51
|
Correale J. Immunosuppressive Amino-Acid Catabolizing Enzymes in Multiple Sclerosis. Front Immunol 2021; 11:600428. [PMID: 33552055 PMCID: PMC7855700 DOI: 10.3389/fimmu.2020.600428] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/30/2020] [Indexed: 01/01/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease that affects the central nervous system. Although the pathogenesis of MS is not yet fully elucidated, several evidences suggest that autoimmune processes mediated by Th1, Th17, and B cells play an important role in the development of the disease. Similar to other cells, immune cells need continuous access to amino acids (AA) in order to maintain basal metabolism and maintain vitality. When immune cells are activated by inflammation or antigenic signals, their demand for AA increases rapidly. Although AA deprivation itself may weaken the immune response under certain conditions, cells also have AA sensitive pathways that can activate intense alterations in cell metabolism based on changes in AA levels. Several data indicate that cells expressing enzymes that can degrade AA can regulate the functions of antigen-presenting cells and lymphocytes, revealing that the AA pathways are essential for controlling the function, and survival of immune cells, as well as immune cell gene expression. Basal AA catabolism may contribute to immune homeostasis and prevent autoimmunity, while increased AA catalytic activity may enhance immune suppression. In addition, there is increasing evidence that some downstream AA metabolites are important biological mediators of autoimmune response regulation. Two of the most important AA that modulate the immune response are L-Tryptophan (Trp) and L-Arginine (Arg). Tryptophan is catabolized through 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) 1 and IDO2 enzymes, while three other enzymes catabolize Arg: inducible nitric oxide synthetase (iNOS), and two arginase isoforms (ARG1, ARG2). Genes encoding IDO, iNOS and ARG are induced by inflammatory cues such as cytokines, a key feature that distinguishes them from enzymes that catabolize other AA. Evidence suggests that AA catabolism is decreased in MS patients and that this decrease has functional consequences, increasing pro-inflammatory cytokines and decreasing Treg cell numbers. These effects are mediated by at least two distinct pathways involving serine/threonine kinases: the general control nonderepressible 2 kinase (GCN2K) pathway; and the mammalian target of rapamycin (mTOR) pathway. Similarly, IDO1-deficient mice showed exacerbation of experimental autoimmune encephalomyelitis (EAE), increased Th1 and Th17 cells, and decreased Treg cells. On the contrary, the administration of downstream Trp metabolite 3-HAA, inhibits Th1/Th17 effector cells and promotes Treg response by up-regulating TGF-β production by dendritic cells, thereby improving EAE. Collectively, these observations stand out the significance of AA catabolism in the regulation of the immune responses in MS patients. The molecules related to these pathways deserve further exploration as potential new therapeutic targets in MS.
Collapse
|
52
|
Labib Salem M, Zidan AAA, Ezz El-Din El-Naggar R, Attia Saad M, El-Shanshory M, Bakry U, Zidan M. Myeloid-derived suppressor cells and regulatory T cells share common immunoregulatory pathways-related microRNAs that are dysregulated by acute lymphoblastic leukemia and chemotherapy. Hum Immunol 2021; 82:36-45. [PMID: 33162185 DOI: 10.1016/j.humimm.2020.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/27/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Relapse remains a critical challenge in children with acute lymphoblastic leukemia (ALL). The emergence of immunoregulatory cells, including myeloid-derived suppressor cells (MDSCs), and T regulatory (Treg) cells, has been considered one potential mechanism of relapse in children with ALL. AIM This study aimed to address the microRNAs (miRNAs) related to MDSCs and Treg cells and to explore their targeted immunoregulatory pathways. METHODS Affymetrix microarray was used for global miRNA profiling in B-ALL pediatric patients before, during, and after induction of chemotherapy. Bioinformatics analysis was performed on MDSCs and Treg cells-related dysregulated miRNAs, and miR-Pathway analysis was performed to explore their targeted immunoregulatory pathways. RESULTS 516 miRNAs were dysregulated in ALL patients as compared to the healthy donor. Among them, 13 miRNAs and 8 miRNAs related to MDSCs and Treg cells, respectively, were common in all patients. Besides, 12 miRNAs were shared between MDSCs and Treg cells; 4 of them were common in all patients. Four immune-related pathways; TNF, TGF-β, FoxO, and Hippo were found implicated. CONCLUSION Our pilot study concluded certain miRNAs related to MDSCs and Treg cells, these miRNAs were linked to immunoregulatory pathways. Our results open avenues for testing those miRNA as molecular biomarkers for the immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Mohamed Labib Salem
- Immunology and Biotechnology Unit, Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt; Center of Excellence in Cancer Research, Tanta University Teaching Hospital, Tanta University, Tanta, Egypt.
| | - Abdel-Aziz A Zidan
- Center of Excellence in Cancer Research, Tanta University Teaching Hospital, Tanta University, Tanta, Egypt; Department of Zoology, Faculty of Science, Damanhur University, Damanhur, Egypt
| | - Randa Ezz El-Din El-Naggar
- Immunology and Biotechnology Unit, Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mohamed Attia Saad
- Center of Excellence in Cancer Research, Tanta University Teaching Hospital, Tanta University, Tanta, Egypt; Department of Clinical Pathology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mohamed El-Shanshory
- Center of Excellence in Cancer Research, Tanta University Teaching Hospital, Tanta University, Tanta, Egypt; Department of Pediatric, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Usama Bakry
- Genomics Research Program, 57357 Children Cancer Hospital, Cairo, Egypt
| | - Mona Zidan
- Immunology and Biotechnology Unit, Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt; Immunology Research Program, 57357 Children Cancer Hospital, Cairo, Egypt
| |
Collapse
|
53
|
Cheah PS, Prabhakar S, Yellen D, Beauchamp RL, Zhang X, Kasamatsu S, Bronson RT, Thiele EA, Kwiatkowski DJ, Stemmer-Rachamimov A, György B, Ling KH, Kaneki M, Tannous BA, Ramesh V, Maguire CA, Breakefield XO. Gene therapy for tuberous sclerosis complex type 2 in a mouse model by delivery of AAV9 encoding a condensed form of tuberin. SCIENCE ADVANCES 2021; 7:eabb1703. [PMID: 33523984 PMCID: PMC7793581 DOI: 10.1126/sciadv.abb1703] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 11/18/2020] [Indexed: 05/06/2023]
Abstract
Tuberous sclerosis complex (TSC) results from loss of a tumor suppressor gene - TSC1 or TSC2, encoding hamartin and tuberin, respectively. These proteins formed a complex to inhibit mTORC1-mediated cell growth and proliferation. Loss of either protein leads to overgrowth lesions in many vital organs. Gene therapy was evaluated in a mouse model of TSC2 using an adeno-associated virus (AAV) vector carrying the complementary for a "condensed" form of human tuberin (cTuberin). Functionality of cTuberin was verified in culture. A mouse model of TSC2 was generated by AAV-Cre recombinase disruption of Tsc2-floxed alleles at birth, leading to a shortened lifespan (mean 58 days) and brain pathology consistent with TSC. When these mice were injected intravenously on day 21 with AAV9-cTuberin, the mean survival was extended to 462 days with reduction in brain pathology. This demonstrates the potential of treating life-threatening TSC2 lesions with a single intravenous injection of AAV9-cTuberin.
Collapse
Affiliation(s)
- Pike-See Cheah
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, MA, USA
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Shilpa Prabhakar
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - David Yellen
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Roberta L Beauchamp
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Xuan Zhang
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Shingo Kasamatsu
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Shriners Hospitals for Children, Boston, MA, USA
| | - Roderick T Bronson
- Rodent Histopathology Core Facility, Harvard Medical School, Boston, MA, USA
| | - Elizabeth A Thiele
- Herscot Center for Tuberous Sclerosis Complex, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- The Pediatric Epilepsy Program, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | | | | | - Bence György
- Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - King-Hwa Ling
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Masao Kaneki
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Shriners Hospitals for Children, Boston, MA, USA
| | - Bakhos A Tannous
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Vijaya Ramesh
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Casey A Maguire
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Xandra O Breakefield
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
54
|
Kim J, Hope CM, Perkins GB, Stead SO, Scaffidi JC, Kette FD, Carroll RP, Barry SC, Coates PT. Rapamycin and abundant TCR stimulation are required for the generation of stable human induced regulatory T cells. Clin Transl Immunology 2020; 9:e1223. [PMID: 33425354 PMCID: PMC7780108 DOI: 10.1002/cti2.1223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 07/07/2020] [Accepted: 11/12/2020] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES Regulatory T cells (Tregs) are a vital sub-population of CD4+ T cells with major roles in immune tolerance and homeostasis. Given such properties, the use of regulatory T cells for immunotherapies has been extensively investigated, with a focus on adoptive transfer of ex vivo expanded natural Tregs (nTregs). For immunotherapies, induced Tregs (iTregs), generated in vitro from naïve CD4+ T cells, provide an attractive alternative, given the ease of generating cell numbers required for clinical dosage. While the combination of TGF-β, ATRA and rapamycin has been shown to generate highly suppressive iTregs, the challenge for therapeutic iTreg generation has been their instability. Here, we investigate the impact of rapamycin concentrations and α-CD3/CD28 bead ratios on human iTreg stability. METHODS We assess iTregs generated with various concentrations of rapamycin and differing ratios of α-CD3/CD28 beads for their differentiation, stability, expression of Treg signature molecules and T helper effector cytokines, and Treg-specific demethylation region (TSDR) status. RESULTS iTregs generated in the presence of TGF-β, ATRA, rapamycin and a higher ratio of α-CD3/CD28 beads were highly suppressive and stable upon in vitro re-stimulation. These iTregs exhibited a similar expression profile of Treg signature molecules and T helper effector cytokines to nTregs, in the absence of TSDR demethylation. CONCLUSION This work establishes a method to generate human iTregs which maintain stable phenotype and function upon in vitro re-stimulation. Further validation in pre-clinical models will be needed to ensure its suitability for applications in adoptive transfer.
Collapse
Affiliation(s)
- Juewan Kim
- The Department of Molecular & Biomedical ScienceThe School of Biological SciencesThe Faculty of SciencesThe University of AdelaideAdelaideSAAustralia
| | - Christopher M Hope
- Department of GastroenterologyWomen’s and Children’s HospitalAdelaideSAAustralia
- Molecular Immunology GroupRobinson Research InstituteSchool of MedicineThe University of AdelaideAdelaideSAAustralia
| | - Griffith B Perkins
- The Department of Molecular & Biomedical ScienceThe School of Biological SciencesThe Faculty of SciencesThe University of AdelaideAdelaideSAAustralia
| | - Sebastian O Stead
- Discipline of MedicineSchool of MedicineThe University of AdelaideAdelaideSAAustralia
- College of Medicine and Public HealthDiscipline of MedicineFlinders UniversityBedford ParkSAAustralia
| | - Jacqueline C Scaffidi
- Discipline of MedicineSchool of MedicineThe University of AdelaideAdelaideSAAustralia
| | - Francis D Kette
- Discipline of MedicineSchool of MedicineThe University of AdelaideAdelaideSAAustralia
- College of Medicine and Public HealthDiscipline of MedicineFlinders UniversityBedford ParkSAAustralia
| | - Robert P Carroll
- Discipline of MedicineSchool of MedicineThe University of AdelaideAdelaideSAAustralia
- Central Northern Adelaide Renal and Transplantation Service (CNARTS)The Royal Adelaide HospitalAdelaideSAAustralia
- Division of Medical SciencesUniversity of South AustraliaAdelaideSAAustralia
| | - Simon C Barry
- Department of GastroenterologyWomen’s and Children’s HospitalAdelaideSAAustralia
- Molecular Immunology GroupRobinson Research InstituteSchool of MedicineThe University of AdelaideAdelaideSAAustralia
| | - Patrick Toby Coates
- Discipline of MedicineSchool of MedicineThe University of AdelaideAdelaideSAAustralia
- Central Northern Adelaide Renal and Transplantation Service (CNARTS)The Royal Adelaide HospitalAdelaideSAAustralia
| |
Collapse
|
55
|
mTOR-targeted cancer therapy: great target but disappointing clinical outcomes, why? Front Med 2020; 15:221-231. [PMID: 33165737 DOI: 10.1007/s11684-020-0812-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023]
Abstract
The mammalian target of rapamycin (mTOR) critically regulates several essential biological functions, such as cell growth, metabolism, survival, and immune response by forming two important complexes, namely, mTOR complex 1 (mTORC1) and complex 2 (mTORC2). mTOR signaling is often dysregulated in cancers and has been considered an attractive cancer therapeutic target. Great efforts have been made to develop efficacious mTOR inhibitors, particularly mTOR kinase inhibitors, which suppress mTORC1 and mTORC2; however, major success has not been achieved. With the strong scientific rationale, the intriguing question is why cancers are insensitive or not responsive to mTOR-targeted cancer therapy in clinics. Beyond early findings on induced activation of PI3K/Akt, MEK/ERK, and Mnk/eIF4E survival signaling pathways that compromise the efficacy of rapalog-based cancer therapy, recent findings on the essential role of GSK3 in mediating cancer cell response to mTOR inhibitors and mTORC1 inhibition-induced upregulation of PD-L1 in cancer cells may provide some explanations. These new findings may also offer us the opportunity to rationally utilize mTOR inhibitors in cancer therapy. Further elucidation of the biology of complicated mTOR networks may bring us the hope to develop effective therapeutic strategies with mTOR inhibitors against cancer.
