51
|
Luo M, Willis WT, Coletta DK, Langlais PR, Mengos A, Ma W, Finlayson J, Wagner GR, Shi CX, Mandarino LJ. Deletion of the Mitochondrial Protein VWA8 Induces Oxidative Stress and an HNF4α Compensatory Response in Hepatocytes. Biochemistry 2019; 58:4983-4996. [PMID: 31702900 DOI: 10.1021/acs.biochem.9b00863] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
von Willebrand A domain-containing protein 8 (VWA8) is a poorly characterized, mitochondrial matrix-targeted protein with an AAA ATPase domain and ATPase activity that increases in livers of mice fed a high-fat diet. This study was undertaken to use CRISPR/Cas9 to delete VWA8 in cultured mouse hepatocytes and gain insight into its function. Unbiased omics techniques and bioinformatics were used to guide subsequent assays, including the assessment of oxidative stress and the determination of bioenergetic capacity. Metabolomics analysis showed VWA8 null cells had higher levels of oxidative stress and protein degradation; assays of hydrogen peroxide production revealed higher levels of production of reactive oxygen species (ROS). Proteomics and transcriptomics analyses showed VWA8 null cells had higher levels of expression of mitochondrial proteins (electron transport-chain Complex I, ATP synthase), peroxisomal proteins, and lipid transport proteins. The pattern of higher protein abundance in the VWA8 null cells could be explained by a higher level of hepatocyte nuclear factor 4 α (HNF4α) expression. Bioenergetic assays showed higher rates of carbohydrate oxidation and mitochondrial and nonmitochondrial lipid oxidation in intact and permeabilized cells. Inhibitor assays localized sites of ROS production to peroxisomes and NOX1/4. The rescue of VWA8 protein restored the wild-type phenotype, and treatment with antioxidants decreased the level of HNF4α expression. Thus, loss of VWA8 produces a mitochondrial defect that may be sensed by NOX4, leading to an increase in the level of ROS that results in a higher level of HNF4α. The compensatory HNF4α response results in a higher oxidative capacity and an even higher level of ROS production. We hypothesize that VWA8 is an AAA ATPase protein that plays a role in mitochondrial protein quality.
Collapse
Affiliation(s)
- Moulun Luo
- Division of Endocrinology, Department of Medicine , University of Arizona College of Medicine , Tucson , Arizona 85724 , United States
| | - Wayne T Willis
- Division of Endocrinology, Department of Medicine , University of Arizona College of Medicine , Tucson , Arizona 85724 , United States
| | - Dawn K Coletta
- Division of Endocrinology, Department of Medicine , University of Arizona College of Medicine , Tucson , Arizona 85724 , United States
| | - Paul R Langlais
- Division of Endocrinology, Department of Medicine , University of Arizona College of Medicine , Tucson , Arizona 85724 , United States
| | - April Mengos
- Mayo Clinic in Arizona , Scottsdale , Arizona 85259 , United States
| | - Wuqiong Ma
- Division of Endocrinology, Department of Medicine , University of Arizona College of Medicine , Tucson , Arizona 85724 , United States
| | - Jean Finlayson
- Division of Endocrinology, Department of Medicine , University of Arizona College of Medicine , Tucson , Arizona 85724 , United States
| | - Gregory R Wagner
- Metabolon, Inc. , Research Triangle Park , North Carolina 27709 , United States
| | - Chang-Xin Shi
- Mayo Clinic in Arizona , Scottsdale , Arizona 85259 , United States
| | - Lawrence J Mandarino
- Division of Endocrinology, Department of Medicine , University of Arizona College of Medicine , Tucson , Arizona 85724 , United States
| |
Collapse
|
52
|
Yang N, Yu L, Deng Y, Han Q, Wang J, Yu L, Zhai Z, Li W. Identification and characterization of proteins that are differentially expressed in adipose tissue of olanzapine-induced insulin resistance rat by iTRAQ quantitative proteomics. J Proteomics 2019; 212:103570. [PMID: 31706944 DOI: 10.1016/j.jprot.2019.103570] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 10/22/2019] [Accepted: 10/30/2019] [Indexed: 12/31/2022]
Abstract
Olanzapine is commonly used to treat schizophrenia. However, long-term administration of olanzapine causes metabolic side effects, such as insulin resistance (IR), which seriously affects patients' quality of life. Both diagnostic and prognostic markers are urgently needed to increase patient compliance. We applied isobaric tags for relative and absolute quantitation (iTRAQ) labeling combined with 2D LC/MS/MS technology to identify the differentially expressed proteins in olanzapine-induced IR rats. A total of 3194 proteins were identified from rat adipose tissues, and 270 differentially expressed proteins were screened out with a ratio threshold >1.5-fold or <0.67-fold. Based on a bioinformatics analysis and literature search, we selected six candidates (MYH1, MYL2, Cp, FABP4, apoA-IV, and Ywhaz) from a set of 270 proteins and verified these proteins by western blot; the expression of these proteins coincided with the LC-MS/MS results. Finally, the biological roles of FABP4 and apoA-IV, which are two novel IR-related proteins identified in the present study, were verified in 3T3-L1 cells. These data suggest that these two proteins acted on olanzapine-induced IR via the IRS-1/AKT signaling pathway. Our results provide a dataset of potential targets to explore the mechanism in olanzapine-induced IR and reveal the new roles of FABP4 and apoA-IV in olanzapine-induced IR. SIGNIFICANCE: The proteomic analysis of this study revealed the target associated with olanzapine-induced IR and provided relevant insights into the molecular functions, biological processes, and signaling pathways in these targets. Protein MYH1, MYL2, Cp, FABP4, apoA-IV, and Ywhaz may be potential biomarkers, and protein FABP4 and apoA-IV were considered as promising targets in olanzapineinduced IR. Therefore, if the performance of the proposed biomarkers is further confirmed, these proteins can provide powerful targets for exploring the mechanism of olanzapine-induced IR.
Collapse
Affiliation(s)
- Ni Yang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liangyu Yu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yahui Deng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Qiangqiang Han
- Building B5, Biolake, East Lake New Technology Development Zone, Wuhan, China
| | - Jing Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lixiu Yu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhongfang Zhai
- Shanghai City shanghai general hospital, No. 650 Xinsongjiang Road, Songjiang District, Shanghai, China
| | - Weiyong Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
53
|
Nilsson A, Björnson E, Flockhart M, Larsen FJ, Nielsen J. Complex I is bypassed during high intensity exercise. Nat Commun 2019; 10:5072. [PMID: 31699973 PMCID: PMC6838197 DOI: 10.1038/s41467-019-12934-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 10/10/2019] [Indexed: 12/28/2022] Open
Abstract
Human muscles are tailored towards ATP synthesis. When exercising at high work rates muscles convert glucose to lactate, which is less nutrient efficient than respiration. There is hence a trade-off between endurance and power. Metabolic models have been developed to study how limited catalytic capacity of enzymes affects ATP synthesis. Here we integrate an enzyme-constrained metabolic model with proteomics data from muscle fibers. We find that ATP synthesis is constrained by several enzymes. A metabolic bypass of mitochondrial complex I is found to increase the ATP synthesis rate per gram of protein compared to full respiration. To test if this metabolic mode occurs in vivo, we conduct a high resolved incremental exercise tests for five subjects. Their gas exchange at different work rates is accurately reproduced by a whole-body metabolic model incorporating complex I bypass. The study therefore shows how proteome allocation influences metabolism during high intensity exercise.
Collapse
Affiliation(s)
- Avlant Nilsson
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, SE41296, Sweden
| | - Elias Björnson
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, SE41296, Sweden.,Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden
| | - Mikael Flockhart
- Åstrand Laboratory of Work Physiology, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Filip J Larsen
- Åstrand Laboratory of Work Physiology, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, SE41296, Sweden. .,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2800, Kongens Lyngby, Denmark.
| |
Collapse
|
54
|
Bordbar F, Jensen J, Zhu B, Wang Z, Xu L, Chang T, Xu L, Du M, Zhang L, Gao H, Xu L, Li J. Identification of muscle-specific candidate genes in Simmental beef cattle using imputed next generation sequencing. PLoS One 2019; 14:e0223671. [PMID: 31600309 PMCID: PMC6786524 DOI: 10.1371/journal.pone.0223671] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/25/2019] [Indexed: 01/01/2023] Open
Abstract
Genome-wide association studies (GWAS) have commonly been used to identify candidate genes that control economically important traits in livestock. Our objective was to detect potential candidate genes associated mainly with muscle development traits related to dimension of hindquarter in cattle. A next generation sequencing (NGS) dataset to imputed to 12 million single nucleotide polymorphisms (SNPs) (from 1252 Simmental beef cattle) were used to search for genes affecting hindquarter traits using a linear, mixed model approach. We also used haplotype and linkage disequilibrium blocks to further support our identifications. We identified 202 significant SNPs in the bovine BTA4 chromosome region associated with width of hind leg, based on a stringent statistical threshold (p = 0.05/ effective number of SNPs identified). After exploring the region around these SNPs, we found candidate genes that were potentially related to the associated markers. More importantly, we identified a region of approximately 280 Kb on the BTA4 chromosome that harbored several muscle specific candidate genes, genes to be in a potential region for muscle development. However, we also found candidate gene SLC13A1 on BTA4, which seems to be associated with bone disorders (such as chondrodysplasia) in Simmental beef cattle.
Collapse
Affiliation(s)
- Farhad Bordbar
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Just Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Bo Zhu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zezhao Wang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Xu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tianpeng Chang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ling Xu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Min Du
- Department of Animal Sciences, Washington Center for Muscle Biology, Washington State University, Pullman, Washington, United States of America
| | - Lupei Zhang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huijiang Gao
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lingyang Xu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail: (JYL); (LYX)
| | - Junya Li
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail: (JYL); (LYX)
| |
Collapse
|
55
|
Impaired Mitochondrial Fusion and Oxidative Phosphorylation Triggered by High Glucose Is Mediated by Tom22 in Endothelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4508762. [PMID: 31236191 PMCID: PMC6545771 DOI: 10.1155/2019/4508762] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/22/2019] [Accepted: 03/18/2019] [Indexed: 11/18/2022]
Abstract
Much evidence demonstrates that mitochondrial dysfunction plays a crucial role in the pathogenesis of vascular complications of diabetes. However, the signaling pathways through which hyperglycemia leads to mitochondrial dysfunction of endothelial cells are not fully understood. Here, we treated human umbilical vein endothelial cells (HUVECs) with high glucose and examined the role of translocase of mitochondrial outer membrane (Tom) 22 on mitochondrial dynamics and cellular function. Impaired Tom22 expression and protein expression of oxidative phosphorylation (OXPHOS) as well as decreased mitochondrial fusion were observed in HUVECs treated with high glucose. The deletion of Tom22 resulted in reduced mitochondrial fusion and ATP production and increased apoptosis in HUVECs. The overexpression of Tom22 restored the balance of mitochondrial dynamics and OXPHOS disrupted by high glucose. Importantly, we found that Tom22 modulates mitochondrial dynamics and OXPHOS by interacting with mitofusin (Mfn) 1. Taken together, our findings demonstrate for the first time that Tom22 is a novel regulator of both mitochondrial dynamics and bioenergetic function and contributes to cell survival following high-glucose exposure.
Collapse
|
56
|
Montgomery MK. Mitochondrial Dysfunction and Diabetes: Is Mitochondrial Transfer a Friend or Foe? BIOLOGY 2019; 8:E33. [PMID: 31083560 PMCID: PMC6627584 DOI: 10.3390/biology8020033] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 11/21/2018] [Accepted: 12/20/2018] [Indexed: 01/01/2023]
Abstract
Obesity, insulin resistance and type 2 diabetes are accompanied by a variety of systemic and tissue-specific metabolic defects, including inflammation, oxidative and endoplasmic reticulum stress, lipotoxicity, and mitochondrial dysfunction. Over the past 30 years, association studies and genetic manipulations, as well as lifestyle and pharmacological invention studies, have reported contrasting findings on the presence or physiological importance of mitochondrial dysfunction in the context of obesity and insulin resistance. It is still unclear if targeting mitochondrial function is a feasible therapeutic approach for the treatment of insulin resistance and glucose homeostasis. Interestingly, recent studies suggest that intact mitochondria, mitochondrial DNA, or other mitochondrial factors (proteins, lipids, miRNA) are found in the circulation, and that metabolic tissues secrete exosomes containing mitochondrial cargo. While this phenomenon has been investigated primarily in the context of cancer and a variety of inflammatory states, little is known about the importance of exosomal mitochondrial transfer in obesity and diabetes. We will discuss recent evidence suggesting that (1) tissues with mitochondrial dysfunction shed their mitochondria within exosomes, and that these exosomes impair the recipient's cell metabolic status, and that on the other hand, (2) physiologically healthy tissues can shed mitochondria to improve the metabolic status of recipient cells. In this context the determination of whether mitochondrial transfer in obesity and diabetes is a friend or foe requires further studies.
Collapse
Affiliation(s)
- Magdalene K Montgomery
- Department of Physiology, School of Biomedical Sciences, University of Melbourne, Melbourne 3010, Australia.
| |
Collapse
|
57
|
Potes Y, Pérez-Martinez Z, Bermejo-Millo JC, Rubio-Gonzalez A, Fernandez-Fernández M, Bermudez M, Arche JM, Solano JJ, Boga JA, Oliván M, Caballero B, Vega-Naredo I, Coto-Montes A. Overweight in the Elderly Induces a Switch in Energy Metabolism that Undermines Muscle Integrity. Aging Dis 2019; 10:217-230. [PMID: 31011474 PMCID: PMC6457058 DOI: 10.14336/ad.2018.0430] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 04/30/2018] [Indexed: 12/19/2022] Open
Abstract
Aging is characterized by a progressive loss of skeletal muscle mass and function (sarcopenia). Obesity exacerbates age-related decline and lead to frailty. Skeletal muscle fat infiltration increases with aging and seems to be crucial for the progression of sarcopenia. Additionally, skeletal muscle plasticity modulates metabolic adaptation to different pathophysiological situations. Thus, cellular bioenergetics and mitochondrial profile were studied in the skeletal muscle of overweight aged people without reaching obesity to prevent this extreme situation. Overweight aged muscle lacked ATP production, as indicated by defects in the phosphagen system, glycolysis and especially mostly by oxidative phosphorylation metabolic pathway. Overweight subjects exhibited an inhibition of mitophagy that was linked to an increase in mitochondrial biogenesis that underlies the accumulation of dysfunctional mitochondria and encourages the onset of sarcopenia. As a strategy to maintain cellular homeostasis, overweight subjects experienced a metabolic switch from oxidative to lactic acid fermentation metabolism, which allows continued ATP production under mitochondrial dysfunction, but without reaching physiological aged basal levels. This ATP depletion induced early signs of impaired contractile function and a decline in skeletal muscle structural integrity, evidenced by lower levels of filamin C. Our findings reveal the main effector pathways at an early stage of obesity and highlight the importance of mitochondrial metabolism in overweight and obese individuals. Exploiting mitochondrial profiles for therapeutic purposes in humans is an ambitious strategy for treating muscle impairment diseases.
