51
|
Czaja B, de Bouter J, Heisler M, Závodszky G, Karst S, Sarunic M, Maberley D, Hoekstra A. The effect of stiffened diabetic red blood cells on wall shear stress in a reconstructed 3D microaneurysm. Comput Methods Biomech Biomed Engin 2022; 25:1691-1709. [PMID: 35199620 DOI: 10.1080/10255842.2022.2034794] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Blood flow within the vasculature of the retina has been found to influence the progression of diabetic retinopathy. In this research cell resolved blood flow simulations are used to study the pulsatile flow of whole blood through a segmented retinal microaneurysm. Images were collected using adaptive optics optical coherence tomography of the retina of a patient with diabetic retinopathy, and a sidewall (sacciform) microaneurysm was segmented from the volumetric data. The original microaneurysm neck width was varied to produce two additional aneurysm geometries in order to probe the influence of neck width on the transport of red blood cells and platelets into the aneurysm. Red blood cell membrane stiffness was also increased to resolve the impact of rigid red blood cells, as a result of diabetes, in blood flow. Wall shear stress and wall shear stress gradients were calculated throughout the aneurysm domains, and the quantification of the influence of the red blood cells is presented. Average wall shear stress and wall shear stress gradients increased due to the increase of red blood cell membrane stiffness. Stiffened red blood cells were also found to induce higher local wall shear stress and wall shear stress gradients as they passed through the leading and draining parental vessels. Stiffened red blood cells were found to penetrate the aneurysm sac more than healthy red blood cells, as well as decreasing the margination of platelets to the vessel walls of the parental vessel, which caused a decrease in platelet penetration into the aneurysm sac.
Collapse
Affiliation(s)
- Benjamin Czaja
- Computational Science Lab, Faculty of Science, Institute for Informatics, University of Amsterdam, Amsterdam, Netherlands
| | - Jonathan de Bouter
- Computational Science Lab, Faculty of Science, Institute for Informatics, University of Amsterdam, Amsterdam, Netherlands
| | - Morgan Heisler
- School of Engineering Science, Faculty of Applied Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Gábor Závodszky
- Computational Science Lab, Faculty of Science, Institute for Informatics, University of Amsterdam, Amsterdam, Netherlands.,Department of Hydrodynamic Systems, Budapest University of Technology and Economics, Budapest, Hungary
| | - Sonja Karst
- Department of Ophthalmology and Optometry, Medical University Vienna, Vienna, Austria
| | - Marinko Sarunic
- School of Engineering Science, Faculty of Applied Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - David Maberley
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Alfons Hoekstra
- Computational Science Lab, Faculty of Science, Institute for Informatics, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
52
|
Kang HG, Bashir KMI, Kim KY, Shin S, Choi MW, Hong EJ, Choi SH, Kim JW, Choi JS, Ku SK. Evaluation of Dose-Dependent Obesity and Diabetes-Related Complications of Water Chestnut (Fruit of Trapa japonica) Extracts in Type II Obese Diabetic Mice Induced by 45% Kcal High-Fat Diet. Medicina (B Aires) 2022; 58:medicina58020189. [PMID: 35208513 PMCID: PMC8880371 DOI: 10.3390/medicina58020189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/12/2022] [Accepted: 01/22/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Objectives: The currently used pharmacological agents for metabolic disorders such as type II diabetes have several limitations and adverse effects; thus, there is a need for alternative therapeutic drugs and health functional foods. Materials and Methods: This study investigated the pharmacological effects of water chestnut (fruit of Trapa japonica) extracts (WC: 50–200 mg/kg) for type II diabetes using a 45% Kcal high-fat diet (HFD)-fed type II obese diabetic mice model for a period of 84 days, and the effects were compared to those of metformin (250 mg/kg). Results: Increases in body weight, serum biochemical indices such as triglycerides, low-density lipoprotein, and blood urea nitrogen, increases in antioxidant defense system enzymes such as catalase, superoxide dismutase, and glutathione, and mRNA expressions (such as AMPKα1 and AMPKα2) in the liver tissue and mRNA expressions (such as AMPKα2 mRNA, leptin, and C/EBPα) in the adipose tissue were observed in the HFD control group. The WC (50 mg/kg)-administered group showed no significant improvements in diabetic complications. However, HFD-induced obesity and diabetes-related complications such as hyperlipidemia, diabetic nephropathy, nonalcoholic fatty liver disease (NAFLD), oxidative stress, activity of antioxidant defense systems, and gene expressions were significantly and dose-dependently inhibited and/or normalized by oral administration of WC (100 mg/kg and 200 mg/kg), particularly at a dose of 100 mg/kg. Conclusions: The results of this study suggest that WC at an appropriate dose could be used to develop an effective therapeutic drug or functional food for type II diabetes and various associated complications, including NAFLD.
Collapse
Affiliation(s)
- Hyun-Gu Kang
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea; (H.-G.K.); (S.-H.C.)
| | - Khawaja Muhammad Imran Bashir
- German Engineering Research and Development Center for Life Science Technologies in Medicine and Environment, 31, Gwahaksandan 1-ro, 60 bean-gil, Gangseo-gu, Busan 46742, Korea;
| | - Ki-Young Kim
- Research Institute, Bio Port Korea Inc. #207, 7, Hoenggye-gil, Ilgwang-myeon, Gijang-gun, Busan 46048, Korea; (K.-Y.K.); (S.S.); (M.-W.C.); (E.-J.H.)
| | - Su Shin
- Research Institute, Bio Port Korea Inc. #207, 7, Hoenggye-gil, Ilgwang-myeon, Gijang-gun, Busan 46048, Korea; (K.-Y.K.); (S.S.); (M.-W.C.); (E.-J.H.)
| | - Min-Woo Choi
- Research Institute, Bio Port Korea Inc. #207, 7, Hoenggye-gil, Ilgwang-myeon, Gijang-gun, Busan 46048, Korea; (K.-Y.K.); (S.S.); (M.-W.C.); (E.-J.H.)
| | - Eun-Jin Hong
- Research Institute, Bio Port Korea Inc. #207, 7, Hoenggye-gil, Ilgwang-myeon, Gijang-gun, Busan 46048, Korea; (K.-Y.K.); (S.S.); (M.-W.C.); (E.-J.H.)
| | - Seong-Hun Choi
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea; (H.-G.K.); (S.-H.C.)
| | - Joo-Wan Kim
- Gyeongnam Veterinary Service Laboratory, 104, Chojeonbuk-ro, Jinju 52733, Korea;
| | - Jae-Suk Choi
- Department of Food Biotechnology, College of Medical and Life Sciences, Silla University, 140, Baegyang-daero 700 beon-gil, Sasang-gu, Busan 46958, Korea
- Correspondence: (J.-S.C.); (S.-K.K.); Tel.: +82-51-999-5647 (J.-S.C.); +82-53-819-1549 (S.-K.K.)
| | - Sae-Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Korea; (H.-G.K.); (S.-H.C.)
- Correspondence: (J.-S.C.); (S.-K.K.); Tel.: +82-51-999-5647 (J.-S.C.); +82-53-819-1549 (S.-K.K.)
| |
Collapse
|
53
|
Su X, Yu W, Liu A, Wang C, Li X, Gao J, Liu X, Jiang W, Yang Y, Lv S. San-Huang-Yi-Shen Capsule Ameliorates Diabetic Nephropathy in Rats Through Modulating the Gut Microbiota and Overall Metabolism. Front Pharmacol 2022; 12:808867. [PMID: 35058786 PMCID: PMC8764181 DOI: 10.3389/fphar.2021.808867] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023] Open
Abstract
San-Huang-Yi-Shen capsule (SHYS) has been used in the treatment of diabetic nephropathy (DN) in clinic. However, the mechanisms of SHYS on DN remain unknown. In this study, we used a high-fat diet (HFD) combined with streptozotocin (STZ) injection to establish a DN rat model. Next, we used 16S rRNA sequencing and untargeted metabolomics to study the potential mechanisms of SHYS on DN. Our results showed that SHYS treatment alleviated the body weight loss, hyperglycemia, proteinuria, pathological changes in kidney in DN rats. SHYS could also inhibite the oxidative stress and inflammatory response in kidney. 16S rRNA sequencing analysis showed that SHYS affected the beta diversity of gut microbiota community in DN model rats. SHYX could also decrease the Firmicutes to Bacteroidetes (F to B) ratio in phylum level. In genus level, SHYX treatment affected the relative abundances of Lactobacillus, Ruminococcaceae UCG-005, Allobaculum, Anaerovibrio, Bacteroides and Candidatus_Saccharimonas. Untargeted metabolomics analysis showed that SHYX treatment altered the serum metabolic profile in DN model rats through affecting the levels of guanidineacetic acid, L-kynurenine, prostaglandin F1α, threonine, creatine, acetylcholine and other 21 kind of metabolites. These metabolites are mainly involved in glycerophospholipid metabolism, tryptophan metabolism, alanine, aspartate and glutamate metabolism, arginine biosynthesis, tricarboxylic acid (TCA) cycle, tyrosine metabolism, arginine and proline metabolism, arginine and proline metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, and D-glutamine and D-glutamate metabolism pathways. Spearman correlation analysis showed that Lactobacillus, Candidatus_Saccharimonas, Ruminococcaceae UCG-005, Anaerovibrio, Bacteroides, and Christensenellaceae_R-7_group were closely correlated with most of physiological data and the differential metabolites following SHYS treatment. In conclusion, our study revealed multiple ameliorative effects of SHYS on DN including the alleviation of hyperglycemia and the improvement of renal function, pathological changes in kidney, oxidative stress, and the inflammatory response. The mechanism of SHYS on DN may be related to the improvement of gut microbiota which regulates arginine biosynthesis, TCA cycle, tyrosine metabolism, and arginine and proline metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Shuquan Lv
- Cangzhou Hospital of Integrated TCM and Western Medicine of Hebei Province, Cangzhou, China
| |
Collapse
|
54
|
Oba T, Nagao M, Kobayashi S, Yamaguchi Y, Nagamine T, Tanimura-Inagaki K, Fukuda I, Sugihara H. Perioperative glycemic status is linked to postoperative complications in non-intensive care unit patients with type-2 diabetes: a retrospective study. Ther Adv Endocrinol Metab 2022; 13:20420188221099349. [PMID: 35646304 PMCID: PMC9130836 DOI: 10.1177/20420188221099349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/21/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Perioperative hyperglycemia is a risk factor for postoperative complications in the general population. However, it has not been clarified whether perioperative hyperglycemia increases postoperative complications in patients with type-2 diabetes mellitus (T2D). Therefore, we aimed to analyze the relationship between perioperative glycemic status and postoperative complications in non-intensive care unit (non-ICU) hospitalized patients with T2D. MATERIALS AND METHODS Medical records of 1217 patients with T2D who were admitted to the non-ICU in our hospital were analyzed retrospectively. Relationships between clinical characteristics including perioperative glycemic status and postoperative complications were assessed using univariate and multivariate analyses. Perioperative glycemic status was evaluated by calculating the mean, standard deviation (SD), and coefficient of variation (CV) of blood glucose (BG) measurements in preoperative and postoperative periods for three contiguous days before and after surgery, respectively. Postoperative complications were defined as infections, delayed wound healing, postoperative bleeding, and/or thrombosis. RESULTS Postoperative complications occurred in 139 patients (11.4%). These patients showed a lower BG immediately before surgery (P = 0.04) and a higher mean postoperative BG (P = 0.009) than those without postoperative complications. There were no differences in the other perioperative BG parameters including BG variability and the frequency of hypoglycemia. The multivariate analysis showed that BG immediately before surgery (adjusted odds ratio (95% confidence interval [CI]), 0.91 (0.85-0.98), P = 0.01) and mean postoperative BG (1.11 (1.05-1.18), P < 0.001) were independently associated with postoperative complications. CONCLUSION Perioperative glycemic status, that is, a low BG immediately before surgery and a high mean postoperative BG, are associated with the increased incidence of postoperative complications in non-ICU patients with T2D.
Collapse
Affiliation(s)
- Takeshi Oba
- Department of Endocrinology, Diabetes and
Metabolism, Graduate School of Medicine, Nippon Medical School, Tokyo,
Japan
| | | | - Shunsuke Kobayashi
- Department of Endocrinology, Diabetes and
Metabolism, Graduate School of Medicine, Nippon Medical School, Tokyo,
Japan
| | - Yuji Yamaguchi
- Department of Endocrinology, Diabetes and
Metabolism, Graduate School of Medicine, Nippon Medical School, Tokyo,
Japan
| | - Tomoko Nagamine
- Department of Endocrinology, Diabetes and
Metabolism, Graduate School of Medicine, Nippon Medical School, Tokyo,
Japan
| | - Kyoko Tanimura-Inagaki
- Department of Endocrinology, Diabetes and
Metabolism, Graduate School of Medicine, Nippon Medical School, Tokyo,
Japan
| | - Izumi Fukuda
- Department of Endocrinology, Diabetes and
Metabolism, Graduate School of Medicine, Nippon Medical School, Tokyo,
Japan
| | - Hitoshi Sugihara
- Department of Endocrinology, Diabetes and
Metabolism, Graduate School of Medicine, Nippon Medical School, Tokyo,
Japan
| |
Collapse
|
55
|
Rostami HAA, Marjani A, Mojerloo M, Rahimi B, Marjani M. Effect of Spirulina on Lipid Profile, Glucose and Malondialdehyde Levels in Type 2 Diabetic Patients. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e191140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
56
|
Investigation of the Effects of L-carnitine and magnesium on Oxidative Stress and Cytokines in the Tissue of Experimental diabetic rats. ACTA VET-BEOGRAD 2021. [DOI: 10.2478/acve-2021-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The aim of this study was to determine the effects of L-carnitine and magnesium on the levels of tissue malondialdehyde, 8-hydroxy-2’-deoxyguanosine, and cytokines (tumor necrosis factor alpha, interleukin-6) in streptozotocin-induced experimental diabetes in rats. Eighty male Wistar albino rats (200-250 g) were divided into 8 groups with 10 rats in each group. The groups received the following treatments: Control group; 2 ml distilled water (by gavage); Group 2: 50 mg/kg (b.w.) i.p. streptozotocin; Group 3: 125 mg/kg (b.w.) magnesium; Group 4: 300 mg/kg (b.w.) L-carnitine; Group 5: 125 mg/kg (b.w.) magnesium +300 mg/kg (b.w.) L-carnitine; Group 6: 50 mg/kg (b.w.) streptozotocin +125 mg/kg (b.w.) magnesium; Group 7: 50 mg/kg (b.w.) streptozotocin +300 mg/kg (b.w.) L-carnitine and Group 8: 50 mg/kg (b.w.) streptozotocin +125 mg/ kg (b.w.) magnesium+300 mg/kg (b.w.) L-carnitine administered for 4 weeks. Liver and kidney malondialdehyde, 8-hydroxy-2’-deoxyguanosine, tumor necrosis factor alpha and interleukin-6 levels did not change in the magnesium, L-carnitine, and magnesium + L-carnitine groups compared to the control. The highest levels of malondialdehyde, 8-hydroxy-2’-deoxyguanosine, tumor necrosis factor alpha and interleukin-6 were determined only in the group with diabetes (Group 2). Lipid peroxidation, DNA damage, and cytokine levels were significantly reduced in diabetic animals with the administration of magnesium and L-carnitine separately or in combination. Based on the obtained results it can be concluded that magnesium and L-carnitine may have antidiabetic effects, especially in combination.