Collapse
|
56
|
Ashrafizadeh M, Najafi M, Mohammadinejad R, Farkhondeh T, Samarghandian S. Berberine Administration in Treatment of Colitis: A Review. Curr Drug Targets 2020; 21:1385-1393. [PMID: 32564751 DOI: 10.2174/1389450121666200621193758] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/31/2020] [Accepted: 04/23/2020] [Indexed: 12/14/2022]
Abstract
Berberine (Brb) is one of the well-known naturally occurring compounds exclusively found in Berberis vulgaris and other members of this family, such as Berberis aristata, Berberis aroatica, and Berberis aquifolium. This plant-derived natural compound has a variety of therapeutic impacts, including anti-oxidant, anti-inflammatory, anti-diabetic, and anti-tumor. Multiple studies have demonstrated that Brb has great anti-inflammatory activity and is capable of reducing the levels of proinflammatory cytokines, while it enhances the concentrations of anti-inflammatory cytokines, making it suitable for the treatment of inflammatory disorders. Colitis is an inflammatory bowel disease with chronic nature. Several factors are involved in the development of colitis and it appears that inflammation and oxidative stress are the most important ones. With respect to the anti-inflammatory and antioxidant effects of Brb, its administration seems to be beneficial in the treatment of colitis. In the present review, the protective effects of Brb in colitis treatment and its impact on molecular pathways are discussed.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences,
Kerman, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran,Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
57
|
Qiu R, Zhou L, Ma Y, Zhou L, Liang T, Shi L, Long J, Yuan D. Regulatory T Cell Plasticity and Stability and Autoimmune Diseases. Clin Rev Allergy Immunol 2020; 58:52-70. [PMID: 30449014 DOI: 10.1007/s12016-018-8721-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
CD4+CD25+ regulatory T cells (Tregs) are a class of CD4+ T cells with immunosuppressive functions that play a critical role in maintaining immune homeostasis. However, in certain disease settings, Tregs demonstrate plastic differentiation, and the stability of these Tregs, which is characterized by the stable expression or protective epigenetic modifications of the transcription factor Foxp3, becomes abnormal. Plastic Tregs have some features of helper T (Th) cells, such as the secretion of Th-related cytokines and the expression of specific transcription factors in Th cells, but also still retain the expression of Foxp3, a feature of Tregs. Although such Th-like Tregs can secrete pro-inflammatory cytokines, they still possess a strong ability to inhibit specific Th cell responses. Therefore, the plastic differentiation of Tregs not only increases the complexity of the immune circumstances under pathological conditions, especially autoimmune diseases, but also shows an association with changes in the stability of Tregs. The plastic differentiation and stability change of Tregs play vital roles in the progression of diseases. This review focuses on the phenotypic characteristics, functions, and formation conditions of several plastic Tregs and also summarizes the changes of Treg stability and their effects on inhibitory function. Additionally, the effects of Treg plasticity and stability on disease prognosis for several autoimmune diseases were also investigated in order to better understand the relationship between Tregs and autoimmune diseases.
Collapse
Affiliation(s)
- Runze Qiu
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Liyu Zhou
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Yuanjing Ma
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Lingling Zhou
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Tao Liang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Le Shi
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China
| | - Jun Long
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China.
| | - Dongping Yuan
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
58
|
DeOca KB, Moorman CD, Garcia BL, Mannie MD. Low-Zone IL-2 Signaling: Fusion Proteins Containing Linked CD25 and IL-2 Domains Sustain Tolerogenic Vaccination in vivo and Promote Dominance of FOXP3 + Tregs in vitro. Front Immunol 2020; 11:541619. [PMID: 33072087 PMCID: PMC7538601 DOI: 10.3389/fimmu.2020.541619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022] Open
Abstract
Low-zone IL-2 signaling is key to understanding how CD4+ CD25high FOXP3+ regulatory T cells (Tregs) exhibit dominance and overgrow conventional effector T cells (Tcons) that typically express lower levels of the IL-2 receptor alpha chain (i.e., CD25). Thus, modalities such as low-dose IL-2 or IL-2/anti-IL-2 antibody complexes have been advanced in the clinic to selectively expand Treg populations as a treatment for chronic inflammatory autoimmune diseases. However, more effective reagents that efficiently lock IL-2 signaling into a low signaling mode are needed to validate and exploit the low-zone IL-2 signaling niche of Tregs. This study focuses on CD25-IL2 and IL2-CD25 fusion proteins (FPs) that were approximately 32 and 320-fold less potent than IL-2. These FPs exhibited transient binding to transmembrane CD25 on human embryonic kidney (HEK) cells, had partially occluded IL-2 binding sites, and formed higher order multimeric conformers that limited the availability of bioactive IL-2. These FPs exhibited broad bell-shaped concentration ranges that favored dominant Treg outgrowth during continuous culture and were used to derive essentially pure long-term Treg monocultures (∼98% Treg purity). FP-induced Tregs had canonical Treg suppressive activity in that these Tregs suppressed antigen-specific proliferative responses of naïve CD4+ T cells. The in vivo administration of CD25-IL2/Alum elicited robust increases in circulating Tregs and selectively augmented CD25 expression on Tregs but not on Tcons. A single injection of a Myelin Oligodendrocyte Glycoprotein (MOG35-55)-specific tolerogenic vaccine elicited high levels of circulating MOG-specific Tregs in vivo that waned after 2–3 weeks, whereas boosting with CD25-IL2/Alum maintained MOG-specific CD25high Tregs throughout the 30-day observation period. However, these FPs did not antagonize free monomeric IL-2 and lacked therapeutic efficacy in experimental autoimmune encephalomyelitis (EAE). In conclusion, these data reveal that CD25-IL2 FPs can be used to select essentially pure long-term lines of FOXP3+ CD25high Tregs. This study also shows that CD25-IL2 FPs can be administered in vivo in synergy with tolerogenic vaccination to maintain high circulating levels of antigen-specific Tregs. Because tolerogenic vaccination and Treg-based adoptive immunotherapy are limited by gradual waning of Tregs, these FPs have potential utility in sustaining tolerogenic Treg responses in vivo.
Collapse
Affiliation(s)
- Kayla B DeOca
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Cody D Moorman
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Brandon L Garcia
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Mark D Mannie
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| |
Collapse
|
59
|
Ethyl Pyruvate Promotes Proliferation of Regulatory T Cells by Increasing Glycolysis. Molecules 2020; 25:molecules25184112. [PMID: 32916780 PMCID: PMC7571066 DOI: 10.3390/molecules25184112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/21/2020] [Accepted: 08/27/2020] [Indexed: 12/02/2022] Open
Abstract
Ethyl pyruvate (EP), a stable form of pyruvate, has shown beneficial effects in animal models of shock, ischemia/reperfusion injury, and sepsis due to its potent anti-oxidant and anti-inflammatory properties. Our recent study demonstrated that EP application prevented the clinical manifestation of type 1 diabetes in mice by augmenting regulatory T cell (Treg) number and function. Our present study shows that EP increases Treg proliferation and suppressive function (perforin and IL-10 expression) during in vitro differentiation from conventional CD4+CD25− T cells. Enhanced expansion of Treg after EP treatment correlated with increased ATP levels and relied on increased glycolysis. Inhibition of oxidative phosphorylation did not attenuate EP stimulatory effects, suggesting that this metabolic pathway was not mandatory for EP-driven Treg proliferation. Moreover, EP lowered the expression of carnitine palmitoyltransferase I, an enzyme involved in fatty acid oxidation. Further, the stimulatory effect of EP on Treg proliferation was not mediated through inhibition of the mTOR signaling pathway. When given in vivo either intraperitoneally or orally to healthy C57BL/6 mice, EP increased the number of Treg within the peritoneal cavity or gut-associated lymphoid tissue, respectively. In conclusion, EP promotes in vitro Treg proliferation through increased glycolysis and enhances Treg proliferation when administered in vivo.
Collapse
|
60
|
Matsubara Y, Kiwan G, Fereydooni A, Langford J, Dardik A. Distinct subsets of T cells and macrophages impact venous remodeling during arteriovenous fistula maturation. JVS Vasc Sci 2020; 1:207-218. [PMID: 33748787 PMCID: PMC7971420 DOI: 10.1016/j.jvssci.2020.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Patients with end-stage renal failure depend on hemodialysis indefinitely without renal transplantation, requiring a long-term patent vascular access. While the arteriovenous fistula (AVF) remains the preferred vascular access for hemodialysis because of its longer patency and fewer complications compared with other vascular accesses, the primary patency of AVF is only 50-60%, presenting a clinical need for improvement. AVF mature by developing a thickened vascular wall and increased diameter to adapt to arterial blood pressure and flow volume. Inflammation plays a critical role during vascular remodeling and fistula maturation; increased shear stress triggers infiltration of T-cells and macrophages that initiate inflammation, with involvement of several different subsets of T-cells and macrophages. We review the literature describing distinct roles of the various subsets of T-cells and macrophages during vascular remodeling. Immunosuppression with sirolimus or prednisolone reduces neointimal hyperplasia during AVF maturation, suggesting novel approaches to enhance vascular remodeling. However, M2 macrophages and CD4+ T-cells play essential roles during AVF maturation, suggesting that total immunosuppression may suppress adaptive vascular remodeling. Therefore it is likely that regulation of inflammation during fistula maturation will require a balanced approach to coordinate the various inflammatory cell subsets. Advances in immunosuppressive drug development and delivery systems may allow for more targeted regulation of inflammation to improve vascular remodeling and enhance AVF maturation.
Collapse
Affiliation(s)
- Yutaka Matsubara
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT.,Department of Surgery and Sciences, Kyushu University, Fukuoka, Japan
| | - Gathe Kiwan
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT
| | - Arash Fereydooni
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT
| | - John Langford
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT
| | - Alan Dardik
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT.,Division of Vascular and Endovascular Surgery, Department of Surgery, Yale School of Medicine, New Haven, CT.,Department of Surgery, VA Connecticut Healthcare Systems, West Haven, CT
| |
Collapse
|
61
|
Oftedal BE, Wolff ASB. New era of therapy for endocrine autoimmune disorders. Scand J Immunol 2020; 92:e12961. [PMID: 32853446 DOI: 10.1111/sji.12961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/10/2020] [Accepted: 08/19/2020] [Indexed: 12/24/2022]
Abstract
The new era of immune and reconstitution therapy of autoimmune disorders is ongoing. However, endocrine autoimmune diseases comprise a group of elaborating pathologies where the development of new treatment strategies remains slow. Substitution of the missing hormones is still standard practice, taking care of the devastating symptoms but not the cause of disease. As our knowledge of the genetic contribution to the aetiology of endocrine disorders increases and early diagnostic tools are available, it is now possible to identify persons at risk before they acquire full-blown disease. This review summarizes current knowledge and treatment of endocrine autoimmune disorders, focusing on type 1 diabetes, Addison's disease, autoimmune thyroid diseases and primary ovarian insufficiency. We explore which new therapies might be used in the different stages of the disease, focus on legalized therapy and elaborate on the ongoing clinical studies for these diseases and the research front, before hypothesizing on the way ahead.
