51
|
Garg R, Kumariya S, Katekar R, Verma S, Goand UK, Gayen JR. JNK signaling pathway in metabolic disorders: An emerging therapeutic target. Eur J Pharmacol 2021; 901:174079. [PMID: 33812885 DOI: 10.1016/j.ejphar.2021.174079] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/18/2021] [Accepted: 03/25/2021] [Indexed: 02/08/2023]
Abstract
Metabolic Syndrome is a multifactorial disease associated with increased risk of cardiovascular disorders, type 2 diabetes mellitus, fatty liver disease, etc. Various stress stimuli such as reactive oxygen species, endoplasmic reticulum stress, mitochondrial dysfunction, increased cytokines, or free fatty acids are known to aggravate progressive development of hyperglycemia and hyperlipidemia. Although the exact mechanism contributing to altered metabolism is unclear. Evidence suggests stress kinase role to be a crucial one in metabolic syndrome. Stress kinase, c-jun N-terminal kinase activation (JNK) is involved in various metabolic manifestations including obesity, insulin resistance, fatty liver disease as well as cardiometabolic disorders. It emerged as a foremost mediator in regulating metabolism in the liver, skeletal muscle, adipose tissue as well as pancreatic β cells. It has three isoforms each having a unique and tissue-specific role in altered metabolism. Current findings based on genetic manipulation or chemical inhibition studies identified JNK isoforms to play a central role in the regulation of whole-body metabolism, suggesting it to be a novel therapeutic target. Hence, it is imperative to elucidate its role in metabolic syndrome onset and progression. The purpose of this review is to elucidate in vitro and in vivo implications of JNK signaling along with the therapeutic strategy to inhibit specific isoform. Since metabolic syndrome is an array of diseases and complex pathway, carefully examining each tissue will be important for specific treatment strategies.
Collapse
Affiliation(s)
- Richa Garg
- Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sanjana Kumariya
- Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India
| | - Roshan Katekar
- Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Saurabh Verma
- Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Umesh K Goand
- Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jiaur R Gayen
- Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India; Pharmacology Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
52
|
Dong Z, Bian L, Wang YL, Sun LM. Gastrodin protects against high glucose-induced cardiomyocyte toxicity via GSK-3β-mediated nuclear translocation of Nrf2. Hum Exp Toxicol 2021; 40:1584-1597. [PMID: 33764184 DOI: 10.1177/09603271211002885] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Diabetic cardiomyopathy (DCM) is one of the major complications of diabetes that causes mortality and morbidity in diabetic patients. Gastrodin (GSTD) is a bioactive phenolic glucoside component of an ancient Chinese herb Tianma (Gastrodia elata Bl.), which is widely used for cardiovascular and cerebrovascular diseases by ancient Chinese. Up to now, whether GSTD has a beneficial effect on DCM is unclear. Therefore, this study aimed to investigate the effect of GSTD on high glucose-induced injury in H9c2 rat cardiomyocytes and HL-1 mouse cardiomyocytes, and its underlying mechanisms. High glucose (33 mM) treatment caused cardiomyocyte toxicity, oxidative stress and apoptosis in both H9c2 and HL-1 cells. Under both normal (5.5 mM glucose) and high glucose conditions, GSTD showed protective effect against high glucose-induced cytotoxicity and promoted the nuclear translocation of Nrf2 in a concentration and time-dependent manner in H9c2 and HL-1 cells. Knockdown of Nrf2 expression using siRNA specifically targeting Nrf2 attenuated the protective effect of GSTD. Furthermore, GSTD promoted the nuclear translocation of Nrf2 via activating glycogen synthase kinse-3β (GSK-3β) signaling pathway. 4-benzyl, 2-methyl, 1, 2, 4-thiadiazolidine, 3, 5 dione (TDZD-8), an inhibitor of GSK-3β, inhibited the nuclear translocation of Nrf2 induced by GSTD, and attenuated the protective effect of GSTD as Nrf2 knockdown did. In summary, GSTD could protect against high glucose-induced cardiomyocyte toxicity via GSK-3β-mediated nuclear translocation of Nrf2.
Collapse
Affiliation(s)
- Z Dong
- Department of Vasculocardiology, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu, People's Republic of China
| | - L Bian
- Department of Vasculocardiology, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu, People's Republic of China
| | - Y-L Wang
- Department of Vasculocardiology, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu, People's Republic of China
| | - L-M Sun
- Department of Vasculocardiology, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu, People's Republic of China
| |
Collapse
|
53
|
Gu X, Shi Y, Chen X, Sun Z, Luo W, Hu X, Jin G, You S, Qian Y, Wu W, Liang G, Wu G, Chen Z, Chen X. Isoliquiritigenin attenuates diabetic cardiomyopathy via inhibition of hyperglycemia-induced inflammatory response and oxidative stress. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 78:153319. [PMID: 32950951 DOI: 10.1016/j.phymed.2020.153319] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Inflammation and oxidative stress play essential roles in the occurrence and progression of diabetic cardiomyopathy (DCM). Isoliquiritigenin (ISL), a natural chalcone, exhibits strong anti-inflammatory and antioxidant activities. HYPOTHESIS/PURPOSE In this study, we aimed to investigate the protective effects of ISL on DCM using high glucose (HG)-challenged cultured cardiomyocytes and streptozotocin (STZ)-induced diabetic mice. STUDY DESIGN AND METHODS Embryonic rat heart-derived H9c2 cells challenged with a high concentration of glucose were used to evaluate the anti-inflammatory and antioxidant effects of ISL. STZ-induced diabetic mice were used to study the effects of ISL in DCM in vivo. Furthermore, cardiac fibrosis, hypertrophy, and apoptosis were explored both in vitro and in vivo. RESULTS ISL effectively inhibited HG-induced hypertrophy, fibrosis, and apoptosis probably by alleviating the inflammatory response and oxidative stress in H9c2 cells. Results from in vivo experiments showed that ISL exhibited anti-inflammatory and antioxidant stress activities that were characterized by the attenuation of cardiac hypertrophy, fibrosis, and apoptosis, which resulted in the maintenance of cardiac function. The protective effects of ISL against inflammation and oxidative stress were mediated by the inhibition of mitogen-activated protein kinases (MAPKs) and induction of nuclear factor-erythroid 2 related factor 2 (Nrf2) signaling pathway, respectively. CONCLUSION Our results provided compelling evidence that ISL, by virtue of neutralizing excessive inflammatory response and oxidative stress, could be a promising agent in the treatment of DCM. Targeting the MAPKs and Nrf2 signaling pathway might be an effective therapeutic strategy for the prevention and treatment of DCM.
Collapse
Affiliation(s)
- Xuemei Gu
- Department of Endocrinology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yujuan Shi
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Endocrinology, Jiangshan People's Hospital, Jiangshan, Zhejiang, China
| | - Xiaojun Chen
- Department of Endocrinology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zijia Sun
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Wu Luo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiang Hu
- Department of Endocrinology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ge Jin
- Department of Cardiology, the Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shengban You
- Department of Cardiology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuanyuan Qian
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenjun Wu
- Department of Endocrinology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Gaojun Wu
- Department of Cardiology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Zimiao Chen
- Department of Endocrinology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Xiong Chen
- Department of Endocrinology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
54
|
Wang Q, Luo C, Lu G, Chen Z. Effect of adenosine monophosphate-activated protein kinase-p53-Krüppel-like factor 2a pathway in hyperglycemia-induced cardiac remodeling in adult zebrafish. J Diabetes Investig 2020; 12:320-333. [PMID: 32881390 PMCID: PMC7926222 DOI: 10.1111/jdi.13393] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 01/10/2023] Open
Abstract
Aims/Introduction Diabetic cardiomyopathy is a type of myocardial disease. It causes left ventricular hypertrophy, followed by diastolic and systolic dysfunction, eventually leading to congestive heart failure. However, the underlying mechanism still requires further elucidation. Materials and Methods A high‐glucose zebrafish model was constructed by administering streptozocin intraperitoneally to enhance the development of cardiomyopathy and then treated with adenosine monophosphate‐activated protein kinase (AMPK) activator. Cardiac structure and function, and protein and gene expression were then analyzed. Cardiomyocytes (CMs) culture in vitro using lentivirus were used for detection of AMPK, p53 and Krüppel‐like factor 2a (klf2a) gene expression. Results In the hyperglycemia group, electrocardiogram findings showed arrhythmia, echocardiography results showed heart enlargement and dysfunction, and many differences, such as increased apoptosis and myocardial fiber loss, were observed. The phospho‐AMPK and klf2a expression were downregulated, and p53 expression was upregulated. Activation of phospho‐AMPK reduced p53 and increased klf2a expression, alleviated apoptosis in CMs and improved cardiac function in the hyperglycemic zebrafish. In vitro knockdown system of AMPK, p53 and klf2a using lentivirus illustrated an increased p53 expression and decreased klf2a expression in CMs by inhibiting AMPK. Repression of p53 and upregulation of klf2a expression were observed, but no changes in the expression of AMPK and its phosphorylated type. Conclusions In the model of streptozocin‐induced hyperglycemia zebrafish, the reduction of phosphorylated AMPK increased p53, which led to KLF2a decrease to facilitate apoptosis of CMs, inducing the cardiac remodeling and cardiac dysfunction. These results can be reversed by AMPK activator, which means the AMPK–p53–klf2a pathway might be a potential target for diabetic cardiomyopathy intervention.
Collapse
Affiliation(s)
- Qiuyun Wang
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chen Luo
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guoping Lu
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhenyue Chen
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
55
|
TRIF/miR-34a mediates aldosterone-induced cardiac inflammation and remodeling. Clin Sci (Lond) 2020; 134:1319-1331. [PMID: 32542395 DOI: 10.1042/cs20200249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/23/2022]
Abstract
Aldosterone, as a major product of renin-angiotensin-aldosterone system (RAAS), determines multiple pathophysiological processes in cardiovascular diseases. The excess inflammatory response is one of the key profiles in aldosterone-mediated cardiac remodeling. However, the potential mechanisms of aldosterone/inflammatory signaling were still not fully disclosed. The present study aimed to investigate whether TIR-domain-containing adapter-inducing interferon-β (Trif) participated in the aldosterone-induced cardiac remodeling, and to explore potential molecular mechanisms. Trif knockout mice and their littermates were osmotically administrated with aldosterone (50 μg/kg per day) for 21 and 42 days. The cardiac structural analysis, functional parameters, and mitochondrial function were measured. Aldosterone dose- or time-dependently increased the levels of TRIF in primary mouse cardiomyocytes or mouse heart tissues. Trif deficiency protected against aldosterone-induced cardiac hypertrophy, fibrosis and dysfunction. Moreover, Trif deficiency also suppressed aldosterone-induced cardiac inflammatory response and mitochondrial injuries. Mechanistically, overexpression of cardiac microRNAs (miR)-34a reversed the cardiac benefits of Trif deficiency in aldosterone-treated mice. Taken together, Trif/miR-34a axis could provide a novel molecular mechanism for explaining aldosterone-induced cardiac hypertrophy, fibrosis and functional disorders.
Collapse
|
56
|
Gorabi AM, Hajighasemi S, Kiaie N, Rosano GMC, Sathyapalan T, Al-Rasadi K, Sahebkar A. Anti-fibrotic effects of curcumin and some of its analogues in the heart. Heart Fail Rev 2020; 25:731-743. [PMID: 31512150 DOI: 10.1007/s10741-019-09854-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Cardiac fibrosis stems from the changes in the expression of fibrotic genes in cardiac fibroblasts (CFs) in response to the tissue damage induced by various cardiovascular diseases (CVDs) leading to their transformation into active myofibroblasts, which produce high amounts of extracellular matrix (ECM) proteins leading, in turn, to excessive deposition of ECM in cardiac tissue. The excessive accumulation of ECM elements causes heart stiffness, tissue scarring, electrical conduction disruption and finally cardiac dysfunction and heart failure. Curcumin (Cur; also known as diferuloylmethane) is a polyphenol compound extracted from rhizomes of Curcuma longa with an influence on an extensive spectrum of biological phenomena including cell proliferation, differentiation, inflammation, pathogenesis, chemoprevention, apoptosis, angiogenesis and cardiac pathological changes. Cumulative evidence has suggested a beneficial role for Cur in improving disrupted cardiac function developed by cardiac fibrosis by establishing a balance between degradation and synthesis of ECM components. There are various molecular mechanisms contributing to the development of cardiac fibrosis. We presented a review of Cur effects on cardiac fibrosis and the discovered underlying mechanisms by them Cur interact to establish its cardio-protective effects.
Collapse
Affiliation(s)
- Armita Mahdavi Gorabi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeideh Hajighasemi
- Department of Medical Biotechnology, Faculty of Paramedicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Nasim Kiaie
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Khalid Al-Rasadi
- Medical Research Centre, Sultan Qaboos University, Muscat, Oman
- Department of Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran.
