51
|
Boardman NT, Hafstad AD, Lund J, Rossvoll L, Aasum E. Exercise of obese mice induces cardioprotection and oxygen sparing in hearts exposed to high-fat load. Am J Physiol Heart Circ Physiol 2017; 313:H1054-H1062. [DOI: 10.1152/ajpheart.00382.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/03/2017] [Accepted: 08/08/2017] [Indexed: 02/03/2023]
Abstract
Exercise training is a potent therapeutic approach in obesity and diabetes that exerts protective effects against the development of diabetic cardiomyopathy and ischemic injury. Acute increases in circulating fatty acids (FAs) during an ischemic insult can challenge the heart, since high FA load is considered to have adverse cardiac effects. In the present study, we tested the hypothesis that exercise-induced cardiac effects in diet-induced obese mice are abrogated by an acute high FA load. Diet-induced obese mice were fed a high-fat diet (HFD) for 20 wk. They were exercised using moderate- and/or high-intensity exercise training (MIT and HIT, respectively) for 10 or 3 wk, and isolated perfused hearts from these mice were exposed to a high FA load. Sedentary HFD mice served as controls. Ventricular function and myocardial O2 consumption were assessed after 10 wk of HIT and MIT, and postischemic functional recovery and infarct size were examined after 3 wk of HIT. In addition to improving aerobic capacity and reducing obesity and insulin resistance, long-term exercise ameliorated the development of diet-induced cardiac dysfunction. This was associated with improved mechanical efficiency because of reduced myocardial oxygen consumption. Although to a lesser extent, 3-wk HIT also increased aerobic capacity and decreased obesity and insulin resistance. HIT also improved postischemic functional recovery and reduced infarct size. Event upon the exposure to a high FA load, short-term exercise induced an oxygen-sparing effect. This study therefore shows that exercise-induced cardioprotective effects are present under hyperlipidemic conditions and highlights the important role of myocardial energetics during ischemic stress. NEW & NOTEWORTHY The exercise-induced cardioprotective effects in obese hearts are present under hyperlipidemic conditions, comparable to circulating levels of FA occurring with an ischemic insult. Myocardial oxygen sparing is associated with this effect, despite the general notion that high fat can decrease cardiac efficiency. This highlights the role of myocardial energetics during ischemic stress.
Collapse
Affiliation(s)
- Neoma T. Boardman
- Cardiovascular Research Group, Faculty of Health Sciences, Department of Medical Biology, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Anne D. Hafstad
- Cardiovascular Research Group, Faculty of Health Sciences, Department of Medical Biology, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Jim Lund
- Cardiovascular Research Group, Faculty of Health Sciences, Department of Medical Biology, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Line Rossvoll
- Cardiovascular Research Group, Faculty of Health Sciences, Department of Medical Biology, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Ellen Aasum
- Cardiovascular Research Group, Faculty of Health Sciences, Department of Medical Biology, UiT-The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
52
|
Molecular mechanism of doxorubicin-induced cardiomyopathy - An update. Eur J Pharmacol 2017; 818:241-253. [PMID: 29074412 DOI: 10.1016/j.ejphar.2017.10.043] [Citation(s) in RCA: 374] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/11/2017] [Accepted: 10/20/2017] [Indexed: 12/27/2022]
Abstract
Doxorubicin is utilized for anti-neoplastic treatment for several decades. The utility of this drug is limited due to its side effects. Generally, doxorubicin toxicity is originated from the myocardium and then other organs are also ruined. The mechanism of doxorubicin is intercalated with the DNA and inhibits topoisomerase 2. There are various signalling mechanisms involved in doxorubicin cardiotoxicity. First and foremost, the doxorubicin-induced cardiotoxicity is due to oxidative stress. Cardiac mitochondrial damage is supposed after few hours following the revelation of doxorubicin. This has led important new uses for the mechanism of doxorubicin-induced cardiotoxicity and novel avenues of investigation to determine better pharmacotherapies and interventions for the impediment of cardiotoxicity. The idea of this review is to bring up to date the recent findings of the mechanism of doxorubicin cardiomyopathies such as calcium dysregulation, endoplasmic reticulum stress, impairment of progenitor cells, activation of immune, ubiquitous system and some other parameters.
Collapse
|
53
|
Sassoon DJ, Tune JD, Mather KJ, Noblet JN, Eagleson MA, Conteh AM, Sturek JT, Goodwill AG. Glucagon-Like Peptide 1 Receptor Activation Augments Cardiac Output and Improves Cardiac Efficiency in Obese Swine After Myocardial Infarction. Diabetes 2017; 66:2230-2240. [PMID: 28483802 PMCID: PMC5521862 DOI: 10.2337/db16-1206] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 04/30/2017] [Indexed: 01/15/2023]
Abstract
This study tested the hypothesis that glucagon-like peptide 1 (GLP-1) therapies improve cardiac contractile function at rest and in response to adrenergic stimulation in obese swine after myocardial infarction. Obese Ossabaw swine were subjected to gradually developing regional coronary occlusion using an ameroid occluder placed around the left anterior descending coronary artery. Animals received subcutaneous injections of saline or liraglutide (0.005-0.015 mg/kg/day) for 30 days after ameroid placement. Cardiac performance was assessed at rest and in response to sympathomimetic challenge (dobutamine 0.3-10 μg/kg/min) using a left ventricular pressure/volume catheter. Liraglutide increased diastolic relaxation (dP/dt; Tau 1/2; Tau 1/e) during dobutamine stimulation (P < 0.01) despite having no influence on the magnitude of myocardial infarction. The slope of the end-systolic pressure volume relationship (i.e., contractility) increased with dobutamine after liraglutide (P < 0.001) but not saline administration (P = 0.63). Liraglutide enhanced the slope of the relationship between cardiac power and pressure volume area (i.e., cardiac efficiency) with dobutamine (P = 0.017). Hearts from animals treated with liraglutide demonstrated decreased β1-adrenoreceptor expression. These data support that GLP-1 agonism augments cardiac efficiency via attenuation of maladaptive sympathetic signaling in the setting of obesity and myocardial infarction.
Collapse
Affiliation(s)
- Daniel J Sassoon
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - Johnathan D Tune
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - Kieren J Mather
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Jillian N Noblet
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - Mackenzie A Eagleson
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - Abass M Conteh
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - Joshua T Sturek
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - Adam G Goodwill
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
54
|
The ‘Goldilocks zone’ of fatty acid metabolism; to ensure that the relationship with cardiac function is just right. Clin Sci (Lond) 2017; 131:2079-2094. [DOI: 10.1042/cs20160671] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 12/25/2022]
Abstract
Fatty acids (FA) are the main fuel used by the healthy heart to power contraction, supplying 60–70% of the ATP required. FA generate more ATP per carbon molecule than glucose, but require more oxygen to produce the ATP, making them a more energy dense but less oxygen efficient fuel compared with glucose. The pathways involved in myocardial FA metabolism are regulated at various subcellular levels, and can be divided into sarcolemmal FA uptake, cytosolic activation and storage, mitochondrial uptake and β-oxidation. An understanding of the critical involvement of each of these steps has been amassed from genetic mouse models, where forcing the heart to metabolize too much or too little fat was accompanied by cardiac contractile dysfunction and hypertrophy. In cardiac pathologies, such as heart disease and diabetes, aberrations in FA metabolism occur concomitantly with changes in cardiac function. In heart failure, FA oxidation is decreased, correlating with systolic dysfunction and hypertrophy. In contrast, in type 2 diabetes, FA oxidation and triglyceride storage are increased, and correlate with diastolic dysfunction and insulin resistance. Therefore, too much FA metabolism is as detrimental as too little FA metabolism in these settings. Therapeutic compounds that rebalance FA metabolism may provide a mechanism to improve cardiac function in disease. Just like Goldilocks and her porridge, the heart needs to maintain FA metabolism in a zone that is ‘just right’ to support contractile function.
Collapse
|
55
|
Mitochondrial fission and fusion. Biochem Soc Trans 2017; 44:1725-1735. [PMID: 27913683 DOI: 10.1042/bst20160129] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/15/2016] [Accepted: 10/05/2016] [Indexed: 01/27/2023]
Abstract
Mitochondrial fission and fusion have been recognized as critical processes in the health of mitochondria and cells. Two decades of studies have generated a great deal of information about mitochondrial fission and fusion; however, still much needs to be understood for the basic molecular mechanisms of these important cellular processes. The core protein factors for mitochondrial fission and fusion are dynamin proteins that possess membrane-remodeling properties. This short review covers a recent development and understanding of the mechanisms by which these mechanochemical enzymes mediate mitochondrial fission and fusion.
Collapse
|
56
|
Abstract
The heart utilizes large amounts of fatty acids as energy providing substrates. The physiological balance of lipid uptake and oxidation prevents accumulation of excess lipids. Several processes that affect cardiac function, including ischemia, obesity, diabetes mellitus, sepsis, and most forms of heart failure lead to altered fatty acid oxidation and often also to the accumulation of lipids. There is now mounting evidence associating certain species of these lipids with cardiac lipotoxicity and subsequent myocardial dysfunction. Experimental and clinical data are discussed and paths to reduction of toxic lipids as a means to improve cardiac function are suggested.
Collapse
Affiliation(s)
- P Christian Schulze
- From the Divisions of Cardiology, Friedrich-Schiller-University Jena, Germany, and Columbia University, New York, NY (P.C.S.); Metabolic Biology Laboratory, Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (K.D.); and Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, NY (I.J.G.).
| | - Konstantinos Drosatos
- From the Divisions of Cardiology, Friedrich-Schiller-University Jena, Germany, and Columbia University, New York, NY (P.C.S.); Metabolic Biology Laboratory, Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (K.D.); and Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, NY (I.J.G.)
| | - Ira J Goldberg
- From the Divisions of Cardiology, Friedrich-Schiller-University Jena, Germany, and Columbia University, New York, NY (P.C.S.); Metabolic Biology Laboratory, Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (K.D.); and Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, New York University School of Medicine, New York, NY (I.J.G.)
| |
Collapse
|
57
|
|
58
|
Mangmool S, Denkaew T, Parichatikanond W, Kurose H. β-Adrenergic Receptor and Insulin Resistance in the Heart. Biomol Ther (Seoul) 2017; 25:44-56. [PMID: 28035081 PMCID: PMC5207462 DOI: 10.4062/biomolther.2016.128] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/26/2016] [Accepted: 08/02/2016] [Indexed: 12/24/2022] Open
Abstract
Insulin resistance is characterized by the reduced ability of insulin to stimulate tissue uptake and disposal of glucose including cardiac muscle. These conditions accelerate the progression of heart failure and increase cardiovascular morbidity and mortality in patients with cardiovascular diseases. It is noteworthy that some conditions of insulin resistance are characterized by up-regulation of the sympathetic nervous system, resulting in enhanced stimulation of β-adrenergic receptor (βAR). Overstimulation of βARs leads to the development of heart failure and is associated with the pathogenesis of insulin resistance in the heart. However, pathological consequences of the cross-talk between the βAR and the insulin sensitivity and the mechanism by which βAR overstimulation promotes insulin resistance remain unclear. This review article examines the hypothesis that βARs overstimulation leads to induction of insulin resistance in the heart.
Collapse
Affiliation(s)
- Supachoke Mangmool
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand.,Center of Excellence for Innovation in Drug Design and Discovery, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Tananat Denkaew
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | | | - Hitoshi Kurose
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
59
|
Llano-Diez M, Sinclair J, Yamada T, Zong M, Fauconnier J, Zhang SJ, Katz A, Jardemark K, Westerblad H, Andersson DC, Lanner JT. The Role of Reactive Oxygen Species in β-Adrenergic Signaling in Cardiomyocytes from Mice with the Metabolic Syndrome. PLoS One 2016; 11:e0167090. [PMID: 27907040 PMCID: PMC5131978 DOI: 10.1371/journal.pone.0167090] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/07/2016] [Indexed: 12/20/2022] Open
Abstract
The metabolic syndrome is associated with prolonged stress and hyperactivity of the sympathetic nervous system and afflicted subjects are prone to develop cardiovascular disease. Under normal conditions, the cardiomyocyte response to acute β-adrenergic stimulation partly depends on increased production of reactive oxygen species (ROS). Here we investigated the interplay between beta-adrenergic signaling, ROS and cardiac contractility using freshly isolated cardiomyocytes and whole hearts from two mouse models with the metabolic syndrome (high-fat diet and ob/ob mice). We hypothesized that cardiomyocytes of mice with the metabolic syndrome would experience excessive ROS levels that trigger cellular dysfunctions. Fluorescent dyes and confocal microscopy were used to assess mitochondrial ROS production, cellular Ca2+ handling and contractile function in freshly isolated adult cardiomyocytes. Immunofluorescence, western blot and enzyme assay were used to study protein biochemistry. Unexpectedly, our results point towards decreased cardiac ROS signaling in a stable, chronic phase of the metabolic syndrome because: β-adrenergic-induced increases in the amplitude of intracellular Ca2+ signals were insensitive to antioxidant treatment; mitochondrial ROS production showed decreased basal rate and smaller response to β-adrenergic stimulation. Moreover, control hearts and hearts with the metabolic syndrome showed similar basal levels of ROS-mediated protein modification, but only control hearts showed increases after β-adrenergic stimulation. In conclusion, in contrast to the situation in control hearts, the cardiomyocyte response to acute β-adrenergic stimulation does not involve increased mitochondrial ROS production in a stable, chronic phase of the metabolic syndrome. This can be seen as a beneficial adaptation to prevent excessive ROS levels.
