51
|
Hinman JD, Ngo KJ, Kim D, Chen C, Abraham CR, Ghanbari M, Ikram MA, Kushner SA, Kawaguchi R, Coppola G, Goth K, Bellusci S, Hernandez I, Kosik KS, Fogel BL. miR-142-3p regulates cortical oligodendrocyte gene co-expression networks associated with tauopathy. Hum Mol Genet 2021; 30:103-118. [PMID: 33555315 PMCID: PMC8496370 DOI: 10.1093/hmg/ddaa252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/13/2020] [Accepted: 11/27/2020] [Indexed: 01/08/2023] Open
Abstract
Oligodendrocytes exist in a heterogenous state and are implicated in multiple neuropsychiatric diseases including dementia. Cortical oligodendrocytes are a glial population uniquely positioned to play a key role in neurodegeneration by synchronizing circuit connectivity but molecular pathways specific to this role are lacking. We utilized oligodendrocyte-specific translating ribosome affinity purification and RNA-seq (TRAP-seq) to transcriptionally profile adult mature oligodendrocytes from different regions of the central nervous system. Weighted gene co-expression network analysis reveals distinct region-specific gene networks. Two of these mature myelinating oligodendrocyte gene networks uniquely define cortical oligodendrocytes and differentially regulate cortical myelination (M8) and synaptic signaling (M4). These two cortical oligodendrocyte gene networks are enriched for genes associated with dementia including MAPT and include multiple gene targets of the regulatory microRNA, miR-142-3p. Using a combination of TRAP-qPCR, miR-142-3p overexpression in vitro, and miR-142-null mice, we show that miR-142-3p negatively regulates cortical myelination. In rTg4510 tau-overexpressing mice, cortical myelination is compromised, and tau-mediated neurodegeneration is associated with gene co-expression networks that recapitulate both the M8 and M4 cortical oligodendrocyte gene networks identified from normal cortex. We further demonstrate overlapping gene networks in mature oligodendrocytes present in normal cortex, rTg4510 and miR-142-null mice, and existing datasets from human tauopathies to provide evidence for a critical role of miR-142-3p-regulated cortical myelination and oligodendrocyte-mediated synaptic signaling in neurodegeneration.
Collapse
Affiliation(s)
- Jason D Hinman
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Kathie J Ngo
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Deborah Kim
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Cidi Chen
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118 USA
| | - Carmela R Abraham
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118 USA
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118 USA
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3000 CA, The Netherlands
- Department of Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad 13131 - 99137, Iran
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3000 CA, The Netherlands
| | - Steven A Kushner
- Department of Psychiatry, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3000 CA, The Netherlands
| | - Riki Kawaguchi
- Informatics Center for Neurogenetics and Neurogenomics, Semel Institute, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Giovanni Coppola
- Informatics Center for Neurogenetics and Neurogenomics, Semel Institute, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Kerstin Goth
- Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Justus Liebig University, 35392 Giessen, Germany
| | - Saverio Bellusci
- Cardio-Pulmonary Institute, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Justus Liebig University, 35392 Giessen, Germany
- Department of Pulmonary and Critical Care Medicine, Key Laboratory of Interventional Pulmonology of Zhejiang Province, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Israel Hernandez
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Kenneth S Kosik
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Brent L Fogel
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| |
Collapse
|
52
|
Lin KZ, Lei J, Roeder K. Exponential-Family Embedding With Application to Cell Developmental Trajectories for Single-Cell RNA-Seq Data. J Am Stat Assoc 2021; 116:457-470. [PMID: 34354320 PMCID: PMC8336573 DOI: 10.1080/01621459.2021.1886106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/11/2020] [Accepted: 11/29/2020] [Indexed: 10/22/2022]
Abstract
Scientists often embed cells into a lower-dimensional space when studying single-cell RNA-seq data for improved downstream analyses such as developmental trajectory analyses, but the statistical properties of such nonlinear embedding methods are often not well understood. In this article, we develop the exponential-family SVD (eSVD), a nonlinear embedding method for both cells and genes jointly with respect to a random dot product model using exponential-family distributions. Our estimator uses alternating minimization, which enables us to have a computationally efficient method, prove the identifiability conditions and consistency of our method, and provide statistically principled procedures to tune our method. All these qualities help advance the single-cell embedding literature, and we provide extensive simulations to demonstrate that the eSVD is competitive compared to other embedding methods. We apply the eSVD via Gaussian distributions where the standard deviations are proportional to the means to analyze a single-cell dataset of oligodendrocytes in mouse brains. Using the eSVD estimated embedding, we then investigate the cell developmental trajectories of the oligodendrocytes. While previous results are not able to distinguish the trajectories among the mature oligodendrocyte cell types, our diagnostics and results demonstrate there are two major developmental trajectories that diverge at mature oligodendrocytes. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplementary materials.
Collapse
Affiliation(s)
- Kevin Z. Lin
- Wharton Statistics Department, University of Pennsylvania, Philadelphia, PA
| | - Jing Lei
- Statistics & Data Science Department, Carnegie Mellon University, Pittsburgh, PA
| | - Kathryn Roeder
- Statistics & Data Science Department, Carnegie Mellon University, Pittsburgh, PA
| |
Collapse
|
53
|
Dietary Protein Source Influences Brain Inflammation and Memory in a Male Senescence-Accelerated Mouse Model of Dementia. Mol Neurobiol 2020; 58:1312-1329. [PMID: 33169333 DOI: 10.1007/s12035-020-02191-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/29/2020] [Indexed: 12/21/2022]
Abstract
Dementia is a pathological condition characterized by a decline in memory, as well as in other cognitive and social functions. The cellular and molecular mechanisms of brain damage in dementia are not completely understood; however, neuroinflammation is involved. Evidence suggests that chronic inflammation may impair cognitive performance and that dietary protein source may differentially influence this process. Dietary protein source has previously been shown to modify systemic inflammation in mouse models. Thus, we aimed to investigate the effect of chronic dietary protein source substitution in an ageing and dementia male mouse model, the senescence-accelerated mouse-prone 8 (SAMP8) model. We observed that dietary protein source differentially modified memory as shown by inhibitory avoidance testing at 4 months of age. Also, dietary protein source differentially modified neuroinflammation and gliosis in male SAMP8 mice. Our results suggest that chronic dietary protein source substitution may influence brain ageing and memory-related mechanisms in male SAMP8 mice. Moreover, the choice of dietary protein source in mouse diets for experimental purposes may need to be carefully considered when interpreting results.