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
57
|
Tian L, Ning H, Shao W, Song Z, Badakhshi Y, Ling W, Yang BB, Brubaker PL, Jin T. Dietary Cyanidin-3-Glucoside Attenuates High-Fat-Diet-Induced Body-Weight Gain and Impairment of Glucose Tolerance in Mice via Effects on the Hepatic Hormone FGF21. J Nutr 2020; 150:2101-2111. [PMID: 32470979 PMCID: PMC7398791 DOI: 10.1093/jn/nxaa140] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/08/2020] [Accepted: 04/27/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Dietary polyphenols including anthocyanins target multiple organs. OBJECTIVE We aimed to assess the involvement of glucagon-like peptide 1 (GLP-1), leptin, insulin and fibroblast growth factor 21 (FGF21) in mediating metabolic beneficial effects of purified anthocyanin cyanidin-3-glucoside (Cy3G). METHODS Intestinal proglucagon gene (Gcg; encoding GLP-1) and liver Fgf21 expression were assessed in 6-wk-old male C57BL-6J mice fed a low-fat-diet (LFD; 10% of energy from fat), alone or with 1.6 mg Cy3G/L in drinking water for 3 wk [experiment (Exp.) 1; n = 5/group]. Similar mice were fed the LFD or a high-fat diet (HFD; 60% energy from fat) with or without Cy3G for 20 wk. Half of the mice administered Cy3G also received 4 broad-spectrum antibiotics (ABs) in drinking water between weeks 11 and 14, for a total of 6 groups (n = 8/group). Metabolic tolerance tests were conducted between weeks 2 and 16. Relevant hormone gene expression and plasma hormone concentrations were assessed mainly at the end of 20 wk (Exp. 2). RESULTS In Exp. 1, Cy3G administration increased ileal but not colonic Gcg level by 2-fold (P < 0.05). In Exp. 2, Cy3G attenuated HFD-induced body-weight gain (20.3% at week 16), and improved glucose tolerance (26.5% at week 15) but not insulin tolerance. Although Cy3G had no effect on glucose tolerance in LFD mice, LFD/Cy3G/AB mice showed better glucose tolerance than LFD/Cy3G mice (23%). In contrast, HFD/Cy3G/AB mice showed worse glucose tolerance compared with HFD/Cy3G mice (15%). Beneficial effects of Cy3G in HFD mice were not associated with changes in plasma leptin, insulin or GLP-1 concentrations. However, Cy3G increased hepatic Fgf21 expression in mice in Exp. 1 by 4-fold and attenuated Fgf21 overexpression in HFD mice (Exp. 2, 22%), associated with increased expression of genes that encode FGFR1 and β-klotho (>3-fold, P < 0.05). CONCLUSIONS Dietary Cy3G may reduce body weight and exert metabolic homeostatic effects in mice via changes in hepatic FGF21.
Collapse
Affiliation(s)
- Lili Tian
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada,Department of Physiology, University of Toronto, Toronto, Canada,Banting and Best Diabetes Centre, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Hongmei Ning
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada,Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Weijuan Shao
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada,Department of Physiology, University of Toronto, Toronto, Canada,Banting and Best Diabetes Centre, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Zhuolun Song
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada,Department of Physiology, University of Toronto, Toronto, Canada,Banting and Best Diabetes Centre, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Yasaman Badakhshi
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada,Department of Physiology, University of Toronto, Toronto, Canada,Banting and Best Diabetes Centre, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Wenhua Ling
- Department of Nutrition, School of Public Health, Sun Yet-Sen University, Guangzhou, China
| | - Burton B Yang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Patricia L Brubaker
- Department of Physiology, University of Toronto, Toronto, Canada,Department of Medicine, University of Toronto, Toronto, Canada
| | - Tianru Jin
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada,Department of Physiology, University of Toronto, Toronto, Canada,Banting and Best Diabetes Centre, Faculty of Medicine, University of Toronto, Toronto, Canada,Department of Medicine, University of Toronto, Toronto, Canada,Address correspondence to TJ (e-mail: )
| |
Collapse
|
58
|
Stamenkovska M, Thaçi Q, Hadzi‐Petrushev N, Angelovski M, Bogdanov J, Reçica S, Kryeziu I, Gagov H, Mitrokhin V, Kamkin A, Schubert R, Mladenov M, Sopi RB. Curcumin analogs (B2BrBC and C66) supplementation attenuates airway hyperreactivity and promote airway relaxation in neonatal rats exposed to hyperoxia. Physiol Rep 2020; 8:e14555. [PMID: 32812392 PMCID: PMC7435033 DOI: 10.14814/phy2.14555] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND This study was undertaken to test the hypothesis that the newly synthesized curcuminoids B2BrBC and C66 supplementation will overcome hyperoxia-induced tracheal hyperreactivity and impairment of relaxation of tracheal smooth muscle (TSM). MATERIALS AND METHODS Rat pups (P5) were exposed to hyperoxia (>95% O2 ) or normoxia for 7 days. At P12, tracheal cylinders were used to study in vitro contractile responses induced by methacholine (10-8 -10-4 M) or relaxation induced by electrical field stimulation (5-60 V) in the presence/absence of B2BrBC or C66, or to study the direct relaxant effects elicited by both analogs. RESULTS Hyperoxia significantly increased contraction and decreased relaxation of TSM compared to normoxia controls. Presence of B2BrBC or C66 normalized both contractile and relaxant responses altered by hyperoxia. Both, curcuminoids directly induced dose-dependent relaxation of preconstricted TSM. Supplementation of hyperoxic animals with B2BrBC or C66, significantly increased catalase activity. Lung TNF-α was significantly increased in hyperoxia-exposed animals. Both curcumin analogs attenuated increases in TNF-α in hyperoxic animals. CONCLUSION We show that B2BrBC and C66 provide protection against adverse contractility and relaxant effect of hyperoxia on TSM, and whole lung inflammation. Both analogs induced direct relaxation of TSM. Through restoration of catalase activity in hyperoxia, we speculate that analogs are protective against hyperoxia-induced tracheal hyperreactivity by augmenting H2 O2 catabolism. Neonatal hyperoxia induces increased tracheal contractility, attenuates tracheal relaxation, diminishes lung antioxidant capacity, and increases lung inflammation, while monocarbonyl CUR analogs were protective of these adverse effects of hyperoxia. Analogs may be promising new therapies for neonatal hyperoxic airway and lung disease.
Collapse
Affiliation(s)
- Mimoza Stamenkovska
- Faculty of Natural Sciences and MathematicsInstitute of Biology“Sts, Cyril and Methodius” UniversitySkopjeMacedonia
| | - Qendrim Thaçi
- Department of Premedical Courses‐BiologyFaculty of MedicineUniversity of PrishtinaSt. Martyrs’ Boulevard n.n.PrishtinaKosovoSerbia
| | - Nikola Hadzi‐Petrushev
- Faculty of Natural Sciences and MathematicsInstitute of Biology“Sts, Cyril and Methodius” UniversitySkopjeMacedonia
| | - Marija Angelovski
- Faculty of Natural Sciences and MathematicsInstitute of Biology“Sts, Cyril and Methodius” UniversitySkopjeMacedonia
| | - Jane Bogdanov
- Faculty of Natural Sciences and MathematicsInstitute of Chemistry“Ss. Cyril and Methodius” UniversitySkopjeMacedonia
| | - Shkëlzen Reçica
- Department of Premedical Courses‐BiologyFaculty of MedicineUniversity of PrishtinaSt. Martyrs’ Boulevard n.n.PrishtinaKosovoSerbia
| | - Islam Kryeziu
- Department of Premedical Courses‐BiologyFaculty of MedicineUniversity of PrishtinaSt. Martyrs’ Boulevard n.n.PrishtinaKosovoSerbia
| | - Hristo Gagov
- Faculty of BiologySofia University St. Kliment OhridskiSofiaBulgaria
| | - Vadim Mitrokhin
- Department of Fundamental and Applied PhysiologyRussian National Research Medical UniversityMoscowRussia
| | - Andre Kamkin
- Department of Fundamental and Applied PhysiologyRussian National Research Medical UniversityMoscowRussia
| | - Rudolf Schubert
- PhysiologyInstitute of Theoretical MedicineMedical FacultyUniversity of AugsburgAugsburgGermany
| | - Mitko Mladenov
- Faculty of Natural Sciences and MathematicsInstitute of Biology“Sts, Cyril and Methodius” UniversitySkopjeMacedonia
| | - Ramadan B. Sopi
- Department of Premedical Courses‐BiologyFaculty of MedicineUniversity of PrishtinaSt. Martyrs’ Boulevard n.n.PrishtinaKosovoSerbia
| |
Collapse
|
59
|
Lee Y, Chakraborty S, Muthuchamy M. Roles of sarcoplasmic reticulum Ca 2+ ATPase pump in the impairments of lymphatic contractile activity in a metabolic syndrome rat model. Sci Rep 2020; 10:12320. [PMID: 32704072 PMCID: PMC7378550 DOI: 10.1038/s41598-020-69196-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 07/09/2020] [Indexed: 12/18/2022] Open
Abstract
The intrinsic lymphatic contractile activity is necessary for proper lymph transport. Mesenteric lymphatic vessels from high-fructose diet-induced metabolic syndrome (MetSyn) rats exhibited impairments in its intrinsic phasic contractile activity; however, the molecular mechanisms responsible for the weaker lymphatic pumping activity in MetSyn conditions are unknown. Several metabolic disease models have shown that dysregulation of sarcoplasmic reticulum Ca2+ ATPase (SERCA) pump is one of the key determinants of the phenotypes seen in various muscle tissues. Hence, we hypothesized that a decrease in SERCA pump expression and/or activity in lymphatic muscle influences the diminished lymphatic vessel contractions in MetSyn animals. Results demonstrated that SERCA inhibitor, thapsigargin, significantly reduced lymphatic phasic contractile frequency and amplitude in control vessels, whereas, the reduced MetSyn lymphatic contractile activity was not further diminished by thapsigargin. While SERCA2a expression was significantly decreased in MetSyn lymphatic vessels, myosin light chain 20, MLC20 phosphorylation was increased in these vessels. Additionally, insulin resistant lymphatic muscle cells exhibited elevated intracellular calcium and decreased SERCA2a expression and activity. The SERCA activator, CDN 1163 partially restored lymphatic contractile activity in MetSyn lymphatic vessel by increasing phasic contractile frequency. Thus, our data provide the first evidence that SERCA2a modulates the lymphatic pumping activity by regulating phasic contractile amplitude and frequency, but not the lymphatic tone. Diminished lymphatic contractile activity in the vessels from the MetSyn animal is associated with the decreased SERCA2a expression and impaired SERCA2 activity in lymphatic muscle.
Collapse
Affiliation(s)
- Yang Lee
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX, 77807, USA
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Sanjukta Chakraborty
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX, 77807, USA
| | - Mariappan Muthuchamy
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX, 77807, USA.
| |
Collapse
|
60
|
Wu J, Sun X, Jiang Z, Jiang J, Xu L, Tian A, Sun X, Meng H, Li Y, Huang W, Jia Y, Wu H. Protective role of NRF2 in macrovascular complications of diabetes. J Cell Mol Med 2020; 24:8903-8917. [PMID: 32628815 PMCID: PMC7417734 DOI: 10.1111/jcmm.15583] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/05/2020] [Accepted: 05/07/2020] [Indexed: 02/07/2023] Open
Abstract
Macrovascular complications develop in over a half of the diabetic individuals, resulting in high morbidity and mortality. This poses a severe threat to public health and a heavy burden to social economy. It is therefore important to develop effective approaches to prevent or slow down the pathogenesis and progression of macrovascular complications of diabetes (MCD). Oxidative stress is a major contributor to MCD. Nuclear factor (erythroid‐derived 2)‐like 2 (NRF2) governs cellular antioxidant defence system by activating the transcription of various antioxidant genes, combating diabetes‐induced oxidative stress. Accumulating experimental evidence has demonstrated that NRF2 activation protects against MCD. Structural inhibition of Kelch‐like ECH‐associated protein 1 (KEAP1) is a canonical way to activate NRF2. More recently, novel approaches, such as activation of the Nfe2l2 gene transcription, decreasing KEAP1 protein level by microRNA‐induced degradation of Keap1 mRNA, prevention of proteasomal degradation of NRF2 protein and modulation of other upstream regulators of NRF2, have emerged in prevention of MCD. This review provides a brief introduction of the pathophysiology of MCD and the role of oxidative stress in the pathogenesis of MCD. By reviewing previous work on the activation of NRF2 in MCD, we summarize strategies to activate NRF2, providing clues for future intervention of MCD. Controversies over NRF2 activation and future perspectives are also provided in this review.