Collapse
Affiliation(s)
- Yaiza Potes
- 1Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Asturias, Spain.,2Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Spain
| | | | - Juan C Bermejo-Millo
- 1Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Asturias, Spain.,2Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Spain
| | - Adrian Rubio-Gonzalez
- 1Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Asturias, Spain
| | | | | | - Jose M Arche
- 4Geriatric Service, Monte Naranco Hospital, Asturias, Spain
| | - Juan J Solano
- 2Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Spain.,4Geriatric Service, Monte Naranco Hospital, Asturias, Spain
| | - Jose A Boga
- 3Microbiology Service, Central University Hospital of Asturias, Asturias, Spain
| | - Mamen Oliván
- 2Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Spain.,5Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Asturias, Spain
| | - Beatriz Caballero
- 1Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Asturias, Spain.,2Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Spain
| | - Ignacio Vega-Naredo
- 1Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Asturias, Spain.,2Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Spain
| | - Ana Coto-Montes
- 1Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Asturias, Spain.,2Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Spain
| |
Collapse
|
58
|
Garneau L, Aguer C. Role of myokines in the development of skeletal muscle insulin resistance and related metabolic defects in type 2 diabetes. DIABETES & METABOLISM 2019; 45:505-516. [PMID: 30844447 DOI: 10.1016/j.diabet.2019.02.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/04/2019] [Accepted: 02/25/2019] [Indexed: 12/20/2022]
Abstract
Due to its mass, skeletal muscle is the major site of glucose uptake and an important tissue in the development of type 2 diabetes (T2D). Muscles of patients with T2D are affected with insulin resistance and mitochondrial dysfunction, which result in impaired glucose and fatty acid metabolism. A well-established method of managing the muscle metabolic defects occurring in T2D is physical exercise. During exercise, muscles contract and secrete factors called myokines which can act in an autocrine/paracrine fashion to improve muscle energy metabolism. In patients with T2D, plasma levels as well as muscle levels (mRNA and protein) of some myokines are upregulated, while others are downregulated. The signalling pathways of certain myokines are also altered in skeletal muscle of patients with T2D. Taken together, these findings suggest that myokine secretion is an important factor contributing to the development of muscle metabolic defects during T2D. It is also of interest considering that lack of physical activity is closely linked to the occurrence of this disease. The causal relationships between sedentary behavior, factors secreted by skeletal muscle at rest and during contraction and the development of T2D remain to be elucidated. Many myokines shown to influence muscle energy metabolism still have not been characterized in the context of T2D in skeletal muscle specifically. The purpose of this review is to highlight what is known and what remains to be determined regarding myokine secretion in patients with T2D to uncover potential therapeutic targets for the management of this disease.
Collapse
Affiliation(s)
- L Garneau
- University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, ON, K1H 8M5, Canada; Institut du Savoir Montfort - recherche, Ottawa, ON, K1K 0T2, Canada
| | - C Aguer
- University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, ON, K1H 8M5, Canada; Institut du Savoir Montfort - recherche, Ottawa, ON, K1K 0T2, Canada.
| |
Collapse
|
59
|
Mullapudi ST, Helker CS, Boezio GL, Maischein HM, Sokol AM, Guenther S, Matsuda H, Kubicek S, Graumann J, Yang YHC, Stainier DY. Screening for insulin-independent pathways that modulate glucose homeostasis identifies androgen receptor antagonists. eLife 2018; 7:42209. [PMID: 30520733 PMCID: PMC6300353 DOI: 10.7554/elife.42209] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/03/2018] [Indexed: 12/13/2022] Open
Abstract
Pathways modulating glucose homeostasis independently of insulin would open new avenues to combat insulin resistance and diabetes. Here, we report the establishment, characterization, and use of a vertebrate ‘insulin-free’ model to identify insulin-independent modulators of glucose metabolism. insulin knockout zebrafish recapitulate core characteristics of diabetes and survive only up to larval stages. Utilizing a highly efficient endoderm transplant technique, we generated viable chimeric adults that provide the large numbers of insulin mutant larvae required for our screening platform. Using glucose as a disease-relevant readout, we screened 2233 molecules and identified three that consistently reduced glucose levels in insulin mutants. Most significantly, we uncovered an insulin-independent beneficial role for androgen receptor antagonism in hyperglycemia, mostly by reducing fasting glucose levels. Our study proposes therapeutic roles for androgen signaling in diabetes and, more broadly, offers a novel in vivo model for rapid screening and decoupling of insulin-dependent and -independent mechanisms. Diabetes is a disease that affects the ability of the body to control the level of sugar in the blood. Individuals with diabetes are unable to make a hormone called insulin – which normally stimulates certain cells to absorb sugar from the blood – or their cells are less able to respond to this hormone. Most treatments for diabetes involve replacing the lost insulin or boosting the hormone’s activity in the body. However, these treatments can also cause individuals to gain weight or become more resistant to insulin, making it harder to control blood sugar levels. In addition to insulin, several other factors regulate the levels of sugar in the blood and some of them may operate independently of insulin. However, little is known about such factors because it is impractical to carry out large-scale screens to identify drugs that target them in humans or mice, which are often used as experimental models for human biology. To overcome this challenge, Mullapudi et al. turned to another animal known as the zebrafish and generated mutant fish that lack insulin. The mutant zebrafish had similar problems with regulating sugar levels as those observed in humans and mice with diabetes. This observation suggests that insulin is just as important in zebrafish as it is in humans and other mammals. The mutant zebrafish did not survive into adulthood, and so Mullapudi et al. transplanted healthy tissue into the zebrafish to allow them to produce enough insulin to survive. These adult zebrafish produced many offspring that still carried the insulin mutation. Mullapudi et al. used these mutant offspring to screen over 2,000 drugs for their ability to decrease blood sugar levels in the absence of insulin. The screen identified three promising candidate drugs, including a molecule that interferes with a receptor for a signal known as androgen. These findings will help researchers investigate new ways to treat diabetes. In the future, the screening approach developed by Mullapudi et al. could be adapted to search for new drugs to treat other human metabolic conditions.
Collapse
Affiliation(s)
- Sri Teja Mullapudi
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Christian Sm Helker
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Giulia Lm Boezio
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Hans-Martin Maischein
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Anna M Sokol
- Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Guenther
- ECCPS Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Hiroki Matsuda
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Johannes Graumann
- Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,German Centre for Cardiovascular Research, Berlin, Germany
| | - Yu Hsuan Carol Yang
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Didier Yr Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
60
|
Kras KA, Langlais PR, Hoffman N, Roust LR, Benjamin TR, De Filippis EA, Dinu V, Katsanos CS. Obesity modifies the stoichiometry of mitochondrial proteins in a way that is distinct to the subcellular localization of the mitochondria in skeletal muscle. Metabolism 2018; 89:18-26. [PMID: 30253140 PMCID: PMC6221946 DOI: 10.1016/j.metabol.2018.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/01/2018] [Accepted: 09/19/2018] [Indexed: 01/31/2023]
Abstract
BACKGROUND Skeletal muscle mitochondrial content and function appear to be altered in obesity. Mitochondria in muscle are found in well-defined regions within cells, and they are arranged in a way that form distinct subpopulations of subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria. We sought to investigate differences in the proteomes of SS and IMF mitochondria between lean subjects and subjects with obesity. METHODS We performed comparative proteomic analyses on SS and IMF mitochondria isolated from muscle samples obtained from lean subjects and subjects with obesity. Mitochondria were isolated using differential centrifugation, and proteins were subjected to label-free quantitative tandem mass spectrometry analyses. Collected data were evaluated for abundance of mitochondrial proteins using spectral counting. The Reactome pathway database was used to determine metabolic pathways that are altered in obesity. RESULTS Among proteins, 73 and 41 proteins showed different (mostly lower) expression in subjects with obesity in the SS and IMF mitochondria, respectively (false discovery rate-adjusted P ≤ 0.05). We specifically found an increase in proteins forming the tricarboxylic acid cycle and electron transport chain (ETC) complex II, but a decrease in proteins forming protein complexes I and III of the ETC and adenosine triphosphate (ATP) synthase in subjects with obesity in the IMF, but not SS, mitochondria. Obesity was associated with differential effects on metabolic pathways linked to protein translation in the SS mitochondria and ATP formation in the IMF mitochondria. CONCLUSIONS Obesity alters the expression of mitochondrial proteins regulating key metabolic processes in skeletal muscle, and these effects are distinct to mitochondrial subpopulations located in different regions of the muscle fibers. TRIAL REGISTRATION ClinicalTrials.gov (NCT01824173).
Collapse
Affiliation(s)
- Katon A Kras
- Center for Metabolic and Vascular Biology, Arizona State University, Scottsdale, AZ 85259, United States of America
| | - Paul R Langlais
- College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259, United States of America
| | - Nyssa Hoffman
- Center for Metabolic and Vascular Biology, Arizona State University, Scottsdale, AZ 85259, United States of America
| | - Lori R Roust
- College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259, United States of America
| | - Tonya R Benjamin
- College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259, United States of America
| | - Elena A De Filippis
- College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259, United States of America
| | - Valentin Dinu
- Department of Biomedical Informatics, Arizona State University, Scottsdale, AZ 85259, United States of America
| | - Christos S Katsanos
- Center for Metabolic and Vascular Biology, Arizona State University, Scottsdale, AZ 85259, United States of America; College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259, United States of America.
| |
Collapse
|
61
|
Tran L, Langlais PR, Hoffman N, Roust L, Katsanos CS. Mitochondrial ATP synthase β-subunit production rate and ATP synthase specific activity are reduced in skeletal muscle of humans with obesity. Exp Physiol 2018; 104:126-135. [PMID: 30362197 DOI: 10.1113/ep087278] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 10/23/2018] [Indexed: 01/02/2023]
Abstract
NEW FINDINGS What is the central question of this study? Humans with obesity have lower ATP synthesis in muscle along with lower content of the β-subunit of the ATP synthase (β-F1-ATPase), the catalytic component of the ATP synthase. Does lower synthesis rate of β-F1-ATPase in muscle contribute to these responses in humans with obesity? What is the main finding and its importance? Humans with obesity have a lower synthesis rate of β-F1 -ATPase and ATP synthase specific activity in muscle. These findings indicate that reduced production of subunits forming the ATP synthase in muscle may contribute to impaired generation of ATP in obesity. ABSTRACT The content of the β-subunit of the ATP synthase (β-F1 -ATPase), which forms the catalytic site of the enzyme ATP synthase, is reduced in muscle of obese humans, along with a reduced capacity for ATP synthesis. We studied 18 young (37 ± 8 years) subjects of which nine were lean (BMI = 23 ± 2 kg m-2 ) and nine were obese (BMI = 34 ± 3 kg m-2 ) to determine the fractional synthesis rate (FSR) and gene expression of β-F1 -ATPase, as well as the specific activity of the ATP synthase. FSR of β-F1 -ATPase was determined using a combination of isotope tracer infusion and muscle biopsies. Gene expression of β-F1 -ATPase and specific activity of the ATP synthase were determined in the muscle biopsies. When compared to lean, obese subjects had lower muscle β-F1 -ATPase FSR (0.10 ± 0.05 vs. 0.06 ± 0.03% h-1 ; P < 0.05) and protein expression (P < 0.05), but not mRNA expression (P > 0.05). Across subjects, abundance of β-F1 -ATPase correlated with the FSR of β-F1 -ATPase (P < 0.05). The specific activity of muscle ATP synthase was lower in obese compared to lean subjects (0.035 ± 0.004 vs. 0.042 ± 0.007 arbitrary units; P < 0.05), but this difference was not significant after the activity of the ATP synthase was adjusted to the β-F1 -ATPase content (P > 0.05). Obesity impairs the synthesis of β-F1 -ATPase in muscle at the translational level, reducing the content of β-F1 -ATPase in parallel with reduced capacity for ATP generation via the ATP synthase complex.
Collapse
Affiliation(s)
- Lee Tran
- Center for Metabolic and Vascular Biology, Arizona State University, Tempe, AZ, 85297, USA
| | - Paul R Langlais
- College of Medicine, Mayo Clinic in Arizona, Scottsdale, AZ, 85259, USA
| | - Nyssa Hoffman
- Center for Metabolic and Vascular Biology, Arizona State University, Tempe, AZ, 85297, USA
| | - Lori Roust
- College of Medicine, Mayo Clinic in Arizona, Scottsdale, AZ, 85259, USA
| | - Christos S Katsanos
- Center for Metabolic and Vascular Biology, Arizona State University, Tempe, AZ, 85297, USA.,College of Medicine, Mayo Clinic in Arizona, Scottsdale, AZ, 85259, USA
| |
Collapse
|
62
|
Miraee-Nedjad S, Sims PFG, Schwartz JM, Doig AJ. Effect of IAPP on the proteome of cultured Rin-5F cells. BMC BIOCHEMISTRY 2018; 19:9. [PMID: 30419808 PMCID: PMC6233276 DOI: 10.1186/s12858-018-0099-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 10/22/2018] [Indexed: 11/12/2022]
Abstract
Background Islet amyloid polypeptide (IAPP) or amylin deposits can be found in the islets of type 2 diabetes patients. The peptide is suggested to be involved in the etiology of the disease through formation of amyloid deposits and destruction of β islet cells, though the underlying molecular events leading from IAPP deposition to β cell death are still largely unknown. Results We used OFFGEL™ proteomics to study how IAPP exposure affects the proteome of rat pancreatic insulinoma Rin-5F cells. The OFFGEL™ methodology is highly effective at generating quantitative data on hundreds of proteins affected by IAPP, with its accuracy confirmed by In Cell Western and Quantitative Real Time PCR results. Combining data on individual proteins identifies pathways and protein complexes affected by IAPP. IAPP disrupts protein synthesis and degradation, and induces oxidative stress. It causes decreases in protein transport and localization. IAPP disrupts the regulation of ubiquitin-dependent protein degradation and increases catabolic processes. IAPP causes decreases in protein transport and localization, and affects the cytoskeleton, DNA repair and oxidative stress. Conclusions Results are consistent with a model where IAPP aggregates overwhelm the ability of a cell to degrade proteins via the ubiquitin system. Ultimately this leads to apoptosis. IAPP aggregates may be also toxic to the cell by causing oxidative stress, leading to DNA damage or by decreasing protein transport. The reversal of any of these effects, perhaps by targeting proteins which alter in response to IAPP, may be beneficial for type II diabetes. Electronic supplementary material The online version of this article (10.1186/s12858-018-0099-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Samaneh Miraee-Nedjad
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Paul F G Sims
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Jean-Marc Schwartz
- Division of Evolution & Genomic Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Andrew J Doig
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
63
|
Sohail W, Majeed F, Afroz A. Differential proteome analysis of diabetes mellitus type 2 and its pathophysiological complications. Diabetes Metab Syndr 2018; 12:1125-1131. [PMID: 29907545 DOI: 10.1016/j.dsx.2018.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 06/05/2018] [Indexed: 01/18/2023]
Abstract
The prevalence of Diabetes Mellitus Type 2 (DM 2) is increasing every passing year due to some global changes in lifestyles of people. The exact underlying mechanisms of the progression of this disease are not yet known. However recent advances in the combined omics more particularly in proteomics and genomics have opened a gateway towards the understanding of predetermined genetic factors, progression, complications and treatment of this disease. Here we shall review the recent advances in proteomics that have led to an early and better diagnostic approaches in controlling DM 2 more importantly the comparison of structural and functional protein biomarkers that are modified in the diseased state. By applying these advanced and promising proteomic strategies with bioinformatics applications and bio-statistical tools the prevalence of DM 2 and its associated disorders i-e nephropathy and retinopathy are expected to be controlled.