Collapse
|
57
|
Natarajan K, Sundaramoorthy A, Shanmugam N. HnRNPK and lysine specific histone demethylase-1 regulates IP-10 mRNA stability in monocytes. Eur J Pharmacol 2021; 920:174683. [PMID: 34914972 DOI: 10.1016/j.ejphar.2021.174683] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 11/26/2021] [Accepted: 12/02/2021] [Indexed: 12/27/2022]
Abstract
Altered mRNA metabolism is a feature of many inflammatory diseases. Post transcriptional regulation of interferon-γ-inducible protein (IP)-10 has been uncharacterized in diabetes conditions. RNA-affinity capture method and RNA immuno-precipitation revealed S100b treatment increased the binding of heterogeneous nuclear ribonucleoprotein (hnRNP)K to the IP-10 3'UTR and increased IP-10 mRNA accumulation. Luciferase activity assay using reporter plasmids showed involvement of IP-10 3'UTR. Knocking down of hnRNPK destabilized S100b induced IP-10 mRNA accumulation. S100b promoted the translocation of hnRNPK from nucleus to the cytoplasm and this was confirmed by phosphomimetic S284/353D mutant and non-phosphatable S284/353A hnRNPK mutant. S100b treatment demethylates hnRNPK at Lys219 by Lysine Specific Demethylase (LSD)-1. HnRNPKK219I, a demethylation defective mutant increased IP-10 mRNA stability. Apparently, triple mutant hnRNPKK219I/S284D/353D promoted IP-10 mRNA stability. Interestingly, knocking down LSD-1 abolished S100b induced IP-10 mRNA accumulation. These observations show for the first time that IP-10 mRNA stability is dynamically regulated by Lysine demethylation of hnRNPK by LSD-1. These results indicate that hnRNPK plays an important role in IP-10 mRNA stability induced by S100b which could exacerbate monocyte activation, relevant to the pathogenesis of diabetic complications like atherosclerosis.
Collapse
Affiliation(s)
- Kartiga Natarajan
- Diabetes and Cardiovascular Research Laboratory, Department of Biomedical Science, Bharathidasan University, Tiruchirappalli, 620 024, Tamilnadu, India
| | - Arun Sundaramoorthy
- Diabetes and Cardiovascular Research Laboratory, Department of Biomedical Science, Bharathidasan University, Tiruchirappalli, 620 024, Tamilnadu, India.
| | - Narkunaraja Shanmugam
- Diabetes and Cardiovascular Research Laboratory, Department of Biomedical Science, Bharathidasan University, Tiruchirappalli, 620 024, Tamilnadu, India.
| |
Collapse
|
58
|
Chan SW, Tomlinson B, Chan P, Lam CWK. The beneficial effects of Ganoderma lucidum on cardiovascular and metabolic disease risk. PHARMACEUTICAL BIOLOGY 2021; 59:1161-1171. [PMID: 34465259 PMCID: PMC8409941 DOI: 10.1080/13880209.2021.1969413] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/12/2021] [Indexed: 05/16/2023]
Abstract
CONTEXT Various herbal medicines are thought to be useful in the management of cardiometabolic disease and its risk factors. Ganoderma lucidum (Curtis) P. Karst. (Ganodermataceae), also known as Lingzhi, has received considerable attention for various indications, including some related to the prevention and treatment of cardiovascular and metabolic disease by ameliorating major cardiovascular risk factors. OBJECTIVE This review focuses on the major studies of the whole plant, plant extract, and specific active compounds isolated from G. lucidum in relation to the main risk factors for cardiometabolic disease. METHODS References from major databases including PubMed, Web of Science, and Google Scholar were compiled. The search terms used were Ganoderma lucidum, Lingzhi, Reishi, cardiovascular, hypoglycaemic, diabetes, dyslipidaemia, antihypertensive, and anti-inflammatory. RESULTS A number of in vitro studies and in vivo animal models have found that G. lucidum possesses antioxidative, antihypertensive, hypoglycaemic, lipid-lowering, and anti-inflammatory properties, but the health benefits in clinical trials are inconsistent. Among these potential health benefits, the most compelling evidence thus far is its hypoglycaemic effects in patients with type 2 diabetes or hyperglycaemia. CONCLUSIONS The inconsistent evidence about the potential health benefits of G. lucidum is possibly because of the use of different Ganoderma formulations and different study populations. Further large controlled clinical studies are therefore needed to clarify the potential benefits of G. lucidum preparations standardised by known active components in the prevention and treatment of cardiometabolic disease.
Collapse
Affiliation(s)
- Sze Wa Chan
- School of Health Sciences, Caritas Institute of Higher Education, Hong Kong SAR, China
| | - Brian Tomlinson
- Faculty of Medicine, Macau University of Science & Technology, Macau, China
| | - Paul Chan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan
| | | |
Collapse
|
59
|
Mubinov AR, Avdeeva EV, Kurkin VA, Latypova GM, Farkhutdinov RR, Kataev VA, Ryazanova TK. Fatty Acid Profile and Antioxidant Activity of Nigella Sativa Fatty Oil. Pharm Chem J 2021. [DOI: 10.1007/s11094-021-02497-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
60
|
Alkahtani S, Alarifi S, Alkahtane AA, Albasher G, AL-Zharani M, Alhoshani NM, AL-Johani NS, Aljarba NH, Saquib Hasnain M. Pyrroloquinoline quinone alleviates oxidative damage induced by high glucose in HepG2 cells. Saudi J Biol Sci 2021; 28:6127-6132. [PMID: 34759737 PMCID: PMC8568716 DOI: 10.1016/j.sjbs.2021.06.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/15/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
Hyperglycemia as a common metabolic disorder in diabetes led to oxidative stress, inflammation and other complications. Natural and manufactured antioxidants alleviates the side effects of diabetes. The purpose of current study is to investigate the effect of pyrroloquinoline quinine (PQQ) as an antioxidant on the content of glucose-induced oxidative stress generation in the cells of the human hepatocellular liver carcinoma (HepG2) by inhibiting advanced glycation end products (AGEs) formation. The HepG2 cells were exposed to high dose (50 mM) of glucose (HG) only and with PQQ (HG + PQQ). Treatment with high dose increased AGEs formation, expression of receptor for advanced glycation endproducts (RAGE), reactive oxygen species ROS production, and oxidative stress markers in treated HepG2 cells. Interestingly, PQQ significantly reduced AGEs formation and (RAGE) expression, ROS formation, and inflammation induced by glucose. In conclusion, PQQ has a potentiail role as an antioxidant to reduce the oxidative damage during hyperglycemia by AGEs inhibition.
Collapse
Affiliation(s)
- Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah A. Alkahtane
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed AL-Zharani
- Department of Biology, College of Science, Imam Muhammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Norah M. Alhoshani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Norah S. AL-Johani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nada H. Aljarba
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Md Saquib Hasnain
- Department of Pharmacy, Palamau Institute of Pharmacy, Chianki, Daltonganj 822102, Jharkhand, India
| |
Collapse
|
61
|
Valle MS, Russo C, Malaguarnera L. Protective role of vitamin D against oxidative stress in diabetic retinopathy. Diabetes Metab Res Rev 2021; 37:e3447. [PMID: 33760363 DOI: 10.1002/dmrr.3447] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/01/2021] [Accepted: 02/15/2021] [Indexed: 02/06/2023]
Abstract
Diabetic retinopathy (DR) is a microvascular complication of diabetes mellitus. There is much evidence showing that a high level of mitochondrial overproduction of reactive oxygen species in the diabetic retina contributes in modifying cellular signalling and leads to retinal cell damage and finally to the development of DR pathogenesis. In the last few decades, it has been reported that vitamin D is involved in DR pathogenesis. Vitamin D, traditionally known as an essential nutrient crucial in bone metabolism, has also been proven to be a very effective antioxidant. It has been demonstrated that it modulates the production of advanced glycosylated end products, as well as several pathways including protein kinase C, the polyol pathway leading to the reduction of free radical formation. It prevents the translocation of nuclear factor kappa B, preventing the inflammatory response, acting as an immunomodulator, and modulates autophagy and apoptosis. In this review, we explore the molecular mechanisms by which vitamin D protects the eye from oxidative stress, in order to evaluate whether vitamin D supplementation may be useful to mitigate the deleterious effects of free radicals in DR.
Collapse
Affiliation(s)
- Maria Stella Valle
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Cristina Russo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Lucia Malaguarnera
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
62
|
Bontzos G, Kabanarou SA, Gkizis I, Ragkousis A, Xirou T, Peto T. Retinal neurodegeneration, macular circulation and morphology of the foveal avascular zone in diabetic patients: quantitative cross-sectional study using OCT-A. Acta Ophthalmol 2021; 99:e1135-e1140. [PMID: 33423370 DOI: 10.1111/aos.14754] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE Using OCT-A to investigate the association between neurodegeneration and vascular morphology in diabetic retinopathy (DR). METHODS Cross-sectional study. One hundred and sixty-two patients were enrolled and following fundoscopy were assigned to two groups according to DR severity: 54 patients to the group of no clinical signs of DR (noDR) and 54 to the non-proliferative DR (NPDR) group. Fifty-four age-matched patients without known diabetes were recruited as the control group. Patients underwent full ophthalmic examination followed by OCT-A. Central retinal thickness (CRT), vessel density (VD) in the superficial and deep retinal layers and foveal avascular zone (FAZ) area were measured. Additionally, ganglion cell complex (GCC) layer thickness along with global loss volume (GLV) and focal loss volume (FLV) indices was measured. RESULTS In total, 85 men with mean age of 51.93 ± 9.03 and 77 women with age of 50.14 ± 10.35 were examined. Mean diabetes duration was 4.62 ± 2.16 years in the noDR group and 11.34 ± 2.73 years in the NPDR group (p < 0.001). Superficial VD (sVD) and deep VD (dVD) were significantly different only between noDR and NPDR groups (p < 0.001 for both comparisons), but no statistically significant difference was observed between the controls and the DR groups. Global loss volume was significantly higher in the NPDR (4.38 ± 2.22) compared to the noDR group (3.24 ± 1.76; p < 0.03). Focal loss volume was significantly higher in both noDR (1.22 ± 1.03) and NPDR (2.09 ± 1.72) groups compared to controls (0.95 ± 0.83; p < 0.001 between noDR and NPDR and p = 0.02 between control and noDR groups). Significant associations were found between GLV and deep VD (p < 0.01, r = -0.48), FLV and superficial VD (p < 0.01, r = -0.42) and FLV with deep VD (p < 0.01, r = -0.64). CONCLUSION In this study, we evaluated the impact of DR in both the vascular layers and neural components of the retina as expressed by FAZ, sVD, dVD and GCC thickness, FLV and GLV using OCT-A. We found that FLV was significantly higher in both noDR and NPDR groups indicating that in progressive DR stages FLV values might be increased, which might serve as an early index of neuronal damage in patients with diabetes even in the absence of overt DR signs.
Collapse
Affiliation(s)
- Georgios Bontzos
- Department of Ophthalmology Korgialenio‐Benakio Hellenic Red Cross Hospital Athens Greece
| | - Stamatina A. Kabanarou
- Department of Ophthalmology Korgialenio‐Benakio Hellenic Red Cross Hospital Athens Greece
| | - Ilias Gkizis
- Department of Ophthalmology Korgialenio‐Benakio Hellenic Red Cross Hospital Athens Greece
| | - Antonios Ragkousis
- Department of Ophthalmology Korgialenio‐Benakio Hellenic Red Cross Hospital Athens Greece
| | - Tina Xirou
- Department of Ophthalmology Korgialenio‐Benakio Hellenic Red Cross Hospital Athens Greece
| | - Tunde Peto
- Department of Ophthalmology Centre for Public Health Institute of Clinical Sciences School of Medicine Queen's University Belfast Belfast UK
| |
Collapse
|
63
|
Influence of Chlorhexidine and Cetylpyridine on Periodontal Status and Indicators of Oxidative Stress in Patients with Type 1 Diabetes. Antioxidants (Basel) 2021; 10:antiox10111732. [PMID: 34829603 PMCID: PMC8614958 DOI: 10.3390/antiox10111732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/03/2021] [Accepted: 10/27/2021] [Indexed: 11/25/2022] Open
Abstract
Objective: One of the treatment goals in type 1 diabetes and periodontitis is to address chronic inflammation to prevent the development of neurovascular complications. The aim of this study was to assess the local anti-inflammatory effects of chlorhexidine digluconate and cetylpyridine chloride on periodontal status and indicators of oxidative stress in saliva in patients with type 1 diabetes. Materials and Methods: A total of 42 subjects aged 27 (interquartile range, IQR 22–35) years, with type 1 diabetes for a duration of 12 (IQR 9–18) years, and glycated hemoglobin 8.05 (IQR 7.1–9.4)% were included. Patients were examined twice—initially, and after 14 days of using toothpaste with chlorhexidine and cetylpyridine. Clinical examination of gingival tissues was performed. Certain oxidative stress markers (TP, TEAC, TBARS, AOPP) were measured in the saliva samples. Results: There were significant changes in clinical indicators of periodontal status before and after the application of the toothpaste (API before 0.35 (0.24–0.65) vs. API after 0.265 (0.18–0.39), p = 0.03; SBI before 0.07 (0.04–0.15) vs. SBI after 0.035 (0-0.06), p = 0.002; GI before 0.88 (0.46–1) vs. GI after 0.67 (0.25–1), p = 0.0008). The concentration of saliva TBARS decreased (p = 0.00005) and TEAC increased (p = 0.09). Conclusion: Proper oral hygiene supported by antibacterial chemicals may improve the periodontal status and reduce inflammation.
