51
|
Müller Bark J, Kulasinghe A, Hartel G, Leo P, Warkiani ME, Jeffree RL, Chua B, Day BW, Punyadeera C. Isolation of Circulating Tumour Cells in Patients With Glioblastoma Using Spiral Microfluidic Technology - A Pilot Study. Front Oncol 2021; 11:681130. [PMID: 34150645 PMCID: PMC8210776 DOI: 10.3389/fonc.2021.681130] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/05/2021] [Indexed: 12/23/2022] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive type of tumour arising from the central nervous system. GBM remains an incurable disease despite advancement in therapies, with overall survival of approximately 15 months. Recent literature has highlighted that GBM releases tumoural content which crosses the blood-brain barrier (BBB) and is detected in patients’ blood, such as circulating tumour cells (CTCs). CTCs carry tumour information and have shown promise as prognostic and predictive biomarkers in different cancer types. Currently, there is limited data for the clinical utility of CTCs in GBM. Here, we report the use of spiral microfluidic technology to isolate CTCs from whole blood of newly diagnosed GBM patients before and after surgery, followed by characterization for GFAP, cell-surface vimentin protein expression and EGFR amplification. CTCs were found in 13 out of 20 patients (9/20 before surgery and 11/19 after surgery). Patients with CTC counts equal to 0 after surgery had a significantly longer recurrence-free survival (p=0.0370). This is the first investigation using the spiral microfluidics technology for the enrichment of CTCs from GBM patients and these results support the use of this technology to better understand the clinical value of CTCs in the management of GBM in future studies.
Collapse
Affiliation(s)
- Juliana Müller Bark
- Saliva and Liquid Biopsy Translational Laboratory, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia.,Translational Research Institute, Brisbane, QLD, Australia
| | - Arutha Kulasinghe
- Saliva and Liquid Biopsy Translational Laboratory, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia.,Translational Research Institute, Brisbane, QLD, Australia
| | - Gunter Hartel
- Department of Statistics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Paul Leo
- Translational Research Institute, Brisbane, QLD, Australia.,Translational Genomics Group, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Majid Ebrahimi Warkiani
- The School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
| | - Rosalind L Jeffree
- Department of Statistics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.,Kenneth G. Jamieson Department of Neurosurgery, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia.,Cell and Molecular Biology Department, Sid Faithfull Brain Cancer Laboratory, QIMR Berghofer MRI, Brisbane, QLD, Australia
| | - Benjamin Chua
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.,Cancer Care Services, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Bryan W Day
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.,Cell and Molecular Biology Department, Sid Faithfull Brain Cancer Laboratory, QIMR Berghofer MRI, Brisbane, QLD, Australia.,School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Chamindie Punyadeera
- Saliva and Liquid Biopsy Translational Laboratory, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia.,Translational Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
52
|
Xie X, Wang L, Wang X, Fan WH, Qin Y, Lin X, Xie Z, Liu M, Ouyang M, Li S, Zhou C. Evaluation of Cell Surface Vimentin Positive Circulating Tumor Cells as a Diagnostic Biomarker for Lung Cancer. Front Oncol 2021; 11:672687. [PMID: 34055642 PMCID: PMC8162210 DOI: 10.3389/fonc.2021.672687] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/26/2021] [Indexed: 12/19/2022] Open
Abstract
Background Circulating tumor cells (CTCs) represent a collection of heterogeneous cells. Studies have shown epithelial CTCs and folate receptor (FR) positive CTCs could be used as diagnostic biomarkers for lung cancer (LC). This study aimed to determine whether cell surface vimentin (CSV) positive CTCs could be used as a biomarker for LC as well. Methods 78 treatment-naïve non-small-cell lung cancer (NSCLC) patients, 21 patients with benign lung diseases (BLD) and 9 healthy donors (HD) were enrolled in this study. CTC detection was performed using CytoSorter® mesenchymal CTC kit (CSV). The correlation between CSV positive CTCs (CSV-CTCs) and LC patients' clinicopathological characteristics would be evaluated, and diagnostic performances of CSV-CTCs and serum tumor markers for LC would be compared. Results CTC detection rates (average CTC count: range) in LC patients, patients with BLD and HD were 83.33% (2.47: 0-8), 47.62% (0.5: 0-3) and 0% (0: 0), respectively. CSV-CTCs could be used to differentiate LC patients from the patients with BLD and HD (P < 0.0001). CSV-CTCs were correlated with cancer stage, lymph node involvement and distant metastasis (P = 0.0062, 0.0014 and 0.0021, respectively). With a CTC cut-off value of 2, CSV-CTCs would have a sensitivity and specificity of 0.67 and 0.87, respectively, for diagnosing LC. CSV-CTC positive rates showed statistical differences among HD, BLD patients and LC patients at different cancer stages (P < 0.0001). Furthermore, CSV-CTC positive rates were positively correlated with tumor size, lymph node involvement and distant metastasis (P = 0.0163, 0.0196 and 0.03, respectively). CSV-CTCs had a better diagnostic performance than serum tumor makers, such as carcinoembryonic antigen (CEA), neuron-specific enolase (NSE), cancer antigen 125 (CA125) and CA153. Conclusion When CTC cut-off is set to 2 CTCs per 7.5 mL of blood, CSV-CTCs can be considered as an acceptable biomarker for diagnosing LC with a sensitivity and specificity of 0.67 and 0.87, respectively.
Collapse
Affiliation(s)
- Xiaohong Xie
- Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liqiang Wang
- Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xinni Wang
- Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wan-Hung Fan
- Department of Clinical Medical Affairs, Hangzhou Watson Biotech, Hangzhou, China
| | - Yinyin Qin
- Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xinqing Lin
- Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhanhong Xie
- Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ming Liu
- Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ming Ouyang
- Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shiyue Li
- Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chengzhi Zhou
- Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
53
|
Hsu CL, Tsai TH, Huang CK, Yang CY, Liao WY, Ho CC, Ruan SY, Chen KY, Shih JY, Yang PC. Monitoring levels of vimentin-positive circulating cancer stem cells and tumor cells in patients with advanced EGFR-mutated non-small cell lung cancer. Lung Cancer 2021; 156:50-58. [PMID: 33894494 DOI: 10.1016/j.lungcan.2021.04.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/10/2021] [Accepted: 04/14/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Circulating tumor cells (CTCs) are associated with tumor spread, whereas cancer stem cells may be related to drug resistance. However, few studies have analyzed the levels of circulating cancer stem cells (CCSCs) and CTCs in patients with advanced non-small cell lung cancer (NSCLC). MATERIALS AND METHODS Treatment-naïve patients with EGFR-mutated NSCLC who received epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) therapy were recruited prospectively. The cell surface vimentin antibody was used for CTC detection and CD133 antibody for CCSC detection. CCSC and CTC levels were measured as cell count per 4 mL of blood, before treatment, after 2 and 12 weeks of treatment, and at disease progression. Data on clinical characteristics and outcomes were also collected. RESULTS At diagnosis (n = 29), the median CCSC and CTC levels were 0 (interquartile range, 0-2) and 3 (2-9), respectively. After 12 weeks, the CCSC and CTC levels were lower than those at diagnosis (CCSC: 0 (0-0), p = 0.14; CTC: 1 (0-4), p = 0.048). At disease progression, the median CCSC and CTC levels were 0 (0-1) and 1 (0-2), respectively. Patients with higher CCSC and CTC levels at diagnosis had a numerically shorter progression-free survival. CONCLUSION In patients with EGFR-mutated NSCLC, CCSC and CTC levels became lower after 12 weeks of EGFR-TKI therapy and remained low at disease progression. High pre-treatment CCSC and CTC levels may be associated with a trend towards poor treatment outcomes.
Collapse
Affiliation(s)
- Chia-Lin Hsu
- Division of Pulmonary Medicine, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tzu-Hsiu Tsai
- Division of Pulmonary Medicine, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taiwan
| | - Chun-Kai Huang
- Division of Pulmonary Medicine, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taiwan
| | - Ching-Yao Yang
- Division of Pulmonary Medicine, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taiwan
| | - Wei-Yu Liao
- Division of Pulmonary Medicine, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taiwan
| | - Chao-Chi Ho
- Division of Pulmonary Medicine, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taiwan
| | - Sheng-Yuan Ruan
- Division of Pulmonary Medicine, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taiwan
| | - Kuan-Yu Chen
- Division of Pulmonary Medicine, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taiwan.
| | - Jin-Yuan Shih
- Division of Pulmonary Medicine, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taiwan
| | - Pan-Chyr Yang
- Division of Pulmonary Medicine, Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taiwan
| |
Collapse
|
54
|
Characterisation of circulating tumour cell phenotypes identifies a partial-EMT sub-population for clinical stratification of pancreatic cancer. Br J Cancer 2021; 124:1970-1977. [PMID: 33785875 DOI: 10.1038/s41416-021-01350-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 01/20/2021] [Accepted: 03/04/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Limited accessibility of the tumour precludes longitudinal characterisation for therapy guidance in pancreatic ductal adenocarcinoma (PDAC). METHODS We utilised dielectrophoresis-field flow fractionation (DEP-FFF) to isolate circulating tumour cells (CTCs) in 272 blood draws from 74 PDAC patients (41 localised, 33 metastatic) to non-invasively monitor disease progression. RESULTS Analysis using multiplex imaging flow cytometry revealed four distinct sub-populations of CTCs: epithelial (E-CTC), mesenchymal (M-CTC), partial epithelial-mesenchymal transition (pEMT-CTC) and stem cell-like (SC-CTC). Overall, CTC detection rate was 76.8% (209/272 draws) and total CTC counts did not correlate with any clinicopathological variables. However, the proportion of pEMT-CTCs (prop-pEMT) was correlated with advanced disease, worse progression-free and overall survival in all patients, and earlier recurrence after resection. CONCLUSION Our results underscore the importance of immunophenotyping and quantifying specific CTC sub-populations in PDAC.
Collapse
|
55
|
Suprewicz Ł, Swoger M, Gupta S, Piktel E, Byfield FJ, Iwamoto DV, Germann D, Reszeć J, Marcińczyk N, Carroll RJ, Lenart M, Pyre K, Janmey P, Schwarz JM, Bucki R, Patteson A. Extracellular vimentin as a target against SARS-CoV-2 host cell invasion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.01.08.425793. [PMID: 33442680 PMCID: PMC7805437 DOI: 10.1101/2021.01.08.425793] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Infection of human cells by pathogens, including SARS-CoV-2, typically proceeds by cell surface binding to a crucial receptor. In the case of SARS-CoV-2, angiotensin-converting enzyme 2 (ACE2) has been identified as a necessary receptor, but not all ACE2-expressing cells are equally infected, suggesting that other extracellular factors are involved in host cell invasion by SARS-CoV-2. Vimentin is an intermediate filament protein that is increasingly recognized as being present on the extracellular surface of a subset of cell types, where it can bind to and facilitate pathogens' cellular uptake. Here, we present evidence that extracellular vimentin might act as a critical component of the SARS-CoV-2 spike protein-ACE2 complex in mediating SARS-CoV-2 cell entry. We demonstrate direct binding between vimentin and SARS-CoV-2 pseudovirus coated with the SARS-CoV-2 spike protein and show that antibodies against vimentin block in vitro SARS-CoV-2 pseudovirus infection of ACE2-expressing cells. Our results suggest new therapeutic strategies for preventing and slowing SARS-CoV-2 infection, focusing on targeting cell host surface vimentin.
