or physiological saline (n = 14) for 4 weeks. Systolic blood pressure and albuminuria were measured every 2 weeks. At the end of the experimental period, renal glomerular and tubulo-interstitial fibrosis was evaluated by histomorphometric analysis, after Sirius-Red and Masson's trichrome staining. Ang II increased systolic blood pressure (P < 0.0001), albuminuria (P < 0.01) and both glomerular and tubulo-interstitial fibrosis (P < 0.01). Using laser capture microdissection and miRNA microarray analysis this study showed that miR-29a-3p was down-regulated in renal tubules and up-regulated in glomeruli. Real-time polymerase chain reaction (PCR) experiments confirmed in Ang II-treated rats a down-regulation of miR-29a-3p in tubules (P < 0.01), while no significant changes were observed in glomeruli. Matrix metalloproteinase-2 (MMP-2) was identified as putative miR-29a-3p target (by TargetScan, miRanda, Tarbase software) and functionally confirmed by luciferase activity assay. These data demonstrate that the effects of Ang II on miR-29a-3p expression in renal tubules is different from the one exerted in the glomeruli and that miR-29a-3p targets MMP-2. These results suggest that the development of renal fibrosis at glomerular and tubulo-interstitial level depends on different molecular mechanisms.
Collapse
Affiliation(s)
- Giovanna Castoldi
- Clinica Nefrologica, Az. Osp. San Gerardo, Dipartimento di Medicina e Chirurgia, Università degli Studi di Milano-Bicocca, Monza
| | - Cira di Gioia
- Dipartimento di Scienze Radiologiche, Oncologiche ed Anatomo-Patologiche, Sapienza Università di Roma, Rome
| | - Fabrizio Giollo
- Dipartimento di Informatica, Sistemistica e Comunicazione. Università degli Studi di Milano-Bicocca, Milan
| | - Raffaella Carletti
- Dipartimento di Scienze Radiologiche, Oncologiche ed Anatomo-Patologiche, Sapienza Università di Roma, Rome
| | - Camila Bombardi
- Clinica Nefrologica, Az. Osp. San Gerardo, Dipartimento di Medicina e Chirurgia, Università degli Studi di Milano-Bicocca, Monza
| | - Marco Antoniotti
- Dipartimento di Informatica, Sistemistica e Comunicazione. Università degli Studi di Milano-Bicocca, Milan
| | - Francesca Roma
- Clinica Nefrologica, Az. Osp. San Gerardo, Dipartimento di Medicina e Chirurgia, Università degli Studi di Milano-Bicocca, Monza
| | - Gianpaolo Zerbini
- Unita' Complicanze del Diabete, Istituto Scientifico San Raffaele, Milan, Italy
| | - Andrea Stella
- Clinica Nefrologica, Az. Osp. San Gerardo, Dipartimento di Medicina e Chirurgia, Università degli Studi di Milano-Bicocca, Monza
| |
Collapse
|
92
|
Xu Z, Sharma M, Gelman A, Hachem R, Mohanakumar T. Significant role for microRNA-21 affecting toll-like receptor pathway in primary graft dysfunction after human lung transplantation. J Heart Lung Transplant 2016; 36:331-339. [PMID: 27773452 DOI: 10.1016/j.healun.2016.08.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 08/23/2016] [Accepted: 08/31/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) were recently identified as modulators of immune responses after human lung transplantation (LTx). This study was undertaken to assess the contribution of miRNAs to the pathogenesis of primary graft dysfunction (PGD) after LTx. METHODS Of the 39 recipients, 14 (35.9%) developed Grade 3 PGD (i.e., severe PGD) within the first 72 hours of LTx. The remaining 25 recipients (64.1%) had Grade 2 or less PGD, and served as the control group. miRNAs were isolated from cells purified by bronchoalveolar lavage (BAL). Bioinformatic prediction and validation by luciferase reporter assays were performed to identify targets regulated by miR-21. Transfection of human monocytic cell line (THP-1) was conducted to determine miR-21's cellular function. RESULTS Pilot miRNA profiling of donor BAL samples before implantation in PGD (n = 6) revealed significant upregulation in 44 miRNAs and downregulation in 80 miRNAs compared with control (n = 6). Validation using a separate cohort demonstrated significant underexpression of miR-21 in patients with severe PGD. Furthermore, underexpression of miR-21 levels was negatively correlated with clinical PGD grades (Grade 2 PGD vs Grade 0 PGD: p = 0.042; Grade 3 PGD vs Grade 0 PGD: p = 0.004). Molecular analysis demonstrated that miR-21 targeted key components in the toll-like receptor (TLR) signaling pathway, including TLR4, IRAK3 and CXCL10. Further, incubation of THP-1 cells with cell-free BAL from severe PGD resulted in transactivation of inflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). In contrast, increased expression of miR-21 resulted in marked suppression of IL-1-β and TNF-α production. CONCLUSIONS Underexpression of miR-21 may lead to the development of severe PGD by activating key components of the TLR pathway.