Collapse
Affiliation(s)
- Bergithe E Oftedal
- Department of Clinical Science, University of Bergen, Bergen, Norway.,KG Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway
| | - Anette S B Wolff
- Department of Clinical Science, University of Bergen, Bergen, Norway.,KG Jebsen Center for Autoimmune Disorders, University of Bergen, Bergen, Norway.,Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
62
|
Sun SY. Searching for the real function of mTOR signaling in the regulation of PD-L1 expression. Transl Oncol 2020; 13:100847. [PMID: 32854033 PMCID: PMC7451686 DOI: 10.1016/j.tranon.2020.100847] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/17/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023] Open
Abstract
The mammalian target of rapamycin (mTOR), via forming two important complexes: mTOR complex 1 (mTORC1) and complex 2 (mTORC2), plays an important role in the regulation of immunity in addition to exerting many other biological funcions. Beyond its regulatory effects on immune cells, the mTOR axis also regulates the expression of programmed death-ligand 1 (PD-L1) in cancer cells; accordingly, inhibition of mTOR alters PD-L1 levels in different cancer cell types. However, the currently published studies on mTOR inhibition-induced PD-L1 alteration have generated conflicting results. This review will focus on summarizing current findings in this regard and discussing possible reasons for the discrepancies and their potential implications for PD-L1 modulation in cancer therapy.
Collapse
Affiliation(s)
- Shi-Yong Sun
- Department of Hematology and Medical Oncology, Emory University of School of Medicine, Winship Cancer Institute of Emory University, Atlanta, GA, United States of America.
| |
Collapse
|
63
|
Kim D, Nguyen QT, Lee J, Lee SH, Janocha A, Kim S, Le HT, Dvorina N, Weiss K, Cameron MJ, Asosingh K, Erzurum SC, Baldwin WM, Lee JS, Min B. Anti-inflammatory Roles of Glucocorticoids Are Mediated by Foxp3 + Regulatory T Cells via a miR-342-Dependent Mechanism. Immunity 2020; 53:581-596.e5. [PMID: 32707034 DOI: 10.1016/j.immuni.2020.07.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 05/15/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023]
Abstract
Glucocorticoids (GC) are the mainstay treatment option for inflammatory conditions. Despite the broad usage of GC, the mechanisms by which GC exerts its effects remain elusive. Here, utilizing murine autoimmune and allergic inflammation models, we report that Foxp3+ regulatory T (Treg) cells are irreplaceable GC target cells in vivo. Dexamethasone (Dex) administered in the absence of Treg cells completely lost its ability to control inflammation, and the lack of glucocorticoid receptor in Treg cells alone resulted in the loss of therapeutic ability of Dex. Mechanistically, Dex induced miR-342-3p specifically in Treg cells and miR-342-3p directly targeted the mTORC2 component, Rictor. Altering miRNA-342-3p or Rictor expression in Treg cells dysregulated metabolic programming in Treg cells, controlling their regulatory functions in vivo. Our results uncover a previously unknown contribution of Treg cells during glucocorticoid-mediated treatment of inflammation and the underlying mechanisms operated via the Dex-miR-342-Rictor axis.
Collapse
Affiliation(s)
- Dongkyun Kim
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Quang Tam Nguyen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Juyeun Lee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Sung Hwan Lee
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77230
| | - Allison Janocha
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Sohee Kim
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Hongnga T Le
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Nina Dvorina
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Kelly Weiss
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Mark J Cameron
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44106
| | - Kewal Asosingh
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Serpil C Erzurum
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - William M Baldwin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Ju-Seog Lee
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77230
| | - Booki Min
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195.
| |
Collapse
|
64
|
Putilin DA, Evchenko SY, Fedoniuk LY, Tokarskyy OS, Kamyshny OM, Migenko LM, Andreychyn SM, Hanberher II, Bezruk TO. The Influence of Metformin to the Transcriptional Activity of the mTOR and FOX3 Genes in Parapancreatic Adipose Tissue of Streptozotocin-Induced Diabetic Rats. J Med Life 2020; 13:50-55. [PMID: 32341701 PMCID: PMC7175427 DOI: 10.25122/jml-2020-0029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The mammalian target of rapamycin is not only a central regulator of lipid metabolism that controls the processes of adipogenesis and lipolysis but also a regulator of the immunometabolism of immune cells that infiltrate adipose tissue. In turn, the level of progression of diabetes is significantly influenced by the Treg subpopulation, the complexity and heterogeneity of which is confirmed by the detection of numerous tissue-specific Tregs, including the so-called VAT Tregs (visceral adipose tissue CD4+Foxp3+ regulatory T cells). Therefore, the purpose of the study was to determine the mRNA expression levels of mTOR, Foxp3, IL1β, and IL17A genes in rat parapancreatic adipose tissue with experimental streptozotocin-induced diabetes mellitus, with or without metformin administration. The experiments were performed on male Wistar rats with induced diabetes as a result of streptozotocin administration. Molecular genetic studies were performed using real-time reverse transcription-polymerase chain reaction. The development of diabetes caused transcriptional activation of the mammalian target of rapamycin protein kinase gene, as well as increased mRNA expression of the pro-inflammatory cytokines IL1β and IL17A, but did not affect Foxp3 mRNA expression. The intervention with metformin in diabetic rats inhibited the mammalian target of rapamycin mRNA expression and caused an increase in the transcriptional activity of the Foxp3 gene in parapancreatic adipose tissue.
Collapse
Affiliation(s)
| | - Sergey Yuryevich Evchenko
- Department of Microbiology, Virology and Immunology, Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
| | | | | | - Oleksandr Mikhailovich Kamyshny
- Department of Microbiology, Virology and Immunology, Molecular Genetics Laboratory, Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
| | | | - Serhiy Mikhailovich Andreychyn
- Department of Propedeutics of Internal Medicine and Phthisiology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Iryna Ihorivna Hanberher
- Department of Propedeutics of Internal Medicine and Phthisiology, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Tetyana Oleksandrivna Bezruk
- Department of Internal Medicine and Infectious Diseases, Bukovinian State Medical University, Chernivtsi, Ukraine
| |
Collapse
|
65
|
Xu H, Steinberger Z, Wang L, Han R, Zhang Y, Hancock WW, Levin LS. Limited efficacy of rapamycin monotherapy in vascularized composite allotransplantation. Transpl Immunol 2020; 61:101308. [PMID: 32535143 DOI: 10.1016/j.trim.2020.101308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Vascularized composite allotransplantation (VCA) is a novel and life-enhancing procedure to restore a patient's function and/or appearance. Current immunosuppression in VCA recipients is based on calcineurin inhibitor (CNI) therapy that can lead to severe complications, such that inducing immune tolerance is a major goal of VCA research. In contrast to CNI, rapamycin (RPM) is thought to be beneficial to the development of immune tolerance by suppressing T-effector cells (Teffs) and expanding T-regulatory (Treg) cells. However, we found high dose RPM monotherapy prolonged VCA survival by only a few days, leading us to explore the mechanisms responsible. METHODS A mouse orthotopic forelimb transplantation model (BALB/c- > C57BL/6) was established using WT mice, as well as C57BL/6 recipients with conditional deletion of T-bet within their Treg cells. Events in untreated VCA recipients or those receiving RPM or FK506 therapy were analyzed by flow-cytometry, histopathology and real-time qPCR. RESULTS Therapy with RPM (2 mg/kg/d, p < .005) or FK506 (2 mg/kg/d, p < .005) each prolonged VCA survival. In contrast to FK506, RPM increased the ratio of splenic Treg to Teff cells (p < .05) by suppressing Teff and expanding Treg cells. While the proportion of activated splenic CD4 + Foxp3- T cells expressing IFN-γ were similar in control and RPM-treated groups, RPM decreased the proportions ICOS+ and CD8+ IFN-γ + splenic T cells. However, RPM also downregulated CXCR3+ expression by Tregs, and forelimb allografts had reduced infiltration by CXCR3+ Treg cells. In addition, allograft recipients whose Tregs lacked T-bet underwent accelerated rejection compared to WT mice despite RPM therapy. CONCLUSIONS We demonstrate that while RPM increased the ratio of Treg to Teff cells and suppressed CD8+ T cell allo-activation, it failed to prevent CD4 Teff cell activation and impaired CXCR3-dependent Treg graft homing, thereby limiting the efficacy of RPM in VCA recipients.
Collapse
Affiliation(s)
- Heng Xu
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Orthopaedic Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, United States of America
| | - Zvi Steinberger
- Department of Orthopaedic Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, United States of America
| | - Liqing Wang
- Department of Pathology and Laboratory Medicine, Division of Transplant Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Rongxiang Han
- Department of Pathology and Laboratory Medicine, Division of Transplant Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Yixin Zhang
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wayne W Hancock
- Department of Pathology and Laboratory Medicine, Division of Transplant Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, United States of America; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States of America.
| | - L Scott Levin
- Department of Orthopaedic Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, United States of America; Department of Surgery, Division of Plastic Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, United States of America.
| |
Collapse
|
66
|
Stathopoulou C, Nikoleri D, Bertsias G. Immunometabolism: an overview and therapeutic prospects in autoimmune diseases. Immunotherapy 2020; 11:813-829. [PMID: 31120393 DOI: 10.2217/imt-2019-0002] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Metabolism is a critical immune regulator under physiologic and pathologic conditions. Culminating evidence has disentangled the contribution of distinct metabolic pathways, namely glucolysis, pentose phosphate, fatty acid oxidation, glutaminolysis, Krebs cycle and oxidative phosphorylation, in modulating innate and adaptive immune cells based on their activation/differentiation state. Metabolic aberrations and changes in the intracellular levels of specific metabolites are linked to the inflammatory phenotype of immune cells implicated in autoimmune disorders such as systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis and diabetes. Notably, targeting metabolism such as the mTOR by rapamycin, hexokinase by 2-deoxy-D-glucose, AMP-activated protein kinase by metformin, may be used to ameliorate autoimmune inflammation. Accordingly, research in immunometabolism is expected to offer novel opportunities for monitoring and treating immune-mediated diseases.
Collapse
Affiliation(s)
- Chrysoula Stathopoulou
- Department of Rheumatology, Clinical Immunology & Allergy, University Hospital of Heraklion, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece.,Laboratory of Rheumatology, Autoimmunity & Inflammation, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, N. Plastira 100, 70013 Heraklion, Greece
| | - Dimitra Nikoleri
- Department of Rheumatology, Clinical Immunology & Allergy, University Hospital of Heraklion, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece.,Laboratory of Rheumatology, Autoimmunity & Inflammation, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, N. Plastira 100, 70013 Heraklion, Greece
| | - George Bertsias
- Department of Rheumatology, Clinical Immunology & Allergy, University Hospital of Heraklion, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece.,Laboratory of Rheumatology, Autoimmunity & Inflammation, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, N. Plastira 100, 70013 Heraklion, Greece
| |
Collapse
|
67
|
Tanaka M, Bohár Z, Vécsei L. Are Kynurenines Accomplices or Principal Villains in Dementia? Maintenance of Kynurenine Metabolism. Molecules 2020; 25:molecules25030564. [PMID: 32012948 PMCID: PMC7036975 DOI: 10.3390/molecules25030564] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/24/2020] [Accepted: 01/25/2020] [Indexed: 12/16/2022] Open
Abstract
Worldwide, 50 million people suffer from dementia, a group of symptoms affecting cognitive and social functions, progressing severely enough to interfere with daily life. Alzheimer’s disease (AD) accounts for most of the dementia cases. Pathological and clinical findings have led to proposing several hypotheses of AD pathogenesis, finding a presence of positive feedback loops and additionally observing the disturbance of a branch of tryptophan metabolism, the kynurenine (KYN) pathway. Either causative or resultant of dementia, elevated levels of neurotoxic KYN metabolites are observed, potentially upregulating multiple feedback loops of AD pathogenesis. Memantine is an N-methyl-D-aspartate glutamatergic receptor (NMDAR) antagonist, which belongs to one of only two classes of medications approved for clinical use, but other NMDAR modulators have been explored so far in vain. An endogenous KYN pathway metabolite, kynurenic acid (KYNA), likewise inhibits the excitotoxic NMDAR. Besides its anti-excitotoxicity, KYNA is a multitarget compound that triggers anti-inflammatory and antioxidant activities. Modifying the KYNA level is a potential multitarget strategy to normalize the disturbed KYN pathway and thus to alleviate juxtaposing AD pathogeneses. In this review, the maintenance of KYN metabolism by modifying the level of KYNA is proposed and discussed in search for a novel lead compound against the progression of dementia.