Collapse
Affiliation(s)
- Waleed Sohail
- Department of Biochemistry and Molecular Biology, University of Gujrat, Pakistan.
| | - Fatimah Majeed
- Department of Biochemistry and Molecular Biology, University of Gujrat, Pakistan
| | - Amber Afroz
- Department of Biochemistry and Molecular Biology, University of Gujrat, Pakistan
| |
Collapse
|
64
|
Truskey GA. Development and application of human skeletal muscle microphysiological systems. LAB ON A CHIP 2018; 18:3061-3073. [PMID: 30183050 PMCID: PMC6177290 DOI: 10.1039/c8lc00553b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A number of major disease states involve skeletal muscle, including type 2 diabetes, muscular dystrophy, sarcopenia and cachexia arising from cancer or heart disease. Animals do not accurately represent many of these disease states. Human skeletal muscle microphysiological systems derived from primary or induced pluripotent stem cells (hPSCs) can provide an in vitro model of genetic and chronic diseases and assess individual variations. Three-dimensional culture systems more accurately represent skeletal muscle function than do two-dimensional cultures. While muscle biopsies enable culture of primary muscle cells, hPSCs provide the opportunity to sample a wider population of donors. Recent advances to promote maturation of PSC-derived skeletal muscle provide an alternative to primary cells. While contractile function is often measured in three-dimensional cultures and several systems exist to characterize contraction of small numbers of muscle fibers, there is a need for functional measures of metabolism suited for microphysiological systems. Future research should address generation of well-differentiated hPSC-derived muscle cells, enabling muscle repair in vitro, and improved disease models.
Collapse
Affiliation(s)
- George A Truskey
- Department of Biomedical Engineering, Duke University, 1427 CIEMAS, 101 Science Drive, Durham, NC 27708-0281, USA.
| |
Collapse
|
65
|
Kruse R, Højlund K. Proteomic study of skeletal muscle in obesity and type 2 diabetes: progress and potential. Expert Rev Proteomics 2018; 15:817-828. [PMID: 30251560 DOI: 10.1080/14789450.2018.1528147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Skeletal muscle is the major site of insulin-stimulated glucose uptake and imparts the beneficial effects of exercise, and hence is an important site of insulin resistance in obesity and type 2 diabetes (T2D). Despite extensive molecular biology-oriented research the molecular mechanisms underlying insulin resistance in skeletal muscle remain to be established. Areas covered: The proteomic capabilities have greatly improved over the last decades. This review summarizes the technical challenges in skeletal muscle proteomics studies as well as the results of quantitative proteomic studies of skeletal muscle in relation to obesity, T2D, and exercise. Expert commentary: Current available proteomic studies contribute to the view that insulin resistance in obesity and T2D is associated with increased glycolysis and reduced mitochondrial oxidative metabolism in skeletal muscle, and that the latter can be improved by exercise. Future proteomics studies should be designed to markedly intensify the identification of abnormalities in metabolic and signaling pathways in skeletal muscle of insulin-resistant individuals to increase the understanding of the pathogenesis of T2D, but more importantly to identify multiple novel targets of treatment of which at least some can be safely targeted by novel drugs to treat and prevent T2D and reduce risk of cardiovascular disease.
Collapse
Affiliation(s)
- Rikke Kruse
- a The Section of Molecular Diabetes and Metabolism, Department of Clinical Research and Department of Molecular Medicine , University of Southern Denmark , Odense , Denmark.,b Steno Diabetes Center Odense , Odense University Hospital , Odense , Denmark
| | - Kurt Højlund
- a The Section of Molecular Diabetes and Metabolism, Department of Clinical Research and Department of Molecular Medicine , University of Southern Denmark , Odense , Denmark.,b Steno Diabetes Center Odense , Odense University Hospital , Odense , Denmark
| |
Collapse
|
66
|
Dasari S, Newsom SA, Ehrlicher SE, Stierwalt HD, Robinson MM. Remodeling of skeletal muscle mitochondrial proteome with high-fat diet involves greater changes to β-oxidation than electron transfer proteins in mice. Am J Physiol Endocrinol Metab 2018; 315:E425-E434. [PMID: 29812987 PMCID: PMC6230708 DOI: 10.1152/ajpendo.00051.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Excess fat intake can increase lipid oxidation and expression of mitochondrial proteins, indicating remodeling of the mitochondrial proteome. Yet intermediates of lipid oxidation also accumulate, indicating a relative insufficiency to completely oxidize lipids. We investigated remodeling of the mitochondrial proteome to determine mechanisms of changes in lipid oxidation following high-fat feeding. C57BL/6J mice consumed a high-fat diet (HFD, 60% fat from lard) or a low-fat diet (LFD, 10% fat) for 12 wk. Mice were fasted for 4 h and then anesthetized by pentobarbital sodium overdose for tissue collection. A mitochondrial-enriched fraction was prepared from gastrocnemius muscles and underwent proteomic analysis by high-resolution mass spectrometry. Mitochondrial respiratory efficiency was measured as the ratio of ATP production to O2 consumption. Intramuscular acylcarnitines were measured by liquid chromatography-mass spectrometry. A total of 658 mitochondrial proteins were identified: 40 had higher abundance and 14 had lower abundance in mice consuming the HFD than in mice consuming the LFD. Individual proteins that changed with the HFD were primarily related to β-oxidation; there were fewer changes to the electron transfer system. Gene set enrichment analysis indicated that the HFD increased pathways of lipid metabolism and β-oxidation. Intramuscular concentrations of select acylcarnitines (C18:0) were greater in the HFD mice and reflected dietary lipid composition. Mitochondrial respiratory ATP production-to-O2 consumption ratio for lipids was not different between LFD and HFD mice. After the 60% fat diet, remodeling of the mitochondrial proteome revealed upregulation of proteins regulating lipid oxidation that was not evident for all mitochondrial pathways. The accumulation of lipid metabolites with obesity may occur without intrinsic dysfunction to mitochondrial lipid oxidation.
Collapse
Affiliation(s)
- Surendra Dasari
- Department of Health Sciences Research, Mayo Clinic , Rochester, Minnesota
| | - Sean A Newsom
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University , Corvallis, Oregon
| | - Sarah E Ehrlicher
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University , Corvallis, Oregon
| | - Harrison D Stierwalt
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University , Corvallis, Oregon
| | - Matthew M Robinson
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University , Corvallis, Oregon
| |
Collapse
|
67
|
A mitochondrial proteome profile indicative of type 2 diabetes mellitus in skeletal muscles. Exp Mol Med 2018; 50:1-14. [PMID: 30266947 PMCID: PMC6162255 DOI: 10.1038/s12276-018-0154-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/14/2018] [Accepted: 06/04/2018] [Indexed: 01/07/2023] Open
Abstract
The pathogenesis of type 2 diabetes mellitus (T2DM) is closely associated with mitochondrial functions in insulin-responsive tissues. The mitochondrial proteome, compared with the mitochondrial genome, which only contains 37 genes in humans, can provide more comprehensive information for thousands of mitochondrial proteins regarding T2DM-associated mitochondrial functions. However, T2DM-associated protein signatures in insulin-responsive tissues are still unclear. Here, we performed extensive proteome profiling of mitochondria from skeletal muscles in nine T2DM patients and nine nondiabetic controls. A comparison of the mitochondrial proteomes identified 335 differentially expressed proteins (DEPs) between T2DM and nondiabetic samples. Functional and network analyses of the DEPs showed that mitochondrial metabolic processes were downregulated and mitochondria-associated ER membrane (MAM) processes were upregulated. Of the DEPs, we selected two (NDUFS3 and COX2) for downregulated oxidative phosphorylation and three (CALR, SORT, and RAB1A) for upregulated calcium and protein transport as representative mitochondrial and MAM processes, respectively, and then confirmed their differential expression in independent mouse and human samples. Therefore, we propose that these five proteins be used as a potential protein profile that is indicative of the dysregulation of mitochondrial functions in T2DM, representing downregulated oxidative phosphorylation and upregulated MAM functions. Diabetes alters the mitochondrial proteins in insulin-responsive tissues. Sehyun Chae from the Daegu Gyeongbuk Institute of Science and Technology, South Korea, and coworkers characterized the proteins found within the mitochondria of skeletal muscle tissues isolated from nine people with type 2 diabetes and nine non-diabetic controls. They identified 335 proteins that were expressed at significantly different levels in tissues from the two groups. Of these, several involved in energy metabolism were at lower levels in the diabetic cohort, while several involved in communication between the mitochondria and the endoplasmic reticulum, a neighboring celllular organelle, were at higher levels. The researchers confirmed this pattern for five specific proteins in mouse models of diabetes and in human samples. These proteins could form the basis of a diagnostic test for diabetes-associated mitochondrial dysfunction.
Collapse
|
68
|
Masood A, Benabdelkamel H, Alfadda AA. Obesity Proteomics: An Update on the Strategies and Tools Employed in the Study of Human Obesity. High Throughput 2018; 7:ht7030027. [PMID: 30213114 PMCID: PMC6164994 DOI: 10.3390/ht7030027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/30/2018] [Accepted: 09/10/2018] [Indexed: 02/07/2023] Open
Abstract
Proteomics has become one of the most important disciplines for characterizing cellular protein composition, building functional linkages between protein molecules, and providing insight into the mechanisms of biological processes in a high-throughput manner. Mass spectrometry-based proteomic advances have made it possible to study human diseases, including obesity, through the identification and biochemical characterization of alterations in proteins that are associated with it and its comorbidities. A sizeable number of proteomic studies have used the combination of large-scale separation techniques, such as high-resolution two-dimensional gel electrophoresis or liquid chromatography in combination with mass spectrometry, for high-throughput protein identification. These studies have applied proteomics to comprehensive biochemical profiling and comparison studies while using different tissues and biological fluids from patients to demonstrate the physiological or pathological adaptations within their proteomes. Further investigations into these proteome-wide alterations will enable us to not only understand the disease pathophysiology, but also to determine signature proteins that can serve as biomarkers for obesity and related diseases. This review examines the different proteomic techniques used to study human obesity and discusses its successful applications along with its technical limitations.
Collapse
Affiliation(s)
- Afshan Masood
- Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia.
| | - Hicham Benabdelkamel
- Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia.
| | - Assim A Alfadda
- Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia.
- Department of Medicine, College of Medicine, King Saud University, P.O. Box 2925 (38), Riyadh 11461, Saudi Arabia.
| |
Collapse
|
69
|
Mey JT, Haus JM. Dicarbonyl Stress and Glyoxalase-1 in Skeletal Muscle: Implications for Insulin Resistance and Type 2 Diabetes. Front Cardiovasc Med 2018; 5:117. [PMID: 30250846 PMCID: PMC6139330 DOI: 10.3389/fcvm.2018.00117] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/09/2018] [Indexed: 01/01/2023] Open
Abstract
Glyoxalase-1 (GLO1) is a ubiquitously expressed cytosolic protein which plays a role in the natural maintenance of cellular health and is abundantly expressed in human skeletal muscle. A consequence of reduced GLO1 protein expression is cellular dicarbonyl stress, which is elevated in obesity, insulin resistance and type 2 diabetes (T2DM). Both in vitro and pre-clinical models suggest dicarbonyl stress per se induces insulin resistance and is prevented by GLO1 overexpression, implicating a potential role for GLO1 therapy in insulin resistance and type 2 diabetes (T2DM). Recent work has identified the therapeutic potential of novel natural agents as a GLO1 inducer, which resulted in improved whole-body metabolism in obese adults. Given skeletal muscle is a major contributor to whole-body glucose, lipid, and protein metabolism, such GLO1 inducers may act, in part, through mechanisms in skeletal muscle. Currently, investigations examining the specificity of dicarbonyl stress and GLO1 biology in human skeletal muscle are lacking. Recent work from our lab indicates that dysregulation of GLO1 in skeletal muscle may underlie human insulin resistance and that exercise training may impart therapeutic benefits. This minireview will summarize the existing human literature examining skeletal muscle GLO1 and highlight the emerging therapeutic concepts for GLO1 gain-of-function in conditions such as insulin resistance and cardiometabolic disease.
Collapse
Affiliation(s)
- Jacob T Mey
- Department of Pathobiology, Cleveland Clinic, Cleveland, OH, United States
| | - Jacob M Haus
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
70
|
Tran L, Kras KA, Hoffman N, Ravichandran J, Dickinson JM, D’Lugos A, Carroll CC, Patel SH, Mandarino LJ, Roust L, Katsanos CS. Lower Fasted-State but Greater Increase in Muscle Protein Synthesis in Response to Elevated Plasma Amino Acids in Obesity. Obesity (Silver Spring) 2018; 26:1179-1187. [PMID: 29896930 PMCID: PMC6078204 DOI: 10.1002/oby.22213] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Obesity alters protein metabolism in skeletal muscle, but consistent evidence is lacking. This study compared muscle protein synthesis in adults with obesity and in lean controls in the fasted state and during an amino acid infusion. METHODS Ten subjects with obesity (age: 36 ± 3 years; BMI: 34 ± 1 kg/m2 ) and ten controls (age: 35 ± 3 years; BMI: 23 ± 1 kg/m2 ) received an infusion of L-[2,3,3,4,5,5,5,6,6,6-2 H10 ]leucine (0.15 μmol/kg fat-free mass/min) to measure muscle protein synthesis after an overnight fast and during amino acid infusion. RESULTS Despite greater muscle mammalian target of rapamycin phosphorylation (P ≤ 0.05), fasted-state mixed-muscle and mitochondrial protein synthesis were lower in subjects with obesity (P ≤ 0.05). However, the change in mixed-muscle protein synthesis during the amino acid infusion was 2.7-fold greater in subjects with obesity (P ≤ 0.05), accompanied by a greater change in S6 kinase-1 phosphorylation (P ≤ 0.05). The change in mitochondrial protein synthesis did not differ between groups (P > 0.05). CONCLUSIONS Adults with obesity have reduced muscle protein synthesis in the fasted state, but this response is compensated for by a greater change in overall muscle protein synthesis during amino acid infusion.