Collapse
|
54
|
Morabito S, Miyoshi E, Michael N, Swarup V. Integrative genomics approach identifies conserved transcriptomic networks in Alzheimer's disease. Hum Mol Genet 2020; 29:2899-2919. [PMID: 32803238 PMCID: PMC7566321 DOI: 10.1093/hmg/ddaa182] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/10/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is a devastating neurological disorder characterized by changes in cell-type proportions and consequently marked alterations of the transcriptome. Here we use a data-driven systems biology meta-analytical approach across three human AD cohorts, encompassing six cortical brain regions, and integrate with multi-scale datasets comprising of DNA methylation, histone acetylation, transcriptome- and genome-wide association studies and quantitative trait loci to further characterize the genetic architecture of AD. We perform co-expression network analysis across more than 1200 human brain samples, identifying robust AD-associated dysregulation of the transcriptome, unaltered in normal human aging. We assess the cell-type specificity of AD gene co-expression changes and estimate cell-type proportion changes in human AD by integrating co-expression modules with single-cell transcriptome data generated from 27 321 nuclei from human postmortem prefrontal cortical tissue. We also show that genetic variants of AD are enriched in a microglial AD-associated module and identify key transcription factors regulating co-expressed modules. Additionally, we validate our results in multiple published human AD gene expression datasets, which can be easily accessed using our online resource (https://swaruplab.bio.uci.edu/consensusAD).
Collapse
Affiliation(s)
- Samuel Morabito
- Mathematical, Computational and Systems Biology (MCSB) Program, University of California, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, CA 92697, USA
| | - Emily Miyoshi
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, CA 92697, USA
| | - Neethu Michael
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, CA 92697, USA
| | - Vivek Swarup
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, CA 92697, USA
| |
Collapse
|
55
|
Angeli S, Kousiappa I, Stavrou M, Sargiannidou I, Georgiou E, Papacostas SS, Kleopa KA. Altered Expression of Glial Gap Junction Proteins Cx43, Cx30, and Cx47 in the 5XFAD Model of Alzheimer's Disease. Front Neurosci 2020; 14:582934. [PMID: 33117125 PMCID: PMC7575794 DOI: 10.3389/fnins.2020.582934] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/14/2020] [Indexed: 11/13/2022] Open
Abstract
Glial gap junction proteins, called connexins (Cxs), form gap junctions in the central nervous system (CNS) to allow the bidirectional cytosolic exchange of molecules between adjacent cells. Their involvement in inheritable diseases and the use of experimental animal models that closely mimic such diseases revealed the critical role of glial GJs in myelination and homeostasis. Cxs are also implicated in acquired demyelinating disorders, such as Multiple Sclerosis (MS) and Alzheimer's disease (AD). Animal and human studies have revealed a role of the astrocytic Cx43 in the progression of AD but the role of Cx47, which is the main partner of Cx43 in the astrocyte-oligodendrocyte GJs is still unknown. The aim of this study was to investigate the astrocytic connexins, Cx43 and Cx30 in relation to oligodendrocytic Cx47 in the cortex and thalamus of the 5XFAD mouse model of AD. The model was characterized by increased Aβ deposition, gliosis, neuronal loss, and memory impairment. Compared to wild-type mice, Cx43 and Cx30 showed increased immunoreactivity in older 5XFAD mice, reflecting astrogliosis, while Cx47 immunoreactivity was reduced. Moreover, Cx47 GJ plaques showed reduced colocalization with Cx43 plaques. Oligodendrocyte precursor cells (OPCs) and mature oligodendrocyte populations were also depleted, and myelin deficits were observed. Our findings indicate reduced astrocyte-oligodendrocyte gap junction connectivity and possibly a shift in Cx43 expression toward astrocyte-astrocyte gap junctions and/or hemichannels, that could impair oligodendrocyte homeostasis and myelination. However, other factors, such as Aβ toxicity, could directly affect oligodendrocyte survival in AD. Our study provides evidence that Cxs might have implications in the progression of AD, although the role of oligodendrocyte Cxs in AD requires further investigation.
Collapse
Affiliation(s)
- Stella Angeli
- Neurobiology Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Ioanna Kousiappa
- Neurobiology Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Marios Stavrou
- Department of Electrical and Computer Engineering, Faculty of Engineering, University of Cyprus, Nicosia, Cyprus
| | - Irene Sargiannidou
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Elena Georgiou
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Savvas S. Papacostas
- Neurobiology Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
- Dementia and Cognitive Disorders Center, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Medical School, University of Nicosia, Nicosia, Cyprus
| | - Kleopas A. Kleopa
- Cyprus School of Molecular Medicine, Nicosia, Cyprus
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Center for Neuromuscular disorders, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Center for Multiple Sclerosis and Related Disorders, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
56
|
D’Mello SR, Kindy MC. Overdosing on iron: Elevated iron and degenerative brain disorders. Exp Biol Med (Maywood) 2020; 245:1444-1473. [PMID: 32878460 PMCID: PMC7553095 DOI: 10.1177/1535370220953065] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
IMPACT STATEMENT Brain degenerative disorders, which include some neurodevelopmental disorders and age-associated diseases, cause debilitating neurological deficits and are generally fatal. A large body of emerging evidence indicates that iron accumulation in neurons within specific regions of the brain plays an important role in the pathogenesis of many of these disorders. Iron homeostasis is a highly complex and incompletely understood process involving a large number of regulatory molecules. Our review provides a description of what is known about how iron is obtained by the body and brain and how defects in the homeostatic processes could contribute to the development of brain diseases, focusing on Alzheimer's disease and Parkinson's disease as well as four other disorders belonging to a class of inherited conditions referred to as neurodegeneration based on iron accumulation (NBIA) disorders. A description of potential therapeutic approaches being tested for each of these different disorders is provided.
