51
|
Visualization of ischemic stroke-related changes on 18F-THK-5351 positron emission tomography. EJNMMI Res 2018; 8:62. [PMID: 30014313 PMCID: PMC6047954 DOI: 10.1186/s13550-018-0417-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/27/2018] [Indexed: 12/11/2022] Open
Abstract
Background The 18F-THK-5351 radiotracer has been used to detect the in vivo tau protein distribution in patients with tauopathy, such as Alzheimer’s disease and corticobasal syndrome. In addition, 18F-THK-5351 can also monitor neuroinflammatory process due to high affinity to astrogliosis. We aimed to explore 18F-THK-5351 distribution patterns and characteristics in patients with recent ischemic stroke. Results Fifteen patients received 18F-THK-5351 positron emission tomography (PET) and diffusion tensor imaging (DTI) approximately 3 months after ischemic stroke. A region of interest (ROI) was placed in the peri-ischemic area and was mirrored on the contralateral side as the control, and a proportional value was derived from the ratio of the peri-ischemic ROI value over the mirrored ROI value. Increased 18F-THK-5351 retention was observed in the areas around and remote from the stroke location. The proportional 18F-THK-5351 values were negatively correlated with the proportional fractional anisotropy values (r = − 0.39, P = 0.04). Conclusion 18F-THK-5351 PET imaging provides a potential tool for in vivo visualization of the widespread ischemia-related changes associated with a microstructural disruption in recent ischemic stroke patients. Electronic supplementary material The online version of this article (10.1186/s13550-018-0417-1) contains supplementary material, which is available to authorized users.
Collapse
|
52
|
Smith NM, Giacci MK, Gough A, Bailey C, McGonigle T, Black AMB, Clarke TO, Bartlett CA, Swaminathan Iyer K, Dunlop SA, Fitzgerald M. Inflammation and blood-brain barrier breach remote from the primary injury following neurotrauma. J Neuroinflammation 2018; 15:201. [PMID: 29981582 PMCID: PMC6035802 DOI: 10.1186/s12974-018-1227-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 06/15/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Following injury to the central nervous system, increased microglia, secretion of pro- and anti-inflammatory cytokines, and altered blood-brain barrier permeability, a hallmark of degeneration, are observed at and immediately adjacent to the injury site. However, few studies investigate how regions remote from the primary injury could also suffer from inflammation and secondary degeneration. METHODS Adult female Piebald-Viral-Glaxo (PVG) rats underwent partial transection of the right optic nerve, with normal, age-matched, unoperated animals as controls. Perfusion-fixed brains and right optic nerves were harvested for immunohistochemical assessment of inflammatory markers and blood-brain barrier integrity; fresh-frozen brains were used for multiplex cytokine analysis. RESULTS Immediately ventral to the optic nerve injury, immunointensity of both the pro-inflammatory biomarker inducible nitric oxide synthase (iNOS) and the anti-inflammatory biomarker arginase-1 (Arg1) increased at 7 days post-injury, with colocalization of iNOS and Arg1 immunoreactivity within individual cells. CD11b+ and CD45+ cells were increased 7 days post-injury, with altered BBB permeability still evident at this time. In the lower and middle optic tract and superior colliculus, IBA1+ resident microglia were first increased at 3 days; ED1+ and CD11b+ cells were first increased in the middle and upper tract and superior colliculus 7 days post-injury. Increased fibrinogen immunoreactivity indicative of altered BBB permeability was first observed in the contralateral upper tract at 3 days and middle tract at 7 days post-injury. Multiplex cytokine analysis of brain homogenates indicated significant increases in the pro-inflammatory cytokines, IL-2 and TNFα, and anti-inflammatory cytokine IL-10 1 day post-injury, decreasing to control levels at 3 days for TNFα and 7 days for IL-2. IL-10 was significantly elevated at 1 and 7 days post-injury with a dip at 3 days post-injury. CONCLUSIONS Partial injury to the optic nerve induces a complex remote inflammatory response, characterized by rapidly increased pro- and anti-inflammatory cytokines in brain homogenates, increased numbers of IBA1+ cells throughout the visual pathways, and increased CD11b+ and ED1+ inflammatory cells, particularly towards the synaptic terminals. BBB permeability can increase prior to inflammatory cell infiltration, dependent on the brain region.
Collapse
Affiliation(s)
- Nicole M Smith
- School of Molecular Sciences, The University of Western Australia, Stirling Hwy, Perth, Western Australia, 6009, Australia
| | - Marcus K Giacci
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Stirling Hwy, Perth, Western Australia, 6009, Australia
| | - Alexander Gough
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Stirling Hwy, Perth, Western Australia, 6009, Australia
| | - Charlotte Bailey
- School of Molecular Sciences, The University of Western Australia, Stirling Hwy, Perth, Western Australia, 6009, Australia
| | - Terence McGonigle
- Curtin Health Innovation Research Institute, Curtin University, Verdun St, Nedlands, Western Australia, Australia
| | - Anna M B Black
- Curtin Health Innovation Research Institute, Curtin University, Verdun St, Nedlands, Western Australia, Australia
| | - Thomas O Clarke
- Curtin Health Innovation Research Institute, Curtin University, Verdun St, Nedlands, Western Australia, Australia
| | - Carole A Bartlett
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Stirling Hwy, Perth, Western Australia, 6009, Australia.,Curtin Health Innovation Research Institute, Curtin University, Verdun St, Nedlands, Western Australia, Australia
| | - K Swaminathan Iyer
- School of Molecular Sciences, The University of Western Australia, Stirling Hwy, Perth, Western Australia, 6009, Australia
| | - Sarah A Dunlop
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Stirling Hwy, Perth, Western Australia, 6009, Australia
| | - Melinda Fitzgerald
- Experimental and Regenerative Neurosciences, School of Biological Sciences, The University of Western Australia, Stirling Hwy, Perth, Western Australia, 6009, Australia. .,Curtin Health Innovation Research Institute, Curtin University, Verdun St, Nedlands, Western Australia, Australia. .,Perron Institute for Neurological and Translational Science, Sarich Neuroscience Research Institute, Verdun St, Nedlands, Western Australia, 6009, Australia.
| |
Collapse
|
53
|
Kulesh A, Drobakha V, Kuklina E, Nekrasova I, Shestakov V. Cytokine Response, Tract-Specific Fractional Anisotropy, and Brain Morphometry in Post-Stroke Cognitive Impairment. J Stroke Cerebrovasc Dis 2018; 27:1752-1759. [PMID: 29610037 DOI: 10.1016/j.jstrokecerebrovasdis.2018.02.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 01/04/2018] [Accepted: 02/03/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Post-stroke cognitive impairment is a clinically heterogeneous condition and its types have a different course and prognosis. The aim of the present study is to address the roles of inflammation, white matter pathology, and brain atrophy in different neuropsychological types of cognitive impairment in the acute period of ischemic stroke. METHODS In 92 patients, we performed an assessment of the cognitive status and measured concentrations of cytokines (interleukin [IL]-1β, IL-6, tumor necrosis factor-alpha, IL-10) in liquor and serum, as well as a number of magnetic resonance imaging (MRI) morphometric parameters and fractional anisotropy. The control group consisted of 14 individuals without cerebrovascular disease. RESULTS All patients had a higher level of IL-10 in serum than the control group. Patients with dysexecutive cognitive impairment had a higher concentration of IL-1β and IL-10 in liquor, IL-6 level in serum, and a lower fractional anisotropy of the ipsilateral thalamus than patients with normal cognition. Patients with mixed cognitive impairment were characterized by a lower fractional anisotropy of contralateral fronto-occipital fasciculus, compared with patients with dysexecutive cognitive impairment. Patients with both dysexecutive and mixed cognitive deficit had a wide area of leukoaraiosis and a reduced fractional anisotropy of the contralateral cingulum, compared with patients without cognitive impairment. Also, we found numerous correlations between cognitive status and levels of cytokines, MRI morphometric parameters, and fractional anisotropy of certain regions of the brain. CONCLUSIONS The concentrations of cytokines in serum and cerebrospinal fluid studied in combination with MRI morphometric parameters and fractional anisotropy appear to be informative biomarkers of clinical types of post-stroke cognitive impairment.
Collapse
Affiliation(s)
- Aleksey Kulesh
- Perm State Medical University named after academician E.A. Wagner, Department of Neurology, Perm, Russian Federation.
| | - Viktor Drobakha
- Perm State Medical University named after academician E.A. Wagner, Department of Neurology, Perm, Russian Federation
| | - Elena Kuklina
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Laboratory of Immunomodulation, Perm, Russian Federation
| | - Irina Nekrasova
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Laboratory of Immunomodulation, Perm, Russian Federation
| | - Vladimir Shestakov
- Perm State Medical University named after academician E.A. Wagner, Department of Neurology, Perm, Russian Federation
| |
Collapse
|
54
|
Amtul Z, Hill DJ, Arany EJ, Cechetto DF. Altered Insulin/Insulin-Like Growth Factor Signaling in a Comorbid Rat model of Ischemia and β-Amyloid Toxicity. Sci Rep 2018; 8:5136. [PMID: 29572520 PMCID: PMC5865153 DOI: 10.1038/s41598-018-22985-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/06/2018] [Indexed: 02/06/2023] Open
Abstract
Ischemic stroke and diabetes are vascular risk factors for the development of impaired memory such as dementia and/or Alzheimer's disease. Clinical studies have demonstrated that minor striatal ischemic lesions in combination with β-amyloid (Aβ) load are critical in generating cognitive deficits. These cognitive deficits are likely to be associated with impaired insulin signaling. In this study, we examined the histological presence of insulin-like growth factor-I (IGF-1) and insulin receptor substrate (IRS-1) in anatomically distinct brain circuits compared with morphological brain damage in a co-morbid rat model of striatal ischemia (ET1) and Aβ toxicity. The results demonstrated a rapid increase in the presence of IGF-1 and IRS-1 immunoreactive cells in Aβ + ET1 rats, mainly in the ipsilateral striatum and distant regions with synaptic links to the striatal lesion. These regions included subcortical white matter, motor cortex, thalamus, dentate gyrus, septohippocampal nucleus, periventricular region and horizontal diagonal band of Broca in the basal forebrain. The alteration in IGF-1 and IRS-1 presence induced by ET1 or Aβ rats alone was not severe enough to affect the entire brain circuit. Understanding the causal or etiologic interaction between insulin and IGF signaling and co-morbidity after ischemia and Aβ toxicity will help design more effective therapeutics.
Collapse
Affiliation(s)
- Zareen Amtul
- Department of Anatomy and Cell Biology, University of Western Ontario, London, N6A 5C1, Canada.
| | - David J Hill
- Departments of Medicine, Physiology and Pharmacology, and Pediatrics, University of Western Ontario, London, N6A 5C1, Canada
- Lawson Health Research Institute, London, Ontario, N6A 4V2, Canada
| | - Edith J Arany
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, N6A 5C1, Canada
| | - David F Cechetto
- Department of Anatomy and Cell Biology, University of Western Ontario, London, N6A 5C1, Canada
| |
Collapse
|
55
|
Zhao LR, Willing A. Enhancing endogenous capacity to repair a stroke-damaged brain: An evolving field for stroke research. Prog Neurobiol 2018; 163-164:5-26. [PMID: 29476785 PMCID: PMC6075953 DOI: 10.1016/j.pneurobio.2018.01.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 01/11/2018] [Accepted: 01/30/2018] [Indexed: 02/07/2023]
Abstract
Stroke represents a severe medical condition that causes stroke survivors to suffer from long-term and even lifelong disability. Over the past several decades, a vast majority of stroke research targets neuroprotection in the acute phase, while little work has been done to enhance stroke recovery at the later stage. Through reviewing current understanding of brain plasticity, stroke pathology, and emerging preclinical and clinical restorative approaches, this review aims to provide new insights to advance the research field for stroke recovery. Lifelong brain plasticity offers the long-lasting possibility to repair a stroke-damaged brain. Stroke impairs the structural and functional integrity of entire brain networks; the restorative approaches containing multi-components have great potential to maximize stroke recovery by rebuilding and normalizing the stroke-disrupted entire brain networks and brain functioning. The restorative window for stroke recovery is much longer than previously thought. The optimal time for brain repair appears to be at later stage of stroke rather than the earlier stage. It is expected that these new insights will advance our understanding of stroke recovery and assist in developing the next generation of restorative approaches for enhancing brain repair after stroke.