Collapse
Affiliation(s)
- Lee Tran
- Center for Metabolic and Vascular Biology, Arizona State University, Tempe, AZ
| | - Katon A. Kras
- Center for Metabolic and Vascular Biology, Arizona State University, Tempe, AZ
| | - Nyssa Hoffman
- Center for Metabolic and Vascular Biology, Arizona State University, Tempe, AZ
| | | | - Jared M. Dickinson
- School of Nutrition and Health Promotion, Arizona State University, Phoenix, AZ
| | - Andrew D’Lugos
- School of Nutrition and Health Promotion, Arizona State University, Phoenix, AZ
| | - Chad C. Carroll
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN
| | - Shivam H. Patel
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN
| | - Lawrence J. Mandarino
- Center for Metabolic and Vascular Biology, Arizona State University, Tempe, AZ
- College of Medicine, Mayo Clinic in Arizona, Scottsdale, AZ
| | - Lori Roust
- College of Medicine, Mayo Clinic in Arizona, Scottsdale, AZ
| | - Christos S. Katsanos
- Center for Metabolic and Vascular Biology, Arizona State University, Tempe, AZ
- College of Medicine, Mayo Clinic in Arizona, Scottsdale, AZ
| |
Collapse
|
71
|
Sosa-Gutiérrez JA, Valdéz-Solana MA, Forbes-Hernández TY, Avitia-Domínguez CI, Garcia-Vargas GG, Salas-Pacheco JM, Flores-Herrera O, Téllez-Valencia A, Battino M, Sierra-Campos E. Effects of Moringa oleifera Leaves Extract on High Glucose-Induced Metabolic Changes in HepG2 Cells. BIOLOGY 2018; 7:biology7030037. [PMID: 29949946 PMCID: PMC6164683 DOI: 10.3390/biology7030037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/08/2018] [Accepted: 06/25/2018] [Indexed: 12/29/2022]
Abstract
Mitochondrial dysfunction is a hallmark of diabetes, but the metabolic alterations during early stages of the disease remain unknown. The ability of liver cells to rearrange their metabolism plays an important role in compensating the energy shortage and may provide cell survival. Moringa oleifera leaves have been studied for its health properties against diabetes, insulin resistance, and non-alcoholic liver disease. We postulated that M. oleifera executes a protective function on mitochondrial functionality in HepG2 treated with high glucose. We evaluated the effect of high glucose treatment on the mitochondrial function of HepG2 cells using a Seahorse extracellular flux analyzer (Agilent, Santa Clara, CA, USA), blue native polyacrylamide gel electrophoresis (BN-PAGE), and western blot analysis. For assessment of mitochondrial abnormalities, we measured the activity of mitochondrial Complex I and IV as well as uncoupling protein 2, and sirtuin 3 protein contents. Our results demonstrate that, under conditions mimicking the hyperglycemia, Complex I activity, UCP2, Complex III and IV subunits content, supercomplex formation, and acetylation levels are modified with respect to the control condition. However, basal oxygen consumption rate was not affected and mitochondrial reactive oxygen species production remained unchanged in all groups. Treatment of HepG2 cells with M. oleifera extract significantly increased both protein content and mitochondrial complexes activities. Nonetheless, control cells’ respiratory control ratio (RCR) was 4.37 compared to high glucose treated cells’ RCR of 15.3, and glucose plus M. oleifera treated cells’ RCR of 5.2, this indicates high-quality mitochondria and efficient oxidative phosphorylation coupling. Additionally, the state app was not altered between different treatments, suggesting no alteration in respiratory fluxes. These findings enhance understanding of the actions of M. oleifera and suggest that the known antidiabetic property of this plant, at least in part, is mediated through modulating the mitochondrial respiratory chain.
Collapse
Affiliation(s)
- Jorge A Sosa-Gutiérrez
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango Campus Gómez Palacio, Avenida Artículo 123 S/N, Fracc, Filadelfia, 35010 Gómez Palacio, Mexico.
| | - Mónica A Valdéz-Solana
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango Campus Gómez Palacio, Avenida Artículo 123 S/N, Fracc, Filadelfia, 35010 Gómez Palacio, Mexico.
| | - Tamara Y Forbes-Hernández
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Claudia I Avitia-Domínguez
- Facultad de Medicina y Nutrición, Universidad Juárez del Estado de Durango Campus Durango, Avenida Universidad y Fanny Anitúa S/N, 34000 Durango, Mexico.
| | - Gonzalo G Garcia-Vargas
- Facultad de Ciencias de la Salud, Universidad Juárez del Estado de Durango Campus Gómez Palacio, Calzada Palmas 1, Colonia Revolución, 35050 Gómez Palacio, Mexico.
| | - José M Salas-Pacheco
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Avenida Universidad S/N, 34000 Durango, Mexico.
| | - Oscar Flores-Herrera
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico.
| | - Alfredo Téllez-Valencia
- Facultad de Medicina y Nutrición, Universidad Juárez del Estado de Durango Campus Durango, Avenida Universidad y Fanny Anitúa S/N, 34000 Durango, Mexico.
| | - Maurizio Battino
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Erick Sierra-Campos
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango Campus Gómez Palacio, Avenida Artículo 123 S/N, Fracc, Filadelfia, 35010 Gómez Palacio, Mexico.
| |
Collapse
|
72
|
Jensen RC, Christensen LL, Nielsen J, Schrøder HD, Kvorning T, Gejl K, Højlund K, Glintborg D, Andersen M. Mitochondria, glycogen, and lipid droplets in skeletal muscle during testosterone treatment and strength training: a randomized, double-blinded, placebo-controlled trial. Andrology 2018; 6:547-555. [PMID: 29656500 DOI: 10.1111/andr.12492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 02/16/2018] [Accepted: 03/12/2018] [Indexed: 02/06/2023]
Abstract
Low testosterone levels in aging men are associated with insulin resistance. Mitochondrial dysfunction, changes in glycogen metabolism, and lipid accumulation are linked to insulin resistance in skeletal muscle. In this randomized, double-blinded, placebo-controlled study, we investigated the effects of six-month testosterone replacement therapy (TRT) and strength training (ST) on mitochondrial, glycogen, and lipid droplet (LD) content in skeletal muscle of aging men with subnormal bioavailable testosterone (BioT) levels. Mitochondrial, glycogen, and LD volume fractions in muscle biopsies were estimated by transmission electron microscopy. Insulin sensitivity (insulin-stimulated Rd) and body composition were assessed by euglycemic-hyperinsulinemic clamp and dual X-ray absorptiometry, respectively. TRT significantly increased total testosterone levels, BioT, and lean body mass (LBM) (p < 0.05), whereas percent body fat decreased (p < 0.05), and insulin sensitivity was unchanged. Baseline mitochondrial volume fraction correlated inversely with percent body fat (ρ = -0.43; p = 0.003). Δ-mitochondrial fraction correlated positively with Δ-total testosterone (ρ = 0.70; p = 0.02), and Δ-glycogen fraction correlated inversely with Δ-LBM (ρ = -0.83; p = 0.002) during six-month TRT, but no significant changes were observed in mitochondrial, glycogen, and LD volume fractions during TRT and ST. In conclusion, in this exploratory small-scale study, the beneficial effects of six-month TRT on total testosterone, LBM, and percent body fat were not followed by significant changes in fractions of mitochondria, glycogen, or lipid in skeletal muscle of aging men with lowered testosterone levels. Six-month ST or combined three-month ST+TRT did not change intramyocellular mitochondria, glycogen, and LD fractions compared to placebo. However, further studies with a larger sample size are needed.
Collapse
Affiliation(s)
- R C Jensen
- Department of Endocrinology, Odense University Hospital, Odense C, Denmark
| | - L L Christensen
- Department of Endocrinology, Odense University Hospital, Odense C, Denmark
| | - J Nielsen
- Department of Sports Science & Clinical Biomechanics, University of Southern Denmark, Odense M, Denmark
| | - H D Schrøder
- Department of Pathology, Odense University Hospital, Odense C, Denmark
| | - T Kvorning
- Department of Sports Science & Clinical Biomechanics, University of Southern Denmark, Odense M, Denmark
| | - K Gejl
- Department of Sports Science & Clinical Biomechanics, University of Southern Denmark, Odense M, Denmark
| | - K Højlund
- Department of Endocrinology, Odense University Hospital, Odense C, Denmark
| | - D Glintborg
- Department of Endocrinology, Odense University Hospital, Odense C, Denmark
| | - M Andersen
- Department of Endocrinology, Odense University Hospital, Odense C, Denmark
| |
Collapse
|
73
|
Willis WT, Miranda-Grandjean D, Hudgens J, Willis EA, Finlayson J, De Filippis EA, Zapata Bustos R, Langlais PR, Mielke C, Mandarino LJ. Dominant and sensitive control of oxidative flux by the ATP-ADP carrier in human skeletal muscle mitochondria: Effect of lysine acetylation. Arch Biochem Biophys 2018; 647:93-103. [PMID: 29653079 DOI: 10.1016/j.abb.2018.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/29/2018] [Accepted: 04/08/2018] [Indexed: 02/01/2023]
Abstract
The adenine nucleotide translocase (ANT) of the mitochondrial inner membrane exchanges ADP for ATP. Mitochondria were isolated from human vastus lateralis muscle (n = 9). Carboxyatractyloside titration of O2 consumption rate (Jo) at clamped [ADP] of 21 μM gave ANT abundance of 0.97 ± 0.14 nmol ANT/mg and a flux control coefficient of 82% ± 6%. Flux control fell to 1% ± 1% at saturating (2 mM) [ADP]. The KmADP for Jo was 32.4 ± 1.8 μM. In terms of the free (-3) ADP anion this KmADP was 12.0 ± 0.7 μM. A novel luciferase-based assay for ATP production gave KmADP of 13.1 ± 1.9 μM in the absence of ATP competition. The free anion KmADP in this case was 2.0 ± 0.3 μM. Targeted proteomic analyses showed significant acetylation of ANT Lysine23 and that ANT1 was the most abundant isoform. Acetylation of Lysine23 correlated positively with KmADP, r = 0.74, P = 0.022. The findings underscore the central role played by ANT in the control of oxidative phosphorylation, particularly at the energy phosphate levels associated with low ATP demand. As predicted by molecular dynamic modeling, ANT Lysine23 acetylation decreased the apparent affinity of ADP for ANT binding.
Collapse
Affiliation(s)
- W T Willis
- University of Arizona, College of Medicine, Department of Medicine, 1501 N. Campbell Avenue, P.O. Box 245099, Tucson, AZ 85724-5099, USA.
| | - D Miranda-Grandjean
- Mayo Clinic, Division of Endocrinology, East Shea Boulevard and 134th Street, Scottsdale, AZ 85259, USA.
| | - J Hudgens
- Mayo Clinic, Division of Endocrinology, East Shea Boulevard and 134th Street, Scottsdale, AZ 85259, USA.
| | - E A Willis
- Mayo Clinic, Division of Endocrinology, East Shea Boulevard and 134th Street, Scottsdale, AZ 85259, USA.
| | - J Finlayson
- University of Arizona, College of Medicine, Department of Medicine, 1501 N. Campbell Avenue, P.O. Box 245099, Tucson, AZ 85724-5099, USA.
| | - E A De Filippis
- Mayo Clinic, Division of Endocrinology, East Shea Boulevard and 134th Street, Scottsdale, AZ 85259, USA.
| | - R Zapata Bustos
- University of Arizona, College of Medicine, Department of Medicine, 1501 N. Campbell Avenue, P.O. Box 245099, Tucson, AZ 85724-5099, USA.
| | - P R Langlais
- University of Arizona, College of Medicine, Department of Medicine, 1501 N. Campbell Avenue, P.O. Box 245099, Tucson, AZ 85724-5099, USA.
| | - C Mielke
- Mayo Clinic, Division of Endocrinology, East Shea Boulevard and 134th Street, Scottsdale, AZ 85259, USA.
| | - L J Mandarino
- University of Arizona, College of Medicine, Department of Medicine, 1501 N. Campbell Avenue, P.O. Box 245099, Tucson, AZ 85724-5099, USA.
| |
Collapse
|
74
|
Gaffney KA, Lucero A, Stoner L, Faulkner J, Whitfield P, Krebs J, Rowlands DS. Nil Whey Protein Effect on Glycemic Control after Intense Mixed-Mode Training in Type 2 Diabetes. Med Sci Sports Exerc 2018; 50:11-17. [PMID: 29251686 DOI: 10.1249/mss.0000000000001404] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Although intense endurance and resistance exercise training and whey protein supplementation have both been shown to independently improve glycemic control, no known studies have examined the effect of high-intensity mixed-mode interval training (MMIT) and whey supplementation in adults with Type 2 diabetes (T2D). PURPOSE This study aimed to determine if peritraining whey protein supplementation combined with MMIT can improve glycemic control. METHODS In a double-blind, randomized, placebo-controlled trial, 24 men (55.7 ± 5.6 yr) with T2D performed MMIT with whey (20 g) or placebo control for 10 wk. Glycemic control was assessed via glucose disposal rate during a euglycemic insulin clamp, fasting blood glucose concentration, and homeostatic model assessment of insulin resistance. Changes in peak oxygen consumption, 1-repetition maximum strength, vastus lateralis muscle, and subcutaneous adipose thicknesses, and waist circumference were also assessed. RESULTS Ten weeks of MMIT substantially improved glucose disposal rate by 27.5% (90% confidence interval, 1.2%-60.7%) and 24.8% (-5.4% to 64.8%) in the whey and control groups, respectively. There were likely and possible reductions in fasting blood glucose by -17.4% (-30.6% to -1.6%) and homeostatic model assessment of insulin resistance by -14.1% (-25.3% to 1.08%) in the whey group; however, whey effects were not clearly beneficial to glycemic outcomes relative to the control. MMIT also clearly substantially improved 1-repetition maximum by 20.6% (16.3%-24.9%) and 22.7% (18.4%-27.2%), peak oxygen consumption by 22.6% (12.0%-26.2%) and 18.5% (10.5%-27.4%), and vastus lateralis muscle thickness by 18.9% (12.0%-26.2%) and 18.6% (10.5%-27.4%) and possibly reduced waist circumference by -2.1% (-3.1% to -1.0%) and -1.9% (-3.7% to -0.1%) in the control and whey groups, respectively, but the whey-control outcome was trivial or unclear. CONCLUSIONS A clinically meaningful enhancement in glycemic control after 10 wk of MMIT was not clearly advanced with peritraining whey protein supplementation in middle-age men with T2D.
Collapse
Affiliation(s)
- Kim Alexander Gaffney
- School of Sport, Exercise, and Nutrition, Massey University Wellington, Wellington, NEW ZEALAND
| | - Adam Lucero
- School of Sport, Exercise, and Nutrition, Massey University Wellington, Wellington, NEW ZEALAND
| | - Lee Stoner
- School of Sport, Exercise, and Nutrition, Massey University Wellington, Wellington, NEW ZEALAND
| | - James Faulkner
- School of Sport, Exercise, and Nutrition, Massey University Wellington, Wellington, NEW ZEALAND
| | - Patricia Whitfield
- School of Sport, Exercise, and Nutrition, Massey University Wellington, Wellington, NEW ZEALAND.,School of Sport, Exercise, and Nutrition, Massey University Wellington, Wellington, NEW ZEALAND
| | - Jeremy Krebs
- School of Sport, Exercise, and Nutrition, Massey University Wellington, Wellington, NEW ZEALAND.,School of Sport, Exercise, and Nutrition, Massey University Wellington, Wellington, NEW ZEALAND
| | - David Stephen Rowlands
- School of Sport, Exercise, and Nutrition, Massey University Wellington, Wellington, NEW ZEALAND
| |
Collapse
|
75
|
Skeie JM, Aldrich BT, Goldstein AS, Schmidt GA, Reed CR, Greiner MA. Proteomic analysis of corneal endothelial cell-descemet membrane tissues reveals influence of insulin dependence and disease severity in type 2 diabetes mellitus. PLoS One 2018. [PMID: 29529022 PMCID: PMC5846724 DOI: 10.1371/journal.pone.0192287] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The objective of this study was to characterize the proteome of the corneal endothelial cell layer and its basement membrane (Descemet membrane) in humans with various severities of type II diabetes mellitus compared to controls, and identify differentially expressed proteins across a range of diabetic disease severities that may influence corneal endothelial cell health. Endothelium-Descemet membrane complex tissues were peeled from transplant suitable donor corneas. Protein fractions were isolated from each sample and subjected to multidimensional liquid chromatography and tandem mass spectrometry. Peptide spectra were matched to the human proteome, assigned gene ontology, and grouped into protein signaling pathways unique to each of the disease states. We identified an average of 12,472 unique proteins in each of the endothelium-Descemet membrane complex tissue samples. There were 2,409 differentially expressed protein isoforms that included previously known risk factors for type II diabetes mellitus related to metabolic processes, oxidative stress, and inflammation. Gene ontology analysis demonstrated that diabetes progression has many protein footprints related to metabolic processes, binding, and catalysis. The most represented pathways involved in diabetes progression included mitochondrial dysfunction, cell-cell junction structure, and protein synthesis regulation. This proteomic dataset identifies novel corneal endothelial cell and Descemet membrane protein expression in various stages of diabetic disease. These findings give insight into the mechanisms involved in diabetes progression relevant to the corneal endothelium and its basement membrane, prioritize new pathways for therapeutic targeting, and provide insight into potential biomarkers for determining the health of this tissue.