Collapse
Affiliation(s)
- Masaru Tanaka
- MTA-SZTE, Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary
- Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Zsuzsanna Bohár
- MTA-SZTE, Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary
- Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - László Vécsei
- MTA-SZTE, Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary
- Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Correspondence: ; Tel.: +36-62-545-351
| |
Collapse
|
68
|
Klemm P, Rajendiran A, Fragoulis A, Wruck C, Schippers A, Wagner N, Bopp T, Tenbrock K, Ohl K. Nrf2 expression driven by Foxp3 specific deletion of Keap1 results in loss of immune tolerance in mice. Eur J Immunol 2020; 50:515-524. [PMID: 31840803 DOI: 10.1002/eji.201948285] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/26/2019] [Accepted: 12/13/2019] [Indexed: 12/23/2022]
Abstract
The transcription factor Nrf2 regulates oxidative stress responses. However, the specific function of Nrf2 in Tregs, the central regulators of immune homeostasis, is unclear. Here, we report an unexpected but important role of Nrf2 in Tregs. Nrf2 expression driven by Foxp3 specific deletion of Keap1 resulted in an autoinflammatory phenotype with enhanced effector T cell activation and immune cell infiltrates in the lung. While early postnatal death of mice with Foxp3 specific deletion of Keap1 was most probably due to ectopic Foxp3cre expression and subsequent Keap1 deletion in epithelial cells, bone marrow chimeras suggest that Nrf2 activation intrinsically in Tregs contributes to a loss of Treg cells and diminished peripheral tolerance. Moreover, Nrf2 activation was associated with a loss of Foxp3 expression, but an enhanced glucose uptake and mTOR activity in Tregs, thus mimicking a metabolic phenotype that is associated with impaired lineage stability and cell functioning.
Collapse
Affiliation(s)
- Patricia Klemm
- Department of Pediatrics, Medical Faculty, RWTH Aachen, Aachen, Germany
| | | | - Athanassios Fragoulis
- Department of Anatomy and Cell Biology, Medical Faculty, RWTH Aachen, Aachen, Germany
| | - Christoph Wruck
- Department of Anatomy and Cell Biology, Medical Faculty, RWTH Aachen, Aachen, Germany
| | - Angela Schippers
- Department of Pediatrics, Medical Faculty, RWTH Aachen, Aachen, Germany
| | - Norbert Wagner
- Department of Pediatrics, Medical Faculty, RWTH Aachen, Aachen, Germany
| | - Tobias Bopp
- Institute of Immunology, University Medical Center, The Johannes Gutenberg University Mainz, Mainz, Germany
| | - Klaus Tenbrock
- Department of Pediatrics, Medical Faculty, RWTH Aachen, Aachen, Germany
| | - Kim Ohl
- Department of Pediatrics, Medical Faculty, RWTH Aachen, Aachen, Germany
| |
Collapse
|
69
|
Lowe MM, Boothby I, Clancy S, Ahn RS, Liao W, Nguyen DN, Schumann K, Marson A, Mahuron KM, Kingsbury GA, Liu Z, Munoz Sandoval P, Rodriguez RS, Pauli ML, Taravati K, Arron ST, Neuhaus IM, Harris HW, Kim EA, Shin US, Krummel MF, Daud A, Scharschmidt TC, Rosenblum MD. Regulatory T cells use arginase 2 to enhance their metabolic fitness in tissues. JCI Insight 2019; 4:129756. [PMID: 31852848 DOI: 10.1172/jci.insight.129756] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 11/13/2019] [Indexed: 12/31/2022] Open
Abstract
Distinct subsets of Tregs reside in nonlymphoid tissues where they mediate unique functions. To interrogate the biology of tissue Tregs in human health and disease, we phenotypically and functionally compared healthy skin Tregs with those in peripheral blood, inflamed psoriatic skin, and metastatic melanoma. The mitochondrial enzyme, arginase 2 (ARG2), was preferentially expressed in Tregs in healthy skin, increased in Tregs in metastatic melanoma, and reduced in Tregs from psoriatic skin. ARG2 enhanced Treg suppressive capacity in vitro and conferred a selective advantage for accumulation in inflamed tissues in vivo. CRISPR-mediated deletion of this gene in primary human Tregs was sufficient to skew away from a tissue Treg transcriptional signature. Notably, the inhibition of ARG2 increased mTOR signaling, whereas the overexpression of this enzyme suppressed it. Taken together, our results suggest that Tregs express ARG2 in human tissues to both regulate inflammation and enhance their metabolic fitness.
Collapse
Affiliation(s)
| | - Ian Boothby
- Department of Dermatology.,Medical Scientist Training Program
| | | | | | | | | | | | | | | | | | - Zheng Liu
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | | | | | | | | | | | | | | | - Esther A Kim
- Department of Surgery, UCSF, San Francisco, California, USA
| | - Uk Sok Shin
- Department of Surgery, UCSF, San Francisco, California, USA
| | | | | | | | | |
Collapse
|
70
|
Munawara U, Perveen K, Small AG, Putty T, Quach A, Gorgani NN, Hii CS, Abbott CA, Ferrante A. Human Dendritic Cells Express the Complement Receptor Immunoglobulin Which Regulates T Cell Responses. Front Immunol 2019; 10:2892. [PMID: 31921153 PMCID: PMC6914870 DOI: 10.3389/fimmu.2019.02892] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 11/25/2019] [Indexed: 01/09/2023] Open
Abstract
The B7 family-related protein V-set and Ig containing 4 (VSIG4), also known as Z39Ig and Complement Immunoglobulin Receptor (CRIg), is the most recent of the complement receptors to be identified, with substantially distinct properties from the classical complement receptors. The receptor displays both phagocytosis-promoting and anti-inflammatory properties. The receptor has been reported to be exclusively expressed in macrophages. We now present evidence, that CRIg is also expressed in human monocyte-derived dendritic cells (MDDC), including on the cell surface, implicating its role in adaptive immunity. Three CRIg transcripts were detected and by Western blotting analysis both the known Long (L) and Short (S) forms were prominent but we also identified another form running between these two. Cytokines regulated the expression of CRIg on dendritic cells, leading to its up- or down regulation. Furthermore, the steroid dexamethasone markedly upregulated CRIg expression, and in co-culture experiments, the dexamethasone conditioned dendritic cells caused significant inhibition of the phytohemagglutinin-induced and alloantigen-induced T cell proliferation responses. In the alloantigen-induced response the production of IFNγ, TNF-α, IL-13, IL-4, and TGF-β1, were also significantly reduced in cultures with dexamethasone-treated DCs. Under these conditions dexamethasone conditioned DCs did not increase the percentage of regulatory T cells (Treg). Interestingly, this suppression could be overcome by the addition of an anti-CRIg monoclonal antibody to the cultures. Thus, CRIg expression may be a control point in dendritic cell function through which drugs and inflammatory mediators may exert their tolerogenic- or immunogenic-promoting effects on dendritic cells.
Collapse
Affiliation(s)
- Usma Munawara
- Department of Immunopathology, SA Pathology at the Women's and Children's Hospital, North Adelaide, SA, Australia.,College of Science and Engineering, Flinders University, Bedford Park, SA, Australia.,School of Medicine, School of Biological Sciences and The Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Khalida Perveen
- Department of Immunopathology, SA Pathology at the Women's and Children's Hospital, North Adelaide, SA, Australia.,School of Medicine, School of Biological Sciences and The Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Annabelle G Small
- Department of Immunopathology, SA Pathology at the Women's and Children's Hospital, North Adelaide, SA, Australia.,School of Medicine, School of Biological Sciences and The Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Trishni Putty
- Department of Immunopathology, SA Pathology at the Women's and Children's Hospital, North Adelaide, SA, Australia.,School of Medicine, School of Biological Sciences and The Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Alex Quach
- Department of Immunopathology, SA Pathology at the Women's and Children's Hospital, North Adelaide, SA, Australia.,School of Medicine, School of Biological Sciences and The Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Nick N Gorgani
- Department of Immunopathology, SA Pathology at the Women's and Children's Hospital, North Adelaide, SA, Australia.,School of Medicine, School of Biological Sciences and The Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Charles S Hii
- Department of Immunopathology, SA Pathology at the Women's and Children's Hospital, North Adelaide, SA, Australia.,School of Medicine, School of Biological Sciences and The Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Catherine A Abbott
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - Antonio Ferrante
- Department of Immunopathology, SA Pathology at the Women's and Children's Hospital, North Adelaide, SA, Australia.,School of Medicine, School of Biological Sciences and The Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
71
|
Sasidharan Nair V, Toor SM, Taouk G, Pfister G, Ouararhni K, Alajez NM, Elkord E. Pembrolizumab Interferes with the Differentiation of Human FOXP3+–Induced T Regulatory Cells, but Not with FOXP3 Stability, through Activation of mTOR. THE JOURNAL OF IMMUNOLOGY 2019; 204:199-211. [DOI: 10.4049/jimmunol.1900575] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/27/2019] [Indexed: 12/16/2022]
|
72
|
Mitsuiki N, Schwab C, Grimbacher B. What did we learn from CTLA-4 insufficiency on the human immune system? Immunol Rev 2019; 287:33-49. [PMID: 30565239 DOI: 10.1111/imr.12721] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 09/16/2018] [Indexed: 02/07/2023]
Abstract
Cytotoxic-T-lymphocyte-antigen-4 (CTLA-4) is a negative immune regulator constitutively expressed on regulatory T (Treg) cells and upregulated on activated T cells. CTLA-4 inhibits T cell activation by various suppressive functions including competition with CD28, regulation of the inhibitory function of Treg cells, such as transendocytosis, and the control of adhesion and motility. Intrinsic CTLA-4 signaling has been controversially discussed, but so far no distinct signaling pathway has been identified. The CTLA-4-mediated Treg suppression plays an important role in the maintenance of peripheral tolerance and the prevention of autoimmune diseases. Human CTLA-4 insufficiency is caused by heterozygous germline mutations in CTLA4 and characterized by a complex immune dysregulation syndrome. Clinical studies on CTLA4 mutation carriers showed a reduced penetrance and variable expressivity, suggesting modifying factor(s). One hundred and forty-eight CTLA4 mutation carriers have been reported; patients showed hypogammaglobulinemia, recurrent infectious diseases, various autoimmune diseases, and lymphocytic infiltration into multiple organs. The CTLA-4 expression level in Treg cells was reduced, while the frequency of Treg cells was increased in CTLA-4-insufficient patients. The transendocytosis assay is a specific functional test for the assessment of newly identified CTLA4 gene variants. Immunoglobulin substitution, corticosteroids, immunosuppressive therapy, and targeted therapy such as with CTLA-4 fusion proteins and mechanistic target of rapamycin (mTOR) inhibitors were applied; patients with life-threatening, treatment-resistant symptoms underwent hematopoietic stem cell transplantation. The fact that in humans CTLA-4 insufficiency causes severe disease taught us that the amount of CTLA-4 molecules present in/on T cells matters for immune homeostasis. However, whether the pathology-causing activated T lymphocytes in CTLA-4-insufficient patients are antigen-specific is an unsolved question. CTLA-4, in addition, has a role in autoimmune diseases and cancer. Anti-CTLA-4 drugs are employed as checkpoint inhibitors to target various forms of cancer. Thus, clinical research on human CTLA-4 insufficiency might provide us a deeper understanding of the mechanism(s) of the CTLA-4 molecule and immune dysregulation disorders.