Collapse
Affiliation(s)
| | - Mark C Kindy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
- James A. Haley Veterans Affairs Medical Center, Tampa, FL 33612, USA
| |
Collapse
|
57
|
Chen J, Liu X, Zhong Y. Interleukin-17A: The Key Cytokine in Neurodegenerative Diseases. Front Aging Neurosci 2020; 12:566922. [PMID: 33132897 PMCID: PMC7550684 DOI: 10.3389/fnagi.2020.566922] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases are characterized by the loss of neurons and/or myelin sheath, which deteriorate over time and cause dysfunction. Interleukin 17A is the signature cytokine of a subset of CD4+ helper T cells known as Th17 cells, and the IL-17 cytokine family contains six cytokines and five receptors. Recently, several studies have suggested a pivotal role for the interleukin-17A (IL-17A) cytokine family in human inflammatory or autoimmune diseases and neurodegenerative diseases, including psoriasis, rheumatoid arthritis (RA), Alzheimer’s disease (AD), Parkinson’s disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), and glaucoma. Studies in recent years have shown that the mechanism of action of IL-17A is more subtle than simply causing inflammation. Although the specific mechanism of IL-17A in neurodegenerative diseases is still controversial, it is generally accepted now that IL-17A causes diseases by activating glial cells. In this review article, we will focus on the function of IL-17A, in particular the proposed roles of IL-17A, in the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Junjue Chen
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohong Liu
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yisheng Zhong
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
58
|
Vanhunsel S, Beckers A, Moons L. Designing neuroreparative strategies using aged regenerating animal models. Ageing Res Rev 2020; 62:101086. [PMID: 32492480 DOI: 10.1016/j.arr.2020.101086] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 04/13/2020] [Accepted: 05/08/2020] [Indexed: 12/13/2022]
Abstract
In our ever-aging world population, the risk of age-related neuropathies has been increasing, representing both a social and economic burden to society. Since the ability to regenerate in the adult mammalian central nervous system is very limited, brain trauma and neurodegeneration are often permanent. As a consequence, novel scientific challenges have emerged and many research efforts currently focus on triggering repair in the damaged or diseased brain. Nevertheless, stimulating neuroregeneration remains ambitious. Even though important discoveries have been made over the past decades, they did not translate into a therapy yet. Actually, this is not surprising; while these disorders mainly manifest in aged individuals, most of the research is being performed in young animal models. Aging of neurons and their environment, however, greatly affects the central nervous system and its capacity to repair. This review provides a detailed overview of the impact of aging on central nervous system functioning and regeneration potential, both in non-regenerating and spontaneously regenerating animal models. Additionally, we highlight the need for aging animal models with regenerative capacities in the search for neuroreparative strategies.
Collapse
Affiliation(s)
- Sophie Vanhunsel
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium
| | - An Beckers
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium
| | - Lieve Moons
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
59
|
The Mechanistic Role of Bridging Integrator 1 (BIN1) in Alzheimer's Disease. Cell Mol Neurobiol 2020; 41:1431-1440. [PMID: 32719966 DOI: 10.1007/s10571-020-00926-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/17/2020] [Indexed: 01/18/2023]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia. The majority of AD cases are late-onset, multifactorial cases. Genome-wide association studies have identified more than 30 loci associated with sporadic AD (SAD), one of which is Bridging integrator 1 (BIN1). For the past few years, there has been a consensus that BIN1 is second only to APOE as the strongest genetic risk factor for SAD. Therefore, many researchers have put great effort into studying the mechanism by which BIN1 might be involved in the pathogenetic process of AD. To date, plenty of evidence has shown that BIN1 may participate in several pathways in AD, including tau and amyloid pathology. In addition, BIN1 has been indicated to take part in other relevant pathways such as inflammation, apoptosis, and calcium homeostasis. In this review, we systemically summarize the research progress on how BIN1 participates in the development of AD, with the expectation of providing promising perspectives for future research.
Collapse
|
60
|
Alterations of transcriptome signatures in head trauma-related neurodegenerative disorders. Sci Rep 2020; 10:8811. [PMID: 32483284 PMCID: PMC7264177 DOI: 10.1038/s41598-020-65916-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 05/12/2020] [Indexed: 12/14/2022] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease that is associated with repetitive traumatic brain injury (TBI). CTE is known to share similar neuropathological features with Alzheimer’s disease (AD), but little is known about the molecular properties in CTE. To better understand the neuropathological mechanism of TBI-related disorders, we conducted transcriptome sequencing analysis of CTE including AD and CTE with AD (CTE/AD) post-mortem human brain samples. Through weighted gene co-expression network analysis (WGCNA) and principal component analysis (PCA), we characterized common and unique transcriptome signatures among CTE, CTE/AD, and AD. Interestingly, synapse signaling-associated gene signatures (such as synaptotagmins) were commonly down-regulated in CTE, CTE/AD, and AD. Quantitative real-time PCR (qPCR) and Western blot analyses confirmed that the levels of synaptotagmin 1 (SYT1) were markedly decreased in CTE and AD compared to normal. In addition, calcium/calmodulin-dependent protein kinase II (CaMKII), protein kinase A (PKA), protein kinase C (PKC), and AMPA receptor genes that play a pivotal role in memory function, were down-regulated in head trauma-related disorders. On the other hand, up-regulation of cell adhesion molecules (CAMs) associated genes was only found in CTE. Our results indicate that dysregulation of synaptic transmission- and memory function-related genes are closely linked to the pathology of head injury-related disorder and AD. Alteration of CAMs-related genes may be specific pathological markers for the CTE pathology.
Collapse
|
61
|
Ferrer I, Andrés-Benito P. White matter alterations in Alzheimer's disease without concomitant pathologies. Neuropathol Appl Neurobiol 2020; 46:654-672. [PMID: 32255227 PMCID: PMC7754505 DOI: 10.1111/nan.12618] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/23/2020] [Indexed: 12/14/2022]
Abstract
Aims Most individuals with AD neuropathological changes have co‐morbidities which have an impact on the integrity of the WM. This study analyses oligodendrocyte and myelin markers in the frontal WM in a series of AD cases without clinical or pathological co‐morbidities. Methods From a consecutive autopsy series, 206 cases had neuropathological changes of AD; among them, only 33 were AD without co‐morbidities. WM alterations were first evaluated in coronal sections of the frontal lobe in every case. Then, RT‐qPCR and immunohistochemistry were carried out in the frontal WM of AD cases without co‐morbidities to analyse the expression of selected oligodendrocyte and myelin markers. Results WM demyelination was more marked in AD with co‐morbidities when compared with AD cases without co‐morbidities. Regarding the later, mRNA expression levels of MBP, PLP1, CNP, MAG, MAL, MOG and MOBP were preserved at stages I–II/0–A when compared with middle‐aged (MA) individuals, but significantly decreased at stages III–IV/0–C. This was accompanied by reduced expression of NG2 and PDGFRA mRNA, reduced numbers of NG2‐, Olig2‐ and HDAC2‐immunoreactive cells and reduced glucose transporter immunoreactivity. Partial recovery of some of these markers occurred at stages V–VI/B–C. Conclusions The present observations demonstrate that co‐morbidities have an impact on WM integrity in the elderly and in AD, and that early alterations in oligodendrocytes and transcription of genes linked to myelin proteins in WM occur in AD cases without co‐morbidities. These are followed by partial recovery attempts at advanced stages. These observations suggest that oligodendrocytopathy is part of AD.