Collapse
Affiliation(s)
- Jessica M. Skeie
- University of Iowa Carver College of Medicine, Department of Ophthalmology and Visual Sciences, Iowa City, United States of America
- Iowa Lions Eye Bank, Coralville, United States of America
- Cornea Research Center, University of Iowa, Iowa City, United States of America
| | - Benjamin T. Aldrich
- University of Iowa Carver College of Medicine, Department of Ophthalmology and Visual Sciences, Iowa City, United States of America
- Iowa Lions Eye Bank, Coralville, United States of America
- Cornea Research Center, University of Iowa, Iowa City, United States of America
| | - Andrew S. Goldstein
- University of Iowa Carver College of Medicine, Department of Ophthalmology and Visual Sciences, Iowa City, United States of America
- Iowa Lions Eye Bank, Coralville, United States of America
| | - Gregory A. Schmidt
- Iowa Lions Eye Bank, Coralville, United States of America
- Cornea Research Center, University of Iowa, Iowa City, United States of America
| | - Cynthia R. Reed
- Iowa Lions Eye Bank, Coralville, United States of America
- Cornea Research Center, University of Iowa, Iowa City, United States of America
| | - Mark A. Greiner
- University of Iowa Carver College of Medicine, Department of Ophthalmology and Visual Sciences, Iowa City, United States of America
- Iowa Lions Eye Bank, Coralville, United States of America
- Cornea Research Center, University of Iowa, Iowa City, United States of America
- * E-mail:
| |
Collapse
|
76
|
Rivas E, Herndon DN, Porter C, Meyer W, Suman OE. Short-term metformin and exercise training effects on strength, aerobic capacity, glycemic control, and mitochondrial function in children with burn injury. Am J Physiol Endocrinol Metab 2018; 314:E232-E240. [PMID: 29138224 PMCID: PMC5899215 DOI: 10.1152/ajpendo.00194.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Severely burned children experience a chronic state of sympathetic nervous system activation that is associated with hypermetabolic/cardiac stress and muscle wasting. Metformin, a diabetes medication, helps control hyperglycemia in obese diabetic populations, and exercise has been shown to improve exercise strength and aerobic exercise capacity after severe burns. However, whether exercise improves glycemic control in burned children and whether combining exercise and metformin improves outcomes to a greater degree than exercise alone are unknown. We tested the hypothesis that a 6-wk exercise program combined with short-term metformin administration (E + M) improves aerobic and strength exercise capacity to a greater degree than exercise and placebo (E), while improving glucose tolerance and muscle metabolic function. We found that, before exercise training, the metformin group compared with the placebo group had attenuated mitochondrial respiration (pmol·s-1·mg-1) for each state: state 2 (-22.5 ± 3), state 3 (-42.4 ± 13), and oxphos (-58.9 ± 19) ( P ≤ 0.02, M vs. E + M group for each state). However, in the E + M group, exercise increased mitochondrial respiration in each state ( P ≤ 0.05), with respiration being comparable to that in the E group (each P > 0.05). In both groups, exercise induced comparable improvements in strength (change from preexercise, Δ1.6 ± 0.6 N-M·kgLBM) and V̇o2peak (Δ9 ± 7 mlO2·kgLBM) as well as fasting glucose (Δ19.3 ± 13 mg·dl) and glucose AUC (Δ3402 ± 3674 mg·dl-1·min-1), as measured by a 75-g OGTT (all P ≤ 0.03). Exercise reduced resting energy expenditure in E + M (Δ539 ± 480 kcal/24 h, P < 0.01) but not E subjects ( P = 0.68). Both groups exhibited reduced resting heart rate (Δ30 ± 23 beats/min, P ≤ 0.02). These data indicate that short-term metformin combined with exercise provides no further improvement beyond that of exercise alone for strength, exercise capacity, and glycemic control.
Collapse
Affiliation(s)
- Eric Rivas
- Shriners Hospitals for Children, Galveston, Texas
- Department of Surgery, University of Texas Medical Branch , Galveston, Texas
- Department of Kinesiology and Sport Management, Texas Tech University , Lubbock, Texas
| | - David N Herndon
- Shriners Hospitals for Children, Galveston, Texas
- Department of Surgery, University of Texas Medical Branch , Galveston, Texas
| | - Craig Porter
- Shriners Hospitals for Children, Galveston, Texas
- Department of Surgery, University of Texas Medical Branch , Galveston, Texas
| | - Walter Meyer
- Shriners Hospitals for Children, Galveston, Texas
- Department of Surgery, University of Texas Medical Branch , Galveston, Texas
| | - Oscar E Suman
- Shriners Hospitals for Children, Galveston, Texas
- Department of Surgery, University of Texas Medical Branch , Galveston, Texas
| |
Collapse
|
77
|
Schönke M, Björnholm M, Chibalin AV, Zierath JR, Deshmukh AS. Proteomics Analysis of Skeletal Muscle from Leptin-Deficient ob/ob Mice Reveals Adaptive Remodeling of Metabolic Characteristics and Fiber Type Composition. Proteomics 2018; 18:e1700375. [PMID: 29350465 DOI: 10.1002/pmic.201700375] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 01/07/2018] [Indexed: 11/10/2022]
Abstract
Skeletal muscle insulin resistance, an early metabolic defect in the pathogenesis of type 2 diabetes (T2D), may be a cause or consequence of altered protein expression profiles. Proteomics technology offers enormous promise to investigate molecular mechanisms underlying pathologies, however, the analysis of skeletal muscle is challenging. Using state-of-the-art multienzyme digestion and filter-aided sample preparation (MED-FASP) and a mass spectrometry (MS)-based workflow, we performed a global proteomics analysis of skeletal muscle from leptin-deficient, obese, insulin resistant (ob/ob) and lean mice in mere two fractions in a short time (8 h per sample). We identified more than 6000 proteins with 118 proteins differentially regulated in obesity. This included protein kinases, phosphatases, and secreted and fiber type associated proteins. Enzymes involved in lipid metabolism in skeletal muscle from ob/ob mice were increased, providing evidence against reduced fatty acid oxidation in lipid-induced insulin resistance. Mitochondrial and peroxisomal proteins, as well as components of pyruvate and lactate metabolism, were increased. Finally, the skeletal muscle proteome from ob/ob mice displayed a shift toward the "slow fiber type." This detailed characterization of an obese rodent model of T2D demonstrates an efficient workflow for skeletal muscle proteomics, which may easily be adapted to other complex tissues.
Collapse
Affiliation(s)
- Milena Schönke
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Marie Björnholm
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Alexander V Chibalin
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Juleen R Zierath
- Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden.,Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Integrative Physiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Atul S Deshmukh
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Martinsried, Germany.,Novo Nordisk Foundation Center for Protein Research, Clinical Proteomics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
78
|
Menshikova EV, Ritov VB, Dube JJ, Amati F, Stefanovic-Racic M, Toledo FGS, Coen PM, Goodpaster BH. Calorie Restriction-induced Weight Loss and Exercise Have Differential Effects on Skeletal Muscle Mitochondria Despite Similar Effects on Insulin Sensitivity. J Gerontol A Biol Sci Med Sci 2017; 73:81-87. [PMID: 28158621 DOI: 10.1093/gerona/glw328] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 12/13/2016] [Indexed: 01/07/2023] Open
Abstract
Background Skeletal muscle insulin resistance and reduced mitochondrial capacity have both been reported to be affected by aging. The purpose of this study was to compare the effects of calorie restriction-induced weight loss and exercise on insulin resistance, skeletal muscle mitochondrial content, and mitochondrial enzyme activities in older overweight to obese individuals. Methods Insulin-stimulated rates of glucose disposal (Rd) were determined using the hyperinsulinemic euglycemic clamp before and after completing 16 weeks of either calorie restriction to induce weight loss (N = 7) or moderate exercise (N = 10). Mitochondrial volume density, mitochondria membrane content (cardiolipin), and activities of electron transport chain (rotenone-sensitive NADH-oxidase), tricarboxylic acid (TCA) cycle (citrate synthase) and β-oxidation pathway (β-hydroxyacyl CoA dehydrogenase; β-HAD) were measured in percutaneous biopsies of the vastus lateralis before and after the interventions. Results Rd improved similarly (18.2% ± 9.0%, p < .04) with both weight loss and exercise. Moderate exercise significantly increased mitochondrial volume density (14.5% ± 2.0%, p < .05), cardiolipin content (22.5% ± 13.4%, p < .05), rotenone-sensitive NADH-oxidase (65.7% ± 13.2%, p = .02) and β-HAD (30.7% ± 6.8%, p ≤ .03) activity, but not citrate synthase activity (10.1% ± 4.0%). In contrast, calorie restriction-induced weight loss did not affect mitochondrial content, NADH-oxidase or β-HAD, yet increased citrate synthase activity (44.1% ± 21.1%, p ≤ .04). Exercise (increase) or weight loss (decrease) induced a remodeling of cardiolipin with a small (2%-3%), but significant change in the relative content of tetralinoleoyl cardiolipin. Conclusion Exercise increases both mitochondria content and mitochondrial electron transport chain and fatty acid oxidation enzyme activities within skeletal muscle, while calorie restriction-induced weight loss did not, despite similar improvements in insulin sensitivity in overweight older adults.
Collapse
Affiliation(s)
- Elizaveta V Menshikova
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pennsylvania
| | - Vladimir B Ritov
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pennsylvania
| | - John J Dube
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pennsylvania
| | - Francesca Amati
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pennsylvania
| | - Maja Stefanovic-Racic
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pennsylvania
| | - Frederico G S Toledo
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pennsylvania
| | - Paul M Coen
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pennsylvania.,Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Sanford-Burnham Medical Research Institute, Orlando
| | - Bret H Goodpaster
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pennsylvania.,Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Sanford-Burnham Medical Research Institute, Orlando
| |
Collapse
|
79
|
Modi S, Yaluri N, Kokkola T, Laakso M. Plant-derived compounds strigolactone GR24 and pinosylvin activate SIRT1 and enhance glucose uptake in rat skeletal muscle cells. Sci Rep 2017; 7:17606. [PMID: 29242624 PMCID: PMC5730588 DOI: 10.1038/s41598-017-17840-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/22/2017] [Indexed: 12/16/2022] Open
Abstract
Insulin resistance is a characteristic finding in hyperglycaemia and type 2 diabetes. SIRT1 is a NAD+ dependent deacetylase that plays a central role in glucose homeostasis and energy metabolism. SIRT1 activators, including plant polyphenols such as resveratrol, improve insulin sensitivity in skeletal muscle tissue. We hypothesised that the novel plant-derived compounds, strigolactone and pinosylvin, beneficially enhance SIRT1 function, insulin signalling, glucose uptake, and mitochondrial biogenesis in skeletal muscle cells. Rat L6 skeletal muscle myotubes were treated with strigolactone analogue GR24 and pinosylvin. Resveratrol was included in experiments as a reference compound. We measured the effects of these compounds on SIRT1 function, insulin signalling, glucose uptake, mitochondrial biogenesis and gene expression profiles. Strigolactone GR24 upregulated and activated SIRT1 without activating AMPK, enhanced insulin signalling, glucose uptake, GLUT4 translocation and mitochondrial biogenesis. Pinosylvin activated SIRT1 in vitro and stimulated glucose uptake through the activation of AMPK. The regulation of SIRT1 by strigolactone GR24 and the activation of AMPK by pinosylvin may offer novel therapeutic approaches in the treatment of insulin resistance in skeletal muscle.
Collapse
Affiliation(s)
- Shalem Modi
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70210, Kuopio, Finland
| | - Nagendra Yaluri
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70210, Kuopio, Finland
| | - Tarja Kokkola
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70210, Kuopio, Finland
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70210, Kuopio, Finland. .,Department of Medicine, Kuopio University Hospital, 70210, Kuopio, Finland.
| |
Collapse
|
80
|
Wattacheril J, Rose KL, Hill S, Lanciault C, Murray CR, Washington K, Williams B, English W, Spann M, Clements R, Abumrad N, Flynn CR. Non-alcoholic fatty liver disease phosphoproteomics: A functional piece of the precision puzzle. Hepatol Res 2017; 47:1469-1483. [PMID: 28258704 PMCID: PMC5583035 DOI: 10.1111/hepr.12885] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/27/2017] [Accepted: 02/28/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND Molecular signaling events associated with the necroinflammatory changes in nonalcoholic steatohepatitis (NASH) are not well understood. AIMS To understand the molecular basis of NASH, we evaluated reversible phosphorylation events in hepatic tissue derived from Class III obese subjects by phosphoproteomic means with the aim of highlighting key regulatory pathways that distinguish NASH from non-alcoholic fatty liver disease (also known as simple steatosis; SS). MATERIALS & METHODS Class III obese subjects undergoing bariatric surgery underwent liver biopsy (eight normal patients, eight with simple steatosis, and eight NASH patients). Our strategy was unbiased, comparing global differences in liver protein reversible phosphorylation events across the 24 subjects. RESULTS Of the 3078 phosphorylation sites assigned (2465 phosphoserine, 445 phosphothreonine, 165 phosphotyrosine), 53 were altered by a factor of 2 among cohorts, and of those, 12 were significantly increased or decreased by ANOVA (P < 0.05). DISCUSSION Statistical analyses of canonical signaling pathways identified carbohydrate metabolism and RNA post-transcriptional modification among the most over-represented networks. CONCLUSION Collectively, these results raise the possibility of abnormalities in carbohydrate metabolism as an important trigger for the development of NASH, in parallel with already established abnormalities in lipid metabolism.