Collapse
|
64
|
Evaluation of Vascular Endothelial Function in Children with Type 1 Diabetes Mellitus. J Clin Med 2021; 10:jcm10215065. [PMID: 34768589 PMCID: PMC8584312 DOI: 10.3390/jcm10215065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/30/2022] Open
Abstract
Diabetic kidney disease belongs to the major complications of diabetes mellitus. Here, hyperglycaemia is a key metabolic factor that causes endothelial dysfunction and vascular changes within the renal glomerulus. The aim of the present study was to assess the function of the vascular endothelium in children with type 1 diabetes mellitus (type 1 diabetes) by measuring selected endothelial lesion markers in blood serum. The selected markers of endothelial lesions (sVCAM-1, sICAM-1, sE-SELECTIN, PAI-1, ADMA and RAGE) were assayed by the immunoenzymatic ELISA method. The study involved 66 patients (age: 5–18 years) with type 1 diabetes and 21 healthy controls (age: 5–16 years). In the type 1 diabetes patients, significantly higher concentrations of all of the assayed markers were observed compared to the healthy controls (p < 0.001). All of the evaluated markers positively correlated with the disease duration, the age, and BMI of the patients, while only PAI-1 and sE-SELECTIN were characteristic of linear correlations with the estimated glomerular filtration rate (eGFR). It can be concluded that endothelial inflammatory disease occurs in the early stages of type 1 diabetes mellitus in children. The correlations between PAI-1, sE-SELECTIN, and eGFR suggest an advantage of these markers over other markers of endothelial dysfunction as prognostic factors for kidney dysfunction in children with type 1 diabetes.
Collapse
|
65
|
Grilo LF, Tocantins C, Diniz MS, Gomes RM, Oliveira PJ, Matafome P, Pereira SP. Metabolic Disease Programming: From Mitochondria to Epigenetics, Glucocorticoid Signalling and Beyond. Eur J Clin Invest 2021; 51:e13625. [PMID: 34060076 DOI: 10.1111/eci.13625] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/11/2022]
Abstract
Embryonic and foetal development are critical periods of development in which several environmental cues determine health and disease in adulthood. Maternal conditions and an unfavourable intrauterine environment impact foetal development and may programme the offspring for increased predisposition to metabolic diseases and other chronic pathologic conditions throughout adult life. Previously, non-communicable chronic diseases were only associated with genetics and lifestyle. Now the origins of non-communicable chronic diseases are associated with early-life adaptations that produce long-term dysfunction. Early-life environment sets the long-term health and disease risk and can span through multiple generations. Recent research in developmental programming aims at identifying the molecular mechanisms responsible for developmental programming outcomes that impact cellular physiology and trigger adulthood disease. The identification of new therapeutic targets can improve offspring's health management and prevent or overcome adverse consequences of foetal programming. This review summarizes recent biomedical discoveries in the Developmental Origins of Health and Disease (DOHaD) hypothesis and highlight possible developmental programming mechanisms, including prenatal structural defects, metabolic (mitochondrial dysfunction, oxidative stress, protein modification), epigenetic and glucocorticoid signalling-related mechanisms suggesting molecular clues for the causes and consequences of programming of increased susceptibility of offspring to metabolic disease after birth. Identifying mechanisms involved in DOHaD can contribute to early interventions in pregnancy or early childhood, to re-set the metabolic homeostasis and break the chain of subsequent events that could lead to the development of disease.
Collapse
Affiliation(s)
- Luís F Grilo
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Carolina Tocantins
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Mariana S Diniz
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Rodrigo Mello Gomes
- Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, Brazil
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Paulo Matafome
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.,Department of Complementary Sciences, Instituto Politécnico de Coimbra, Coimbra Health School (ESTeSC), Coimbra, Portugal
| | - Susana P Pereira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Laboratory of Metabolism and Exercise (LametEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto, Porto, Portugal
| |
Collapse
|
66
|
Mohammed DAE, Ahmed RR, R G A. Maternal LiCl exposure disrupts thyroid-cerebral axis in neonatal albino rats. Int J Dev Neurosci 2021; 81:741-758. [PMID: 34528732 DOI: 10.1002/jdn.10151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/23/2021] [Accepted: 09/08/2021] [Indexed: 12/19/2022] Open
Abstract
This work aimed to elucidate whether maternal lithium chloride (LiCl) exposure disturbs the thyroid-cerebral axis in neonatal albino rats. 50 mg of LiCl/kg b.wt. is orally given for pregnant Wistar rats from gestational day (GD) 1 to lactation day (LD) 28. The maternal administration of LiCl induced follicular dilatation and degeneration, hyperplasia, lumen obliteration and colloid vacuolation in the maternal and neonatal thyroid gland at postnatal days (PNDs) 14, 21 and 28. Neuronal degeneration (spongiform), gliosis, nuclear pyknosis, perivascular oedema, and meningeal hyperaemia were observed in the neonatal cerebral cortex of the maternal LiCl-treated group at examined PNDs. This disturbance appears to depend on intensification in the neonatal cerebral malondialdehyde (MDA), nitric oxide (NO), and hydrogen peroxide (H2 O2 ) levels, and attenuation in the glutathione (GSH), total thiol (t-SH), catalase (CAT), and superoxide dismutase (SOD) levels. In the neonatal cerebrum, the fold change in the relative mRNA expression of deiodinases (DII and DIII) increased significantly at PNDs 21 and 14, respectively, in the maternal LiCl-treated group. These data suggest that maternal LiCl may perturb the thyroid-cerebrum axis generating neonatal neurodevelopmental disorder.
Collapse
Affiliation(s)
- Dena A E Mohammed
- Division of Anatomy and Embryology, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Rasha R Ahmed
- Division of Histology and Cytology, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed R G
- Division of Anatomy and Embryology, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
67
|
Kumar S, Mittal A, Mittal A. A review upon medicinal perspective and designing rationale of DPP-4 inhibitors. Bioorg Med Chem 2021; 46:116354. [PMID: 34428715 DOI: 10.1016/j.bmc.2021.116354] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 12/13/2022]
Abstract
Type 2 Diabetes Mellitus (T2DM) is one of the highly prevalence disorder and increasing day by day worldwidely. T2DM is a metabolic disorder, which is characterized by deficiency in insulin or resistance to insulin and thus increases the glucose levels in the blood. Various approaches are there to treat diabetes but still there is no cure for this disease. DPP-4 inhibitor is a privileged target in the field of drug discovery and provides various opportunities in exploring this target for development of molecules as antidiabetic agents. DPP-4 acts by inhibiting the incretin action and thus decreases the level of blood glucose by imparting minimal side effects. Sitagliptin, vildagliptin, linagliptin etc. are the different DPP-4 based drugs approved throughout the world for the treatment of diabetes mellitus. Cyanopyrrolidines, triazolopiperazine amide, pyrrolidines are basic core nucleus present in various DPP-4 inhibitors and has potential effects. In the past few years, researchers had applied various approaches to synthesize potent DPP-4 inhibitors as antidiabetic agent without side effects like weight gain, cardiovascular risks, retinopathy etc. This review will also emphasize the recent strategies and rationale utilized by researchers for the development of DPP-4 inhibitors. This review also reveals about the various other approaches like molecular modelling, ligand based drug designing, high throughput screening etc. are used by the various research group for the development of potential DPP-4 inhibitors.
Collapse
Affiliation(s)
- Shubham Kumar
- Faculty of Pharmaceutical Sciences, PCTE Group of Institutes, Campus-2, Near Baddowal Cantt. Ferozepur Road, Ludhiana 142021, India; Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara, Punjab 144411, India
| | - Anu Mittal
- Department of Chemistry, Guru Nanak Dev University College, Patti, Distt. Tarn Taran, India
| | - Amit Mittal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara, Punjab 144411, India.
| |
Collapse
|
68
|
Ohara M, Nagaike H, Fujikawa T, Kohata Y, Ogawa M, Omachi T, Sasajima R, Chiba H, Ara T, Sugawara A, Hiromura M, Terasaki M, Mori Y, Fukui T, Hirano T, Yokoyama H, Yamagishi SI. Effects of omarigliptin on glucose variability and oxidative stress in type 2 diabetes patients: A prospective study. Diabetes Res Clin Pract 2021; 179:108999. [PMID: 34390762 DOI: 10.1016/j.diabres.2021.108999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/02/2021] [Accepted: 08/07/2021] [Indexed: 12/15/2022]
Abstract
AIMS To date, no clinical studies have compared once-weekly dipeptidyl peptidase 4 (DPP-4) inhibitors with once-daily DPP-4 inhibitors in terms of glucose variability (GV) and oxidative stress (OS). METHODS Thirty-six patients with type 2 diabetes mellitus (T2DM) treated with once-daily DPP-4 inhibitors for at least 12 weeks were randomized to either continue once-daily DPP-4 inhibitors or receive omarigliptin, a once-weekly DPP-4 inhibitor, for 24 weeks. The primary end points were changes in the diacron-reactive oxygen metabolite (d-ROMs) test, a marker of OS, and GV using flash glucose monitoring. The secondary end point was changes in the diabetes treatment satisfaction questionnaire (DTSQ) scores. RESULTS There were no significant group differences in d-ROMs and DTSQ scores after 24 weeks of treatments. However, omarigliptin was superior to once-daily DPP-4 inhibitors in controlling fasting plasma glucose (FPG) and time in range (TIR). Although FPG and TIR were unchanged at 24 weeks after switching to omarigliptin, these parameters increased in the group receiving maintenance therapy with once-daily DPP-4 inhibitors. No statistically significant changes in hemoglobin A1c were observed between the two groups. CONCLUSIONS Our findings suggest that switching from once-daily DPP-4 inhibitors to omarigliptin may be efficacious for maintaining FPG and TIR in T2DM patients.
Collapse
Affiliation(s)
- Makoto Ohara
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan.
| | - Hiroe Nagaike
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Tomoki Fujikawa
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yo Kohata
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Maiho Ogawa
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Takemasa Omachi
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Risa Sasajima
- Department of Internal Medicine, Jiyugaoka Medical Clinic, Hokkaido, Japan
| | - Hirotoshi Chiba
- Department of Internal Medicine, Jiyugaoka Medical Clinic, Hokkaido, Japan
| | - Toshimasa Ara
- Department of Internal Medicine, Jiyugaoka Medical Clinic, Hokkaido, Japan
| | - Ayuka Sugawara
- Department of Internal Medicine, Jiyugaoka Medical Clinic, Hokkaido, Japan
| | - Munenori Hiromura
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Michishige Terasaki
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yusaku Mori
- Division of Diabetes, Metabolism, and Endocrinology, Anti-glycation Research Section, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Tomoyasu Fukui
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Tsutomu Hirano
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan; Diabetes Center, Ebina General Hospital, Kanagawa, Japan
| | - Hiroki Yokoyama
- Department of Internal Medicine, Jiyugaoka Medical Clinic, Hokkaido, Japan
| | - Sho-Ichi Yamagishi
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
69
|
Momtazi-Borojeni AA, Jaafari MR, Abdollahi E, Banach M, Sahebkar A. Impact of PCSK9 Immunization on Glycemic Indices in Diabetic Rats. J Diabetes Res 2021; 2021:4757170. [PMID: 34504898 PMCID: PMC8423580 DOI: 10.1155/2021/4757170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/16/2021] [Indexed: 11/28/2022] Open
Abstract
METHODS To prepare the anti-PCSK9 vaccine, a peptide construct called Immunogenic Fused PCSK9-Tetanus (IFPT) was linked to the surface of nanoliposome carriers. Healthy rats received four subcutaneous injections of the vaccine at biweekly intervals. Two weeks after the last vaccination, anti-PCSK9 antibody titers, PCSK9 targeting, and inhibition of PCSK9-low-density lipoprotein receptor (LDLR) interaction were evaluated. After verification of antibody generation, the immunized rats were intraperitoneally treated with a single dose (45 mg/kg) of streptozotocin (STZ) to induce diabetes mellitus. The levels of fasting blood glucose (FBG) were measured, and the oral glucose tolerance test (OGTT) as well as the insulin tolerance test (ITT) were carried out to assess glycemic status. At the end of the study, the total cholesterol, low-density lipoprotein cholesterol (LDL-C), triglyceride, and high-density lipoprotein cholesterol concentrations were assayed. Histopathology examination of the liver and pancreas was also performed using the hematoxylin-eosin staining method. RESULTS The prepared nanoliposomal vaccine could strongly induce anti-PCSK9 antibodies in the vaccinated rats. Within one week following the STZ injection, the FBG level was lower in the vaccinated group vs. diabetic control group (49% (-171.7 ± 35 mg/dL, p < 0.001)). In the OGTT, the injected rats showed improved glucose tolerance as reflected by the reduction of blood glucose levels over 180 min, compared with the diabetic controls. Moreover, the ITT demonstrated that, after the insulin injection, blood glucose concentration declined by 49.3% in the vaccinated group vs. diabetic control group. Expectedly, the vaccinated rats exhibited lower (-26.65%, p = 0.03) plasma LDL-C levels compared with the diabetic controls. Histopathology examination of pancreas tissue demonstrated that the pancreatic islets of the vaccinated rats had a slight decline in the population of β-cells and few α-cells. Normal liver histology was also observed in the vaccinated rats. CONCLUSION PCSK9 inhibition through the liposomal IFPT vaccine can improve the glucose and insulin tolerance impairments as well as the lipid profile in diabetes.