Collapse
Affiliation(s)
- Noriko Mitsuiki
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Charlotte Schwab
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
73
|
Targeting the mTOR pathway uncouples the efficacy and toxicity of PD-1 blockade in renal transplantation. Nat Commun 2019; 10:4712. [PMID: 31624262 PMCID: PMC6797722 DOI: 10.1038/s41467-019-12628-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023] Open
Abstract
Immune checkpoint inhibitor (ICI) use remains a challenge in patients with solid organ allografts as most would undergo rejection. In a melanoma patient in whom programmed-death 1 (PD-1) blockade resulted in organ rejection and colitis, the addition of the mTOR inhibitor sirolimus resulted in ongoing anti-tumor efficacy while promoting allograft tolerance. Strong granzyme B+, interferon (IFN)-γ+ CD8+ cytotoxic T cell and circulating regulatory T (Treg) cell responses were noted during allograft rejection, along with significant eosinophilia and elevated serum IL-5 and eotaxin levels. Co-treatment with sirolimus abated cytotoxic T cell numbers and eosinophilia, while elevated Treg cell numbers in the peripheral blood were maintained. Interestingly, numbers of IFN-γ+ CD4+ T cells and serum IFN-γ levels increased with the addition of sirolimus treatment likely promoting ongoing anti-PD-1 efficacy. Thus, our results indicate that sirolimus has the potential to uncouple anti-PD-1 therapy toxicity and efficacy. The use of immune checkpoint inhibitors (ICI) in cancer patients with solid organ allografts is hampered due to potential organ rejection. Here, the authors present a case report of a patient with kidney allograft and show that treatment with the mTOR inhibitor sirolimus preserves peripheral tolerance and anti-tumour efficacy of ICI therapy.
Collapse
|
74
|
Liu C, Liu H, Lu C, Deng J, Yan Y, Chen H, Wang Y, Liang CL, Wei J, Han L, Dai Z. Kaempferol attenuates imiquimod-induced psoriatic skin inflammation in a mouse model. Clin Exp Immunol 2019; 198:403-415. [PMID: 31407330 DOI: 10.1111/cei.13363] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2019] [Indexed: 12/25/2022] Open
Abstract
Psoriasis is an immune-mediated inflammatory skin disease that mainly affects the skin barrier. Treatment for psoriasis mainly includes conventional immunosuppressive drugs. However, long-term treatment with global immunosuppressive agents may cause a variety of side effects, including nephrotoxicity and infections. Kaempferol, a natural flavonol present in various plants, is known to possess potent anti-inflammatory, anti-oxidant and anti-cancerous properties. However, it is unknown whether kaempferol is also anti-psoriatic. Here we established an imiquimod (IMQ)-induced psoriatic mouse model to explore the potential therapeutic effects of kaempferol on psoriatic skin lesions and inflammation. In this study, we demonstrated that treatment with kaempferol protected mice from developing psoriasis-like skin lesions induced by topical administration of IMQ. Kaempferol reduced CD3+ T cell infiltration and gene expression of major proinflammatory cytokines, including interleukin (IL)-6, IL-17A and tumor necrosis factor (TNF)-α, in the psoriatic skin lesion. It also down-regulated proinflammatory nuclear factor kappa B (NF-κB) signaling in the skin. The therapeutic effects were associated with a significant increase in CD4+ forkhead box protein 3 (FoxP3)+ regulatory T cell (Treg ) frequency in the spleen and lymph nodes as well as FoxP3-positive staining in the skin lesion. Conversely, depletion of CD4+ CD25+ Tregs reversed the therapeutic effects of kaempferol on the skin lesion. Kaempferol also lowered the percentage of IL-17A+ CD4+ T cells in the spleen and lymph nodes of IMQ-induced psoriatic mice. Finally, kaempferol suppressed the proliferation of T cells in vitro and their mTOR signaling. Thus, our findings suggest that kaempferol may be a therapeutic drug for treating human psoriasis in the near future.
Collapse
Affiliation(s)
- C Liu
- Section of Immunology and Joint Immunology Program, the Second Clinical Medical College of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, China
| | - H Liu
- Section of Immunology and Joint Immunology Program, the Second Clinical Medical College of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, China
| | - C Lu
- Section of Immunology and Joint Immunology Program, the Second Clinical Medical College of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, China
| | - J Deng
- Section of Immunology and Joint Immunology Program, the Second Clinical Medical College of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, China
| | - Y Yan
- Section of Immunology and Joint Immunology Program, the Second Clinical Medical College of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, China
| | - H Chen
- Section of Immunology and Joint Immunology Program, the Second Clinical Medical College of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, China
| | - Y Wang
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - C-L Liang
- Section of Immunology and Joint Immunology Program, the Second Clinical Medical College of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, China
| | - J Wei
- Section of Immunology and Joint Immunology Program, the Second Clinical Medical College of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, China
| | - L Han
- Section of Immunology and Joint Immunology Program, the Second Clinical Medical College of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, China
| | - Z Dai
- Section of Immunology and Joint Immunology Program, the Second Clinical Medical College of Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
75
|
Deng L, Qian G, Zhang S, Zheng H, Fan S, Lesinski GB, Owonikoko TK, Ramalingam SS, Sun SY. Inhibition of mTOR complex 1/p70 S6 kinase signaling elevates PD-L1 levels in human cancer cells through enhancing protein stabilization accompanied with enhanced β-TrCP degradation. Oncogene 2019; 38:6270-6282. [DOI: 10.1038/s41388-019-0877-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 06/18/2019] [Accepted: 06/26/2019] [Indexed: 12/13/2022]
|
76
|
Li Q, Qu X, Pang X, Song Y, Chen L, Xiao Q, Sun L, Wang X, Zhang H, Qi D, Wang Z. Berberine Protects Mice Against Dextran Sulfate Sodium-Induced Colitis by Activating mTORC1 Pathway. Front Pharmacol 2019; 10:786. [PMID: 31354497 PMCID: PMC6637288 DOI: 10.3389/fphar.2019.00786] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/17/2019] [Indexed: 01/15/2023] Open
Abstract
Berberine is a plant alkaloid that can be extracted from many Chinese herbs. It has been reported that berberine could protect mice from ulcerative colitis, but the mechanism remains unclear. The current study’s aim was to determine the potential mechanism by which berberine exhibits its anti-inflammatory function. Mice with colitis induced by dextran sulfate sodium (DSS) were administered with berberine at 50 mg/kg by gavage. Berberine significantly increased the proportion of regulatory T cells (Treg cells). The targeted metabolomics analysis was then performed to find that glutamine and glutamate metabolism played an important role in the process of regulating immune response. mTORC1 pathway was reported to closely relate with glutamine metabolism. As a result, the relative expression levels of downstream effector genes of mTORC were further determined, and data obtained showed that berberine could significantly increase the relative expression levels of S6K1 and 4EBP1. In addition, rapamycin was used to inhibit mTORC1 signaling, and it was found that colon length, disease associated index (DAI), and proportion of Treg cells of mice in the rapamycin-DSS group were not different from those of mice in the rapamycin/berberine-DSS group. Together, these results suggest that berberine exhibits significant protective effects against DSS colitis by activating the mTORC1 pathway to increase the proportion of Treg cells.
Collapse
Affiliation(s)
- Qingjun Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China.,Key Laboratory of Basic Research of Traditional Chinese Medicine in Shandong Province, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinyan Qu
- Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xiaogang Pang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yue Song
- Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Liyuan Chen
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qiuyue Xiao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Linlin Sun
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaolong Wang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huimin Zhang
- Shandong Academy of Chinese Medicine, Jinan, China
| | - Dongmei Qi
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China.,Key Laboratory of Basic Research of Traditional Chinese Medicine in Shandong Province, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhenguo Wang
- School of Information Management, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
77
|
Li Z, Nie L, Chen L, Sun Y, Guo L. [Rapamycin alleviates inflammation by up-regulating TGF-β/Smad signaling in a mouse model of autoimmune encephalomyelitis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:35-42. [PMID: 30692064 DOI: 10.12122/j.issn.1673-4254.2019.01.06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To evaluate the efficacy of rapmycin for treatment of experimental autoimmune encephalomyelitis (EAE) in mice and explore the underlying mechanism. METHODS An EAE model was established in C57BL/6 mice. After immunization, the mice were divided into model group and rapamycin groups treated daily with low-dose (0.3 mg/kg) or high-dose (1 mg/kg) rapamycin. The clinical scores of the mice were observed using Knoz score, the infiltration of IL-17 cells in the central nervous system (CNS) was determined using immunohistochemistry; the differentiation of peripheral Treg cells was analyzed using flow cytometry, and the changes in the levels of cytokines were detected with ELISA; the changes in the expressions of p-Smad2 and p- smad3 were investigated using Western blotting. RESULTS High-dose rapamycin significantly improved the neurological deficits scores of EAE mice. In high-dose rapamycin group, the scores in the onset stage, peak stage and remission stage were 0.14±0.38, 0.43±1.13 and 0.14±0.37, respectively, as compared with 1.14±0.69, 2.14±1.06 and 2.2±0.75 in the model group. The infiltration of inflammatory IL-17 cells was significantly lower in high-dose rapamycin group than in the model group (43±1.83 vs 153.5±7.02). High-dose rapamycin obviously inhibited the production of IL-12, IFN-γ, IL-17 and IL-23 and induced the anti-inflammatory cytokines IL-10 and TGF-β. The percentage of Treg in CD4+ T cells was significantly higher in high- dose rapamycin group than in the model group (10.17 ± 0.68 vs 3.52 ± 0.32). In the in vitro experiment, combined treatments of the lymphocytes isolated from the mice with rapamycin and TGF-β induced a significant increase in the number of Treg cells (13.66±1.89) compared with the treatment with rapamycin (6.23±0.80) or TGF-β (4.87±0.85) alone. Rapamycin also obviously up-regulated the expression of p-Smad2 and p-Smad3 in the lymphocytes. CONCLUSIONS Rapamycin can promote the differentiation of Treg cells by up-regulating the expression of p-Smad2 and p-smad3 to improve neurological deficits in mice with EAE.