Collapse
Affiliation(s)
- Łukasz Suprewicz
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Poland
| | - Maxx Swoger
- Physics Department and BioInspired Institute, Syracuse University
| | - Sarthak Gupta
- Physics Department and BioInspired Institute, Syracuse University
| | - Ewelina Piktel
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Poland
| | - Fitzroy J Byfield
- Institute for Medicine and Engineering and Department of Physiology, University of Pennsylvania
| | - Daniel V Iwamoto
- Institute for Medicine and Engineering and Department of Physiology, University of Pennsylvania
| | - Danielle Germann
- Physics Department and BioInspired Institute, Syracuse University
| | - Joanna Reszeć
- Department of Medical Pathomorphology, Medical University of Białystok, PL-15269 Białystok, Poland
| | - Natalia Marcińczyk
- Department of Biopharmacy, Medical University of Białystok, Białystok, Poland
| | - Robert J Carroll
- Physics Department and BioInspired Institute, Syracuse University
| | - Marzena Lenart
- Małopolska Centre of Biotechnology; Jagiellonian University; Kraków, Poland
| | - Krzysztof Pyre
- Małopolska Centre of Biotechnology; Jagiellonian University; Kraków, Poland
| | - Paul Janmey
- Institute for Medicine and Engineering and Department of Physiology, University of Pennsylvania
| | - J M Schwarz
- Physics Department and BioInspired Institute, Syracuse University
- Indian Creek Farm, Ithaca, NY
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Poland
- Institute for Medicine and Engineering and Department of Physiology, University of Pennsylvania
| | - Alison Patteson
- Physics Department and BioInspired Institute, Syracuse University
| |
Collapse
|
56
|
Gao Y, Fan WH, Song Z, Lou H, Kang X. Comparison of circulating tumor cell (CTC) detection rates with epithelial cell adhesion molecule (EpCAM) and cell surface vimentin (CSV) antibodies in different solid tumors: a retrospective study. PeerJ 2021; 9:e10777. [PMID: 33717672 PMCID: PMC7934682 DOI: 10.7717/peerj.10777] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose Status of epithelial-mesenchymal transition (EMT) varies from tumors to tumors. Epithelial cell adhesion molecule (EpCAM) and cell surface vimentin (CSV) are the most common used targets for isolating epithelial and mesenchymal CTCs, respectively. This study aimed to identify a suitable CTC capturing antibody for CTC enrichment in each solid tumor by comparing CTC detection rates with EpCAM and CSV antibodies in different solid tumors. Methods Treatment-naive patients with confirmed cancer diagnosis and healthy people who have performed CTC detection between April 2017 and May 2018 were included in this study. CTC detection was performed with CytoSorter® CTC system using either EpCAM or CSV antibody. In total, 853 CTC results from 690 cancer patients and 72 healthy people were collected for analysis. The performance of CTC capturing antibody was determined by the CTC detection rate. Results EpCAM has the highest CTC detection rate of 84.09% in CRC, followed by BCa (78.32%). CTC detection rates with EpCAM antibody are less than 40% in HCC (25%), PDAC (32.5%) and OC (33.33%). CSV has the highest CTC detection rate of 90% in sarcoma, followed by BC (85.71%), UC (84.62%), OC (83.33%) and BCa (81.82%). CTC detection rates with CSV antibody are over 60% in all 14 solid tumors. Except for CRC, CSV has better performances than EpCAM in most solid tumors regarding the CTC detection rates. Conclusion EpCAM can be used as a target to isolate CTCs in CRC, LC, GC, BCa, EC, HNSCC, CC and PCa, especially in CRC, while CSV can be used in most solid tumors for isolating CTCs.
Collapse
Affiliation(s)
- Yang Gao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beijing Polytechnic University, Beijing, China
| | | | - Zhengbo Song
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Haizhou Lou
- Department of Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xixong Kang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beijing Polytechnic University, Beijing, China
| |
Collapse
|
57
|
Jiang R, Agrawal S, Aghaamoo M, Parajuli R, Agrawal A, Lee AP. Rapid isolation of circulating cancer associated fibroblasts by acoustic microstreaming for assessing metastatic propensity of breast cancer patients. LAB ON A CHIP 2021; 21:875-887. [PMID: 33351008 DOI: 10.1039/d0lc00969e] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We demonstrate a label free and high-throughput microbubble-based acoustic microstreaming technique to isolate rare circulating cells such as circulating cancer associated fibroblasts (cCAFs) in addition to circulating tumor cells (CTCs) and immune cells (i.e. leukocytes) from clinically diagnosed patients with a capture efficiency of 94% while preserving cell functional integrity within 8 minutes. The microfluidic device is self-pumping and was optimized to increase flow rate and achieve near perfect capturing of rare cells enabled by having a trapping capacity above the acoustic vortex saturation concentration threshold. Our approach enables rapid isolation of CTCs, cCAFs and their associated clusters from blood samples of cancer patients at different stages. By examining the combined role of cCAFs and CTCs in early cancer onset and metastasis progression, the device accurately diagnoses both cancer and the metastatic propensity of breast cancer patients. This was confirmed by flow cytometry where we observed that metastatic breast cancer blood samples had significantly higher percentage of exhausted CD8+ T cells expressing programmed cell death protein 1 (PD1), higher number of CD4+ T regulatory cells and T helper cells. We show for the first time that our lateral cavity acoustic transducers (LCATs)-based approach can thus be developed into a metastatic propensity assay for clinical usage by elucidating cancer immunological responses and the complex relationships between CTCs and its companion tumor microenvironment.
Collapse
Affiliation(s)
- Ruoyu Jiang
- Biomedical Engineering, University of California, Irvine, CA 92697, USA.
| | - Sudhanshu Agrawal
- Department of Medicine, Division of Basic and Clinical Immunology, University of California, Irvine, CA 92697, USA
| | - Mohammad Aghaamoo
- Biomedical Engineering, University of California, Irvine, CA 92697, USA.
| | - Ritesh Parajuli
- Department of Medicine, Division of Hematology Oncology, University of California, Irvine, CA 92697, USA
| | - Anshu Agrawal
- Department of Medicine, Division of Basic and Clinical Immunology, University of California, Irvine, CA 92697, USA
| | - Abraham P Lee
- Biomedical Engineering, University of California, Irvine, CA 92697, USA. and Mechanical and Aerospace Engineering, University of California, Irvine, CA 92697, USA
| |
Collapse
|
58
|
Batth IS, Huang SB, Villarreal M, Gong J, Chakravarthy D, Keppler B, Jayamohan S, Osmulski P, Xie J, Rivas P, Bedolla R, Liss MA, Yeh IT, Reddick R, Miyamoto H, Ghosh R, Kumar AP. Evidence for 2-Methoxyestradiol-Mediated Inhibition of Receptor Tyrosine Kinase RON in the Management of Prostate Cancer. Int J Mol Sci 2021; 22:ijms22041852. [PMID: 33673346 PMCID: PMC7918140 DOI: 10.3390/ijms22041852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 11/16/2022] Open
Abstract
2-Methoxyestradiol (2-ME2) possesses anti-tumorigenic activities in multiple tumor models with acceptable tolerability profile in humans. Incomplete understanding of the mechanism has hindered its development as an anti-tumorigenic compound. We have identified for the first-time macrophage stimulatory protein 1 receptor (MST1R) as a potential target of 2-ME2 in prostate cancer cells. Human tissue validation studies show that MST1R (a.k.a RON) protein levels are significantly elevated in prostate cancer tissues compared to adjacent normal/benign glands. Serum levels of macrophage stimulatory protein (MSP), a ligand for RON, is not only associated with the risk of disease recurrence, but also significantly elevated in samples from African American patients. 2-ME2 treatment inhibited mechanical properties such as adhesion and elasticity that are associated with epithelial mesenchymal transition by downregulating mRNA expression and protein levels of MST1R in prostate cancer cell lines. Intervention with 2-ME2 significantly reduced tumor burden in mice. Notably, global metabolomic profiling studies identified significantly higher circulating levels of bile acids in castrated animals that were decreased with 2-ME2 intervention. In summary, findings presented in this manuscript identified MSP as a potential marker for predicting biochemical recurrence and suggest repurposing 2-ME2 to target RON signaling may be a potential therapeutic modality for prostate cancer.
Collapse
Affiliation(s)
- Izhar Singh Batth
- Department of Molecular Medicine, University of Texas Health, San Antonio, TX 78229, USA; (I.S.B.); (S.-B.H.); (M.V.); (J.G.); (D.C.); (B.K.); (S.J.); (P.O.); (J.X.); (P.R.); (R.B.)
| | - Shih-Bo Huang
- Department of Molecular Medicine, University of Texas Health, San Antonio, TX 78229, USA; (I.S.B.); (S.-B.H.); (M.V.); (J.G.); (D.C.); (B.K.); (S.J.); (P.O.); (J.X.); (P.R.); (R.B.)
| | - Michelle Villarreal
- Department of Molecular Medicine, University of Texas Health, San Antonio, TX 78229, USA; (I.S.B.); (S.-B.H.); (M.V.); (J.G.); (D.C.); (B.K.); (S.J.); (P.O.); (J.X.); (P.R.); (R.B.)
| | - Jingjing Gong
- Department of Molecular Medicine, University of Texas Health, San Antonio, TX 78229, USA; (I.S.B.); (S.-B.H.); (M.V.); (J.G.); (D.C.); (B.K.); (S.J.); (P.O.); (J.X.); (P.R.); (R.B.)
| | - Divya Chakravarthy
- Department of Molecular Medicine, University of Texas Health, San Antonio, TX 78229, USA; (I.S.B.); (S.-B.H.); (M.V.); (J.G.); (D.C.); (B.K.); (S.J.); (P.O.); (J.X.); (P.R.); (R.B.)
| | - Brian Keppler
- Department of Molecular Medicine, University of Texas Health, San Antonio, TX 78229, USA; (I.S.B.); (S.-B.H.); (M.V.); (J.G.); (D.C.); (B.K.); (S.J.); (P.O.); (J.X.); (P.R.); (R.B.)
| | - Sridharan Jayamohan
- Department of Molecular Medicine, University of Texas Health, San Antonio, TX 78229, USA; (I.S.B.); (S.-B.H.); (M.V.); (J.G.); (D.C.); (B.K.); (S.J.); (P.O.); (J.X.); (P.R.); (R.B.)
| | - Pawel Osmulski
- Department of Molecular Medicine, University of Texas Health, San Antonio, TX 78229, USA; (I.S.B.); (S.-B.H.); (M.V.); (J.G.); (D.C.); (B.K.); (S.J.); (P.O.); (J.X.); (P.R.); (R.B.)
| | - Jianping Xie
- Department of Molecular Medicine, University of Texas Health, San Antonio, TX 78229, USA; (I.S.B.); (S.-B.H.); (M.V.); (J.G.); (D.C.); (B.K.); (S.J.); (P.O.); (J.X.); (P.R.); (R.B.)
| | - Paul Rivas
- Department of Molecular Medicine, University of Texas Health, San Antonio, TX 78229, USA; (I.S.B.); (S.-B.H.); (M.V.); (J.G.); (D.C.); (B.K.); (S.J.); (P.O.); (J.X.); (P.R.); (R.B.)
| | - Roble Bedolla
- Department of Molecular Medicine, University of Texas Health, San Antonio, TX 78229, USA; (I.S.B.); (S.-B.H.); (M.V.); (J.G.); (D.C.); (B.K.); (S.J.); (P.O.); (J.X.); (P.R.); (R.B.)
| | - Michael A. Liss
- Urology, University of Texas Health, San Antonio, TX 78229, USA; (M.A.L.); (R.G.)
- Mays Cancer Center, San Antonio, TX 78229, USA
| | - I-Tien Yeh
- Pathology, University of Texas Health, San Antonio, TX 78229, USA; (I.-T.Y.); (R.R.)
| | - Robert Reddick
- Pathology, University of Texas Health, San Antonio, TX 78229, USA; (I.-T.Y.); (R.R.)
| | - Hiroshi Miyamoto
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Rita Ghosh
- Urology, University of Texas Health, San Antonio, TX 78229, USA; (M.A.L.); (R.G.)
- Mays Cancer Center, San Antonio, TX 78229, USA
| | - Addanki P. Kumar
- Department of Molecular Medicine, University of Texas Health, San Antonio, TX 78229, USA; (I.S.B.); (S.-B.H.); (M.V.); (J.G.); (D.C.); (B.K.); (S.J.); (P.O.); (J.X.); (P.R.); (R.B.)
- Urology, University of Texas Health, San Antonio, TX 78229, USA; (M.A.L.); (R.G.)
- Mays Cancer Center, San Antonio, TX 78229, USA
- South Texas Veterans Health Care System, San Antonio, TX 78229, USA
- Correspondence:
| |
Collapse
|
59
|
Yu L, Ren Y. Long Noncoding RNA Small Nucleolar RNA Host Gene 3 Mediates Prostate Cancer Migration, Invasion, and Epithelial-Mesenchymal Transition by Sponging miR-487a-3p to Regulate TRIM25. Cancer Biother Radiopharm 2021; 37:451-465. [PMID: 33416420 DOI: 10.1089/cbr.2020.3988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: Long noncoding RNA small nucleolar RNA host gene 3 (SNHG3) is related to the proliferation and metastasis of cancer cells. This study aims to reveal the role of SNHG3 in prostate cancer (PCa), which may help prevent PCa metastasis. Methods: SNHG3 plasmid, SNHG3 siRNA, miR-487a-3p mimic, miR-487a-3p inhibitor, TRIM25 plasmid, and TRIM25 siRNA were transfected or cotransfected into LNCaP and PC-3 cells. The proliferation, migration, and invasion of PCa cells were measured by Cell Counting Kit-8, wound-healing, and transwell assays, respectively. The expressions of SNHG3, miR-487a-3p, E-cadherin, N-cadherin, Snail, and TRIM25 in PCa tissues and cells were measured by quantitative reverse transcription polymerase chain reaction or western blot. Results: SNHG3 expression level was upregulated in PCa tissues and cells. SNHG3 overexpression and miR-487a-3p inhibitor promoted cell viability, migration, invasion, and N-cadherin and Snail levels, and inhibited E-cadherin level in LNCaP cells, while SNHG3 silencing and miR-487a-3p mimic had the opposite effects on PC-3 cells. The inhibitory effect of miR-487a-3p mimic on the migration, invasion, and epithelial-mesenchymal transition (EMT) of LNCaP cells was inversed by both SNHG3 and TRIM25 plasmids. Similarly, the function of miR-487a-3p inhibitor in PC-3 cells was also inversed by SNHG3 siRNA and TRIM25 siRNA. Conclusion: SNHG3 mediates PCa migration, invasion, and EMT by sponging miR-487a-3p to regulate TRIM25. The Clinical Trial Registration number: Y20180831.