Collapse
Affiliation(s)
- Amir Abbas Momtazi-Borojeni
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Iran's National Elites Foundation, Tehran, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Abdollahi
- Department of Gynecology, Woman Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maciej Banach
- Department of Hypertension, Medical University of Lodz (MUL), Poland
- Cardiovascular Research Centre, University of Zielona-Gora, Zielona-Gora, Poland
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
70
|
Koushki K, Keshavarz Shahbaz S, Keshavarz M, Bezsonov EE, Sathyapalan T, Sahebkar A. Gold Nanoparticles: Multifaceted Roles in the Management of Autoimmune Disorders. Biomolecules 2021; 11:1289. [PMID: 34572503 PMCID: PMC8470500 DOI: 10.3390/biom11091289] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/12/2021] [Accepted: 08/24/2021] [Indexed: 12/29/2022] Open
Abstract
Gold nanoparticles (GNPs) have been recently applied for various diagnostic and therapeutic purposes. The unique properties of these nanoparticles (NPs), such as relative ease of synthesis in various sizes, shapes and charges, stability, high drug-loading capacity and relative availability for modification accompanied by non-cytotoxicity and biocompatibility, make them an ideal field of research in bio-nanotechnology. Moreover, their potential to alleviate various inflammatory factors, nitrite species, and reactive oxygen production and the capacity to deliver therapeutic agents has attracted attention for further studies in inflammatory and autoimmune disorders. Furthermore, the characteristics of GNPs and surface modification can modulate their toxicity, biodistribution, biocompatibility, and effects. This review discusses in vitro and in vivo effects of GNPs and their functionalized forms in managing various autoimmune disorders (Ads) such as rheumatoid arthritis, type 1 diabetes, and multiple sclerosis.
Collapse
Affiliation(s)
- Khadijeh Koushki
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad 6813833946, Iran;
| | - Sanaz Keshavarz Shahbaz
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin 3419759811, Iran;
| | - Mohsen Keshavarz
- Department of Medical Virology, The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 7514763448, Iran;
| | - Evgeny E. Bezsonov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia;
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull HU32RW, UK;
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
- School of Medicine, The University of Western Australia, Perth, WA 6009, Australia
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| |
Collapse
|
71
|
Kaliaperumal R, Venkatachalam R, Nagarajan P, Sabapathy SK. Association of Serum Magnesium with Oxidative Stress in the Pathogenesis of Diabetic Cataract. Biol Trace Elem Res 2021; 199:2869-2873. [PMID: 33037494 DOI: 10.1007/s12011-020-02429-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/05/2020] [Indexed: 10/23/2022]
Abstract
Magnesium deficiency enhances oxidative stress which contributes to early development of cataract formation, and also the progression in type 2 diabetes mellitus patients remains unclear. The present study was designed to evaluate the serum levels of magnesium, oxidative stress marker and antioxidant status and to find out if there is any association between them in the pathogenesis of diabetic cataract compared with non-diabetic senile cataract, diabetes without cataract and normal healthy subjects. This comparative study includes 90 type 2 diabetes mellitus patients with cataract, 90 non-diabetic senile cataract patients, 90 type 2 diabetes mellitus without cataract and 90 normal healthy individual subjects without cataract in the age group between 40 and 75 years of both genders. Serum magnesium was estimated by using a fully automated analyser. Serum malondialdehyde (MDA), an indicator of oxidative stress biomarker, was determined by spectrophotometry, and the antioxidant status such as serum reduced glutathione (GSH) and glutathione peroxidase-3(GPX-3) levels was estimated by ELISA method. The present study shows significantly decreased levels of magnesium, GSH, GPX-3 and increased level of MDA in type 2 diabetes mellitus patients with cataract when compared with non-diabetic senile cataract patients, type 2 DM without cataract and normal healthy individuals. A significant negative correlation of serum magnesium with MDA and positive correlation with GPX-3 were observed. The present findings indicate that hypomagnesaemia is a significant pathogenic factor which causes increased oxidative stress which may trigger earlier cataractogenesis in patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
| | - Ramesh Venkatachalam
- Department of Biochemistry, Sri Lakshmi Narayana Institute of Medical Sciences, Bharath Institute of Higher Education and Research, Puducherry, 605502, India
| | - Prithiviraj Nagarajan
- Multi-Disciplinary Centre for Biomedical Research, Aarupadai Veedu Medical College & Hospital, Vinayaga Mission's Research Foundation (Deemed to be University), Puducherry, 607403, India
| | - Satheesh Kumar Sabapathy
- Multi-Disciplinary Centre for Biomedical Research, Aarupadai Veedu Medical College & Hospital, Vinayaga Mission's Research Foundation (Deemed to be University), Puducherry, 607403, India
| |
Collapse
|
72
|
Huang HW, Yang CM, Yang CH. Fibroblast Growth Factor Type 1 Ameliorates High-Glucose-Induced Oxidative Stress and Neuroinflammation in Retinal Pigment Epithelial Cells and a Streptozotocin-Induced Diabetic Rat Model. Int J Mol Sci 2021; 22:ijms22137233. [PMID: 34281287 PMCID: PMC8267624 DOI: 10.3390/ijms22137233] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/26/2021] [Accepted: 06/30/2021] [Indexed: 01/20/2023] Open
Abstract
Diabetic retinopathy (DR) is a common complication of diabetes that causes severe visual impairment globally. The pathogenesis of DR is related to oxidative stress and chronic inflammation. The fibroblast growth factor type 1 (FGF-1) mitogen plays crucial roles in cell function, development, and metabolism. FGF-1 is involved in blood sugar regulation and exerts beneficial antioxidative and anti-inflammatory effects on various organ systems. This study investigated the antioxidative and anti-inflammatory neuroprotective effects of FGF-1 on high-glucose-induced retinal damage. The results revealed that FGF-1 treatment significantly reversed the harmful effects of oxidative stress and inflammatory mediators in retinal tissue in a streptozotocin-induced diabetic rat model. These protective effects were also observed in the in vitro model of retinal ARPE-19 cells exposed to a high-glucose condition. We demonstrated that FGF-1 attenuated p38 mitogen-activated protein kinase and nuclear factor-κB pathway activation under the high-glucose condition. Our results indicated that FGF-1 could effectively prevent retinal injury in diabetes. The findings of this study could be used to develop novel treatments for DR that aim to reduce the cascade of oxidative stress and inflammatory signals in neuroretinal tissue.
Collapse
Affiliation(s)
- Hsin-Wei Huang
- Department of Ophthalmology, Wan Fang Hospital, Taipei Medical University, No. 111, Sec. 3, Xinglong Rd., Taipei 11696, Taiwan;
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, No. 1, Jen Ai Road Sec. 1, Taipei 100, Taiwan
| | - Chung-May Yang
- Department of Ophthalmology, National Taiwan University Hospital, No. 7, Zhongshan South Road, Taipei 100, Taiwan;
- Department of Ophthalmology, College of Medicine, National Taiwan University, No. 1, Jen Ai Road, Sec. 1, Taipei 100, Taiwan
| | - Chang-Hao Yang
- Department of Ophthalmology, National Taiwan University Hospital, No. 7, Zhongshan South Road, Taipei 100, Taiwan;
- Department of Ophthalmology, College of Medicine, National Taiwan University, No. 1, Jen Ai Road, Sec. 1, Taipei 100, Taiwan
- Correspondence: ; Tel.: +886-2-2312-3456 (ext. 62131); Fax: +886-2-2393-4420
| |
Collapse
|
73
|
Şahin A, Kaya S, Baylan M. The effects of caffeic acid phenethyl ester on retina in a diabetic rat model. Cutan Ocul Toxicol 2021; 40:268-273. [PMID: 34165369 DOI: 10.1080/15569527.2021.1940196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE We aimed to investigate the effect of caffeic acid phenethyl ester (CAPE) on retinal apoptosis and oxidative stress parameters in streptozotocin (STZ) induced diabetic rat model. METHODS This study included 3 groups; control, STZ, and STZ + CAPE. The rats in STZ, and STZ + CAPE groups were injected with STZ (35 mg/kg, i.p.) for induction of diabetes. In the STZ + CAPE group, 10 µmol/kg of CAPE were intraperitoneally injected for 4 weeks. Control and STZ groups were given only intraperitoneal vehicle (saline). Rats were anaesthetized and sacrificed on the 4th week of the experiment. Total anti-oxidant status (TAS), and total oxidant status (TOS) were measured on the dissected retinal tissues. Oxidative stress index (OSI) was also calculated. Fellow eyes were used for histopathologic evaluation with caspase-3 and matrix metalloproteinase-2 (MMP-2) and MMP-9 evaluation. RESULTS TAS levels were similar between groups (p = 0.71). However, CAPE treatment prevented the elevation of the TOS in the STZ + CAPE group compared to the STZ group (30.93 ± 9.97 vs 61.53 ± 24.7 nmol H2O2 Eq/mg protein, p = 0.007). OSI was also significantly lower in the STZ + CAPE group than that of the STZ group (20.01 ± 5.87 vs. 37.90 ± 14.32, respectively, p = 0.007). Retinal caspase-3 staining, MMP-2 and MMP-9 scores were not different between groups (p > 0.05 for all). CONCLUSION The present study demonstrated that CAPE treatment may decrease the oxidative stress in the retina in STZ induced diabetic rat model. However, apoptosis was not observed in the retina. The retinal apoptosis cannot be shown probably due to a shorter period of diabetes.
Collapse
Affiliation(s)
- Alparslan Şahin
- Department of Ophthalmology, Memorial Dicle Hospital, Diyarbakır, Turkey
| | - Savaş Kaya
- Department of Immunology, School of Medicine, Dicle University, Diyarbakır, Turkey
| | - Mukadder Baylan
- Department of Physiology, School of Medicine, Dicle University, Diyarbakır, Turkey
| |
Collapse
|
74
|
Iacobini C, Vitale M, Pesce C, Pugliese G, Menini S. Diabetic Complications and Oxidative Stress: A 20-Year Voyage Back in Time and Back to the Future. Antioxidants (Basel) 2021; 10:727. [PMID: 34063078 PMCID: PMC8147954 DOI: 10.3390/antiox10050727] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 02/07/2023] Open
Abstract
Twenty years have passed since Brownlee and colleagues proposed a single unifying mechanism for diabetic complications, introducing a turning point in this field of research. For the first time, reactive oxygen species (ROS) were identified as the causal link between hyperglycemia and four seemingly independent pathways that are involved in the pathogenesis of diabetes-associated vascular disease. Before and after this milestone in diabetes research, hundreds of articles describe a role for ROS, but the failure of clinical trials to demonstrate antioxidant benefits and some recent experimental studies showing that ROS are dispensable for the pathogenesis of diabetic complications call for time to reflect. This twenty-year journey focuses on the most relevant literature regarding the main sources of ROS generation in diabetes and their role in the pathogenesis of cell dysfunction and diabetic complications. To identify future research directions, this review discusses the evidence in favor and against oxidative stress as an initial event in the cellular biochemical abnormalities induced by hyperglycemia. It also explores possible alternative mechanisms, including carbonyl stress and the Warburg effect, linking glucose and lipid excess, mitochondrial dysfunction, and the activation of alternative pathways of glucose metabolism leading to vascular cell injury and inflammation.
Collapse
Affiliation(s)
- Carla Iacobini
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (C.I.); (M.V.); (S.M.)
| | - Martina Vitale
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (C.I.); (M.V.); (S.M.)
| | - Carlo Pesce
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal Infantile Sciences (DINOGMI), Department of Excellence of MIUR, University of Genoa Medical School, 16132 Genoa, Italy;
| | - Giuseppe Pugliese
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (C.I.); (M.V.); (S.M.)
| | - Stefano Menini
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy; (C.I.); (M.V.); (S.M.)
| |
Collapse
|
75
|
Islam MR, Haque AR, Kabir MR, Hasan MM, Khushe KJ, Hasan SMK. Fruit by-products: the potential natural sources of antioxidants and α-glucosidase inhibitors. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:1715-1726. [PMID: 33897010 DOI: 10.1007/s13197-020-04681-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/26/2020] [Accepted: 07/31/2020] [Indexed: 11/25/2022]
Abstract
The present effort was to obtain extracts from various fruit by-products using three extraction systems and to evaluate their polyphenolic content, antioxidant, and α-glucosidase inhibition activity. The fruit by-products were pre-processed by washing, drying, and milling methods to produce the powder. The powder samples were used to obtain extracts using pressurized hot-water (PHWE), enzyme-assisted (EnE) and organic solvent extraction (OSE) systems. The total phenolic content (TPC), total flavonoid content (TFC), antioxidant and α-glucosidase inhibition activity in all samples were assessed by Folin-Ciocalteu, AlCl3 colorimetric, DPPH· & ABST·+ and α-glucosidase inhibitory methods. The results showed that the extracts of peel, seed and other by-products exhibited outstanding TPC, TFC, and strongest antioxidant and α-glucosidase inhibition activity, eventually higher than edible parts of the fruits. For instance, the highest TPC among the peels of various fruits were in mango peel (in all cultivar) followed by litchi peel, banana peel cv. sagor, jackfruit peel, pineapple peel, papaya peel, banana peel cv. malbhog and desi on average in all tested extraction systems. PHWE system yielded significantly (p < 0.05) higher TPC and TFC than other extraction systems. In case of misribhog mango variety, the TPC (mg GAE/g DM) in peels were 180.12 ± 7.33, 73.52 ± 2.91 and 36.10 ± 3.48, and in seeds were 222.62 ± 12.11, 76.18 ± 2.63 and 42.83 ± 12.52 for PHWE, EnE and OSE respectively. This work reported the promising potential of underutilized fruit by-products as new sources to manufacture ingredients and nutraceuticals for foods and pharmaceutical products.