Collapse
Affiliation(s)
- Monica Llano-Diez
- Karolinska Institutet, Department of Physiology & Pharmacology, Stockholm, Sweden
| | - Jon Sinclair
- Karolinska Institutet, Department of Physiology & Pharmacology, Stockholm, Sweden
| | - Takashi Yamada
- Karolinska Institutet, Department of Physiology & Pharmacology, Stockholm, Sweden
| | - Mei Zong
- Karolinska University Hospital, Rheumatology unit, CMM, Stockholm Sweden
| | - Jeremy Fauconnier
- Karolinska Institutet, Department of Physiology & Pharmacology, Stockholm, Sweden
| | - Shi-Jin Zhang
- Karolinska Institutet, Department of Physiology & Pharmacology, Stockholm, Sweden
| | - Abram Katz
- Karolinska Institutet, Department of Physiology & Pharmacology, Stockholm, Sweden
| | - Kent Jardemark
- Karolinska Institutet, Department of Physiology & Pharmacology, Stockholm, Sweden
| | - Håkan Westerblad
- Karolinska Institutet, Department of Physiology & Pharmacology, Stockholm, Sweden
| | | | - Johanna T. Lanner
- Karolinska Institutet, Department of Physiology & Pharmacology, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
60
|
Bombicino SS, Iglesias DE, Mikusic IAR, D'Annunzio V, Gelpi RJ, Boveris A, Valdez LB. Diabetes impairs heart mitochondrial function without changes in resting cardiac performance. Int J Biochem Cell Biol 2016; 81:335-345. [PMID: 27682517 DOI: 10.1016/j.biocel.2016.09.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/15/2016] [Accepted: 09/24/2016] [Indexed: 01/20/2023]
Abstract
Diabetes is a chronic disease associated to a cardiac contractile dysfunction that is not attributable to underlying coronary artery disease or hypertension, and could be consequence of a progressive deterioration of mitochondrial function. We hypothesized that impaired mitochondrial function precedes Diabetic Cardiomyopathy. Thus, the aim of this work was to study the cardiac performance and heart mitochondrial function of diabetic rats, using an experimental model of type I Diabetes. Rats were sacrificed after 28days of Streptozotocin injection (STZ, 60mgkg-1, ip.). Heart O2 consumption was declined, mainly due to the impairment of mitochondrial O2 uptake. The mitochondrial dysfunction observed in diabetic animals included the reduction of state 3 respiration (22%), the decline of ADP/O ratio (∼15%) and the decrease of the respiratory complexes activities (22-26%). An enhancement in mitochondrial H2O2 (127%) and NO (23%) production rates and in tyrosine nitration (58%) were observed in heart of diabetic rats, with a decrease in Mn-SOD activity (∼50%). Moreover, a decrease in contractile response (38%), inotropic (37%) and lusitropic (58%) reserves were observed in diabetic rats only after a β-adrenergic stimulus. Therefore, in conditions of sustained hyperglycemia, heart mitochondrial O2 consumption and oxidative phosphorylation efficiency are decreased, and H2O2 and NO productions are increased, leading to a cardiac compromise against a work overload. This mitochondrial impairment was detected in the absence of heart hypertrophy and of resting cardiac performance changes, suggesting that mitochondrial dysfunction could precede the onset of diabetic cardiac failure, being H2O2, NO and ATP the molecules probably involved in mitochondrion-cytosol signalling.
Collapse
Affiliation(s)
- Silvina S Bombicino
- University of Buenos Aires, Institute of Biochemistry and Molecular Medicine (IBIMOL; UBA-CONICET), School of Pharmacy and Biochemistry, Physical Chemistry Division, Buenos Aires, Argentina
| | - Darío E Iglesias
- University of Buenos Aires, Institute of Biochemistry and Molecular Medicine (IBIMOL; UBA-CONICET), School of Pharmacy and Biochemistry, Physical Chemistry Division, Buenos Aires, Argentina
| | - Ivana A Rukavina Mikusic
- University of Buenos Aires, Institute of Biochemistry and Molecular Medicine (IBIMOL; UBA-CONICET), School of Pharmacy and Biochemistry, Physical Chemistry Division, Buenos Aires, Argentina
| | - Verónica D'Annunzio
- University of Buenos Aires, Institute of Biochemistry and Molecular Medicine (IBIMOL; UBA-CONICET), Faculty of Medicine, Buenos Aires, Argentina
| | - Ricardo J Gelpi
- University of Buenos Aires, Institute of Biochemistry and Molecular Medicine (IBIMOL; UBA-CONICET), Faculty of Medicine, Buenos Aires, Argentina
| | - Alberto Boveris
- University of Buenos Aires, Institute of Biochemistry and Molecular Medicine (IBIMOL; UBA-CONICET), School of Pharmacy and Biochemistry, Physical Chemistry Division, Buenos Aires, Argentina
| | - Laura B Valdez
- University of Buenos Aires, Institute of Biochemistry and Molecular Medicine (IBIMOL; UBA-CONICET), School of Pharmacy and Biochemistry, Physical Chemistry Division, Buenos Aires, Argentina.
| |
Collapse
|
61
|
Fukushima A, Lopaschuk GD. Acetylation control of cardiac fatty acid β-oxidation and energy metabolism in obesity, diabetes, and heart failure. Biochim Biophys Acta Mol Basis Dis 2016; 1862:2211-2220. [PMID: 27479696 DOI: 10.1016/j.bbadis.2016.07.020] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/22/2016] [Accepted: 07/25/2016] [Indexed: 12/31/2022]
Abstract
Alterations in cardiac energy metabolism are an important contributor to the cardiac pathology associated with obesity, diabetes, and heart failure. High rates of fatty acid β-oxidation with cardiac insulin resistance represent a cardiac metabolic hallmark of diabetes and obesity, while a marginal decrease in fatty acid oxidation and a prominent decrease in insulin-stimulated glucose oxidation are commonly seen in the early stages of heart failure. Alterations in post-translational control of energy metabolic processes have recently been identified as an important contributor to these metabolic changes. In particular, lysine acetylation of non-histone proteins, which controls a diverse family of mitochondrial metabolic pathways, contributes to the cardiac energy derangements seen in obesity, diabetes, and heart failure. Lysine acetylation is controlled both via acetyltransferases and deacetylases (sirtuins), as well as by non-enzymatic lysine acetylation due to increased acetyl CoA pool size or dysregulated nicotinamide adenine dinucleotide (NAD+) metabolism (which stimulates sirtuin activity). One of the important mitochondrial acetylation targets are the fatty acid β-oxidation enzymes, which contributes to alterations in cardiac substrate preference during the course of obesity, diabetes, and heart failure, and can ultimately lead to cardiac dysfunction in these disease states. This review will summarize the role of lysine acetylation and its regulatory control in the context of mitochondrial fatty acid β-oxidation. The functional contribution of cardiac protein lysine acetylation to the shift in cardiac energy substrate preference that occurs in obesity, diabetes, and especially in the early stages of heart failure will also be reviewed. This article is part of a Special Issue entitled: The role of post-translational protein modifications on heart and vascular metabolism edited by Jason R.B. Dyck & Jan F.C. Glatz.
Collapse
Affiliation(s)
- Arata Fukushima
- Cardiovascular Translational Science Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Gary D Lopaschuk
- Cardiovascular Translational Science Institute, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
62
|
Domingo-Espín J, Lindahl M, Nilsson-Wolanin O, Cushman SW, Stenkula KG, Lagerstedt JO. Dual Actions of Apolipoprotein A-I on Glucose-Stimulated Insulin Secretion and Insulin-Independent Peripheral Tissue Glucose Uptake Lead to Increased Heart and Skeletal Muscle Glucose Disposal. Diabetes 2016; 65:1838-48. [PMID: 27207515 DOI: 10.2337/db15-1493] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 04/12/2016] [Indexed: 11/13/2022]
Abstract
Apolipoprotein A-I (apoA-I) of HDL is central to the transport of cholesterol in circulation. ApoA-I also provides glucose control with described in vitro effects of apoA-I on β-cell insulin secretion and muscle glucose uptake. In addition, apoA-I injections in insulin-resistant diet-induced obese (DIO) mice lead to increased glucose-stimulated insulin secretion (GSIS) and peripheral tissue glucose uptake. However, the relative contribution of apoA-I as an enhancer of GSIS in vivo and as a direct stimulator of insulin-independent glucose uptake is not known. Here, DIO mice with instant and transient blockade of insulin secretion were used in glucose tolerance tests and in positron emission tomography analyses. Data demonstrate that apoA-I to an equal extent enhances GSIS and acts as peripheral tissue activator of insulin-independent glucose uptake and verify skeletal muscle as an apoA-I target tissue. Intriguingly, our analyses also identify the heart as an important target tissue for the apoA-I-stimulated glucose uptake, with potential implications in diabetic cardiomyopathy. Explorations of apoA-I as a novel antidiabetic drug should extend to treatments of diabetic cardiomyopathy and other cardiovascular diseases in patients with diabetes.
Collapse
Affiliation(s)
- Joan Domingo-Espín
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Maria Lindahl
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Samuel W Cushman
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Karin G Stenkula
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Jens O Lagerstedt
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
63
|
Koliaki C, Roden M. Alterations of Mitochondrial Function and Insulin Sensitivity in Human Obesity and Diabetes Mellitus. Annu Rev Nutr 2016; 36:337-67. [PMID: 27146012 DOI: 10.1146/annurev-nutr-071715-050656] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mitochondrial function refers to a broad spectrum of features such as resting mitochondrial activity, (sub)maximal oxidative phosphorylation capacity (OXPHOS), and mitochondrial dynamics, turnover, and plasticity. The interaction between mitochondria and insulin sensitivity is bidirectional and varies depending on tissue, experimental model, methodological approach, and features of mitochondrial function tested. In human skeletal muscle, mitochondrial abnormalities may be inherited (e.g., lower mitochondrial content) or acquired (e.g., impaired OXPHOS capacity and plasticity). Abnormalities ultimately lead to lower mitochondrial functionality due to or resulting in insulin resistance and type 2 diabetes mellitus. Similar mechanisms can also operate in adipose tissue and heart muscle. In contrast, mitochondrial oxidative capacity is transiently upregulated in the liver of obese insulin-resistant humans with or without fatty liver, giving rise to oxidative stress and declines in advanced fatty liver disease. These data suggest a highly tissue-specific interaction between insulin sensitivity and oxidative metabolism during the course of metabolic diseases in humans.