Collapse
Affiliation(s)
- Lihang Yu
- Department of Urology, Shaoxing People's Hospital, Shaoxing, China
| | - Yu Ren
- Department of Urology, Shaoxing People's Hospital, Shaoxing, China
| |
Collapse
|
60
|
Syedmoradi L, Norton ML, Omidfar K. Point-of-care cancer diagnostic devices: From academic research to clinical translation. Talanta 2020; 225:122002. [PMID: 33592810 DOI: 10.1016/j.talanta.2020.122002] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022]
Abstract
Early and timely diagnosis of cancer plays a decisive role in appropriate treatment and improves clinical outcomes, improving public health. Significant advances in biosensor technologies are leading to the development of point-of-care (POC) diagnostics, making the testing process faster, easier, cost-effective, and suitable for on-site measurements. Moreover, the incorporation of various nanomaterials into the sensing platforms has yielded POC testing (POCT) platforms with enhanced sensitivity, cost-effectiveness and simplified detection schemes. POC cancer diagnostic devices provide promising platforms for cancer biomarker detection as compared to conventional in vitro diagnostics, which are time-consuming and require sophisticated instrumentation, centralized laboratories, and experienced operators. Current innovative approaches in POC technologies, including biosensors, smartphone interfaces, and lab-on-a-chip (LOC) devices are expected to quickly transform the healthcare landscape. However, only a few cancer POC devices (e.g. lateral flow platforms) have been translated from research laboratories to clinical care, likely due to challenges include sampling procedures, low levels of sensitivity and specificity in clinical samples, system integration and signal readout requirements. In this review, we emphasize recent advances in POC diagnostic devices for cancer biomarker detection and discuss the critical challenges which must be surmounted to facilitate their translation into clinical settings.
Collapse
Affiliation(s)
- Leila Syedmoradi
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael L Norton
- Department of Chemistry, Marshall University, One John Marshall Drive, Huntington, WV, 25755, USA
| | - Kobra Omidfar
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
61
|
Regulatory mechanisms and clinical significance of vimentin in breast cancer. Biomed Pharmacother 2020; 133:111068. [PMID: 33378968 DOI: 10.1016/j.biopha.2020.111068] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 02/05/2023] Open
Abstract
Vimentin, a kind of intermediate filament protein III in mesenchymal cells, has become a highly researched topic around the world in recent years, as it holds complex biological functions and plays an important role in the epithelial-mesenchymal transition in the evolution of various tumors. This article reviews the biological function of vimentin and its relationship with breast cancer in order to provide novel ideas about the clinical diagnosis and targeted therapy of breast cancer.
Collapse
|
62
|
Okabe T, Togo S, Fujimoto Y, Watanabe J, Sumiyoshi I, Orimo A, Takahashi K. Mesenchymal Characteristics and Predictive Biomarkers on Circulating Tumor Cells for Therapeutic Strategy. Cancers (Basel) 2020; 12:E3588. [PMID: 33266262 PMCID: PMC7761066 DOI: 10.3390/cancers12123588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/22/2022] Open
Abstract
Metastasis-related events are the primary cause of cancer-related deaths, and circulating tumor cells (CTCs) have a pivotal role in metastatic relapse. CTCs include a variety of subtypes with different functional characteristics. Interestingly, the epithelial-mesenchymal transition (EMT) markers expressed in CTCs are strongly associated with poor clinical outcome and related to the acquisition of circulating tumor stem cell (CTSC) features. Recent studies have revealed the existence of CTC clusters, also called circulating tumor microemboli (CTM), which have a high metastatic potential. In this review, we present current opinions regarding the clinical significance of CTCs and CTM with a mesenchymal phenotype as clinical surrogate markers, and we summarize the therapeutic strategy according to phenotype characterization of CTCs in various types of cancers for future precision medicine.
Collapse
Affiliation(s)
- Takahiro Okabe
- Leading Center for the Development and Research of Cancer Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan;
| | - Shinsaku Togo
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.F.); (J.W.); (I.S.); (K.T.)
- Research Institute for Diseases of Old Ages, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yuichi Fujimoto
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.F.); (J.W.); (I.S.); (K.T.)
- Research Institute for Diseases of Old Ages, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Junko Watanabe
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.F.); (J.W.); (I.S.); (K.T.)
- Research Institute for Diseases of Old Ages, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Issei Sumiyoshi
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.F.); (J.W.); (I.S.); (K.T.)
- Research Institute for Diseases of Old Ages, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Akira Orimo
- Departments of Pathology and Oncology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan;
| | - Kazuhisa Takahashi
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.F.); (J.W.); (I.S.); (K.T.)
- Research Institute for Diseases of Old Ages, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
63
|
Patteson AE, Vahabikashi A, Goldman RD, Janmey PA. Mechanical and Non-Mechanical Functions of Filamentous and Non-Filamentous Vimentin. Bioessays 2020; 42:e2000078. [PMID: 32893352 PMCID: PMC8349470 DOI: 10.1002/bies.202000078] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/04/2020] [Indexed: 12/20/2022]
Abstract
Intermediate filaments (IFs) formed by vimentin are less understood than their cytoskeletal partners, microtubules and F-actin, but the unique physical properties of IFs, especially their resistance to large deformations, initially suggest a mechanical function. Indeed, vimentin IFs help regulate cell mechanics and contractility, and in crowded 3D environments they protect the nucleus during cell migration. Recently, a multitude of studies, often using genetic or proteomic screenings show that vimentin has many non-mechanical functions within and outside of cells. These include signaling roles in wound healing, lipogenesis, sterol processing, and various functions related to extracellular and cell surface vimentin. Extracellular vimentin is implicated in marking circulating tumor cells, promoting neural repair, and mediating the invasion of host cells by viruses, including SARS-CoV, or bacteria such as Listeria and Streptococcus. These findings underscore the fundamental role of vimentin in not only cell mechanics but also a range of physiological functions. Also see the video abstract here https://youtu.be/YPfoddqvz-g.
Collapse
Affiliation(s)
- Alison E Patteson
- Physics Department, Syracuse University, Syracuse, NY 13244
- BioInspired Institute, Syracuse University, Syracuse, NY 13244
| | - Amir Vahabikashi
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago IL 60611
| | - Robert D Goldman
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago IL 60611
| | - Paul A. Janmey
- Institute for Medicine and Engineering, Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
64
|
Xin Y, Li K, Yang M, Tan Y. Fluid Shear Stress Induces EMT of Circulating Tumor Cells via JNK Signaling in Favor of Their Survival during Hematogenous Dissemination. Int J Mol Sci 2020; 21:ijms21218115. [PMID: 33143160 PMCID: PMC7663710 DOI: 10.3390/ijms21218115] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 12/21/2022] Open
Abstract
Tumor cells metastasize to distal organs mainly through hematogenous dissemination, where they experience considerable levels of fluid shear stress. Epithelial–mesenchymal transition (EMT) plays a critical role in tumor metastasis. However, how fluid shear stress influences the EMT phenotype of circulating tumor cells (CTCs) in suspension has not been fully understood. The role of shear-induced EMT in cell survival under blood shear flow remains unclear. This study shows that the majority of breast CTCs underwent apoptosis under shear flow and the surviving cells exhibited mesenchymal phenotype, suggesting that fluid shear stress induces EMT. Mechanistically, fluid shear stress-activated Jun N-terminal kinase (JNK) signaling, inhibition/activation of which suppressed/promoted the EMT phenotype. In particular, shear flow facilitated the JNK-dependent transition of epithelial CTCs into the mesenchymal status and maintained the pre-existing mesenchymal cells. Importantly, the induction of EMT suppressed the pro-apoptosis gene p53 upregulated modulator of apoptosis (PUMA) and enhanced the survival of suspended CTCs in fluid shear stress, which was rescued by overexpressing PUMA or silencing JNK signaling, suggesting that shear-induced EMT promotes CTC survival through PUMA downregulation and JNK activation. Further, the expressions of EMT markers and JUN were correlated with poor patient survival. In summary, our findings have demonstrated that fluid shear stress induces EMT in suspended CTCs via JNK signaling that promotes their survival in shear flow. This study thus unveils a new role of blood shear stress in CTC survival and facilitates the development of novel therapeutics against tumor metastasis.
Collapse
Affiliation(s)
- Ying Xin
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China; (Y.X.); (K.L.)
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China;
| | - Keming Li
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China; (Y.X.); (K.L.)
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China;
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China;
| | - Youhua Tan
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China; (Y.X.); (K.L.)
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China;
- Correspondence:
| |
Collapse
|
65
|
Oleanolic acid inhibits cell proliferation migration and invasion and induces SW579 thyroid cancer cell line apoptosis by targeting forkhead transcription factor A. Anticancer Drugs 2020; 30:812-820. [PMID: 30882397 DOI: 10.1097/cad.0000000000000777] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oleanolic acid (OA) is a naturally occurring triterpenoid that possesses antitumor activity against several tumor cell lines. However, the potential mechanism underlying OA-induced thyroid carcinoma cell death is poorly understood. We investigated the biological functions of OA by performing migration, invasion, colony formation, and apoptosis assays on SW579 cells. Forkhead box A1 (FOXA1) expression was used to predict poor prognosis in patients with thyroid carcinoma among the TCGA samples from the UALCAN and gene expression profiling interactive analysis databases. Western blot was used to detect protein expression level. Results revealed that OA inhibited the migration, colony formation, and invasion of thyroid carcinoma cells in a dose-dependent manner. Further investigation verified that OA treatment induced significant apoptosis of thyroid carcinoma cells. Moreover, high FOXA1 expression predicted the poor prognosis of patients with thyroid cancer. The proliferation, migration, and invasion of thyroid carcinoma cells were significantly decreased when FOXA1 was silenced. OA significantly increased Akt phosphorylation and reduced FOXA1 expression in SW579 cells, but only PI3K/Akt inhibitor LY294002 attenuated OA-induced FOXA1 downregulation. Furthermore, Akt overexpression suppressed the FOXA1 expression in SW579 cells. In addition, molecular docking assay revealed that OA possessed high affinity toward FOXA1 with a low binding energy. OA may be a potential chemotherapeutic agent against thyroid carcinoma cells.
Collapse
|
66
|
Takahashi Y, Shirai K, Ijiri Y, Morita E, Yoshida T, Iwanaga S, Yanagida M. Integrated system for detection and molecular characterization of circulating tumor cells. PLoS One 2020; 15:e0237506. [PMID: 32790768 PMCID: PMC7425940 DOI: 10.1371/journal.pone.0237506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/19/2020] [Indexed: 12/14/2022] Open
Abstract
Circulating tumor cells (CTCs) invade blood vessels in solid tumors and promote metastases by circulating in the blood. CTCs are thus recognized as targets for liquid biopsy and can provide useful information for design of treatments. This diagnostic approach must consider not only the number of CTCs but also their molecular and genetic characteristics. For this purpose, use of devices that enrich CTCs independent of these characteristics and detectors that recognize various CTC characteristics is essential. In the present study, we developed a CTC detection system comprising ClearCell FX and ImageStream Mark II. We clarified the analytical performance of this system by evaluating recovery rate, lower limits of detection, and linearity. These parameters are critical for detecting rare cells, such as CTCs. We tested these parameters using three cell lines with different expression levels of the epithelial marker-epithelial cell adhesion molecule (EpCAM) and spiked these cells into whole-blood samples from healthy donors. The average recovery rate and lower limit of detection were approximately 40% and five cells/7.5 mL of whole blood, respectively. High linearity was observed for all evaluated samples. We also evaluated the ability of the system to distinguish between normal and abnormal cells based on protein expression levels and gene amplification and found that the system can identify abnormal cells using these characteristics. The CTC detection system thus displays the ability to distinguish specific characteristics of CTC, thereby providing valuable information for cancer treatment.