Collapse
Affiliation(s)
- I Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain.,Bellvitge University Hospital, Barcelona, Spain.,Ministry of Economy and Competitiveness, CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - P Andrés-Benito
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain.,Ministry of Economy and Competitiveness, CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| |
Collapse
|
62
|
Singh AK, Singh SK, Nandi MK, Mishra G, Maurya A, Rai A, Rai GK, Awasthi R, Sharma B, Kulkarni GT. Berberine: A Plant-derived Alkaloid with Therapeutic Potential to Combat Alzheimer's disease. Cent Nerv Syst Agents Med Chem 2020; 19:154-170. [PMID: 31429696 DOI: 10.2174/1871524919666190820160053] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/29/2019] [Accepted: 08/06/2019] [Indexed: 12/20/2022]
Abstract
Berberine (a protoberberine isoquinoline alkaloid) has shown promising pharmacological activities, including analgesic, anti-inflammatory, anticancer, antidiabetic, anti-hyperlipidemic, cardioprotective, memory enhancement, antidepressant, antioxidant, anti-nociceptive, antimicrobial, anti- HIV and cholesterol-lowering effects. It is used in the treatment of the neurodegenerative disorder. It has strong evidence to serve as a potent phytoconstituent in the treatment of various neurodegenerative disorders such as AD. It limits the extracellular amyloid plaques and intracellular neurofibrillary tangles. It has also lipid-glucose lowering ability, hence can be used as a protective agent in atherosclerosis and AD. However, more detailed investigations along with safety assessment of berberine are warranted to clarify its role in limiting various risk factors and AD-related pathologies. This review highlights the pharmacological basis to control oxidative stress, neuroinflammation and protective effect of berberine in AD, which will benefit to the biological scientists in understanding and exploring the new vistas of berberine in combating Alzheimer's disease.
Collapse
Affiliation(s)
- Anurag K Singh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| | - Santosh K Singh
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| | - Manmath K Nandi
- Institute of Medical Sciences, Faculty of Ayurveda, Department of medicinal chemistry, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Gaurav Mishra
- Institute of Medical Sciences, Faculty of Ayurveda, Department of medicinal chemistry, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Anand Maurya
- Institute of Medical Sciences, Faculty of Ayurveda, Department of medicinal chemistry, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Arati Rai
- Hygia Institute of Pharmaceutical Education & Research, Lucknow-226020, Uttar Pradesh, India
| | - Gopal K Rai
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, Uttar Pradesh, India
| | - Rajendra Awasthi
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Sec 125, Noida, 201303, Uttar Pradesh, India
| | - Bhupesh Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Sec 125, Noida, 201303, Uttar Pradesh, India
| | - Giriraj T Kulkarni
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Sec 125, Noida, 201303, Uttar Pradesh, India
| |
Collapse
|
63
|
Bharani KL, Ledreux A, Gilmore A, Carroll SL, Granholm AC. Serum pro-BDNF levels correlate with phospho-tau staining in Alzheimer's disease. Neurobiol Aging 2020; 87:49-59. [PMID: 31882186 DOI: 10.1016/j.neurobiolaging.2019.11.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 11/02/2019] [Accepted: 11/15/2019] [Indexed: 12/15/2022]
Abstract
Disruption of brain-derived neurotrophic factor (BDNF) biosynthesis and/or signaling has been implicated in the pathogenesis of Alzheimer's disease (AD). We used postmortem brain and fluid samples from 20 patients with variable severity of AD and 11 controls to investigate whether BDNF levels in serum and brain tissue correlated with hippocampal pathology. Total BDNF, precursor BDNF (pro-BDNF), and mature BDNF were measured in cerebrospinal fluid, serum, and 3 postmortem brain regions. Histological markers for AD pathology, the BDNF cognate receptor (TrkB), and glia were measured in the hippocampus (HIP). Lower pro-BDNF levels were observed in the entorhinal and frontal cortices in AD cases compared with controls. AD cases also exhibited significantly lower staining densities of the cognate BDNF receptor TrkB in the HIP compared with controls, and TrkB staining was inversely correlated with both Amylo-Glo and pTau staining in the same region, suggesting a relationship between the density of the cognate BDNF receptor and accumulation of AD pathology. In addition, higher serum pro-BDNF levels correlated with lower HIP pro-BDNF levels and higher pTau staining in the HIP. Total BDNF levels in cortical regions were also negatively correlated with Amylo-Glo staining in the HIP suggesting that reduced BDNF cortical levels might influence hippocampal amyloid accumulation. These results strongly suggest that altered BDNF and TrkB receptors are involved in AD pathology and therefore warrant investigations into therapies involving the BDNF pathway.
Collapse
Affiliation(s)
- Krishna L Bharani
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - Aurélie Ledreux
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, USA
| | - Anah Gilmore
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, USA
| | - Steven L Carroll
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Ann-Charlotte Granholm
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA; Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, USA.
| |
Collapse
|
64
|
Neuroinflammation in CNS diseases: Molecular mechanisms and the therapeutic potential of plant derived bioactive molecules. PHARMANUTRITION 2020. [DOI: 10.1016/j.phanu.2020.100176] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
65
|
Lin J, Jo SB, Kim TH, Kim HW, Chew SY. RNA interference in glial cells for nerve injury treatment. J Tissue Eng 2020; 11:2041731420939224. [PMID: 32670539 PMCID: PMC7338726 DOI: 10.1177/2041731420939224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/13/2020] [Indexed: 12/12/2022] Open
Abstract
Drivers of RNA interference are potent for manipulating gene and protein levels, which enable the restoration of dysregulated mRNA expression that is commonly associated with injuries and diseases. This review summarizes the potential of targeting neuroglial cells, using RNA interference, to treat nerve injuries sustained in the central nervous system. In addition, the various methods of delivering these RNA interference effectors will be discussed.