Collapse
Affiliation(s)
- Chrysi Koliaki
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf 40225, Germany.,Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf 40225, Germany.,German Center for Diabetes Research (DZD e.V.), Düsseldorf 40225, Germany;
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf 40225, Germany.,Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf 40225, Germany.,German Center for Diabetes Research (DZD e.V.), Düsseldorf 40225, Germany;
| |
Collapse
|
64
|
Assessment of Mitochondrial Dysfunction and Monoamine Oxidase Contribution to Oxidative Stress in Human Diabetic Hearts. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8470394. [PMID: 27190576 PMCID: PMC4846770 DOI: 10.1155/2016/8470394] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/26/2016] [Accepted: 02/11/2016] [Indexed: 01/08/2023]
Abstract
Mitochondria-related oxidative stress is a pathomechanism causally linked to coronary heart disease (CHD) and diabetes mellitus (DM). Recently, mitochondrial monoamine oxidases (MAOs) have emerged as novel sources of oxidative stress in the cardiovascular system and experimental diabetes. The present study was purported to assess the mitochondrial impairment and the contribution of MAOs-related oxidative stress to the cardiovascular dysfunction in coronary patients with/without DM. Right atrial appendages were obtained from 75 patients randomized into 3 groups: (1) Control (CTRL), valvular patients without CHD; (2) CHD, patients with confirmed CHD; and (3) CHD-DM, patients with CHD and DM. Mitochondrial respiration was measured by high-resolution respirometry and MAOs expression was evaluated by RT-PCR and immunohistochemistry. Hydrogen peroxide (H2O2) emission was assessed by confocal microscopy and spectrophotometrically. The impairment of mitochondrial respiration was substrate-independent in CHD-DM group. MAOs expression was comparable among the groups, with the predominance of MAO-B isoform but no significant differences regarding oxidative stress were detected by either method. Incubation of atrial samples with MAOs inhibitors significantly reduced the H2O2 in all groups. In conclusion, abnormal mitochondrial respiration occurs in CHD and is more severe in DM and MAOs contribute to oxidative stress in human diseased hearts with/without DM.
Collapse
|
65
|
Fukushima A, Lopaschuk GD. Cardiac fatty acid oxidation in heart failure associated with obesity and diabetes. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1525-34. [PMID: 26996746 DOI: 10.1016/j.bbalip.2016.03.020] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 12/01/2022]
Abstract
Obesity and diabetes are major public health problems, and are linked to the development of heart failure. Emerging data highlight the importance of alterations in cardiac energy metabolism as a major contributor to cardiac dysfunction related to obesity and diabetes. Increased rates of fatty acid oxidation and decreased rates of glucose utilization are two prominent changes in cardiac energy metabolism that occur in obesity and diabetes. This metabolic profile is probably both a cause and consequence of a prominent cardiac insulin resistance, which is accompanied by a decrease in both cardiac function and efficiency, and by the accumulation of potentially toxic lipid metabolites in the heart that can further exaggerate insulin resistance and cardiac dysfunction. The high cardiac fatty acid oxidation rates seen in obesity and diabetes are attributable to several factors, including: 1) increased fatty acid supply and uptake into the cardiomyocyte, 2) increased transcription of fatty acid metabolic enzymes, 3) decreased allosteric control of mitochondrial fatty acid uptake and fatty acid oxidation, and 4) increased post-translational acetylation control of various fatty acid oxidative enzymes. Emerging evidence suggests that therapeutic approaches aimed at switching the balance of cardiac energy substrate preference from fatty acid oxidation to glucose use can prevent cardiac dysfunction associated with obesity and diabetes. Modulating acetylation control of fatty acid oxidative enzymes is also a potentially attractive strategy, although presently this is limited to precursors of nicotinamide adenine or nonspecific activators of deacetylation such as resveratrol. This review will focus on the metabolic alterations in the heart that occur in obesity and diabetes, as well as on the molecular mechanisms controlling these metabolic changes. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.
Collapse
Affiliation(s)
- Arata Fukushima
- Cardiovascular Translational Science Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Gary D Lopaschuk
- Cardiovascular Translational Science Institute, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
66
|
Carley AN, Lewandowski ED. Triacylglycerol turnover in the failing heart. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1492-9. [PMID: 26993578 DOI: 10.1016/j.bbalip.2016.03.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 12/20/2022]
Abstract
No longer regarded as physiologically inert the endogenous triacylglyceride (TAG) pool within the cardiomyocyte is now recognized to play a dynamic role in metabolic regulation. Beyond static measures of content, the relative rates of interconversion among acyl intermediates are more closely linked to dynamic processes of physiological function in normal and diseased hearts, with the potential for both adaptive and maladaptive contributions. Indeed, multiple inefficiencies in cardiac metabolism have been identified in the decompensated, hypertrophied and failing heart. Among the intracellular responses to physiological, metabolic and pathological stresses, TAG plays a central role in the balance of lipid handling and signaling mechanisms. TAG dynamics are profoundly altered from normal in both diabetic and pathologically stressed hearts. More than just expansion or contraction of the stored lipid pool, the turnover rates of TAG are sensitive to and compete against other enzymatic pathways, anabolic and catabolic, for reactive acyl-CoA units. The rates of TAG synthesis and lipolysis thusly affect multiple components of cardiomyocyte function, including energy metabolism, cell signaling, and enzyme activation, as well as the regulation of gene expression in both normal and diseased states. This review examines the multiple etiologies and metabolic consequences of the failing heart and the central role of lipid storage dynamics in the pathogenic process. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.
Collapse
Affiliation(s)
- Andrew N Carley
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL, United States
| | | |
Collapse
|
67
|
Palomer X, Barroso E, Zarei M, Botteri G, Vázquez-Carrera M. PPARβ/δ and lipid metabolism in the heart. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1569-78. [PMID: 26825692 DOI: 10.1016/j.bbalip.2016.01.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/23/2015] [Accepted: 01/22/2016] [Indexed: 12/13/2022]
Abstract
Cardiac lipid metabolism is the focus of attention due to its involvement in the development of cardiac disorders. Both a reduction and an increase in fatty acid utilization make the heart more prone to the development of lipotoxic cardiac dysfunction. The ligand-activated transcription factor peroxisome proliferator-activated receptor (PPAR)β/δ modulates different aspects of cardiac fatty acid metabolism, and targeting this nuclear receptor can improve heart diseases caused by altered fatty acid metabolism. In addition, PPARβ/δ regulates glucose metabolism, the cardiac levels of endogenous antioxidants, mitochondrial biogenesis, cardiomyocyte apoptosis, the insulin signaling pathway and lipid-induced myocardial inflammatory responses. As a result, PPARβ/δ ligands can improve cardiac function and ameliorate the pathological progression of cardiac hypertrophy, heart failure, cardiac oxidative damage, ischemia-reperfusion injury, lipotoxic cardiac dysfunction and lipid-induced cardiac inflammation. Most of these findings have been observed in preclinical studies and it remains to be established to what extent these intriguing observations can be translated into clinical practice. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.
Collapse
Affiliation(s)
- Xavier Palomer
- Pharmacology Unit, Department of Pharmacology and Therapeutic Chemistry, Institut de Biomedicina de la UB (IBUB), Faculty of Pharmacy, University of Barcelona, Barcelona, Spain; Institut de Recerca Pediàtrica, Hospital Sant Joan de Déu, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Barcelona, Spain
| | - Emma Barroso
- Pharmacology Unit, Department of Pharmacology and Therapeutic Chemistry, Institut de Biomedicina de la UB (IBUB), Faculty of Pharmacy, University of Barcelona, Barcelona, Spain; Institut de Recerca Pediàtrica, Hospital Sant Joan de Déu, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Barcelona, Spain
| | - Mohammad Zarei
- Pharmacology Unit, Department of Pharmacology and Therapeutic Chemistry, Institut de Biomedicina de la UB (IBUB), Faculty of Pharmacy, University of Barcelona, Barcelona, Spain; Institut de Recerca Pediàtrica, Hospital Sant Joan de Déu, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Barcelona, Spain
| | - Gaia Botteri
- Pharmacology Unit, Department of Pharmacology and Therapeutic Chemistry, Institut de Biomedicina de la UB (IBUB), Faculty of Pharmacy, University of Barcelona, Barcelona, Spain; Institut de Recerca Pediàtrica, Hospital Sant Joan de Déu, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Barcelona, Spain
| | - Manuel Vázquez-Carrera
- Pharmacology Unit, Department of Pharmacology and Therapeutic Chemistry, Institut de Biomedicina de la UB (IBUB), Faculty of Pharmacy, University of Barcelona, Barcelona, Spain; Institut de Recerca Pediàtrica, Hospital Sant Joan de Déu, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Barcelona, Spain.
| |
Collapse
|
68
|
Berthiaume J, Kirk J, Ranek M, Lyon R, Sheikh F, Jensen B, Hoit B, Butany J, Tolend M, Rao V, Willis M. Pathophysiology of Heart Failure and an Overview of Therapies. Cardiovasc Pathol 2016. [DOI: 10.1016/b978-0-12-420219-1.00008-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
69
|
Tate M, Robinson E, Green BD, McDermott BJ, Grieve DJ. Exendin-4 attenuates adverse cardiac remodelling in streptozocin-induced diabetes via specific actions on infiltrating macrophages. Basic Res Cardiol 2015; 111:1. [PMID: 26597728 PMCID: PMC4656717 DOI: 10.1007/s00395-015-0518-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 10/27/2015] [Indexed: 02/06/2023]
Abstract
In addition to its' established metabolic and cardioprotective effects, glucagon-like peptide-1 (GLP-1) reduces post-infarction heart failure via preferential actions on the extracellular matrix (ECM). Here, we investigated whether the GLP-1 mimetic, exendin-4, modulates cardiac remodelling in experimental diabetes by specifically targeting inflammatory/ECM pathways, which are characteristically dysregulated in this setting. Adult mice were subjected to streptozotocin (STZ) diabetes and infused with exendin-4/insulin/saline from 0 to 4 or 4–12 weeks. Exendin-4 and insulin improved metabolic parameters in diabetic mice after 12 weeks, but only exendin-4 reduced cardiac diastolic dysfunction and interstitial fibrosis in parallel with altered ECM gene expression. Whilst myocardial inflammation was not evident at 12 weeks, CD11b-F4/80++ macrophage infiltration at 4 weeks was increased and reduced by exendin-4, together with an improved cytokine profile. Notably, media collected from high glucose-treated macrophages induced cardiac fibroblast differentiation, which was prevented by exendin-4, whilst several cytokines/chemokines were differentially expressed/secreted by exendin-4-treated macrophages, some of which were modulated in STZ exendin-4-treated hearts. Our findings suggest that exendin-4 preferentially protects against ECM remodelling and diastolic dysfunction in experimental diabetes via glucose-dependent modulation of paracrine communication between infiltrating macrophages and resident fibroblasts, thereby indicating that cell-specific targeting of GLP-1 signalling may be a viable therapeutic strategy in this setting.
Collapse
Affiliation(s)
- Mitchel Tate
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Emma Robinson
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Brian D Green
- Institute for Global Food Security, School of Biological Sciences, Belfast, BT9 5HN, UK
| | - Barbara J McDermott
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - David J Grieve
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK.
| |
Collapse
|
70
|
van Haare J, Kooi ME, Vink H, Post MJ, van Teeffelen JWGE, Slenter J, Munts C, Cobelens H, Strijkers GJ, Koehn D, van Bilsen M. Early impairment of coronary microvascular perfusion capacity in rats on a high fat diet. Cardiovasc Diabetol 2015; 14:150. [PMID: 26576929 PMCID: PMC4650915 DOI: 10.1186/s12933-015-0312-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 11/06/2015] [Indexed: 02/05/2023] Open
Abstract
Background It remains to be established if, and to what extent, the coronary microcirculation becomes compromised during the development of obesity and insulin resistance. Recent studies suggest that changes in endothelial glycocalyx properties contribute to microvascular dysfunction under (pre-)diabetic conditions. Accordingly, early effects of diet-induced obesity on myocardial perfusion and function were studied in rats under baseline and hyperaemic conditions. Methods Rats were fed a high fat diet (HFD) for 6 weeks and myocardial microvascular perfusion was determined using first-pass perfusion MRI before and after adenosine infusion. The effect of HFD on microcirculatory properties was also assessed by sidestream darkfield (SDF) imaging of the gastrocnemius muscle. Results HFD-fed rats developed central obesity and insulin sensitivity was reduced as evidenced by the marked reduction in insulin-induced phosphorylation of Akt in both cardiac and gastrocnemius muscle. Early diet-induced obesity did not lead to hypertension or cardiac hypertrophic remodeling. In chow-fed, control rats a robust increase in cardiac microvascular perfusion was observed upon adenosine infusion (+40 %; p < 0.05). In contrast, the adenosine response was abrogated in rats on a HFD (+8 %; N.S.). HFD neither resulted in rarefaction or loss of glycocalyx integrity in skeletal muscle, nor reduced staining intensity of the glycocalyx of cardiac capillaries. Conclusions Alterations in coronary microcirculatory function as assessed by first-pass perfusion MRI represent one of the earliest obesity-related cardiac adaptations that can be assessed non-invasively. In this early stage of insulin resistance, disturbances in glycocalyx barrier properties appeared not to contribute to the observed changes in coronary microvascular function.