Collapse
Affiliation(s)
- Junduo Wu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| | - Xiaodan Sun
- Intensive Care Unit, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ziping Jiang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Jun Jiang
- Department of Neurosurgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Linlin Xu
- Department of Neurology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ao Tian
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xuechun Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huali Meng
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ying Li
- Department of Dermatology, Affiliated Hospital of Beihua University, Jilin, China
| | - Wenlin Huang
- School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA, USA
| | - Ye Jia
- Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Hao Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
61
|
MD2 activation by direct AGE interaction drives inflammatory diabetic cardiomyopathy. Nat Commun 2020; 11:2148. [PMID: 32358497 PMCID: PMC7195432 DOI: 10.1038/s41467-020-15978-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/07/2020] [Indexed: 12/12/2022] Open
Abstract
Hyperglycemia activates toll-like receptor 4 (TLR4) to induce inflammation in diabetic cardiomyopathy (DCM). However, the mechanisms of TLR4 activation remain unclear. Here we examine the role of myeloid differentiation 2 (MD2), a co-receptor of TLR4, in high glucose (HG)- and diabetes-induced inflammatory cardiomyopathy. We show increased MD2 in heart tissues of diabetic mice and serum of human diabetic subjects. MD2 deficiency in mice inhibits TLR4 pathway activation, which correlates with reduced myocardial remodeling and improved cardiac function. Mechanistically, we show that HG induces extracellular advanced glycation end products (AGEs), which bind directly to MD2, leading to formation of AGEs-MD2-TLR4 complex and initiation of pro-inflammatory pathways. We further detect elevated AGE-MD2 complexes in heart tissues and serum of diabetic mice and human subjects with DCM. In summary, we uncover a new mechanism of HG-induced inflammatory responses and myocardial injury, in which AGE products directly bind MD2 to drive inflammatory DCM. The mechanisms underlying cardiac inflammation in diabetic cardiomyopathy are incompletely understood. Here the authors show that advanced glycation end products bind to the TLR4 co-receptor MD2 initiating pro-inflammatory pathways.
Collapse
|
62
|
Guo Y, Zhang C, Shang FF, Luo M, You Y, Zhai Q, Xia Y, Suxin L. Ketogenic Diet Ameliorates Cardiac Dysfunction via Balancing Mitochondrial Dynamics and Inhibiting Apoptosis in Type 2 Diabetic Mice. Aging Dis 2020; 11:229-240. [PMID: 32257538 PMCID: PMC7069456 DOI: 10.14336/ad.2019.0510] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/10/2019] [Indexed: 12/15/2022] Open
Abstract
The ketogenic diet (KD) has been widely used in clinical studies and shown to hace an anti-diabetic effect, but the underlying mechanisms have not been fully elaborated. Our aim was to investigate the effects and the underling mechanisms of the KD on cardiac function in db/db mice. In the present study, db/db mice were subjected to a normal diet (ND) or KD. Fasting blood glucose, cardiac function and morphology, mitochondrial dynamics, oxidative stress, and apoptosis were measured 8 weeks post KD treatment. Compared with the ND, the KD improved glycemic control and protected against diabetic cardiomyopathy in db/db mice, and improved mitochondrial function, as well as reduced oxidative stress were observed in hearts. In addition, KD treatment exerted an anti-apoptotic effect in the heart of db/db mice. Further data showed that the PI3K/Akt pathway was involved in this protective effect. Our data demonstrated that KD treatment ameliorates cardiac dysfunction by inhibiting apoptosis via activating the PI3K-Akt pathway in type 2 diabetic mice, suggesting that the KD is a promising lifestyle intervention to protect against diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Yongzheng Guo
- Division of cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Cheng Zhang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Fei-Fei Shang
- Institute of Life Science, Chongqing Medical University, Chongqing 400016, China.
| | - Minghao Luo
- Division of cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Yuehua You
- Division of cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Qiming Zhai
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Shaanxi 710032, China.
| | - Yong Xia
- Division of cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
- Institute of Life Science, Chongqing Medical University, Chongqing 400016, China.
- Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, The Ohio State University College of Medicine, OH 43210, USA.
| | - Luo Suxin
- Division of cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
63
|
A Synthetic Curcuminoid Analog, (2 E,6 E)-2,6-bis(2-(trifluoromethyl)benzylidene)cyclohexanone, Ameliorates Impaired Wound Healing in Streptozotocin-Induced Diabetic Mice by Increasing miR-146a. Molecules 2020; 25:molecules25040920. [PMID: 32092902 PMCID: PMC7070912 DOI: 10.3390/molecules25040920] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/08/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023] Open
Abstract
The impairment in diabetic wound healing represents a significant clinical problem, with no efficient targeted treatments for these wound disorders. Curcumin is well confirmed to improve diabetic wound healing, however, its low bioavailability and poor solubility severely limit its clinical application. This study aims to provide the pharmacological basis for the use of (2E,6E)-2,6-bis(2-(trifluoromethyl)benzylidene)cyclohexanone (C66). The results showed that topically applied C66 improved cutaneous wound healing in vivo. Further studies showed that C66 treatment increased the level of microRNA-146a (miR-146a) in the wounds in streptozotocin (STZ)-induced diabetic mice, downregulated the expression of interleukin-1 receptor-associated kinase 1 (IRAK1) and phosphorylated nuclear factor-κB (NF-κB) p65 subunit (p-p65) (both p < 0.05), and suppressed the mRNA expression of inflammation-related cytokines, tumor necrosis factor-α (TNF-α), interleukin-8 (IL-8), and interleukin-6 (IL-6). The in vitro data obtained in human umbilical vein endothelial cells (HUVECs) showed that C66 could reverse high glucose (HG)-induced NF-κB activation due to upregulation of miR-146a expression, which matched the in vivo findings. In conclusion, the present study indicates that C66 exerts anti-inflammation activity and accelerates skin wound healing of diabetic mice, probably via increasing miR-146a and inhibiting the NF-κB-mediated inflammation pathway. Therefore, C66 may be a promising alternative for the treatment of diabetic wounds.
Collapse
|
64
|
Melatonin Ameliorates MI-Induced Cardiac Remodeling and Apoptosis through a JNK/p53-Dependent Mechanism in Diabetes Mellitus. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1535201. [PMID: 32411318 PMCID: PMC7199622 DOI: 10.1155/2020/1535201] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/25/2019] [Accepted: 12/16/2019] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus, a worldwide health threat, is considered an independent risk factor for cardiovascular diseases. The overall cardiovascular risk of diabetes is similar to the one having one myocardial infarction (MI) attack although the precise impact of diabetes on MI-induced myocardial anomalies remains elusive. Given that mortality following MI is much greater in diabetic patients compared to nondiabetic patients, this study was designed to examine the effect of melatonin on MI injury-induced myocardial dysfunction in diabetes. Adult mice were made diabetic using high-fat feeding and streptozotocin (100 mg/kg body weight) prior to MI and were treated with melatonin (50 mg/kg/d, p.o.) for 4 weeks prior to assessment of cardiac geometry and function. The MI procedure in diabetes displayed overt changes in cardiac geometry (chamber dilation and interstitial fibrosis) and functional anomalies (reduced fractional shortening and cardiomyocyte contractile capacity) in association with elevated c-Jun N-terminal kinase (JNK) phosphorylation and p53 level. Melatonin treatment markedly attenuated cardiac dysfunction and myocardial fibrosis in post-MI diabetic mice. Furthermore, melatonin decreased JNK phosphorylation, reduced p53 levels, and suppressed apoptosis in hearts from the post-MI diabetic group. In vitro findings revealed that melatonin effectively counteracted high-glucose/high fat-hypoxia-induced cardiomyocyte apoptosis and contractile dysfunction through a JNK-mediated mechanism, the effects of which were impaired by the JNK activator anisomycin. In summary, our study suggests that melatonin protects against myocardial injury in post-MI mice with diabetes, which offers a new therapeutic strategy for the management of MI-induced cardiac injury in diabetes.
Collapse
|
65
|
Sohrabi C, Saberwal B, Lim WY, Tousoulis D, Ahsan S, Papageorgiou N. Heart Failure in Diabetes Mellitus: An Updated Review. Curr Pharm Des 2020; 26:5933-5952. [PMID: 33213313 DOI: 10.2174/1381612826666201118091659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus (DM) and heart failure (HF) are comorbid conditions associated with significant morbidity and mortality worldwide. Despite the availability of novel and effective therapeutic options and intensive glycaemic control strategies, mortality and hospitalisation rates continue to remain high and the incidence of HF persists. In this review, we described the impact of currently available glucose-lowering therapies in DM with a focus on HF clinical outcomes. Non-conventional modes of management and alternative pathophysiological mechanisms with the potential for therapeutic targeting are also discussed.
Collapse
Affiliation(s)
- Catrin Sohrabi
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Bunny Saberwal
- Electrophysiology Department, Barts Heart Centre, St. Bartholomew's Hospital, West Smithfield, London, United Kingdom
| | - Wei-Yao Lim
- Electrophysiology Department, Barts Heart Centre, St. Bartholomew's Hospital, West Smithfield, London, United Kingdom
| | - Dimitris Tousoulis
- First Cardiology Department, Hippokration Hospital, Athens University Medical School, Athens, Greece
| | - Syed Ahsan
- Electrophysiology Department, Barts Heart Centre, St. Bartholomew's Hospital, West Smithfield, London, United Kingdom
| | - Nikolaos Papageorgiou
- Electrophysiology Department, Barts Heart Centre, St. Bartholomew's Hospital, West Smithfield, London, United Kingdom
| |
Collapse
|
66
|
Exercise as A Potential Therapeutic Target for Diabetic Cardiomyopathy: Insight into the Underlying Mechanisms. Int J Mol Sci 2019; 20:ijms20246284. [PMID: 31842522 PMCID: PMC6940726 DOI: 10.3390/ijms20246284] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus is associated with cardiovascular, ophthalmic, and renal comorbidities. Among these, diabetic cardiomyopathy (DCM) causes the most severe symptoms and is considered to be a major health problem worldwide. Exercise is widely known as an effective strategy for the prevention and treatment of many chronic diseases. Importantly, the onset of complications arising due to diabetes can be delayed or even prevented by exercise. Regular exercise is reported to have positive effects on diabetes mellitus and the development of DCM. The protective effects of exercise include prevention of cardiac apoptosis, fibrosis, oxidative stress, and microvascular diseases, as well as improvement in cardiac mitochondrial function and calcium regulation. This review summarizes the recent scientific findings to describe the potential mechanisms by which exercise may prevent DCM and heart failure.
Collapse
|
67
|
Xiao Z, Xu F, Zhu X, Bai B, Guo L, Liang G, Shan X, Zhang Y, Zhao Y, Zhang B. Inhibition Of JNK Phosphorylation By Curcumin Analog C66 Protects LPS-Induced Acute Lung Injury. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:4161-4171. [PMID: 31849448 PMCID: PMC6911336 DOI: 10.2147/dddt.s215712] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/22/2019] [Indexed: 01/11/2023]
Abstract
Background Acute lung injury (ALI) is characterized by high prevalence and high mortality. Thus far, no effective pharmacological treatment has been made for ALI in clinics. Inflammation is critical to the development of ALI. Curcumin analog C66, having reported as an inhibitor of c-Jun N-terminal kinase (JNK), exhibits anti-inflammatory property both in vitro and in vivo. However, whether C66 is capable of reducing lipopolysaccharide (LPS)-induced ALI through the inhibition of inflammation by targeting JNK remains unknown. Methods Intratracheal injection of LPS was employed to build a mouse ALI model. H&E staining, wet/dry ratio, immunofluorescence staining, inflammatory cell detection, and inflammatory gene expression were used to evaluate lung injury and lung inflammation. In vitro, LPS was used to induce the expression of inflammatory cytokines both in protein and gene levels. Results The results of our studies showed that the pretreatment with C66 and JNK inhibitor SP600125 was capable of attenuating the LPS-induced ALI by detecting pulmonary edema, pathological changes, total protein concentration, and inflammatory cell number in bronchoalveolar lavage fluid (BALF). Besides, C66 and SP600125 also suppressed LPS-induced inflammatory cytokine expression in BALF, serum, and lung tissue. In vitro, LPS-induced production of TNF-α and IL-6 and gene expression of TNF-α, IL-6, IL-1β, and COX-2 could be inhibited by the pretreatment with C66 and SP600125. It was found that C66 and SP600125 could inhibit LPS-induced phosphorylation of JNK both in vitro and in vivo. Conclusion In brief, our results suggested that C66 protects LPS-induced ALI through the inhibition of inflammation by targeting the JNK pathway. These findings further confirmed the pivotal role of JNK in ALI and implied that C66 is likely to serve as a potential therapeutic agent for ALI.