Collapse
Affiliation(s)
- Li-Ru Zhao
- Department of Neurosurgery, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA.
| | - Alison Willing
- Center for Excellence in Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, 33612, USA.
| |
Collapse
|
56
|
Taoro-Gonzalez L, Arenas YM, Cabrera-Pastor A, Felipo V. Hyperammonemia alters membrane expression of GluA1 and GluA2 subunits of AMPA receptors in hippocampus by enhancing activation of the IL-1 receptor: underlying mechanisms. J Neuroinflammation 2018; 15:36. [PMID: 29422059 PMCID: PMC5806265 DOI: 10.1186/s12974-018-1082-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 01/29/2018] [Indexed: 11/13/2022] Open
Abstract
Background Hyperammonemic rats reproduce the cognitive alterations of patients with hepatic encephalopathy, including altered spatial memory, attributed to altered membrane expression of AMPA receptor subunits in hippocampus. Neuroinflammation mediates these cognitive alterations. We hypothesized that hyperammonemia-induced increase in IL-1β in hippocampus would be responsible for the altered GluA1 and GluA2 membrane expression. The aims of this work were to (1) assess if increased IL-1β levels and activation of its receptor are responsible for the changes in GluA1 and/or GluA2 membrane expression in hyperammonemia and (2) identify the mechanisms by which activation of IL-1 receptor leads to altered membrane expression of GluA1 and GluA2. Methods We analyzed in hippocampal slices from control and hyperammonemic rat membrane expression of AMPA receptors using the BS3 cross-linker and phosphorylation of the GluA1 and GluA2 subunits using phosphor-specific antibodies. The IL-1 receptor was blocked with IL-Ra, and the signal transduction pathways involved in modulation of membrane expression of GluA1 and GluA2 were analyzed using inhibitors of key steps. Results Hyperammonemia reduces GluA1 and increases GluA2 membrane expression and reduces phosphorylation of GluA1 at Ser831 and of GluA2 at Ser880. Hyperammonemia increases IL-1β, enhancing activation of IL-1 receptor. This leads to activation of Src. The changes in membrane expression of GluA1 and GluA2 are reversed by blocking the IL-1 receptor with IL-1Ra or by inhibiting Src with PP2. After Src activation, the pathways for GluA2 and GluA1 diverge. Src increases phosphorylation of GluN2B at Tyr14721 and membrane expression of GluN2B in hyperammonemic rats, leading to activation of MAP kinase p38, which binds to and reduces phosphorylation at Thr560 and activity of PKCζ, resulting in reduced phosphorylation at Ser880 and enhanced membrane expression of GluA2. Increased Src activity in hyperammonemic rats also activates PKCδ which enhances phosphorylation of GluN2B at Ser1303, reducing membrane expression of CaMKII and phosphorylation at Ser831 and membrane expression of GluA1. Conclusions This work identifies two pathways by which neuroinflammation alters glutamatergic neurotransmission in hippocampus. The steps of the pathways identified could be targets to normalize neurotransmission in hyperammonemia and other pathologies associated with increased IL-1β by acting, for example, on p38 or PKCδ. Graphical abstract IL-1β alters membrane expression of GluA1 and GluA2 AMPA receptor subunits by two difrerent mechanisms in the hippocampus of hyperammonemic rats.
Collapse
Affiliation(s)
- Lucas Taoro-Gonzalez
- Laboratory of Neurobiology, Centro de Investigacion Príncipe Felipe, Eduardo Primo Yufera 3, 46012, Valencia, Spain.
| | - Yaiza M Arenas
- Laboratory of Neurobiology, Centro de Investigacion Príncipe Felipe, Eduardo Primo Yufera 3, 46012, Valencia, Spain
| | - Andrea Cabrera-Pastor
- Laboratory of Neurobiology, Centro de Investigacion Príncipe Felipe, Eduardo Primo Yufera 3, 46012, Valencia, Spain
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigacion Príncipe Felipe, Eduardo Primo Yufera 3, 46012, Valencia, Spain
| |
Collapse
|
57
|
Timin AS, Litvak MM, Gorin DA, Atochina-Vasserman EN, Atochin DN, Sukhorukov GB. Cell-Based Drug Delivery and Use of Nano-and Microcarriers for Cell Functionalization. Adv Healthc Mater 2018; 7. [PMID: 29193876 DOI: 10.1002/adhm.201700818] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 09/18/2017] [Indexed: 12/27/2022]
Abstract
Cell functionalization with recently developed various nano- and microcarriers for therapeutics has significantly expanded the application of cell therapy and targeted drug delivery for the effective treatment of a number of diseases. The aim of this progress report is to review the most recent advances in cell-based drug vehicles designed as biological transporter platforms for the targeted delivery of different drugs. For the design of cell-based drug vehicles, different pathways of cell functionalization, such as covalent and noncovalent surface modifications, internalization of carriers are considered in greater detail together with approaches for cell visualization in vivo. In addition, several animal models for the study of cell-assisted drug delivery are discussed. Finally, possible future developments and applications of cell-assisted drug vehicles toward targeted transport of drugs to a designated location with no or minimal immune response and toxicity are addressed in light of new pathways in the field of nanomedicine.
Collapse
Affiliation(s)
- Alexander S. Timin
- RASA Center in Tomsk; Tomsk Polytechnic University; pros. Lenina, 30 Tomsk 634050 Russian Federation
| | - Maxim M. Litvak
- RASA Center in Tomsk; Tomsk Polytechnic University; pros. Lenina, 30 Tomsk 634050 Russian Federation
| | - Dmitry A. Gorin
- RASA Center in Tomsk; Tomsk Polytechnic University; pros. Lenina, 30 Tomsk 634050 Russian Federation
- Remotely Controlled Theranostics Systems laboratory; Saratov State University; Astrakhanskaya Street 83 Saratov 410012 Russian Federation
- Skoltech Center of Photonics & Quantum Materials; Skolkovo Institute of Science and Technology; Skolkovo Innovation Center; Building 3 Moscow 143026 Russian Federation
| | - Elena N. Atochina-Vasserman
- RASA Center in Tomsk; Tomsk Polytechnic University; pros. Lenina, 30 Tomsk 634050 Russian Federation
- RASA Center; Kazan Federal University; 18 Kremlyovskaya Street Kazan 42008 Russian Federation
- Pulmonary; Allergy and Critical Care Division; University of Pennsylvania Perelman School of Medicine; Philadelphia PA 19104 USA
| | - Dmitriy N. Atochin
- RASA Center in Tomsk; Tomsk Polytechnic University; pros. Lenina, 30 Tomsk 634050 Russian Federation
- Cardiovascular Research Center; Massachusetts General Hospital; 149 East, 13 Street Charlestown MA 02129 USA
| | - Gleb B. Sukhorukov
- RASA Center in Tomsk; Tomsk Polytechnic University; pros. Lenina, 30 Tomsk 634050 Russian Federation
- Remotely Controlled Theranostics Systems laboratory; Saratov State University; Astrakhanskaya Street 83 Saratov 410012 Russian Federation
- School of Engineering and Materials Science; Queen Mary University of London; Mile End Road London E1 4NS UK
| |
Collapse
|
58
|
Abstract
BACKGROUND Post-stroke aphasia syndromes as a clinical entity arise from the disruption of brain networks specialized in language production and comprehension due to permanent focal ischemia. This approach to post-stroke aphasia is based on two pathophysiological concepts: 1) Understanding language processing in terms of distributed networks rather than language centers and 2) understanding the molecular pathophysiology of ischemic brain injury as a dynamic process beyond the direct destruction of network centers and their connections. While considerable progress has been made in the past 10 years to develop such models on a systems as well as a molecular level, the influence of these approaches on understanding and treating clinical aphasia syndromes has been limited. OBJECTIVE & METHODS In this article, we review current pathophysiological concepts of ischemic brain injury, their relationship to altered information processing in language networks after ischemic stroke and how these mechanisms may be influenced therapeutically to improve treatment of post-stroke aphasia. CONCLUSION Understanding the pathophysiological mechanism of post-stroke aphasia on a neurophysiological systems level as well as on the molecular level becomes more and more important for aphasia treatment, as the field moves from standardized therapies towards more targeted individualized treatment strategies comprising behavioural therapies as well as non-invasive brain stimulation (NIBS).
Collapse
|
59
|
Notter T, Coughlin JM, Sawa A, Meyer U. Reconceptualization of translocator protein as a biomarker of neuroinflammation in psychiatry. Mol Psychiatry 2018; 23:36-47. [PMID: 29203847 DOI: 10.1038/mp.2017.232] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/05/2017] [Accepted: 10/02/2017] [Indexed: 02/06/2023]
Abstract
A great deal of interest in psychiatric research is currently centered upon the pathogenic role of inflammatory processes. Positron emission tomography (PET) using radiolabeled ligands selective for the 18 kDa translocator protein (TSPO) has become the most widely used technique to assess putative neuroimmune abnormalities in vivo. Originally used to detect discrete neurotoxic damages, TSPO has generally turned into a biomarker of 'neuroinflammation' or 'microglial activation'. Psychiatric research has mostly accepted these denotations of TSPO, even if they may be inadequate and misleading under many pathological conditions. A reliable and neurobiologically meaningful diagnosis of 'neuroinflammation' or 'microglial activation' is unlikely to be achieved by the sole use of TSPO PET imaging. It is also very likely that the pathological meanings of altered TSPO binding or expression are disease-specific, and therefore, not easily generalizable across different neuropathologies or inflammatory conditions. This difficulty is intricately linked to the varying (and still ill-defined) physiological functions and cellular expression patterns of TSPO in health and disease. While altered TSPO binding or expression may indeed mirror ongoing neuroinflammatory processes in some cases, it may reflect other pathophysiological processes such as abnormalities in cell metabolism, energy production and oxidative stress in others. Hence, the increasing popularity of TSPO PET imaging has paradoxically introduced substantial uncertainty regarding the nature and meaning of neuroinflammatory processes and microglial activation in psychiatry, and likely in other neuropathological conditions as well. The ambiguity of conceiving TSPO simply as a biomarker of 'neuroinflammation' or 'microglial activation' calls for alternative interpretations and complimentary approaches. Without the latter, the ongoing scientific efforts and excitement surrounding the role of the neuroimmune system in psychiatry may not turn into therapeutic hope for affected individuals.
Collapse
Affiliation(s)
- T Notter
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - J M Coughlin
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institutions, Baltimore, MD, USA.,Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - A Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - U Meyer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
60
|
Evans NR, Tarkin JM, Buscombe JR, Markus HS, Rudd JHF, Warburton EA. PET imaging of the neurovascular interface in cerebrovascular disease. Nat Rev Neurol 2017; 13:676-688. [PMID: 28984315 DOI: 10.1038/nrneurol.2017.129] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cerebrovascular disease encompasses a range of pathologies that affect different components of the cerebral vasculature and brain parenchyma. Large artery atherosclerosis, acute cerebral ischaemia, and intracerebral small vessel disease all demonstrate altered metabolic processes that are key to their pathogenesis. Although structural imaging techniques such as MRI are the mainstay of clinical care and research in cerebrovascular disease, they have limited ability to detect these pathophysiological processes in vivo. By contrast, PET can detect and quantify metabolic processes that are relevant to each facet of cerebrovascular disease. Information obtained from PET studies has helped to shape the understanding of key concepts in cerebrovascular medicine, including vulnerable atherosclerotic plaque, salvageable ischaemic penumbra, neuroinflammation and selective neuronal loss after ischaemic insult. PET has also helped to elucidate the relationships between chronic hypoxia, neuroinflammation, and amyloid-β deposition in cerebral small vessel disease. This Review describes how PET-based imaging of metabolic processes at the neurovascular interface has contributed to our understanding of cerebrovascular disease.