Collapse
Affiliation(s)
- Yusuke Takahashi
- Department of Central Research Laboratories, Sysmex Corporation, Takatsukadai, Nishi-ku, Kobe, Japan
| | - Kentaro Shirai
- Department of Central Research Laboratories, Sysmex Corporation, Takatsukadai, Nishi-ku, Kobe, Japan
| | - Yuichi Ijiri
- Department of Central Research Laboratories, Sysmex Corporation, Takatsukadai, Nishi-ku, Kobe, Japan
| | - Eri Morita
- Department of Central Research Laboratories, Sysmex Corporation, Takatsukadai, Nishi-ku, Kobe, Japan
| | - Tomokazu Yoshida
- Department of Central Research Laboratories, Sysmex Corporation, Takatsukadai, Nishi-ku, Kobe, Japan
| | - Shigeki Iwanaga
- Department of Central Research Laboratories, Sysmex Corporation, Takatsukadai, Nishi-ku, Kobe, Japan
| | - Masatoshi Yanagida
- Department of Central Research Laboratories, Sysmex Corporation, Takatsukadai, Nishi-ku, Kobe, Japan
| |
Collapse
|
67
|
Heidrich I, Ačkar L, Mossahebi Mohammadi P, Pantel K. Liquid biopsies: Potential and challenges. Int J Cancer 2020; 148:528-545. [PMID: 32683679 DOI: 10.1002/ijc.33217] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/24/2022]
Abstract
The analysis of tumor cells or tumor cell products obtained from blood or other body fluids ("liquid biopsy" [LB]) provides a broad range of opportunities in the field of oncology. Clinical application areas include early detection of cancer or tumor recurrence, individual risk assessment and therapy monitoring. LB allows to portray the entire disease as tumor cells or tumor cell products are released from all metastatic or primary tumor sites, providing comprehensive and real-time information on tumor cell evolution, therapeutic targets and mechanisms of resistance to therapy. Here, we focus on the most prominent LB markers, circulating tumor cells (CTCs) and circulating tumor-derived DNA (ctDNA), in the blood of patients with breast, prostate, lung and colorectal cancer, as the four most frequent tumor types in Europe. After a brief introduction of key technologies used to detect CTCs and ctDNA, we discuss recent clinical studies on these biomarkers for early detection and prognostication of cancer as well as prediction and monitoring of cancer therapies. We also point out current methodological and biological limitations that still hamper the implementation of LB into clinical practice.
Collapse
Affiliation(s)
- Isabel Heidrich
- Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lucija Ačkar
- Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Parinaz Mossahebi Mohammadi
- Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Pantel
- Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
68
|
Batth IS, Meng Q, Wang Q, Torres KE, Burks J, Wang J, Gorlick R, Li S. Rare osteosarcoma cell subpopulation protein array and profiling using imaging mass cytometry and bioinformatics analysis. BMC Cancer 2020; 20:715. [PMID: 32736533 PMCID: PMC7395380 DOI: 10.1186/s12885-020-07203-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 07/22/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Single rare cell characterization represents a new scientific front in personalized therapy. Imaging mass cytometry (IMC) may be able to address all these questions by combining the power of MS-CyTOF and microscopy. METHODS We have investigated this IMC method using < 100 to up to 1000 cells from human sarcoma tumor cell lines by incorporating bioinformatics-based t-Distributed Stochastic Neighbor Embedding (t-SNE) analysis of highly multiplexed IMC imaging data. We tested this process on osteosarcoma cell lines TC71, OHS as well as osteosarcoma patient-derived xenograft (PDX) cell lines M31, M36, and M60. We also validated our analysis using sarcoma patient-derived CTCs. RESULTS We successfully identified heterogeneity within individual tumor cell lines, the same PDX cells, and the CTCs from the same patient by detecting multiple protein targets and protein localization. Overall, these data reveal that our t-SNE-based approach can not only identify rare cells within the same cell line or cell population, but also discriminate amongst varied groups to detect similarities and differences. CONCLUSIONS This method helps us make greater inroads towards generating patient-specific CTC fingerprinting that could provide an accurate tumor status from a minimally-invasive liquid biopsy.
Collapse
Affiliation(s)
- Izhar S Batth
- Department of Pediatrics-Research, Division of Pediatrics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Qing Meng
- Department of Laboratory Medicine, Division of Pathology and Laboratory Medicine, Houston, USA
| | - Qi Wang
- Department of Bioinformatics and Computational Biology, Division of Science, Houston, USA
| | - Keila E Torres
- Department of Surgical Oncology, Division of Surgery, Houston, USA
| | - Jared Burks
- Department of Leukemia, Division of Cancer Medicine, UT MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, Division of Science, Houston, USA.
| | - Richard Gorlick
- Department of Pediatrics-Research, Division of Pediatrics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Shulin Li
- Department of Pediatrics-Research, Division of Pediatrics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| |
Collapse
|
69
|
Genna A, Vanwynsberghe AM, Villard AV, Pottier C, Ancel J, Polette M, Gilles C. EMT-Associated Heterogeneity in Circulating Tumor Cells: Sticky Friends on the Road to Metastasis. Cancers (Basel) 2020; 12:E1632. [PMID: 32575608 PMCID: PMC7352430 DOI: 10.3390/cancers12061632] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/11/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
Epithelial-mesenchymal transitions (EMTs) generate hybrid phenotypes with an enhanced ability to adapt to diverse microenvironments encountered during the metastatic spread. Accordingly, EMTs play a crucial role in the biology of circulating tumor cells (CTCs) and contribute to their heterogeneity. Here, we review major EMT-driven properties that may help hybrid Epithelial/Mesenchymal CTCs to survive in the bloodstream and accomplish early phases of metastatic colonization. We then discuss how interrogating EMT in CTCs as a companion biomarker could help refine cancer patient management, further supporting the relevance of CTCs in personalized medicine.
Collapse
Affiliation(s)
- Anthony Genna
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
| | - Aline M. Vanwynsberghe
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
| | - Amélie V. Villard
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
| | - Charles Pottier
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
- Department of Medical Oncology, University Hospital of Liège, 4000 Liège, Belgium
| | - Julien Ancel
- CHU (Centre Hopitalier Universitaire) de Reims, Hôpital Maison Blanche, Service de Pneumologie, 51092 Reims, France;
- INSERM, UMR (Unité Mixte de Recherche)-S1250, SFR CAP-SANTE, Université de Reims Champagne-Ardenne, 51097 Reims, France;
| | - Myriam Polette
- INSERM, UMR (Unité Mixte de Recherche)-S1250, SFR CAP-SANTE, Université de Reims Champagne-Ardenne, 51097 Reims, France;
- CHU de Reims, Hôpital Maison Blanche, Laboratoire de Pathologie, 51092 Reims, France
| | - Christine Gilles
- GIGA-Cancer, Laboratory of Tumor and Development Biology, CHU Sart-Tilman, University of Liège, Pathology Tower, 4000 Liège, Belgium; (A.G.); (A.M.V.); (A.V.V.); (C.P.)
| |
Collapse
|
70
|
Liu H, Ding J, Wu Y, Wu D, Qi J. Prospective Study of the Clinical Impact of Epithelial and Mesenchymal Circulating Tumor Cells in Localized Prostate Cancer. Cancer Manag Res 2020; 12:4549-4560. [PMID: 32606948 PMCID: PMC7304675 DOI: 10.2147/cmar.s253997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/07/2020] [Indexed: 12/22/2022] Open
Abstract
Background Although circulating tumor cells (CTCs) are considered as a surrogate marker in monitoring disease progression and treatment response in late stage prostate cancer (PCa), its clinical impact in localized PCa remains unclear, indicating the limitation that is simply based on cell count. This perspective observational study aimed to detect the epithelial-to-mesenchymal transition (EMT) subtypes of CTCs in localized PCa and analyze their clinical relevance and application in predicting PCa stages before surgery compared with the Partin table. Patients and Methods Between August 2017 and April 2019, 80 newly diagnosed localized PCa patients were enrolled in the study. Peripheral blood samples (5 mL) were collected prior to surgery. The CanPatrolTM CTC enrichment technique, a size-based isolation method, was used to detect the EMT CTCs. Clinical relevance of the CTCs was analyzed with Spearman’s rank correlation test. Models to predict pathological were built with multivariate logistic regression. Receiver operating characteristic (ROC) curve and area under the curve (AUC) analysis were performed to evaluate the accuracy of the prediction model. Results CTCs were detected in 55% of all patients. The biophenotypic CTCs were most valuable and closely correlated with PSA, Gleason score, D’Amico risk classification, and pathological stage in localized PCa. The mesenchymal subtype was rare in this population but associated with seminal vesicle invasion, while the epithelial subtype had limited clinical significance. In addition, the biophenotypic CTCs combined with traditional clinical variables were analyzed by multivariate logistic regression to predict organ-confined disease before surgery, of which the AUC reached 0.818 and was superior to the Partin table 2017 in our cohort. Conclusion This study highlights the clinical impact of the biophenotypic CTCs in localized PCa, which was most closely related to clinical variables and could help to predict pathology outcomes before surgery.
Collapse
Affiliation(s)
- Hailong Liu
- Department of Urology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, People's Republic of China
| | - Jie Ding
- Department of Urology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, People's Republic of China
| | - Yanyuan Wu
- Department of Urology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, People's Republic of China
| | - Di Wu
- Department of Urology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, People's Republic of China
| | - Jun Qi
- Department of Urology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, People's Republic of China
| |
Collapse
|
71
|
Batth IS, Li S. Discovery of Cell-Surface Vimentin (CSV) as a Sarcoma Target and Development of CSV-Targeted IL12 Immune Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1257:169-178. [PMID: 32483739 DOI: 10.1007/978-3-030-43032-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
This chapter discusses a novel target of osteosarcoma (OS), cell-surface vimentin (CSV), and a novel generation of interleukin-12 (IL12), CSV-targeted IL12, for treating OS tumor metastasis. Vimentin is a known intracellular structural protein for mesenchymal cells but is also documented in tumor cells. Our recent study definitively revealed that vimentin can be translocated to the surface of very aggressive tumor cells, such as metastatic cells. This CSV property allows investigators to capture circulating tumor cells (CTCs) across any type of tumor, including OS. CTCs are known as the seeds of metastasis; therefore, targeting these cells using CSV is a logical approach for use in a metastatic OS setting. Interestingly, we found that the peptide VNTANST can bind to CSV when fused to the p40 subunit encoding the DNA of IL12. Systemic delivery of this CSV-targeted IL12 immune therapy inhibited OS metastasis and relapse in a mouse tumor model as detailed in this chapter. This CSV-targeted delivery of IL12 also reduced toxicity of IL12. In summary, this chapter details a novel approach for safe IL12 immune therapy via targeting CSV.
Collapse
Affiliation(s)
- Izhar S Batth
- The University of Texas MD Anderson Cancer Center, Department of Pediatrics - Research, Houston, TX, USA
| | - Shulin Li
- The University of Texas MD Anderson Cancer Center, Department of Pediatrics - Research, Houston, TX, USA.
| |
Collapse
|
72
|
Ginkgolic acid (GA) suppresses gastric cancer growth by inducing apoptosis and suppressing STAT3/JAK2 signaling regulated by ROS. Biomed Pharmacother 2020; 125:109585. [DOI: 10.1016/j.biopha.2019.109585] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/16/2019] [Accepted: 10/25/2019] [Indexed: 01/22/2023] Open
|
73
|
Abstract
Cancer is a heterogeneous disease that requires a multimodal approach to diagnose, manage and treat. A better understanding of the disease biology can lead to identification of novel diagnostic/prognostic biomarkers and the discovery of the novel therapeutics with the goal of improving patient outcomes. Employing advanced technologies can facilitate this, enabling better diagnostic and treatment for cancer patients. In this regard, microfluidic technology has emerged as a promising tool in the studies of cancer, including single cancer cell analysis, modeling angiogenesis and metastasis, drug screening and liquid biopsy. Microfluidic technologies have opened new ways to study tumors in the preclinical and clinical settings. In this chapter, we highlight novel application of this technology in area of fundamental, translational and clinical cancer research.
Collapse
|
74
|
Wu J, Hu S, Zhang L, Xin J, Sun C, Wang L, Ding K, Wang B. Tumor circulome in the liquid biopsies for cancer diagnosis and prognosis. Theranostics 2020; 10:4544-4556. [PMID: 32292514 PMCID: PMC7150480 DOI: 10.7150/thno.40532] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 01/07/2020] [Indexed: 12/20/2022] Open
Abstract
Liquid biopsy is a convenient, fast, non-invasive and reproducible sampling method that can dynamically reflect the changes in tumor gene expression profile, and provide a robust basis for individualized therapy and early diagnosis of cancer. Circulating tumor DNA (ctDNA) and circulating tumor cells (CTCs) are the currently approved diagnostic biomarkers for screening cancer patients. In addition, tumor-derived extracellular vesicles (tdEVs), circulating tumor-derived proteins, circulating tumor RNA (ctRNA) and tumor-bearing platelets (TEPs) are other components of liquid biopsies with diagnostic potential. In this review, we have discussed the clinical applications of these biomarkers, and the factors that limit their implementation in routine clinical practice. In addition, the most recent developments in the isolation and analysis of circulating tumor biomarkers have been summarized, and the potential of non-blood liquid biopsies in tumor diagnostics has also been discussed.