Collapse
Affiliation(s)
- Zhongxiang Xiao
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600, People's Republic of China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Fengli Xu
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, People's Republic of China
| | - Xiaona Zhu
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600, People's Republic of China
| | - Bin Bai
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600, People's Republic of China
| | - Lu Guo
- Department of Pharmacy, The First People's Hospital of Huzhou, Huzhou, Zhejiang 313000, People's Republic of China
| | - Guang Liang
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600, People's Republic of China
| | - Xiaoou Shan
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, People's Republic of China
| | - Yali Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yunjie Zhao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Bing Zhang
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325600, People's Republic of China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| |
Collapse
|
68
|
Zhou J, An C, Jin X, Hu Z, Safirstein RL, Wang Y. TAK1 deficiency attenuates cisplatin-induced acute kidney injury. Am J Physiol Renal Physiol 2019; 318:F209-F215. [PMID: 31813254 DOI: 10.1152/ajprenal.00516.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cisplatin can cause acute kidney injury (AKI), but the molecular mechanisms are not well understood. The objective of the present study was to examine the role of transforming growth factor-β-activated kinase-1 (TAK1) in the pathogenesis of cisplatin-induced AKI. Wild-type mice and proximal tubule TAK1-deficient mice were treated with vehicle or cisplatin. Compared with wild-type control mice, proximal tubule TAK1-deficient mice had less severe kidney dysfunction, tubular damage, and apoptosis after cisplatin-induced AKI. Furthermore, conditional disruption of TAK1 in proximal tubular epithelial cells reduced caspase-3 activation, proinflammatory molecule expression, and JNK phosphorylation in the kidney in cisplatin-induced AKI. Taken together, cisplatin activates TAK1-JNK signaling pathway to promote tubular epithelial cell apoptosis and inflammation in cisplatin-induced AKI. Targeting TAK1 could be a novel therapeutic strategy against cisplatin-induced AKI.
Collapse
Affiliation(s)
- Jun Zhou
- Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas.,Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Changlong An
- Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas.,Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Xiaogao Jin
- Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas.,Department of Anesthesiology, the Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Zhaoyong Hu
- Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Robert L Safirstein
- Renal Section, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Yanlin Wang
- Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas.,Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut.,Renal Section, Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut.,Department of Cell Biology, University of Connecticut School of Medicine, Farmington, Connecticut.,Institute for Systems Genomics, University of Connecticut School of Medicine, Farmington, Connecticut
| |
Collapse
|
69
|
Yu Y, Sun J, Wang R, Liu J, Wang P, Wang C. Curcumin Management of Myocardial Fibrosis and its Mechanisms of Action: A Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:1675-1710. [PMID: 31786946 DOI: 10.1142/s0192415x19500861] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Myocardial fibrosis is implicated as a leading risk factor for heart failure, arrhythmia, and sudden death after cardiac injury, as the excessive interstitial extracellular matrix impedes heart contraction and electrical conduction. Complicated mechanisms involving oxidative stress, pro-inflammatory cytokines, chemokine families, NLRP3 inflammasomes, growth factors, and non-coding RNAs participate in cardiac fibrogenesis and make it difficult to designate specific and effective therapies. Oriental herbs have been popular for thousands of years in the health care of Asian residents, due to their multi-targeted, multi-faceted approaches and their multi-functional effects in fighting difficult and complicated diseases, including cardiovascular disorders such as myocardial fibrosis. Curcumin, a natural polyphenol and yellow pigment obtained from the spice turmeric, was found to have strong anti-oxidant and anti-inflammatory properties. Increasing evidence has shown that curcumin can be used to prevent and treat myocardial fibrosis, when the myocardium suffers pathological pro-fibrotic changes in vivo and in vitro. The present review focuses on recent studies elucidating the mechanisms of curcumin in treating different pathologic conditions, including ischemia, hypoxia/reoxygenation, pressure or volume overload, and hyperglycemia or high-fat-induced cardiac fibrosis. Novel analogs such as C66, B2BrBC, Y20, and J17 have been designed to maximize the therapeutic potentials of curcumin. These optimized curcumin analogs with improved bioavailability and pharmacokinetic profiles need to be clinically verified before curcumin could be recommended for the treatment of myocardial fibrosis.
Collapse
Affiliation(s)
- Yonghui Yu
- Department of Traditional Chinese Medicine, China-Japan Friendship Hospital, Beijing 100029, P. R. China
| | - Jinghui Sun
- Graduate School of China Academy of Chinese Medical Science, Beijing 100700, P. R. China
| | - Ru Wang
- Graduate School of China Academy of Chinese Medical Science, Beijing 100700, P. R. China
| | - Jiangang Liu
- Center for Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing 100091, P. R. China
| | - Peili Wang
- Center for Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing 100091, P. R. China
| | - Chenglong Wang
- Center for Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing 100091, P. R. China
| |
Collapse
|
70
|
Xu L, Li X, Wang H, Xie F, Liu H, Xie J. Cigarette smoke triggers inflammation mediated by autophagy in BEAS-2B cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 184:109617. [PMID: 31476449 DOI: 10.1016/j.ecoenv.2019.109617] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/23/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
Cigarette smoking, as an individual consumption habit, is associated with a variety of related diseases. Exposure of cigarette smoke was reported to induce autophagy and inflammation in experimental animals and humans. However, the toxicity mechanism of cigarette smoke in organisms has not been entirely investigated. In this present study, we studied the role of autophagy played in the inflammation caused by cigarette smoke in human bronchial epithelial cells (BEAS-2B), as well as the role of the phosphatidylinositol 3-kinase (PI3K) signaling pathway and the mitogen-activated protein kinase (MAPK) signaling pathways underlying autophagy and inflammation. We found that cigarette smoke induced autophagy and inflammation in BEAS-2B, and the blockage of autophagy significantly reduced the release levels of IL-1β, IL-6 and IL-8 in BEAS-2B exposed to cigarette smoke for 24 h. Cigarette smoke downregulated the activity of PI3K/Akt/mTOR pathway and elevated the activity of MAPK pathways. Pretreatment of autophagic inhibitor could inhibit autophagy and the activity of JNK and p38 pathways. These results suggested that cigarette smoke-induced autophagy triggered inflammation through the activation of JNK and p38 pathways, which might contribute to understanding the adverse outcome pathways induced by cigarette smoke exposure and provide the information about the risk assessment of tobacco products.
Collapse
Affiliation(s)
- Liangtao Xu
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, 2 Fengyang Street, Zhengzhou, 450001, China
| | - Xiang Li
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, 2 Fengyang Street, Zhengzhou, 450001, China.
| | - Huiting Wang
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, 2 Fengyang Street, Zhengzhou, 450001, China
| | - Fuwei Xie
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, 2 Fengyang Street, Zhengzhou, 450001, China
| | - Huimin Liu
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, 2 Fengyang Street, Zhengzhou, 450001, China
| | - Jianping Xie
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC, 2 Fengyang Street, Zhengzhou, 450001, China.
| |
Collapse
|
71
|
Qaed E, Wang J, Almoiliqy M, Song Y, Liu W, Chu P, Alademi S, Alademi M, Li H, Alshwmi M, Al-Azab M, Ahsan A, Mahdi S, Han G, Niu M, Ali A, Shopit A, Wang H, Li X, Qaid A, Ma X, Li T, Peng J, Ma J, Zhang J, Tang Z. Phosphocreatine Improves Cardiac Dysfunction by Normalizing Mitochondrial Respiratory Function through JAK2/STAT3 Signaling Pathway In Vivo and In Vitro. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6521218. [PMID: 31885809 PMCID: PMC6914882 DOI: 10.1155/2019/6521218] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 08/29/2019] [Indexed: 12/17/2022]
Abstract
Diabetic cardiomyopathy (DCM) is one of the common cardiovascular complications in patients with diabetes. Accumulating evidence has demonstrated that DCM is thoroughly related to mitochondrial energy impairment and increases the generation of reactive oxygen species (ROS). Therefore, an ongoing study is developing strategies to protect cardiac mitochondria from diabetic complications, especially from hyperglycemia. Phosphocreatine (PCr) plays a major metabolic role in cardiac muscular cells including intracellular concentration of ATP which affects the activity of the myocardium. We hypothesized that PCr might improve oxidative phosphorylation and electron transport capacity in mitochondria impaired by hyperglycemia in vivo and in vitro. Also, we aimed to evaluate the protective effect of PCr against DCM through the JAK2/STAT3 signaling pathway. The mitochondrial respiratory capacity from rats and H9C2 cells was measured by high-resolution respirometry (HRR). Expressions of proteins Bax, Bcl-2, caspase 3, caspase 9, cleaved caspase 3, and cleaved caspase 9, as well as JAK2/STAT3 signaling pathways, were determined by western blotting. ROS generation and mitochondrial membrane potential (MMP) were measured with fluorescent probes. Type 1 diabetes mellitus was induced in Wistar male rats by a single intraperitoneal injection of streptozotocin (STZ) (80 mg/kg body weight). Our results revealed that PCr possessed protective effects against DCM injury by improving the mitochondrial bioenergetics and by positively exerting protective effects against DCM in vivo and in vitro, not only improving diabetes symptom, resulting in changes of cardiac tissue using hematoxylin and eosin (H&E) stain, but also ameliorating biochemical changes. Moreover, PCr increased Bcl-2, caspase 3, and caspase 9 protein expressions and decreased Bax, cleaved caspase 3, and cleaved caspase 9 expressions as well as the JAK2/STAT3 signaling pathway. In conclusion, PCr improves mitochondrial functions and exerts an antiapoptotic effect in vivo and in vitro exposed to oxidative stress by hyperglycemia through the JAK2/STAT3 signaling pathway. Our findings suggest that PCr medication is a possible therapeutic strategy for cardioprotection.
Collapse
Affiliation(s)
- Eskandar Qaed
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Jiaqi Wang
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, 1500 Qinghua Road, Changchun 130021, China
| | - Marwan Almoiliqy
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Yanlin Song
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Wu Liu
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Peng Chu
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning 116044, China
| | | | | | - Hailong Li
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Mohammed Alshwmi
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Mahmoud Al-Azab
- Department of Immunology Guangzhou Institute Pediatrics, Guangzhou Woman and Childrens Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Anil Ahsan
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Samar Mahdi
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Guozhu Han
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Mengyue Niu
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Amr Ali
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Abdullah Shopit
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Hongyan Wang
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Xiaodong Li
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Abdullah Qaid
- N.I. Pirogov Russian National Research Medical University, Russia
| | - Xiaodong Ma
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Tong Li
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Jinyong Peng
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Jing Ma
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Jianbin Zhang
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Zeyao Tang
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning 116044, China
| |
Collapse
|
72
|
Wu B, Huang XY, Li L, Fan XH, Li PC, Huang CQ, Xiao J, Gui R, Wang S. Attenuation of diabetic cardiomyopathy by relying on kirenol to suppress inflammation in a diabetic rat model. J Cell Mol Med 2019; 23:7651-7663. [PMID: 31565849 PMCID: PMC6815847 DOI: 10.1111/jcmm.14638] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 06/23/2019] [Accepted: 07/23/2019] [Indexed: 12/15/2022] Open
Abstract
Diabetic cardiomyopathy is characterized by diabetes‐induced myocardial abnormalities, accompanied by inflammatory response and alterations in inflammation‐related signalling pathways. Kirenol, isolated from Herba Siegesbeckiae, has potent anti‐inflammatory properties. In this study, we aimed to investigate the cardioprotective effect of kirenol against DCM and underlying the potential mechanisms in a type 2 diabetes mellitus model. Kirenol treatment significantly decreased high glucose‐induced cardiofibroblasts proliferation and increased the cardiomyocytes viability, prevented the loss of mitochondrial membrane potential and further attenuated cardiomyocytes apoptosis, accompanied by a reduction in apoptosis‐related protein expression. Kirenol gavage could affect the expression of pro‐inflammatory cytokines in a dose‐dependent manner but not lower lipid profiles, and only decrease fasting plasma glucose, fasting plasma insulin and mean HbA1c levels in high‐dose kirenol‐treated group at some time‐points. Left ventricular dysfunction, hypertrophy, fibrosis and cell apoptosis, as structural and functional abnormalities, were ameliorated by kirenol administration. Moreover, in diabetic hearts, oral kirenol significantly attenuated activation of mitogen‐activated protein kinase subfamily and nuclear translocation of NF‐κB and Smad2/3 and decreased phosphorylation of IκBα and both fibrosis‐related and apoptosis‐related proteins. In an Electrophoretic mobility shift assay, the binding activities of NF‐κB, Smad3/4, SP1 and AP‐1 in the nucleus of diabetic myocardium were significantly down‐regulated by kirenol treatment. Additionally, high dose significantly enhanced myocardial Akt phosphorylation without intraperitoneal injection of insulin. Kirenol may have potent cardioprotective effects on treating for the established diabetic cardiomyopathy, which involves the inhibition of inflammation and fibrosis‐related signalling pathways and is independent of lowering hyperglycaemia, hyperinsulinemia and lipid profiles.