Collapse
Affiliation(s)
- Nicholas R Evans
- Department of Clinical Neurosciences, University of Cambridge, Box 83, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Jason M Tarkin
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Box 157, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - John R Buscombe
- Department of Nuclear Medicine, Box 219, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge CB2 0QQ, UK
| | - Hugh S Markus
- Department of Clinical Neurosciences, University of Cambridge, Box 83, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - James H F Rudd
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Box 157, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Elizabeth A Warburton
- Department of Clinical Neurosciences, University of Cambridge, Box 83, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| |
Collapse
|
61
|
Anttila JE, Whitaker KW, Wires ES, Harvey BK, Airavaara M. Role of microglia in ischemic focal stroke and recovery: focus on Toll-like receptors. Prog Neuropsychopharmacol Biol Psychiatry 2017; 79:3-14. [PMID: 27389423 PMCID: PMC5214845 DOI: 10.1016/j.pnpbp.2016.07.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/20/2016] [Accepted: 07/02/2016] [Indexed: 12/21/2022]
Abstract
Stroke is the leading cause of disability in adults. Drug treatments that target stroke-induced pathological mechanisms and promote recovery are desperately needed. In the brain, an ischemic event triggers major inflammatory responses that are mediated by the resident microglial cells. In this review, we focus on the microglia activation after ischemic brain injury as a target of immunomodulatory therapeutics. We divide the microglia-mediated events following ischemic stroke into three categories: acute, subacute, and long-term events. This division encompasses the spatial and temporal dynamics of microglia as they participate in the pathophysiological changes that contribute to the symptoms and sequela of a stroke. The importance of Toll-like receptor (TLR) signaling in the outcomes of these pathophysiological changes is highlighted. Increasing evidence shows that microglia have a complex role in stroke pathophysiology, and they mediate both detrimental and beneficial effects on stroke outcome. So far, most of the pharmacological studies in experimental models of stroke have focused on neuroprotective strategies which are impractical for clinical applications. Post-ischemic inflammation is long lasting and thus, could provide a therapeutic target for novel delayed drug treatment. However, more studies are needed to elucidate the role of microglia in the recovery process from an ischemic stroke and to evaluate the therapeutic potential of modulating post-ischemic inflammation to promote functional recovery.
Collapse
Affiliation(s)
- Jenni E Anttila
- Institute of Biotechnology, P.O. Box 56, 00014, University of Helsinki, Finland
| | - Keith W Whitaker
- Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD, USA; Human Research and Engineering Directorate, US Army Research Laboratory, Aberdeen, Proving Ground, MD 21005, USA
| | - Emily S Wires
- Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD, USA
| | - Brandon K Harvey
- Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD, USA
| | - Mikko Airavaara
- Institute of Biotechnology, P.O. Box 56, 00014, University of Helsinki, Finland.
| |
Collapse
|
62
|
Heiss WD, Rosenberg GA, Thiel A, Berlot R, de Reuck J. Neuroimaging in vascular cognitive impairment: a state-of-the-art review. BMC Med 2016; 14:174. [PMID: 27806705 PMCID: PMC5094143 DOI: 10.1186/s12916-016-0725-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 10/25/2016] [Indexed: 01/07/2023] Open
Abstract
Imaging is critical in the diagnosis and treatment of dementia, particularly in vascular cognitive impairment, due to the visualization of ischemic and hemorrhagic injury of gray and white matter. Magnetic resonance imaging (MRI) and positron emission tomography (PET) provide structural and functional information. Clinical MRI is both generally available and versatile - T2-weighted images show infarcts, FLAIR shows white matter changes and lacunar infarcts, and susceptibility-weighted images reveal microbleeds. Diffusion MRI adds another dimension by showing graded damage to white matter, making it more sensitive to white matter injury than FLAIR. Regions of neuroinflammatory disruption of the blood-brain barrier with increased permeability can be quantified and visualized with dynamic contrast-enhanced MRI. PET shows metabolism of glucose and accumulation of amyloid and tau, which is useful in showing abnormal metabolism in Alzheimer's disease. Combining MRI and PET allows identification of patients with mixed dementia, with MRI showing white matter injury and PET demonstrating regional impairment of glucose metabolism and deposition of amyloid. Excellent anatomical detail can be observed with 7.0-Tesla MRI. Imaging is the optimal method to follow the effect of treatments since changes in MRI scans are seen prior to those in cognition. This review describes the role of various imaging modalities in the diagnosis and treatment of vascular cognitive impairment.
Collapse
Affiliation(s)
- Wolf-Dieter Heiss
- Max Planck Institute for Metabolism Research, Gleueler str. 50, D-50931, Cologne, Germany.
| | - Gary A Rosenberg
- Department of Neurology, UNM Memory and Aging Center, MSC 11 6035, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Alexander Thiel
- Department of Neurology & Neurosurgery, McGill University at SMBD Jewish General Hospital and Lady Davis Institute for Medical Research, Montreal, H3T 1E2, Québec, Canada
| | - Rok Berlot
- Department of Neurology (R.B.), University Medical Centre Ljubljana, 1000, Ljubljana, Slovenia
| | - Jacques de Reuck
- INSERM U1171, Degenerative and Vascular Cognitive Disorders, Université Lille 2, Lille, France
| |
Collapse
|
63
|
Early Inflammatory Response following Traumatic Brain Injury in Rabbits Using USPIO- and Gd-Enhanced MRI. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8431987. [PMID: 27868069 PMCID: PMC5102713 DOI: 10.1155/2016/8431987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/04/2016] [Indexed: 11/28/2022]
Abstract
Purpose. To monitor the inflammatory response (IR) following traumatic brain injury (TBI) before and after the rehabilitation of the blood-brain barrier (BBB) in rabbits using USPIO- and Gd-enhanced MRI. Materials and Methods. Twenty white big-eared rabbits with mild TBI (mTBI) were randomly and equally divided into four groups. Rabbits were sacrificed for the brain specimens immediately after the last MRI-monitoring. Sequences were tse-T1WI, tse-T2WI, Gd-T1WI, and USPIO-T1WI. Dynamical MRI presentations were evaluated and compared with pathological findings for each group. Results. Twenty-four hours after injury, all rabbits displayed high signal foci on T2WI, while only 55% lesions could be found on Gd-T1WI and none on USPIO-T1WI. The lesions were enhanced on Gd-T1WI in 100% subjects after 48 h and the enhancement sizes augmented to the largest after 72 h. At the time point of 72 h after TBI, 90% lesions were enhanced by USPIO. Five days after injury, 19 lesions showed decreased Gd-enhancement and one disappeared; however, USPIO-enhancement became larger than before. Pathological findings showed microglias slightly appeared in dense leukocytes at 48 h, but became the dominant inflammatory cells after five days. Conclusions. Dynamic IR following injury could be monitored by combination of Gd- and USPIO-MRI in mTBI rabbits.
Collapse
|
64
|
Gupta M, Mishra SK, Kumar BSH, Khushu S, Rana P. Early detection of whole body radiation induced microstructural and neuroinflammatory changes in hippocampus: A diffusion tensor imaging and gene expression study. J Neurosci Res 2016; 95:1067-1078. [PMID: 27436454 DOI: 10.1002/jnr.23833] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 06/21/2016] [Accepted: 06/21/2016] [Indexed: 11/09/2022]
Abstract
Ionizing radiation is known to a cause systemic inflammatory response within hours of exposure that may affect the central nervous system (CNS). The present study was carried out to look upon the influence of radiation induced systemic inflammatory response in hippocampus within 24 hr of whole body radiation exposure. A Diffusion Tensor Imaging (DTI) study was conducted in mice exposed to a 5-Gy radiation dose through a 60 Co source operating at 2.496 Gy/min at 3 hr and 24 hr post irradiation and in sham-irradiated controls using 7 T animal MRI system. The results showed a significant decrease in Mean Diffusivity (MD), Radial Diffusivity (RD), and Axial Diffusivity (AD) in hippocampus at 24 hr compared with controls. Additionally, marked change in RD was observed at 3 hr. Increased serum C-Reactive Protein (CRP) level depicted an increased systemic/peripheral inflammation. The neuroinflammatory response in hippocampus was characterized by increased mRNA expression of IL-1β, IL-6, and Cox-2 at the 24 hr time point. Additionally, in the irradiated group, reactive astrogliosis was illustrated, with noticeable changes in GFAP expression at 24 hr. Altered diffusivity and enhanced neuroinflammatory expression in the hippocampal region showed peripheral inflammation induced changes in brain. Moreover, a negative correlation between gene expression and DTI parameters depicted a neuroinflammation induced altered microenvironment that might affect water diffusivity. The study showed that there was an influence of whole body radiation exposure on hippocampus even during the early acute phase that could be reflected in terms of neuroinflammatory response as well as microstructural changes. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mamta Gupta
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Sushanta Kumar Mishra
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - B S Hemanth Kumar
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Subash Khushu
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Poonam Rana
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| |
Collapse
|
65
|
Pasternak O, Kubicki M, Shenton ME. In vivo imaging of neuroinflammation in schizophrenia. Schizophr Res 2016; 173:200-212. [PMID: 26048294 PMCID: PMC4668243 DOI: 10.1016/j.schres.2015.05.034] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/18/2015] [Accepted: 05/20/2015] [Indexed: 12/18/2022]
Abstract
In recent years evidence has accumulated to suggest that neuroinflammation might be an early pathology of schizophrenia that later leads to neurodegeneration, yet the exact role in the etiology, as well as the source of neuroinflammation, are still not known. The hypothesis of neuroinflammation involvement in schizophrenia is quickly gaining popularity, and thus it is imperative that we have reliable and reproducible tools and measures that are both sensitive, and, most importantly, specific to neuroinflammation. The development and use of appropriate human in vivo imaging methods can help in our understanding of the location and extent of neuroinflammation in different stages of the disorder, its natural time-course, and its relation to neurodegeneration. Thus far, there is little in vivo evidence derived from neuroimaging methods. This is likely the case because the methods that are specific and sensitive to neuroinflammation are relatively new or only just being developed. This paper provides a methodological review of both existing and emerging positron emission tomography and magnetic resonance imaging techniques that identify and characterize neuroinflammation. We describe \how these methods have been used in schizophrenia research. We also outline the shortcomings of existing methods, and we highlight promising future techniques that will likely improve state-of-the-art neuroimaging as a more refined approach for investigating neuroinflammation in schizophrenia.
Collapse
Affiliation(s)
- Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Applied Mathematics, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Marek Kubicki
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Martha E Shenton
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; VA Boston Healthcare System, Brockton, MA, USA
| |
Collapse
|
66
|
Heiss WD. Hybrid PET/MR Imaging in Neurology: Present Applications and Prospects for the Future. J Nucl Med 2016; 57:993-5. [PMID: 27056615 DOI: 10.2967/jnumed.116.175208] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 01/18/2023] Open
|
67
|
Weishaupt N, Zhang A, Deziel RA, Tasker RA, Whitehead SN. Prefrontal Ischemia in the Rat Leads to Secondary Damage and Inflammation in Remote Gray and White Matter Regions. Front Neurosci 2016; 10:81. [PMID: 26973455 PMCID: PMC4773446 DOI: 10.3389/fnins.2016.00081] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/18/2016] [Indexed: 12/31/2022] Open
Abstract
Secondary damage processes, such as inflammation and oxidative stress, can exacerbate an ischemic lesion and spread to adjacent brain regions. Yet, few studies investigate how regions remote from the infarct could also suffer from degeneration and inflammation in the aftermath of a stroke. To find out to what extent far-remote brain regions are affected after stroke, we used a bilateral endothelin-1-induced prefrontal infarct rat model. Brain regions posterior to the prefrontal cortical infarct were analyzed for ongoing neurodegeneration using FluoroJadeB (FJB) and for neuroinflammation using Iba1 and OX-6 immunohistochemistry 28 days post-stroke. The FJB-positive dorsomedial nucleus of the thalamus (DMN) and retrosplenial area (RSA) of the cortex displayed substantial neuroinflammation. Significant neuronal loss was only observed within the cortex. Significant microglia recruitment and activation in the FJB-positive internal capsule indicates remote white matter pathology. These findings demonstrate that even regions far remote from an infarct are affected predictably based on anatomical connectivity, and that white matter inflammation is an integral part of remote pathology. The delayed nature of this pathology makes it a valid target for preventative treatment, potentially with an extended time window of opportunity for therapeutic intervention using anti-inflammatory agents.