Collapse
Affiliation(s)
- Zhongping Xu
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA; Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Monal Sharma
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA; Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Andrew Gelman
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ramsey Hachem
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Thalachallour Mohanakumar
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA; Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA.
| |
Collapse
|
93
|
Fan PC, Chen CC, Chen YC, Chang YS, Chu PH. MicroRNAs in acute kidney injury. Hum Genomics 2016; 10:29. [PMID: 27608623 PMCID: PMC5016954 DOI: 10.1186/s40246-016-0085-z] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 08/31/2016] [Indexed: 12/19/2022] Open
Abstract
Acute kidney injury (AKI) is an important clinical issue that is associated with significant morbidity and mortality. Despite research advances over the past decades, the complex pathophysiology of AKI is not fully understood. The regulatory mechanisms underlying post-AKI repair and fibrosis have not been clarified either. Furthermore, there is no definitively effective treatment for AKI. MicroRNAs (miRNAs) are endogenous single-stranded noncoding RNAs of 19~23 nucleotides that have been shown to be crucial to the post-transcriptional regulation of various cellular biological functions, including proliferation, differentiation, metabolism, and apoptosis. In addition to being fundamental to normal development and physiology, miRNAs also play important roles in various human diseases. In AKI, some miRNAs appear to act pathogenically by promoting inflammation, apoptosis, and fibrosis, while others may act protectively by exerting anti-inflammatory, anti-apoptotic, anti-fibrotic, and pro-angiogenic effects. Thus, miRNAs have not only emerged as novel biomarkers for AKI; they also hold promise to be potential therapeutic targets.
Collapse
Affiliation(s)
- Pei-Chun Fan
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan.,Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Chun Chen
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Yung-Chang Chen
- Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Yu-Sun Chang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Pao-Hsien Chu
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taipei, Taiwan. .,Healthcare Center, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taipei, Taiwan. .,Heart Failure Center, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taipei, Taiwan. .,Department of Cardiology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, 199 Tung Hwa North Road, Taipei, 105, Taiwan.
| |
Collapse
|
94
|
Amrouche L, Desbuissons G, Rabant M, Sauvaget V, Nguyen C, Benon A, Barre P, Rabaté C, Lebreton X, Gallazzini M, Legendre C, Terzi F, Anglicheau D. MicroRNA-146a in Human and Experimental Ischemic AKI: CXCL8-Dependent Mechanism of Action. J Am Soc Nephrol 2016; 28:479-493. [PMID: 27444565 DOI: 10.1681/asn.2016010045] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/31/2016] [Indexed: 12/19/2022] Open
Abstract
AKI leads to tubular injury and interstitial inflammation that must be controlled to avoid the development of fibrosis. We hypothesized that microRNAs are involved in the regulation of the balance between lesion formation and adaptive repair. We found that, under proinflammatory conditions, microRNA-146a (miR-146a) is transcriptionally upregulated by ligands of IL-1 receptor/Toll-like receptor family members via the activation of NF-κB in cultured renal proximal tubular cells. In vivo, more severe renal ischemia-reperfusion injury (IRI) associated with increased expression of miR-146a in both allografts and urine of human kidney transplant recipients, and unilateral IRI in mice induced miR-146a expression in injured kidneys. After unilateral IRI, miR-146a-/- mice exhibited more extensive tubular injury, inflammatory infiltrates, and fibrosis than wild-type mice. In vitro, overexpression or downregulation of miR-146a diminished or enhanced, respectively, IL-1 receptor-associated kinase 1 expression and induced similar effects on C-X-C motif ligand 8 (CXCL8)/CXCL1 expression by injured tubular cells. Moreover, inhibition of CXCL8/CXCL1 signaling prevented the development of inflammation and fibrosis after IRI in miR-146a-/- mice. In conclusion, these results indicate that miR-146a is a key mediator of the renal tubular response to IRI that limits the consequences of inflammation, a key process in the development of AKI and CKD.