Collapse
Affiliation(s)
- Julia Wattacheril
- Center for Liver Disease and Transplantation, College of Physicians and Surgeons, Columbia University Medical Center, New York, New York, United States of America
| | - Kristie L. Rose
- Mass Spectrometry Research Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Salisha Hill
- Mass Spectrometry Research Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Christian Lanciault
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Clark R. Murray
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Kay Washington
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Brandon Williams
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Wayne English
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Matthew Spann
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Ronald Clements
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Naji Abumrad
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Charles Robb Flynn
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America,Corresponding author: Charles Flynn, PhD, Assistant Professor, Department of Surgery, Vanderbilt University, MRBIV Room 8465A, 2213 Garland Ave, Nashville, TN 37232,
| |
Collapse
|
81
|
Srisawat K, Shepherd SO, Lisboa PJ, Burniston JG. A Systematic Review and Meta-Analysis of Proteomics Literature on the Response of Human Skeletal Muscle to Obesity/Type 2 Diabetes Mellitus (T2DM) Versus Exercise Training. Proteomes 2017; 5:proteomes5040030. [PMID: 29137117 PMCID: PMC5748565 DOI: 10.3390/proteomes5040030] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/02/2017] [Accepted: 11/06/2017] [Indexed: 12/15/2022] Open
Abstract
We performed a systematic review and meta-analysis of proteomics literature that reports human skeletal muscle responses in the context of either pathological decline associated with obesity/T2DM and physiological adaptations to exercise training. Literature was collected from PubMed and DOAJ databases following PRISMA guidelines using the search terms ‘proteom*’, and ‘skeletal muscle’ combined with either ‘obesity, insulin resistance, diabetes, impaired glucose tolerance’ or ‘exercise, training’. Eleven studies were included in the systematic review, and meta-analysis was performed on a sub-set (four studies) of the reviewed literature that reported the necessary primary data. The majority of proteins (n = 73) more abundant in the muscle of obese/T2DM individuals were unique to this group and not reported to be responsive to exercise training. The main response of skeletal muscle to exercise training was a greater abundance of proteins of the mitochondrial electron transport chain, tricarboxylic acid cycle and mitochondrial respiratory chain complex I assembly. In total, five proteins were less abundant in muscle of obese/T2DM individuals and were also reported to be more abundant in the muscle of endurance-trained individuals, suggesting one of the major mechanisms of exercise-induced protection against the deleterious effects of obesity/T2DM occurs at complex I of the electron transport chain.
Collapse
Affiliation(s)
- Kanchana Srisawat
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK.
- Bureau of Non-Communicable Diseases, Department of Diseases Control, Ministry of Public Health, Nonthaburi 11000, Thailand.
| | - Sam O Shepherd
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK.
| | - Paulo J Lisboa
- Department of Applied Mathematics, Liverpool John Moores University, Liverpool L3 3AF, UK.
| | - Jatin G Burniston
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK.
| |
Collapse
|
82
|
Hoffmann C, Weigert C. Skeletal Muscle as an Endocrine Organ: The Role of Myokines in Exercise Adaptations. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a029793. [PMID: 28389517 DOI: 10.1101/cshperspect.a029793] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Exercise stimulates the release of proteins with autocrine, paracrine, or endocrine functions produced in skeletal muscle, termed myokines. Based on the current state of knowledge, the major physiological function of myokines is to protect the functionality and to enhance the exercise capacity of skeletal muscle. Myokines control adaptive processes in skeletal muscle by acting as paracrine regulators of fuel oxidation, hypertrophy, angiogenesis, inflammatory processes, and regulation of the extracellular matrix. Endocrine functions attributed to myokines are involved in body weight regulation, low-grade inflammation, insulin sensitivity, suppression of tumor growth, and improvement of cognitive function. Muscle-derived regulatory RNAs and metabolites, as well as the design of modified myokines, are promising novel directions for treatment of chronic diseases.
Collapse
Affiliation(s)
- Christoph Hoffmann
- Division of Pathobiochemistry and Clinical Chemistry, Department of Internal Medicine IV, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Cora Weigert
- Division of Pathobiochemistry and Clinical Chemistry, Department of Internal Medicine IV, University Hospital Tübingen, 72076 Tübingen, Germany.,Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, 72076 Tübingen, Germany.,German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| |
Collapse
|
83
|
Day SE, Garcia LA, Coletta RL, Campbell LE, Benjamin TR, De Filippis EA, Madura JA, Mandarino LJ, Roust LR, Coletta DK. Alterations of sorbin and SH3 domain containing 3 (SORBS3) in human skeletal muscle following Roux-en-Y gastric bypass surgery. Clin Epigenetics 2017; 9:96. [PMID: 28883895 PMCID: PMC5581422 DOI: 10.1186/s13148-017-0396-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/24/2017] [Indexed: 12/14/2022] Open
Abstract
Background Obesity is a disease that is caused by genetic and environmental factors. However, epigenetic mechanisms of obesity are less well known. DNA methylation provides a mechanism whereby environmental factors can influence gene transcription. The aim of our study was to investigate skeletal muscle DNA methylation of sorbin and SH3 domain containing 3 (SORBS3) with weight loss induced by Roux-en-Y gastric bypass (RYGB). Results Previously, we had shown increased methylation (5.0 to 24.4%) and decreased gene expression (fold change − 1.9) of SORBS3 with obesity (BMI > 30 kg/m2) compared to lean controls. In the present study, basal muscle biopsies were obtained from seven morbidly obese (BMI > 40 kg/m2) female subjects pre- and 3 months post-RYGB surgery, in combination with euglycemic-hyperinsulinemic clamps to assess insulin sensitivity. We identified 30 significantly altered promoter and untranslated region methylation sites in SORBS3 using reduced representation bisulfite sequencing (RRBS). Twenty-nine of these sites were decreased (− 5.6 to − 24.2%) post-RYGB compared to pre-RYGB. We confirmed the methylation in 2 (Chr.8:22,423,690 and Chr.8:22,423,702) of the 29 decreased SORBS3 sites using pyrosequencing. This decreased methylation was associated with an increase in SORBS3 gene expression (fold change + 1.7) post-surgery. In addition, we demonstrated that SORBS3 promoter methylation in vitro significantly alters reporter gene expression (P < 0.0001). Two of the SORBS3 methylation sites (Chr.8:22,423,111 and Chr.8:22,423,205) were strongly correlated with fasting plasma glucose levels (r = 0.9, P = 0.00009 and r = 0.8, P = 0.0010). Changes in SORBS3 gene expression post-surgery were correlated with obesity measures and fasting insulin levels (r = 0.5 to 0.8; P < 0.05). Conclusions These results demonstrate that SORBS3 methylation and gene expression are altered in obesity and restored to normal levels through weight loss induced by RYGB surgery.
Collapse
Affiliation(s)
- Samantha E Day
- School of Life Sciences, Arizona State University, Tempe, AZ USA
| | - Luis A Garcia
- Department of Medicine, The University of Arizona College of Medicine, PO Box 245035, 1501 N. Campbell Ave, Tucson, AZ 85724-5035 USA
| | - Richard L Coletta
- Department of Medicine, The University of Arizona College of Medicine, PO Box 245035, 1501 N. Campbell Ave, Tucson, AZ 85724-5035 USA
| | | | - Tonya R Benjamin
- Endocrinology Department, Mayo Clinic in Arizona, Scottsdale, AZ USA
| | | | - James A Madura
- Endocrinology Department, Mayo Clinic in Arizona, Scottsdale, AZ USA
| | - Lawrence J Mandarino
- Department of Medicine, The University of Arizona College of Medicine, PO Box 245035, 1501 N. Campbell Ave, Tucson, AZ 85724-5035 USA
| | - Lori R Roust
- Endocrinology Department, Mayo Clinic in Arizona, Scottsdale, AZ USA
| | - Dawn K Coletta
- Department of Medicine, The University of Arizona College of Medicine, PO Box 245035, 1501 N. Campbell Ave, Tucson, AZ 85724-5035 USA.,Department of Basic Medical Sciences, The University of Arizona College of Medicine - Phoenix, Phoenix, AZ USA
| |
Collapse
|
84
|
Tobina T, Mori Y, Doi Y, Nakayama F, Kiyonaga A, Tanaka H. Peroxisome proliferator-activated receptor gamma co-activator 1 gene Gly482Ser polymorphism is associated with the response of low-density lipoprotein cholesterol concentrations to exercise training in elderly Japanese. J Physiol Sci 2017; 67:595-602. [PMID: 27699582 PMCID: PMC10717479 DOI: 10.1007/s12576-016-0491-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/20/2016] [Indexed: 01/20/2023]
Abstract
Muscle peroxisome proliferator-activated receptor gamma co-activator 1 (PGC-1)α gene expression is influenced by the Gly482Ser gene polymorphism, which is a candidate genetic risk factor for diabetes mellitus and obesity. This study investigated the effects of PGC-1 gene Gly482Ser polymorphisms on alterations in glucose and lipid metabolism induced by exercise training. A 12-week intervention study was performed for 119 participants who were more than 65 years of age and completed exercise training at lactate threshold intensity. Total cholesterol and low-density lipoprotein cholesterol were significantly reduced in Gly/Gly but not in Gly/Ser and Ser/Ser participants after exercise. The Gly/Gly genotype of the PGC-1 gene Gly482Ser polymorphism influences the effects of moderate-intensity exercise training on low-density lipoprotein cholesterol and total cholesterol concentrations in older people.
Collapse
Affiliation(s)
- Takuro Tobina
- Faculty of Nursing and Nutrition, University of Nagasaki, Manabino1-1-1, Nagayo-cho, Nishisonogi-gun, Nagasaki, 851-2195, Japan.
- The Fukuoka University Institute for Physical Activity, Fukuoka University, Fukuoka, Japan.
| | - Yukari Mori
- Faculty of Sports Science, Fukuoka University, Fukuoka, Japan
| | - Yukiko Doi
- The Fukuoka University Institute for Physical Activity, Fukuoka University, Fukuoka, Japan
- Faculty of Commerce, Department of Tourism Industry, Kyushu Sangyo University, Fukuoka, Japan
| | - Fuki Nakayama
- Faculty of Sports Science, Fukuoka University, Fukuoka, Japan
| | - Akira Kiyonaga
- The Fukuoka University Institute for Physical Activity, Fukuoka University, Fukuoka, Japan
- Faculty of Sports Science, Fukuoka University, Fukuoka, Japan
| | - Hiroaki Tanaka
- The Fukuoka University Institute for Physical Activity, Fukuoka University, Fukuoka, Japan
- Faculty of Sports Science, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
85
|
Capitanio D, Moriggi M, Gelfi C. Mapping the human skeletal muscle proteome: progress and potential. Expert Rev Proteomics 2017; 14:825-839. [PMID: 28780899 DOI: 10.1080/14789450.2017.1364996] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Human skeletal muscle represents 40% of our body mass and deciphering its proteome composition to further understand mechanisms regulating muscle function under physiological and pathological conditions has proved a challenge. The inter-individual variability, the presence of structurally and functionally different muscle types and the high protein dynamic range require carefully selected methodologies for the assessment of the muscle proteome. Furthermore, physiological studies are understandingly hampered by ethical issues related to biopsies on healthy subjects, making it difficult to recruit matched controls essential for comparative studies. Areas covered: This review critically analyses studies performed on muscle to date and identifies what still remains unknown or poorly investigated in physiological and pathological states, such as training, aging, metabolic disorders and muscular dystrophies. Expert commentary: Efforts should be made on biological fluid analyses targeting low abundant/low molecular weight fragments generated from muscle cell disruption to improve diagnosis and clinical monitoring. From a methodological point of view, particular attention should be paid to improve the characterization of intact proteins and unknown post translational modifications to better understand the molecular mechanisms of muscle disorders.
Collapse
Affiliation(s)
- Daniele Capitanio
- a Department of Biomedical Sciences for Health , University of Milan , Segrate , Milan , Italy
| | - Manuela Moriggi
- a Department of Biomedical Sciences for Health , University of Milan , Segrate , Milan , Italy
| | - Cecilia Gelfi
- a Department of Biomedical Sciences for Health , University of Milan , Segrate , Milan , Italy
| |
Collapse
|
86
|
Xie X, Sinha S, Yi Z, Langlais PR, Madan M, Bowen BP, Willis W, Meyer C. Role of adipocyte mitochondria in inflammation, lipemia and insulin sensitivity in humans: effects of pioglitazone treatment. Int J Obes (Lond) 2017; 42:ijo2017192. [PMID: 29087390 PMCID: PMC6021211 DOI: 10.1038/ijo.2017.192] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 07/19/2017] [Accepted: 08/02/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND/OBJECTIVES To gain further insight into the role of adipocyte mitochondria in systemic lipid metabolism, inflammation and insulin sensitivity in humans and to provide a better understanding of the mechanisms of action of the peroxisome proliferator-activated receptor gamma agonist pioglitazone. SUBJECTS/METHODS Mitochondrial DNA (mtDNA) copy number, mitochondrial distribution, mitochondrial and overall cellular protein abundances as well as intrinsic mitochondrial function of subcutaneous adipocytes were assessed by real-time quantitative PCR, MitoTracker staining, global proteomics analyses and NADH cytochrome c reductase activity in insulin-sensitive, normal-glucose-tolerant (NGT) individuals and age, gender, adiposity-matched insulin-resistant individuals with abnormal glucose tolerant (AGT) before and after 3 months of pioglitazone treatment. RESULTS mtDNA copy number/adipocyte and mtDNA copy number/adipocyte volume were ~55% and ~4-fold lower in AGT than in NGT, respectively, and correlated positively with the M-value of euglycemic clamps and high-density lipoprotein, and negatively with fasting plasma triglyceride, tumor necrosis factor-α and interleukin-6 levels in the entire cohort. mtDNA copy number/adipocyte volume also correlated positively with plasma adiponectin. Pioglitazone, which improved insulin sensitivity, plasma lipids and inflammation, increased the mitochondrial copy number, and led to a redistribution of mitochondria from a punctate to a more reticular pattern as observed in NGT. This was accompanied by disproportionately increased abundances of mitochondrial proteins, including those involved in fat oxidation and triglyceride synthesis. Pioglitazone also increased the abundance of collagen VI and decreased the abundance of cytoskeletal proteins. NADH cytochrome c reductase activity of isolated adipocyte mitochondria was similar in AGT and NGT and unaltered by pioglitazone. CONCLUSIONS Adipocyte mitochondria are deficient in insulin-resistant individuals and correlate with systemic lipid metabolism, inflammation and insulin sensitivity. Pioglitazone induces mitochondrial biogenesis and reorganization as well as the synthesis of mitochondrial proteins including those critical for lipid metabolism. It also alters extracellular matrix and cytoskeletal proteins. The intrinsic function of adipocyte mitochondria appears unaffected in insulin resistance and by pioglitazone.International Journal of Obesity advance online publication, 31 October 2017; doi:10.1038/ijo.2017.192.
Collapse
Affiliation(s)
- X Xie
- Center for Metabolic Biology, Arizona State University, Tempe, AZ, USA
| | - S Sinha
- Center for Metabolic Biology, Arizona State University, Tempe, AZ, USA
| | - Z Yi
- Center for Metabolic Biology, Arizona State University, Tempe, AZ, USA
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy/Health Sciences, Wayne State University, Detroit, MI, USA
| | - PR Langlais
- Center for Metabolic Biology, Arizona State University, Tempe, AZ, USA
| | - M Madan
- Center for Metabolic Biology, Arizona State University, Tempe, AZ, USA
| | - BP Bowen
- Center for Metabolic Biology, Arizona State University, Tempe, AZ, USA
| | - W Willis
- Center for Metabolic Biology, Arizona State University, Tempe, AZ, USA
| | - C Meyer
- Center for Metabolic Biology, Arizona State University, Tempe, AZ, USA
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL, USA
| |
Collapse
|
87
|
Potential contributions of skeletal muscle contractile dysfunction to altered biomechanics in obesity. Gait Posture 2017; 56:100-107. [PMID: 28528004 DOI: 10.1016/j.gaitpost.2017.05.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 05/04/2017] [Accepted: 05/06/2017] [Indexed: 02/08/2023]
Abstract
Obesity alters whole body kinematics and joint kinetics during activities of daily living which are thought to contribute to increased risk of musculoskeletal injury, development of lower extremity joint osteoarthritis (OA), and physical disability. To date, it has widely been accepted that excess adipose tissue mass is the major driver of biomechanical alterations in obesity. However, it is well established that obesity is a systemic disease affecting numerous, if not all, organ systems of the body. Indeed, obesity elicits numerous adaptations within skeletal muscle, including alterations in muscle structure (ex. myofiber size, architecture, lipid accumulation, and fiber type), recruitment patterns, and contractile function (ex. force production, power production, and fatigue) which may influence kinematics and joint kinetics. This review discusses the specific adaptations of skeletal muscle to obesity, potential mechanisms underlying these adaptations, and how these adaptations may affect biomechanics.