Collapse
Affiliation(s)
- Junquan Lin
- School of Chemical and Biomedical
Engineering, Nanyang Technological University, Singapore
| | - Seung Bin Jo
- Institute of Tissue Regeneration
Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
| | - Tae-Hyun Kim
- Institute of Tissue Regeneration
Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science
& BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook
University, Cheonan, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration
Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Department of Nanobiomedical Science
& BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook
University, Cheonan, Republic of Korea
- UCL Eastman-Korea Dental Medicine
Innovation Centre, Dankook University, Cheonan, Republic of Korea
| | - Sing Yian Chew
- School of Chemical and Biomedical
Engineering, Nanyang Technological University, Singapore
- Lee Kong Chian School of Medicine,
Nanyang Technological University, Singapore
| |
Collapse
|
66
|
Abstract
The symptoms of Alzheimer disease reflect a loss of neural circuit integrity in the brain, but neurons do not work in isolation. Emerging evidence suggests that the intricate balance of interactions between neurons, astrocytes, microglia and vascular cells required for healthy brain function becomes perturbed during the disease, with early changes likely protecting neural circuits from damage, followed later by harmful effects when the balance cannot be restored. Moving beyond a neuronal focus to understand the complex cellular interactions in Alzheimer disease and how these change throughout the course of the disease may provide important insight into developing effective therapeutics.
Collapse
|
67
|
Leitner GR, Wenzel TJ, Marshall N, Gates EJ, Klegeris A. Targeting toll-like receptor 4 to modulate neuroinflammation in central nervous system disorders. Expert Opin Ther Targets 2019; 23:865-882. [PMID: 31580163 DOI: 10.1080/14728222.2019.1676416] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Introduction: Adverse immune activation contributes to many central nervous system (CNS) disorders. All main CNS cell types express toll-like receptor 4 (TLR 4). This receptor is critical for a myriad of immune functions such as cytokine secretion and phagocytic activity of microglia; however, imbalances in TLR 4 activation can contribute to the progression of neurodegenerative diseases. Areas covered: We considered available evidence implicating TLR 4 activation in the following CNS pathologies: Alzheimer's disease, Parkinson's disease, ischemic stroke, traumatic brain injury, multiple sclerosis, multiple systems atrophy, and Huntington's disease. We reviewed studies reporting effects of TLR 4-specific antagonists and agonists in models of peripheral and CNS diseases from the perspective of possible future use of TLR 4 ligands in CNS disorders. Expert opinion: TLR 4-specific antagonists could suppress neuroinflammation by reducing overproduction of inflammatory mediators; however, they may interfere with protein clearance mechanisms and myelination. Agonists that specifically activate myeloid differentiation primary-response protein 88 (MyD88)-independent pathway of TLR 4 signaling could facilitate beneficial glial phagocytic activity with limited activity as inducers of proinflammatory mediators. Deciphering the disease stage-specific involvement of TLR 4 in CNS pathologies is crucial for the future clinical development of TLR 4 agonists and antagonists.
Collapse
Affiliation(s)
- Gunnar R Leitner
- Department of Biology, University of British Columbia Okanagan Campus , Kelowna , British Columbia , Canada
| | - Tyler J Wenzel
- Department of Biology, University of British Columbia Okanagan Campus , Kelowna , British Columbia , Canada
| | - Nick Marshall
- Department of Biology, University of British Columbia Okanagan Campus , Kelowna , British Columbia , Canada
| | - Ellen J Gates
- Department of Biology, University of British Columbia Okanagan Campus , Kelowna , British Columbia , Canada
| | - Andis Klegeris
- Department of Biology, University of British Columbia Okanagan Campus , Kelowna , British Columbia , Canada
| |
Collapse
|
68
|
Gonzalo H, Nogueras L, Gil-Sánchez A, Hervás JV, Valcheva P, González-Mingot C, Martin-Gari M, Canudes M, Peralta S, Solana MJ, Pamplona R, Portero-Otin M, Boada J, Serrano JCE, Brieva L. Impairment of Mitochondrial Redox Status in Peripheral Lymphocytes of Multiple Sclerosis Patients. Front Neurosci 2019; 13:938. [PMID: 31551694 PMCID: PMC6738270 DOI: 10.3389/fnins.2019.00938] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/21/2019] [Indexed: 11/13/2022] Open
Abstract
Literature suggests that oxidative stress (OS) may be involved in the pathogenesis of multiple sclerosis (MS), in which the immune system is known to play a key role. However, to date, the OS in peripheral lymphocytes and its contribution to the disease remain unknown. The aim of the present study was to explore the influence of OS in peripheral lymphocytes of MS patients. To that end, a cross-sectional, observational pilot study was conducted [n = 58: 34 MS and 24 healthy subjects (control group)]. We have measured superoxide production and protein mitochondrial complex levels in peripheral blood mononuclear cells (PBMCs) isolated from MS patients and control. Lactate levels and the antioxidant capacity were determined in plasma. We adjusted the comparisons between study groups by age, sex and cell count according to case. Results demonstrated that PBMCs, specifically T cells, from MS patients exhibited significantly increased superoxide anion production compared to control group (p = 0.027 and p = 0.041, respectively). Increased superoxide production in PBMCs was maintained after the adjustment (p = 0.044). Regarding mitochondrial proteins, we observe a significant decrease in the representative protein content of the mitochondrial respiratory chain complexes I-V in PBMCs of MS patients (p = 0.002, p = 0.037, p = 0.03, p = 0.044, and p = 0.051, respectively), which was maintained for complexes I, III, and V after the adjustment (p = 0.026; p = 0.033; p = 0.033, respectively). In MS patients, a trend toward increased plasma lactate concentration was detected [8.04 mg lactate/dL (5.25, 9.49) in the control group, 11.36 mg lactate/dL (5.41, 14.81) in MS patients] that was statistically significant after the adjustment (p = 0.013). This might be indicative of compromised mitochondrial function. Finally, antioxidant capacity was also decreased in plasma from MS patients, both before (p = 0.027) and after adjusting for sex and age (p = 0.006). Our findings demonstrate that PBMCs of MS patients show impaired mitochondrial redox status and deficient antioxidant capacity. These results demonstrate for the first time the existence of mitochondrial alterations in the cells immune cells of MS patients already at the peripheral level.