Collapse
Affiliation(s)
- Md Rakibul Islam
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200 Bangladesh
| | - Ahmed Redwan Haque
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200 Bangladesh
| | - Md Raihan Kabir
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200 Bangladesh
| | - Md Mehedi Hasan
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200 Bangladesh
| | - Khursheda Jahan Khushe
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200 Bangladesh
| | - S M Kamrul Hasan
- Department of Food Processing and Preservation, Hajee Mohammad Danesh Science and Technology University (HSTU), Dinajpur, 5200 Bangladesh
| |
Collapse
|
76
|
Sharma A, Kaur R, Kaur J, Garg S, Bhatti R, Kaur A. An endophytic Schizophyllum commune Fr. exhibits in-vitro and in-vivo antidiabetic activity in streptozotocin induced diabetic rats. AMB Express 2021; 11:58. [PMID: 33881650 PMCID: PMC8060376 DOI: 10.1186/s13568-021-01219-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/09/2021] [Indexed: 03/06/2023] Open
Abstract
The present study aimed at isolation of endophytic basidiomycetous fungi and evaluation of their in-vitro and in-vivo antidiabetic potential. Preliminary screening for in-vitro activity was carried out using α-glucosidase inhibition assay. An endophytic isolate Sch1 (isolated from Aloe vera), identified to be Schizophyllum commune Fr. on molecular basis, exhibiting more than 90% α-glucosidase inhibitiory activity was selected for further studies. Detailed in-vivo investigations for antidiabetic potential of ethyl acetate extract of S. commune (Sch1), at two different doses, were carried out in streptozotocin induced diabetic Wistar rats. Treatment of diabetic rats with S. commune extract caused significant decrease in blood glucose level and increase in body weight after 14 days experimental period. It significantly restored renal parameters including creatinine, blood urea nitrogen, fractional excretion of sodium, and potassium level in diabetic rats. Improvement in lipid profile and level of antioxidant parameters viz. reduced glutathione, thiobarbituric acid reactive species, and superoxide anion generation was also observed after treatment. Liver enzymes (serum glutamic pyruvic transaminase, serum glutamic-oxaloacetic transaminases, and alkaline phosphatase) homeostasis was found to be markedly improved in diabetic rats administered with S. commune extract. The effects were more pronounced at higher concentration and comparable to acarbose which was used as positive control. Phytochemical analysis revealed the presence of phenolics and terpenoids in the ethyl acetate extract. This is the first report highlighting the therapeutic potential of an endophytic S. commune in the management of diabetes.
Collapse
|
77
|
Srinivasan S, Pritchard N, Sampson GP, Edwards K, Vagenas D, Russell AW, Malik RA, Efron N. Focal loss volume of ganglion cell complex in diabetic neuropathy. Clin Exp Optom 2021; 99:526-534. [DOI: 10.1111/cxo.12379] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 11/18/2015] [Accepted: 11/28/2015] [Indexed: 11/28/2022] Open
Affiliation(s)
- Sangeetha Srinivasan
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia,
| | - Nicola Pritchard
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia,
| | - Geoff P Sampson
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia,
- Deakin University, Geelong, Victoria, Australia,
| | - Katie Edwards
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia,
| | - Dimitrios Vagenas
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia,
| | - Anthony W Russell
- Princess Alexandra Hospital, Woolloongabba, Queensland, Australia,
- School of Medicine, University of Queensland, Woolloongabba, Queensland, Australia,
| | - Rayaz A Malik
- Centre for Endocrinology and Diabetes, Institute of Human Development, University of Manchester, UK,
- Weill Cornell Medical College in Qatar, Doha, Qatar,
| | - Nathan Efron
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia,
| |
Collapse
|
78
|
Thymoquinone, the Most Prominent Constituent of Nigella Sativa, Attenuates Liver Damage in Streptozotocin-Induced Diabetic Rats via Regulation of Oxidative Stress, Inflammation and Cyclooxygenase-2 Protein Expression. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11073223] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Diabetes mellitus (DM) is a multifaceted metabolic disorder that results in dysfunction and failure of various organs. The present study aimed to evaluate the role of Thymoquinone (TQ), on antidiabetic, oxidative stress, and anti-inflammatory activities in streptozotocin (STZ)-induced (55 mg/kg b.w) diabetic rats. TQ was orally given for 8 consecutive weeks at dose of 150 mg/kg b.w. The blood glucose, insulin, total cholesterol, triglycerides, liver function enzymes, high density lipoprotein (HDL)-cholesterol, and low-density lipoprotein (LDL)-cholesterol levels were measured accordingly in control, diabetes control (DC), and TQ-treatment groups. These experiments confirmed that TQ conserves the insulin level (0.4 ng/mL vs. 0.23 ng/mL), fasting blood glucose (146 ± 7 mg/dL vs. 225 ± 5 mg/dL), and HbA1c (7.5% vs. 10.6%) quite considerably as compared to DC animals. Our results also confirmed that TQ treatment conserves the body weight and lipid profile significantly in STZ-treated animals as compared to the DC group. Moreover, the antioxidant enzymes (GSH, SOD, GST, and CAT) levels decreased, liver function enzymes (ALT, AST, and ALP), lipid peroxidation and inflammatory markers (TNF-α, CRP, IL-1β, IL-6) increased by STZ treatment, that is significantly restored after TQ treatment. As compared to untreated animals, TQ restored the hepatocytes architectural changes and collagen fibers and cox-2 protein expression in liver tissues as evaluated by hematoxylin and eosin, Masson’s trichrome, and immunohistochemistry staining. Taken together, all these findings indicated that TQ ameliorates glucose level and lipid metabolism. It restores liver function, antioxidant enzymes, anti-inflammatory markers, and maintains hepatocytes architecture in STZ-induced diabetes mellitus rats. Here, in this study, we have demonstrated for the first time the role of TQ in the reduction of the expression of cyclooxygenase-2 and fibrosis formation in diabetic rats. Based on the findings, the study suggests that TQ is a novel natural drug with a wide range of clinical applications including the management of diabetes mellitus.
Collapse
|
79
|
Ola MS. Does Hyperglycemia Cause Oxidative Stress in the Diabetic Rat Retina? Cells 2021; 10:794. [PMID: 33918273 PMCID: PMC8067231 DOI: 10.3390/cells10040794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 12/23/2022] Open
Abstract
Diabetes, being a metabolic disease dysregulates a large number of metabolites and factors. However, among those altered metabolites, hyperglycemia is considered as the major factor to cause an increase in oxidative stress that initiates the pathophysiology of retinal damage leading to diabetic retinopathy. Diabetes-induced oxidative stress in the diabetic retina and its damaging effects are well known, but still, the exact source and the mechanism of hyperglycemia-induced reactive oxygen species (ROS) generation especially through mitochondria remains uncertain. In this study, we analyzed precisely the generation of ROS and the antioxidant capacity of enzymes in a real-time situation under ex vivo and in vivo conditions in the control and streptozotocin-induced diabetic rat retinas. We also measured the rate of flux through the citric acid cycle by determining the oxidation of glucose to CO2 and glutamate, under ex vivo conditions in the control and diabetic retinas. Measurements of H2O2 clearance from the ex vivo control and diabetic retinas indicated that activities of mitochondrial antioxidant enzymes are intact in the diabetic retina. Short-term hyperglycemia seems to influence a decrease in ROS generation in the diabetic retina compared to controls, which is also correlated with a decreased oxidation rate of glucose in the diabetic retina. However, an increase in the formation of ROS was observed in the diabetic retinas compared to controls under in vivo conditions. Thus, our results suggest of diabetes/hyperglycemia-induced non-mitochondrial sources may serve as major sources of ROS generation in the diabetic retina as opposed to widely believed hyperglycemia-induced mitochondrial sources of excess ROS. Therefore, hyperglycemia per se may not cause an increase in oxidative stress, especially through mitochondria to damage the retina as in the case of diabetic retinopathy.
Collapse
Affiliation(s)
- Mohammad Shamsul Ola
- Department of Biochemistry, College of Science, King Saud University, 2B10, Building 5, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
80
|
El-Ouady F, Lahrach N, Ajebli M, Haidani AE, Eddouks M. Antihyperglycemic Effect of the Aqueous Extract of Foeniculum vulgare in Normal and Streptozotocin-induced Diabetic Rats. Cardiovasc Hematol Disord Drug Targets 2021; 20:54-63. [PMID: 31195951 DOI: 10.2174/1871525717666190612121516] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 03/06/2019] [Accepted: 04/22/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Diabetes mellitus is associated with high blood glucose levels due to insulin shortcoming (insulinopenia) or defective insulin action. The objective of the study was to investigate the antidiabetic and antioxidant effects of Foeniculum vulgare in streptozotocin-induced diabetic rat. METHODS The effects of the leaves aqueous extract (LAE) of Foeniculum vulgare (F. vulgare) at a dose of 10 mg/kg on blood glucose levels were evaluated in normal and streptozotocin (STZ)- induced diabetic rats. Histopathological changes were also evaluated in liver in STZ-induced rats. RESULTS Single oral administration of F. vulgare LAE reduced blood glucose levels 6 h after administration in STZ diabetic rats (p<0.0001). Furthermore, blood glucose levels were decreased in both normal (p<0.05) and STZ diabetic rats (p<0.0001) after the fifteenth day of treatment. During this test, both groups did not show any significant change in their body weight. Moreover, this aqueous extract improved oral glucose tolerance in diabetic rats and revealed a positive effect on liver histology. On the other hand, the extract used in this experiment showed an inhibitory concentration (IC50) of 50% of free radicals with a concentration of 43±1.19 µg/ml. While the synthetic antioxidant (BHT) had an IC50 equal to 22.67±2.17µg /ml. CONCLUSION This study demonstrates the antihyperglycemic, hypoglycemic and antioxidant effects of the leaves of F. vulgare in normal and diabetic rats.
Collapse
Affiliation(s)
- Fadwa El-Ouady
- Faculty of Sciences and Techniques Errachidia, Moulay Ismail University, BP 509, Boutalamine, 52000, Errachidia, Morocco
| | - Nadia Lahrach
- Faculty of Sciences and Techniques Errachidia, Moulay Ismail University, BP 509, Boutalamine, 52000, Errachidia, Morocco
| | - Mohammed Ajebli
- Faculty of Sciences and Techniques Errachidia, Moulay Ismail University, BP 509, Boutalamine, 52000, Errachidia, Morocco
| | - Ahmed E Haidani
- Faculty of Sciences and Techniques Errachidia, Moulay Ismail University, BP 509, Boutalamine, 52000, Errachidia, Morocco
| | - Mohamed Eddouks
- Faculty of Sciences and Techniques Errachidia, Moulay Ismail University, BP 509, Boutalamine, 52000, Errachidia, Morocco
| |
Collapse
|
81
|
Miller WP, Sunilkumar S, Dennis MD. The stress response protein REDD1 as a causal factor for oxidative stress in diabetic retinopathy. Free Radic Biol Med 2021; 165:127-136. [PMID: 33524531 PMCID: PMC7956244 DOI: 10.1016/j.freeradbiomed.2021.01.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/12/2022]
Abstract
Diabetic Retinopathy (DR) is a major cause of visual dysfunction, yet much remains unknown regarding the specific molecular events that contribute to diabetes-induced retinal pathophysiology. Herein, we review the impact of oxidative stress on DR, and explore evidence that supports a key role for the stress response protein regulated in development and DNA damage (REDD1) in the development of diabetes-induced oxidative stress and functional defects in vision. It is well established that REDD1 mediates the cellular response to a number of diverse stressors through repression of the central metabolic regulator known as mechanistic target of rapamycin complex 1 (mTORC1). A growing body of evidence also supports that REDD1 acts independent of mTORC1 to promote oxidative stress by both enhancing the production of reactive oxygen species and suppressing the antioxidant response. Collectively, there is strong preclinical data to support a key role for REDD1 in the development and progression of retinal complications caused by diabetes. Furthermore, early proof-of-concept clinical trials have found a degree of success in combating ischemic retinal disease through intravitreal delivery of an siRNA targeting the REDD1 mRNA. Overall, REDD1-associated signaling represents an intriguing target for novel clinical therapies that go beyond addressing the symptoms of diabetes by targeting the underlying molecular mechanisms that contribute to DR.
Collapse
Affiliation(s)
- William P Miller
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Siddharth Sunilkumar
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Michael D Dennis
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, 17033, USA; Department of Ophthalmology, Penn State College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
82
|
Gromotowicz-Poplawska A, Szoka P, Zakrzeska A, Kolodziejczyk P, Marcinczyk N, Szemraj J, Tutka P, Chabielska E. Hyperglycemia Potentiates Prothrombotic Effect of Aldosterone in a Rat Arterial Thrombosis Model. Cells 2021; 10:cells10020471. [PMID: 33671798 PMCID: PMC7927020 DOI: 10.3390/cells10020471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 11/16/2022] Open
Abstract
We investigated the role of aldosterone (ALDO) in the development of arterial thrombosis in streptozotocin-induced diabetic rats. To evaluate the effect of endogenous ALDO, the rats underwent adrenalectomy (ADX). ADX reduced the development of arterial thrombosis. A 1 h infusion of ALDO (30 μg/kg/h) enhanced thrombosis in adrenalectomized rats, while this effect was potentiated in diabetic rats. ALDO shortened bleeding time, increased plasma levels of tissue factor (TF) and plasminogen activator inhibitor, decreased plasma level of nitric oxide (NO) metabolites, and increased oxidative stress. Moreover, 2 h incubation of human umbilical vein endothelial cells (HUVECs) with ALDO (10-7 M) disrupted hemostatic balance in endothelial cells in normoglycemia (glucose 5.5 mM), and this effect was more pronounced in hyperglycemia (glucose 30 mM). We demonstrated that the acute ALDO infusion enhances arterial thrombosis in rats and hyperglycemia potentiates this prothrombotic effect. The mechanism of ALDO action was partially mediated by mineralocorticoid (MR) and glucocorticoid (GR) receptors and related to impact of the hormone on primary hemostasis, TF-dependent coagulation cascade, fibrinolysis, NO bioavailability, and oxidative stress balance. Our in vitro study confirmed that ALDO induces prothrombotic phenotype in the endothelium, particularly under hyperglycemic conditions.