Collapse
Affiliation(s)
- Jicheng Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
| | - Shen Hu
- Department of Obstetrics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Lihong Zhang
- Department of Biochemistry, College of Biomedical Sciences, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jinxia Xin
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
| | - Chongran Sun
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Liquan Wang
- Department of Obstetrics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Kefeng Ding
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Ben Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
| |
Collapse
|
75
|
Liu M, Wang R, Sun X, Liu Y, Wang Z, Yan J, Kong X, Liang S, Liu Q, Zhao T, Ji X, Wang G, Wang F, Wang G, Chen L, Zhang Q, Lv W, Li H, Sun M. Prognostic significance of PD-L1 expression on cell-surface vimentin-positive circulating tumor cells in gastric cancer patients. Mol Oncol 2020; 14:865-881. [PMID: 31981446 PMCID: PMC7138401 DOI: 10.1002/1878-0261.12643] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 01/05/2020] [Accepted: 01/20/2020] [Indexed: 12/13/2022] Open
Abstract
Although circulating tumor cells (CTCs) have shown promise as potential biomarkers for diagnostic and prognostic assessment in gastric cancer (GC), determining the predictive and prognostic value of programmed death‐ligand 1 (PD‐L1)‐positive CTCs in patients with GC is a challenge. Here, we identified that the expression of total vimentin (VIM) protein was positively correlated with PD‐L1 and inhibited CD8+ T‐cell activation in patients with GC according to bioinformatics analysis. Notably, coexpression of PD‐L1 and cell‐surface VIM (CSV) was detected by immunofluorescence and immunohistochemistry assay in locally advanced GC tumor specimens and metastatic lymph nodes. Likewise, CSV expression level was significantly decreased after transiently knocking down PD‐L1 in GC cell lines. Based on our established CTC detection platform, CTCs were isolated from peripheral blood samples collected from 70 patients (38 resectable and 32 unresectable) with GC using magnetic positive selection and a CSV‐specific monoclonal antibody, 84‐1. CSV+PD‐L1+CTCs were observed in 50 of 70 (71%) GC patient samples, ranging from 0 to 261 mL−1. A higher number of CSV+PD‐L1+CTCs were significantly associated with a short survival duration and poor therapeutic response. This study demonstrated that detection of PD‐L1+CTCs using a CSV‐enrichment method has promising value as a clinically relevant prognostic marker for GC.
Collapse
Affiliation(s)
- Mengyuan Liu
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Endoscopy, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ruoyu Wang
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, China.,The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian, China
| | - Xuren Sun
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yuting Liu
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, China.,The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian, China
| | - Zhi Wang
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, China.,The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian, China
| | - Jin Yan
- Department of Gastrointestinal Surgery, Affiliated Zhongshan Hospital of Dalian University, China
| | - Xiangyu Kong
- Department of Gastrointestinal Surgery, Affiliated Zhongshan Hospital of Dalian University, China
| | - Shanshan Liang
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, China.,The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian, China
| | - Qiuge Liu
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, China.,The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian, China
| | - Tong Zhao
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, China.,The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian, China
| | - Xuening Ji
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, China.,The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian, China
| | - Gang Wang
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, China.,The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian, China
| | - Fuguang Wang
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, China.,The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian, China
| | - Guan Wang
- Department of Radiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Liang Chen
- Department of Computer Science, College of Engineering, Shantou University, China.,Key Laboratory of Intelligent Manufacturing Technology of Ministry of Education, Shantou University, China
| | - Qingfu Zhang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, China
| | - Weipeng Lv
- Department of Pathology, Affiliated Zhongshan Hospital of Dalian University, China
| | - Heming Li
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, China.,The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian, China
| | - Mingjun Sun
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Endoscopy, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
76
|
Ha X, Wang J, Chen K, Deng Y, Zhang X, Feng J, Li X, Zhu J, Ma Y, Qiu T, Wang C, Xie J, Zhang J. Free Fatty Acids Promote the Development of Prostate Cancer by Upregulating Peroxisome Proliferator-Activated Receptor Gamma. Cancer Manag Res 2020; 12:1355-1369. [PMID: 32158268 PMCID: PMC7048952 DOI: 10.2147/cmar.s236301] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/31/2020] [Indexed: 12/11/2022] Open
Abstract
Introduction As one of the most common forms of cancer that threatens men's health, prostate cancer (PCa) is under a trend of increasing morbidity and mortality in most countries. More and more studies have pointed out that obesity is closely linked to the occurrence and development of PCa, although there are still many undiscovered molecular mechanisms between the two. Methods In the present study, we compare serum lipid levels in patients with PCa and normal individuals. PCa cells (PC3 and 22RV1) were cultured in vitro, the TC/TG/HDL/GLU assay kit was used to detect the glucose and lipid metabolism level of PCa cells, the flow cytometry technique was used to detect the proliferation ability of PCa cells, and the Transwell was used to detect the invasion and migration ability of PCa cells. Western blot/quantitative real-time PCR was used to detect peroxisome proliferator-activated receptor γ (PPARγ) and vimentin/vascular endothelial growth factor-A (VEGF-A) expression levels, and immunohistochemistry was used to observe tumor-associated gene expression levels in nude mice. All data were analysed using the Independent samples t-test or rank sum test. Results We found higher levels of FFA in the serum of patients with PCa. In vitro experiments have demonstrated that high levels of FFA can promote the proliferation, migration and invasion of two PCa cells (PC3 and 22RV1) and affect the energy metabolism of PCa cells. The upregulated PPARγ plays a key role in this process, and vimentin may be involved in this signaling pathway. Conclusion We infer that high levels of FFA may promote PCa development by upregulating PPARγ expression.
Collapse
Affiliation(s)
- Xiaodan Ha
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, Xinjiang 832000, People's Republic of China
| | - Jingzhou Wang
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, Xinjiang 832000, People's Republic of China
| | - Keru Chen
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, Xinjiang 832000, People's Republic of China
| | - Yuchun Deng
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, Xinjiang 832000, People's Republic of China
| | - Xueting Zhang
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, Xinjiang 832000, People's Republic of China
| | - Jiale Feng
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, Xinjiang 832000, People's Republic of China
| | - Xue Li
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, Xinjiang 832000, People's Republic of China
| | - Jiaojiao Zhu
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, Xinjiang 832000, People's Republic of China
| | - Yinghua Ma
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, Xinjiang 832000, People's Republic of China
| | - Tongtong Qiu
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, Xinjiang 832000, People's Republic of China
| | - Cuizhe Wang
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, Xinjiang 832000, People's Republic of China
| | - Jianxin Xie
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, Xinjiang 832000, People's Republic of China
| | - Jun Zhang
- Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, Xinjiang 832000, People's Republic of China
| |
Collapse
|
77
|
Hu B, Tian X, Li Y, Liu Y, Yang T, Han Z, An J, Kong L, Li Y. Epithelial-mesenchymal transition may be involved in the immune evasion of circulating gastric tumor cells via downregulation of ULBP1. Cancer Med 2020; 9:2686-2697. [PMID: 32077634 PMCID: PMC7163085 DOI: 10.1002/cam4.2871] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/24/2022] Open
Abstract
Background Increasing numbers of studies have demonstrated that circulating tumor cells (CTCs) undergo a phenotypic change termed epithelial‐mesenchymal transition (EMT), and researchers have proposed that EMT might provide CTCs with increased potential to survive in the different microenvironments encountered during metastasis through various ways, such as by increasing cell survival and early colonization. However, the exact role of EMT in CTCs remains unclear. Methods In this study, we identified CTCs of 41 patients with gastric cancer using Cyttel‐CTC and im‐FISH (immune‐fluorescence in situ hybridization) methods, and tested the expression of EMT markers and ULBP1 (a major member of the NKG2D—natural killer [NK] group 2 member D—ligand family) on CTCs. Moreover, we investigated the relationship between the expression of EMT markers and ULBP1 on CTCs and gastric cancer cell lines. Results Our results showed that the CTCs of gastric cancer patients exhibited three EMT marker subtypes, and that the expression of ULBP1 was significantly lower on mesenchymal phenotypic CTCs (M+CTCs) than on epithelial phenotypic CTCs (E+CTCs). EMT induced by TGF‐β in vitro produced a similar phenomenon, and we therefore proposed that EMT might be involved in the immune evasion of CTCs from NK cells by altering the expression of ULBP1. Conclusions Our study indicated that EMT might play a vital role in the immune invasion of CTCs by regulating the expression of ULBP1 on CTCs. These findings could provide potential strategies for targeting the immune evasion capacity of CTCs.
Collapse
Affiliation(s)
- Baoguang Hu
- Department of Gastrointestinal Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Xiaokun Tian
- Department of Gastrointestinal Surgery, Binzhou Medical University Hospital, Binzhou, China.,Department of Burn and Plastic Surgery, the Sixth People's Hospital of Zibo, Zibo, China
| | - Yanbin Li
- Department of Gastrointestinal Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Yangchun Liu
- Jiangxi Medical College, Queen Mary College of Nanchang University, Nanchang, China
| | - Tao Yang
- Department of Gastrointestinal Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Zhaodong Han
- Department of Clinical Laboratory, Binzhou Medical University Hospital, Binzhou, China
| | - Jiajia An
- Department of Clinical Laboratory, Binzhou Medical University Hospital, Binzhou, China
| | - Lingqun Kong
- Department of Hepatobiliary Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Yuming Li
- Department of Gastrointestinal Surgery, Binzhou Medical University Hospital, Binzhou, China
| |
Collapse
|
78
|
Nicklin M, Hickman GJ, Pockley AG, Perry CC. Materials-Based Approach for Interrogating Human Prostate Cancer Cell Adhesion and Migratory Potential Using a Fluoroalkylsilica Culture Surface. ACS APPLIED BIO MATERIALS 2020; 3:495-504. [PMID: 35019466 DOI: 10.1021/acsabm.9b00940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OPCT-1 is a heterogeneous prostate cancer cell line derived from primary (rather than metastatic) disease which contains epithelial, mesenchymal, and CD44high/CD24low cancer stem cell (CSC) subpopulations and from which we have previously generated and characterized stable mesenchymal (P4B6B) and epithelial (P5B3) cell subpopulations. In this contribution, we explore the effect of tissue culture surface chemistry (standard tissue culture plastic (TCP) and a fluoroalkylsilica (FS) culture surface with inherently low surface energy) on the phenotype and adherent capacity of mesenchymal and epithelial cell populations. We demonstrate that OPCT-1 cells adherent to FS surfaces comprise both epithelial- and mesenchymal-like populations; a mesenchymal subpopulation derived from OPCT1 (P4B6B) poorly adheres to FS and formed spheroids, whereas an epithelial subpopulation derived from OPCT1 (P5B3) forms an adherent monolayer. In contrast, P4B6B cells do adhere to FS when cocultured with P5B3 cells. Taken together, these findings demonstrate that EMT/cell differentiation status dictates cell adhesive capacity and provide a novel insight into the relationship between epithelial and mesenchymal cell populations in metastasis. Importantly, the differences in adherence capacity between P4B6B and P5B3 are not apparent using standard TCP-based culture, thereby highlighting the value of using alternative culture surfaces for studying cell surface interaction/adhesion phenomena and interrogating mechanisms involved in adhesion and detachment of metastatic tumor cells.
Collapse
|
79
|
Integrated Therapeutic Targeting of the Prostate Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1296:183-198. [PMID: 34185293 DOI: 10.1007/978-3-030-59038-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Prostate cancer is a common and deadly cancer among men. The heterogeneity that characterizes prostate tumors contributes to clinical challenges in the diagnosis, prognosis, and treatment of this malignancy. While localized prostate cancer can be treated with surgery or radiotherapy, metastatic disease to the lymph nodes and the bone requires aggressive treatment with androgen deprivation treatment (ADT). Unfortunately, this often eventually progresses to metastatic castration-resistant prostate cancer (mCRPC). Advanced prostate cancer treatment today involves 1st- and 2nd-line taxane chemotherapy and 2nd-generation antiandrogens. The process of epithelial mesenchymal transition (EMT), during which epithelial cells lose their adhesions and their polarity, is a critical contributor to prostate cancer metastasis. In this article, we aim to integrate the current understanding of mechanisms dictating the dynamics of phenotypic EMT, with apoptosis outcomes in prostate tumors in response to antiandrogen and taxane chemotherapy for the treatment of advanced disease. Novel insights into the signaling mechanisms that target the functional interface between apoptosis and EMT will be considered in the context of potential clinical markers of tumor prognosis, as well as for effective therapeutic targeting of α- and β- adrenergic signaling (by novel and existing chemotherapeutic agents and antiandrogens). Interfering with EMT and apoptosis simultaneously toward eradicating the tumor mass is of major significance in combating the lethal disease and increasing patient survival.