Collapse
Affiliation(s)
- Judith van Haare
- Department of Physiology, CARIM School for Cardiovascular Diseases, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| | - M Eline Kooi
- Department of Radiology, CARIM School for Cardiovascular Diseases, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| | - Hans Vink
- Department of Physiology, CARIM School for Cardiovascular Diseases, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| | - Mark J Post
- Department of Physiology, CARIM School for Cardiovascular Diseases, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| | - Jurgen W G E van Teeffelen
- Department of Physiology, CARIM School for Cardiovascular Diseases, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| | - Jos Slenter
- Department of Radiology, CARIM School for Cardiovascular Diseases, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| | - Chantal Munts
- Department of Physiology, CARIM School for Cardiovascular Diseases, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| | - Hanneke Cobelens
- Department of Physiology, CARIM School for Cardiovascular Diseases, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| | - Gustav J Strijkers
- Biomedical Engineering and Physics, Academic Medical Center, P.O. Box 22700, 1100 DE, Amsterdam, The Netherlands.
| | - Dennis Koehn
- Pie Medical Imaging, P.O. Box 1132, 6201 BC, Maastricht, The Netherlands.
| | - Marc van Bilsen
- Department of Physiology, CARIM School for Cardiovascular Diseases, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands. .,Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| |
Collapse
|
71
|
Cortassa S, Caceres V, Bell LN, O'Rourke B, Paolocci N, Aon MA. From metabolomics to fluxomics: a computational procedure to translate metabolite profiles into metabolic fluxes. Biophys J 2015; 108:163-72. [PMID: 25564863 DOI: 10.1016/j.bpj.2014.11.1857] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 11/14/2014] [Accepted: 11/14/2014] [Indexed: 11/18/2022] Open
Abstract
We describe a believed-novel procedure for translating metabolite profiles (metabolome) into the set of metabolic fluxes (fluxome) from which they originated. Methodologically, computational modeling is integrated with an analytical platform comprising linear optimization, continuation and dynamic analyses, and metabolic control. The procedure was tested with metabolite profiles obtained from ex vivo mice Langendorff-heart preparations perfused with glucose. The metabolic profiles were analyzed using a detailed kinetic model of the glucose catabolic pathways including glycolysis, pentose phosphate (PP), glycogenolysis, and polyols to translate the glucose metabolome of the heart into the fluxome. After optimization, the ability of the model to simulate the initial metabolite profile was confirmed, and metabolic fluxes as well as the structure of control and regulation of the glucose catabolic network could be calculated. We show that the step catalyzed by phosphofructokinase together with ATP demand and glycogenolysis exert the highest control on the glycolytic flux. The negative flux control exerted by phosphofructokinase on the PP and polyol pathways revealed that the extent of glycolytic flux directly affects flux redirection through these pathways, i.e., the higher the glycolytic flux the lower the PP and polyols. This believed-novel methodological approach represents a step forward that may help in designing therapeutic strategies targeted to diagnose, prevent, and treat metabolic diseases.
Collapse
Affiliation(s)
- Sonia Cortassa
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Viviane Caceres
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Brian O'Rourke
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nazareno Paolocci
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Miguel A Aon
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
72
|
Görlach A, Dimova EY, Petry A, Martínez-Ruiz A, Hernansanz-Agustín P, Rolo AP, Palmeira CM, Kietzmann T. Reactive oxygen species, nutrition, hypoxia and diseases: Problems solved? Redox Biol 2015; 6:372-385. [PMID: 26339717 PMCID: PMC4565025 DOI: 10.1016/j.redox.2015.08.016] [Citation(s) in RCA: 245] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 08/21/2015] [Accepted: 08/25/2015] [Indexed: 02/06/2023] Open
Abstract
Within the last twenty years the view on reactive oxygen species (ROS) has changed; they are no longer only considered to be harmful but also necessary for cellular communication and homeostasis in different organisms ranging from bacteria to mammals. In the latter, ROS were shown to modulate diverse physiological processes including the regulation of growth factor signaling, the hypoxic response, inflammation and the immune response. During the last 60–100 years the life style, at least in the Western world, has changed enormously. This became obvious with an increase in caloric intake, decreased energy expenditure as well as the appearance of alcoholism and smoking; These changes were shown to contribute to generation of ROS which are, at least in part, associated with the occurrence of several chronic diseases like adiposity, atherosclerosis, type II diabetes, and cancer. In this review we discuss aspects and problems on the role of intracellular ROS formation and nutrition with the link to diseases and their problematic therapeutical issues. Oxidative stress is linked to overnutrition, obesity and associated diseases or cancer. Reactive oxygen species (ROS) are crucially involved in modulation of signaling cascades. NOX proteins and hypoxia contribute to formation of ROS under different nutrient regimes. ROS are powerful post-transcriptional and epigenetic regulators. Treatment of obesity with antioxidants requires more, larger, and better monitored clinical trials.
Collapse
Affiliation(s)
- Agnes Görlach
- Experimental and Molecular Pediatric Cardiology, German Heart Center Munich, Technical University Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Elitsa Y Dimova
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Andreas Petry
- Experimental and Molecular Pediatric Cardiology, German Heart Center Munich, Technical University Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Antonio Martínez-Ruiz
- Servicio de Immunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | - Pablo Hernansanz-Agustín
- Servicio de Immunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa, Madrid, Spain; Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Anabela P Rolo
- Department of Life Sciences, University of Coimbra and Center for Neurosciences and Cell Biology, University of Coimbra, Portugal
| | - Carlos M Palmeira
- Department of Life Sciences, University of Coimbra and Center for Neurosciences and Cell Biology, University of Coimbra, Portugal
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
73
|
Ruiz M, Gélinas R, Vaillant F, Lauzier B, Des Rosiers C. Metabolic Tracing Using Stable Isotope-Labeled Substrates and Mass Spectrometry in the Perfused Mouse Heart. Methods Enzymol 2015; 561:107-47. [PMID: 26358903 DOI: 10.1016/bs.mie.2015.06.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There has been a resurgence of interest for the field of cardiac metabolism catalyzed by evidence demonstrating a role of metabolic dysregulation in the pathogenesis of heart disease as well as the increased need for new therapeutic targets for patients with these diseases. In this regard, measuring substrate fluxes is critical in providing insight into the dynamics of cellular metabolism and in delineating the regulation of metabolite production and utilization. This chapter provides a comprehensive description of concepts, guidelines, and tips to assess metabolic fluxes relevant to energy substrate metabolism using (13)C-labeled substrates and (13)C-isotopomer analysis by gas chromatography-mass spectrometry (GC-MS), and the ex vivo working heart as study model. The focus will be on the mouse and on flux parameters, which are commonly assessed in the field, namely, those relevant to substrate selection for energy metabolism, specifically the relative contribution of carbohydrate (glucose, lactate, and pyruvate) and fatty acid oxidation to acetyl-CoA formation for citrate synthesis, glycolysis, as well as anaplerosis. We provide detailed procedures for the heart isolation and perfusion in the working mode as well as for sample processing for metabolite extraction and analysis by GC-MS and subsequent data processing for calculation of metabolic flux parameters. Finally, we address practical considerations and discuss additional applications and future challenges.
Collapse
Affiliation(s)
- Matthieu Ruiz
- Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada; Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada
| | - Roselle Gélinas
- Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada; Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Fanny Vaillant
- IHU Institut de Rythmologie et Modélisation Cardiaque, Fondation Bordeaux, Université de Bordeaux, Bordeaux, France; Inserm U1045 Centre de Recherche Cardio-Thoracique de Bordeaux, Université de Bordeaux, Bordeaux, France
| | | | - Christine Des Rosiers
- Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada; Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada; Department of Medicine, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
74
|
He J, Quintana MT, Sullivan J, L Parry T, J Grevengoed T, Schisler JC, Hill JA, Yates CC, Mapanga RF, Essop MF, Stansfield WE, Bain JR, Newgard CB, Muehlbauer MJ, Han Y, Clarke BA, Willis MS. MuRF2 regulates PPARγ1 activity to protect against diabetic cardiomyopathy and enhance weight gain induced by a high fat diet. Cardiovasc Diabetol 2015; 14:97. [PMID: 26242235 PMCID: PMC4526192 DOI: 10.1186/s12933-015-0252-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/30/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND In diabetes mellitus the morbidity and mortality of cardiovascular disease is increased and represents an important independent mechanism by which heart disease is exacerbated. The pathogenesis of diabetic cardiomyopathy involves the enhanced activation of PPAR transcription factors, including PPARα, and to a lesser degree PPARβ and PPARγ1. How these transcription factors are regulated in the heart is largely unknown. Recent studies have described post-translational ubiquitination of PPARs as ways in which PPAR activity is inhibited in cancer. However, specific mechanisms in the heart have not previously been described. Recent studies have implicated the muscle-specific ubiquitin ligase muscle ring finger-2 (MuRF2) in inhibiting the nuclear transcription factor SRF. Initial studies of MuRF2-/- hearts revealed enhanced PPAR activity, leading to the hypothesis that MuRF2 regulates PPAR activity by post-translational ubiquitination. METHODS MuRF2-/- mice were challenged with a 26-week 60% fat diet designed to simulate obesity-mediated insulin resistance and diabetic cardiomyopathy. Mice were followed by conscious echocardiography, blood glucose, tissue triglyceride, glycogen levels, immunoblot analysis of intracellular signaling, heart and skeletal muscle morphometrics, and PPARα, PPARβ, and PPARγ1-regulated mRNA expression. RESULTS MuRF2 protein levels increase ~20% during the development of diabetic cardiomyopathy induced by high fat diet. Compared to littermate wildtype hearts, MuRF2-/- hearts exhibit an exaggerated diabetic cardiomyopathy, characterized by an early onset systolic dysfunction, larger left ventricular mass, and higher heart weight. MuRF2-/- hearts had significantly increased PPARα- and PPARγ1-regulated gene expression by RT-qPCR, consistent with MuRF2's regulation of these transcription factors in vivo. Mechanistically, MuRF2 mono-ubiquitinated PPARα and PPARγ1 in vitro, consistent with its non-degradatory role in diabetic cardiomyopathy. However, increasing MuRF2:PPARγ1 (>5:1) beyond physiological levels drove poly-ubiquitin-mediated degradation of PPARγ1 in vitro, indicating large MuRF2 increases may lead to PPAR degradation if found in other disease states. CONCLUSIONS Mutations in MuRF2 have been described to contribute to the severity of familial hypertrophic cardiomyopathy. The present study suggests that the lack of MuRF2, as found in these patients, can result in an exaggerated diabetic cardiomyopathy. These studies also identify MuRF2 as the first ubiquitin ligase to regulate cardiac PPARα and PPARγ1 activities in vivo via post-translational modification without degradation.
Collapse
Affiliation(s)
- Jun He
- Department of Pathology and Laboratory Medicine, University of North Carolina, 111 Mason Farm Road, MBRB 2340B, Chapel Hill, NC, USA. .,General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China.
| | - Megan T Quintana
- Department of Surgery, University of North Carolina, Chapel Hill, NC, USA.
| | - Jenyth Sullivan
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA.
| | - Traci L Parry
- McAllister Heart Institute, University of North Carolina, 111 Mason Farm Road, MBRB 2340B, Chapel Hill, NC, USA.
| | - Trisha J Grevengoed
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA.
| | - Jonathan C Schisler
- McAllister Heart Institute, University of North Carolina, 111 Mason Farm Road, MBRB 2340B, Chapel Hill, NC, USA. .,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA.
| | - Joseph A Hill
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Cecelia C Yates
- Department of Health Promotions and Development, School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Rudo F Mapanga
- Cardio-Metabolic Research Group (CMRG), Department of Physiological Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa.
| | - M Faadiel Essop
- Cardio-Metabolic Research Group (CMRG), Department of Physiological Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa.
| | | | - James R Bain
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA. .,Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke University Medical Center, Durham, NC, USA.
| | - Christopher B Newgard
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA. .,Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke University Medical Center, Durham, NC, USA.
| | - Michael J Muehlbauer
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA.
| | - Yipin Han
- East Chapel Hill High School, Chapel Hill, NC, USA.
| | - Brian A Clarke
- Novartis, Novartis Institutes for BioMedical Research, Inc., 400 Technology Square, Boston, MA, 601-4214, USA.
| | - Monte S Willis
- Department of Pathology and Laboratory Medicine, University of North Carolina, 111 Mason Farm Road, MBRB 2340B, Chapel Hill, NC, USA. .,McAllister Heart Institute, University of North Carolina, 111 Mason Farm Road, MBRB 2340B, Chapel Hill, NC, USA.
| |
Collapse
|
75
|
Abstract
Type 2 diabetes mellitus escalates the risk of heart failure partly via its ability to induce a cardiomyopathic state that is independent of coronary artery disease and hypertension. Although the pathogenesis of diabetic cardiomyopathy has yet to be fully elucidated, aberrations in cardiac substrate metabolism and energetics are thought to be key drivers. These aberrations include excessive fatty acid utilisation and storage, suppressed glucose oxidation and impaired mitochondrial oxidative phosphorylation. An appreciation of how these abnormalities arise and synergise to promote adverse cardiac remodelling is critical to their effective amelioration. This review focuses on disturbances in myocardial fuel (fatty acids and glucose) flux and energetics in type 2 diabetes, how these disturbances relate to the development of diabetic cardiomyopathy and the potential therapeutic agents that could be used to correct them.