Collapse
Affiliation(s)
- Lucile Amrouche
- Necker-Enfants Malades Institute, French National Institute of Health and Medical Research U1151, Paris, France.,Paris Descartes, Sorbonne Paris Cité University, Paris, France.,Department of Nephrology and Kidney Transplantation
| | - Geoffroy Desbuissons
- Necker-Enfants Malades Institute, French National Institute of Health and Medical Research U1151, Paris, France
| | - Marion Rabant
- Paris Descartes, Sorbonne Paris Cité University, Paris, France.,Department of Pathology, and
| | - Virginia Sauvaget
- Necker-Enfants Malades Institute, French National Institute of Health and Medical Research U1151, Paris, France
| | - Clément Nguyen
- Necker-Enfants Malades Institute, French National Institute of Health and Medical Research U1151, Paris, France
| | - Aurélien Benon
- Necker-Enfants Malades Institute, French National Institute of Health and Medical Research U1151, Paris, France
| | - Pauline Barre
- Necker-Enfants Malades Institute, French National Institute of Health and Medical Research U1151, Paris, France
| | - Clémentine Rabaté
- Paris Descartes, Sorbonne Paris Cité University, Paris, France.,Department of Nephrology and Kidney Transplantation
| | | | - Morgan Gallazzini
- Necker-Enfants Malades Institute, French National Institute of Health and Medical Research U1151, Paris, France
| | - Christophe Legendre
- Necker-Enfants Malades Institute, French National Institute of Health and Medical Research U1151, Paris, France.,Paris Descartes, Sorbonne Paris Cité University, Paris, France.,Department of Nephrology and Kidney Transplantation.,Réseau Thématique de Recherche et de Soins Centaure, Labex Transplantex, Necker Hospital, Paris, France
| | - Fabiola Terzi
- Necker-Enfants Malades Institute, French National Institute of Health and Medical Research U1151, Paris, France
| | - Dany Anglicheau
- Necker-Enfants Malades Institute, French National Institute of Health and Medical Research U1151, Paris, France; .,Paris Descartes, Sorbonne Paris Cité University, Paris, France.,Department of Nephrology and Kidney Transplantation.,Réseau Thématique de Recherche et de Soins Centaure, Labex Transplantex, Necker Hospital, Paris, France
| |
Collapse
|
95
|
Abstract
Drug-induced kidney injury (DIKI) is a severe complication in hospitalized patients associated with higher probabilities of developing progressive chronic kidney disease or end-stage renal diseases. Furthermore, DIKI is a problem during preclinical and clinical phases of drug development leading to high rates of project terminations. Understanding the molecular perturbations caused by DIKI would pave the way for a new class of therapeutics to mitigate the damage. Yet, another approach to ameliorate DIKI is identifying sensitive and specific translational biomarkers that outperform the current diagnostic analytes like serum creatinine and facilitate early diagnosis. MicroRNAs (miRNAs), a class of non-coding RNAs, are increasingly being recognized to have a two-pronged approach toward DIKI management: 1) miRNAs have a regulatory role in gene expression and signaling pathways thereby making them novel interventional targets and 2) miRNAs enable diagnosis and prognosis of DIKI because of their stable presence in biofluids. In this review, apart from summarizing the literature on miRNAs in DIKI, we report small RNA sequencing results showing miRNA expression profiles at baseline in normal kidney samples from mice and humans. Additionally, we also compared the miRNA expression in biopsies of normal human kidneys to patients with acute tubular necrosis, and found 76 miRNAs significantly downregulated and 47 miRNAs upregulated (FDR adjusted p<0.05, +/-2-fold change). In summary, we highlight the transformative potential of miRNAs in therapeutics and translational medicine with a focus on drug-induced kidney damage.