Collapse
|
80
|
Wang Q, Zhao L, Han L, Tuo X, Ma S, Wang Y, Feng X, Liang D, Sun C, Wang Q, Song Q, Li Q. The Discordance of Gene Mutations between Circulating Tumor Cells and Primary/Metastatic Tumor. Mol Ther Oncolytics 2019; 15:21-29. [PMID: 31650022 PMCID: PMC6804648 DOI: 10.1016/j.omto.2019.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/19/2019] [Indexed: 12/14/2022] Open
Abstract
Circulating tumor cells (CTCs) are an important part in the field of "liquid biopsy." However, major questions remain to be answered whether the mutations in the CTCs represent the mutations in primary tumor tissue and metastatic tumors. We compared the genetic mutations between CTCs and their matched tumors, and extracted data on the heterogeneity of the mutational status in CTCs and the change in mutations of CTCs before and during treatment. For mutations detected in single genes, we calculated the concordance of the mutations between the CTCs and primary tumor tissue. For mutations detected in multiple genes, we calculated the concordance of the mutations between the CTCs and primary/metastatic tumor tissue. The heterogeneity of the mutational status is clearly present in CTCs. For mutations detected in a single gene, the overall concordance of mutations is 53.05%. For mutations detected in multiple genes, the concordance of mutations is extremely different. The heterogeneity of the mutational status existed in single CTCs, and the mutational status of CTCs was discordant with that of tumor tissue.
Collapse
Affiliation(s)
- Qi Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Center for Single-Cell Biology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Lanbo Zhao
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Lu Han
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Xiaoqian Tuo
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Sijia Ma
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Yiran Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Xue Feng
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Dongxin Liang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Chao Sun
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Qing Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Qing Song
- Center for Single-Cell Biology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Qiling Li
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Center for Single-Cell Biology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| |
Collapse
|
81
|
Zhang Y, Li M, Gao X, Chen Y, Liu T. Nanotechnology in cancer diagnosis: progress, challenges and opportunities. J Hematol Oncol 2019; 12:137. [PMID: 31847897 PMCID: PMC6918551 DOI: 10.1186/s13045-019-0833-3] [Citation(s) in RCA: 208] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/18/2019] [Indexed: 12/24/2022] Open
Abstract
In the fight against cancer, early detection is a key factor for successful treatment. However, the detection of cancer in the early stage has been hindered by the intrinsic limits of conventional cancer diagnostic methods. Nanotechnology provides high sensitivity, specificity, and multiplexed measurement capacity and has therefore been investigated for the detection of extracellular cancer biomarkers and cancer cells, as well as for in vivo imaging. This review summarizes the latest developments in nanotechnology applications for cancer diagnosis. In addition, the challenges in the translation of nanotechnology-based diagnostic methods into clinical applications are discussed.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, 410008, China
| | - Maoyu Li
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, 410008, China
- Department of Gastroenterology, XiangYa Hospital, Central South University, Changsha, 410008, China
| | - Xiaomei Gao
- Department of Pathology, XiangYa Hospital, Central South University, Changsha, 410008, China
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, XiangYa Hospital, Central South University, Changsha, 410008, China.
| | - Ting Liu
- Department of Gastroenterology, XiangYa Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
82
|
Improved Isolation of Mesenchymal Stem Cells Based on Interactions between N-Acetylglucosamine-Bearing Polymers and Cell-Surface Vimentin. Stem Cells Int 2019; 2019:4341286. [PMID: 31814834 PMCID: PMC6878802 DOI: 10.1155/2019/4341286] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs) in bone marrow and adipose tissues are expected to be effective tools for regenerative medicine to treat various diseases. To obtain MSCs that possess both high differentiation and tissue regenerative potential, it is necessary to establish an isolation system that does not require long-term culture. It has previously been reported that the cytoskeletal protein vimentin, expressed on the surfaces of multiple cell types, possesses N-acetylglucosamine- (GlcNAc-) binding activity. Therefore, we tried to exploit this interaction to efficiently isolate MSCs from rat bone marrow cells using GlcNAc-bearing polymer-coated dishes. Cells isolated by this method were identified as MSCs because they were CD34-, CD45-, and CD11b/c-negative and CD90-, CD29-, CD44-, CD54-, CD73-, and CD105-positive. Osteoblast, adipocyte, and chondrocyte differentiation was observed in these cells. In total, yields of rat MSCs were threefold to fourfold higher using GlcNAc-bearing polymer-coated dishes than yields using conventional tissue-culture dishes. Interestingly, MSCs isolated with GlcNAc-bearing polymer-coated dishes strongly expressed CD106, whereas those isolated with conventional tissue-culture dishes had low CD106 expression. Moreover, senescence-associated β-galactosidase activity in MSCs from GlcNAc-bearing polymer-coated dishes was lower than that in MSCs from tissue-culture dishes. These results establish an improved isolation method for high-quality MSCs.
Collapse
|
83
|
Wang Y, Liu Y, Zhang L, Tong L, Gao Y, Hu F, Lin PP, Li B, Zhang T. Vimentin expression in circulating tumor cells (CTCs) associated with liver metastases predicts poor progression-free survival in patients with advanced lung cancer. J Cancer Res Clin Oncol 2019; 145:2911-2920. [PMID: 31646374 PMCID: PMC6861204 DOI: 10.1007/s00432-019-03040-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/27/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To investigate the presence of vimentin expression in CTCs and its clinical relevance in patients with advanced lung cancer. METHODS Peripheral blood was obtained from 61 treatment-naive patients with advanced lung cancer. Subtraction enrichment and immunostaining-fluorescence in situ hybridization (SE-iFISH) platform was applied to identify, enumerate and characterize CTCs based on cell size, aneuploidy of chromosome 8 (Chr8) and vimentin expression. Quantification and analysis of CTCs were performed on patients before chemotherapy administration and after two cycles of therapy. RESULTS Before treatment, CTCs were detected in 60 (98.4%) patients, small cell CTCs (≤ 5 µm of WBCs) accounted for 52.8% of the absolute CTCs number, while 12 (19.7%) of the included patients had detectable vimentin-positive CTCs (vim+ CTCs). Liver metastases were reported in 7 (11.5%) patients and were significantly correlated to the presence of Vim+ CTCs (p = 0.002), with a high positivity rate of 71.4% (5/7). Vim+ CTCs were mostly in small cell size and Chr8 aneuploidy (77.0% and 82.05%, respectively). Baseline small cell CTCs ≥ 2/6 ml, triploid CTCs ≥ 2/6 ml, Vim+ CTCs ≥ 1/6 ml were found to significantly correlate with poor progression-free survival (PFS) (p = 0.017, p = 0.009 and p = 0.001, respectively). After adjusting for clinically significant factors, baseline Vim+ CTCs ≥ 1/6 ml was the only independent predictor of poor PFS [hazard ratio (HR):2.756, 95% confidence interval (CI): 1.239-6.131; p = 0.013]. CONCLUSIONS This study demonstrates an important morphologic, karyotypic and phenotypic CTCs heterogeneity in advanced lung cancer patients. The majority of Vim+ CTCs are in small size and Chr8 aneuploidy. Baseline presence of Vim+ CTCs is correlated with liver metastases and may help predict poor PFS.
Collapse
Affiliation(s)
- Ying Wang
- Department of Cellular and Molecular Biology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, No.9, Beiguan Street, Tongzhou District, Beijing, 101149, China.,Department of Oncology, Shijingshan Teaching Hospital of Capital Medical University, Beijing Shijingshan Hospital, Beijing, 100043, China
| | - Yanxia Liu
- Department of Cellular and Molecular Biology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, No.9, Beiguan Street, Tongzhou District, Beijing, 101149, China
| | - Lina Zhang
- Department of Cellular and Molecular Biology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, No.9, Beiguan Street, Tongzhou District, Beijing, 101149, China
| | - Li Tong
- Department of Oncology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, No.9, Beiguan Street, Tongzhou District, Beijing, 101149, China
| | - Yuan Gao
- Department of General Medicine, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, No.9, Beiguan Street, Tongzhou District, Beijing, 101149, China
| | - Fanbin Hu
- Department of General Medicine, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, No.9, Beiguan Street, Tongzhou District, Beijing, 101149, China
| | | | - Baolan Li
- Department of General Medicine, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, No.9, Beiguan Street, Tongzhou District, Beijing, 101149, China.
| | - Tongmei Zhang
- Department of General Medicine, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, No.9, Beiguan Street, Tongzhou District, Beijing, 101149, China.
| |
Collapse
|
84
|
han Y, Hu H, zhou J. Knockdown of LncRNA SNHG7 inhibited epithelial-mesenchymal transition in prostate cancer though miR-324-3p/WNT2B axis in vitro. Pathol Res Pract 2019; 215:152537. [DOI: 10.1016/j.prp.2019.152537] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/26/2019] [Accepted: 07/12/2019] [Indexed: 12/30/2022]
|
85
|
Batth IS, Mitra A, Rood S, Kopetz S, Menter D, Li S. CTC analysis: an update on technological progress. Transl Res 2019; 212:14-25. [PMID: 31348892 PMCID: PMC6755047 DOI: 10.1016/j.trsl.2019.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/21/2019] [Accepted: 07/09/2019] [Indexed: 12/28/2022]
Abstract
There is a growing need for a more accurate, real-time assessment of tumor status and the probability of metastasis, relapse, or response to treatment. Conventional means of assessment include imaging and tissue biopsies that can be highly invasive, may not provide complete information of the disease's heterogeneity, and not ideal for repeat analysis. Therefore, a less-invasive means of acquiring similar information at greater time points is necessary. Liquid biopsies are samples of a patients' peripheral blood and hold potential of addressing these criteria. Ongoing research has revealed that a tumor can release circulating cells, genetic materials (DNA or RNA), and exosomes into circulation. These potential biomarkers can be captured in a liquid biopsy and analyzed to determine disease status. To achieve these goals, numerous technologies have been developed. In this review, we discuss both prominent and newly developed technologies for circulating tumor cell capture and analysis and their clinical impact.
Collapse
Affiliation(s)
- Izhar S Batth
- Department of Pediatrics - Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Abhisek Mitra
- Department of Pediatrics - Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Scott Kopetz
- Department of Gastrointestinal (GI) Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - David Menter
- Department of Gastrointestinal (GI) Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Shulin Li
- Department of Pediatrics - Research, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
86
|
Addressing cellular heterogeneity in tumor and circulation for refined prognostication. Proc Natl Acad Sci U S A 2019; 116:17957-17962. [PMID: 31416912 PMCID: PMC6731691 DOI: 10.1073/pnas.1907904116] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Delineation of intratumor heterogeneity (ITH) has been a subject of growing interest for defining and tracking the evolution of cancer. Yet, the clinical consequences of such ITH on risk prediction remain unclear. Here we show ITH-driven variance on patient stratification and argue that the level of ITH of individual genes should be considered when developing single sector-based prognostic multigene tests (MGTs) in non–small-cell lung cancer (NSCLC). Single-cell molecular analysis of enriched, patient-derived circulating tumor cells (CTCs) further revealed predictive biomarkers for metastatic risk. Through systematic analysis of genes implicated in multiple steps of the metastatic spectrum, we demonstrate that the refined signatures achieve superior accuracy in identifying patients with early-stage disease at high risk of recurrence of NSCLC. Despite pronounced genomic and transcriptomic heterogeneity in non–small-cell lung cancer (NSCLC) not only between tumors, but also within a tumor, validation of clinically relevant gene signatures for prognostication has relied upon single-tissue samples, including 2 commercially available multigene tests (MGTs). Here we report an unanticipated impact of intratumor heterogeneity (ITH) on risk prediction of recurrence in NSCLC, underscoring the need for a better genomic strategy to refine prognostication. By leveraging label-free, inertial-focusing microfluidic approaches in retrieving circulating tumor cells (CTCs) at single-cell resolution, we further identified specific gene signatures with distinct expression profiles in CTCs from patients with differing metastatic potential. Notably, a refined prognostic risk model that reconciles the level of ITH and CTC-derived gene expression data outperformed the initial classifier in predicting recurrence-free survival (RFS). We propose tailored approaches to providing reliable risk estimates while accounting for ITH-driven variance in NSCLC.