Collapse
Affiliation(s)
- Nelson Amaral
- British Heart Foundation Centre of Excellence, Cardiovascular Division, King's College London, London, UK
| | - Darlington O Okonko
- British Heart Foundation Centre of Excellence, Cardiovascular Division, King's College London, London, UK
| |
Collapse
|
76
|
Riggs K, Ali H, Taegtmeyer H, Gutierrez AD. The Use of SGLT-2 Inhibitors in Type 2 Diabetes and Heart Failure. Metab Syndr Relat Disord 2015; 13:292-7. [PMID: 26125313 DOI: 10.1089/met.2015.0038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The concurrent management of type 2 diabetes mellitus (T2DM) and chronic congestive heart failure presents several therapeutic challenges. Of concern is that insulin and insulin-sensitizing medications detrimentally "flood" the heart with energy-providing substrates, including fats and glucose. In this population, treatment of T2DM should focus on the reduction of increased substrate supply. Sodium glucose cotransporter-2 (SGLT-2) inhibitors, a new class of antidiabetic medication, operate via this principle by blocking the reabsorption of glucose in the kidney and subsequently releasing glucose through the urine. In this review, we begin with an examination of the mechanisms of glucotoxicity and lipotoxicity in the heart. Then we analyze the potential role of SGLT-2 inhibitor therapy in patients with concurrent T2DM and chronic heart failure. Based on the available evidence, SGLT-2 inhibitors are safe and can be recommended to treat T2DM in patients with chronic heart failure and intact renal function. Further studies are in progress to assess long-term survival benefits.
Collapse
Affiliation(s)
- Kayla Riggs
- 1 Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Texas Health Science Center at Houston School of Medicine , Houston, Texas
| | - Hiba Ali
- 1 Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Texas Health Science Center at Houston School of Medicine , Houston, Texas
| | - Heinrich Taegtmeyer
- 2 Division of Cardiology, Department of Medicine, University of Texas Health Science Center at Houston School of Medicine , Houston, Texas
| | - Absalon D Gutierrez
- 1 Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Texas Health Science Center at Houston School of Medicine , Houston, Texas
| |
Collapse
|
77
|
Hafstad AD, Boardman N, Aasum E. How exercise may amend metabolic disturbances in diabetic cardiomyopathy. Antioxid Redox Signal 2015; 22:1587-605. [PMID: 25738326 PMCID: PMC4449627 DOI: 10.1089/ars.2015.6304] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
SIGNIFICANCE Over-nutrition and sedentary lifestyle has led to a worldwide increase in obesity, insulin resistance, and type 2 diabetes (T2D) associated with an increased risk of development of cardiovascular disorders. Diabetic cardiomyopathy, independent of hypertension or coronary disease, is induced by a range of systemic changes and may through multiple processes result in functional and structural cardiac derangements. The pathogenesis of this cardiomyopathy is complex and multifactorial, and it will eventually lead to reduced cardiac working capacity and increased susceptibility to ischemic injury. RECENT ADVANCES Metabolic disturbances such as altered lipid handling and substrate utilization, decreased mechanical efficiency, mitochondrial dysfunction, disturbances in nonoxidative glucose pathways, and increased oxidative stress are hallmarks of diabetic cardiomyopathy. Interestingly, several of these disturbances are found to precede the development of cardiac dysfunction. CRITICAL ISSUES Exercise training is effective in the prevention and treatment of obesity and T2D. In addition to its beneficial influence on diabetes/obesity-related systemic changes, it may also amend many of the metabolic disturbances characterizing the diabetic myocardium. These changes are due to both indirect effects, exercise-mediated systemic changes, and direct effects originating from the high contractile activity of the heart during physical training. FUTURE DIRECTIONS Revealing the molecular mechanisms behind the beneficial effects of exercise training is of considerable scientific value to generate evidence-based therapy and in the development of new treatment strategies.
Collapse
Affiliation(s)
- Anne D Hafstad
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Neoma Boardman
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Ellen Aasum
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
78
|
Abstract
SIGNIFICANCE Cardiac function is energetically demanding, reliant on efficient well-coupled mitochondria to generate adenosine triphosphate and fulfill the cardiac demand. Predictably then, mitochondrial dysfunction is associated with cardiac pathologies, often related to metabolic disease, most commonly diabetes. Diabetic cardiomyopathy (DCM), characterized by decreased left ventricular function, arises independently of coronary artery disease and atherosclerosis. Dysregulation of Ca(2+) handling, metabolic changes, and oxidative stress are observed in DCM, abnormalities reflected in alterations in mitochondrial energetics. Cardiac tissue from DCM patients also presents with altered mitochondrial morphology, suggesting a possible role of mitochondrial dynamics in its pathological progression. RECENT ADVANCES Abnormal mitochondrial morphology is associated with pathologies across diverse tissues, suggesting that this highly regulated process is essential for proper cell maintenance and physiological homeostasis. Highly structured cardiac myofibers were hypothesized to limit alterations in mitochondrial morphology; however, recent work has identified morphological changes in cardiac tissue, specifically in DCM. CRITICAL ISSUES Mitochondrial dysfunction has been reported independently from observations of altered mitochondrial morphology in DCM. The temporal relationship and causative nature between functional and morphological changes of mitochondria in the establishment/progression of DCM is unclear. FUTURE DIRECTIONS Altered mitochondrial energetics and morphology are not only causal for but also consequential to reactive oxygen species production, hence exacerbating oxidative damage through reciprocal amplification, which is integral to the progression of DCM. Therefore, targeting mitochondria for DCM will require better mechanistic characterization of morphological distortion and bioenergetic dysfunction.
Collapse
Affiliation(s)
- Chad A Galloway
- 1Department of Anesthesiology, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Yisang Yoon
- 2Department of Physiology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| |
Collapse
|
79
|
Sung MM, Hamza SM, Dyck JRB. Myocardial metabolism in diabetic cardiomyopathy: potential therapeutic targets. Antioxid Redox Signal 2015; 22:1606-30. [PMID: 25808033 DOI: 10.1089/ars.2015.6305] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Cardiovascular complications in diabetes are particularly serious and represent the primary cause of morbidity and mortality in diabetic patients. Despite early observations of cardiac dysfunction in diabetic humans, cardiomyopathy unique to diabetes has only recently been recognized. RECENT ADVANCES Research has focused on understanding the pathogenic mechanisms underlying the initiation and development of diabetic cardiomyopathy. Emerging data highlight the importance of altered mitochondrial function as a major contributor to cardiac dysfunction in diabetes. Mitochondrial dysfunction occurs by several mechanisms involving altered cardiac substrate metabolism, lipotoxicity, impaired cardiac insulin and glucose homeostasis, impaired cellular and mitochondrial calcium handling, oxidative stress, and mitochondrial uncoupling. CRITICAL ISSUES Currently, treatment is not specifically tailored for diabetic patients with cardiac dysfunction. Given the multifactorial development and progression of diabetic cardiomyopathy, traditional treatments such as anti-diabetic agents, as well as cellular and mitochondrial fatty acid uptake inhibitors aimed at shifting the balance of cardiac metabolism from utilizing fat to glucose may not adequately target all aspects of this condition. Thus, an alternative treatment such as resveratrol, which targets multiple facets of diabetes, may represent a safe and promising supplement to currently recommended clinical therapy and lifestyle changes. FUTURE DIRECTIONS Elucidation of the mechanisms underlying the initiation and progression of diabetic cardiomyopathy is essential for development of effective and targeted treatment strategies. Of particular interest is the investigation of alternative therapies such as resveratrol, which can function as both preventative and mitigating agents in the management of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Miranda M Sung
- Department of Pediatrics, Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
| | - Shereen M Hamza
- Department of Pediatrics, Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
| | - Jason R B Dyck
- Department of Pediatrics, Cardiovascular Research Centre, University of Alberta, Edmonton, Canada
| |
Collapse
|
80
|
Aon MA, Tocchetti CG, Bhatt N, Paolocci N, Cortassa S. Protective mechanisms of mitochondria and heart function in diabetes. Antioxid Redox Signal 2015; 22:1563-86. [PMID: 25674814 PMCID: PMC4449630 DOI: 10.1089/ars.2014.6123] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE The heart depends on continuous mitochondrial ATP supply and maintained redox balance to properly develop force, particularly under increased workload. During diabetes, however, myocardial energetic-redox balance is perturbed, contributing to the systolic and diastolic dysfunction known as diabetic cardiomyopathy (DC). CRITICAL ISSUES How these energetic and redox alterations intertwine to influence the DC progression is still poorly understood. Excessive bioavailability of both glucose and fatty acids (FAs) play a central role, leading, among other effects, to mitochondrial dysfunction. However, where and how this nutrient excess affects mitochondrial and cytoplasmic energetic/redox crossroads remains to be defined in greater detail. RECENT ADVANCES We review how high glucose alters cellular redox balance and affects mitochondrial DNA. Next, we address how lipid excess, either stored in lipid droplets or utilized by mitochondria, affects performance in diabetic hearts by influencing cardiac energetic and redox assets. Finally, we examine how the reciprocal energetic/redox influence between mitochondrial and cytoplasmic compartments shapes myocardial mechanical activity during the course of DC, focusing especially on the glutathione and thioredoxin systems. FUTURE DIRECTIONS Protecting mitochondria from losing their ability to generate energy, and to control their own reactive oxygen species emission is essential to prevent the onset and/or to slow down DC progression. We highlight mechanisms enforced by the diabetic heart to counteract glucose/FAs surplus-induced damage, such as lipid storage, enhanced mitochondria-lipid droplet interaction, and upregulation of key antioxidant enzymes. Learning more on the nature and location of mechanisms sheltering mitochondrial functions would certainly help in further optimizing therapies for human DC.
Collapse
Affiliation(s)
- Miguel A Aon
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Carlo G Tocchetti
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Niraj Bhatt
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nazareno Paolocci
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sonia Cortassa
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
81
|
Alves MG, Martins AD, Teixeira NF, Rato L, Oliveira PF, Silva BM. White tea consumption improves cardiac glycolytic and oxidative profile of prediabetic rats. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.01.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
82
|
Liu F, Song R, Feng Y, Guo J, Chen Y, Zhang Y, Chen T, Wang Y, Huang Y, Li CY, Cao C, Zhang Y, Hu X, Xiao RP. Upregulation of MG53 Induces Diabetic Cardiomyopathy Through Transcriptional Activation of Peroxisome Proliferation-Activated Receptor α. Circulation 2015; 131:795-804. [DOI: 10.1161/circulationaha.114.012285] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
Diabetic cardiomyopathy, which contributes to >50% diabetic death, is featured by myocardial lipid accumulation, hypertrophy, fibrosis, and cardiac dysfunction. The mechanism underlying diabetic cardiomyopathy is poorly understood. Recent studies have shown that a striated muscle-specific E3 ligase Mitsugumin 53 (MG53, or TRIM72) constitutes a primary causal factor of systemic insulin resistance and metabolic disorders. Although it is most abundantly expressed in myocardium, the biological and pathological roles of MG53 in triggering cardiac metabolic disorders remain elusive.
Methods and Results—
Here we show that cardiac-specific transgenic expression of MG53 induces diabetic cardiomyopathy in mice. Specifically, MG53 transgenic mouse develops severe diabetic cardiomyopathy at 20 weeks of age, as manifested by insulin resistance, compromised glucose uptake, increased lipid accumulation, myocardial hypertrophy, fibrosis, and cardiac dysfunction. Overexpression of MG53 leads to insulin resistant via destabilizing insulin receptor and insulin receptor substrate 1. More importantly, we identified a novel role of MG53 in transcriptional upregulation of peroxisome proliferation-activated receptor alpha and its target genes, resulting in lipid accumulation and lipid toxicity, thereby contributing to diabetic cardiomyopathy.