Collapse
Affiliation(s)
- Mira Pavkovic
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, United States; Department of Medicine, Renal Division, Brigham and Women's Hospital, Boston, MA, United States
| | - Vishal S Vaidya
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, United States; Department of Medicine, Renal Division, Brigham and Women's Hospital, Boston, MA, United States; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States.
| |
Collapse
|
96
|
Sun X, Ren Z, Pan Y, Zhang C. Antihypoxic effect of miR-24 in SH-SY5Y cells under hypoxia via downregulating expression of neurocan. Biochem Biophys Res Commun 2016; 477:692-699. [PMID: 27349868 DOI: 10.1016/j.bbrc.2016.06.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 06/24/2016] [Indexed: 10/21/2022]
Abstract
Hypoxia-induced apoptosis-related mechanisms involved in the brain damage following cerebral ischemia injury. A subset of the small noncoding microRNA (miRNAs) is regulated by tissue oxygen levels, and miR-24 was found to be activated by hypoxic conditions. However, the roles of miR-24 and its target gene in neuron are not well understood. Here, we validated miRNA-24 is down-regulated in patients with cerebral infarction. Hypoxia suppressed the expression of miR-24, but increased the expression of neurocan in both mRNA and protein levels in SH-SY5Y cells. MiR-24 mimics reduced the expression of neurocan, suppressed cell apoptosis, induced cell cycle progression and cell proliferation in SH-SY5Y cells under hypoxia. By luciferase reporter assay, neurocan is validated a direct target gene of miR-24. Furthermore, knockdown of neurocan suppressed cell apoptosis, induced cell cycle progression and cell proliferation in SH-SY5Y cells under hypoxia. Taken together, miR-24 overexpression or silencing of neurocan shows an antihypoxic effect in SH-SY5Y cells. Therefore, miR-24 and neurocan play critical roles in neuron cell apoptosis and are potential therapeutic targets for ischemic brain disease.
Collapse
Affiliation(s)
- Xingyuan Sun
- Department of Neurology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161000, People's Republic of China.
| | - Zhanjun Ren
- Department of Neurology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161000, People's Republic of China
| | - Yunzhi Pan
- Department of Neurology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161000, People's Republic of China
| | - Chenxin Zhang
- Department of Neurology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161000, People's Republic of China
| |
Collapse
|
97
|
Liu Z, Wang S, Mi QS, Dong Z. MicroRNAs in Pathogenesis of Acute Kidney Injury. Nephron Clin Pract 2016; 134:149-153. [PMID: 27322758 PMCID: PMC5089907 DOI: 10.1159/000446551] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/02/2016] [Indexed: 01/08/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression mainly by repressing their target gene translation. A large spectrum of human diseases is associated with significant changes in miRNAs. Many miRNAs are induced in diseases, whereas some others are downregulated. The significance of miRNAs has been demonstrated in renal development and physiology, and in major kidney diseases such as acute kidney injury (AKI). Recent studies have further implicated specific miRNAs in the pathogenesis of AKI. miRNAs also have the potential to become new diagnostic biomarkers of AKI. Further investigation will identify the key pathogenic miRNAs in various types of AKI and test miRNA-based therapeutics and diagnosis. © 2016 S. Karger AG, Basel.
Collapse
Affiliation(s)
- Zhiwen Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shixuan Wang
- Department of Cellular Biology & Anatomy, Medical college of Georgia at Georgia Regents University and Charlie Norwood VA Medical Center, Augusta, Georgia
| | - Qing-sheng Mi
- Departments of Dermatology and Internal Medicine, Henry Ford Health System, Detroit, Michigan
| | - Zheng Dong
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Cellular Biology & Anatomy, Medical college of Georgia at Georgia Regents University and Charlie Norwood VA Medical Center, Augusta, Georgia
| |
Collapse
|
98
|
Yang Y, Song M, Liu Y, Liu H, Sun L, Peng Y, Liu F, Venkatachalam MA, Dong Z. Renoprotective approaches and strategies in acute kidney injury. Pharmacol Ther 2016; 163:58-73. [PMID: 27108948 DOI: 10.1016/j.pharmthera.2016.03.015] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 03/18/2016] [Indexed: 12/17/2022]
Abstract
Acute kidney injury (AKI) is a major renal disease associated with high mortality rate and increasing prevalence. Decades of research have suggested numerous chemical and biological agents with beneficial effects in AKI. In addition, cell therapy and molecular targeting have been explored for reducing kidney tissue damage and promoting kidney repair or recovery from AKI. Mechanistically, these approaches may mitigate oxidative stress, inflammation, cell death, and mitochondrial and other organellar damage, or activate cytoprotective mechanisms such as autophagy and pro-survival factors. However, none of these findings has been successfully translated into clinical treatment of AKI. In this review, we analyze these findings and propose experimental strategies for the identification of renoprotective agents or methods with clinical potential. Moreover, we propose the consideration of combination therapy by targeting multiple targets in AKI.