Collapse
Affiliation(s)
- Hugo Gonzalo
- Institut de Recerca Biomèdica de Lleida, Lleida, Spain.,Clinical University Hospital of Valladolid (HCUV), Department of Research and Innovation, SACYL/IECSCYL, Valladolid, Spain
| | - Lara Nogueras
- Universitat de Lleida, Departament de Medicina Experimental, Lleida, Spain
| | | | | | | | | | | | - Marc Canudes
- Institut de Recerca Biomèdica de Lleida, Lleida, Spain
| | | | | | - Reinald Pamplona
- Universitat de Lleida, Departament de Medicina Experimental, Lleida, Spain
| | | | - Jordi Boada
- Universitat de Lleida, Departament de Medicina Experimental, Lleida, Spain
| | | | - Luis Brieva
- Hospital Universitario Arnau de Vilanova, Lleida, Spain
| |
Collapse
|
69
|
Iron Pathophysiology in Alzheimer’s Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1173:67-104. [DOI: 10.1007/978-981-13-9589-5_5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
70
|
Kreimerman I, Reyes AL, Paolino A, Pardo T, Porcal W, Ibarra M, Oliver P, Savio E, Engler H. Biological Assessment of a 18F-Labeled Sulforhodamine 101 in a Mouse Model of Alzheimer's Disease as a Potential Astrocytosis Marker. Front Neurosci 2019; 13:734. [PMID: 31379487 PMCID: PMC6646682 DOI: 10.3389/fnins.2019.00734] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 07/01/2019] [Indexed: 12/20/2022] Open
Abstract
Neurodegenerative diseases have mainly been associated with neuronal death. Recent investigations have shown that astroglia may modulate neuroinflammation in the early and late stages of the disease. [11C]Deuterodeprenyl ([11C]DED) is a tracer that has been used for reactive astrocyte detection in Alzheimer’s disease, Creutzfeldt–Jakob disease and amyotrophic lateral sclerosis, among others, with some limitations. To develop a new radiotracer for detecting astrocytosis and overcoming associated difficulties, we recently reported the synthesis of a sulfonamide derivative of Sulforhodamine 101 (SR101), labeled with 18F, namely SR101 N-(3-[18F]Fluoropropyl) sulfonamide ([18F]2B-SRF101). The red fluorescent dye SR101 has been used as a specific marker of astroglia in the neocortex of rodents using in vivo models. In the present work we performed a biological characterisation of the new tracer including biodistribution and micro-PET/computed tomography (CT) images. PET/CT studies with [11C]DED were also done to compare with [18F]2B-SRF101 in order to assess its potential as an astrocyte marker. Biodistribution studies with [18F]2B-SRF101 were carried out in C57BL6J black and transgenic (3xTg) mice. A hepatointestinal metabolization as well as the pharmacokinetic profile were determined, showing appropriate characteristics to become a PET diagnostic agent. Dynamic PET/CT studies were carried out with [18F]2B-SRF101 and [11C]DED to evaluate the distribution of both tracers in the brain. A significant difference in [18F]2B-SRF101 uptake was especially observed in the cortex and hippocampus, and it was higher in 3xTg mice than it was in the control group. These results suggested that [18F]2B-SRF101 is a promising candidate for more extensive evaluation as an astrocyte tracer. The difference observed for [18F]2B-SRF101 was not found in the case of [11C]DED. The comparative studies between [18F]2B-SRF101 and [11C]DED suggest that both tracers have different roles as astrocytosis markers in this animal model, and could provide different and complementary information at the same time. In this way, by means of a multitracer approach, useful information could be obtained for the staging of the disease.
Collapse
Affiliation(s)
- Ingrid Kreimerman
- Radiopharmacy Department, Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Ana Laura Reyes
- Radiopharmacy Department, Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Andrea Paolino
- Radiopharmacy Department, Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Tania Pardo
- Radiopharmacy Department, Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Williams Porcal
- Radiopharmacy Department, Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay.,Department of Organic Chemistry, Faculty of Chemistry, University of the Republic (UdelaR), Montevideo, Uruguay
| | - Manuel Ibarra
- Pharmaceutical Sciences Department, Faculty of Chemistry, University of the Republic (UdelaR), Montevideo, Uruguay
| | - Patricia Oliver
- Radiopharmacy Department, Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Eduardo Savio
- Radiopharmacy Department, Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Henry Engler
- Radiopharmacy Department, Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| |
Collapse
|
71
|
Ota M, Sato N, Kimura Y, Shigemoto Y, Kunugi H, Matsuda H. Changes of Myelin Organization in Patients with Alzheimer's Disease Shown by q-Space Myelin Map Imaging. Dement Geriatr Cogn Dis Extra 2019; 9:24-33. [PMID: 31043961 PMCID: PMC6477504 DOI: 10.1159/000493937] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/20/2018] [Indexed: 11/27/2022] Open
Abstract
Background Recent studies detected the aberrant myelination of the central nervous system (CNS) in Alzheimer's disease (AD). Here, we compared the change of myelination between patients with AD and controls by a novel magnetic resonance imaging modality, “q-space myelin map (MM) imaging.” Methods Twenty patients with AD and 18 healthy subjects underwent MM imaging. We compared the MM metric between the 2 groups and examined the relationships between the metric and the clinical symptoms of AD. Results AD patients showed a significant reduction of MM metric in the hippocampus, insula, precuneus, and anterior cingulate regions. There was also a significant negative correlation between the duration of illness and the MM metric in the temporoparietal region. Conclusion Our findings suggest that MM imaging could be a clinically proper modality to estimate the myelination changes in AD patients.
Collapse
Affiliation(s)
- Miho Ota
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Noriko Sato
- Department of Radiology, National Center Hospital of Neurology and Psychiatry, Tokyo, Japan
| | - Yukio Kimura
- Department of Radiology, National Center Hospital of Neurology and Psychiatry, Tokyo, Japan
| | - Yoko Shigemoto
- Department of Radiology, National Center Hospital of Neurology and Psychiatry, Tokyo, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hiroshi Matsuda
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
72
|
Magnetic resonance imaging in immune-mediated myelopathies. J Neurol 2019; 267:1233-1244. [PMID: 30694379 DOI: 10.1007/s00415-019-09206-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 01/15/2019] [Accepted: 01/18/2019] [Indexed: 10/27/2022]
Abstract
Immune-mediated myelopathies are a heterogeneous group of inflammatory spinal cord disorders including autoimmune disorders with known antibodies, e.g. aquaporin-4 IgG channelopathy or anti-myelin oligodendrocyte glycoprotein-associated myelitis, myelopathies in the context of multiple sclerosis and systemic autoimmune disorders with myelopathy, as well as post-infectious and paraneoplastic myelopathies. Although magnetic resonance imaging of the spinal cord is still challenging due to the small dimension of the cord cross-section and frequent movement and susceptibility artifacts, recent methodological advances have led to improved diagnostic evaluation and characterization of immune-mediated myelopathies. Topography, length and width of the lesion, gadolinium enhancement pattern, and changes in morphology over time help in narrowing the broad differential diagnosis. In this review, we give an overview of recent advances in magnetic resonance imaging of immune-mediated myelopathies and its role in the differential diagnosis and monitoring of this heterogeneous group of disorders.