Collapse
Affiliation(s)
- Bin Wu
- Laboratory of Platelet and Endothelium Biology, Department of Transfusion Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Transfusion Medicine, the Third Xiangya Hospital, Central South University, Changsha, China.,Department of Physiology and Pharmacology, Medical College, Hubei University of Arts and Science, Xiangyang, China
| | - Xue-Yuan Huang
- Department of Transfusion Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Le Li
- Department of Cardiology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-Hang Fan
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng-Cheng Li
- Laboratory of Platelet and Endothelium Biology, Department of Transfusion Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuan-Qi Huang
- Department of Pharmacy, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Xiao
- Department of Immunology, Medical College, Hubei University of Arts and Science, Xiangyang, China
| | - Rong Gui
- Department of Transfusion Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Shun Wang
- Laboratory of Platelet and Endothelium Biology, Department of Transfusion Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
73
|
Morris G, Puri BK, Walker AJ, Maes M, Carvalho AF, Bortolasci CC, Walder K, Berk M. Shared pathways for neuroprogression and somatoprogression in neuropsychiatric disorders. Neurosci Biobehav Rev 2019; 107:862-882. [PMID: 31545987 DOI: 10.1016/j.neubiorev.2019.09.025] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/13/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022]
Abstract
Activated immune-inflammatory, oxidative and nitrosative stress (IO&NS) pathways and consequent mitochondrial aberrations are involved in the pathophysiology of psychiatric disorders including major depression, bipolar disorder and schizophrenia. They offer independent and shared contributions to pathways underpinning medical comorbidities including insulin resistance, metabolic syndrome, obesity and cardiovascular disease - herein conceptualized as somatoprogression. This narrative review of human studies aims to summarize relationships between IO&NS pathways, neuroprogression and somatoprogression. Activated IO&NS pathways, implicated in the neuroprogression of psychiatric disorders, affect the pathogenesis of comorbidities including insulin resistance, dyslipidaemia, obesity and hypertension, and by inference, metabolic syndrome. These conditions activate IO&NS pathways, exacerbating neuroprogression in psychiatric disorders. The processes whereby proinflammatory cytokines, nitrosative and endoplasmic reticulum stress, NADPH oxidase isoforms, PPARγ inactivation, SIRT1 deficiency and intracellular signalling pathways impact lipid metabolism and storage are considered. Through associations between body mass index, chronic neuroinflammation and FTO expression, activation of IO&NS pathways arising from somatoprogression may contribute to neuroprogression. Early evidence highlights the potential of adjuvants targeting IO&NS pathways for treating somatoprogression and neuroprogression.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia
| | - Basant K Puri
- Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK
| | - Adam J Walker
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia
| | - Michael Maes
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia
| | - Andre F Carvalho
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Chiara C Bortolasci
- Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia
| | - Ken Walder
- Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia
| | - Michael Berk
- Deakin University, IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Geelong, Victoria, Australia; Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, the Department of Psychiatry and the Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
74
|
Exosomal microRNA-122 mediates obesity-related cardiomyopathy through suppressing mitochondrial ADP-ribosylation factor-like 2. Clin Sci (Lond) 2019; 133:1871-1881. [PMID: 31434696 DOI: 10.1042/cs20190558] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/14/2019] [Accepted: 08/21/2019] [Indexed: 12/23/2022]
Abstract
Emerging studies have demonstrated that microRNAs (miRs) participate in the development of multiple metabolic complications including cardiovascular diseases. Among them, circulating level of liver-secreted miR-122 was closely correlated with several consequence of heart diseases in clinical studies, and overexpression of miR-122 impaired cardiomyocyte function. However, it was unknown whether miR-122 could regulate cardiac biology in obesity. Therefore, present study was to disclose the role of miR-122 in cardiac metabolic disorders and potential molecular mechanisms. Through utilizing clinical samples and high fat diet-fed mice, we investigated the physiological roles of miR-122 in obesity-related cardiomyopathy. Besides, present study explored the mitochondrial function under exosomal miR-122 stimulation in mouse primary cardiomyocytes. In clinical samples and obese mice, the circulating level of exosomal miR-122 was positively correlated with cardiac dysfunctional parameters, including reduction in ejection fraction (EF) and increased levels of NT-proBNP. Human plasma exosomes transported miR-122 into mouse primary cardiomyocytes, and impaired mitochondrial ATP production and oxygen consumption, whereas miR-122 sponge improved these inhibitory effects. In dietary-induced mice, increased hepatic and circulating exosomal miR-122 deteriorated cardiac structure and functional index, and inhibited mitochondrial function. Liver-specific blockage of miR-122 attenuated abnormal cardiac remodeling. Mechanistically, miR-122 directly bound and suppressed mitochondrial protein ADP-ribosylation factor-like 2 (Arl-2) in vitro and in vivo Knockdown of Arl-2 abolished the mitochondrial benefits of miR-122 sponge in exosome-treated mouse primary cardiomyocytes.In conclusions, our present study firstly showed that liver-secreted exosomal miR-122 played a critical role in the development of metabolic cardiomyopathy, and miR-122/mitochondrial Arl-2 signaling affected cardiac energy homeostasis.
Collapse
|
75
|
Pivari F, Mingione A, Brasacchio C, Soldati L. Curcumin and Type 2 Diabetes Mellitus: Prevention and Treatment. Nutrients 2019; 11:E1837. [PMID: 31398884 PMCID: PMC6723242 DOI: 10.3390/nu11081837] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/30/2019] [Accepted: 08/05/2019] [Indexed: 12/17/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is an ensemble of metabolic diseases that has reached pandemic dimensions all over the world. The multifactorial nature of the pathology makes patient management, which includes lifelong drug therapy and lifestyle modification, extremely challenging. It is well known that T2DM is a preventable disease, therefore lowering the incidence of new T2DM cases could be a key strategy to reduce the global impact of diabetes. Currently, there is growing evidence on the efficacy of the use of medicinal plants supplements for T2DM prevention and management. Among these medicinal plants, curcumin is gaining a growing interest in the scientific community. Curcumin is a bioactive molecule present in the rhizome of the Curcuma longa plant, also known as turmeric. Curcumin has different pharmacological and biological effects that have been described by both in vitro and in vivo studies, and include antioxidant, cardio-protective, anti-inflammatory, anti-microbial, nephro-protective, anti-neoplastic, hepato-protective, immunomodulatory, hypoglycaemic and anti-rheumatic effects. In animal models, curcumin extract delays diabetes development, improves β-cell functions, prevents β-cell death, and decreases insulin resistance. The present review focuses on pre-clinical and clinical trials on curcumin supplementation in T2DM and discusses the peculiar mechanisms by which curcumin might ameliorate diabetes management.
Collapse
Affiliation(s)
- Francesca Pivari
- Department of Health Sciences, University of Milan, Via A. Di Rudinì, 8, 20142 Milan, Italy.
| | - Alessandra Mingione
- Department of Health Sciences, University of Milan, Via A. Di Rudinì, 8, 20142 Milan, Italy
| | - Caterina Brasacchio
- Department of Health Sciences, University of Milan, Via A. Di Rudinì, 8, 20142 Milan, Italy
| | - Laura Soldati
- Department of Health Sciences, University of Milan, Via A. Di Rudinì, 8, 20142 Milan, Italy
| |
Collapse
|
76
|
Davargaon RS, Sambe AD, Muthangi V V S. Trolox prevents high glucose-induced apoptosis in rat myocardial H9c2 cells by regulating GLUT-4 and antioxidant defense mechanism. IUBMB Life 2019; 71:1876-1895. [PMID: 31359611 DOI: 10.1002/iub.2133] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 07/01/2019] [Indexed: 12/12/2022]
Abstract
Redox imbalance due to hyperglycemia is a causative factor for an increased generation of reactive oxygen species (ROS) that leads to mitochondrial dysfunction and the release of cytochrome-c. The aim of the present study is to elucidate the functional role of oxidative stress (OS) in the induction of apoptosis in H9c2 cells in the hyperglycemic state through glucose transporter-4 (GLUT-4) regulation and antioxidant status. H9c2 cells were incubated with 15, 24, and 33 mM glucose for 24, 48, and 72 hr to induce hyperglycemic stress. Hyperglycemic episodes have significantly influenced GLUT-4 mRNA regulation, depleted glutathione (GSH) and its associated enzymes, reduced cellular antioxidant enzymes (AOEs), caused nuclear condensation, and induced apoptosis by activating caspase-9 and 3 and annexin V binding in a concentration and duration-dependent manner. Trolox pretreatment significantly enhanced the GLUT-4 mRNA and antioxidant defense mechanism, suppressed nuclear condensation, and prevented cytochrome-c release, thereby reducing mitochondrial-dependent apoptosis. The present study shows that the toxic effect of high glucose is significantly regulated and that OS induction can be prevented through a water-soluble vitamin E analog "Trolox" treatment.
Collapse
Affiliation(s)
| | - Asha Devi Sambe
- Laboratory of Gerontology, Department of Zoology, J.B. Campus, Bangalore University, Bengaluru, Karnataka, India
| | | |
Collapse
|
77
|
Ge Q, Zhao L, Ren XM, Ye P, Hu ZY. LCZ696, an angiotensin receptor-neprilysin inhibitor, ameliorates diabetic cardiomyopathy by inhibiting inflammation, oxidative stress and apoptosis. Exp Biol Med (Maywood) 2019; 244:1028-1039. [PMID: 31262190 DOI: 10.1177/1535370219861283] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Diabetic cardiomyopathy, which refers to the destruction of the structure and function of the heart, is the primary cause of heart failure due to diabetes. LCZ696 is the first angiotensin receptor-neprilysin inhibitor (ARNi) to be used clinically. Our study investigated the role played by LCZ696 during diabetic cardiomyopathy and explored the potential mechanisms underlying these effects. Diabetes was induced by injecting streptozotocin intraperitoneally into mice, and the mice were then divided randomly into two groups: one group was treated with LCZ696 (60 mg/kg/d) for 16 weeks, and the other received no treatment. The H9C2 cardiomyoblast cell line was treated with LCZ696 under high-glucose (HG) conditions. The levels of apoptotic (Bax, Bcl-2 and cleaved caspase-3) and pro-inflammatory factors [nuclear factor (NF)-κB, c-Jun N-terminal kinase (JNK) and p38 mitogen-activated kinase (MAPK)] were assessed in heart tissues from diabetic and normal mice and in H9C2 cells. The heart tissue structures and cardiac functions of diabetic mice were compared with those of normal mice, using histological and echocardiographic analyses. The results showed that LCZ696 inhibits the nuclear transfer of NF-κB and JNK/p38MAPK phosphorylation, and mitigates inflammation and apoptosis in diabetic mice and H9C2 cardiomyocytes under HG conditions. The histological and echocardiographic data showed that compared with untreated diabetic mice, diabetic mice treated with LCZ696 exhibited improved ventricular remodeling and cardiac function. LCZ696 also ameliorated oxidative stress in both vivo and vitro. In conclusion, LCZ696 improved diabetic cardiomyopathy by reducing cardiac inflammation, oxidative stress, and apoptosis. Impact statement Diabetic cardiomyopathy (DCM) is an important cause of heart failure in patients with diabetes, resulting in increased morbidity and mortality. LCZ696, which was studied here, is a novel drug for the treatment of heart failure. The latest research reports that LCZ696 is more effective for preventing heart failure than valsartan alone. However, little research has been performed examining the effects of LCZ696 on DCM. This study was designed to examine the role played by LCZ696 during DCM and the potential mechanisms underlying these effects, which may provide the basis for a new therapeutic strategy for DCM.
Collapse
Affiliation(s)
- Qing Ge
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Li Zhao
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Xiao-Min Ren
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Peng Ye
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Zuo-Ying Hu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| |
Collapse
|
78
|
Hadzi‐Petrushev N, Angelovski M, Rebok K, Mitrokhin V, Kamkin A, Mladenov M. Antioxidant and anti‐inflammatory effects of the monocarbonyl curcumin analogs B2BRBC and C66 in monocrotaline‐induced right ventricular hypertrophy. J Biochem Mol Toxicol 2019; 33:e22353. [DOI: 10.1002/jbt.22353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 04/03/2019] [Accepted: 05/17/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Nikola Hadzi‐Petrushev
- Faculty of Natural Sciences and Mathematics, Institute of Biology“Ss. Cyril and Methodius” University in Skopje Skopje Republic of Macedonia
| | - Marija Angelovski
- Faculty of Natural Sciences and Mathematics, Institute of Biology“Ss. Cyril and Methodius” University in Skopje Skopje Republic of Macedonia
| | - Katerina Rebok
- Faculty of Natural Sciences and Mathematics, Institute of Biology“Ss. Cyril and Methodius” University in Skopje Skopje Republic of Macedonia
| | - Vadim Mitrokhin
- Department of Fundamental and Applied PhysiologyRussian National Research Medical University Moscow Russia
| | - Andre Kamkin
- Department of Fundamental and Applied PhysiologyRussian National Research Medical University Moscow Russia
| | - Mitko Mladenov
- Faculty of Natural Sciences and Mathematics, Institute of Biology“Ss. Cyril and Methodius” University in Skopje Skopje Republic of Macedonia
- Department of Fundamental and Applied PhysiologyRussian National Research Medical University Moscow Russia
| |
Collapse
|
79
|
Li C, Miao X, Li F, Adhikari BK, Liu Y, Sun J, Zhang R, Cai L, Liu Q, Wang Y. Curcuminoids: Implication for inflammation and oxidative stress in cardiovascular diseases. Phytother Res 2019; 33:1302-1317. [PMID: 30834628 DOI: 10.1002/ptr.6324] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/28/2018] [Accepted: 01/31/2019] [Indexed: 01/04/2023]
Abstract
It has been extensively verified that inflammation and oxidative stress play important roles in the pathogenesis of cardiovascular diseases (CVDs). Curcuminoids, from the plant Curcuma longa, have three major active ingredients, which include curcumin (curcumin I), demethoxycurcumin, and bisdemethoxycurcumin. Curcuminoids have been used in traditional medicine for CVDs' management and other comorbidities for centuries. Numerous studies had delineated their anti-inflammatory, antioxidative, and other medicinally relevant properties. Animal experiments and clinical trials have also demonstrated that turmeric and curcuminoids can effectively reduce atherosclerosis, cardiac hypertrophy, hypertension, ischemia/reperfusion injury, and diabetic cardiovascular complications. In this review, we introduce and summarize curcuminoids' molecular and biological significance, while focusing on their mechanistic anti-inflammatory/antioxidative involvements in CVDs and preventive effects against CVDs, and, finally, discuss relevant clinical applications.