Collapse
Affiliation(s)
- Yuan Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Meifang Song
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yu Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Youming Peng
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fuyou Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | | | - Zheng Dong
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, USA.
| |
Collapse
|
99
|
Epigenetics in Kidney Transplantation: Current Evidence, Predictions, and Future Research Directions. Transplantation 2016; 100:23-38. [PMID: 26356174 DOI: 10.1097/tp.0000000000000878] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Epigenetic modifications are changes to the genome that occur without any alteration in DNA sequence. These changes include cytosine methylation of DNA at cytosine-phosphate diester-guanine dinucleotides, histone modifications, microRNA interactions, and chromatin remodeling complexes. Epigenetic modifications may exert their effect independently or complementary to genetic variants and have the potential to modify gene expression. These modifications are dynamic, potentially heritable, and can be induced by environmental stimuli or drugs. There is emerging evidence that epigenetics play an important role in health and disease. However, the impact of epigenetic modifications on the outcomes of kidney transplantation is currently poorly understood and deserves further exploration. Kidney transplantation is the best treatment option for end-stage renal disease, but allograft loss remains a significant challenge that leads to increased morbidity and return to dialysis. Epigenetic modifications may influence the activation, proliferation, and differentiation of the immune cells, and therefore may have a critical role in the host immune response to the allograft and its outcome. The epigenome of the donor may also impact kidney graft survival, especially those epigenetic modifications associated with early transplant stressors (e.g., cold ischemia time) and donor aging. In the present review, we discuss evidence supporting the role of epigenetic modifications in ischemia-reperfusion injury, host immune response to the graft, and graft response to injury as potential new tools for the diagnosis and prediction of graft function, and new therapeutic targets for improving outcomes of kidney transplantation.
Collapse
|
100
|
Wei Q, Liu Y, Liu P, Hao J, Liang M, Mi QS, Chen JK, Dong Z. MicroRNA-489 Induction by Hypoxia-Inducible Factor-1 Protects against Ischemic Kidney Injury. J Am Soc Nephrol 2016; 27:2784-96. [PMID: 26975439 PMCID: PMC5004659 DOI: 10.1681/asn.2015080870] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 01/25/2016] [Indexed: 11/03/2022] Open
Abstract
MicroRNAs have been implicated in ischemic AKI. However, the specific microRNA species that regulates ischemic kidney injury remains unidentified. Our previous microarray analysis revealed microRNA-489 induction in kidneys of mice subjected to renal ischemia-reperfusion. In this study, we verified the induction of microRNA-489 during ischemic AKI in mice and further examined the underlying mechanisms. Hypoxia-inducible factor-1α deficiency associated with diminished microRNA-489 induction in cultured rat proximal tubular cells subjected to hypoxia and kidney tissues of mice after renal ischemia-reperfusion injury. Moreover, genomic analysis revealed that microRNA-489 is intronic in the calcitonin receptor gene, and chromatin immunoprecipitation assays showed increased binding of hypoxia-inducible factor-1 to a specific site in the calcitonin receptor gene promoter after hypoxia. Inhibition of microRNA-489 increased apoptosis in renal tubular cells after ATP depletion injury in vitro, whereas microRNA-489 mimics mediated protection. In mice, inhibition of microRNA-489 enhanced tubular cell death and ischemic AKI without significantly affecting tubular cell proliferation. Deep sequencing identified 417 mRNAs that were recruited to the RNA-induced silencing complex by microRNA-489. Of the identified mRNAs, 127 contain microRNA-489 targeting sites, and of those, 18 are involved in the cellular stress response, including the poly(ADP-ribose) polymerase 1 gene implicated in ischemic kidney injury. Sequence analysis and in vitro studies validated poly(ADP-ribose) polymerase 1 as a microRNA-489 target. Together, these results suggest that microRNA-489 is induced via hypoxia-inducible factor-1 during ischemic AKI to protect kidneys by targeting relevant genes.
Collapse
Affiliation(s)
- Qingqing Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia;
| | - Yong Liu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Pengyuan Liu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jielu Hao
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia; Kidney Institute, Changzheng Hospital of Second Military Medical University, Shanghai, China
| | - Mingyu Liang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Qing-Sheng Mi
- Kidney Institute, Changzheng Hospital of Second Military Medical University, Shanghai, China; Departments of Dermatology and Internal Medicine, Henry Ford Health System, Detroit, Michigan; and
| | - Jian-Kang Chen
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia; The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|