Collapse
Affiliation(s)
- Zhenfei Li
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Lingling Nie
- Shijiazhuang Circulating Chemical Park Hospital, Shijiazhuang 050000, China
| | - Liping Chen
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Yafei Sun
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Li Guo
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| |
Collapse
|
78
|
Dolcetta D, Dominici R. The local mammalian target of rapamycin (mTOR) modulation: a promising strategy to counteract neurodegeneration. Neural Regen Res 2019; 14:1711-1712. [PMID: 31169184 PMCID: PMC6585559 DOI: 10.4103/1673-5374.257524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
| | - Roberto Dominici
- Clinical Chemistry Laboratory, Magenta Hospital, ASST Ovest Milanese, Milan, Italy
| |
Collapse
|
79
|
Barra F, Evangelisti G, Ferro Desideri L, Di Domenico S, Ferraioli D, Vellone VG, De Cian F, Ferrero S. Investigational PI3K/AKT/mTOR inhibitors in development for endometrial cancer. Expert Opin Investig Drugs 2018; 28:131-142. [DOI: 10.1080/13543784.2018.1558202] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Fabio Barra
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genova, Italy
- Academic Unit of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Giulio Evangelisti
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genova, Italy
- Academic Unit of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Lorenzo Ferro Desideri
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genova, Italy
- Academic Unit of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Stefano Di Domenico
- Department of Surgical and Diagnostic Sciences, IRCCS Ospedale Policlinico San Martino, University of Genova, Italy
| | - Domenico Ferraioli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genova, Italy
- Academic Unit of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Valerio Gaetano Vellone
- Department of Surgical and Diagnostic Sciences, IRCCS Ospedale Policlinico San Martino, University of Genova, Italy
| | - Franco De Cian
- Department of Surgical and Diagnostic Sciences, IRCCS Ospedale Policlinico San Martino, University of Genova, Italy
| | - Simone Ferrero
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genova, Italy
- Academic Unit of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
80
|
Zheng X, Zhang L, Chen J, Gu Y, Xu J, Ouyang Y. Dendritic cells and Th17/Treg ratio play critical roles in pathogenic process of chronic obstructive pulmonary disease. Biomed Pharmacother 2018; 108:1141-1151. [PMID: 30372815 DOI: 10.1016/j.biopha.2018.09.113] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/11/2018] [Accepted: 09/19/2018] [Indexed: 12/22/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common disorder of respiratory system. This study aimed to evaluate changes of mature dendritic cells (DCs) and regulatory T cells (Treg) in lung tissues and peripheral blood of COPD patients. For lung tissue analysis, patients were divided into no-smoking and no-COPD (CS-COPD-), smoking and no-COPD (CS + COPD-) and COPD group. For peripheral blood analysis, patients were divided into CS-COPD-, CS + COPD-, stable COPD (SCOPD) and acute exacerbation of COPD (AECOPD) group. Hematoxylin and eosin (HE) staining was used to evaluate inflammation of lung tissues. Immunohistochemistry assay was employed to examine CD80, CCR6, IL-17 A, FoxP3 in lung tissues. DCs and Treg cells were isolated from lung tissues and peripheral blood. Levels of CD80, FoxP3+ Treg, CCR6 and IL-17 A were detected by using flow cytometry. Results showed that FEV%, FVC% and FEV1/FVC were significantly reduced and Bosken scores were remarkably increased in COPD patients compared to non-COPD patients (p < 0.05). CD80 and FoxP3 levels were lower, and CCR6 and IL-17A levels were higher obviously in COPD compared to non-COPD patients (p < 0.05). COPD patients illustrated reduced mDCs levels and enhanced imDCs levels. COPD patients exhibited remarkably higher Th17 levels compared to no-smoking patients (p < 0.05). COPD patients illustrated obviously lower Treg levels and significantly higher Th17/Treg ratio compared to non-smoking patients (p < 0.05). Th17% (Th17/Treg) negatively and Treg% was positively correlated with FEV1%, FEVC%, FEV1/FEVC (p < 0.05). In conclusion, dendritic cells and Th17/Treg ratio play critical roles for pathogenic process of chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Xiangru Zheng
- Department of Respiratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Lanying Zhang
- Department of Respiratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jie Chen
- Department of Respiratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yanhui Gu
- Department of Respiratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jingqing Xu
- Tongji Medical College of HUST, Wuhan, China
| | - Yao Ouyang
- Department of Respiratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
81
|
Role of mTOR Signaling in Tumor Microenvironment: An Overview. Int J Mol Sci 2018; 19:ijms19082453. [PMID: 30126252 PMCID: PMC6121402 DOI: 10.3390/ijms19082453] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/06/2018] [Accepted: 08/15/2018] [Indexed: 12/31/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) pathway regulates major processes by integrating a variety of exogenous cues, including diverse environmental inputs in the tumor microenvironment (TME). In recent years, it has been well recognized that cancer cells co-exist and co-evolve with their TME, which is often involved in drug resistance. The mTOR pathway modulates the interactions between the stroma and the tumor, thereby affecting both the tumor immunity and angiogenesis. The activation of mTOR signaling is associated with these pro-oncogenic cellular processes, making mTOR a promising target for new combination therapies. This review highlights the role of mTOR signaling in the characterization and the activity of the TME’s elements and their implications in cancer immunotherapy.
Collapse
|
82
|
Melnik BC, John SM, Chen W, Plewig G. T helper 17 cell/regulatory T-cell imbalance in hidradenitis suppurativa/acne inversa: the link to hair follicle dissection, obesity, smoking and autoimmune comorbidities. Br J Dermatol 2018; 179:260-272. [PMID: 29573406 DOI: 10.1111/bjd.16561] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Disintegration of the infundibula of terminal hair follicles (HFs) in intertriginous skin areas exhibits the histological hallmark of hidradenitis suppurativa (HS)/acne inversa, featuring a dissecting terminal hair folliculitis. Elevated serum levels of interleukin (IL)-17 and local increase in the ratio of proinflammatory T helper (Th)17 cells and anti-inflammatory regulatory T cells (Tregs) have been reported. Perifollicular Tregs play a key role in HF stem cell homeostasis and infundibular integrity. OBJECTIVES In this review, we evaluate the Th17/Treg ratio in HS, its aggravating conditions and associated comorbidities. Furthermore, we intended to clarify whether drugs with reported beneficial effects in the treatment of HS readjust the deviated Th17/Treg axis. METHODS PubMed-listed, peer-reviewed original research articles characterizing Th17/Treg regulation in HS/acne inversa and associated comorbidities were selected for this review. RESULTS This review presents HS as a disease that exhibits an increased Th17/Treg ratio. Perifollicular deficiencies in Treg numbers or function may disturb HF stem cell homeostasis, initiating infundibular dissection of terminal HFs and perifollicular inflammation. The Th17/Treg imbalance is aggravated by obesity, smoking and decreased Notch signalling. In addition, HS-associated autoimmune diseases exhibit a disturbed Th17/Treg axis resulting in a Th17-dominant state. All drugs that have beneficial effects in the treatment of HS normalize the Th17/Treg ratio. CONCLUSIONS HS immunopathogenesis is closely related to deviations of the Th17/Treg balance, which may negatively affect Treg-controlled HF stem cell homeostasis and infundibular integrity. Pharmacological intervention should not only attenuate Th17/IL-17 signalling, but should also improve Treg function in order to stabilize HF stem cell homeostasis and infundibular integrity.
Collapse
Affiliation(s)
- B C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Osnabrück, Germany
| | - S M John
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Osnabrück, Germany
| | - W Chen
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
| | - G Plewig
- Department of Dermatology and Allergy, Ludwig-Maximilian-University of Munich, Munich, Germany
| |
Collapse
|
83
|
Pharmacologic inhibition of protein phosphatase-2A achieves durable immune-mediated antitumor activity when combined with PD-1 blockade. Nat Commun 2018; 9:2126. [PMID: 29844427 PMCID: PMC5974350 DOI: 10.1038/s41467-018-04425-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 04/26/2018] [Indexed: 12/16/2022] Open
Abstract
Mounting evidence suggests that inhibition of protein phosphatase-2A (PP2A), a serine/threonine phosphatase, could enhance anticancer immunity. However, drugs targeting PP2A are not currently available. Here, we report that a PP2A inhibitor, LB-100, when combined with anti-PD-1 (aPD-1) blockade can synergistically elicit a durable immune-mediated antitumor response in a murine CT26 colon cancer model. This effect is T-cell dependent, leading to regression of a significant proportion of tumors. Analysis of tumor lymphocytes demonstrates enhanced effector T-cell and reduced suppressive regulatory T-cell infiltration. Clearance of tumor establishes antigen-specific secondary protective immunity. A synergistic effect of LB-100 and aPD-1 blockade is also observed in B16 melanoma model. In addition, LB-100 activates the mTORC1 signaling pathway resulting in decreased differentiation of naive CD4 cells into regulatory T cells. There is also increased expression of Th1 and decreased expression of Th2 cytokines. These data highlight the translational potential of PP2A inhibition in combination with checkpoint inhibition.
Collapse
|
84
|
Joslin J, Gilligan J, Anderson P, Garcia C, Sharif O, Hampton J, Cohen S, King M, Zhou B, Jiang S, Trussell C, Dunn R, Fathman JW, Snead JL, Boitano AE, Nguyen T, Conner M, Cooke M, Harris J, Ainscow E, Zhou Y, Shaw C, Sipes D, Mainquist J, Lesley S. A Fully Automated High-Throughput Flow Cytometry Screening System Enabling Phenotypic Drug Discovery. SLAS DISCOVERY 2018; 23:697-707. [PMID: 29843542 PMCID: PMC6055113 DOI: 10.1177/2472555218773086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The goal of high-throughput screening is to enable screening of compound libraries in an automated manner to identify quality starting points for optimization. This often involves screening a large diversity of compounds in an assay that preserves a connection to the disease pathology. Phenotypic screening is a powerful tool for drug identification, in that assays can be run without prior understanding of the target and with primary cells that closely mimic the therapeutic setting. Advanced automation and high-content imaging have enabled many complex assays, but these are still relatively slow and low throughput. To address this limitation, we have developed an automated workflow that is dedicated to processing complex phenotypic assays for flow cytometry. The system can achieve a throughput of 50,000 wells per day, resulting in a fully automated platform that enables robust phenotypic drug discovery. Over the past 5 years, this screening system has been used for a variety of drug discovery programs, across many disease areas, with many molecules advancing quickly into preclinical development and into the clinic. This report will highlight a diversity of approaches that automated flow cytometry has enabled for phenotypic drug discovery.
Collapse
Affiliation(s)
- John Joslin
- 1 Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - James Gilligan
- 1 Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Paul Anderson
- 1 Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Catherine Garcia
- 1 Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Orzala Sharif
- 1 Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Janice Hampton
- 1 Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Steven Cohen
- 1 Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Miranda King
- 1 Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Bin Zhou
- 1 Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Shumei Jiang
- 1 Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | | | - Robert Dunn
- 1 Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - John W Fathman
- 1 Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Jennifer L Snead
- 1 Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Anthony E Boitano
- 1 Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Tommy Nguyen
- 1 Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Michael Conner
- 1 Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Mike Cooke
- 1 Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Jennifer Harris
- 1 Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Ed Ainscow
- 1 Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Yingyao Zhou
- 1 Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Chris Shaw
- 1 Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Dan Sipes
- 1 Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - James Mainquist
- 1 Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| | - Scott Lesley
- 1 Genomics Institute of the Novartis Research Foundation, San Diego, CA, USA
| |
Collapse
|
85
|
c-Jun N-terminal kinase 1 defective CD4+CD25+FoxP3+ cells prolong islet allograft survival in diabetic mice. Sci Rep 2018; 8:3310. [PMID: 29459675 PMCID: PMC5818514 DOI: 10.1038/s41598-018-21477-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/05/2018] [Indexed: 02/06/2023] Open
Abstract
CD4+CD25+FoxP3+ cells (Tregs) inhibit inflammatory immune responses to allografts. Here, we found that co-transplantation of allogeneic pancreatic islets with Tregs that are defective in c-Jun N-terminal kinase 1 (JNK1) signaling prolongs islet allograft survival in the liver parenchyma of chemically induced diabetic mice (CDM). Adoptively transferred JNK1−/− but not wild-type (WT) Tregs survive longer in the liver parenchyma of CDM. JNK1−/− Tregs are resistant to apoptosis and express anti-apoptotic molecules. JNK1−/− Tregs express higher levels of lymphocyte activation gene-3 molecule (LAG-3) on their surface and produce higher amounts of the anti-inflammatory cytokine interleukin (IL)-10 compared with WT Tregs. JNK1−/− Tregs inhibit liver alloimmune responses more efficiently than WT Tregs. JNK1−/− but not WT Tregs are able to inhibit IL-17 and IL-21 production through enhanced LAG-3 expression and IL-10 production. Our study identifies a novel role of JNK1 signaling in Tregs that enhances islet allograft survival in the liver parenchyma of CDM.
Collapse
|
86
|
|
87
|
Dumitru C, Kabat AM, Maloy KJ. Metabolic Adaptations of CD4 + T Cells in Inflammatory Disease. Front Immunol 2018; 9:540. [PMID: 29599783 PMCID: PMC5862799 DOI: 10.3389/fimmu.2018.00540] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 03/02/2018] [Indexed: 12/19/2022] Open
Abstract
A controlled and self-limiting inflammatory reaction generally results in removal of the injurious agent and repair of the damaged tissue. However, in chronic inflammation, immune responses become dysregulated and prolonged, leading to tissue destruction. The role of metabolic reprogramming in orchestrating appropriate immune responses has gained increasing attention in recent years. Proliferation and differentiation of the T cell subsets that are needed to address homeostatic imbalance is accompanied by a series of metabolic adaptations, as T cells traveling from nutrient-rich secondary lymphoid tissues to sites of inflammation experience a dramatic shift in microenvironment conditions. How T cells integrate information about the local environment, such as nutrient availability or oxygen levels, and transfer these signals to functional pathways remains to be fully understood. In this review, we discuss how distinct subsets of CD4+ T cells metabolically adapt to the conditions of inflammation and whether these insights may pave the way to new treatments for human inflammatory diseases.