Conclusions—
Our results suggest that overexpression of myocardial MG53 is sufficient to induce diabetic cardiomyopathy via dual mechanisms involving upregulation of peroxisome proliferation-activated receptor alpha and impairment of insulin signaling. These findings not only reveal a novel function of MG53 in regulating cardiac peroxisome proliferation-activated receptor alpha gene expression and lipid metabolism, but also underscore MG53 as an important therapeutic target for diabetes mellitus and associated cardiomyopathy.
Collapse
Affiliation(s)
- Fenghua Liu
- From Institute of Molecular Medicine (F.L., R.S., Y.F., J.G., Y.Z., Y.W., C.L., C.C., Y.Z., X.H., R.X.), State Key Laboratory of Biomembrane and Membrane Biotechnology (F.L., R.S., Y.F., J.G., Y.C., Y.Z., Y.W., C.C., Y.Z., X.H., R.X.), Biodynamic Optical Imaging Center (T.C., Y.H.), Center for Life Sciences (Y.C., C.L., R.X.), and Beijing City Key Laboratory of Cardiometabolic Molecular Medicine (R.X.), Peking University, Beijing, China
| | - Ruisheng Song
- From Institute of Molecular Medicine (F.L., R.S., Y.F., J.G., Y.Z., Y.W., C.L., C.C., Y.Z., X.H., R.X.), State Key Laboratory of Biomembrane and Membrane Biotechnology (F.L., R.S., Y.F., J.G., Y.C., Y.Z., Y.W., C.C., Y.Z., X.H., R.X.), Biodynamic Optical Imaging Center (T.C., Y.H.), Center for Life Sciences (Y.C., C.L., R.X.), and Beijing City Key Laboratory of Cardiometabolic Molecular Medicine (R.X.), Peking University, Beijing, China
| | - Yuanqing Feng
- From Institute of Molecular Medicine (F.L., R.S., Y.F., J.G., Y.Z., Y.W., C.L., C.C., Y.Z., X.H., R.X.), State Key Laboratory of Biomembrane and Membrane Biotechnology (F.L., R.S., Y.F., J.G., Y.C., Y.Z., Y.W., C.C., Y.Z., X.H., R.X.), Biodynamic Optical Imaging Center (T.C., Y.H.), Center for Life Sciences (Y.C., C.L., R.X.), and Beijing City Key Laboratory of Cardiometabolic Molecular Medicine (R.X.), Peking University, Beijing, China
| | - Jiaojiao Guo
- From Institute of Molecular Medicine (F.L., R.S., Y.F., J.G., Y.Z., Y.W., C.L., C.C., Y.Z., X.H., R.X.), State Key Laboratory of Biomembrane and Membrane Biotechnology (F.L., R.S., Y.F., J.G., Y.C., Y.Z., Y.W., C.C., Y.Z., X.H., R.X.), Biodynamic Optical Imaging Center (T.C., Y.H.), Center for Life Sciences (Y.C., C.L., R.X.), and Beijing City Key Laboratory of Cardiometabolic Molecular Medicine (R.X.), Peking University, Beijing, China
| | - Yanmin Chen
- From Institute of Molecular Medicine (F.L., R.S., Y.F., J.G., Y.Z., Y.W., C.L., C.C., Y.Z., X.H., R.X.), State Key Laboratory of Biomembrane and Membrane Biotechnology (F.L., R.S., Y.F., J.G., Y.C., Y.Z., Y.W., C.C., Y.Z., X.H., R.X.), Biodynamic Optical Imaging Center (T.C., Y.H.), Center for Life Sciences (Y.C., C.L., R.X.), and Beijing City Key Laboratory of Cardiometabolic Molecular Medicine (R.X.), Peking University, Beijing, China
| | - Yong Zhang
- From Institute of Molecular Medicine (F.L., R.S., Y.F., J.G., Y.Z., Y.W., C.L., C.C., Y.Z., X.H., R.X.), State Key Laboratory of Biomembrane and Membrane Biotechnology (F.L., R.S., Y.F., J.G., Y.C., Y.Z., Y.W., C.C., Y.Z., X.H., R.X.), Biodynamic Optical Imaging Center (T.C., Y.H.), Center for Life Sciences (Y.C., C.L., R.X.), and Beijing City Key Laboratory of Cardiometabolic Molecular Medicine (R.X.), Peking University, Beijing, China
| | - Tao Chen
- From Institute of Molecular Medicine (F.L., R.S., Y.F., J.G., Y.Z., Y.W., C.L., C.C., Y.Z., X.H., R.X.), State Key Laboratory of Biomembrane and Membrane Biotechnology (F.L., R.S., Y.F., J.G., Y.C., Y.Z., Y.W., C.C., Y.Z., X.H., R.X.), Biodynamic Optical Imaging Center (T.C., Y.H.), Center for Life Sciences (Y.C., C.L., R.X.), and Beijing City Key Laboratory of Cardiometabolic Molecular Medicine (R.X.), Peking University, Beijing, China
| | - Yanru Wang
- From Institute of Molecular Medicine (F.L., R.S., Y.F., J.G., Y.Z., Y.W., C.L., C.C., Y.Z., X.H., R.X.), State Key Laboratory of Biomembrane and Membrane Biotechnology (F.L., R.S., Y.F., J.G., Y.C., Y.Z., Y.W., C.C., Y.Z., X.H., R.X.), Biodynamic Optical Imaging Center (T.C., Y.H.), Center for Life Sciences (Y.C., C.L., R.X.), and Beijing City Key Laboratory of Cardiometabolic Molecular Medicine (R.X.), Peking University, Beijing, China
| | - Yanyi Huang
- From Institute of Molecular Medicine (F.L., R.S., Y.F., J.G., Y.Z., Y.W., C.L., C.C., Y.Z., X.H., R.X.), State Key Laboratory of Biomembrane and Membrane Biotechnology (F.L., R.S., Y.F., J.G., Y.C., Y.Z., Y.W., C.C., Y.Z., X.H., R.X.), Biodynamic Optical Imaging Center (T.C., Y.H.), Center for Life Sciences (Y.C., C.L., R.X.), and Beijing City Key Laboratory of Cardiometabolic Molecular Medicine (R.X.), Peking University, Beijing, China
| | - Chuan-Yun Li
- From Institute of Molecular Medicine (F.L., R.S., Y.F., J.G., Y.Z., Y.W., C.L., C.C., Y.Z., X.H., R.X.), State Key Laboratory of Biomembrane and Membrane Biotechnology (F.L., R.S., Y.F., J.G., Y.C., Y.Z., Y.W., C.C., Y.Z., X.H., R.X.), Biodynamic Optical Imaging Center (T.C., Y.H.), Center for Life Sciences (Y.C., C.L., R.X.), and Beijing City Key Laboratory of Cardiometabolic Molecular Medicine (R.X.), Peking University, Beijing, China
| | - Chunmei Cao
- From Institute of Molecular Medicine (F.L., R.S., Y.F., J.G., Y.Z., Y.W., C.L., C.C., Y.Z., X.H., R.X.), State Key Laboratory of Biomembrane and Membrane Biotechnology (F.L., R.S., Y.F., J.G., Y.C., Y.Z., Y.W., C.C., Y.Z., X.H., R.X.), Biodynamic Optical Imaging Center (T.C., Y.H.), Center for Life Sciences (Y.C., C.L., R.X.), and Beijing City Key Laboratory of Cardiometabolic Molecular Medicine (R.X.), Peking University, Beijing, China
| | - Yan Zhang
- From Institute of Molecular Medicine (F.L., R.S., Y.F., J.G., Y.Z., Y.W., C.L., C.C., Y.Z., X.H., R.X.), State Key Laboratory of Biomembrane and Membrane Biotechnology (F.L., R.S., Y.F., J.G., Y.C., Y.Z., Y.W., C.C., Y.Z., X.H., R.X.), Biodynamic Optical Imaging Center (T.C., Y.H.), Center for Life Sciences (Y.C., C.L., R.X.), and Beijing City Key Laboratory of Cardiometabolic Molecular Medicine (R.X.), Peking University, Beijing, China
| | - Xinli Hu
- From Institute of Molecular Medicine (F.L., R.S., Y.F., J.G., Y.Z., Y.W., C.L., C.C., Y.Z., X.H., R.X.), State Key Laboratory of Biomembrane and Membrane Biotechnology (F.L., R.S., Y.F., J.G., Y.C., Y.Z., Y.W., C.C., Y.Z., X.H., R.X.), Biodynamic Optical Imaging Center (T.C., Y.H.), Center for Life Sciences (Y.C., C.L., R.X.), and Beijing City Key Laboratory of Cardiometabolic Molecular Medicine (R.X.), Peking University, Beijing, China
| | - Rui-ping Xiao
- From Institute of Molecular Medicine (F.L., R.S., Y.F., J.G., Y.Z., Y.W., C.L., C.C., Y.Z., X.H., R.X.), State Key Laboratory of Biomembrane and Membrane Biotechnology (F.L., R.S., Y.F., J.G., Y.C., Y.Z., Y.W., C.C., Y.Z., X.H., R.X.), Biodynamic Optical Imaging Center (T.C., Y.H.), Center for Life Sciences (Y.C., C.L., R.X.), and Beijing City Key Laboratory of Cardiometabolic Molecular Medicine (R.X.), Peking University, Beijing, China
| |
Collapse
|
83
|
The function of heparanase in diabetes and its complications. Can J Diabetes 2015; 37:332-8. [PMID: 24500561 DOI: 10.1016/j.jcjd.2013.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 05/28/2013] [Accepted: 05/29/2013] [Indexed: 01/18/2023]
Abstract
Heparan sulfate proteoglycans are ubiquitous glycoproteins that contain several heparan sulfate polysaccharide side chains attached to a core protein. They function not only as a primary structural component of the extracellular matrix, but also provide a storage depot for bioactive molecules, such as basic fibroblast growth factor, vascular endothelial growth factor and lipoprotein lipase. Heparanase is an endoglycosidase that specifically hydrolyzes heparan sulfate into oligosaccharides. Recent studies have indicated that heparanase is engaged in the initiation and progression of diabetes, in addition to its associated complications. This review focuses on the participation of heparanase in the cleavage of heparan sulfate proteoglycans in pancreatic islets promoting beta cell death, promotion of atherosclerosis, and its role in cardiac metabolic switching in the early stage of cardiomyopathy during diabetes. Understanding the mechanisms by which heparanase is regulated in diabetes could provide a drug target to prevent diabetes and its complications.
Collapse
|
84
|
Wierzbowska-Drabik K, Hamala P, Kasprzak JD. Delayed longitudinal myocardial function recovery after dobutamine challenge as a novel presentation of myocardial dysfunction in type 2 diabetic patients without angiographic coronary artery disease. Eur Heart J Cardiovasc Imaging 2015; 16:676-83. [PMID: 25711352 DOI: 10.1093/ehjci/jev004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 01/02/2015] [Indexed: 11/13/2022] Open
Abstract
AIMS Since myocardial dysfunction in diabetic patients without coronary artery disease (CAD) is subtle at rest, the assessment during dobutamine stress echocardiography (DSE) may be more sensitive for detection of myocardial involvement. We assessed systolic function of the left ventricle during all stages of DSE in 3 diabetic patients free of significant CAD using state-of-the-art speckle-tracking quantification. METHODS AND RESULTS We performed DSE in 250 patients with angina recording views during baseline (0), peak (1), and recovery phase (2). All patients had coronary anatomy verified with ≥ 50% stenosis in left main and ≥ 70% in other arteries considered as significant. In this analysis, we included 25 subjects with diabetes mellitus (DM) but without CAD (mean age 62 ± 8) and compared them with an age- and sex-matched group of 85 controls without DM and CAD (mean age 60 ± 9). Global peak systolic longitudinal strain (PSLS) of the left ventricle was obtained by automated function imaging (AFI) at rest, peak, and recovery phase of DSE. The global PSLS was similar in both groups at baseline (-17.3 ± 4.0% in diabetics vs. -18.7 ± 3.3% in controls, P = ns) and at peak stage of DSE (-16.4 ± 4.5% in diabetics vs. -17.9 ± 4.2% in controls, P = ns), whereas at recovery absolute value was lower in patients with DM (-15.3 ± 3.2% vs. -17.2 ± 3.3%, P = 0.01). CONCLUSION Peak systolic longitudinal strain measured by AFI during recovery of DSE was impaired in diabetic patients. It may reflect longer time needed for full restoration of myocardial systolic function in this group of subjects.