Collapse
Affiliation(s)
- Cheng Li
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiao Miao
- Department of ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Fengsheng Li
- General Hospital of the PLA Rocket Force, Beijing, China
| | - Binay Kumar Adhikari
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yucheng Liu
- A.T. Still University School of Osteopathic Medicine in Arizona, Mesa, AZ, USA
| | - Jian Sun
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Rong Zhang
- General Hospital of the PLA Rocket Force, Beijing, China
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, Radiation Oncology, Pharmacology & Toxicology, The University of Louisville, Louisville, KY, USA
| | - Quan Liu
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yonggang Wang
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
80
|
Zuo GF, Ren XM, Ge Q, Luo J, Ye P, Wang F, Wu W, Chao YL, Gu Y, Gao XF, Ge Z, Gao HB, Hu ZY, Zhang JJ, Chen SL. Activation of the PP2A catalytic subunit by ivabradine attenuates the development of diabetic cardiomyopathy. J Mol Cell Cardiol 2019; 130:170-183. [PMID: 30998977 DOI: 10.1016/j.yjmcc.2019.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 12/30/2022]
Abstract
Hyperglycemia-induced apoptosis plays a critical role in the pathogenesis of diabetic cardiomyopathy (DCM). Our previous study demonstrated that ivabradine, a selective If current antagonist, significantly attenuated myocardial apoptosis in diabetic mice, but the underlying mechanisms remained unknown. This study investigated the underlying mechanisms by which ivabradine exerts anti-apoptotic effects in experimental DCM. Pretreatment with ivabradine, but not ZD7288 (an established If current blocker), profoundly inhibited high glucose-induced apoptosis via inactivation of nuclear factor (NF)-κB signaling in neonatal rat cardiomyocytes. The effect was abolished by transfection of an siRNA targeting protein phosphatase 2A catalytic subunit (PP2Ac). In streptozotocin-induced diabetic mice, ivabradine treatment significantly inhibited left ventricular hyperpolarization-activated cyclic nucleotide-gated channel 2 (HCN2) and HCN4 (major components of the If current), activated PP2Ac, and attenuated NF-κB signaling activation and apoptosis, in line with improved histological abnormalities, fibrosis, and cardiac dysfunction without affecting hyperglycemia. These effects were not observed in diabetic mice with virus-mediated knockdown of HCN2 or HCN4 after myocardial injection, but were alleviated by knockdown of PP2Acα. Molecular docking and phosphatase activity assay confirmed direct binding of ivabradine to, and activation of, PP2Ac. In conclusion, ivabradine may directly activate PP2Ac, leading to inhibition of NF-κB signaling activation, myocardial apoptosis, and fibrosis, and eventually improving cardiac function in experimental DCM. Taken together, the present findings suggest that ivabradine may be a promising drug for treatment of DCM.
Collapse
Affiliation(s)
- Guang-Feng Zuo
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiao-Min Ren
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qing Ge
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jie Luo
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Peng Ye
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Feng Wang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wen Wu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yue-Lin Chao
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Yue Gu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Xiao-Fei Gao
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zhen Ge
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Han-Bin Gao
- The First People's Hospital of Taicang, Soochow University, Suzhou, China
| | - Zuo-Ying Hu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | - Jun-Jie Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | - Shao-Liang Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
81
|
Hou H, Zhang Q, Dong H, Ge Z. Matrine improves diabetic cardiomyopathy through TGF‐β‐induced protein kinase RNA‐like endoplasmic reticulum kinase signaling pathway. J Cell Biochem 2019; 120:13573-13582. [PMID: 30938856 DOI: 10.1002/jcb.28632] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Huijuan Hou
- Department of Cardiology Dezhou People's Hospital Dezhou China
| | - Qianqian Zhang
- Department of Nephrology Dezhou People's Hospital Dezhou China
| | - Hongwei Dong
- Department of Cardiology Dezhou People's Hospital Dezhou China
| | - Zhiming Ge
- Department of Cardiology Qilu Hospital of Shandong University Jinan China
| |
Collapse
|
82
|
Zhang L, Wang L, Guo E, Qi Y. RETRACTED: Silence of lncRNA CHRF protects H9c2 cells against lipopolysaccharide-induced injury via up-regulating microRNA-221. Exp Mol Pathol 2019; 107:43-50. [PMID: 30695715 DOI: 10.1016/j.yexmp.2019.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 01/06/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Given the comments of Dr Elisabeth Bik regarding this article “… the Western blot bands in all 400+ papers are all very regularly spaced and have a smooth appearance in the shape of a dumbbell or tadpole, without any of the usual smudges or stains. All bands are placed on similar looking backgrounds, suggesting they were copy/pasted from other sources, or computer generated”, the journal requested the authors to provide the raw data. However, the authors were not able to fulfil this request and therefore the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Lijuan Zhang
- Department of Pediatrics, Jining No.1 People's Hospital, Jining 272011, China
| | - Li Wang
- Department of Pediatrics, Jining No.1 People's Hospital, Jining 272011, China
| | - Enyu Guo
- Department of Pediatrics, Jining No.1 People's Hospital, Jining 272011, China
| | - Yuefeng Qi
- Department of Pediatrics, Jining No.1 People's Hospital, Jining 272011, China.
| |
Collapse
|
83
|
Li S, Liu R, Xue M, Qiao Y, Chen Y, Long G, Tian X, Hu Y, Zhou P, Dong X, Qi Z, Cui Y, Shen Y. Spleen tyrosine kinase‑induced JNK‑dependent NLRP3 activation is involved in diabetic cardiomyopathy. Int J Mol Med 2019; 43:2481-2490. [PMID: 30942391 DOI: 10.3892/ijmm.2019.4148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 03/20/2019] [Indexed: 11/05/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is a leading contributor to the increased morbidity and mortality rates associated with diabetes. Persistent inflammation has previously been reported to be involved in the pathogenesis of DCM. However, the exact underlying molecular mechanisms remain to be fully elucidated. In the present study, the role of spleen tyrosine kinase (Syk) and c‑Jun N‑terminal kinase (JNK) in NLR family pyrin domain‑containing 3 (NLRP3 inflammasome) activation in DCM were investigated in vivo and in vitro. Streptozotocin (65 mg/kg) was injected intraperitoneally into Sprague‑Dawley rats to induce a rat model of diabetes. Neonatal rat cardiomyocytes and H9c2 cells were cultured to detect the expression of JNK, NLRP3 and its associated downstream molecules, following treatment with Syk/JNK inhibitor or Syk/JNK‑small interfering (si)RNA in high glucose (HG) conditions. It was revealed that the protein and mRNA expression levels of phospho (p)‑Syk, p‑JNK, NLRP3 and its associated downstream molecules, including interleukin (IL)‑1β, were upregulated in vivo and in vitro. The JNK inhibitor significantly decreased the expression of NLRP3 and its downstream molecules in neonatal rat cardiomyocytes and H9c2 cells treated with HG. Furthermore, Syk‑siRNA and the Syk inhibitor markedly inhibited the HG‑induced activation of JNK, followed by the downregulation of NLRP3 and its downstream molecules at the mRNA and protein levels in cells. Therefore, it was demonstrated that the HG‑induced activation of NLRP3 was mediated by the activation of Syk/JNK, which subsequently increased the protein expression levels of mature IL‑1β, suggesting that the Syk/JNK/NLRP3 signaling pathway serves a critical role in the pathogenesis of DCM.
Collapse
Affiliation(s)
- Shengyu Li
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, P.R. China
| | - Ruiqing Liu
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, P.R. China
| | - Meiting Xue
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, P.R. China
| | - Yingchun Qiao
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, P.R. China
| | - Yufeng Chen
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, P.R. China
| | - Guangfeng Long
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, P.R. China
| | - Xixi Tian
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, P.R. China
| | - Yahui Hu
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, P.R. China
| | - Pengfei Zhou
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, P.R. China
| | - Xiaohui Dong
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, P.R. China
| | - Zhi Qi
- Department of Histology and Embryology, School of Medicine, Nankai University, Tianjin 300071, P.R. China
| | - Yujie Cui
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, P.R. China
| | - Yanna Shen
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, P.R. China
| |
Collapse
|
84
|
Ginkgo Biloba Leaf Extract Attenuates Atherosclerosis in Streptozotocin-Induced Diabetic ApoE-/- Mice by Inhibiting Endoplasmic Reticulum Stress via Restoration of Autophagy through the mTOR Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8134678. [PMID: 31080547 PMCID: PMC6442448 DOI: 10.1155/2019/8134678] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 12/03/2018] [Accepted: 12/13/2018] [Indexed: 12/26/2022]
Abstract
Background There is a crosstalk between endoplasmic reticulum stress (ERS) and autophagy, and autophagy could attenuate endoplasmic reticulum stress-mediated apoptosis. Ginkgo biloba leaf extract (GBE) exerts vascular protection functions. The purpose of the present study is to investigate the role of autophagy in diabetic atherosclerosis (AS) and the effect of GBE on autophagy and ERS. Methods Network pharmacology was utilized to predict the targets and pathways of the active chemical compounds of Gingko biloba leaf to attenuate AS. ApoE−/− mice were rendered diabetic by intraperitoneal ingestion with streptozotocin combined with a high-fat diet. The diabetic mice were divided into five groups: model group, atorvastatin group, rapamycin group, and low- and high-dose GBE groups. Serum and tissue markers of autophagy or ERS markers, including the protein expression, were examined. Results The mammalian target of rapamycin (mTOR) and NF-κB signaling pathways were targeted by the active chemical compounds of GBE to attenuate AS predicted by network pharmacology. GBE reduced the plaque area/lumen area and the plaque lipid deposition area/intimal area and inhibited the expressions of CD68, MMP2, and MMP9. Rapamycin and GBE inhibited the expression of mTOR and SQSTM1/p62 which increased in the aorta of diabetic mice. In addition, GBE reduced the expression of ERS markers in diabetic mice. GBE reduced the serum lipid metabolism levels, blood glucose, and inflammatory cytokines. Conclusion Impaired autophagy and overactive endoplasmic reticulum stress contributed to diabetic atherosclerosis. mTOR inhibitor rapamycin and GBE attenuated diabetic atherosclerosis by inhibiting ERS via restoration of autophagy through inhibition of mTOR.
Collapse
|
85
|
Luo W, Jin Y, Wu G, Zhu W, Qian Y, Zhang Y, Li J, Zhu A, Liang G. Blockage of ROS and MAPKs-mediated inflammation via restoring SIRT1 by a new compound LF10 prevents type 1 diabetic cardiomyopathy. Toxicol Appl Pharmacol 2019; 370:24-35. [PMID: 30857947 DOI: 10.1016/j.taap.2019.03.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/02/2019] [Accepted: 03/08/2019] [Indexed: 01/23/2023]
Abstract
Diabetic cardiomyopathy (DCM) is a common and severe complication of diabetes. A multitude of factors are involved in the pathogenesis of DCM including chronic inflammation and oxidative stress. We have recently shown that compound LF10 prevents inflammatory responses in an animal model of lung injury. In the present study, we explored the protective effects and mechanism of LF10 against DCM using a mouse model of streptozotocin-induced diabetes and high glucose (HG)-challenged cultured cardiomyocytes. We show that LF10 suppressed diabetes-induced cardiomyocyte hypertrophy and fibrosis, which was accompanied by preservation of cardiac function in mice. Mechanistically, LF10 prevented increases in the levels of pro-inflammatory molecules and oxidative stress under in vitro and in vivo diabetic conditions. Moreover, LF10 restored HG-downregulated sirtuin 1 (SIRT1) in cardiomyocytes and prevented HG-induced activation of MAPKs. Using specific small-molecule regulators, we found that SIRT1 was an upstream signal of MAPKs. In conclusion, LF10 inhibited ROS and MAPKs-mediated inflammation by restoring SIRT1, and prevented development of DCM. LF10 targeted both oxidative stress and inflammation, two tightly interconnected pathogenic pathways, which makes LF10 a highly advantageous therapeutic drug potential.