Collapse
Affiliation(s)
- Nina Weishaupt
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario London, ON, Canada
| | - Angela Zhang
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario London, ON, Canada
| | - Robert A Deziel
- Department of Biomedical Sciences, University of Prince Edward Island Charlottetown, PEI, Canada
| | - R Andrew Tasker
- Department of Biomedical Sciences, University of Prince Edward Island Charlottetown, PEI, Canada
| | - Shawn N Whitehead
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario London, ON, Canada
| |
Collapse
|
68
|
Savitz SI, Cox CS. Concise Review: Cell Therapies for Stroke and Traumatic Brain Injury: Targeting Microglia. Stem Cells 2016; 34:537-42. [PMID: 26844424 DOI: 10.1002/stem.2253] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/14/2015] [Accepted: 09/22/2015] [Indexed: 11/06/2022]
Abstract
We present a model hypothesis of how several types of cell therapies may target microglia as one of the principal cell types contributing to the inflammatory response after brain injury and discuss how imaging of brain inflammation could potentially be applied to develop biomarkers in patients with stroke and TBI enrolled into stem cell clinical trials.
Collapse
Affiliation(s)
- Sean I Savitz
- Department of Neurology, UT-Health, Houston, Texas, USA
| | - Charles S Cox
- Department of Pediatric Surgery, UT-Health, Houston, Texas, USA
| |
Collapse
|
69
|
Ma Y, Wang J, Wang Y, Yang GY. The biphasic function of microglia in ischemic stroke. Prog Neurobiol 2016; 157:247-272. [PMID: 26851161 DOI: 10.1016/j.pneurobio.2016.01.005] [Citation(s) in RCA: 514] [Impact Index Per Article: 57.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 12/22/2015] [Accepted: 01/10/2016] [Indexed: 12/16/2022]
Abstract
Microglia are brain resident macrophages originated from primitive progenitor cells in the yolk sac. Microglia can be activated within hours and recruited to the lesion site. Traditionally, microglia activation is considered to play a deleterious role in ischemic stroke, as inhibition of microglia activation attenuates ischemia induced brain injury. However, increasing evidence show that microglia activation is critical for attenuating neuronal apoptosis, enhancing neurogenesis, and promoting functional recovery after cerebral ischemia. Differential polarization of microglia could likely explain the biphasic role of microglia in ischemia. We comprehensively reviewed the mechanisms involved in regulating microglia activation and polarization. The latest discoveries of microRNAs in modulating microglia function are discussed. In addition, the interaction between microglia and other cells including neurons, astrocytes, oligodendrocytes, and stem cells were also reviewed. Future therapies targeting microglia may not exclusively aim at suppressing microglia activation, but also at modulating microglia polarization at different stages of ischemic stroke. More work is needed to elucidate the cellular and molecular mechanisms of microglia polarization under ischemic environment. The roles of microRNAs and transplanted stem cells in mediating microglia activation and polarization during brain ischemia also need to be further studied.
Collapse
Affiliation(s)
- Yuanyuan Ma
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China; Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jixian Wang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; Department of Rehabilitation, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Yongting Wang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Guo-Yuan Yang
- Department of Neurology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China; Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
70
|
Scott G, Hellyer PJ, Ramlackhansingh AF, Brooks DJ, Matthews PM, Sharp DJ. Thalamic inflammation after brain trauma is associated with thalamo-cortical white matter damage. J Neuroinflammation 2015; 12:224. [PMID: 26627199 PMCID: PMC4666189 DOI: 10.1186/s12974-015-0445-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/25/2015] [Indexed: 11/21/2022] Open
Abstract
Background Traumatic brain injury can trigger chronic neuroinflammation, which may predispose to neurodegeneration. Animal models and human pathological studies demonstrate persistent inflammation in the thalamus associated with axonal injury, but this relationship has never been shown in vivo. Findings Using [11C]-PK11195 positron emission tomography, a marker of microglial activation, we previously demonstrated thalamic inflammation up to 17 years after traumatic brain injury. Here, we use diffusion MRI to estimate axonal injury and show that thalamic inflammation is correlated with thalamo-cortical tract damage. Conclusions These findings support a link between axonal damage and persistent inflammation after brain injury.
Collapse
Affiliation(s)
- Gregory Scott
- Division of Brain Sciences, Department of Medicine, Hammersmith Hospital Campus, Imperial College London, London, UK
| | - Peter J Hellyer
- Division of Brain Sciences, Department of Medicine, Hammersmith Hospital Campus, Imperial College London, London, UK.,Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, UK
| | - Anil F Ramlackhansingh
- Division of Brain Sciences, Department of Medicine, Hammersmith Hospital Campus, Imperial College London, London, UK
| | - David J Brooks
- Division of Brain Sciences, Department of Medicine, Hammersmith Hospital Campus, Imperial College London, London, UK.,Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Paul M Matthews
- Division of Brain Sciences, Department of Medicine, Hammersmith Hospital Campus, Imperial College London, London, UK
| | - David J Sharp
- Division of Brain Sciences, Department of Medicine, Hammersmith Hospital Campus, Imperial College London, London, UK. .,Computational, Cognitive and Clinical Neuroimaging Laboratory, 3rd Floor, Burlington Danes Building, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
71
|
|
72
|
Walberer M, Rueger MA. The macrosphere model-an embolic stroke model for studying the pathophysiology of focal cerebral ischemia in a translational approach. ANNALS OF TRANSLATIONAL MEDICINE 2015. [PMID: 26207251 DOI: 10.3978/j.issn.2305-5839.2015.04.02] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The main challenge of stroke research is to translate promising experimental findings from the bench to the bedside. Many suggestions have been made how to achieve this goal, identifying the need for appropriate experimental animal models as one key issue. We here discuss the macrosphere model of focal cerebral ischemia in the rat, which closely resembles the pathophysiology of human stroke both in its acute and chronic phase. Key pathophysiological processes such as brain edema, cortical spreading depolarizations (CSD), neuroinflammation, and stem cell-mediated regeneration are observed in this stroke model, following characteristic temporo-spatial patterns. Non-invasive in vivo imaging allows studying the macrosphere model from the very onset of ischemia up to late remodeling processes in an intraindividual and longitudinal fashion. Such a design of pre-clinical stroke studies provides the basis for a successful translation into the clinic.
Collapse
Affiliation(s)
- Maureen Walberer
- 1 Department of Neurology, University Hospital of Cologne, Cologne, Germany ; 2 Max-Planck-Institute for Metabolism Research, Cologne, Germany ; 3 Animal Welfare Office, University of Cologne, Germany
| | - Maria Adele Rueger
- 1 Department of Neurology, University Hospital of Cologne, Cologne, Germany ; 2 Max-Planck-Institute for Metabolism Research, Cologne, Germany ; 3 Animal Welfare Office, University of Cologne, Germany
| |
Collapse
|
73
|
Affiliation(s)
- Sean I Savitz
- From the Department of Neurology, University of Texas Medical School at Houston.
| |
Collapse
|
74
|
Mattner F, Quinlivan M, Greguric I, Pham T, Liu X, Jackson T, Berghofer P, Fookes CJR, Dikic B, Gregoire MC, Dolle F, Katsifis A. Radiosynthesis, In Vivo Biological Evaluation, and Imaging of Brain Lesions with [123I]-CLINME, a New SPECT Tracer for the Translocator Protein. DISEASE MARKERS 2015; 2015:729698. [PMID: 26199457 PMCID: PMC4496498 DOI: 10.1155/2015/729698] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 06/10/2015] [Indexed: 11/17/2022]
Abstract
The high affinity translocator protein (TSPO) ligand 6-chloro-2-(4'-iodophenyl)-3-(N,N-methylethyl)imidazo[1,2-a]pyridine-3-acetamide (CLINME) was radiolabelled with iodine-123 and assessed for its sensitivity for the TSPO in rodents. Moreover neuroinflammatory changes on a unilateral excitotoxic lesion rat model were detected using SPECT imaging. [(123)I]-CLINME was prepared in 70-80% radiochemical yield. The uptake of [(123)I]-CLINME was evaluated in rats by biodistribution, competition, and metabolite studies. The unilateral excitotoxic lesion was performed by injection of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid unilaterally into the striatum. The striatum lesion was confirmed and correlated with TSPO expression in astrocytes and activated microglia by immunohistochemistry and autoradiography. In vivo studies with [(123)I]-CLINME indicated a biodistribution pattern consistent with TPSO distribution and the competition studies with PK11195 and Ro 5-4864 showed that [(123)I]-CLINME is selective for this site. The metabolite study showed that the extractable radioactivity was unchanged [(123)I]-CLINME in organs which expresses TSPO. SPECT/CT imaging on the unilateral excitotoxic lesion indicated that the mean ratio uptake in striatum (lesion:nonlesion) was 2.2. Moreover, TSPO changes observed by SPECT imaging were confirmed by immunofluorescence, immunochemistry, and autoradiography. These results indicated that [(123)I]-CLINME is a promising candidate for the quantification and visualization of TPSO expression in activated astroglia using SPECT.
Collapse
Affiliation(s)
- F. Mattner
- Life Sciences Division, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
- Department of Molecular Imaging, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - M. Quinlivan
- Life Sciences Division, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - I. Greguric
- Life Sciences Division, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - T. Pham
- Life Sciences Division, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - X. Liu
- Life Sciences Division, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - T. Jackson
- Life Sciences Division, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - P. Berghofer
- Life Sciences Division, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - C. J. R. Fookes
- Life Sciences Division, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - B. Dikic
- Life Sciences Division, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - M.-C. Gregoire
- Life Sciences Division, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - F. Dolle
- CEA, DSV/I2BM, Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, 91401 Orsay, France
| | - A. Katsifis
- Life Sciences Division, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
- Department of Molecular Imaging, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| |
Collapse
|
75
|
Characterization of Behaviour and Remote Degeneration Following Thalamic Stroke in the Rat. Int J Mol Sci 2015; 16:13921-36. [PMID: 26090717 PMCID: PMC4490531 DOI: 10.3390/ijms160613921] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/18/2015] [Accepted: 06/11/2015] [Indexed: 11/17/2022] Open
Abstract
Subcortical ischemic strokes are among the leading causes of cognitive impairment. Selective atrophy of remote brain regions connected to the infarct is thought to contribute to deterioration of cognitive functions. The mechanisms underlying this secondary degenerative process are incompletely understood, but are thought to include inflammation. We induce ischemia by unilateral injection of endothelin-I into the rat dorsomedial thalamic nucleus, which has defined reciprocal connections to the frontal cortex. We use a comprehensive test battery to probe for changes in behaviour, including executive functions. After a four-week recovery period, brain sections are stained with markers for degeneration, microglia, astrocytes and myelin. Degenerative processes are localized within the stroke core and along the full thalamocortical projection, which does not translate into measurable behavioural deficits. Significant microglia recruitment, astrogliosis or myelin loss along the axonal projection or within the frontal cortex cannot be detected. These findings indicate that critical effects of stroke-induced axonal degeneration may only be measurable beyond a threshold of stroke severity and/or follow a different time course. Further investigations are needed to clarify the impact of inflammation accompanying axonal degeneration on delayed remote atrophy after stroke.