Collapse
Affiliation(s)
| | - Piotr Hamala
- Chair and Department of Cardiology, Medical University of Lodz, Kniaziewicza 1/5, Lodz, Poland
| | - Jarosław D Kasprzak
- Chair and Department of Cardiology, Medical University of Lodz, Kniaziewicza 1/5, Lodz, Poland
| |
Collapse
|
85
|
Lund J, Hafstad AD, Boardman NT, Rossvoll L, Rolim NP, Ahmed MS, Florholmen G, Attramadal H, Wisløff U, Larsen TS, Aasum E. Exercise training promotes cardioprotection through oxygen-sparing action in high fat-fed mice. Am J Physiol Heart Circ Physiol 2015; 308:H823-9. [PMID: 25637547 DOI: 10.1152/ajpheart.00734.2014] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/28/2015] [Indexed: 11/22/2022]
Abstract
Although exercise training has been demonstrated to have beneficial cardiovascular effects in diabetes, the effect of exercise training on hearts from obese/diabetic models is unclear. In the present study, mice were fed a high-fat diet, which led to obesity, reduced aerobic capacity, development of mild diastolic dysfunction, and impaired glucose tolerance. Following 8 wk on high-fat diet, mice were assigned to 5 weekly high-intensity interval training (HIT) sessions (10 × 4 min at 85-90% of maximum oxygen uptake) or remained sedentary for the next 10 constitutive weeks. HIT increased maximum oxygen uptake by 13%, reduced body weight by 16%, and improved systemic glucose homeostasis. Exercise training was found to normalize diastolic function, attenuate diet-induced changes in myocardial substrate utilization, and dampen cardiac reactive oxygen species content and fibrosis. These changes were accompanied by normalization of obesity-related impairment of mechanical efficiency due to a decrease in work-independent myocardial oxygen consumption. Finally, we found HIT to reduce infarct size by 47% in ex vivo hearts subjected to ischemia-reperfusion. This study therefore demonstrated for the first time that exercise training mediates cardioprotection following ischemia in diet-induced obese mice and that this was associated with oxygen-sparing effects. These findings highlight the importance of optimal myocardial energetics during ischemic stress.
Collapse
Affiliation(s)
- J Lund
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway;
| | - A D Hafstad
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - N T Boardman
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - L Rossvoll
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - N P Rolim
- K. G. Jebsen Center of Exercise in Medicine, Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology and Saint Olavs Hospital, Trondheim University Hospital, Trondheim, Norway; and
| | - M S Ahmed
- Institute for Surgical Research, Department of Cardiology, Center for Heart Failure Research, Oslo University Hospital-Rikshospitalet, University of Oslo, Oslo, Norway
| | - G Florholmen
- Institute for Surgical Research, Department of Cardiology, Center for Heart Failure Research, Oslo University Hospital-Rikshospitalet, University of Oslo, Oslo, Norway
| | - H Attramadal
- Institute for Surgical Research, Department of Cardiology, Center for Heart Failure Research, Oslo University Hospital-Rikshospitalet, University of Oslo, Oslo, Norway
| | - U Wisløff
- K. G. Jebsen Center of Exercise in Medicine, Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology and Saint Olavs Hospital, Trondheim University Hospital, Trondheim, Norway; and
| | - T S Larsen
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - E Aasum
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
86
|
Bhatt NM, Aon MA, Tocchetti CG, Shen X, Dey S, Ramirez-Correa G, O'Rourke B, Gao WD, Cortassa S. Restoring redox balance enhances contractility in heart trabeculae from type 2 diabetic rats exposed to high glucose. Am J Physiol Heart Circ Physiol 2014; 308:H291-302. [PMID: 25485897 DOI: 10.1152/ajpheart.00378.2014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hearts from type 2 diabetic (T2DM) subjects are chronically subjected to hyperglycemia and hyperlipidemia, both thought to contribute to oxidizing conditions and contractile dysfunction. How redox alterations and contractility interrelate, ultimately diminishing T2DM heart function, remains poorly understood. Herein we tested whether the fatty acid palmitate (Palm), in addition to its energetic contribution, rescues function by improving redox [glutathione (GSH), NAD(P)H, less oxidative stress] in T2DM rat heart trabeculae subjected to high glucose. Using cardiac trabeculae from Zucker Diabetic Fatty (ZDF) rats, we assessed the impact of low glucose (EG) and high glucose (HG), in absence or presence of Palm or insulin, on force development, energetics, and redox responses. We found that in EG ZDF and lean trabeculae displayed similar contractile work, yield of contractile work (Ycw), representing the ratio of force time integral over rate of O2 consumption. Conversely, HG had a negative impact on Ycw, whereas Palm, but not insulin, completely prevented contractile loss. This effect was associated with higher GSH, less oxidative stress, and augmented matrix GSH/thioredoxin (Trx) in ZDF mitochondria. Restoration of myocardial redox with GSH ethyl ester also rescued ZDF contractile function in HG, independently from Palm. These results support the idea that maintained redox balance, via increased GSH and Trx antioxidant activities to resist oxidative stress, is an essential protective response of the diabetic heart to keep contractile function.
Collapse
Affiliation(s)
- Niraj M Bhatt
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Miguel A Aon
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Carlo G Tocchetti
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Xiaoxu Shen
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Swati Dey
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Genaro Ramirez-Correa
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Brian O'Rourke
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Wei Dong Gao
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sonia Cortassa
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| |
Collapse
|
87
|
Chapalamadugu KC, Panguluri SK, Bennett ES, Kolliputi N, Tipparaju SM. High level of oxygen treatment causes cardiotoxicity with arrhythmias and redox modulation. Toxicol Appl Pharmacol 2014; 282:100-7. [PMID: 25447406 DOI: 10.1016/j.taap.2014.10.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 10/24/2014] [Accepted: 10/29/2014] [Indexed: 01/08/2023]
Abstract
Hyperoxia exposure in mice leads to cardiac hypertrophy and voltage-gated potassium (Kv) channel remodeling. Because redox balance of pyridine nucleotides affects Kv function and hyperoxia alters cellular redox potential, we hypothesized that hyperoxia exposure leads to cardiac ion channel disturbances and redox changes resulting in arrhythmias. In the present study, we investigated the electrical changes and redox abnormalities caused by 72h hyperoxia treatment in mice. Cardiac repolarization changes were assessed by acquiring electrocardiogram (ECG) and cardiac action potentials (AP). Biochemical assays were employed to identify the pyridine nucleotide changes, Kv1.5 expression and myocardial injury. Hyperoxia treatment caused marked bradycardia, arrhythmia and significantly prolonged (ms) the, RR (186.2 ± 10.7 vs. 146.4 ± 6.2), PR (46.8 ± 3.1 vs. 39.3 ± 1.6), QRS (10.8 ± 0.6 vs. 8.5 ± 0.2), QTc (57.1 ± 3.5 vs. 40 ± 1.4) and JT (13.4 ± 2.1 vs. 7.0 ± 0.5) intervals, when compared with normoxia group. Hyperoxia treatment also induced significant increase in cardiac action potential duration (APD) (ex-APD90; 73.8 ± 9.5 vs. 50.9 ± 3.1 ms) and elevated levels of serum markers of myocardial injury; cardiac troponin I (TnI) and lactate dehydrogenase (LDH). Hyperoxia exposure altered cardiac levels of mRNA/protein expression of; Kv1.5, Kvβ subunits and SiRT1, and increased ratios of reduced pyridine nucleotides (NADH/NAD & NADPH/NADP). Inhibition of SiRT1 in H9C2 cells using Splitomicin resulted in decreased SiRT1 and Kv1.5 expression, suggesting that SiRT1 may mediate Kv1.5 downregulation. In conclusion, the cardiotoxic effects of hyperoxia exposure involve ion channel disturbances and redox changes resulting in arrhythmias.
Collapse
Affiliation(s)
- Kalyan C Chapalamadugu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Siva K Panguluri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Eric S Bennett
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Srinivas M Tipparaju
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
88
|
Abdurrachim D, Ciapaite J, Wessels B, Nabben M, Luiken JJ, Nicolay K, Prompers JJ. Cardiac diastolic dysfunction in high-fat diet fed mice is associated with lipotoxicity without impairment of cardiac energetics in vivo. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1842:1525-37. [DOI: 10.1016/j.bbalip.2014.07.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 07/04/2014] [Accepted: 07/23/2014] [Indexed: 12/25/2022]
|
89
|
Abstract
The incidence of heart failure (HF) and diabetes mellitus is rapidly increasing and is associated with poor prognosis. In spite of the advances in therapy, HF remains a major health problem with high morbidity and mortality. When HF and diabetes coexist, clinical outcomes are significantly worse. The relationship between these two conditions has been studied in various experimental models. However, the mechanisms for this interrelationship are complex, incompletely understood, and have become a matter of considerable clinical and research interest. There are only few animal models that manifest both HF and diabetes. However, the translation of results from these models to human disease is limited, and new models are needed to expand our current understanding of this clinical interaction. In this review, we discuss mechanisms of insulin signaling and insulin resistance, the clinical association between insulin resistance and HF, and its proposed pathophysiologic mechanisms. Finally, we discuss available animal models of insulin resistance and HF and propose requirements for future new models.
Collapse
|
90
|
Saran V, Sharma V, Wambolt R, Yuen VG, Allard M, McNeill JH. Combined metoprolol and ascorbic acid treatment prevents intrinsic damage to the heart during diabetic cardiomyopathy. Can J Physiol Pharmacol 2014; 92:827-37. [PMID: 25229873 DOI: 10.1139/cjpp-2014-0078] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Metabolic disturbances and oxidative stress have been highlighted as potential causative factors for the development of diabetic cardiomyopathy. The β-blocker metoprolol is known to improve function in the diabetic rat heart and ameliorates the sequelae associated with oxidative stress, without lowering oxidative stress. The antioxidant ascorbic acid is known to improve function in the diabetic rat heart. We tested whether a combination of ascorbic acid and metoprolol treatment would improve function further than each drug individually. Control and streptozotocin-induced diabetic Wistar rats were treated with metoprolol (15 mg·(kg body mass)(-1)·day(-1), via an osmotic pump) and (or) ascorbic acid (1000 mg·(kg body mass)(-1)·day(-1), via their drinking water). To study the effect of treatment on the development of dysfunction, we examined time points before (5 weeks diabetic) and after (7 weeks diabetic) development of overt systolic dysfunction. Echocardiography and working-heart-perfusion were used to assess cardiac function. Blood and tissue samples were collected to assess the severity of disease and oxidative stress. While both drugs improved function, only ascorbic acid had effects on oxidative damage. Combination treatment had a more pronounced improvement in function. Our β-blocker + antioxidant treatment strategy focused on oxidative stress, not diabetes specifically; therefore, it may prove useful in other diseases where oxidative stress contributes to the pathology.
Collapse
Affiliation(s)
- Varun Saran
- a James Hogg Research Centre, Department of Pathology and Laboratory Medicine, University of British Columbia, St. Paul's Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | | | | | | | | | | |
Collapse
|
91
|
Turkieh A, Caubère C, Barutaut M, Desmoulin F, Harmancey R, Galinier M, Berry M, Dambrin C, Polidori C, Casteilla L, Koukoui F, Rouet P, Smih F. Apolipoprotein O is mitochondrial and promotes lipotoxicity in heart. J Clin Invest 2014; 124:2277-86. [PMID: 24743151 DOI: 10.1172/jci74668] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 02/20/2014] [Indexed: 12/16/2022] Open
Abstract
Diabetic cardiomyopathy is a secondary complication of diabetes with an unclear etiology. Based on a functional genomic evaluation of obesity-associated cardiac gene expression, we previously identified and cloned the gene encoding apolipoprotein O (APOO), which is overexpressed in hearts from diabetic patients. Here, we generated APOO-Tg mice, transgenic mouse lines that expresses physiological levels of human APOO in heart tissue. APOO-Tg mice fed a high-fat diet exhibited depressed ventricular function with reduced fractional shortening and ejection fraction, and myocardial sections from APOO-Tg mice revealed mitochondrial degenerative changes. In vivo fluorescent labeling and subcellular fractionation revealed that APOO localizes with mitochondria. Furthermore, APOO enhanced mitochondrial uncoupling and respiration, both of which were reduced by deletion of the N-terminus and by targeted knockdown of APOO. Consequently, fatty acid metabolism and ROS production were enhanced, leading to increased AMPK phosphorylation and Ppara and Pgc1a expression. Finally, we demonstrated that the APOO-induced cascade of events generates a mitochondrial metabolic sink whereby accumulation of lipotoxic byproducts leads to lipoapoptosis, loss of cardiac cells, and cardiomyopathy, mimicking the diabetic heart-associated metabolic phenotypes. Our data suggest that APOO represents a link between impaired mitochondrial function and cardiomyopathy onset, and targeting APOO-dependent metabolic remodeling has potential as a strategy to adjust heart metabolism and protect the myocardium from impaired contractility.