Collapse
|
73
|
Butt AM, De La Rocha IC, Rivera A. Oligodendroglial Cells in Alzheimer's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1175:325-333. [PMID: 31583593 DOI: 10.1007/978-981-13-9913-8_12] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Oligodendrocytes form the myelin that ensheaths CNS axons, which is essential for rapid neuronal signalling and underpins the massive computing power of the human brain. Oligodendrocytes and myelin also provide metabolic and trophic support for axons and their disruption results in axonal demise and neurodegeneration, which are key features of Alzheimer's disease (AD). Notably, the brain has a remarkable capacity for regenerating oligodendrocytes, which is the function of adult oligodendrocyte progenitor cells (OPCs) or NG2-glia. White matter loss is often among the earliest brain changes in AD, preceding the tangles and plaques that characterize neuronal deficits. The underlying causes of myelin loss include oxidative stress, neuroinflammation and excitotoxicity, associated with accumulation of Aβ and tau hyperphosphorylation, pathological hallmarks of AD. Moreover, there is evidence that NG2-glia are disrupted in AD, which may be associated with disruption of synaptic signalling. This has led to the hypothesis that a vicious cycle of myelin loss and failure of regeneration from NG2-glia plays a key role in AD. Therapies that target NG2-glia are likely to have positive effects on myelination and neuroprotection in AD.
Collapse
Affiliation(s)
- Arthur M Butt
- School of Pharmacy and Biomedical Science, University of Portsmouth, St. Michael's Building, White Sawn Road, Portsmouth, PO1 2DT, UK.
| | - Irene Chacon De La Rocha
- School of Pharmacy and Biomedical Science, University of Portsmouth, St. Michael's Building, White Sawn Road, Portsmouth, PO1 2DT, UK
| | - Andrea Rivera
- School of Pharmacy and Biomedical Science, University of Portsmouth, St. Michael's Building, White Sawn Road, Portsmouth, PO1 2DT, UK
| |
Collapse
|
74
|
Luca A, Calandra C, Luca M. Molecular Bases of Alzheimer's Disease and Neurodegeneration: The Role of Neuroglia. Aging Dis 2018; 9:1134-1152. [PMID: 30574424 PMCID: PMC6284765 DOI: 10.14336/ad.2018.0201] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 02/01/2018] [Indexed: 12/13/2022] Open
Abstract
Neuroglia is an umbrella term indicating different cellular types that play a pivotal role in the brain, being involved in its development and functional homeostasis. Glial cells are becoming the focus of recent researches pertaining the pathogenesis of neurodegenerative disorders, Alzheimer's Disease (AD) in particular. In fact, activated microglia is the main determinant of neuroinflammation, contributing to neurodegeneration. In addition, the oxidative insult occurring during pathological brain aging can activate glial cells that, in turn, can favor the production of free radicals. Moreover, the recent Glycogen Synthase Kinase 3 (GSK-3) hypothesis of AD suggests that GSK3, involved in the regulation of glial cells functioning, could exert a role in amyloid deposition and tau hyper-phosphorylation. In this review, we briefly describe the main physiological functions of the glial cells and discuss the link between neuroglia and the most studied molecular bases of AD. In addition, we dedicate a section to the glial changes occurring in AD, with particular attention to their role in terms of neurodegeneration. In the light of the literature data, neuroglia could play a fundamental role in AD pathogenesis and progression. Further studies are needed to shed light on this topic.
Collapse
Affiliation(s)
- Antonina Luca
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University Hospital Policlinico-Vittorio Emanuele, Catania, 95100 Sicily, Italy
| | - Carmela Calandra
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University Hospital Policlinico-Vittorio Emanuele, Catania, 95100 Sicily, Italy
| | - Maria Luca
- Department of General Surgery and Medical-Surgical Specialties, Dermatology Clinic, University Hospital Policlinico-Vittorio Emanuele, Catania, 95100 Sicily, Italy
| |
Collapse
|
75
|
Alibhai JD, Diack AB, Manson JC. Unravelling the glial response in the pathogenesis of Alzheimer's disease. FASEB J 2018; 32:5766-5777. [PMID: 30376380 DOI: 10.1096/fj.201801360r] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Alzheimer's disease is a progressive, incurable neurodegenerative disease targeting specific neuronal populations within the brain while neighboring neurons appear unaffected. The focus for defining mechanisms has therefore been on the pathogenesis in affected neuronal populations and developing intervention strategies to prevent their cell death. However, there is growing recognition of the importance of glial cells in the development of pathology. Determining exactly how glial cells are involved in the disease process and the susceptibility of the aging brain provides unprecedented challenges. The present review examines recent studies attempting to unravel the glial response during the course of disease and how this action may dictate the outcome of neurodegeneration. The importance of regional heterogeneity of glial cells within the CNS during healthy aging and disease is examined to understand how the glial cells may contribute to neuronal susceptibility or resilience during the neurodegenerative process.-Alibhai, J. D., Diack, A. B., Manson, J. C. Unravelling the glial response in the pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- James D Alibhai
- National Creutzfeldt-Jakob Disease (CJD) Research and Surveillance Unit, University of Edinburgh, Edinburgh, United Kingdom.,UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom; and
| | - Abigail B Diack
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, United Kingdom
| | - Jean C Manson
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
76
|
Ferrer I. Oligodendrogliopathy in neurodegenerative diseases with abnormal protein aggregates: The forgotten partner. Prog Neurobiol 2018; 169:24-54. [DOI: 10.1016/j.pneurobio.2018.07.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 12/31/2022]
|
77
|
Bezine M, Maatoug S, Ben Khalifa R, Debbabi M, Zarrouk A, Wang Y, Griffiths WJ, Nury T, Samadi M, Vejux A, de Sèze J, Moreau T, Kharrat R, El Ayeb M, Lizard G. Modulation of Kv3.1b potassium channel level and intracellular potassium concentration in 158N murine oligodendrocytes and BV-2 murine microglial cells treated with 7-ketocholesterol, 24S-hydroxycholesterol or tetracosanoic acid (C24:0). Biochimie 2018; 153:56-69. [DOI: 10.1016/j.biochi.2018.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/14/2018] [Indexed: 01/19/2023]
|
78
|
Kritsilis M, V Rizou S, Koutsoudaki PN, Evangelou K, Gorgoulis VG, Papadopoulos D. Ageing, Cellular Senescence and Neurodegenerative Disease. Int J Mol Sci 2018; 19:E2937. [PMID: 30261683 PMCID: PMC6213570 DOI: 10.3390/ijms19102937] [Citation(s) in RCA: 250] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/16/2018] [Accepted: 09/19/2018] [Indexed: 01/10/2023] Open
Abstract
Ageing is a major risk factor for developing many neurodegenerative diseases. Cellular senescence is a homeostatic biological process that has a key role in driving ageing. There is evidence that senescent cells accumulate in the nervous system with ageing and neurodegenerative disease and may predispose a person to the appearance of a neurodegenerative condition or may aggravate its course. Research into senescence has long been hindered by its variable and cell-type specific features and the lack of a universal marker to unequivocally detect senescent cells. Recent advances in senescence markers and genetically modified animal models have boosted our knowledge on the role of cellular senescence in ageing and age-related disease. The aim now is to fully elucidate its role in neurodegeneration in order to efficiently and safely exploit cellular senescence as a therapeutic target. Here, we review evidence of cellular senescence in neurons and glial cells and we discuss its putative role in Alzheimer's disease, Parkinson's disease and multiple sclerosis and we provide, for the first time, evidence of senescence in neurons and glia in multiple sclerosis, using the novel GL13 lipofuscin stain as a marker of cellular senescence.