Collapse
|
76
|
In vivo analysis of neuroinflammation in the late chronic phase after experimental stroke. Neuroscience 2015; 292:71-80. [PMID: 25701708 DOI: 10.1016/j.neuroscience.2015.02.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND PURPOSE In vivo imaging of inflammatory processes is a valuable tool in stroke research. We here investigated the combination of two imaging modalities in the chronic phase after cerebral ischemia: magnetic resonance imaging (MRI) using intravenously applied ultra small supraparamagnetic iron oxide particles (USPIO), and positron emission tomography (PET) with the tracer [(11)C]PK11195. METHODS Rats were subjected to permanent middle cerebral artery occlusion (pMCAO) by the macrosphere model and monitored by MRI and PET for 28 or 56 days, followed by immunohistochemical endpoint analysis. To our knowledge, this is the first study providing USPIO-MRI data in the chronic phase up to 8 weeks after stroke. RESULTS Phagocytes with internalized USPIOs induced MRI-T2(∗) signal alterations in the brain. Combined analysis with [(11)C]PK11195-PET allowed quantification of phagocytic activity and other neuroinflammatory processes. From 4 weeks after induction of ischemia, inflammation was dominated by phagocytes. Immunohistochemistry revealed colocalization of Iba1+ microglia with [(11)C]PK11195 and ED1/CD68 with USPIOs. USPIO-related iron was distinguished from alternatively deposited iron by assessing MRI before and after USPIO application. Tissue affected by non-phagocytic inflammation during the first week mostly remained in a viably vital but remodeled state after 4 or 8 weeks, while phagocytic activity was associated with severe injury and necrosis accordingly. CONCLUSIONS We conclude that the combined approach of USPIO-MRI and [(11)C]PK11195-PET allows to observe post-stroke inflammatory processes in the living animal in an intraindividual and longitudinal fashion, predicting long-term tissue fate. The non-invasive imaging methods do not affect the immune system and have been applied to human subjects before. Translation into clinical applications is therefore feasible.
Collapse
|
77
|
Tóth M, Little P, Arnberg F, Häggkvist J, Mulder J, Halldin C, Gulyás B, Holmin S. Acute neuroinflammation in a clinically relevant focal cortical ischemic stroke model in rat: longitudinal positron emission tomography and immunofluorescent tracking. Brain Struct Funct 2015; 221:1279-90. [PMID: 25601153 DOI: 10.1007/s00429-014-0970-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 12/14/2014] [Indexed: 01/17/2023]
Abstract
Adequate estimation of neuroinflammatory processes following ischemic stroke is essential for better understanding of disease mechanisms, and for the development of treatment strategies. With the TSPO (18 kDa translocator protein) positron emission tomography (PET) radioligand [(11)C]PBR28, we monitored longitudinally the inflammatory response post-transient cerebral ischemia in rats, using a recently developed rat stroke model that produces isolated focal cortical infarcts with clinical relevance in size and pathophysiology. Six Sprague-Dawley rats were subjected to 90 min transient endovascular occlusion of the M2 segment of the middle cerebral artery (M2CAO). Animals were imaged with a nanoScan(®) PET/MRI system at 1, 4, 7 and 14 days after M2CAO with a bolus injection of [(11)C]PBR28. In the infarct region, we found a significantly increased uptake of [(11)C]PBR28 on day 4, 7 and 14 compared to day 1 as well as compared to the contralateral cortex. No significant increase was detected in the contralateral cortex during the 14 days of imaging. The activation in the infarct region gradually decreased between day 4 and day 14. In an additional group of animals (n = 26), immunofluorescence studies were performed with antibodies for activated microglia/monocytes (Cd11b), phagocytes (Cd68), astrocytes (glial fibrillary acidic protein) and TSPO. The TSPO immunofluorescence signal indicated reactive microgliosis post injury, corresponding to PET findings. The present clinically relevant animal model and TSPO PET ligand appear to be well suited for studies on neuroinflammation after ischemic stroke.
Collapse
Affiliation(s)
- Miklós Tóth
- Department of Clinical Neuroscience, Karolinska Institutet, 171 76, Stockholm, Sweden
| | - Philip Little
- Department of Clinical Neuroscience, Karolinska Institutet, 171 76, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Fabian Arnberg
- Department of Clinical Neuroscience, Karolinska Institutet, 171 76, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, 171 76, Stockholm, Sweden.,Department of Radiology, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Jenny Häggkvist
- Department of Clinical Neuroscience, Karolinska Institutet, 171 76, Stockholm, Sweden
| | - Jan Mulder
- Science for Life Laboratory, Department of Neuroscience, Karolinska Institutet, 17165, Stockholm, Sweden
| | - Christer Halldin
- Department of Clinical Neuroscience, Karolinska Institutet, 171 76, Stockholm, Sweden.,Imperial College - NTU, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 639798, Singapore
| | - Balázs Gulyás
- Department of Clinical Neuroscience, Karolinska Institutet, 171 76, Stockholm, Sweden. .,Imperial College - NTU, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 639798, Singapore. .,Imperial College London, Faculty of Medicine, Division of Brain Sciences, London, SW7 2AZ, UK.
| | - Staffan Holmin
- Department of Clinical Neuroscience, Karolinska Institutet, 171 76, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, 171 76, Stockholm, Sweden
| |
Collapse
|
78
|
Feng L, Svarer C, Thomsen G, de Nijs R, Larsen VA, Jensen P, Adamsen D, Dyssegaard A, Fischer W, Meden P, Krieger D, Møller K, Knudsen GM, Pinborg LH. In Vivo Quantification of Cerebral Translocator Protein Binding in Humans Using 6-Chloro-2-(4′-123I-Iodophenyl)-3-(N,N-Diethyl)-Imidazo[1,2-a]Pyridine-3-Acetamide SPECT. J Nucl Med 2014; 55:1966-72. [DOI: 10.2967/jnumed.114.143727] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
79
|
18F-GE-180: a novel TSPO radiotracer compared to 11C-R-PK11195 in a preclinical model of stroke. Eur J Nucl Med Mol Imaging 2014; 42:503-11. [PMID: 25351507 DOI: 10.1007/s00259-014-2939-8] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 10/08/2014] [Indexed: 12/14/2022]
Abstract
PURPOSE Neuroinflammation plays a critical role in various neuropathological conditions, and hence there is renewed interest in the translocator protein (TSPO) as a biomarker of microglial activation and macrophage infiltration in the brain. This is reflected in the large amount of research conducted seeking to replace the prototypical PET radiotracer (11)C-R-PK11195 with a TSPO ligand with higher performance. Here we report the in vivo preclinical investigation of the novel TSPO tracer (18)F-GE-180 in a rat model of stroke. METHODS Focal cerebral ischaemia was induced in Wistar rats by 60-min occlusion of the middle cerebral artery (MCAO). Brain damage was assessed 24 h after MCAO by T2 MRI. Rats were scanned with (11)C-R-PK11195 and (18)F-GE-180 5 or 6 days after MCAO. Specificity of binding was confirmed by injection of unlabelled R-PK11195 or GE-180 20 min after injection of (18)F-GE-180. In vivo data were confirmed by ex vivo immunohistochemistry for microglial (CD11b) and astrocytic biomarkers (GFAP). RESULTS (18)F-GE-180 uptake was 24 % higher in the core of the ischaemic lesion and 18 % lower in the contralateral healthy tissue than that of (11)C-R-PK11195 uptake (1.5 ± 0.2-fold higher signal to noise ratio). We confirmed this finding using the simplified reference tissue model (BPND = 3.5 ± 0.4 and 2.4 ± 0.5 for (18)F-GE-180 and (11)C-R-PK11195, respectively, with R 1 = 1). Injection of unlabelled R-PK11195 or GE-180 20 min after injection of (18)F-GE-180 significantly displaced (18)F-GE-180 (69 ± 5 % and 63 ± 4 %, respectively). Specificity of the binding was also confirmed by in vitro autoradiography, and the location and presence of activated microglia and infiltrated macrophages were confirmed by immunohistochemistry. CONCLUSION The in vivo binding characteristics of (18)F-GE-180 demonstrate a better signal to noise ratio than (11)C-R-PK11195 due to both a better signal in the lesion and lower nonspecific binding in healthy tissue. These results provide evidence that (18)F-GE-180 is a strong candidate to replace (11)C-R-PK11195.
Collapse
|
80
|
Wang Y, Yue X, Kiesewetter DO, Wang Z, Lu J, Niu G, Teng G, Chen X. [(18)F]DPA-714 PET imaging of AMD3100 treatment in a mouse model of stroke. Mol Pharm 2014; 11:3463-70. [PMID: 25157648 PMCID: PMC4186675 DOI: 10.1021/mp500234d] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Chemokine
receptor 4 and stromal-cell-derived factor 1 have been
found to be related to the initiation of neuroinflammation in ischemic
brain. Herein, we aimed to monitor the changes of neuorinflammation
after AMD3100 treatment using a translocator protein (TSPO) specific
PET tracer in a mouse model of stroke. The transient MCAO model was
established with Balb/C mice. The success of the model was confirmed
by magnetic resonance imaging and FDG PET. The treatment started the
same day after surgery via daily intraperitoneal injection of 1 mg
of AMD3100/kg for three consecutive days. [18F]DPA-714
was used as the TSPO imaging tracer. In vivo PET
was performed at different time points after surgery in both control
and treated mice. Ex vivo histological and immunofluorescence
staining of brain slices was performed to confirm the lesion site
and inflammatory cell activation. The TSPO level was also evaluated
using Western blotting. Longitudinal PET scans revealed that the level
of [18F]DPA-714 uptake was significantly increased in the
ischemic brain area with a peak accumulation at around day 10 after
surgery, and the level of uptake remained high until day 16. The in vivo PET data were consistent with those from ex vivo immunofluorescence staining. After AMD3100 treatment,
the signal intensity was significantly decreased compared with that
of normal saline-treated control group. In conclusion, TSPO-targeted
PET imaging using [18F]DPA-714 can be used to monitor inflammatory
response after stroke and provide a useful method for evaluating the
efficacy of anti-inflammation treatment.
Collapse
Affiliation(s)
- Yu Wang
- Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University , Nanjing 210009, China
| | | | | | | | | | | | | | | |
Collapse
|
81
|
PET imaging in ischemic cerebrovascular disease: current status and future directions. Neurosci Bull 2014; 30:713-32. [PMID: 25138055 DOI: 10.1007/s12264-014-1463-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 04/10/2014] [Indexed: 01/08/2023] Open
Abstract
Cerebrovascular diseases are caused by interruption or significant impairment of the blood supply to the brain, which leads to a cascade of metabolic and molecular alterations resulting in functional disturbance and morphological damage. These pathophysiological changes can be assessed by positron emission tomography (PET), which permits the regional measurement of physiological parameters and imaging of the distribution of molecular markers. PET has broadened our understanding of the flow and metabolic thresholds critical for the maintenance of brain function and morphology: in this application, PET has been essential in the transfer of the concept of the penumbra (tissue with perfusion below the functional threshold but above the threshold for the preservation of morphology) to clinical stroke and thereby has had great impact on developing treatment strategies. Radioligands for receptors can be used as early markers of irreversible neuronal damage and thereby can predict the size of the final infarcts; this is also important for decisions concerning invasive therapy in large ("malignant") infarctions. With PET investigations, the reserve capacity of blood supply to the brain can be tested in obstructive arteriosclerosis of the supplying arteries, and this again is essential for planning interventions. The effect of a stroke on the surrounding and contralateral primarily unaffected tissue can be investigated, and these results help to understand the symptoms caused by disturbances in functional networks. Chronic cerebrovascular disease causes vascular cognitive disorders, including vascular dementia. PET permits the detection of the metabolic disturbances responsible for cognitive impairment and dementia, and can differentiate vascular dementia from degenerative diseases. It may also help to understand the importance of neuroinflammation after stroke and its interaction with amyloid deposition in the development of dementia. Although the clinical application of PET investigations is limited, this technology had and still has a great impact on research into cerebrovascular diseases.