Collapse
Affiliation(s)
- Wu Luo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, Wenzhou, China
| | - Yiyi Jin
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, Wenzhou, China
| | - Gaojun Wu
- Department of Cardiology, The First Affiliated Hospital, Wenzhou Medical University, Zhejiang, Wenzhou, China
| | - Weiwei Zhu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, Wenzhou, China
| | - Yuanyuan Qian
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, Wenzhou, China
| | - Yali Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, Wenzhou, China
| | - Jieli Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, Wenzhou, China
| | - Aisong Zhu
- School of Basic Medicine, Liaoning University of Traditional Chinese Medicine, Liaoning, Shenyang, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, Wenzhou, China.
| |
Collapse
|
86
|
Li F, Zhang K, Xu T, Du W, Yu B, Liu Y, Nie H. Exosomal microRNA-29a mediates cardiac dysfunction and mitochondrial inactivity in obesity-related cardiomyopathy. Endocrine 2019; 63:480-488. [PMID: 30264370 DOI: 10.1007/s12020-018-1753-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/08/2018] [Indexed: 12/12/2022]
Abstract
PURPOSE Present study aims to explore the pathophysiological role of microRNA (miR)-29a in the process of obesity-related cardiomyopathy in human subjects and mice. METHODS The expression level of circulating exosomal miR-29a was measured in 37 lean and 30 obese human subjects, and correlated with cardiac parameters. The effects of miR-29a on mitochondrial activity and cardiac function were investigated by treatment of miR-29a sponge in primary mouse cardiomyocytes and diet-induced obesity-related cardiomyopathy in mice. RESULTS The increased circulating miR-29a level was closely associated with impaired human cardiac function, including ejection fraction (r = -0.2663, p < 0.05) and NT-proBNP levels (r = 0.4270, p < 0.001). Exosomes from obese human plasma mediated cardiomyocyte mitochondrial inactivity, but pre-treatment with miR-29a sponge attenuated the exosomal miR-29a-induced reduction of ATP production (p < 0.001), basal oxygen consumption (p < 0.01) and mitochondrial complex I activity (p < 0.01). In vivo mouse study, high fat diet damaged cardiac function, normal structure, and mitochondrial activity, whereas miR-29a sponge improved the cardiac status. CONCLUSIONS Present study uncovered the correlation between circulating miR-29a and cardiac parameters in human subjects, and provided solid evidence of the therapeutic application of miR-29a sponge in combating obesity-mediated cardiac dysfunction.
Collapse
Affiliation(s)
- Fengqin Li
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kuikui Zhang
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ting Xu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenjuan Du
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bo Yu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Youbin Liu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Honggang Nie
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
87
|
Lu Y, Lu X, Wang L, Yang W. Resveratrol attenuates high fat diet-induced mouse cardiomyopathy through upregulation of estrogen related receptor-α. Eur J Pharmacol 2019; 843:88-95. [PMID: 30342030 DOI: 10.1016/j.ejphar.2018.10.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 11/26/2022]
Abstract
Resveratrol reportedly promotes the improvement of cardiac dysfunction and other cardiovascular diseases. Studies demonstrate resveratrol exhibits a set of benefits, including anti-oxidative property, anti-apoptosis and anti-inflammation. However, the molecular mediators of resveratrol-induced cardiac benefits are still not fully disclosed. Present study aims to investigate whether estrogen-related receptor (ERR)-α, an orphan nuclear receptor, determines the protective benefits of resveratrol in obesity-related cardiomyopathy. Through high fat diet-fed mouse model, our results show resveratrol increases cardiac ERR-α level and attenuates diet-induced cardiac hypertrophy, mitochondrial inactivity and inflammatory response. Co-administration of lentivirus encoding Err-α siRNA abolishes these benefits, such as enlargement of cardiomyocyte size, induction of left ventricular dysfunction and structural disorders. More importantly, we firstly find resveratrol stimulates the cardiac mitochondrial activities, but silencing Err-α decreased mitochondrial function on ATP production, oxygen consumption and complex I activity. Besides, Err-α deficiency also reverses resveratrol-mediated suppression of inflammatory response in cardiac tissues. Present study not only shows resveratrol enhances cardiac mitochondrial activities, but also supports ERR-α at least partially controls the pharmacological benefits of resveratrol in obese mouse cardiomyopathy.
Collapse
Affiliation(s)
- Yingjie Lu
- Department of Cardiology, the Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Street, Harbin 150001, Heilongjiang Province, China
| | - Xian Lu
- Department of Cardiology, the Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Street, Harbin 150001, Heilongjiang Province, China
| | - Lifeng Wang
- Department of Cardiology, the Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Street, Harbin 150001, Heilongjiang Province, China
| | - Wei Yang
- Department of Cardiology, the Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Street, Harbin 150001, Heilongjiang Province, China.
| |
Collapse
|
88
|
Yadav SK, Kambis TN, Mishra PK. Regulating Inflammatory Cytokines in the Diabetic Heart. OXIDATIVE STRESS IN HEART DISEASES 2019:427-436. [DOI: 10.1007/978-981-13-8273-4_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
89
|
Yaribeygi H, Simental‐Mendía LE, Butler AE, Sahebkar A. Protective effects of plant‐derived natural products on renal complications. J Cell Physiol 2018; 234:12161-12172. [DOI: 10.1002/jcp.27950] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 11/19/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Habib Yaribeygi
- Chronic Kidney Disease Research Center Shahid Beheshti University of Medical Sciences Tehran Iran
| | | | | | - Amirhossein Sahebkar
- Biotechnology Research Center Pharmaceutical Technology Institute, Mashhad University of Medical Sciences Mashhad Iran
- Neurogenic Inflammation Research Center Mashhad University of Medical Sciences Mashhad Iran
- School of Pharmacy Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
90
|
Novel Curcumin C66 That Protects Diabetes-Induced Aortic Damage Was Associated with Suppressing JNK2 and Upregulating Nrf2 Expression and Function. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5783239. [PMID: 30622669 PMCID: PMC6304198 DOI: 10.1155/2018/5783239] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/23/2018] [Accepted: 10/10/2018] [Indexed: 12/15/2022]
Abstract
Diabetes-related cardiovascular diseases are leading causes of the mortality worldwide. Our previous study has explored the protective effect of curcumin analogue C66 on diabetes-induced pathogenic changes of the aorta. In the present study, we sought to reveal the underlying protective mechanisms of C66. Diabetes was induced in male WT and JNK2−/− mice with a single intraperitoneal injection of streptozotocin. Diabetic mice and age-matched nondiabetic mice were randomly treated with either vehicle (WT, WT DM, JNK2−/−, and JNK2−/−DM) or C66 (WT + C66, WT DM + C66, JNK2−/− + C66, and JNK2−/−DM + C66) for three months. Aortic oxidative stress, cell apoptosis, inflammatory changes, fibrosis, and Nrf2 expression and function were assessed by immunohistochemical staining for the protein level and real-time PCR method for mRNA level. The results suggested that either C66 treatment or JNK2 deletion can reverse diabetes-induced aortic oxidative stress, cell apoptosis, inflammation, and fibrosis. Nrf2 was also found to be activated either by C66 or JNK2 deletion. However, C66 had no extra effect on diabetic aortic damage or Nrf2 activation without JNK2. These results suggest that diabetes-induced pathological changes in the aorta can be protected by C66 mainly via inhibition of JNK2 and accompanied by the upregulation of Nrf2 expression and function.
Collapse
|
91
|
Weng J, Jiang S, Ding L, Xu Y, Zhu X, Jin P. Autotaxin/lysophosphatidic acid signaling mediates obesity-related cardiomyopathy in mice and human subjects. J Cell Mol Med 2018; 23:1050-1058. [PMID: 30450805 PMCID: PMC6349211 DOI: 10.1111/jcmm.14005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/15/2018] [Indexed: 11/29/2022] Open
Abstract
Obesity is associated with increased cardiovascular morbidity and mortality, but the direct signals to initiate or exaggerate cardiomyopathy remain largely unknown. Present study aims to explore the pathophysiological role of autotaxin/lysophosphatidic acid (LPA) in the process of cardiomyopathy during obesity. Through utilizing mouse model and clinical samples, present study investigates the therapeutic benefits of autotaxin inhibitor and clinical correlation to obesity‐related cardiomyopathy. The elevated circulating levels of autotaxin are closely associated with cardiac parameters in mice. Administration with autotaxin inhibitor, PF‐8380 effectively attenuates high fat diet‐induced cardiac hypertrophy, dysfunction and inflammatory response. Consistently, autotaxin inhibition also decreases circulating LPA levels in obese mice. In in vitro study, LPA directly initiates cell size enlargement and inflammation in neonatal cardiomyocytes. More importantly, circulating levels of autotaxin are positively correlated with cardiac dysfunction and hypertrophy in 55 patients. In conclusion, present study uncovers the correlation between circulating autotaxin and cardiac parameters in mice and human patient, and provided solid evidence of the therapeutic application of autotaxin inhibitor in combating obesity‐related cardiomyopathy.
Collapse
Affiliation(s)
- Jiakan Weng
- Department of Cardiac surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Cardiac surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Jiang
- Department of Cardiac surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lu Ding
- Hubei University of Arts and Science, Xiangyang, China
| | - Yi Xu
- Department of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Xiongfei Zhu
- Department of Medicine, The Chinese University of Hongkong, Hongkong, China
| | - Peifeng Jin
- Department of Cardiac surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
92
|
Leukocytic toll-like receptor 2 knockout protects against diabetes-induced cardiac dysfunction. Biochem Biophys Res Commun 2018; 506:668-673. [PMID: 30454704 DOI: 10.1016/j.bbrc.2018.10.082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 10/13/2018] [Indexed: 12/26/2022]
Abstract
Diabetic cardiomyopathy is characterized by the deterioration of the myocardial function. Emerging evidences have indicated that leukocytic toll-like receptor 2 (TLR2) played an important role in the development of diabetic cardiomyopathy. Our study aimed to investigate whether TLR2 knockout (KO) exerted a cardioprotective effect in vivo. The establishment of diabetes model was set up in mice via intraperitoneal injection of streptozotocin (STZ). Results demonstrated that blocking of TLR2 significantly suppressed the enhanced left ventricular end-diastolic dimension (LVEDD), left ventricular end systolic diameter (LVESD) and the reduced the heart rate in diabetic cardiomyopathy mice. The decreased resting cell length, PS, TPS and + dL/dt while increased TR90 and - dL/dt caused by diabetic cardiomyopathy were remarkably inhibited by TLR2 KO. Besides that, the alleviated ΔFFI (360/380), decreased SERCA2a and p-NFATc3 expressions, extended Ca2+ decay time and elevated Calcineurin A induced by diabetic cardiomyopathy were vastly repressed by TLR2 KO in cardiocytes. Moreover, TLR2 gene silence could ameliorate oxidative stress-induced apoptosis, evidences were the up-regulated superoxide generation and Bax/Bcl-2 expression while restrained GSH/GSSG ratio caused by diabetic cardiomyopathy were tremendously repressed in TLR2 KO mice. Furthermore, blocking of TLR2 remarkably attenuated the augmented fibrosis areas of heart tissues in mice with diabetic cardiomyopathy. The result of the enhanced α-SMA and collagenⅠ caused by diabetic cardiomyopathy were suppressed in heart tissues of TLR2 KO mice further validate it. All in all, our study demonstrated that diabetes-induced cardiac dysfunction could be attenuated by TLR2 KO.
Collapse
|
93
|
Mabhida SE, Dludla PV, Johnson R, Ndlovu M, Louw J, Opoku AR, Mosa RA. Protective effect of triterpenes against diabetes-induced β-cell damage: An overview of in vitro and in vivo studies. Pharmacol Res 2018; 137:179-192. [PMID: 30315968 DOI: 10.1016/j.phrs.2018.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/27/2018] [Accepted: 10/04/2018] [Indexed: 12/14/2022]
Abstract
Accumulative evidence shows that chronic hyperglycaemia is a major factor implicated in the development of pancreatic β-cell dysfunction in diabetic patients. Furthermore, most of these patients display impaired insulin signalling that is responsible for accelerated pancreatic β-cell damage. Indeed, prominent pathways involved in glucose metabolism such as phosphatidylinositol 3-kinase/ protein kinase B (PI3-K/AKT) and 5' AMP-activated protein kinase (AMPK) are impaired in an insulin resistant state. The impairment of this pathway is associated with over production of reactive oxygen species and pro-inflammatory factors that supersede pancreatic β-cell damage. Although several antidiabetic drugs can improve β-cell function by modulating key regulators such as PI3-K/AKT and AMPK, evidence of their β-cell regenerative and protective effect is scanty. As a result, there has been continued exploration of novel antidiabetic therapeutics with abundant antioxidant and antiinflammatory properties that are essential in protecting against β-cell damage. Such therapies include triterpenes, which have displayed robust effects to improve glycaemic tolerance, insulin secretion, and pancreatic β-cell function. This review summarises most relevant effects of various triterpenes on improving pancreatic β-cell function in both in vitro and in vivo experimental models. A special focus falls on studies reporting on the ameliorative properties of these compounds against insulin resistance, oxidative stress and inflammation, the well-known factors involved in hyperglycaemia associated tissue damage.