Collapse
Affiliation(s)
- Anna Gromotowicz-Poplawska
- Department of Biopharmacy, Medical University of Bialystok, 15-222 Bialystok, Poland; (N.M.); (E.C.)
- Correspondence: ; Tel.: +48-857485804
| | - Piotr Szoka
- Department of Pharmacology, Medical University of Bialystok, 15-222 Bialystok, Poland;
| | | | - Patrycjusz Kolodziejczyk
- Department of Experimental and Clinical Pharmacology, University of Rzeszow, 35-959 Rzeszow, Poland; (P.K.); (P.T.)
| | - Natalia Marcinczyk
- Department of Biopharmacy, Medical University of Bialystok, 15-222 Bialystok, Poland; (N.M.); (E.C.)
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Piotr Tutka
- Department of Experimental and Clinical Pharmacology, University of Rzeszow, 35-959 Rzeszow, Poland; (P.K.); (P.T.)
- National Drug and Alcohol Research Center, University of New South Wales, Sydney 2052, Australia
| | - Ewa Chabielska
- Department of Biopharmacy, Medical University of Bialystok, 15-222 Bialystok, Poland; (N.M.); (E.C.)
| |
Collapse
|
83
|
The Protective Effects of Ropivacaine Against High Glucose-induced Brain Microvascular Endothelial Injury by Reducing MMPs and Alleviating Oxidative Stress. Neurotox Res 2021; 39:851-859. [PMID: 33538995 DOI: 10.1007/s12640-020-00324-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/27/2020] [Accepted: 12/08/2020] [Indexed: 10/22/2022]
Abstract
Diabetes is undoubtedly affecting global health. Considerable attention has been directed to brain complications caused by diabetes, which are reported to be related to the injury on brain microvascular endothelial cells. Oxidative stress and degradation of vascular basement membrane contribute to the injury of vascular endothelia by diabetes. The present study aims to investigate the effects of ropivacaine on high glucose-induced brain microvascular endothelial injury, as well as the underlying mechanism. Cell viability was determined by (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The production of reactive oxygen species (ROS) was evaluated by 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) staining. Quantitative real-time PCR (QRT-PCR) and enzyme-linked immunosorbent assay (ELISA) were used to determine the expression levels of matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9), intercellular cell adhesion molecule-1 (ICAM-1), and vascular endothelial growth factor (VEGF). The production of nitric oxide (NO) was detected by DAF-FM DA staining. The expression of inducible nitric oxide synthase (iNOS) was evaluated by qRT-PCR and Western blot analysis. Western blot was used to determine the expression of nuclear factor erythroid 2-related factor 2 (Nrf-2) and heme oxygenase 1 (HO-1).The cell viability of bEnd.3 brain endothelial cells was inhibited by high glucose, which was rescued by ropivacaine. The elevated production of ROS and MDA by high glucose was reversed by ropivacaine. Ropivacaine suppressed the expression of up-regulated iNOS, NO, MMP-2, MMP-9, ICAM-1, and VEGF induced by high glucose incubation. The expression of Nrf-2 and HO-1 by high glucose incubation was significantly inhibited by ropivacaine treatment.Ropivacaine might alleviate high glucose-induced brain microvascular endothelial injury by suppressing oxidative stress and down-regulating MMPs.
Collapse
|
84
|
Kloster A, Hyer MM, Dyer S, Salome-Sanchez C, Neigh GN. High Fructose Diet Induces Sex-specific Modifications in Synaptic Respiration and Affective-like Behaviors in Rats. Neuroscience 2021; 454:40-50. [PMID: 31881260 PMCID: PMC7311226 DOI: 10.1016/j.neuroscience.2019.11.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/16/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022]
Abstract
The consequences of excessive fructose intake extend beyond those of metabolic disorder to changes in emotional regulation and cognitive function. Long-term consumption of fructose, particularly common when begun in adolescence, is more likely to lead to deleterious consequences than acute consumption. These long-term consequences manifest differently in males and females, suggesting a sex-divergent mechanism by which fructose can impair physiology and neural function. The purpose of the current project was to investigate a possible sex-specific mechanism by which elevated fructose consumption drives behavioral deficits and accompanying metabolic symptoms - specifically, synaptic mitochondrial function. Male and female rats were fed a high fructose diet beginning at weaning and maintained into adulthood. Measures of physiological health across the diet consumption period indicated that females were more likely to gain weight than males while both displayed increased circulating blood glucose. As adults, females fed the high fructose diet displayed increased floating behavior in the forced swim task while males exhibited increased exploratory behavior in the open field. Synaptic respiration was altered by diet in both females and males but the effect was sex-divergent - fructose-fed females had increased synaptic respiration while males showed a decrease. When exposed to an acute energetic challenge, the pattern was reversed. Taken together, these data indicate that diet-induced alterations to neural function and physiology are sex-specific and highlight the need to consider sex as a biological variable when treating metabolic disease. Furthermore, these data suggest that synaptic mitochondrial function may contribute directly to the behavioral consequences of elevated fructose consumption.
Collapse
Affiliation(s)
- Alix Kloster
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Molly M Hyer
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Samya Dyer
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Charlie Salome-Sanchez
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Gretchen N Neigh
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, United States.
| |
Collapse
|
85
|
A Method to Isolate Pericytes From the Mouse Urinary Bladder for the Study of Diabetic Bladder Dysfunction. Int Neurourol J 2021; 24:332-340. [PMID: 33401354 PMCID: PMC7788335 DOI: 10.5213/inj.2040172.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/10/2020] [Indexed: 11/19/2022] Open
Abstract
Purpose Pericytes surround the endothelial cells in microvessels and play a distinct role in controlling vascular permeability and maturation. The loss of pericyte function is known to be associated with diabetic retinopathy and erectile dysfunction. This study aimed to establish a technique for the isolation of pericytes from the mouse urinary bladder and an in vitro model that mimics in vivo diabetic bladder dysfunction. Methods To avoid contamination with epithelial cells, the urothelial layer was meticulously removed from the underlying submucosa and detrusor muscle layer. The tissues were cut into multiple pieces, and the fragmented tissues were settled by gravity into collagen I-coated culture plates. The cells were cultured under normal-glucose (5 mmol/L) or high-glucose (30 mmol/L) conditions, and tube formation, cell proliferation, and TUNEL assays were performed. We also performed hydroethidine staining to measure superoxide anion production. Results We successfully isolated high-purity pericytes from the mouse urinary bladder. The cells were positively stained for platelet-derived growth factor receptor-β and NG2 and negatively stained for smooth muscle cell markers (desmin and myosin) and an endothelial cell marker (CD31). The number of tubes formed and the number of proliferating cells were significantly lower when the pericytes were exposed to high-glucose conditions compared with normal-glucose conditions. In addition, there were significant increases in superoxide anion production and the number of apoptotic cells when the pericytes were cultured under high-glucose conditions. Conclusions To the best of our knowledge, this is the first study to isolate and culture pericytes from the mouse urinary bladder. Our model would be a useful tool for screening the efficacy of therapeutic candidates targeting pericyte function in diabetic bladder dysfunction and exploring the functional role of specific targets at the cellular level.
Collapse
|
86
|
Mazumdar S, Marar T, Devarajan S, Patki J. Functional relevance of Gedunin as a bona fide ligand of NADPH oxidase 5 and ROS scavenger: An in silico and in vitro assessment in a hyperglycemic RBC model. Biochem Biophys Rep 2021; 25:100904. [PMID: 33490651 PMCID: PMC7809395 DOI: 10.1016/j.bbrep.2020.100904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/26/2020] [Accepted: 12/26/2020] [Indexed: 01/17/2023] Open
Abstract
Clinical evidence suggests that type 2 diabetes therapy can greatly benefit from the suppression of reactive oxygen species generation and the activation or restoration of cellular antioxidant mechanisms. In human, NADPH oxidase (NOX) is the main producer of reactive oxygen species (ROS) that supress the activity of endogenous antioxidant enzymes. In the present study, the antioxidant potential of Gedunin was studied. In silico findings reveal its strong binding affinity with NOX5 C terminal HSP90 binding site that disrupts NOX5 stability and its ability to generate ROS, leading to restoration antioxidant enzymes activities. It was found that Gedunin suppressed hyperglycaemia induced oxidative stress in an in vitro RBC model and markedly reversed glucose induced changes including haemoglobin glycosylation and lipid peroxidation. A significant restoration of activities of cellular antioxidant enzymes; superoxide dismutase, catalase and glutathione peroxidase in the presence of Gedunin revealed its ability to reduce oxidative stress. These results substantiated Gedunin as a bona fide inhibitor of human NOX5 and a ROS scavenging antioxidant with promising therapeutic attributes including its natural origin and inhibition of multiple diabetic targets. In silico study reveals Gedunin as a bonafied ligand of human NOX5. Gedunin binds at NADPH oxidase C terminal HSP90 binding site and inhibits ROS formation. Gedunin reverses hemoglobin glycosylation, lipid peroxidation and restores activity of cellular antioxidant enzymes. Gedunin exhibits antioxidant property with dual mode of action: as an ROS scavenger and NOX5 inhibitor.
Collapse
Affiliation(s)
- Suchismita Mazumdar
- School of Biotechnology and Bioinformatics, D.Y.Patil Deemed to Be University, CBD Belapur, Navi Mumbai, India
| | - Thankamani Marar
- School of Biotechnology and Bioinformatics, D.Y.Patil Deemed to Be University, CBD Belapur, Navi Mumbai, India
| | - Shine Devarajan
- School of Biotechnology and Bioinformatics, D.Y.Patil Deemed to Be University, CBD Belapur, Navi Mumbai, India
| | - Jyoti Patki
- School of Biotechnology and Bioinformatics, D.Y.Patil Deemed to Be University, CBD Belapur, Navi Mumbai, India
| |
Collapse
|
87
|
Al-Taie A, Sancar M, Izzettin FV. 8-Hydroxydeoxyguanosine: A valuable predictor of oxidative DNA damage in cancer and diabetes mellitus. Cancer 2021. [DOI: 10.1016/b978-0-12-819547-5.00017-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
88
|
Olagunju AI, Oluwajuyitan TD, Oyeleye SI. Effect of Plantain Bulb's Extract-Beverage Blend on Blood Glucose Levels, Antioxidant Status, and Carbohydrate Hydrolysing Enzymes in Streptozotocin-Induced Diabetic Rats. Prev Nutr Food Sci 2020; 25:362-374. [PMID: 33505930 PMCID: PMC7813600 DOI: 10.3746/pnf.2020.25.4.362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/13/2020] [Indexed: 11/13/2022] Open
Abstract
The pharmacological properties of various parts of plantain trees have directed its use in folkloric management of diabetes and other human ailments. However, little is known about plantain bulb extract (PBE) and their mechanisms of action. This study evaluated the effect of PBE-beverage blends (including 1% and 2 % cocoa powder) sweetened with honey on blood glucose levels, antioxidant status, and carbohydrate hydrolysing enzyme activities in streptozotocin (STZ)-induced diabetic rats. Animals were selected at random and distributed into 7 groups (n=7), as follows: normal control (NC), untreated diabetic rats, diabetic rats treated with acarbose (STZ-ACA), diabetic rats administered PBE (STZ- PBE), diabetic rats administered honey and PBE (STZ-HPBE), diabetic rats administered 1% cocoa powder-with HPBE blend (STZ-CHPBE-1), and diabetic rats administered 2% cocoa powder with HPBE blend (STZ-CHPBE-2). Compared with the controls, untreated diabetic rats exhibited increased blood glucose levels and hydrolysing enzyme activities, and significant decreases in the activities of antioxidant (catalase, superoxide dismutase, glutathione-S-transferase, and glutathione peroxidase) enzyme and non-enzymatic (glutathione) antioxidants. However, changes in activities were comparatively reversed in all rats administered plantain bulb formulations. CHPBE-2 was slightly more effective than CHPBE-1. Overall, both blends could serve as nutraceutical and/or functional drinks in the management of diabetes.
Collapse
Affiliation(s)
| | | | - Sunday Idowu Oyeleye
- Department of Biomedical Technology, Federal University of Technology, Akure 34002, Nigeria
| |
Collapse
|
89
|
Lim SM, Lee NK, Paik HD. Potential neuroprotective effects of heat-killed Lactococcus lactis KC24 using SH-SY5Y cells against oxidative stress induced by hydrogen peroxide. Food Sci Biotechnol 2020; 29:1735-1740. [PMID: 33282440 DOI: 10.1007/s10068-020-00830-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/13/2020] [Accepted: 09/17/2020] [Indexed: 12/21/2022] Open
Abstract
The present study was an investigation of the neuroprotective effects of probiotic bacteria in SH-SY5Y neuroblastoma cells experiencing oxidative stress. The bacterial strains were: commercial Lactobacillus rhamnosus GG; two isolated bacterial strains (Lactobacillus delbrueckii KU200170 and Lactobacillus plantarum KU200661); and probiotic Lactococcus lactis KC24. To evaluate the neuroprotective effects of the bacteria, a conditioned medium (CM) was prepared using HT-29 cells cultured with the heat-killed probiotic strains. Of the bacterial strains tested, the oxidatively stressed SH-SY5Y cells were most viable when cultured with L. lactis KC24-CM. L. lactis KC24-CM promoted the expression of brain-derived neurotropic factor (BDNF) in the HT-29 cells. It also significantly increased BDNF expression and reduced the apoptosis-related Bax/Bcl-2 ratio in the oxidatively stressed SH-SY5Y cells. Therefore, L. lactis KC24 is a potential psychobiotic for use in the functional food industry.