Collapse
|
82
|
Taheri S, Shunmugavel A, Clark D, Shi H. Isoflurane reduces the ischemia reperfusion injury surge: a longitudinal study with MRI. Brain Res 2014; 1586:173-83. [PMID: 25124744 DOI: 10.1016/j.brainres.2014.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 08/04/2014] [Indexed: 01/30/2023]
Abstract
BACKGROUND Recent studies show neuroprotective benefits of isoflurane (ISO) administered during cerebral ischemia. However, the available studies evaluated cerebral injury only at a single time point following the intervention and thus the longitudinal effect of ISO on ischemic tissues remains to be investigated. OBJECTIVE The objective of the present study was to investigate the longitudinal effect of ISO treatment in counteracting the deleterious effect of ischemia by evoking the transcription factor, hypoxia inducible factor-1 (HIF-1), and vascular endothelial growth factor (VEGF). METHODS Focal cerebral ischemia was induced in 70 rats by filament medial cerebral artery occlusion (MCAo) method. MCAo rats were randomly assigned to control (90 min ischemia) and MCAo+ISO (90 min ischemia+2% ISO) groups. Infarct volume, edema, intracerebral hemorrhage (ICH), and regional cerebral blood flow (rCBF) were measured in eight in vivo sequential MR imaging sessions for 3 weeks. Western blot analysis and immunofluorescence were used to determine the expression level of HIF-1α (the regulatable subunit of HIF-1) and VEGF proteins. RESULTS ISO inhalation during ischemia significantly decreased the surge of infarct volume, edema, ICH, and reduced the mortality rate (p<0.01). ISO transiently altered the rCBF, significantly enhanced the expression of HIF-1α and VEGF, and decreased the immune cell infiltration. Locomotor dysfunction was ameliorated at a significantly faster pace, and the benefit was seen to persist up to three weeks. CONCLUSION Treatment with ISO during ischemia limits the deadly surge in the dynamics of ischemia reperfusion injury with no observed long-term inverse effect.
Collapse
Affiliation(s)
- Saeid Taheri
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, 29425.
| | | | - Danielle Clark
- Department of Pediatrics,Medical University of South Carolina, Charleston, SC, 29425
| | - Honglian Shi
- Department of Pharmacology & Toxicology, University of Kansas, Lawrence, KS, 66045
| |
Collapse
|
83
|
Suridjan I, Rusjan PM, Kenk M, Verhoeff NPLG, Voineskos AN, Rotenberg D, Wilson AA, Meyer JH, Houle S, Mizrahi R. Quantitative imaging of neuroinflammation in human white matter: a positron emission tomography study with translocator protein 18 kDa radioligand, [18F]-FEPPA. Synapse 2014; 68:536-47. [PMID: 25043159 DOI: 10.1002/syn.21765] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 06/25/2014] [Indexed: 11/06/2022]
Abstract
The ability to quantify translocator protein 18 kDa (TSPO) in white matter (WM) is important to understand the role of neuroinflammation in neurological disorders with WM involvement. This article aims to extend the utility of TSPO imaging in WM using a second-generation radioligand, [18F]-FEPPA, and high-resolution research tomograph (HRRT) positron emission tomography (PET) camera system. Four WM regions of interests (WM-ROI), relevant to the study of aging and neuroinflammatory diseases, were examined. The corpus callosum, cingulum bundle, superior longitudinal fasciculus, and posterior limb of internal capsule were delineated automatically onto subject's T1 -weighted magnetic resonance image using a diffusion tensor imaging-based WM template. The TSPO polymorphism (rs6971) stratified individuals to three genetic groups: high-affinity binders (HAB), mixed-affinity binders (MAB), and low-affinity binders. [18F]-FEPPA PET scans were acquired on 32 healthy subjects and analyzed using a full kinetic compartment analysis. The two-tissue compartment model showed moderate identifiability (coefficient of variation 15-19%) for [18F]-FEPPA total volume distribution (VT ) in WM-ROIs. Noise affects VT variability, although its effect on bias was small (6%). In a worst-case scenario, ≤6% of simulated data did not fit reliably. A simulation of increased TSPO density exposed minimal effect on variability and identifiability of [18F]-FEPPA VT in WM-ROIs. We found no association between age and [18F]-FEPPA VT in WM-ROIs. The VT values were 15% higher in HAB than in MAB, although the difference was not statistically significant. This study provides evidence for the utility and limitations of [18F]-FEPPA PET to measure TSPO expression in WM.
Collapse
Affiliation(s)
- Ivonne Suridjan
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, M5T 1R8, Canada; Institute of Medical Science, University of Toronto, Ontario, M5S 1A8, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Thiel A, Cechetto DF, Heiss WD, Hachinski V, Whitehead SN. Amyloid burden, neuroinflammation, and links to cognitive decline after ischemic stroke. Stroke 2014; 45:2825-9. [PMID: 25005439 DOI: 10.1161/strokeaha.114.004285] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Alexander Thiel
- From the Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada (A.T.); Vulnerable Brain Laboratory, Department of Anatomy and Cell Biology (D.F.C., S.N.W.), and Department of Clinical Neurological Sciences, London Health Sciences Centre (V.H., S.N.W.), Western University, London, Ontario, Canada; and Max Planck Institute for Neurological Research, Cologne, Germany (W.-D.H.)
| | - David F Cechetto
- From the Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada (A.T.); Vulnerable Brain Laboratory, Department of Anatomy and Cell Biology (D.F.C., S.N.W.), and Department of Clinical Neurological Sciences, London Health Sciences Centre (V.H., S.N.W.), Western University, London, Ontario, Canada; and Max Planck Institute for Neurological Research, Cologne, Germany (W.-D.H.)
| | - Wolf-Dieter Heiss
- From the Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada (A.T.); Vulnerable Brain Laboratory, Department of Anatomy and Cell Biology (D.F.C., S.N.W.), and Department of Clinical Neurological Sciences, London Health Sciences Centre (V.H., S.N.W.), Western University, London, Ontario, Canada; and Max Planck Institute for Neurological Research, Cologne, Germany (W.-D.H.)
| | - Vladimir Hachinski
- From the Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada (A.T.); Vulnerable Brain Laboratory, Department of Anatomy and Cell Biology (D.F.C., S.N.W.), and Department of Clinical Neurological Sciences, London Health Sciences Centre (V.H., S.N.W.), Western University, London, Ontario, Canada; and Max Planck Institute for Neurological Research, Cologne, Germany (W.-D.H.)
| | - Shawn N Whitehead
- From the Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada (A.T.); Vulnerable Brain Laboratory, Department of Anatomy and Cell Biology (D.F.C., S.N.W.), and Department of Clinical Neurological Sciences, London Health Sciences Centre (V.H., S.N.W.), Western University, London, Ontario, Canada; and Max Planck Institute for Neurological Research, Cologne, Germany (W.-D.H.).
| |
Collapse
|
85
|
|
86
|
Ribeiro MJ, Vercouillie J, Debiais S, Cottier JP, Bonnaud I, Camus V, Banister S, Kassiou M, Arlicot N, Guilloteau D. Could (18) F-DPA-714 PET imaging be interesting to use in the early post-stroke period? EJNMMI Res 2014; 4:28. [PMID: 25006546 PMCID: PMC4077629 DOI: 10.1186/s13550-014-0028-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 05/07/2014] [Indexed: 12/13/2022] Open
Abstract
Background Cerebral stroke is a severe and frequent condition that requires rapid and reliable diagnosis. If administered shortly after the first symptoms manifest themselves, IV thrombolysis has been shown to increase the functional prognosis by restoring brain reperfusion. However, a better understanding of the pathophysiology of stroke should help to identify potential new therapeutic targets. Stroke is known to induce an inflammatory brain reaction that involves overexpression of the 18-kDa translocator protein (TSPO) in glial cells and infiltrated leukocytes, which can be visualised by positron emission tomography (PET). We aimed to evaluate post-stroke neuroinflammation using the PET TSPO radioligand 18 F-DPA-714. Methods Nine patients underwent 18 F-DPA-714 PET and magnetic resonance imaging (MRI) between 8 and 18 days after the ictus. Co-registration of MRI and PET images was used to define three volumes of interest (VOIs): core infarction, contralateral region, and cerebellum ipsilateral to the stroke lesion. Time activity curves were obtained from each VOI, and ratios of mean and maximum activities between the VOIs were calculated. Results We observed an increased uptake of 18 F-DPA-714 co-localised with the infarct tissue and extension beyond the region corresponding to the damage in the blood brain barrier. No correlation was identified between 18 F-DPA-714 uptake and infarct volume. 18 F-DPA-714 uptake in ischemic lesion (mainly associated with TSPO expression in the infarct area and in the surrounding neighbourhood) slowly decreased from 10 min pi to the end of the PET acquisition, remaining higher than that in both contralateral region and ipsilateral cerebellum. Conclusion Our results show that 18 F-DPA-714 uptake after acute ischemia is mainly associated with TSPO expression in the infarct area and in the surrounding neighbourhood. We also demonstrated that the kinetics of 18 F-DPA-714 differs in injured tissue compared to normal tissue. Therefore, 18 F-DPA-714 may be useful in assessing the extent of neuroinflammation associated with acute stroke and could also help to predict clinical outcomes and functional recovery, as well as to assess therapeutic strategies, such as the use of neuroprotective/anti-inflammatory drugs.
Collapse
Affiliation(s)
- Maria-Joao Ribeiro
- Université François Rabelais de Tours, Tours, UMR-S930, France ; Inserm U930, University of Tours, Tours 37000, France ; CHRU Tours, Tours 37000, France ; CIC-IT INSERM 806 Ultrasons et Radiopharmaceutiques, Tours, France ; Service de Médecine Nucléaire, Hôpital Bretonneau, 2, Boulevard Tonnellé, Tours CEDEX 37044, France
| | - Johnny Vercouillie
- Université François Rabelais de Tours, Tours, UMR-S930, France ; Inserm U930, University of Tours, Tours 37000, France
| | | | - Jean-Philippe Cottier
- Université François Rabelais de Tours, Tours, UMR-S930, France ; Inserm U930, University of Tours, Tours 37000, France ; CHRU Tours, Tours 37000, France
| | | | - Vincent Camus
- Université François Rabelais de Tours, Tours, UMR-S930, France ; Inserm U930, University of Tours, Tours 37000, France ; CHRU Tours, Tours 37000, France ; CIC INSERM 202, Tours, France
| | - Samuel Banister
- School of Chemistry, University of Sydney, Sydney 2006, New South Wales, Australia ; Brain and Mind Research Institute, Sydney 2050, New South Wales, Australia
| | - Michael Kassiou
- School of Chemistry, University of Sydney, Sydney 2006, New South Wales, Australia ; Brain and Mind Research Institute, Sydney 2050, New South Wales, Australia ; Discipline of Medical Radiation Sciences, University of Sydney, Sydney 2006, New South Wales, Australia
| | - Nicolas Arlicot
- Université François Rabelais de Tours, Tours, UMR-S930, France ; Inserm U930, University of Tours, Tours 37000, France ; CHRU Tours, Tours 37000, France
| | - Denis Guilloteau
- Université François Rabelais de Tours, Tours, UMR-S930, France ; Inserm U930, University of Tours, Tours 37000, France ; CHRU Tours, Tours 37000, France ; CIC-IT INSERM 806 Ultrasons et Radiopharmaceutiques, Tours, France ; CIC INSERM 202, Tours, France
| |
Collapse
|
87
|
Amtul Z, Whitehead SN, Keeley RJ, Bechberger J, Fisher AL, McDonald RJ, Naus CC, Munoz DG, Cechetto DF. Comorbid rat model of ischemia and β-amyloid toxicity: striatal and cortical degeneration. Brain Pathol 2014; 25:24-32. [PMID: 24725245 DOI: 10.1111/bpa.12149] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/02/2014] [Indexed: 12/23/2022] Open
Abstract
Levels of cerebral amyloid, presumably β-amyloid (Abeta), toxicity and the incidence of cortical and subcortical ischemia increases with age. However, little is known about the severe pathological condition and dementia that occur as a result of the comorbid occurrence of this vascular risk factor and Abeta toxicity. Clinical studies have indicated that small ischemic lesions in the striatum are particularly important in generating dementia in combination with minor amyloid lesions. These cognitive deficits are highly likely to be caused by changes in the cortex. In this study, we examined the viability and morphological changes in microglial and neuronal cells, gap junction proteins (connexin43) and neuritic/axonal retraction (Fer Kinase) in the striatum and cerebral cortex using a comorbid rat model of striatal injections of endothelin-1 (ET1) and Abeta toxicity. The results demonstrated ventricular enlargement, striatal atrophy, substantial increases in β-amyloid, ramified microglia and increases in neuritic retraction in the combined models of stroke and Abeta toxicity. Changes in connexin43 occurred equally in both groups of Abeta-treated rats, with and without focal ischemia. Although previous behavioral tests demonstrated impairment in memory and learning, the visual discrimination radial maze task did not show significant difference, suggesting the cognitive impairment in these models is not related to damage to the dorsolateral striatum. These results suggest an insight into the relationship between cortical/striatal atrophy, pathology and functional impairment.