Collapse
Affiliation(s)
- Sihle E Mabhida
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, 3886, South Africa; Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, 7505, South Africa.
| | - Phiwayinkosi V Dludla
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, 60121, Italy; Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, 7505, South Africa
| | - Rabia Johnson
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, 7505, South Africa; Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, Stellenbosch, South Africa
| | - Musawenkosi Ndlovu
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, 3886, South Africa
| | - Johan Louw
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, 3886, South Africa; Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, 7505, South Africa
| | - Andy R Opoku
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, 3886, South Africa
| | - Rebamang A Mosa
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, 3886, South Africa
| |
Collapse
|
94
|
Tang B, Xuan L, Tang M, Wang H, zhou J, Liu J, Wu S, Li M, Wang X, Zhang H. miR-93-3p alleviates lipopolysaccharide-induced inflammation and apoptosis in H9c2 cardiomyocytes by inhibiting toll-like receptor 4. Pathol Res Pract 2018; 214:1686-1693. [PMID: 30195636 DOI: 10.1016/j.prp.2018.08.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/14/2018] [Accepted: 08/23/2018] [Indexed: 12/20/2022]
|
95
|
Tao L, Shi J, Yang X, Yang L, Hua F. The Exosome: a New Player in Diabetic Cardiomyopathy. J Cardiovasc Transl Res 2018; 12:62-67. [PMID: 30251219 DOI: 10.1007/s12265-018-9825-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022]
Abstract
Diabetic cardiomyopathy (DCM) or diabetes-induced cardiac dysfunction is a direct consequence of uncontrolled metabolic syndrome and occurs worldwide. However, the underlying cellular and molecular mechanisms remain poorly understood. Recently, exosomes have attracted considerable interest for their use as efficient, targeted, and non-immunogenic delivery systems for biological molecules or pharmacotherapies. This review will summarize the fast-developing field of the regulation and function of exosomes in DCM, affording valuable insights and therapeutic opportunities in combatting diabetes-related cardiac disorder for modern human health.
Collapse
Affiliation(s)
- Lichan Tao
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou City, 213003, China
| | - Jia Shi
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou City, 213003, China
| | - Xiaoyu Yang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou City, 213003, China
| | - Ling Yang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou City, 213003, China.
| | - Fei Hua
- Department of Endocrinology, The Third Affiliated Hospital of Soochow University, Changzhou City, 213003, China.
| |
Collapse
|
96
|
Shen L, Li L, Li M, Wang W, Yin W, Liu W, Hu Y. Silencing of NOD2 protects against diabetic cardiomyopathy in a murine diabetes model. Int J Mol Med 2018; 42:3017-3026. [PMID: 30221681 PMCID: PMC6202090 DOI: 10.3892/ijmm.2018.3880] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/24/2018] [Indexed: 12/16/2022] Open
Abstract
The aim of the present study was to investigate the role of the nucleotide‑binding oligomerization domain (NOD) 2 in high glucose (HG)‑induced myocardial apoptosis and fibrosis in mice. Mouse models of diabetes were induced by streptozotocin (STZ). NOD2 expression was knocked down by injection of lentivirus‑mediated short‑hairpin RNA. Alternatively, small interfering RNA‑NOD2 was transfected into cardiomyocytes and cardiac fibroblasts (CFs). A hemodynamic assay was used to assess the cardiac function in the mouse model. Hematoxylin and eosin, Masson and terminal deoxynucleotidyl transferase dUTP nick end labeling staining was performed to observe pathological changes and injury of myocardial tissue. The expression levels of NOD2, collagen I and III, and transforming growth factor‑β (TGF‑β) and apoptotic proteins were quantified by reverse transcription‑quantitative polymerase chain reaction and western blotting. NOD2 silencing ameliorated diabetes‑induced myocardial apoptosis and fibrosis in mice. NOD2, collagen I, collagen III, TGF‑β and pro‑apoptotic proteins were upregulated in the diabetic cardiomyopathy (DCM) model group, but interference of NOD2 suppressed these alterations in protein expression levels. NOD2 is upregulated in HG‑induced primary cardiomyocytes and CFs. Suppression of NOD2 attenuated HG‑induced cardiomyocyte apoptosis and proliferation of CFs. Overall, NOD2 silencing alleviated myocardial apoptosis and fibrosis in diabetic mice. The results of the present study demonstrated an understanding of the role of NOD2 in diabetes‑induced cardiomyopathy, which provides a novel target and therapies for the prevention and treatment of DCM.
Collapse
Affiliation(s)
- Lin Shen
- Department of Geriatrics, Shandong Qilu Hospital, Jinan, Shandong 250012, P.R. China
| | - Li Li
- The Undergraduate Teaching Department, Shandong University Qilu Medical College, Jinan, Shandong 250012, P.R. China
| | - Man Li
- Department of Geriatrics, Shandong Qilu Hospital, Jinan, Shandong 250012, P.R. China
| | - Weiling Wang
- Department of Geriatrics, Shandong Qilu Hospital, Jinan, Shandong 250012, P.R. China
| | - Wenbin Yin
- Department of Geriatrics, Shandong Qilu Hospital, Jinan, Shandong 250012, P.R. China
| | - Wei Liu
- Department of Geriatrics, Shandong Qilu Hospital, Jinan, Shandong 250012, P.R. China
| | - Yanyan Hu
- Department of Geriatrics, Shandong Qilu Hospital, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
97
|
Zuo G, Ren X, Qian X, Ye P, Luo J, Gao X, Zhang J, Chen S. Inhibition of JNK and p38 MAPK-mediated inflammation and apoptosis by ivabradine improves cardiac function in streptozotocin-induced diabetic cardiomyopathy. J Cell Physiol 2018; 234:1925-1936. [PMID: 30067872 DOI: 10.1002/jcp.27070] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 06/25/2018] [Indexed: 01/01/2023]
Abstract
Inflammation plays a critical role in the development of diabetic cardiomyopathy (DCM), which has been identified as a major predisposing factor for heart failure in diabetic patients. Previous studies indicated that ivabradine (a specific agent for heart rate [HR] reduction) has anti-inflammatory properties, but its role in DCM remains unknown. This study investigated whether ivabradine exerts a therapeutic effect in DCM. C57BL/6J mice were injected intraperitoneally with streptozotocin (STZ) to induce diabetes; then administered with ivabradine or saline (control). After 12 weeks, the surviving mice were analyzed to determine the cardioprotective effect of ivabradine against DCM. Although treatment with ivabradine did not affect blood glucose levels, it attenuated tumor necrosis factor-α, interleukin-1β, and interleukin-6 messenger RNA (mRNA) expression, inhibited c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK) activation, reduced histological abnormalities, myocardial apoptosis and collagen deposition, and improved cardiac function in the diabetic mice. Interestingly, the anti-inflammatory and antiapoptotic properties of ivabradine, but not its inhibitory effect on JNK and p38 MAPK, were observed in high-glucose-cultured neonatal rat ventricular cardiomyocytes. Attenuating inflammation and apoptosis via intramyocardial injection of lentiviruses carrying short hairpin RNA targeting JNK and p38 MAPK validated that the anti-inflammatory and antiapoptotic effects of ivabradine were partly attributed to JNK and p38 MAPK inactivation in diabetic mice. In summary, these data indicate that ivabradine-mediated improvement of cardiac function in STZ-induced diabetic mice may be partly attributed to inhibition of JNK/p38 MAPK-mediated inflammation and apoptosis, which is dependent on the reduction in HR.
Collapse
Affiliation(s)
- Guangfeng Zuo
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaomin Ren
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xuesong Qian
- Department of Cardiology, Zhangjiagang First People's Hospital, Zhangjiagang, China
| | - Peng Ye
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,Department of General Clinical Research Center, Nanjing First Hospital, Nanjing, China
| | - Jie Luo
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,Department of Basic Medicine, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Xiaofei Gao
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,Department of General Clinical Research Center, Nanjing First Hospital, Nanjing, China
| | - Junjie Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Shaoliang Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
98
|
Xu L, Zhao W, Wang D, Ma X. Chinese Medicine in the Battle Against Obesity and Metabolic Diseases. Front Physiol 2018; 9:850. [PMID: 30042690 PMCID: PMC6048988 DOI: 10.3389/fphys.2018.00850] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/14/2018] [Indexed: 01/08/2023] Open
Abstract
Obesity is a multi-factor chronic disease caused by the mixed influence of genetics, environments and an imbalance of energy intake and expenditure. Due to lifestyle changes, modern society sees a rapid increase in obesity occurrence along with an aggravated risk of metabolic syndromes in the general population, including diabetes, hepatic steatosis, cardiovascular diseases and certain types of cancer. Although obesity has become a serious worldwide public health hazard, effective and safe drugs treating obesity are still missing. Traditional Chinese medicine (TCM) has been implicated in practical use in China for thousands of years and has accumulated substantial front line experience in treating various diseases. Compared to western medicine that features defined composition and clear molecular mechanisms, TCM is consisted with complex ingredients from plants and animals and prescribed based on overall symptoms and collective experience. Because of their fundamental differences, TCM and western medicine were once considered irreconcilable. However, nowadays, sophisticated isolation technologies and deepened molecular understanding of the active ingredients of TCM are gradually bridging the gap between the two, enabling the identification of active TCM components for drug development under the western-style paradigms. Thus, studies on TCM open a new therapeutic avenue and show great potential in the combat against obesity, though challenges exist. In this review, we highlight six key candidate substances derived from TCM, including artemisinin, curcumin, celastrol, capsaicin, berberine and ginsenosides, to review their recent discoveries in the metabolic field, with special focus on their therapeutic efficacy and molecular mechanisms in treating obesity and metabolic diseases. In addition, we discuss the translational challenges and perspectives in implementing modern Chinese medicine into the western pharmaceutical industry.
Collapse
Affiliation(s)
- Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Wenjun Zhao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Dongmei Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
99
|
Andrographolide Ameliorates Diabetic Cardiomyopathy in Mice by Blockage of Oxidative Damage and NF- κB-Mediated Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9086747. [PMID: 30046380 PMCID: PMC6036810 DOI: 10.1155/2018/9086747] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/06/2018] [Accepted: 04/12/2018] [Indexed: 12/12/2022]
Abstract
Andrographolide (Andro), a major bioactive component obtained from Andrographis paniculata Nees, has exerted wide antioxidant as well as cytoprotective properties. However, whether Andro treatment could retard the progress of diabetic cardiomyopathy (DCM) remains unknown. In this study, we evaluated the effects of Andro against diabetes-induced myocardial dysfunction and explored the underlying mechanism in STZ-induced diabetic mice. As a result, treatment with Andro dose dependently suppressed cardiac inflammation and oxidative stress, accompanied by decreasing cardiac apoptosis, which subsequently ameliorated cardiac fibrosis and cardiac hypertrophy. Further, Andro blocked hyperglycemia-triggered reactive oxygen species (ROS) generation by suppressing NADPH oxidase (NOX) activation and augmenting nuclear factor erythroid 2-related factor 2 (Nrf2) expression both in vitro and in vivo. Our results suggest that the cardioprotective effects afforded by Andro treatment involve the modulation of NOX/Nrf2-mediated oxidative stress and NF-κB-mediated inflammation. The present study unravels the therapeutic potential of Andro in the treatment of DCM by attenuating oxidative stress, inflammation, and apoptosis.
Collapse
|
100
|
Zheng J, Cheng J, Zheng S, Feng Q, Xiao X. Curcumin, A Polyphenolic Curcuminoid With Its Protective Effects and Molecular Mechanisms in Diabetes and Diabetic Cardiomyopathy. Front Pharmacol 2018; 9:472. [PMID: 29867479 PMCID: PMC5954291 DOI: 10.3389/fphar.2018.00472] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/23/2018] [Indexed: 12/24/2022] Open
Abstract
As the leading cause of morbidity and mortality in patients with diabetes, diabetic cardiomyopathy (DCM) imposes enormous burden on individuals and public health. Therapeutic regimes for DCM treatment have proven to be challenging, with limited efficacy, low compliance, and potential adverse effects. Curcumin, as the most active compound derived from the root of turmeric, exhibits strong anti-inflammation, antioxidant, and anti-apoptosis properties. Recently, clinical trials and preclinical studies have shown that curcumin exerts protective effects against a variety of diseases, including diabetes and its cardiovascular complications. In this review, the clinical trials about curcumin supplementation on diabetes and DCM are presented, and the specific mechanisms by which curcumin might mitigate diabetes and DCM are fully discussed. A better understanding of the pharmacological role of curcumin on diabetes and DCM can provide clinical implications for the intervention of the onset and development of diabetes and DCM.
Collapse
Affiliation(s)
- Jia Zheng
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Cheng
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Shandong University Qilu Hospital, Jinan, China
| | - Sheng Zheng
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qianyun Feng
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinhua Xiao
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|