Collapse
Affiliation(s)
- Sung-Min Lim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Korea
| | - Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Korea
| |
Collapse
|
90
|
Younus H, Ahmad S, Alam MF. Correlation between the Activity of Aldehyde Dehydrogenase and Oxidative Stress Markers in the Saliva of Diabetic Patients. Protein Pept Lett 2020; 27:67-73. [PMID: 31577196 PMCID: PMC6978645 DOI: 10.2174/0929866526666191002115121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 07/26/2019] [Accepted: 07/27/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Reactive aldehydes are involved in diseases associated with oxidative stress, including diabetes. Human salivary aldehyde dehydrogenase (hsALDH) presumably protects us from many toxic ingredient/contaminant aldehydes present in food. OBJECTIVE This study aimed to probe the activity of hsALDH in patients with diabetes and than to correlate it with various oxidative stress markers in the saliva. METHODS The saliva samples were collected from total 161 diabetic patients from Rajiv Gandhi Centre for Diabetes, Jawaharlal Nehru Medical College (JNMC), AMU, Aligarh, (India). HsALDH activity and markers of oxidative stress [8-hydroxydeoxyguanosine (8-OHDG), malondialdehyde (MDA) and advanced glycation end products (AGEs)] were measured in the saliva samples. RESULTS Patients with early stage of diabetes had higher activity of hsALDH when compared with the control group. As the history of diabetes increases, the activity of the enzyme decreases and also higher oxidative stress markers (8-OHDG, MDA and AGEs) are detected in the saliva samples. Negative significant correlation between hsALDH activity and oxidative stress markers were observed (p <0.0001). CONCLUSION The activity of hsALDH increases in early stages of diabetes most probably to counter the increased oxidative stress associated with diabetes. However, in later stages of diabetes, the activity of the enzyme decreases, possibly due to its inactivation resulting from glycation.
Collapse
Affiliation(s)
- Hina Younus
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India,Address correspondence to this author at the Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India; Tel: +91 571 2720388; Fax: +91 571 2721776; E-mails: ;
| | - Sumbul Ahmad
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Md. Fazle Alam
- Enzymology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
91
|
Kim SH, Park TS, Jin HY. Metformin Preserves Peripheral Nerve Damage with Comparable Effects to Alpha Lipoic Acid in Streptozotocin/High-Fat Diet Induced Diabetic Rats. Diabetes Metab J 2020; 44:842-853. [PMID: 32602278 PMCID: PMC7801759 DOI: 10.4093/dmj.2019.0190] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 11/28/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Metformin is widely marketed medication for the treatment of diabetes, but its pharmacological effect on diabetic peripheral neuropathy remains unclear. In this study, the effect of metformin on peripheral nerves in diabetic rats was investigated using diverse neuronal parameters of nerve fibers. METHODS Rats were assigned to one of four groups (n=7 to 10 per group): normal, diabetes mellitus (DM), DM+metformin (100 mg/kg), and DM+alpha lipoic acid (ALA, 100 mg/kg). DM was induced by streptozotocin/high-fat diet (STZ/HFD). After 12 weeks, the sensory thresholds to mechanical and heat stimuli were assessed. Repeated sensory tests, immunofluorescence microscopic comparison of peripheral nerves, and biochemical blood analysis were performed after 24 weeks. RESULTS Both DM+metformin and DM+ALA groups showed similar trends to diverse sensory tests at 24 weeks compared to DM group although the degree of change were different according to the stimulated senses. There was no significant difference in the comparison of the intraepidermal nerve fiber density (IENFD) of peripheral nerves between the DM+metformin and DM+ALA groups (11.83±0.07 fibers/mm vs. 12.37±1.82 fibers/mm, respectively). Both groups showed preserved IENFD significantly compared with DM group (8.46±1.98 fibers/mm, P<0.05). Sciatic nerve morphology of the experimental animals showed a similar trend to the IENFD, with respect to axonal diameter, myelin sheath thickness, and myelinated fiber diameter. CONCLUSION Metformin has beneficial pharmacological effects on the preservation of peripheral nerves in diabetic rats and its effects are comparable to those of ALA.
Collapse
Affiliation(s)
- Sun Hee Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Tae Sun Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Heung Yong Jin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| |
Collapse
|
92
|
Chemlal H, Bensalem S, Bendiab K, Azzar M, Benberkane A, Lalaoui K, Iguer-Ouada M, Bournine L. High HbA 1c levels affect motility parameters and overexpress oxidative stress of human mature spermatozoa. Andrologia 2020; 53:e13902. [PMID: 33167064 DOI: 10.1111/and.13902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/27/2020] [Accepted: 10/16/2020] [Indexed: 11/26/2022] Open
Abstract
The aim of this study is to investigate, by a validated in vitro model, the effect of diabetic plasma on ejaculated human spermatozoa. Plasma of 51 male diabetic patients (mean age 62.28 ± 9.28 years) was selected according to their HbA1c level: low HBA1c ≤ 5% (31 mmol/mol), moderate HBA1c 6%-8% (42-64 mmol/mol) and high HBA1c ≥ 10% (86 mmol/mol). The plasma was tested on eighteen normal semen samples by analysing gametes motility using a computer Sperm Class Analyzer® and their corresponding oxidative stress (OS) status using thiobarbituric acid-reactive substances assay. The results indicated that diabetic plasma affected all sperm motility parameters with high HbA1c showing the most important deleterious effects. Low gametes' straight-line velocity was observed in high HbA1c level, mainly after 20 min of co-incubation (8.78 ± 0.47 µm/s). Also, the highest lipid peroxidation (nmoles MDA/108 SPZ) was observed in high HbA1c values (0.92 ± 0.09), higher than those in spermatozoa treated with H2 O2 (0.85 ± 0.04). Conclusively, a direct impact of diabetic plasma on spermatozoa is revealed with overexpression of OS as the underlying mechanism. These findings suggested that it is strongly recommended to control clinically the glycaemic level and OS in diabetic patients for the maintenance of male fertility.
Collapse
Affiliation(s)
- Hanane Chemlal
- Laboratoire de Gestion et Valorisation des Ressources Naturelles et Assurances Qualités (LGVRNAQ), Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre, Université de Bouira, 10000 Bouira, Algérie
| | - Sihem Bensalem
- Laboratoire de Biotechnologie Végétales et Ethnobotanique (LBVEB), Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algérie
| | - Keltouma Bendiab
- Laboratoire Associé en Ecosystèmes Marins et Aquacoles (LAEMA), Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algérie
| | - Meriem Azzar
- Laboratoire Associé en Ecosystèmes Marins et Aquacoles (LAEMA), Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algérie
| | - Amine Benberkane
- Laboratoire Associé en Ecosystèmes Marins et Aquacoles (LAEMA), Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algérie
| | - Kamel Lalaoui
- Laboratoire d'Analyses Médicales, Route de l'Université Targa Ouzemour, 06000 Bejaia, Algérie
| | - Mokrane Iguer-Ouada
- Laboratoire Associé en Ecosystèmes Marins et Aquacoles (LAEMA), Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algérie
| | - Lamine Bournine
- Laboratoire de Biotechnologie Végétales et Ethnobotanique (LBVEB), Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algérie.,Département des Sciences Biologiques, Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre, Université de Bouira, 10000 Bouira, Algérie
| |
Collapse
|
93
|
Kim JE, Kim TG, Lee YH, Yi HK. Phelligridin D maintains the function of periodontal ligament cells through autophagy in glucose-induced oxidative stress. J Periodontal Implant Sci 2020; 50:291-302. [PMID: 33124207 PMCID: PMC7606896 DOI: 10.5051/jpis.1903560178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 05/19/2020] [Accepted: 06/24/2020] [Indexed: 11/09/2022] Open
Abstract
Purpose The objective of this study was to investigate whether phelligridin D could reduce glucose-induced oxidative stress, attenuate the resulting inflammatory response, and restore the function of human periodontal ligament cells (HPDLCs). Methods Primary HPDLCs were isolated from healthy human teeth and cultured. To investigate the effect of phelligridin D on glucose-induced oxidative stress, HPDLCs were treated with phelligridin D, various concentrations of glucose, and glucose oxidase. Glucose-induced oxidative stress, inflammatory molecules, osteoblast differentiation, and mineralization of the HPDLCs were measured by hydrogen peroxide (H2O2) generation, cellular viability, alkaline phosphatase (ALP) activity, alizarin red staining, and western blot analyses. Results Glucose-induced oxidative stress led to increased production of H2O2, with negative impacts on cellular viability, ALP activity, and calcium deposition in HPDLCs. Furthermore, HPDLCs under glucose-induced oxidative stress showed induction of inflammatory molecules (intercellular adhesion molecule-1, vascular cell adhesion protein-1, tumor necrosis factor-alpha, interleukin-1-beta) and disturbances of osteogenic differentiation (bone morphogenetic protein-2, and -7, runt-related transcription factor-2), cementogenesis (cementum protein-1), and autophagy-related molecules (autophagy related 5, light chain 3 I/II, beclin-1). Phelligridin D restored all these molecules and maintained the function of HPDLCs even under glucose-induced oxidative stress. Conclusions This study suggests that phelligridin D reduces the inflammation that results from glucose-induced oxidative stress and restores the function of HPDLCs (e.g., osteoblast differentiation) by upregulating autophagy.
Collapse
Affiliation(s)
- Ji Eun Kim
- Department of Oral Biochemistry, Institute of Oral Bioscience, Jeonbuk National University School of Dentistry, Jeonju, Korea
| | - Tae Gun Kim
- Department of Oral Biochemistry, Institute of Oral Bioscience, Jeonbuk National University School of Dentistry, Jeonju, Korea
| | - Young Hee Lee
- Department of Oral Biochemistry, Institute of Oral Bioscience, Jeonbuk National University School of Dentistry, Jeonju, Korea
| | - Ho Keun Yi
- Department of Oral Biochemistry, Institute of Oral Bioscience, Jeonbuk National University School of Dentistry, Jeonju, Korea.
| |
Collapse
|
94
|
Lee MJ, Park SJ, Choi YJ, Lee MA, Yun YR, Min SG, Seo HY, Her JY, Park SH. Evaluation of onion juices quality following heat-treatment and their application as a sugar substitute in Kimchi. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2020; 57:4103-4110. [PMID: 33071331 DOI: 10.1007/s13197-020-04446-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/22/2020] [Accepted: 04/08/2020] [Indexed: 01/18/2023]
Abstract
This study was conducted to evaluate the quality of onion juices that had been heat-treated for different times as well as their use as a table sugar substitute in Kimchi. The onions were steamed at 100 ∘C for 30 min and boiled at 90 ∘C for 30, 60, and 120 min. The highest cycloalliin (0.76 mM), free-sugar (sucrose 1.66 g/L, glucose 8.62 g/L, and fructose 7.64 g/L), and malic acid (0.82 g/L) contents were observed in onion boiled at 90 ∘C for 120 min. The possibility of using heat-treated onion juices as an alternative to table sugar in Kimchi was evaluated by comparing the lactic acid bacteria count, pH, acidity, organic acid, and free-sugar in these juices with those in Kimchi prepared using table sugar (control). The total viable bacteria and lactic acid bacteria showed similar growth patterns as in the control. The average pH reduction and increase in titratable acidity (%) in all treated Kimchi samples during fermentation for 4 weeks were 1.18 ± 0.05 and 0.81 ± 0.06, respectively. Kimchi with onion juice heat-treated for 120 min (K120) had the most similar lactic acid and acetic acid contents to that in the control after fermentation for 4 weeks. The highest mannitol level after fermentation for 4 weeks was detected in K120, which showed better sensory qualities compared to the control.
Collapse
Affiliation(s)
- Min Jung Lee
- World Institute of Kimchi, Gwangju, 61755 Republic of Korea
| | - Sung Jin Park
- World Institute of Kimchi, Gwangju, 61755 Republic of Korea
| | - Yun-Jeong Choi
- World Institute of Kimchi, Gwangju, 61755 Republic of Korea
| | - Mi-Ai Lee
- World Institute of Kimchi, Gwangju, 61755 Republic of Korea
| | - Ye-Rang Yun
- World Institute of Kimchi, Gwangju, 61755 Republic of Korea
| | - Sung Gi Min
- World Institute of Kimchi, Gwangju, 61755 Republic of Korea
| | - Hye-Young Seo
- World Institute of Kimchi, Gwangju, 61755 Republic of Korea
| | - Jae-Young Her
- Department of Food Engineering, Mokpo National University, Muangun, 1666 Jeollanamdo Republic of Korea
| | - Sung Hee Park
- World Institute of Kimchi, Gwangju, 61755 Republic of Korea
| |
Collapse
|
95
|
Chen Z, Liang Q, Wu Y, Gao Z, Kobayashi S, Patel J, Li C, Cai F, Zhang Y, Liang C, Chiba H, Hui SP. Comprehensive lipidomic profiling in serum and multiple tissues from a mouse model of diabetes. Metabolomics 2020; 16:115. [PMID: 33067714 DOI: 10.1007/s11306-020-01732-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 09/28/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Diabetes mellitus is a serious metabolic disorder causing multiple organ damage in human. However, the lipidomic profiles in different organs and their associations are rarely studied in either diabetic patients or animals. OBJECTIVES To evaluate and compare the characteristics of lipid species in serum and multiple tissues in a diabetic mouse model. METHODS Semi-quantitative profiling analyses of intact and oxidized lipids were performed in serum and multiple tissues from a diabetic mouse model fed a high fat diet and treated with streptozotocin by using LC/HRMS and MS/MS. The total content of each lipid class, and the tissue-specific lipid species in all tissue samples were determined and compared by multivariate analyses. RESULTS The diabetic mouse model displayed characteristic differences in serum and multiple organs: the brain and heart showed the largest reduction in cardiolipin, while the kidney had more alterations in triacylglycerol. Interestingly, the lipidomic differences also existed between different regions of the same organ: cardiolipin species with highly polyunsaturated fatty acyls decreased only in atrium but not in ventricle, while renal cortex showed longer fatty acyl chains for both increased and decreased triacylglycerol species than renal medulla. Importantly, diabetes caused an accumulation of lipid hydroperoxides, suggesting that oxidative stress was induced in all organs except for the brain during the development of diabetes. CONCLUSIONS These findings provided novel insight into the organ-specific relationship between diabetes and lipid metabolism, which might be useful for evaluating not only diabetic tissue injury but also the effectiveness of diabetic treatments.