Collapse
|
87
|
Tan W, Liang G, Xie X, Jiang W, Tan L, Sanders AJ, Liu Z, Ling Y, Zhong W, Tian Z, Lin W, Gong C. Incorporating MicroRNA into Molecular Phenotypes of Circulating Tumor Cells Enhances the Prognostic Accuracy for Patients with Metastatic Breast Cancer. Oncologist 2019; 24:e1044-e1054. [PMID: 31300482 PMCID: PMC6853100 DOI: 10.1634/theoncologist.2018-0697] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 06/06/2019] [Indexed: 01/26/2023] Open
Abstract
The molecular phenotype of circulating tumor cells is associated with clinical outcome of patients with breast cancer. The aim of this study was to enhance the prognostic accuracy of the circulating tumor cell phenotype in metastatic breast cancer by incorporating miRNA into a combined prediction model. Background. The molecular phenotype of circulating tumor cells (CTCs) was associated with clinical outcome of patients with breast cancer. CTCs isolated from patients with metastatic breast cancer (MBC) display a unique microRNA (miRNA) expression profile. The aim of this study was to enhance the prognostic accuracy of the CTC phenotype in patients with MBC, by incorporating miRNA into a combined prediction model. Subjects, Materials, and Methods. CTCs were detected by CellSearch and enriched by magnetic cell sorting. miRNA deep sequencing and quantitative polymerase chain reaction were used to screen and verify potentially CTC‐specific miRNA candidates. Patients with MBC were enrolled from two independent cohorts, and overall survival (OS) and chemotherapy response were analyzed. Results. We screened and identified that miR‐106b was an upregulated molecule in patients with MBC with CTC ≥5/7.5 mL (n = 16) compared with patients with CTC = 0/7.5 mL (n = 16) and healthy donors (n = 8). The expression of CTC‐specific miR‐106b correlated with vimentin and E‐cadherin in CTC and acted as an independent factor for predicting OS (hazard ratio 2.157, 95% confidence interval [CI] 1.098–4.239, p = .026). Although CTC‐specific miR‐106b, E‐cadherin, and vimentin showed a prognostic potential independently, the prognostic performance for OS based on the combination of three markers was significantly enhanced in Cohort 1 (area under the curve [AUC] 0.752, 95% CI 0.658–0.847, n = 128) and further validated in Cohort 2 (AUC 0.726, 95% CI 0.595–0.856, n = 91). Besides, a combined model incorporating miR‐106b was associated with therapy response. Conclusion. The phenotypic assemblies of CTC incorporating miR‐106b show enhanced prognostic accuracy of overall survival in patients with MBC. Implications for Practice. In order to enhance the prognostic accuracy of the circulating tumor cell (CTC) phenotype in patients with metastatic breast cancer (MBC), this study screened and identified a CTC‐specific microRNA (miRNA), miR‐106b, as an upregulated molecule based on the comparison of miRNA profile between CTCs, primary tumors, and healthy blood donors. By incorporating miR‐106b into a combined prediction model, the prognostic accuracy of the CTC phenotype for patients with MBC was greatly improved in both the training and validation cohorts. This work provides clinical evidence supporting the prognostic potential of CTC‐specific miRNA for patients with MBC. These results indicate that developing CTC‐specific miRNAs as new biomarkers will help to further optimize personalized therapy.
Collapse
Affiliation(s)
- Weige Tan
- Breast Surgery Department, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Gehao Liang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xinhua Xie
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wenguo Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff University, Heath Park, Cardiff, United Kingdom
| | - Luyuan Tan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Andrew J Sanders
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff University, Heath Park, Cardiff, United Kingdom
| | - Zihao Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yun Ling
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wenjing Zhong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zhenluan Tian
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wanyi Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Chang Gong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff University, Heath Park, Cardiff, United Kingdom
| |
Collapse
|
88
|
Green BJ, Nguyen V, Atenafu E, Weeber P, Duong BTV, Thiagalingam P, Labib M, Mohamadi RM, Hansen AR, Joshua AM, Kelley SO. Phenotypic Profiling of Circulating Tumor Cells in Metastatic Prostate Cancer Patients Using Nanoparticle-Mediated Ranking. Anal Chem 2019; 91:9348-9355. [DOI: 10.1021/acs.analchem.9b01697] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Brenda J. Green
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Vivian Nguyen
- Department of Pharmaceutical Sciences, University of Toronto, Toronto M5S 3M2, Canada
| | - Eshetu Atenafu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2C1, Canada
| | - Phillip Weeber
- Department of Pharmaceutical Sciences, University of Toronto, Toronto M5S 3M2, Canada
| | - Bill T. V. Duong
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Punithan Thiagalingam
- Department of Pharmaceutical Sciences, University of Toronto, Toronto M5S 3M2, Canada
| | - Mahmoud Labib
- Department of Pharmaceutical Sciences, University of Toronto, Toronto M5S 3M2, Canada
| | - Reza M. Mohamadi
- Department of Pharmaceutical Sciences, University of Toronto, Toronto M5S 3M2, Canada
| | - Aaron R. Hansen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2C1, Canada
| | - Anthony M. Joshua
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2C1, Canada
- Kinghorn Cancer Centre, St. Vincent’s Hospital Sydney, Darlinghurst, New South Wales 2010, Australia
| | - Shana O. Kelley
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
- Department of Pharmaceutical Sciences, University of Toronto, Toronto M5S 3M2, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
89
|
Myung JH, Cha A, Tam KA, Poellmann M, Borgeat A, Sharifi R, Molokie RE, Votta-Velis G, Hong S. Dendrimer-Based Platform for Effective Capture of Tumor Cells after TGFβ 1-Induced Epithelial-Mesenchymal Transition. Anal Chem 2019; 91:8374-8382. [PMID: 31247718 PMCID: PMC7068806 DOI: 10.1021/acs.analchem.9b01181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Detection of circulating tumor cells (CTCs) relying on their expression of epithelial cell markers, such as epithelial cell adhesion molecule (EpCAM), has been commonly used. However, this approach unlikely captures CTCs that have undergone the process of epithelial-mesenchymal transition (EMT). In this study, we have induced EMT of in vitro prostate (PCa) and breast cancer (BCa) cell lines by treatment of transforming growth factor β 1 (TGFβ1), a pleiotropic cytokine with transition-regulating activities. We found that the TGFβ1-treated, post-EMT cells exhibited up to a 45% reduction in binding affinity to antibodies against EpCAM (aEpCAM). To overcome this limitation, we designed our capture platform that integrates a unique combination of biomimetic cell rolling, dendrimer-mediated multivalent binding, and antibody cocktails of aEpCAM/aEGFR/aHER-2. Our capture surfaces resulted in up to 98% capture efficiency of post-EMT cells from mixtures of TGFβ1-treated and untreated cancer cells spiked in culture media and human blood. In a clinical pilot study, our CTC device was also able to capture rare CTCs from PCa patients with significantly enhanced capture sensitivity and purity compared to the control surface with aEpCAM only, demonstrating its potential to provide a reliable detection solution for CTCs regardless of their EMT status.
Collapse
Affiliation(s)
- Ja Hye Myung
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI 53705
- Department of Biopharmaceutical Sciences, University of Illinois, Chicago, IL 60612
| | - Ashley Cha
- Department of Biopharmaceutical Sciences, University of Illinois, Chicago, IL 60612
| | - Kevin A. Tam
- Department of Biopharmaceutical Sciences, University of Illinois, Chicago, IL 60612
| | - Michael Poellmann
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI 53705
| | - Alain Borgeat
- Department of Anesthesiology, Orthopedic University Hospital Balgrist, Zurich, SWITZERLAND, 8008
| | - Roohollah Sharifi
- Department of Surgery, University of Illinois, Chicago, IL 60612
- Section of Urology, Jessie Brown Veterans Administration Medical Center, Chicago, IL 60612
| | - Robert E. Molokie
- Department of Biopharmaceutical Sciences, University of Illinois, Chicago, IL 60612
- Department of Medicine, University of Illinois, Chicago, IL 60612
| | - Gina Votta-Velis
- Department of Anesthesiology, University of Illinois, Chicago, IL 60612
- Section of Urology, Jessie Brown Veterans Administration Medical Center, Chicago, IL 60612
| | - Seungpyo Hong
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI 53705
- Department of Biopharmaceutical Sciences, University of Illinois, Chicago, IL 60612
- Yonsei Frontier Lab and Department of Pharmacy, Yonsei University, Seoul, KOREA 03706
| |
Collapse
|
90
|
Moreno JG, Gomella LG. Evolution of the Liquid Biopsy in Metastatic Prostate Cancer. Urology 2019; 132:1-9. [PMID: 31207303 DOI: 10.1016/j.urology.2019.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/05/2019] [Accepted: 06/07/2019] [Indexed: 12/11/2022]
Abstract
We reviewed the literature for the biologic, prognostic, and predictive significance of circulating prostate cancer tumor cells (CTCs), and circulating tumor DNA in the blood of metastatic castration resistant prostate cancer patients. CTCs demonstrate robust prognostic value independent of PSA in predicting overall survival. The CTC androgen receptor variant receptor 7 phenotype predicts resistance to androgen receptor synthesis inhibitors and sensitivity to taxane based chemotherapy in metastatic castration resistant prostate cancer patients who are candidates for second line therapy. Research is rapidly pivoting toward circulating tumor DNA analysis because the approach is sensitive, prognostic, cost effective, and it can elucidate mechanisms of systemic therapy.
Collapse
Affiliation(s)
- Jose G Moreno
- Department of Urology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA; MidLantic Urology, LLC, Pottstown, PA
| | - Leonard G Gomella
- Department of Urology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA.
| |
Collapse
|
91
|
Lianidou E, Pantel K. Liquid biopsies. Genes Chromosomes Cancer 2019; 58:219-232. [PMID: 30382599 DOI: 10.1002/gcc.22695] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/28/2018] [Accepted: 10/01/2018] [Indexed: 02/06/2023] Open
Abstract
Liquid biopsy is based on minimally invasive blood tests and has a high potential to significantly change the therapeutic strategy in cancer patients, providing an extremely powerful and reliable noninvasive clinical tool for the individual molecular profiling of patients in real time. Liquid biopsy approaches include the analysis of circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), circulating miRNAs, and tumor-derived extracellular vesicles (EVs) that are shed from primary tumors and their metastatic sites into peripheral blood. The major advantage of liquid biopsy analysis is that it is minimally invasive, and can be serially repeated, thus allowing extracting information from the tumor in real time. Moreover, the identification of predictive biomarkers in peripheral blood that can monitor response to therapy in real time holds a very strong potential for novel approaches in the therapeutic management of cancer patients. In this review, we summarize recent knowledge on CTCs and ctDNA and discuss future trends in the field.
Collapse
Affiliation(s)
- Evi Lianidou
- Analysis of Circulating Tumor Cells Laboratory, Department of Chemistry, University of Athens, Athens, Greece
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
92
|
Pallante P, Pisapia P, Bellevicine C, Malapelle U, Troncone G. Circulating Tumour Cells in Predictive Molecular Pathology: Focus on Drug-Sensitive Assays and 3D Culture. Acta Cytol 2019; 63:171-181. [PMID: 30759433 DOI: 10.1159/000496213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/13/2018] [Indexed: 12/19/2022]
Abstract
Molecular cytopathology is a rapidly evolving field of cytopathology that provides biological information about the response to personalised therapy and about the prognosis of neoplasms diagnosed on cytological samples. Biomarkers such as circulating tumour cells and circulating tumour DNA are increasingly being evaluated in blood and in other body fluids. Such liquid biopsies are non-invasive, repeatable, and feasible also in patients with severe comorbidities. However, liquid biopsy may be challenging due to a low concentration of biomarkers. In such cases, biomarkers can be detected with highly sensitive molecular techniques, which in turn should be validated and integrated in a complex algorithm that includes tissue-based molecular assessments. The aim of this review is to provide the cytopathologist with practical information that is relevant to daily practice, particularly regarding the emerging role of circulating tumour cells in the field of predictive molecular pathology.
Collapse
Affiliation(s)
- Pierlorenzo Pallante
- Institute of Experimental Endocrinology and Oncology (IEOS) "G. Salvatore," National Research Council (CNR), Naples, Italy
| | - Pasquale Pisapia
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Claudio Bellevicine
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Giancarlo Troncone
- Department of Public Health, University of Naples Federico II, Naples, Italy,
| |
Collapse
|
93
|
Su YH, Kim AK, Jain S. Liquid biopsies for hepatocellular carcinoma. Transl Res 2018; 201:84-97. [PMID: 30056068 PMCID: PMC6483086 DOI: 10.1016/j.trsl.2018.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/18/2018] [Accepted: 07/02/2018] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the world's second leading cause of cancer death; 82.4% of patients die within 5 years. This grim prognosis is the consequence of a lack of effective early detection tools, limited treatment options, and the high frequency of HCC recurrence. Advances in the field of liquid biopsy hold great promise in improving early detection of HCC, advancing patient prognosis, and ultimately increasing the survival rate. In an effort to address the current challenges of HCC screening and management, several studies have identified and evaluated liver-cancer-associated molecular signatures such as genetic alterations, methylation, and noncoding RNA expression in the form of circulating biomarkers in body fluids and circulating tumor cells of HCC patients. In this review, we summarize the recent progress in HCC liquid biopsy, organized by the intended clinical application of the reported study.
Collapse
Affiliation(s)
- Ying-Hsiu Su
- The Baruch S. Blumberg Institute, Doylestown, Pennsylvania.
| | - Amy K Kim
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins School of Medicine, Baltimore Maryland.
| | - Surbhi Jain
- JBS Science, Inc., Doylestown, Pennsylvania.
| |
Collapse
|
94
|
Palmirotta R, Lovero D, Cafforio P, Felici C, Mannavola F, Pellè E, Quaresmini D, Tucci M, Silvestris F. Liquid biopsy of cancer: a multimodal diagnostic tool in clinical oncology. Ther Adv Med Oncol 2018; 10:1758835918794630. [PMID: 30181785 PMCID: PMC6116068 DOI: 10.1177/1758835918794630] [Citation(s) in RCA: 274] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/28/2018] [Indexed: 12/17/2022] Open
Abstract
Over the last decades, the concept of precision medicine has dramatically renewed
the field of medical oncology; the introduction of patient-tailored therapies
has significantly improved all measurable outcomes. Liquid biopsy is a
revolutionary technique that is opening previously unexpected perspectives. It
consists of the detection and isolation of circulating tumor cells, circulating
tumor DNA and exosomes, as a source of genomic and proteomic information in
patients with cancer. Many technical hurdles have been resolved thanks to newly
developed techniques and next-generation sequencing analyses, allowing a broad
application of liquid biopsy in a wide range of settings. Initially correlated
to prognosis, liquid biopsy data are now being studied for cancer diagnosis,
hopefully including screenings, and most importantly for the prediction of
response or resistance to given treatments. In particular, the identification of
specific mutations in target genes can aid in therapeutic decisions, both in the
appropriateness of treatment and in the advanced identification of secondary
resistance, aiming to early diagnose disease progression. Still application is
far from reality but ongoing research is leading the way to a new era in
oncology. This review summarizes the main techniques and applications of liquid
biopsy in cancer.