Collapse
Affiliation(s)
- Zareen Amtul
- CIHR Group on Vascular Cognitive Impairment, Department of Anatomy and Cell Biology, Western University, London, ON, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Curia G, Lucchi C, Vinet J, Gualtieri F, Marinelli C, Torsello A, Costantino L, Biagini G. Pathophysiogenesis of mesial temporal lobe epilepsy: is prevention of damage antiepileptogenic? Curr Med Chem 2014; 21:663-88. [PMID: 24251566 PMCID: PMC4101766 DOI: 10.2174/0929867320666131119152201] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/04/2013] [Accepted: 08/29/2013] [Indexed: 12/26/2022]
Abstract
Temporal lobe epilepsy (TLE) is frequently associated with hippocampal sclerosis, possibly caused by a primary brain injury that occurred a long time before the appearance of neurological symptoms. This type of epilepsy is characterized by refractoriness to drug treatment, so to require surgical resection of mesial temporal regions involved in seizure onset. Even this last therapeutic approach may fail in giving relief to patients. Although prevention of hippocampal damage and epileptogenesis after a primary event could be a key innovative approach to TLE, the lack of clear data on the pathophysiological mechanisms leading to TLE does not allow any rational therapy. Here we address the current knowledge on mechanisms supposed to be involved in epileptogenesis, as well as on the possible innovative treatments that may lead to a preventive approach. Besides loss of principal neurons and of specific interneurons, network rearrangement caused by axonal sprouting and neurogenesis are well known phenomena that are integrated by changes in receptor and channel functioning and modifications in other cellular components. In particular, a growing body of evidence from the study of animal models suggests that disruption of vascular and astrocytic components of the blood-brain barrier takes place in injured brain regions such as the hippocampus and piriform cortex. These events may be counteracted by drugs able to prevent damage to the vascular component, as in the case of the growth hormone secretagogue ghrelin and its analogues. A thoroughly investigation on these new pharmacological tools may lead to design effective preventive therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - G Biagini
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Laboratorio di Epilettologia Sperimentale, Universita di Modena e Reggio Emilia, Via Campi, 287, 41125 Modena, Italy.
| |
Collapse
|
89
|
Abstract
Neuroinflammation plays a central role in a variety of neurological diseases, including stroke, multiple sclerosis, Alzheimer’s disease, and malignant CNS neoplasms, among many other. Different cell types and molecular mediators participate in a cascade of events in the brain that is ultimately aimed at control, regeneration and repair, but leads to damage of brain tissue under pathological conditions. Non-invasive molecular imaging of key players in the inflammation cascade holds promise for identification and quantification of the disease process before it is too late for effective therapeutic intervention. In this review, we focus on molecular imaging techniques that target inflammatory cells and molecules that are of interest in neuroinflammation, especially those with high translational potential. Over the past decade, a plethora of molecular imaging agents have been developed and tested in animal models of (neuro)inflammation, and a few have been translated from bench to bedside. The most promising imaging techniques to visualize neuroinflammation include MRI, positron emission tomography (PET), single photon emission computed tomography (SPECT), and optical imaging methods. These techniques enable us to image adhesion molecules to visualize endothelial cell activation, assess leukocyte functions such as oxidative stress, granule release, and phagocytosis, and label a variety of inflammatory cells for cell tracking experiments. In addition, several cell types and their activation can be specifically targeted in vivo, and consequences of neuroinflammation such as neuronal death and demyelination can be quantified. As we continue to make progress in utilizing molecular imaging technology to study and understand neuroinflammation, increasing efforts and investment should be made to bring more of these novel imaging agents from the “bench to bedside.”
Collapse
Affiliation(s)
- Benjamin Pulli
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA
| | - John W Chen
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA
| |
Collapse
|
90
|
Gupta M, Rana P, Trivedi R, Kumar BSH, Khan AR, Soni R, Rathore RKS, Khushu S. Comparative evaluation of brain neurometabolites and DTI indices following whole body and cranial irradiation: a magnetic resonance imaging and spectroscopy study. NMR IN BIOMEDICINE 2013; 26:1733-1741. [PMID: 24038203 DOI: 10.1002/nbm.3010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/27/2013] [Accepted: 07/15/2013] [Indexed: 06/02/2023]
Abstract
Understanding early differential response of brain during whole body radiation or cranial radiation exposure is of significant importance for better injury management during accidental or intentional exposure to ionizing radiation. We investigated the early microstructural and metabolic profiles using in vivo diffusion tensor imaging (DTI) and proton magnetic resonance spectroscopy ((1)H MRS) following whole body and cranial radiation exposure of 8 Gy in mice using a 7.0 T animal MRI system and compared profiles with sham controls at days 1, 3, 5 and 10 post irradiation. A significant decrease in fractional anisotropy (FA) values was found in hippocampus, thalamic and hypothalamic regions (p < 0.05) in both whole body and cranial irradiated groups compared with controls, suggesting radiation induced reactive astrogliosis or neuroinflammatory response. In animals exposed to whole body radiation, FA was significantly decreased in some additional brain regions such as sensory motor cortex and corpus callosum in comparison with cranial irradiation groups and controls. Changes in FA were observed till day 10 post irradiation in both the groups. However, MRS study from hippocampus revealed changes only in the whole body radiation dose group. Significant reduction in the ratios of the metabolites myoinositol (mI, p = 0.02) and taurine (tau, p = 0.03) to total creatine were observed, and these metabolic alterations persisted till day 10 post irradiation. To the best of our knowledge this study has for the first time documented a comparative account of microstructural and metabolic aspects of whole body and cranial radiation induced early brain injury using in vivo MRI. Overall our findings suggest differential response at microstructure and metabolite levels following cranial or whole body radiation exposure.
Collapse
Affiliation(s)
- Mamta Gupta
- NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Song Z, Dang L, Zhou Y, Dong Y, Liang H, Zhu Z, Pan S. Why do stroke patients with negative motor evoked potential show poor limb motor function recovery? Neural Regen Res 2013; 8:2713-24. [PMID: 25206582 PMCID: PMC4145996 DOI: 10.3969/j.issn.1673-5374.2013.29.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 06/09/2013] [Indexed: 11/18/2022] Open
Abstract
Negative motor evoked potentials after cerebral infarction, indicative of poor recovery of limb motor function, tend to be accompanied by changes in fractional anisotropy values and the cerebral peduncle area on the affected side, but the characteristics of these changes have not been reported. This study included 57 cases of cerebral infarction whose motor evoked potentials were tested in the 24 hours after the first inspection for diffusion tensor imaging, in which 29 cases were in the negative group and 28 cases in the positive group. Twenty-nine patients with negative motor evoked potentials were divided into two groups according to fractional anisotropy on the affected side of the cerebral peduncle: a fractional anisotropy < 0.36 group and a fractional anisotropy ≥ 0.36 group. All patients underwent a regular magnetic resonance imaging and a diffusion tensor imaging examination at 1 week, 1, 3, 6 and 12 months after cerebral infarction. The Fugl-Meyer scores of their hemiplegic limbs were tested before the magnetic resonance and diffusion tensor imaging tions. In the negative motor evoked potential group, fractional anisotropy in the affected cerebral peduncle declined progressively, which was most obvious in the first 1-3 months after the onset of cerebral infarction. The areas and area asymmetries of the cerebral peduncle on the affected side were significantly decreased at 6 and 12 months after onset. At 12 months after onset, the area asymmetries of the cerebral peduncle on the affected side were lower than the normal lower limit value of 0.83. Fugl-Meyer scores in the fractional anisotropy ≥ 0.36 group were significantly higher than in the fractional anisotropy < 0.36 group at 3-12 months after onset. The fractional anisotropy of the cerebral peduncle in the positive motor evoked potential group decreased in the first 1 month after onset, and stayed unchanged from 3-12 months; there was no change in the area of the cerebral peduncle in the first 1-12 months after cerebral infarction. These findings confirmed that if the fractional anisotropy of the cerebral peduncle on the affected side is < 0.36 and the area asymmetries < 0.83 in patients with negative motor evoked potential after cerebral infarction, then poor hemiplegic limb motor function recovery may occur.
Collapse
Affiliation(s)
- Zhibin Song
- Department of Neurology, Xiaolan Hospital of Southern Medical University, Zhongshan 528415, Guangdong Province, China
| | - Lijuan Dang
- Department of Neurology, Xiaolan Hospital of Southern Medical University, Zhongshan 528415, Guangdong Province, China
| | - Yanling Zhou
- Department of Neurology, Xiaolan Hospital of Southern Medical University, Zhongshan 528415, Guangdong Province, China
| | - Yanjiang Dong
- Department of Neurology, Xiaolan Hospital of Southern Medical University, Zhongshan 528415, Guangdong Province, China
| | - Haimao Liang
- Department of Neurology, Xiaolan Hospital of Southern Medical University, Zhongshan 528415, Guangdong Province, China
| | - Zhengfeng Zhu
- Department of Neurology, Xiaolan Hospital of Southern Medical University, Zhongshan 528415, Guangdong Province, China
| | - Suyue Pan
- Department of Neurology, Nanfang Hospital of Southern Medical University, Guangzhou 510515, Guangdong Province, China
| |
Collapse
|
92
|
Chin Y, Kishi M, Sekino M, Nakajo F, Abe Y, Terazono Y, Hiroyuki O, Kato F, Koizumi S, Gachet C, Hisatsune T. Involvement of glial P2Y₁ receptors in cognitive deficit after focal cerebral stroke in a rodent model. J Neuroinflammation 2013; 10:95. [PMID: 23890321 PMCID: PMC3733849 DOI: 10.1186/1742-2094-10-95] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 07/19/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Neuroinflammation is associated with many conditions that lead to dementia, such as cerebrovascular disorders or Alzheimer's disease. However, the specific role of neuroinflammation in the progression of cognitive deficits remains unclear. To understand the molecular mechanisms underlying these events we used a rodent model of focal cerebral stroke, which causes deficits in hippocampus-dependent cognitive function. METHODS Cerebral stroke was induced by middle cerebral artery occlusion (MCAO). Hippocampus-dependent cognitive function was evaluated by a contextual fear conditioning test. The glial neuroinflammatory responses were investigated by immunohistochemical evaluation and diffusion tensor MRI (DTI). We used knockout mice for P2Y₁ (P2Y₁KO), a glial ADP/ATP receptor that induces the release of proinflammatory cytokines, to examine the links among P2Y₁-mediated signaling, the neuroinflammatory response, and cognitive function. RESULTS Declines in cognitive function and glial neuroinflammatory response were observed after MCAO in both rats and mice. Changes in the hippocampal tissue were detected by DTI as the mean diffusivity (MD) value, which corresponded with the cognitive decline at 4 days, 1 week, 3 weeks, and 2 months after MCAO. Interestingly, the P2Y₁KO mice with MCAO showed a decline in sensory-motor function, but not in cognition. Furthermore, the P2Y₁KO mice showed neither a hippocampal glial neuroinflammatory response (as assessed by immunohistochemistry) nor a change in hippocampal MD value after MCAO. In addition, wild-type mice treated with a P2Y₁-specific antagonist immediately after reperfusion did not show cognitive decline. CONCLUSION Our findings indicate that glial P2Y₁ receptors are involved in the hippocampal inflammatory response. The findings from this study may contribute to the development of a therapeutic strategy for brain infarction, targeting the P2Y₁ receptor.