Collapse
Affiliation(s)
- Cristina Dumitru
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Agnieszka M. Kabat
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Kevin J. Maloy
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- *Correspondence: Kevin J. Maloy,
| |
Collapse
|
88
|
Bilal MY, Dambaeva S, Kwak-Kim J, Gilman-Sachs A, Beaman KD. A Role for Iodide and Thyroglobulin in Modulating the Function of Human Immune Cells. Front Immunol 2017; 8:1573. [PMID: 29187856 PMCID: PMC5694785 DOI: 10.3389/fimmu.2017.01573] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/01/2017] [Indexed: 12/15/2022] Open
Abstract
Iodine is an essential element required for the function of all organ systems. Although the importance of iodine in thyroid hormone synthesis and reproduction is well known, its direct effects on the immune system are elusive. Human leukocytes expressed mRNA of iodide transporters (NIS and PENDRIN) and thyroid-related proteins [thyroglobulin (TG) and thyroid peroxidase (TPO)]. The mRNA levels of PENDRIN and TPO were increased whereas TG transcripts were decreased post leukocyte activation. Flow cytometric analysis revealed that both PENDRIN and NIS were expressed on the surface of leukocyte subsets with the highest expression occurring on monocytes and granulocytes. Treatment of leukocytes with sodium iodide (NaI) resulted in significant changes in immunity-related transcriptome with an emphasis on increased chemokine expression as probed with targeted RNASeq. Similarly, treatment of leukocytes with NaI or Lugol’s iodine induced increased protein production of both pro- and anti-inflammatory cytokines. These alterations were not attributed to iodide-induced de novo thyroid hormone synthesis. However, upon incubation with thyroid-derived TG, primary human leukocytes but not Jurkat T cells released thyroxine and triiodothyronine indicating that immune cells could potentially influence thyroid hormone balance. Overall, our studies reveal the novel network between human immune cells and thyroid-related molecules and highlight the importance of iodine in regulating the function of human immune cells.
Collapse
Affiliation(s)
- Mahmood Y Bilal
- Clinical Immunology Laboratory, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States.,Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Svetlana Dambaeva
- Clinical Immunology Laboratory, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States.,Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Joanne Kwak-Kim
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States.,Department of Obstetrics and Gynecology, Rosalind Franklin University Health System, Vernon Hills, IL, United States
| | - Alice Gilman-Sachs
- Clinical Immunology Laboratory, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States.,Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Kenneth D Beaman
- Clinical Immunology Laboratory, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States.,Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
89
|
Gene Therapy-Induced Antigen-Specific Tregs Inhibit Neuro-inflammation and Reverse Disease in a Mouse Model of Multiple Sclerosis. Mol Ther 2017; 26:173-183. [PMID: 28943274 PMCID: PMC5762980 DOI: 10.1016/j.ymthe.2017.09.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/23/2017] [Accepted: 09/05/2017] [Indexed: 02/06/2023] Open
Abstract
The devastating neurodegenerative disease multiple sclerosis (MS) could substantially benefit from an adeno-associated virus (AAV) immunotherapy designed to restore a robust and durable antigen-specific tolerance. However, developing a sufficiently potent and lasting immune-regulatory therapy that can intervene in ongoing disease is a major challenge and has thus been elusive. We addressed this problem by developing a highly effective and robust tolerance-inducing in vivo gene therapy. Using a pre-clinical animal model, we designed a liver-targeting gene transfer vector that expresses full-length myelin oligodendrocyte glycoprotein (MOG) in hepatocytes. We show that by harnessing the tolerogenic nature of the liver, this powerful gene immunotherapy restores immune tolerance by inducing functional MOG-specific regulatory T cells (Tregs) in vivo, independent of major histocompatibility complex (MHC) restrictions. We demonstrate that mice treated prophylactically are protected from developing disease and neurological deficits. More importantly, we demonstrate that when given to mice with preexisting disease, ranging from mild neurological deficits to severe paralysis, the gene immunotherapy abrogated CNS inflammation and significantly reversed clinical symptoms of disease. This specialized approach for inducing antigen-specific immune tolerance has significant therapeutic potential for treating MS and other autoimmune disorders.
Collapse
|
90
|
Visperas A, Vignali DAA. Are Regulatory T Cells Defective in Type 1 Diabetes and Can We Fix Them? THE JOURNAL OF IMMUNOLOGY 2017; 197:3762-3770. [PMID: 27815439 DOI: 10.4049/jimmunol.1601118] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 07/27/2016] [Indexed: 12/13/2022]
Abstract
Regulatory T cells (Tregs) are critical regulators of peripheral immune tolerance. Treg insufficiency can lead to autoimmune disorders, including type 1 diabetes (T1D). Increasing evidence in mouse models of T1D, as well as other autoimmune disorders, suggests that there are defects in Treg-mediated suppression. Indeed, whereas Treg frequency in the peripheral blood of T1D patients is unaltered, their suppressive abilities are diminished compared with Tregs in healthy controls. Although expression of the transcription factor Foxp3 is a prerequisite for Treg development and function, there are many additional factors that can alter their stability, survival, and function. Much has been learned in other model systems, such as tumors, about the mechanism and pathways that control Treg stability and function. This review poses the question of whether we can use these findings to develop new therapeutic approaches that might boost Treg stability, survival, and/or function in T1D and possibly other autoimmune disorders.
Collapse
Affiliation(s)
- Anabelle Visperas
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213; and
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213; and .,Tumor Microenvironment Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232
| |
Collapse
|
91
|
Miao Y, Bhushan J, Dani A, Vig M. Na + influx via Orai1 inhibits intracellular ATP-induced mTORC2 signaling to disrupt CD4 T cell gene expression and differentiation. eLife 2017; 6. [PMID: 28492364 PMCID: PMC5459575 DOI: 10.7554/elife.25155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/10/2017] [Indexed: 12/16/2022] Open
Abstract
T cell effector functions require sustained calcium influx. However, the signaling and phenotypic consequences of non-specific sodium permeation via calcium channels remain unknown. α-SNAP is a crucial component of Orai1 channels, and its depletion disrupts the functional assembly of Orai1 multimers. Here we show that α-SNAP hypomorph, hydrocephalus with hopping gait, Napahyh/hyh mice harbor significant defects in CD4 T cell gene expression and Foxp3 regulatory T cell (Treg) differentiation. Mechanistically, TCR stimulation induced rapid sodium influx in Napahyh/hyh CD4 T cells, which reduced intracellular ATP, [ATP]i. Depletion of [ATP]i inhibited mTORC2 dependent NFκB activation in Napahyh/hyh cells but ablation of Orai1 restored it. Remarkably, TCR stimulation in the presence of monensin phenocopied the defects in Napahyh/hyh signaling and Treg differentiation, but not IL-2 expression. Thus, non-specific sodium influx via bonafide calcium channels disrupts unexpected signaling nodes and may provide mechanistic insights into some divergent phenotypes associated with Orai1 function. DOI:http://dx.doi.org/10.7554/eLife.25155.001
Collapse
Affiliation(s)
- Yong Miao
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
| | - Jaya Bhushan
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
| | - Adish Dani
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States.,Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, United States
| | - Monika Vig
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
| |
Collapse
|
92
|
Ruan GF, Zheng L, Huang JS, Huang WX, Gong BD, Fang XX, Zhang XY, Tang JP. Effect of mesenchymal stem cells on Sjögren-like mice and the microRNA expression profiles of splenic CD4+ T cells. Exp Ther Med 2017; 13:2828-2838. [PMID: 28587347 PMCID: PMC5450633 DOI: 10.3892/etm.2017.4313] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 12/09/2016] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) serve immuno-regulatory functions and offer a promising novel treatment for certain autoimmune diseases. The present study investigated the therapeutic effect of mice bone marrow (BM)-MSCs on mice with relatively late stage of Sjögren-like disease and the impact of BM-MSCs on the microRNA (miRNA) expression profiles of splenic CD4+ T cells. Female NOD/Ltj mice were randomized into two groups: The disease group (n=8) and the MSC-treated group (n=8). Female ICR mice served as the healthy control group (n=8). The MSC-treated group received an injection of MSCs when they were 26 weeks old. Water intake, blood glucose and salivary flow rate were measured and submandibular glands were resected and stained with hematoxylin and eosin to calculate the focus score. The concentrations of interleukin (IL)-2, IL-6, hepatocyte growth factor, interferon γ, IL-10, prostaglandin E2, transforming growth factor β1 and tumor necrosis factor-α in serum were measured using ELISA. The expression of miRNAs in splenic CD4+ T cells were measured using deep sequencing. The results demonstrated that treatment with BM-MSCs prevented a decline in the salivary flow rate and lymphocyte infiltration in the salivary glands of NOD mice, indicating that MSC-treatment had a therapeutic effect on NOD mice with relatively late stage of Sjögren-like disease. ELISA and deep sequencing results showed that the three groups of mice had different serum concentrations of cytokines/growth factors and different miRNA expression profiles of splenic CD4+ T cells. This implies that the alteration in serum levels of cytokines/growth factors and miRNA expression profiles of splenic CD4+ T cells may explain the therapeutic effect MSCs have on Sjögren's syndrome.
Collapse
Affiliation(s)
- Guang-Feng Ruan
- Department of Rheumatology, Tongji Hospital of Tongji University, Shanghai 200065, P.R. China
| | - Ling Zheng
- Department of Respiratory Medicine, Tongji Hospital of Tongji University, Shanghai 200065, P.R. China
| | - Jia-Shu Huang
- Department of Rheumatology, Tongji Hospital of Tongji University, Shanghai 200065, P.R. China
| | - Wan-Xue Huang
- Department of Rheumatology, Tongji Hospital of Tongji University, Shanghai 200065, P.R. China
| | - Bang-Dong Gong
- Department of Rheumatology, Tongji Hospital of Tongji University, Shanghai 200065, P.R. China
| | - Xing-Xing Fang
- Department of Rheumatology, Tongji Hospital of Tongji University, Shanghai 200065, P.R. China
| | - Xiao-Yu Zhang
- Department of Rheumatology, Tongji Hospital of Tongji University, Shanghai 200065, P.R. China
| | - Jian-Ping Tang
- Department of Rheumatology, Tongji Hospital of Tongji University, Shanghai 200065, P.R. China
| |
Collapse
|
93
|
Phillips T, Devata S, Wilcox RA. Challenges and opportunities for checkpoint blockade in T-cell lymphoproliferative disorders. J Immunother Cancer 2016; 4:95. [PMID: 28031823 PMCID: PMC5170899 DOI: 10.1186/s40425-016-0201-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 12/01/2016] [Indexed: 01/05/2023] Open
Abstract
The T-cell lymphoproliferative disorders are a heterogeneous group of non-Hodgkin’s lymphomas (NHL) for which current therapeutic strategies are inadequate, as most patients afflicted with these NHL will succumb to disease progression within 2 years of diagnosis. Appreciation of the genetic and immunologic landscape of these aggressive NHL, including PD-L1 (B7-H1, CD274) expression by malignant T cells and within the tumor microenvironment, provides a strong rationale for therapeutic targeting this immune checkpoint. While further studies are needed, the available data suggests that responses with PD-1 checkpoint blockade alone will unlikely approach those achieved in other lymphoproliferative disorders. Herein, we review the unique challenges posed by the T-cell lymphoproliferative disorders and discuss potential strategies to optimize checkpoint blockade in these T-cell derived malignancies.