Collapse
Affiliation(s)
- Zhen Chen
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, 060-0812, Japan
| | - Qiangrong Liang
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, 11548, USA
| | - Yue Wu
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, 060-0812, Japan
| | - Zijun Gao
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, 060-0812, Japan
| | - Satoru Kobayashi
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, 11548, USA
| | - Joy Patel
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, 11548, USA
| | - Cairong Li
- Clinical Medical College, Hubei University of Science and Technology, 437100, Xianning, China
| | - Fei Cai
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, 437100, Xianning, China
| | - Youhua Zhang
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, 11548, USA
| | - Chongsheng Liang
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, 060-0812, Japan
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Nakanuma Nishi-4-2-1-15, Higashi, Sapporo, 007-0894, Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, 060-0812, Japan.
| |
Collapse
|
96
|
Choi BR, Kim HJ, Lee YJ, Ku SK. Anti-Diabetic Obesity Effects of Wasabia Japonica Matsum Leaf Extract on 45% Kcal High-Fat Diet-Fed Mice. Nutrients 2020; 12:nu12092837. [PMID: 32947952 PMCID: PMC7551095 DOI: 10.3390/nu12092837] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022] Open
Abstract
The present study examined the effects of Wasabi leaf (WL) on 45% Kcal high-fat diet (HFD)-fed mild diabetic obese mice. In particular, the hepatoprotective (i.e., liver weight, histopathology of liver, serum aspartate aminotransferase, alanine aminotransferase, and gamma-glutamyltransferase) effects of 12 weeks of continuous oral administration of 250 mg/kg metformin, and 200, 100, or 50 mg/kg WL were investigated. In addition, the hypolipidemic (i.e., serum triglyceride, total cholesterol, high-density lipoprotein-cholesterol, and low-density lipoprotein levels), hypoglycemic (i.e., glycated hemoglobin, blood glucose and insulin levels, pancreatic weight, and immunohistochemical-histopathological analysis of the pancreas), and anti-obesity effects (i.e., body weight, mean food consumption, total and abdominal body fat mass, periovarian fat weight, and histopathology of the periovarian and abdominal wall adipocytes) were monitored. The liver and general antioxidant defense systems were also assessed by lipid metabolism-related gene expression. All diabetes manifestations and related complications, including obesity and non-alcoholic fatty liver disease (NAFLD), were dose-dependently reduced after 84 days of oral treatment with metformin or each of the three dosages of WL. In particular, 50 mg/kg WL showed effective suppression effects against HFD-induced diabetes and related complications of obesity, NAFLD, and hyperlipidemia, comparable to the effects of metformin.
Collapse
Affiliation(s)
- Beom-Rak Choi
- Research Institute, Nutracore Co., Ltd., Gwanggyo SK Viewlake A-3206, Beobjo-Ro 25, Yeongtong-Gu, Suwon, Gyeonggi-Do 16514, Korea;
| | - Hyun-Jee Kim
- Department of Anesthesiology and Pain Medicine, School of Medicine, Kyungpook National University, 130 Dongdeok-ro, Jung-gu, Daegu 41944, Korea;
| | - Young-Joon Lee
- Department of Preventive Medicine, College of Korean Medicine, Deagu Haany University, 1, Haanydaero, Gyeongsan, Gyeongsangbuk-Do 38610, Korea
- Correspondence: (Y.-J.L.); (S.-K.K.); Tel.: +82-53-819-1296 (Y.-J.L.); +82-53-819-1549 (S.-K.K.)
| | - Sae-Kwang Ku
- Department of Histology and Anatomy, College of Korean Medicine, Daegu Haany University, 1, Haanydaero, Gyeongsan, Gyeongsangbuk-Do 38610, Korea
- Correspondence: (Y.-J.L.); (S.-K.K.); Tel.: +82-53-819-1296 (Y.-J.L.); +82-53-819-1549 (S.-K.K.)
| |
Collapse
|
97
|
Sharif H, Akash MSH, Rehman K, Irshad K, Imran I. Pathophysiology of atherosclerosis: Association of risk factors and treatment strategies using plant-based bioactive compounds. J Food Biochem 2020; 44:e13449. [PMID: 32851658 DOI: 10.1111/jfbc.13449] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/15/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023]
Abstract
Under physiological conditions, endothelial cells act as protective barrier which prevents direct contact of blood with circulating factors via production of tissue plasminogen activator. Risk factors of metabolic disorders are responsible to induce endothelial dysfunction and may consequently lead to prognosis of atherosclerosis. This article summarizes the process of atherosclerosis which involves number of sequences including formation and interaction of AGE-RAGE, activation of polyol pathway, protein kinase C, and hexosamine-mediated pathway. All these mechanisms can lead to the development of oxidative stress which may further aggravate condition. Different pharmacological interventions are being used to treat atherosclerosis, however, these might be associated with mild to severe side effects. Therefore, plant-based bioactive compounds having potential to combat and prevent atherosclerosis in diabetic patients are attaining recent focus. By understanding process of development and mechanisms involved in atherosclerotic plaque formation, these bioactive compounds can be better option for future therapeutic interventions for atherosclerosis treatment. PRACTICAL APPLICATIONS: Atherosclerosis is one of major underlying disorders of cardiovascular diseases which occur through multiple mechanisms and is associated with metabolic disorders. Conventional therapeutic interventions are not only used to treat atherosclerosis, but are also commonly associated with mild to severe side effects. Therefore, nowadays, bioactive compounds having potential to combat and prevent atherosclerosis in diabetic patients are preferred. By understanding mechanisms involved in atherosclerotic plaque formation, bioactive compounds can be better understood for treatment of atherosclerosis. In this manuscript, we have focused on treatment strategies of atherosclerosis using bioactive compounds notably alkaloids and flavonoids having diverse pharmacological and therapeutic potentials with special focus on the mechanism of action of these bioactive compounds suitable for treatment of atherosclerosis. This manuscript will provide the scientific insights of bioactive compounds to researchers who are working in the area of drug discovery and development to control pathogenesis and development of atherosclerosis and its associated cardiometabolic disorders.
Collapse
Affiliation(s)
- Hina Sharif
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | | | - Kanwal Rehman
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | - Kanwal Irshad
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | - Imran Imran
- Department of Pharmacology, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
98
|
Özerkan D, Özsoy N, Cebesoy S, Özer Ç. Distribution of spleen connective tissue fibers in diabetic and vitamin C treated diabetic rats. Biotech Histochem 2020; 96:347-353. [PMID: 32696689 DOI: 10.1080/10520295.2020.1795718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
We investigated the distribution of connective tissue fibers in diabetic and vitamin C treated diabetic rat spleen. Rats were divided into three groups: group A, control; group B, diabetic; group C, vitamin C treated diabetic. Diabetes was induced by streptozotocin. Vitamin C was administered intragastrically for 21 days. Spleen tissues were examined by light microscopy after staining with Masson's trichrome, Gomori silver impregnation and van Gieson. In group B, we found accumulation of collagen fibers in the trabeculae, in the capsule and around the central artery and splenic sinusoids. Splenic cord thickening due to fibrosis was observed. Reticular fibers accumulated principally in the white and red pulps of the spleen and focal reticular fiber thickening was observed in the dense fiber areas. Partial elastic fiber rupture was observed among the fibers of the elastic lamina of the arteries in the hilum. By contrast, the distribution of collagen fibers in group C was similar to group A. Collagen fiber accumulation was decreased in group C compared to group B. We found little reticular fiber thickening in group C and elastic fibers maintained their integrity and were better organized than in group B. Our findings suggest that appropriate doses of vitamin C may exert beneficial effects on the structure of the connective tissue fibers in the diabetic spleen.
Collapse
Affiliation(s)
- Dilşad Özerkan
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, İstinye University, İstanbul, Turkey
| | - Nesrin Özsoy
- Department of Biology, Faculty of Science, Ankara University, Ankara, Turkey
| | - Suna Cebesoy
- Department of Biology, Faculty of Science, Ankara University, Ankara, Turkey
| | - Çiğdem Özer
- Department of Physiology, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
99
|
The molecular mechanisms associated with the physiological responses to inflammation and oxidative stress in cardiovascular diseases. Biophys Rev 2020; 12:947-968. [PMID: 32691301 PMCID: PMC7429613 DOI: 10.1007/s12551-020-00742-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
The complex physiological signal transduction networks that respond to the dual challenges of inflammatory and oxidative stress are major factors that promote the development of cardiovascular pathologies. These signaling networks contribute to the development of age-related diseases, suggesting crosstalk between the development of aging and cardiovascular disease. Inhibition and/or attenuation of these signaling networks also delays the onset of disease. Therefore, a concept of targeting the signaling networks that are involved in inflammation and oxidative stress may represent a novel treatment paradigm for many types of heart disease. In this review, we discuss the molecular mechanisms associated with the physiological responses to inflammation and oxidative stress especially in heart failure with preserved ejection fraction and emphasize the nature of the crosstalk of these signaling processes as well as possible therapeutic implications for cardiovascular medicine.
Collapse
|
100
|
Iannantuoni F, M. de Marañon A, Abad-Jiménez Z, Canet F, Díaz-Pozo P, López-Domènech S, Morillas C, Rocha M, Víctor VM. Mitochondrial Alterations and Enhanced Human Leukocyte/Endothelial Cell Interactions in Type 1 Diabetes. J Clin Med 2020; 9:jcm9072155. [PMID: 32650465 PMCID: PMC7408780 DOI: 10.3390/jcm9072155] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/25/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022] Open
Abstract
Type 1 diabetes has been associated with oxidative stress. This study evaluates the rates of oxidative stress, mitochondrial function, leukocyte–endothelium interactions and adhesion molecules in type 1 diabetic patients. The study population consisted of 52 diabetic patients and 46 body-composition and age-matched controls. We assessed anthropometric and metabolic parameters, oxidative stress and mitochondrial function by evaluating reactive oxygen species (ROS) production, mitochondrial ROS production, mitochondrial membrane potential and superoxide dismutase (SOD) and catalase (CAT) expression in polymorphonuclear leukocytes from type 1 diabetic patients. In addition, we evaluated interactions between leukocytes and human umbilical vein endothelial cells (HUVEC), and serum expression of adhesion molecules (P-selectin, VCAM-1 and ICAM-1), proinflammatory cytokines (IL-6 and TNFα) and myeloperoxidase (MPO). HbA1C and glucose levels were higher in diabetic patients than in control subjects, as expected. Mitochondrial function was altered and leukocyte–endothelium interactions were enhanced in diabetic patients, which was evident in the increase in total and mitochondrial ROS production, higher mitochondrial membrane potential, enhanced leukocyte rolling and adhesion, and decreased rolling velocity. Furthermore, we observed an increase in levels of adhesion molecules P-selectin, VCAM-1, and ICAM-1 in these subjects. In addition, type 1 diabetic patients exhibited an increase in proinflammatory mediators TNFα and MPO, and a decreased expression of SOD. The enhancement of leukocyte–endothelium interactions and proinflammatory markers correlated with glucose and HbA1Clevels. Mitochondrial alteration, oxidative stress, and enhanced leukocyte–endothelium interactions are features of type 1 diabetes and may be related to cardiovascular implications.
Collapse
Affiliation(s)
- Francesca Iannantuoni
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (F.I.); (A.M.d.M.); (Z.A.-J.); (F.C.); (P.D.-P.); (S.L.-D.); (C.M.)
| | - Aranzazu M. de Marañon
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (F.I.); (A.M.d.M.); (Z.A.-J.); (F.C.); (P.D.-P.); (S.L.-D.); (C.M.)
| | - Zaida Abad-Jiménez
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (F.I.); (A.M.d.M.); (Z.A.-J.); (F.C.); (P.D.-P.); (S.L.-D.); (C.M.)
| | - Francisco Canet
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (F.I.); (A.M.d.M.); (Z.A.-J.); (F.C.); (P.D.-P.); (S.L.-D.); (C.M.)
| | - Pedro Díaz-Pozo
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (F.I.); (A.M.d.M.); (Z.A.-J.); (F.C.); (P.D.-P.); (S.L.-D.); (C.M.)
| | - Sandra López-Domènech
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (F.I.); (A.M.d.M.); (Z.A.-J.); (F.C.); (P.D.-P.); (S.L.-D.); (C.M.)
| | - Carlos Morillas
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (F.I.); (A.M.d.M.); (Z.A.-J.); (F.C.); (P.D.-P.); (S.L.-D.); (C.M.)
| | - Milagros Rocha
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (F.I.); (A.M.d.M.); (Z.A.-J.); (F.C.); (P.D.-P.); (S.L.-D.); (C.M.)
- CIBERehd—Department of Pharmacology and Physiology, University of Valencia, 46010 Valencia, Spain
- Correspondence: (M.R.); (V.M.V.)
| | - Víctor M. Víctor
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), 46017 Valencia, Spain; (F.I.); (A.M.d.M.); (Z.A.-J.); (F.C.); (P.D.-P.); (S.L.-D.); (C.M.)
- CIBERehd—Department of Pharmacology and Physiology, University of Valencia, 46010 Valencia, Spain
- Department of Physiology, University of Valencia, 46010 Valencia, Spain
- Correspondence: (M.R.); (V.M.V.)
| |
Collapse
|