Collapse
|
92
|
Martin SD, McGee SL. The role of mitochondria in the aetiology of insulin resistance and type 2 diabetes. Biochim Biophys Acta Gen Subj 2014; 1840:1303-12. [DOI: 10.1016/j.bbagen.2013.09.019] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/30/2013] [Accepted: 09/11/2013] [Indexed: 12/25/2022]
|
93
|
Abstract
Cardiomyopathy, the presence of cardiac dysfunction independent of ischemic heart disease and/or hypertension, is becoming a more prominent condition in our diabetic patient population. Unfortunately, we do not yet understand the mechanism(s) responsible for causing diabetic cardiomyopathy. With the recent explosion in the obesity and Type 2 diabetes epidemic, our understanding of dyslipidemia and the adverse effects of lipid surplus on cellular and organ function has grown considerably. Numerous studies now illustrate that excess lipid accumulation may exert direct toxic effects on cellular function, a term coined 'lipotoxicity'. As obesity and Type 2 diabetes are significant risk factors for cardiovascular disease, cardiac lipotoxicity may represent a significant component mediating the diabetic cardiomyopathy phenotype. Therefore, a more complete understanding of how cardiac lipotoxicity is regulated and how different lipid metabolites cause cellular dysfunction may lead to the discovery of novel targets to treat cardiomyopathy in our diabetic patient population.
Collapse
Affiliation(s)
- John R Ussher
- Lunenfeld-Tanenbaum, Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
94
|
Huynh K, Bernardo BC, McMullen JR, Ritchie RH. Diabetic cardiomyopathy: mechanisms and new treatment strategies targeting antioxidant signaling pathways. Pharmacol Ther 2014; 142:375-415. [PMID: 24462787 DOI: 10.1016/j.pharmthera.2014.01.003] [Citation(s) in RCA: 404] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 01/08/2014] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease is the primary cause of morbidity and mortality among the diabetic population. Both experimental and clinical evidence suggest that diabetic subjects are predisposed to a distinct cardiomyopathy, independent of concomitant macro- and microvascular disorders. 'Diabetic cardiomyopathy' is characterized by early impairments in diastolic function, accompanied by the development of cardiomyocyte hypertrophy, myocardial fibrosis and cardiomyocyte apoptosis. The pathophysiology underlying diabetes-induced cardiac damage is complex and multifactorial, with elevated oxidative stress as a key contributor. We now review the current evidence of molecular disturbances present in the diabetic heart, and their role in the development of diabetes-induced impairments in myocardial function and structure. Our focus incorporates both the contribution of increased reactive oxygen species production and reduced antioxidant defenses to diabetic cardiomyopathy, together with modulation of protein signaling pathways and the emerging role of protein O-GlcNAcylation and miRNA dysregulation in the progression of diabetic heart disease. Lastly, we discuss both conventional and novel therapeutic approaches for the treatment of left ventricular dysfunction in diabetic patients, from inhibition of the renin-angiotensin-aldosterone-system, through recent evidence favoring supplementation of endogenous antioxidants for the treatment of diabetic cardiomyopathy. Novel therapeutic strategies, such as gene therapy targeting the phosphoinositide 3-kinase PI3K(p110α) signaling pathway, and miRNA dysregulation, are also reviewed. Targeting redox stress and protective protein signaling pathways may represent a future strategy for combating the ever-increasing incidence of heart failure in the diabetic population.
Collapse
Affiliation(s)
- Karina Huynh
- Baker IDI Heart & Diabetes Institute, Melbourne, Australia; Department of Medicine, Monash University, Clayton, Victoria, Australia
| | | | - Julie R McMullen
- Baker IDI Heart & Diabetes Institute, Melbourne, Australia; Department of Medicine, Monash University, Clayton, Victoria, Australia; Department of Physiology, Monash University, Clayton, Victoria, Australia.
| | - Rebecca H Ritchie
- Baker IDI Heart & Diabetes Institute, Melbourne, Australia; Department of Medicine, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
95
|
van Bilsen M, Daniels A, Brouwers O, Janssen BJA, Derks WJA, Brouns AE, Munts C, Schalkwijk CG, van der Vusse GJ, van Nieuwenhoven FA. Hypertension is a conditional factor for the development of cardiac hypertrophy in type 2 diabetic mice. PLoS One 2014; 9:e85078. [PMID: 24416343 PMCID: PMC3887022 DOI: 10.1371/journal.pone.0085078] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 11/19/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Type 2 diabetes is frequently associated with co-morbidities, including hypertension. Here we investigated if hypertension is a critical factor in myocardial remodeling and the development of cardiac dysfunction in type 2 diabetic db/db mice. METHODS Thereto, 14-wks-old male db/db mice and non-diabetic db/+ mice received vehicle or angiotensin II (AngII) for 4 wks to induce mild hypertension (n = 9-10 per group). Left ventricular (LV) function was assessed by serial echocardiography and during a dobutamine stress test. LV tissue was subjected to molecular and (immuno)histochemical analysis to assess effects on hypertrophy, fibrosis and inflammation. RESULTS Vehicle-treated diabetic mice neither displayed marked myocardial structural remodeling nor cardiac dysfunction. AngII-treatment did not affect body weight and fasting glucose levels, and induced a comparable increase in blood pressure in diabetic and control mice. Nonetheless, AngII-induced LV hypertrophy was significantly more pronounced in diabetic than in control mice as assessed by LV mass (increase +51% and +34%, respectively, p<0.01) and cardiomyocyte size (+53% and +31%, p<0.001). This was associated with enhanced LV mRNA expression of markers of hypertrophy and fibrosis and reduced activation of AMP-activated protein kinase (AMPK), while accumulation of Advanced Glycation End products (AGEs) and the expression levels of markers of inflammation were not altered. Moreover, AngII-treatment reduced LV fractional shortening and contractility in diabetic mice, but not in control mice. CONCLUSIONS Collectively, the present findings indicate that type 2 diabetes in its early stage is not yet associated with adverse cardiac structural changes, but already renders the heart more susceptible to hypertension-induced hypertrophic remodeling.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/genetics
- AMP-Activated Protein Kinases/metabolism
- Angiotensin II/adverse effects
- Animals
- Blood Pressure/drug effects
- Cell Size
- Diabetes Mellitus, Type 2/diagnostic imaging
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Dobutamine/pharmacology
- Gene Expression
- Glycation End Products, Advanced/metabolism
- Hypertension/chemically induced
- Hypertension/diagnostic imaging
- Hypertension/metabolism
- Hypertension/pathology
- Hypertrophy, Left Ventricular/diagnostic imaging
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/pathology
- Male
- Mice
- Myocardium/metabolism
- Myocardium/pathology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Time Factors
- Ultrasonography
- Ventricular Function, Left/drug effects
- Ventricular Remodeling/drug effects
Collapse
Affiliation(s)
- Marc van Bilsen
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
- * E-mail:
| | - Anneleen Daniels
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Olaf Brouwers
- Department of Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Ben J. A. Janssen
- Department of Pharmacology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Wouter J. A. Derks
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Agnieszka E. Brouns
- Department of Pharmacology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Chantal Munts
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Casper G. Schalkwijk
- Department of Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Ger J. van der Vusse
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Frans A. van Nieuwenhoven
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
96
|
|
97
|
Abstract
Diabetes and obesity are both associated with lipotoxic cardiomyopathy exclusive of coronary artery disease and hypertension. Lipotoxicities have become a public health concern and are responsible for a significant portion of clinical cardiac disease. These abnormalities may be the result of a toxic metabolic shift to more fatty acid and less glucose oxidation with concomitant accumulation of toxic lipids. Lipids can directly alter cellular structures and activate downstream pathways leading to toxicity. Recent data have implicated fatty acids and fatty acyl coenzyme A, diacylglycerol, and ceramide in cellular lipotoxicity, which may be caused by apoptosis, defective insulin signaling, endoplasmic reticulum stress, activation of protein kinase C, MAPK activation, or modulation of PPARs.
Collapse
|
98
|
Sustained cardiac remodeling after a short-term very low calorie diet in type 2 diabetes mellitus patients. Int J Cardiovasc Imaging 2013; 30:121-7. [DOI: 10.1007/s10554-013-0302-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 09/27/2013] [Indexed: 10/26/2022]
|
99
|
Metabonomic analysis of Allium macrostemon Bunge as a treatment for acute myocardial ischemia in rats. J Pharm Biomed Anal 2013; 88:225-34. [PMID: 24080525 DOI: 10.1016/j.jpba.2013.09.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/01/2013] [Accepted: 09/03/2013] [Indexed: 11/23/2022]
Abstract
Myocardial ischemia (MI) refers to a pathological state of the heart caused by reduced cardiac blood perfusion, which leads to a decreased oxygen supply in the heart and an abnormal myocardial energy metabolism. Acute myocardial ischemia (AMI) has posed a significant health risk for humans. Allium macrostemon Bunge (AMB), a popular traditional Chinese medicine, is used for MI treatment. The therapeutic effects of AMB were assessed and the detailed mechanisms of AMB for AMI treatment were investigated. We characterized the metabonomic variations in rats from the sham surgery, AMI, and AMB-pretreated AMI groups through a combination of nuclear magnetic resonance (NMR) spectroscopy and multivariate statistical analysis. Thirty-five metabolites including carbohydrates, a range of amino acids, and organic acids were detected. The (1)H NMR spectra of the rat serum were analyzed using the principal component analysis (PCA) and orthogonal projection to latent structures discriminate analysis (OPLS-DA). Results showed that AMI induced some physiological changes in rats and also led to metabolic disorders related to glycolysis promotion, amino acid metabolism disruption, and other metabolite metabolism perturbation. AMB pretreatment reduced the AMI injury and maintained metabolic balance, possibly by limiting the change in energy metabolism and regulating amino acid metabolism. These findings provide a comprehensive insight on the metabolic response of AMI rats to AMB pretreatment and are important for the use of AMB for AMI therapy.
Collapse
|
100
|
Mellor KM, Bell JR, Ritchie RH, Delbridge LMD. Myocardial insulin resistance, metabolic stress and autophagy in diabetes. Clin Exp Pharmacol Physiol 2013; 40:56-61. [PMID: 22804725 DOI: 10.1111/j.1440-1681.2012.05738.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 06/15/2012] [Accepted: 06/18/2012] [Indexed: 01/19/2023]
Abstract
Clinical studies in humans strongly support a link between insulin resistance and non-ischaemic heart failure. The occurrence of a specific insulin-resistant cardiomyopathy, independent of vascular abnormalities, is now recognized. The progression of cardiac pathology linked with insulin resistance is poorly understood. Cardiac insulin resistance is characterized by reduced availability of sarcolemmal Glut-4 transporters and consequent lower glucose uptake. A shift away from glycolysis towards fatty acid oxidation for ATP supply is apparent and is associated with myocardial oxidative stress. Reliance of cardiomyocyte excitation-contraction coupling on glycolytically derived ATP supply potentially renders cardiac function vulnerable to the metabolic remodelling adaptations observed in diabetes development. Findings from Glut-4-knockout mice demonstrate that cardiomyocytes with extreme glucose uptake deficiency exhibit cardiac hypertrophy and marked excitation-contraction coupling abnormalities characterized by reduced sarcolemmal Ca(2+) influx and sarcoplasmic reticulum Ca(2+) uptake. The 'milder' phenotype fructose-fed mouse model of type 2 diabetes does not show evidence of cardiac hypertrophy, but cardiomyocyte loss linked with autophagic activation is evident. Fructose feeding induces a marked reduction in intracellular Ca(2+) availability with myofilament adaptation to preserve contractile function in this setting. The cardiac metabolic adaptations of two load-independent models of diabetes, namely the Glut-4-deficient mouse and the fructose-fed mouse are contrasted. The role of autophagy in diabetic cardiopathology is evaluated and anomalies of type 1 versus type 2 diabetic autophagic responses are highlighted.
Collapse
Affiliation(s)
- Kimberley M Mellor
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|