Collapse
Affiliation(s)
- Raffaele Palmirotta
- Section of Clinical and Molecular Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Domenica Lovero
- Section of Clinical and Molecular Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Paola Cafforio
- Section of Clinical and Molecular Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Claudia Felici
- Section of Clinical and Molecular Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Mannavola
- Section of Clinical and Molecular Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Eleonora Pellè
- Section of Clinical and Molecular Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Davide Quaresmini
- Section of Clinical and Molecular Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Marco Tucci
- Section of Clinical and Molecular Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Franco Silvestris
- Section of Clinical and Molecular Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, 70124, Italy
| |
Collapse
|
95
|
Skvortsov S, Skvortsova II, Tang DG, Dubrovska A. Concise Review: Prostate Cancer Stem Cells: Current Understanding. Stem Cells 2018; 36:1457-1474. [PMID: 29845679 DOI: 10.1002/stem.2859] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/05/2018] [Accepted: 05/01/2018] [Indexed: 12/29/2022]
Abstract
Prostate cancer (PCa) is heterogeneous, harboring phenotypically diverse cancer cell types. PCa cell heterogeneity is caused by genomic instability that leads to the clonal competition and evolution of the cancer genome and by epigenetic mechanisms that result in subclonal cellular differentiation. The process of tumor cell differentiation is initiated from a population of prostate cancer stem cells (PCSCs) that possess many phenotypic and functional properties of normal stem cells. Since the initial reports on PCSCs in 2005, there has been much effort to elucidate their biological properties, including unique metabolic characteristics. In this Review, we discuss the current methods for PCSC enrichment and analysis, the hallmarks of PCSC metabolism, and the role of PCSCs in tumor progression. Stem Cells 2018;36:1457-1474.
Collapse
Affiliation(s)
- Sergej Skvortsov
- Laboratory for Experimental and Translational Research on Radiation Oncology (EXTRO-Lab), Department of Therapeutic Radiology and Oncology, Innsbruck Medical University, Innsbruck, Austria.,Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Ira-Ida Skvortsova
- Laboratory for Experimental and Translational Research on Radiation Oncology (EXTRO-Lab), Department of Therapeutic Radiology and Oncology, Innsbruck Medical University, Innsbruck, Austria.,Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Dean G Tang
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York, USA.,Cancer Stem Cell Institute, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Anna Dubrovska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany, Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany; German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
96
|
Li WM, Zhou LL, Zheng M, Fang J. Selection of Metastatic Breast Cancer Cell-Specific Aptamers for the Capture of CTCs with a Metastatic Phenotype by Cell-SELEX. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 12:707-717. [PMID: 30098503 PMCID: PMC6083002 DOI: 10.1016/j.omtn.2018.07.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 07/11/2018] [Accepted: 07/11/2018] [Indexed: 12/22/2022]
Abstract
Circulating tumor cells (CTCs) have the potential to predict metastasis, and the capture of CTCs based on their surface markers is mostly applied for CTC detection. Considering that the CTCs with a metastatic phenotype preferably form a metastatic focus and that aptamers have the ability to bind targets with high specificity and affinity, we selected aptamers directed toward metastatic cells by subtractive Cell-SELEX technology using highly metastatic MDA-MB-231 cells as the target cell and low-metastatic MCF-7 cells as the negative cell for the capture of metastatic CTCs. Affinity and selectivity assays showed that aptamer M3 had the highest affinity, with a KD of 45.6 ± 1.2 nM, and had good specificity against several other types of metastatic cancer cells. Based on these findings, we developed an M3-based capture system for CTC enrichment, which has the capability to specifically capture the metastatic cells MDA-MB-231 mixed with non-metastatic MCF-7 cells and CTCs derived from the peripheral blood from metastatic breast cancer patients. A further comparative analysis with the anti-EpCAM probe showed that M3 probe captured epithelial feature-deletion metastatic cells. We developed an aptamer-based CTC capture system through the selection of aptamers by taking whole metastatic cells, not known molecules, as targets, which provided a new insight into CTC capture and Cell-SELEX application.
Collapse
Affiliation(s)
- Wan-Ming Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Lin-Lin Zhou
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China; Institute of Immunotherapy, Fujian Medical University, Fuzhou 350122, China
| | - Min Zheng
- Department of Chemotherapy, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350004, China
| | - Jin Fang
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China.
| |
Collapse
|
97
|
Walker JL, Bleaken BM, Romisher AR, Alnwibit AA, Menko AS. In wound repair vimentin mediates the transition of mesenchymal leader cells to a myofibroblast phenotype. Mol Biol Cell 2018; 29:1555-1570. [PMID: 29718762 PMCID: PMC6080657 DOI: 10.1091/mbc.e17-06-0364] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Following injury, mesenchymal repair cells are activated to function as leader cells that modulate wound healing. These cells have the potential to differentiate to myofibroblasts, resulting in fibrosis and scarring. The signals underlying these differing pathways are complex and incompletely understood. The ex vivo mock cataract surgery cultures are an attractive model with which to address this question. With this model we study, concurrently, the mechanisms that control mesenchymal leader cell function in injury repair within their native microenvironment and the signals that induce this same cell population to acquire a myofibroblast phenotype when these cells encounter the environment of the adjacent tissue culture platform. Here we show that on injury, the cytoskeletal protein vimentin is released into the extracellular space, binds to the cell surface of the mesenchymal leader cells located at the wound edge in the native matrix environment, and supports wound closure. In profibrotic environments, the extracellular vimentin pool also links specifically to the mesenchymal leader cells and has an essential role in signaling their fate change to a myofibroblast. These findings suggest a novel role for extracellular, cell-surface–associated vimentin in mediating repair-cell function in wound repair and in transitioning these cells to a myofibroblast phenotype.
Collapse
Affiliation(s)
- J L Walker
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - B M Bleaken
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - A R Romisher
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - A A Alnwibit
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - A S Menko
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107
| |
Collapse
|
98
|
Qin T, Liu W, Huo J, Li L, Zhang X, Shi X, Zhou J, Wang C. SIRT1 expression regulates the transformation of resistant esophageal cancer cells via the epithelial-mesenchymal transition. Biomed Pharmacother 2018; 103:308-316. [PMID: 29656187 DOI: 10.1016/j.biopha.2018.04.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 04/02/2018] [Accepted: 04/05/2018] [Indexed: 12/15/2022] Open
Abstract
Sirtuin1 (SIRT1) belongs to the mammalian sirtuin family and plays an important role in deacetylating histones and non-histones. SIRT1 is associated with tumor metastasis in several tumors. However, the effect of SIRT1 on the mechanism of metastasis in resistant esophageal cancer remains unclear. In this study, we demonstrated that increased migration and invasion in drug-resistant esophageal cancer cells (EC109/PTX, TE-1/PTX). Our experiments revealed that the selective SIRT1 inhibitor (EX527) significantly suppressed cells migrate and inhibited the occurrence of the epithelial-mesenchymal transition (EMT), thereby altering the invasiveness and metastatic potential of the esophageal cancer cell lines. In addition, we observed that the inhibition of SIRT1 could alter the expression of snail. In conclusion, these results indicate that SIRT1 may promote the transformation of tumor cells by inducing the EMT and may serve as a potential molecular target for the treatment of resistant esophageal cancer.
Collapse
Affiliation(s)
- Tiantian Qin
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, Henan, 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan, 450001, PR China
| | - Weihua Liu
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, Henan, 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan, 450001, PR China
| | - Junfeng Huo
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, Henan, 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan, 450001, PR China
| | - Leilei Li
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, Henan, 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan, 450001, PR China
| | - Xueyan Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, Henan, 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan, 450001, PR China
| | - Xiaoli Shi
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, Henan, 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan, 450001, PR China
| | - Jinlei Zhou
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, Henan, 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan, 450001, PR China
| | - Cong Wang
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China; Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Zhengzhou, Henan, 450001, PR China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou, Henan, 450001, PR China.
| |
Collapse
|
99
|
Abstract
PURPOSE OF REVIEW Metastatic prostate cancer is a lethal and highly heterogeneous malignancy, associated with a broad spectrum of potentially actionable molecular alterations. In the past decade, disease profiling has expanded to include not only traditional tumor tissue, but also liquid biopsies of cells and genetic material circulating in the blood. These liquid biopsies offer a minimally invasive, repeatable source of tumor material for longitudinal disease profiling but also raise new technical and biological challenges. Here we will summarize recent advances in liquid biopsy strategies and the role they have played in biomarker development and disease management. RECENT FINDINGS Technologies for analysis of circulating tumor cells (CTCs) continue to evolve rapidly, and the latest high content scanning platforms have underscored the phenotypic heterogeneity of CTC populations. Among liquid biopsies, CTC enumeration remains the most extensively validated prognostic marker to date, but other clinically relevant phenotypes like androgen receptor (AR) localization or presence of AR-V7 splice variant are important new predictors of therapy response. Serial genomic profiling of CTCs or circulating tumor DNA (ctDNA) is helping to define primary and acquired resistance mechanisms and helping to guide patient selection for targeted therapies such as poly(adenosine diphosphate [ADP] ribose) polymerase (PARP) inhibition. The era of liquid biopsy-based biomarkers has arrived, driven by powerful new enrichment and analysis techniques. As new blood-based markers are identified, their biological significance as disease drivers must be elucidated to advance new therapeutic strategies, and their clinical impact must be translated through assay standardization, followed by analytical and clinical validation. These efforts, already ongoing on multiple fronts, constitute the critical steps toward more effective precision management of advanced prostate cancer.
Collapse
Affiliation(s)
- Gareth J Morrison
- Division of Medical Oncology, Department of Medicine, Keck School of Medicine and Translational and Clinical Science Program, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Amir Goldkorn
- Division of Medical Oncology, Department of Medicine, Keck School of Medicine and Translational and Clinical Science Program, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
100
|
Yin C, Wang Y, Ji J, Cai B, Chen H, Yang Z, Wang K, Luo C, Zhang W, Yuan C, Wang F. Molecular Profiling of Pooled Circulating Tumor Cells from Prostate Cancer Patients Using a Dual-Antibody-Functionalized Microfluidic Device. Anal Chem 2018; 90:3744-3751. [PMID: 29464943 DOI: 10.1021/acs.analchem.7b03536] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To capture both epithelial and mesenchymal subpopulations of CTCs at different metastatic stages of PCa patients, here we constructed a novel dual-antibody-functionalized microfluidic device by employing antibodies against PSMA and EpCAM. In vitro experiments with the dual capture system for capturing both LnCAP and LnCAP-EMT cells have shown significantly enhanced capture efficiency as compared to that of the EpCAM single capture system. Furthermore, the dual capture system could successfully identify CTCs in 20 out of 24 (83.3%) PCa patients, and the CTCs counts from the dual capture system were statistically correlated with the TNM stage of patients ( P < 0.05), while conventional diagnostic methods, such as serum PSA level and Gleason score, failed to correlate to patient TNM stages. To further explore potential clinical application of our dual capture system, captured CTCs were recovered and subjected to qRT-PCR to quantify known factors involved in PCa development and therapy. The results demonstrated that the combined detection of SChLAP1 and PSA in CTCs is a potential marker for identifying patients with metastatic PCa, while detection of AR and PD-L1 in CTCs may have the potential to determine the sensitivity of PCa patients to androgen deprivation therapy and immunotherapy, respectively. Taken together, the dual-antibody-functionalized microfluidic device established in our study overcomes the limitations of some CTC capture platforms that only detect epithelial or mesenchymal CTCs in PCa patients, and detection of the PCa-related RNA signatures from purified CTCs holds great promise to offer warnings for early metastasis of PCa and may provide guidance for therapy decisions.
Collapse
Affiliation(s)
| | | | | | - Bo Cai
- School of Physics and Technology , Wuhan University , Wuhan 430072 , P.R. China
| | | | | | - Kun Wang
- Department of Laboratory Medicine , Hubei Cancer Hospital , Wuhan 430079 , P.R. China
| | | | | | - Chunhui Yuan
- Department of Laboratory Medicine , Wuhan Children's Hospital, Huazhong University of Science and Technology , Wuhan 430016 , P.R. China
| | | |
Collapse
|