Collapse
Affiliation(s)
- Yo Chin
- Department of Integrated Biosciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Wu C, Li F, Niu G, Chen X. PET imaging of inflammation biomarkers. Theranostics 2013; 3:448-66. [PMID: 23843893 PMCID: PMC3706689 DOI: 10.7150/thno.6592] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 05/24/2013] [Indexed: 01/04/2023] Open
Abstract
Inflammation plays a significant role in many disease processes. Development in molecular imaging in recent years provides new insight into the diagnosis and treatment evaluation of various inflammatory diseases and diseases involving inflammatory process. Positron emission tomography using (18)F-FDG has been successfully applied in clinical oncology and neurology and in the inflammation realm. In addition to glucose metabolism, a variety of targets for inflammation imaging are being discovered and utilized, some of which are considered superior to FDG for imaging inflammation. This review summarizes the potential inflammation imaging targets and corresponding PET tracers, and the applications of PET in major inflammatory diseases and tumor associated inflammation. Also, the current attempt in differentiating inflammation from tumor using PET is also discussed.
Collapse
|
94
|
Younger J, Noor N, McCue R, Mackey S. Low-dose naltrexone for the treatment of fibromyalgia: findings of a small, randomized, double-blind, placebo-controlled, counterbalanced, crossover trial assessing daily pain levels. ACTA ACUST UNITED AC 2013; 65:529-38. [PMID: 23359310 DOI: 10.1002/art.37734] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 09/27/2012] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To determine whether low dosages (4.5 mg/day) of naltrexone reduce fibromyalgia severity as compared with the nonspecific effects of placebo. In this replication and extension study of a previous clinical trial, we tested the impact of low-dose naltrexone on daily self-reported pain. Secondary outcomes included general satisfaction with life, positive mood, sleep quality, and fatigue. METHODS Thirty-one women with fibromyalgia participated in the randomized, double-blind, placebo-controlled, counterbalanced, crossover study. During the active drug phase, participants received 4.5 mg of oral naltrexone daily. An intensive longitudinal design was used to measure daily levels of pain. RESULTS When contrasting the condition end points, we observed a significantly greater reduction of baseline pain in those taking low-dose naltrexone than in those taking placebo (28.8% reduction versus 18.0% reduction; P = 0.016). Low-dose naltrexone was also associated with improved general satisfaction with life (P = 0.045) and with improved mood (P = 0.039), but not improved fatigue or sleep. Thirty-two percent of participants met the criteria for response (defined as a significant reduction in pain plus a significant reduction in either fatigue or sleep problems) during low-dose naltrexone therapy, as contrasted with an 11% response rate during placebo therapy (P = 0.05). Low-dose naltrexone was rated equally tolerable as placebo, and no serious side effects were reported. CONCLUSION The preliminary evidence continues to show that low-dose naltrexone has a specific and clinically beneficial impact on fibromyalgia pain. The medication is widely available, inexpensive, safe, and well-tolerated. Parallel-group randomized controlled trials are needed to fully determine the efficacy of the medication.
Collapse
Affiliation(s)
- Jarred Younger
- Stanford University School of Medicine, Palo Alto, California 94304-1573, USA.
| | | | | | | |
Collapse
|
95
|
Hernandez-Ontiveros DG, Tajiri N, Acosta S, Giunta B, Tan J, Borlongan CV. Microglia activation as a biomarker for traumatic brain injury. Front Neurol 2013; 4:30. [PMID: 23531681 PMCID: PMC3607801 DOI: 10.3389/fneur.2013.00030] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 03/10/2013] [Indexed: 12/24/2022] Open
Abstract
Traumatic brain injury (TBI) has become the signature wound of wars in Afghanistan and Iraq. Injury may result from a mechanical force, a rapid acceleration-deceleration movement, or a blast wave. A cascade of secondary cell death events ensues after the initial injury. In particular, multiple inflammatory responses accompany TBI. A series of inflammatory cytokines and chemokines spreads to normal brain areas juxtaposed to the core impacted tissue. Among the repertoire of immune cells involved, microglia is a key player in propagating inflammation to tissues neighboring the core site of injury. Neuroprotective drug trials in TBI have failed, likely due to their sole focus on abrogating neuronal cell death and ignoring the microglia response despite these inflammatory cells’ detrimental effects on the brain. Another relevant point to consider is the veracity of results of animal experiments due to deficiencies in experimental design, such as incomplete or inadequate method description, data misinterpretation, and reporting may introduce bias and give false-positive results. Thus, scientific publications should follow strict guidelines that include randomization, blinding, sample-size estimation, and accurate handling of all data (Landis et al., 2012). A prolonged state of inflammation after brain injury may linger for years and predispose patients to develop other neurological disorders, such as Alzheimer’s disease. TBI patients display progressive and long-lasting impairments in their physical, cognitive, behavioral, and social performance. Here, we discuss inflammatory mechanisms that accompany TBI in an effort to increase our understanding of the dynamic pathological condition as the disease evolves over time and begin to translate these findings for defining new and existing inflammation-based biomarkers and treatments for TBI.
Collapse
Affiliation(s)
- Diana G Hernandez-Ontiveros
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, Morsani College of Medicine, University of South Florida Tampa, FL, USA
| | | | | | | | | | | |
Collapse
|
96
|
Kobylecki C, Counsell SJ, Cabanel N, Wächter T, Turkheimer FE, Eggert K, Oertel W, Brooks DJ, Gerhard A. Diffusion-weighted imaging and its relationship to microglial activation in parkinsonian syndromes. Parkinsonism Relat Disord 2013; 19:527-32. [PMID: 23425503 DOI: 10.1016/j.parkreldis.2013.01.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 01/19/2013] [Accepted: 01/22/2013] [Indexed: 11/26/2022]
Abstract
Microglial activation has been implicated in the pathogenesis of Parkinson's disease (PD) and atypical parkinsonian syndromes, and regional microstructural changes have been identified using diffusion-weighted MR imaging. It is not known how these two phenomena might be connected. We hypothesized that changes in regional apparent diffusion coefficient (rADC) in atypical parkinsonian syndromes would correlate with microglial activation. In our study we have evaluated changes in rADC in 11 healthy controls, 9 patients with PD and 11 with either multiple system atrophy or progressive supranuclear palsy. The patients also underwent [(11)C]-(R)-PK11195 positron emission tomography, a marker of microglial activation. Increased rADC was found compared to controls in the thalamus and midbrain of all parkinsonian patients, and in the putamen, frontal and deep white matter of patients with atypical parkinsonian syndromes. Putaminal rADC alone did not reliably differentiate PD from atypical parkinsonism. There was no correlation between [(11)C]-(R)-PK11195 binding potential and rADC in the basal ganglia in atypical parkinsonian syndromes. However, pontine PK11195 binding and rADC were positively correlated in atypical parkinsonism (r = 0.794, p = 0.0007), but not PD patients. In conclusion, microglial activation does not appear to contribute to the changes in putaminal water diffusivity associated with atypical parkinsonian syndromes, but may correlate with tissue damage in brainstem regions.
Collapse
Affiliation(s)
- Christopher Kobylecki
- Institute of Brain, Behaviour and Mental Health, University of Manchester, Manchester, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
97
|
|
98
|
Gulyás B, Tóth M, Schain M, Airaksinen A, Vas Á, Kostulas K, Lindström P, Hillert J, Halldin C. Evolution of microglial activation in ischaemic core and peri-infarct regions after stroke: A PET study with the TSPO molecular imaging biomarker [ C]vinpocetine. J Neurol Sci 2012; 320:110-7. [DOI: 10.1016/j.jns.2012.06.026] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 05/03/2012] [Accepted: 06/23/2012] [Indexed: 01/17/2023]
|
99
|
Giunta B, Obregon D, Velisetty R, Sanberg PR, Borlongan CV, Tan J. The immunology of traumatic brain injury: a prime target for Alzheimer's disease prevention. J Neuroinflammation 2012; 9:185. [PMID: 22849382 PMCID: PMC3458981 DOI: 10.1186/1742-2094-9-185] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 07/09/2012] [Indexed: 01/03/2023] Open
Abstract
A global health problem, traumatic brain injury (TBI) is especially prevalent in the current era of ongoing world military conflicts. Its pathological hallmark is one or more primary injury foci, followed by a spread to initially normal brain areas via cascades of inflammatory cytokines and chemokines resulting in an amplification of the original tissue injury by microglia and other central nervous system immune cells. In some cases this may predispose individuals to later development of Alzheimer’s disease (AD). The inflammatory-based progression of TBI has been shown to be active in humans for up to 17 years post TBI. Unfortunately, all neuroprotective drug trials have failed, and specific treatments remain less than efficacious. These poor results might be explained by too much of a scientific focus on neurons without addressing the functions of microglia in the brain, which are at the center of proinflammatory cytokine generation. To address this issue, we provide a survey of the TBI-related brain immunological mechanisms that may promote progression to AD. We discuss these immune and microglia-based inflammatory mechanisms involved in the progression of post-trauma brain damage to AD. Flavonoid-based strategies to oppose the antigen-presenting cell-like inflammatory phenotype of microglia will also be reviewed. The goal is to provide a rationale for investigations of inflammatory response following TBI which may represent a pathological link to AD. In the end, a better understanding of neuroinflammation could open therapeutic avenues for abrogation of secondary cell death and behavioral symptoms that may mediate the progression of TBI to later AD.
Collapse
Affiliation(s)
- Brian Giunta
- James A. Haley Veterans' Administration Hospital, 13000 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| | | | | | | | | | | |
Collapse
|
100
|
Radlinska BA, Blunk Y, Leppert IR, Minuk J, Pike GB, Thiel A. Changes in callosal motor fiber integrity after subcortical stroke of the pyramidal tract. J Cereb Blood Flow Metab 2012; 32:1515-24. [PMID: 22434071 PMCID: PMC3421088 DOI: 10.1038/jcbfm.2012.37] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the healthy brain, there are close correlations between task-related activation of the primary motor cortex (M1), the magnitude of interhemispheric inhibition, and microstructural properties of transcallosal fiber tracts. After subcortical stroke affecting the pyramidal tract (PT), an abnormal pattern of bilateral activity develops in M1. With this prospective longitudinal study, we aimed to determine whether a morphological correlate of poststroke disinhibition could be measured within 20 days and 6 months of PT stroke. Using diffusion tensor imaging with tractography, we delineated transcallosal motor fibers (CMF) in nine PT stroke patients, six patients with subcortical infarct not affecting the PT (NonPT) and six transient ischemic attack patients. We compared changes in CMF fractional anisotropy ratios (rFA) with rFA in a distinct bundle of callosal occipital fibers (COF). At the initial time point, there were no significant differences in rFA between groups and fiber bundles. At follow-up, PT-group rFA(CMF) was significantly lower than PT-group rFA(COF) and NonPT-group rFA(CMF). PT-group rFA(CMF) decreased over time and correlated with rFA of the PT (rFA(PT)) retrograde to the infarct at 6 months. Our data suggest a progressive degenerative transsynaptic effect of PT stroke on CMF, which could be a morphological correlate of transcallosal disinhibition.
Collapse
Affiliation(s)
- Basia A Radlinska
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, Montréal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|