Collapse
|
88
|
Dietary leucine supplementation alters energy metabolism and induces slow-to-fast transitions in longissimus dorsi muscle of weanling piglets. Br J Nutr 2017. [DOI: 10.1017/s0007114517001209] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
AbstractLeucine plays an important role in promoting muscle protein synthesis and muscle remodelling. However, what percentage of leucine is appropriate in creep feed and what proteome profile alterations are caused by dietary leucine in the skeletal muscle of piglets remain elusive. In this case, we applied isobaric tags for relative and absolute quantitation to analyse the proteome profile of the longissimus dorsi muscles of weanling piglets fed a normal leucine diet (NL; 1·66 % leucine) and a high-leucine diet (HL; 2·1 % leucine). We identified 157 differentially expressed proteins between these two groups. Bioinformatics analysis of these proteins exhibited the suppression of oxidative phosphorylation and fatty acid β-oxidation, as well as the activation of glycolysis, in the HL group. For further confirmation, we identified that SDHB, ATP5F1, ACADM and HADHB were significantly down-regulated (P<0·01, except ATP5F1, P<0·05), whereas the glycolytic enzyme pyruvate kinase was significantly up-regulated (P<0·05) in the HL group. We also show that enhanced muscle protein synthesis and the transition from slow-to-fast fibres are altered by leucine. Together, these results indicate that leucine may alter energy metabolism and promote slow-to-fast transitions in the skeletal muscle of weanling piglets.
Collapse
|
89
|
Patel DP, Krausz KW, Xie C, Beyoğlu D, Gonzalez FJ, Idle JR. Metabolic profiling by gas chromatography-mass spectrometry of energy metabolism in high-fat diet-fed obese mice. PLoS One 2017; 12:e0177953. [PMID: 28520815 PMCID: PMC5433781 DOI: 10.1371/journal.pone.0177953] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 05/05/2017] [Indexed: 01/12/2023] Open
Abstract
A novel, selective and sensitive single-ion monitoring (SIM) gas chromatography-mass spectrometry (GCMS) method was developed and validated for the determination of energy metabolites related to glycolysis, the tricarboxylic acid (TCA) cycle, glutaminolysis, and fatty acid β-oxidation. This assay used N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide (MTBSTFA) containing 1% tert-butyldimethylchlorosilane (TBDMCS) as derivatizing reagent and was highly reproducible, sensitive, specific and robust. The assay was used to analyze liver tissue and serum from C57BL/6N obese mice fed a high-fat diet (HFD) and C57BL/6N mice fed normal chow for 8 weeks. HFD-fed mice serum displayed statistically significantly reduced concentrations of pyruvate, citrate, succinate, fumarate, and 2-oxoglutarate, with an elevated concentration of pantothenic acid. In liver tissue, HFD-fed mice exhibited depressed levels of glycolysis end-products pyruvate and lactate, glutamate, and the TCA cycle intermediates citrate, succinate, fumarate, malate, and oxaloacetate. Pantothenate levels were 3-fold elevated accompanied by a modest increased gene expression of Scl5a6 that encodes the pantothenate transporter SLC5A6. Since both glucose and fatty acids inhibit coenzyme A synthesis from pantothenate, it was concluded that these data were consistent with downregulated fatty acid β-oxidation, glutaminolysis, glycolysis, and TCA cycle activity, due to impaired anaplerosis. The novel SIM GCMS assay provided new insights into metabolic effects of HFD in mice.
Collapse
Affiliation(s)
- Daxesh P. Patel
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Kristopher W. Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Cen Xie
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Diren Beyoğlu
- Hepatology Research Group, Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Jeffrey R. Idle
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
- Hepatology Research Group, Department of Clinical Research, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
90
|
Proteomic signature of muscle fibre hyperplasia in response to faba bean intake in grass carp. Sci Rep 2017; 7:45950. [PMID: 28367976 PMCID: PMC5377455 DOI: 10.1038/srep45950] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 03/07/2017] [Indexed: 11/19/2022] Open
Abstract
Fish muscle growth is important for the rapidly developing global aquaculture industry, particularly with respect to production and quality. Changes in muscle fibre size are accomplished by altering the balance between protein synthesis and proteolysis. However, our understanding regarding the effects of different protein sources on fish muscle proteins is still limited. Here we report on the proteomic profile of muscle fibre hyperplasia in grass carp fed only with whole faba bean. From the results, a total of 99 significantly changed proteins after muscle hyperplasia increase were identified (p < 0.05, ratio <0.5 or >2). Protein–protein interaction analysis demonstrated the presence of a network containing 56 differentially expressed proteins, and muscle fibre hyperplasia was closely related to a protein–protein network of 12 muscle component proteins. Muscle fibre hyperplasia was also accompanied by decreased abundance in the fatty acid degradation and calcium signalling pathways. In addition, metabolism via the pentose phosphate pathway decreased in grass carp after ingestion of faba bean, leading to haemolysis. These findings could provide a reference for the prevention and treatment of human glucose-6-phosphate dehydrogenase deficiency (“favism”).
Collapse
|
91
|
Spahis S, Borys JM, Levy E. Metabolic Syndrome as a Multifaceted Risk Factor for Oxidative Stress. Antioxid Redox Signal 2017; 26:445-461. [PMID: 27302002 DOI: 10.1089/ars.2016.6756] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE Metabolic syndrome (MetS) is associated with a greater risk of diabetes and cardiovascular diseases. It is estimated that this multifactorial condition affects 20%-30% of the world's population. A detailed understanding of MetS mechanisms is crucial for the development of effective prevention strategies and adequate intervention tools that could curb its increasing prevalence and limit its comorbidities, particularly in younger age groups. With advances in basic redox biology, oxidative stress (OxS) involvement in the complex pathophysiology of MetS has become widely accepted. Nevertheless, its clear association with and causative effects on MetS require further elucidation. Recent Advances: Although a better understanding of the causes, risks, and effects of MetS is essential, studies suggest that oxidant/antioxidant imbalance is a key contributor to this condition. OxS is now understood to be a major underlying mechanism for mitochondrial dysfunction, ectopic lipid accumulation, and gut microbiota impairment. CRITICAL ISSUES Further studies, particularly in the field of translational research, are clearly required to understand and control the production of reactive oxygen species (ROS) levels, especially in the mitochondria, since the various therapeutic trials conducted to date have not targeted this major ROS-generating system, aimed to delay MetS onset, or prevent its progression. FUTURE DIRECTIONS Multiple relevant markers need to be identified to clarify the role of ROS in the etiology of MetS. Future clinical trials should provide important proof of concept for the effectiveness of antioxidants as useful therapeutic approaches to simultaneously counteract mitochondrial OxS, alleviate MetS symptoms, and prevent complications. Antioxid. Redox Signal. 26, 445-461.
Collapse
Affiliation(s)
- Schohraya Spahis
- 1 Research Center , Ste-Justine MUHC, Montreal, Canada .,2 Department of Nutrition, Université de Montréal , Montreal, Canada
| | | | - Emile Levy
- 1 Research Center , Ste-Justine MUHC, Montreal, Canada .,2 Department of Nutrition, Université de Montréal , Montreal, Canada .,3 EPODE International Network , Paris, France
| |
Collapse
|
92
|
Gonzalez-Freire M, Semba RD, Ubaida-Mohien C, Fabbri E, Scalzo P, Højlund K, Dufresne C, Lyashkov A, Ferrucci L. The Human Skeletal Muscle Proteome Project: a reappraisal of the current literature. J Cachexia Sarcopenia Muscle 2017; 8:5-18. [PMID: 27897395 PMCID: PMC5326819 DOI: 10.1002/jcsm.12121] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/11/2016] [Accepted: 04/05/2016] [Indexed: 12/14/2022] Open
Abstract
Skeletal muscle is a large organ that accounts for up to half the total mass of the human body. A progressive decline in muscle mass and strength occurs with ageing and in some individuals configures the syndrome of 'sarcopenia', a condition that impairs mobility, challenges autonomy, and is a risk factor for mortality. The mechanisms leading to sarcopenia as well as myopathies are still little understood. The Human Skeletal Muscle Proteome Project was initiated with the aim to characterize muscle proteins and how they change with ageing and disease. We conducted an extensive review of the literature and analysed publically available protein databases. A systematic search of peer-reviewed studies was performed using PubMed. Search terms included 'human', 'skeletal muscle', 'proteome', 'proteomic(s)', and 'mass spectrometry', 'liquid chromatography-mass spectrometry (LC-MS/MS)'. A catalogue of 5431 non-redundant muscle proteins identified by mass spectrometry-based proteomics from 38 peer-reviewed scientific publications from 2002 to November 2015 was created. We also developed a nosology system for the classification of muscle proteins based on localization and function. Such inventory of proteins should serve as a useful background reference for future research on changes in muscle proteome assessed by quantitative mass spectrometry-based proteomic approaches that occur with ageing and diseases. This classification and compilation of the human skeletal muscle proteome can be used for the identification and quantification of proteins in skeletal muscle to discover new mechanisms for sarcopenia and specific muscle diseases that can be targeted for the prevention and treatment.
Collapse
Affiliation(s)
| | - Richard D Semba
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Elisa Fabbri
- National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Paul Scalzo
- National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Kurt Højlund
- Department of Endocrinology, Odense University Hospital, Odense, Denmark.,Institute of Clinical Research and Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | - Alexey Lyashkov
- National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Luigi Ferrucci
- National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
93
|
Day SE, Coletta RL, Kim JY, Garcia LA, Campbell LE, Benjamin TR, Roust LR, De Filippis EA, Mandarino LJ, Coletta DK. Potential epigenetic biomarkers of obesity-related insulin resistance in human whole-blood. Epigenetics 2017; 12:254-263. [PMID: 28106509 DOI: 10.1080/15592294.2017.1281501] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Obesity can increase the risk of complex metabolic diseases, including insulin resistance. Moreover, obesity can be caused by environmental and genetic factors. However, the epigenetic mechanisms of obesity are not well defined. Therefore, the identification of novel epigenetic biomarkers of obesity allows for a more complete understanding of the disease and its underlying insulin resistance. The aim of our study was to identify DNA methylation changes in whole-blood that were strongly associated with obesity and insulin resistance. Whole-blood was obtained from lean (n = 10; BMI = 23.6 ± 0.7 kg/m2) and obese (n = 10; BMI = 34.4 ± 1.3 kg/m2) participants in combination with euglycemic hyperinsulinemic clamps to assess insulin sensitivity. We performed reduced representation bisulfite sequencing on genomic DNA isolated from the blood. We identified 49 differentially methylated cytosines (DMCs; q < 0.05) that were altered in obese compared with lean participants. We identified 2 sites (Chr.21:46,957,981 and Chr.21:46,957,915) in the 5' untranslated region of solute carrier family 19 member 1 (SLC19A1) with decreased methylation in obese participants (lean 0.73 ± 0.11 vs. obese 0.09 ± 0.05; lean 0.68 ± 0.10 vs. obese 0.09 ± 0.05, respectively). These 2 DMCs identified by obesity were also significantly predicted by insulin sensitivity (r = 0.68, P = 0.003; r = 0.66; P = 0.004). In addition, we performed a differentially methylated region (DMR) analysis and demonstrated a decrease in methylation of Chr.21:46,957,915-46,958,001 in SLC19A1 of -34.9% (70.4% lean vs. 35.5% obese). The decrease in whole-blood SLC19A1 methylation in our obese participants was similar to the change observed in skeletal muscle (Chr.21:46,957,981, lean 0.70 ± 0.09 vs. obese 0.31 ± 0.11 and Chr.21:46,957,915, lean 0.72 ± 0.11 vs. obese 0.31 ± 0.13). Pyrosequencing analysis further demonstrated a decrease in methylation at Chr.21:46,957,915 in both whole-blood (lean 0.71 ± 0.10 vs. obese 0.18 ± 0.06) and skeletal muscle (lean 0.71 ± 0.10 vs. obese 0.30 ± 0.11). Our findings demonstrate a new potential epigenetic biomarker, SLC19A1, for obesity and its underlying insulin resistance.
Collapse
Affiliation(s)
- Samantha E Day
- a School of Life Sciences , Arizona State University , Tempe , AZ , USA
| | - Richard L Coletta
- b School for the Science of Health Care Delivery , Arizona State University , Phoenix , AZ , USA
| | - Joon Young Kim
- c Division of Weight Management and Wellness , Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center , Pittsburgh , PA , USA
| | - Luis A Garcia
- b School for the Science of Health Care Delivery , Arizona State University , Phoenix , AZ , USA
| | - Latoya E Campbell
- a School of Life Sciences , Arizona State University , Tempe , AZ , USA
| | - Tonya R Benjamin
- d Endocrinology Department , Mayo Clinic in Arizona , Scottsdale , AZ , USA
| | - Lori R Roust
- d Endocrinology Department , Mayo Clinic in Arizona , Scottsdale , AZ , USA
| | | | - Lawrence J Mandarino
- e Department of Medicine , The University of Arizona College of Medicine , Tucson , AZ , USA
| | - Dawn K Coletta
- e Department of Medicine , The University of Arizona College of Medicine , Tucson , AZ , USA.,f Department of Basic Medical Sciences , The University of Arizona College of Medicine , Phoenix , AZ , USA
| |
Collapse
|
94
|
Deshmukh AB, Bai S, T. A, Kazi RS, Banarjee R, Rathore R, MV V, HV T, Kumar Bhat M, MJ K. Methylglyoxal attenuates insulin signaling and downregulates the enzymes involved in cholesterol biosynthesis. MOLECULAR BIOSYSTEMS 2017; 13:2338-2349. [DOI: 10.1039/c7mb00305f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Methylglyoxal (MG) is a highly reactive dicarbonyl known to be elevated under the hyperglycemic conditions of diabetes and is implicated in the development of diabetic complications.
Collapse
Affiliation(s)
| | | | - Aarthy T.