Collapse
Affiliation(s)
- Tycel Phillips
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI USA
| | - Sumana Devata
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI USA
| | - Ryan A Wilcox
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI USA ; University of Michigan Comprehensive Cancer Center, 4310 Cancer Center, 1500 East Medical Center Drive, Ann Arbor, MI 48109 USA
| |
Collapse
|
94
|
mTORC1-Activated Monocytes Increase Tregs and Inhibit the Immune Response to Bacterial Infections. Mediators Inflamm 2016; 2016:7369351. [PMID: 27746591 PMCID: PMC5056273 DOI: 10.1155/2016/7369351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/05/2016] [Accepted: 08/11/2016] [Indexed: 02/07/2023] Open
Abstract
The TSC1/2 heterodimer, a key upstream regulator of the mTOR, can inhibit the activation of mTOR, which plays a critical role in immune responses after bacterial infections. Monocytes are an innate immune cell type that have been shown to be involved in bacteremia. However, how the mTOR pathway is involved in the regulation of monocytes is largely unknown. In our study, TSC1 KO mice and WT mice were infected with E. coli. When compared to WT mice, we found higher mortality, greater numbers of bacteria, decreased expression of coactivators in monocytes, increased numbers of Tregs, and decreased numbers of effector T cells in TSC1 KO mice. Monocytes obtained from TSC1 KO mice produced more ROS, IL-6, IL-10, and TGF-β and less IL-1, IFN-γ, and TNF-α. Taken together, our results suggest that the inhibited immune functioning in TSC1 KO mice is influenced by mTORC1 activation in monocytes. The reduced expression of coactivators resulted in inhibited effector T cell proliferation. mTORC1-activated monocytes are harmful during bacterial infections. Therefore, inhibiting mTORC1 signaling through rapamycin administration could rescue the harmful aspects of an overactive immune response, and this knowledge provides a new direction for clinical therapy.
Collapse
|
95
|
Prevention of allograft rejection in heart transplantation through concurrent gene silencing of TLR and Kinase signaling pathways. Sci Rep 2016; 6:33869. [PMID: 27659428 PMCID: PMC5034230 DOI: 10.1038/srep33869] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/05/2016] [Indexed: 01/01/2023] Open
Abstract
Toll-like receptors (TLRs) act as initiators and conductors responsible for both innate and adaptive immune responses in organ transplantation. The mammalian target of rapamycin (mTOR) is one of the most critical signaling kinases that affects broad aspects of cellular functions including metabolism, growth, and survival. Recipients (BALB/c) were treated with MyD88, TRIF and mTOR siRNA vectors, 3 and 7 days prior to heart transplantation and 7, 14 and 21 days after transplantation. After siRNA treatment, recipients received a fully MHC-mismatched C57BL/6 heart. Treatment with mTOR siRNA significantly prolonged allograft survival in heart transplantation. Moreover, the combination of mTOR siRNA with MyD88 and TRIF siRNA further extended the allograft survival; Flow cytometric analysis showed an upregulation of FoxP3 expression in spleen lymphocytes and a concurrent downregulation of CD40, CD86 expression, upregulation of PD-L1 expression in splenic dendritic cells in MyD88, TRIF and mTOR treated mice. There is significantly upregulated T cell exhaustion in T cells isolated from tolerant recipients. This study is the first demonstration of preventing immune rejection of allogeneic heart grafts through concurrent gene silencing of TLR and kinase signaling pathways, highlighting the therapeutic potential of siRNA in clinical transplantation.
Collapse
|
96
|
Cheng H, Luo G, Lu Y, Jin K, Guo M, Xu J, Long J, Liu L, Yu X, Liu C. The combination of systemic inflammation-based marker NLR and circulating regulatory T cells predicts the prognosis of resectable pancreatic cancer patients. Pancreatology 2016; 16:1080-1084. [PMID: 27665172 DOI: 10.1016/j.pan.2016.09.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND The systemic inflammation response and immune impairment are closely related to the development and progression of various tumours, such as pancreatic cancer. In this study, we evaluated circulating inflammation factors and circulating regulatory T cells (Tregs) as markers of immunosuppression in a cohort of Chinese patients with resectable pancreatic cancer. METHODS Samples were retrospectively collected from a series of 195 pathological stage I/II pancreatic cancer patients who underwent potentially curative surgery between June 2010 and April 2014. To examine the prognostic factors, circulating systemic inflammation-based markers and Tregs, detected by flow cytometry, were analysed. RESULTS Univariate analyses revealed that the neutrophil-lymphocyte ratio (NLR), TNM stage, differentiation, chemotherapy, CA19-9 levels and presence of Tregs are significantly associated with overall survival in patients with resectable pancreatic cancers. NLR (p = 0.001, HR = 0.538), TNM stage (p = 0.004, HR = 0.593), differentiation (p = 0.011, HR = 0.46), chemotherapy (p = 0.006, HR = 0.516) and Tregs (p = 0.001, HR = 0.558) are identified as independent prognostic markers by multivariate analyses. Interestingly, we also found that high NLR levels combined with a high proportion of Tregs (p < 0.001, HR = 3.521) correlate strongly with worse survival, with a greater than 3.5-fold increased risk of death compared with those with concurrent low levels of NLR and Tregs. CONCLUSIONS The preoperative NLR and circulating regulatory T cells are potentially independent prognostic factors for overall survival in resectable pancreatic cancer patients. High NLR levels combined with poor immune state before surgery, as measured by Tregs, are associated with an extremely poor prognosis.
Collapse
Affiliation(s)
- He Cheng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 DongAn Road, Shanghai 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, No. 270 DongAn Road, Shanghai 200032, PR China; Pancreatic Cancer Institute, Fudan University, No. 270 DongAn Road, Shanghai 200032, PR China; Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, PR China
| | - Guopei Luo
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 DongAn Road, Shanghai 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, No. 270 DongAn Road, Shanghai 200032, PR China; Pancreatic Cancer Institute, Fudan University, No. 270 DongAn Road, Shanghai 200032, PR China
| | - Yu Lu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 DongAn Road, Shanghai 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, No. 270 DongAn Road, Shanghai 200032, PR China; Pancreatic Cancer Institute, Fudan University, No. 270 DongAn Road, Shanghai 200032, PR China
| | - Kaizhou Jin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 DongAn Road, Shanghai 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, No. 270 DongAn Road, Shanghai 200032, PR China; Pancreatic Cancer Institute, Fudan University, No. 270 DongAn Road, Shanghai 200032, PR China
| | - Meng Guo
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 DongAn Road, Shanghai 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, No. 270 DongAn Road, Shanghai 200032, PR China; Pancreatic Cancer Institute, Fudan University, No. 270 DongAn Road, Shanghai 200032, PR China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 DongAn Road, Shanghai 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, No. 270 DongAn Road, Shanghai 200032, PR China; Pancreatic Cancer Institute, Fudan University, No. 270 DongAn Road, Shanghai 200032, PR China
| | - Jiang Long
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 DongAn Road, Shanghai 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, No. 270 DongAn Road, Shanghai 200032, PR China; Pancreatic Cancer Institute, Fudan University, No. 270 DongAn Road, Shanghai 200032, PR China
| | - Liang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 DongAn Road, Shanghai 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, No. 270 DongAn Road, Shanghai 200032, PR China; Pancreatic Cancer Institute, Fudan University, No. 270 DongAn Road, Shanghai 200032, PR China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 DongAn Road, Shanghai 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, No. 270 DongAn Road, Shanghai 200032, PR China; Pancreatic Cancer Institute, Fudan University, No. 270 DongAn Road, Shanghai 200032, PR China; Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, PR China.
| | - Chen Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 DongAn Road, Shanghai 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, No. 270 DongAn Road, Shanghai 200032, PR China; Pancreatic Cancer Institute, Fudan University, No. 270 DongAn Road, Shanghai 200032, PR China.
| |
Collapse
|
97
|
Pesenacker AM, Cook L, Levings MK. The role of FOXP3 in autoimmunity. Curr Opin Immunol 2016; 43:16-23. [PMID: 27544816 DOI: 10.1016/j.coi.2016.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 07/24/2016] [Indexed: 12/11/2022]
Abstract
FOXP3 controls the development and function of T regulatory cells (Tregs). Autoimmunity is linked to changes in FOXP3 activity that can occur at multiple levels and lead to Treg dysfunction. For example, changes in IL-2 signaling, FOXP3 transcription and/or post-translational modifications can all contribute to loss of self-tolerance. As additional pathways of FOXP3 regulation are elucidated, new therapeutic approaches to increase Treg activity either by cell therapy or pharmacological intervention are being tested. Early success from pioneering studies of Treg-based therapy in transplantation has promoted the undertaking of similar studies in autoimmunity, with emerging evidence for the effectiveness of these approaches, particularly in the context of type 1 diabetes.
Collapse
Affiliation(s)
- Anne M Pesenacker
- Department of Surgery, University of British Columbia, Canada; BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Laura Cook
- Department of Surgery, University of British Columbia, Canada; BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Megan K Levings
- Department of Surgery, University of British Columbia, Canada; BC Children's Hospital Research Institute, Vancouver, BC, Canada.
| |
Collapse
|
98
|
Oxidative Stress and Treg and Th17 Dysfunction in Systemic Lupus Erythematosus. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2526174. [PMID: 27597882 PMCID: PMC4997077 DOI: 10.1155/2016/2526174] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/15/2016] [Accepted: 05/23/2016] [Indexed: 12/19/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that involves multiple organ systems. The pathogenic mechanisms that cause SLE remain unclear; however, it is well recognized that the immune balance is disturbed and that this imbalance contributes to the autoimmune symptoms of SLE. Oxidative stress represents an imbalance between the production and manifestation of reactive oxygen species and the ability of the biological system to readily detoxify the reactive intermediates or to repair the resulting damage. In humans, oxidative stress is involved in many diseases, including atherosclerosis, myocardial infarction, and autoimmune diseases. Numerous studies have confirmed that oxidative stress plays an important role in the pathogenesis of SLE. This review mainly focuses on the recent research advances with respect to oxidative stress and regulatory T (Treg)/helper T 17 (Th17) cell dysfunction in the pathogenesis of SLE.
Collapse
|
99
|
Waldner M, Fantus D, Solari M, Thomson AW. New perspectives on mTOR inhibitors (rapamycin, rapalogs and TORKinibs) in transplantation. Br J Clin Pharmacol 2016; 82:1158-1170. [PMID: 26810941 DOI: 10.1111/bcp.12893] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 02/06/2023] Open
Abstract
The macrolide rapamycin and its analogues (rapalogs) constitute the first generation of mammalian target of rapamycin (mTOR) inhibitors. Since the introduction of rapamycin as an immunosuppressant, there has been extensive progress in understanding its complex mechanisms of action. New insights into the function of mTOR in different immune cell types, vascular endothelial cells and neoplastic cells have opened new opportunities and challenges regarding mTOR as a pharmacological target. Currently, the two known mTOR complexes, mTOR complex (mTORC) 1 and mTORC2, are the subject of intense investigation, and the introduction of second-generation dual mTORC kinase inhibitors (TORKinibs) and gene knockout mice is helping to uncover the distinct roles of these complexes in different cell types. While the pharmacological profiling of rapalogs is advanced, much less is known about the properties of TORKinibs. A potential benefit of mTOR inhibition in transplantation is improved protection against transplant-associated viral infections compared with standard calcineurin inhibitor-based immunosuppression. Preclinical and clinical data also underscore the potentially favourable antitumour effects of mTOR inhibitors in regard to transplant-associated malignancies and as a novel treatment option for various other cancers. Many aspects of the mechanisms of action of mTOR inhibitors and their clinical implications remain unknown. In this brief review we discuss new findings and perspectives of mTOR inhibitors in transplantation.
Collapse
Affiliation(s)
- Matthias Waldner
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Plastic Surgery, University of Zurich, Zurich, Switzerland
| | - Daniel Fantus
- Starzl Transplantation Institute and Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mario Solari
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Angus W Thomson
- Starzl Transplantation Institute and Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA. .,Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
100
|
Fryer M, Grahammer J, Khalifian S, Furtmüller GJ, Lee WPA, Raimondi G, Brandacher G. Exploring cell-based tolerance strategies for hand and face transplantation. Expert Rev Clin Immunol 2015; 11:1189-204. [DOI: 10.1586/1744666x.2015.1078729] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|