- CSIR-National Chemical Laboratory
- Pune-411008
- India
| | | | | | | | | | | | | | - Kulkarni MJ
- CSIR-National Chemical Laboratory
- Pune-411008
- India
| |
Collapse
|
95
|
Campbell LE, Langlais PR, Day SE, Coletta RL, Benjamin TR, De Filippis EA, Madura JA, Mandarino LJ, Roust LR, Coletta DK. Identification of Novel Changes in Human Skeletal Muscle Proteome After Roux-en-Y Gastric Bypass Surgery. Diabetes 2016; 65:2724-31. [PMID: 27207528 PMCID: PMC5001187 DOI: 10.2337/db16-0004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 04/29/2016] [Indexed: 12/18/2022]
Abstract
The mechanisms of metabolic improvements after Roux-en-Y gastric bypass (RYGB) surgery are not entirely clear. Therefore, the aim of our study was to investigate the role of obesity and RYGB on the human skeletal muscle proteome. Basal muscle biopsies were obtained from seven obese (BMI >40 kg/m(2)) female subjects (45.1 ± 3.6 years) pre- and 3 months post-RYGB, and euglycemic-hyperinsulinemic clamps were used to assess insulin sensitivity. Four age-matched (48.5 ± 4.7 years) lean (BMI <25 kg/m(2)) females served as control subjects. We performed quantitative mass spectrometry and microarray analyses on protein and RNA isolated from the muscle biopsies. Significant improvements in fasting plasma glucose (104.2 ± 7.8 vs. 86.7 ± 3.1 mg/dL) and BMI (42.1 ± 2.2 vs. 35.3 ± 1.8 kg/m(2)) were demonstrated in the pre- versus post-RYGB, both P < 0.05. Proteomic analysis identified 2,877 quantifiable proteins. Of these, 395 proteins were significantly altered in obesity before surgery, and 280 proteins differed significantly post-RYGB. Post-RYGB, 49 proteins were returned to normal levels after surgery. KEGG pathway analysis revealed a decreased abundance in ribosomal and oxidative phosphorylation proteins in obesity, and a normalization of ribosomal proteins post-RYGB. The transcriptomic data confirmed the normalization of the ribosomal proteins. Our results provide evidence that obesity and RYGB have a dynamic effect on the skeletal muscle proteome.
Collapse
Affiliation(s)
| | | | - Samantha E Day
- School of Life Sciences, Arizona State University, Tempe, AZ
| | - Richard L Coletta
- School for the Science of Health Care Delivery, Arizona State University, Phoenix, AZ
| | | | | | | | - Lawrence J Mandarino
- Mayo Clinic, Scottsdale, AZ School for the Science of Health Care Delivery, Arizona State University, Phoenix, AZ
| | | | - Dawn K Coletta
- Mayo Clinic, Scottsdale, AZ School for the Science of Health Care Delivery, Arizona State University, Phoenix, AZ Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ
| |
Collapse
|
96
|
Prolonged Exposure of Primary Human Muscle Cells to Plasma Fatty Acids Associated with Obese Phenotype Induces Persistent Suppression of Muscle Mitochondrial ATP Synthase β Subunit. PLoS One 2016; 11:e0160057. [PMID: 27532680 PMCID: PMC4988792 DOI: 10.1371/journal.pone.0160057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/13/2016] [Indexed: 01/12/2023] Open
Abstract
Our previous studies show reduced abundance of the β-subunit of mitochondrial H+-ATP synthase (β-F1-ATPase) in skeletal muscle of obese individuals. The β-F1-ATPase forms the catalytic core of the ATP synthase, and it is critical for ATP production in muscle. The mechanism(s) impairing β-F1-ATPase metabolism in obesity, however, are not completely understood. First, we studied total muscle protein synthesis and the translation efficiency of β-F1-ATPase in obese (BMI, 36±1 kg/m2) and lean (BMI, 22±1 kg/m2) subjects. Both total protein synthesis (0.044±0.006 vs 0.066±0.006%·h-1) and translation efficiency of β-F1-ATPase (0.0031±0.0007 vs 0.0073±0.0004) were lower in muscle from the obese subjects when compared to the lean controls (P<0.05). We then evaluated these same responses in a primary cell culture model, and tested the specific hypothesis that circulating non-esterified fatty acids (NEFA) in obesity play a role in the responses observed in humans. The findings on total protein synthesis and translation efficiency of β-F1-ATPase in primary myotubes cultured from a lean subject, and after exposure to NEFA extracted from serum of an obese subject, were similar to those obtained in humans. Among candidate microRNAs (i.e., non-coding RNAs regulating gene expression), we identified miR-127-5p in preventing the production of β-F1-ATPase. Muscle expression of miR-127-5p negatively correlated with β-F1-ATPase protein translation efficiency in humans (r = - 0.6744; P<0.01), and could be modeled in vitro by prolonged exposure of primary myotubes derived from the lean subject to NEFA extracted from the obese subject. On the other hand, locked nucleic acid inhibitor synthesized to target miR-127-5p significantly increased β-F1-ATPase translation efficiency in myotubes (0.6±0.1 vs 1.3±0.3, in control vs exposure to 50 nM inhibitor; P<0.05). Our experiments implicate circulating NEFA in obesity in suppressing muscle protein metabolism, and establish impaired β-F1-ATPase translation as an important consequence of obesity.
Collapse
|
97
|
Changes in Pre- and Post-Exercise Gene Expression among Patients with Chronic Kidney Disease and Kidney Transplant Recipients. PLoS One 2016; 11:e0160327. [PMID: 27518102 PMCID: PMC4982681 DOI: 10.1371/journal.pone.0160327] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/18/2016] [Indexed: 11/19/2022] Open
Abstract
Introduction Decreased insulin sensitivity blunts the normal increase in gene expression from skeletal muscle after exercise. In addition, chronic inflammation decreases insulin sensitivity. Chronic kidney disease (CKD) is an inflammatory state. How CKD and, subsequently, kidney transplantation affects skeletal muscle gene expression after exercise are unknown. Methods Study cohort: non-diabetic male/female 4/1, age 52±2 years, with end-stage CKD who underwent successful kidney transplantation. The following were measured both pre-transplant and post-transplant and compared to normals: Inflammatory markers, euglycemic insulin clamp studies determine insulin sensitivity, and skeletal muscle biopsies performed before and within 30 minutes after an acute exercise protocol. Microarray analyses were performed on the skeletal muscle using the 4x44K Whole Human Genome Microarrays. Since nuclear factor of activated T cells (NFAT) plays an important role in T cell activation and calcineurin inhibitors are mainstay immunosuppression, calcineurin/NFAT pathway gene expression was compared at rest and after exercise. Log transformation was performed to prevent skewing of data and regression analyses comparing measures pre- and post-transplant performed. Result Markers of inflammation significantly improved post-transplantation. Insulin infusion raised glucose disposal slightly lower post-transplant compared to pre-transplant, but not significantly, thus concluding differences in insulin sensitivity were similar. The overall pattern of gene expression in response to exercise was reduced both pre-and post-transplant compared to healthy volunteers. Although significant changes were observed among NFAT/Calcineurin gene at rest and after exercise in normal cohort, there were no significant differences comparing NFAT/calcineurin pathway gene expression pre- and post-transplant. Conclusions Despite an improvement in serum inflammatory markers, no significant differences in glucose disposal were observed post-transplant. The reduced skeletal muscle gene expression, including NFAT/calcineurin gene expression, in response to a single bout of exercise was not improved post-transplant. This study suggests that the improvements in inflammatory mediators post-transplant are unrelated to changes of NFAT/calcineurin gene expression.
Collapse
|
98
|
Kruse R, Højlund K. Mitochondrial phosphoproteomics of mammalian tissues. Mitochondrion 2016; 33:45-57. [PMID: 27521611 DOI: 10.1016/j.mito.2016.08.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 08/08/2016] [Accepted: 08/09/2016] [Indexed: 12/31/2022]
Abstract
Mitochondria are essential for several biological processes including energy metabolism and cell survival. Accordingly, impaired mitochondrial function is involved in a wide range of human pathologies including diabetes, cancer, cardiovascular, and neurodegenerative diseases. Within the past decade a growing body of evidence indicates that reversible phosphorylation plays an important role in the regulation of a variety of mitochondrial processes as well as tissue-specific mitochondrial functions in mammals. The rapidly increasing number of mitochondrial phosphorylation sites and phosphoproteins identified is largely ascribed to recent advances in phosphoproteomic technologies such as fractionation, phosphopeptide enrichment, and high-sensitivity mass spectrometry. However, the functional importance and the specific kinases and phosphatases involved have yet to be determined for the majority of these mitochondrial phosphorylation sites. This review summarizes the progress in establishing the mammalian mitochondrial phosphoproteome and the technical challenges encountered while characterizing it, with a particular focus on large-scale phosphoproteomic studies of mitochondria from human skeletal muscle.
Collapse
Affiliation(s)
- Rikke Kruse
- Department of Endocrinology, Odense University Hospital, DK-5000, Odense, Denmark; The Section of Molecular Diabetes & Metabolism, Department of Clinical Research and Institute of Molecular Medicine, University of Southern Denmark, DK-5000 Odense, Denmark
| | - Kurt Højlund
- Department of Endocrinology, Odense University Hospital, DK-5000, Odense, Denmark; The Section of Molecular Diabetes & Metabolism, Department of Clinical Research and Institute of Molecular Medicine, University of Southern Denmark, DK-5000 Odense, Denmark.
| |
Collapse
|
99
|
Petriz BA, Gomes CPC, Almeida JA, de Oliveira GP, Ribeiro FM, Pereira RW, Franco OL. The Effects of Acute and Chronic Exercise on Skeletal Muscle Proteome. J Cell Physiol 2016; 232:257-269. [PMID: 27381298 DOI: 10.1002/jcp.25477] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/05/2016] [Indexed: 01/16/2023]
Abstract
Skeletal muscle plasticity and its adaptation to exercise is a topic that is widely discussed and investigated due to its primary role in the field of exercise performance and health promotion. Repetitive muscle contraction through exercise stimuli leads to improved cardiovascular output and the regulation of endothelial dysfunction and metabolic disorders such as insulin resistance and obesity. Considerable improvements in proteomic tools and data analysis have broth some new perspectives in the study of the molecular mechanisms underlying skeletal muscle adaptation in response to physical activity. In this sense, this review updates the main relevant studies concerning muscle proteome adaptation to acute and chronic exercise, from aerobic to resistance training, as well as the proteomic profile of natural inbred high running capacity animal models. Also, some promising prospects in the muscle secretome field are presented, in order to better understand the role of physical activity in the release of extracellular microvesicles and myokines activity. Thus, the present review aims to update the fast-growing exercise-proteomic scenario, leading to some new perspectives about the molecular events under skeletal muscle plasticity in response to physical activity. J. Cell. Physiol. 232: 257-269, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Clarissa P C Gomes
- Cardiovascular Research Unit, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Jeeser A Almeida
- Curso de Educação Física, Universidade Federal do Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brasil.,S-Inova Biotech, Universidade Cat ólica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brasil
| | - Getulio P de Oliveira
- Programa de Pós-Graduação em Patologia Molecular-Universidade de Brasília, DF, Brasil
| | - Filipe M Ribeiro
- Centro de Analises Proteomicas e Bioquímicas, Programa de P os-Graduacão em Ciências Genômicas e Biotecnologia, Universidade Cat ólica de Brasília, Brasília/DF, Brasil
| | - Rinaldo W Pereira
- Centro de Analises Proteomicas e Bioquímicas, Programa de P os-Graduacão em Ciências Genômicas e Biotecnologia, Universidade Cat ólica de Brasília, Brasília/DF, Brasil
| | - Octavio L Franco
- S-Inova Biotech, Universidade Cat ólica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brasil.,Centro de Analises Proteomicas e Bioquímicas, Programa de P os-Graduacão em Ciências Genômicas e Biotecnologia, Universidade Cat ólica de Brasília, Brasília/DF, Brasil
| |
Collapse
|
100
|
Day SE, Coletta RL, Kim JY, Campbell LE, Benjamin TR, Roust LR, De Filippis EA, Dinu V, Shaibi GQ, Mandarino LJ, Coletta DK. Next-generation sequencing methylation profiling of subjects with obesity identifies novel gene changes. Clin Epigenetics 2016; 8:77. [PMID: 27437034 PMCID: PMC4950754 DOI: 10.1186/s13148-016-0246-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 07/11/2016] [Indexed: 01/06/2023] Open
Abstract
Background Obesity is a metabolic disease caused by environmental and genetic factors. However, the epigenetic mechanisms of obesity are incompletely understood. The aim of our study was to investigate the role of skeletal muscle DNA methylation in combination with transcriptomic changes in obesity. Results Muscle biopsies were obtained basally from lean (n = 12; BMI = 23.4 ± 0.7 kg/m2) and obese (n = 10; BMI = 32.9 ± 0.7 kg/m2) participants in combination with euglycemic-hyperinsulinemic clamps to assess insulin sensitivity. We performed reduced representation bisulfite sequencing (RRBS) next-generation methylation and microarray analyses on DNA and RNA isolated from vastus lateralis muscle biopsies. There were 13,130 differentially methylated cytosines (DMC; uncorrected P < 0.05) that were altered in the promoter and untranslated (5' and 3'UTR) regions in the obese versus lean analysis. Microarray analysis revealed 99 probes that were significantly (corrected P < 0.05) altered. Of these, 12 genes (encompassing 22 methylation sites) demonstrated a negative relationship between gene expression and DNA methylation. Specifically, sorbin and SH3 domain containing 3 (SORBS3) which codes for the adapter protein vinexin was significantly decreased in gene expression (fold change −1.9) and had nine DMCs that were significantly increased in methylation in obesity (methylation differences ranged from 5.0 to 24.4 %). Moreover, differentially methylated region (DMR) analysis identified a region in the 5'UTR (Chr.8:22,423,530–22,423,569) of SORBS3 that was increased in methylation by 11.2 % in the obese group. The negative relationship observed between DNA methylation and gene expression for SORBS3 was validated by a site-specific sequencing approach, pyrosequencing, and qRT-PCR. Additionally, we performed transcription factor binding analysis and identified a number of transcription factors whose binding to the differentially methylated sites or region may contribute to obesity. Conclusions These results demonstrate that obesity alters the epigenome through DNA methylation and highlights novel transcriptomic changes in SORBS3 in skeletal muscle. Electronic supplementary material The online version of this article (doi:10.1186/s13148-016-0246-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Samantha E Day
- School of Life Sciences, Arizona State University, Tempe, AZ USA
| | - Richard L Coletta
- School for the Science of Health Care Delivery, Arizona State University, Phoenix, AZ USA
| | - Joon Young Kim
- Division of Weight Management and Wellness Children's Hospital of Pittsburgh, Pittsburgh, PA USA
| | | | - Tonya R Benjamin
- Endocrinology Department, Mayo Clinic in Arizona, Scottsdale, AZ USA
| | - Lori R Roust
- Endocrinology Department, Mayo Clinic in Arizona, Scottsdale, AZ USA
| | | | - Valentin Dinu
- The Department of Biomedical Informatics, Arizona State University, Phoenix, AZ USA
| | - Gabriel Q Shaibi
- College of Nursing and Health Innovation Arizona State University, Phoenix, AZ USA ; Mayo/ASU Center for Metabolic and Vascular Biology, Mayo Clinic in Arizona, Scottsdale, AZ USA
| | - Lawrence J Mandarino
- Division of Endocrinology, Diabetes and Metabolism in the Department of Medicine at the UA College of Medicine, University of Arizona, Tucson, AZ USA
| | - Dawn K Coletta
- Mayo/ASU Center for Metabolic and Vascular Biology, Mayo Clinic in Arizona, Scottsdale, AZ USA ; School of Nutrition and Health Promotion, College of Health Solutions, Arizona State University, 550 N. 3rd Street, Phoenix, AZ 85004 USA ; Department of Basic Medical Sciences, The University of Arizona College of Medicine, Phoenix, AZ USA
| |
Collapse
|