Collapse
Affiliation(s)
- Marios Kritsilis
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Sophia V Rizou
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Paraskevi N Koutsoudaki
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Konstantinos Evangelou
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Vassilis G Gorgoulis
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| | - Dimitrios Papadopoulos
- Laboratory of Histology & Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, 115-27 Athens, Greece.
| |
Collapse
|
79
|
LoPresti P. Tau in Oligodendrocytes Takes Neurons in Sickness and in Health. Int J Mol Sci 2018; 19:ijms19082408. [PMID: 30111714 PMCID: PMC6121290 DOI: 10.3390/ijms19082408] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/05/2018] [Accepted: 08/06/2018] [Indexed: 12/31/2022] Open
Abstract
Oligodendrocytes (OLGs), the myelin-forming cells of the central nervous system (CNS), are lifelong partners of neurons. They adjust to the functional demands of neurons over the course of a lifetime to meet the functional needs of a healthy CNS. When this functional interplay breaks down, CNS degeneration follows. OLG processes are essential features for OLGs being able to connect with the neurons. As many as fifty cellular processes from a single OLG reach and wrap an equal number of axonal segments. The cellular processes extend to meet and wrap axonal segments with myelin. Further, transport regulation, which is critical for myelination, takes place within the cellular processes. Because the microtubule-associated protein tau plays a crucial role in cellular process extension and myelination, alterations of tau in OLGs have deleterious effects, resulting in neuronal malfunction and CNS degeneration. Here, we review current concepts on the lifelong role of OLGs and myelin for brain health and plasticity. We present key studies of tau in OLGs and select important studies of tau in neurons. The extensive work on tau in neurons has considerably advanced our understanding of how tau promotes either health or disease. Because OLGs are crucial to neuronal health at any age, an understanding of the functions and regulation of tau in OLGs could uncover new therapeutics for selective CNS neurodegenerative diseases.
Collapse
Affiliation(s)
- Patrizia LoPresti
- Department of Psychology, University of Illinois at Chicago, 1007 West Harrison Street, Chicago, IL 60607, USA.
| |
Collapse
|
80
|
Chung JY, Kim HS, Song J. Iron metabolism in diabetes-induced Alzheimer's disease: a focus on insulin resistance in the brain. Biometals 2018; 31:705-714. [PMID: 30043289 PMCID: PMC6133192 DOI: 10.1007/s10534-018-0134-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/18/2018] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is characterized by an excessive accumulation of toxic amyloid beta (Aβ) plaques and memory dysfunction. The onset of AD is influenced by age, genetic background, and impaired glucose metabolism in the brain. Several studies have demonstrated that diabetes involving insulin resistance and glucose tolerance could lead to AD, ultimately resulting in cognitive dysfunction. Even though the relationship between diabetes and AD was indicated by significant evidences, the critical mechanisms and metabolic alterations in diabetes induced AD are not clear until now. Recently, iron metabolism has been shown to play multiple roles in the central nervous system (CNS). Iron deficiency and overload are associated with neurodegenerative diseases. Iron binds to Aβ and subsequently regulates Aβ toxicity in the CNS. In addition, previous studies have shown that iron is involved in the aggravation of insulin resistance. Considering these effects of iron metabolism in CNS, we expect that iron metabolism may play crucial roles in diabetic AD brain. Thus, we review the recent evidence regarding the relationship between diabetes-induced AD and iron metabolism.
Collapse
Affiliation(s)
- Ji Yeon Chung
- Department of Neurology, Chosun University School of Medicine and Hospital, Gwangju, 61452, South Korea
| | - Hyung-Seok Kim
- Department of Forensic Medicine, Chonnam National University Medical School, Gwangju, 61469, South Korea.
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Gwangju, 61469, South Korea.
| |
Collapse
|
81
|
Pamphlett R, Kum Jew S. Inorganic mercury in human astrocytes, oligodendrocytes, corticomotoneurons and the locus ceruleus: implications for multiple sclerosis, neurodegenerative disorders and gliomas. Biometals 2018; 31:807-819. [PMID: 29959651 PMCID: PMC6133182 DOI: 10.1007/s10534-018-0124-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/21/2018] [Indexed: 12/11/2022]
Abstract
Neurotoxic metals have been implicated in the pathogenesis of multiple sclerosis, neurodegenerative disorders and brain tumours but studies of the location of heavy metals in human brains are rare. In a man who injected himself with metallic mercury the cellular location of mercury in his brain was studied after 5 months of continuous exposure to inorganic mercury arising from metallic mercury deposits in his organs. Paraffin sections from the primary motor and sensory cortices and the locus ceruleus in the pons were stained with autometallography to detect inorganic mercury and combined with glial fibrillary acidic protein immunohistochemistry to identify astrocytes. Inorganic mercury was found in grey matter subpial, interlaminar, protoplasmic and varicose astrocytes, white matter fibrous astrocytes, grey but not white matter oligodendrocytes, corticomotoneurons and some locus ceruleus neurons. In summary, inorganic mercury is taken up by five types of human brain astrocytes, as well as by cortical oligodendrocytes, corticomotoneurons and locus ceruleus neurons. Mercury can induce oxidative stress, stimulate autoimmunity and damage DNA, mitochondria and lipid membranes, so its location in these CNS cells suggests it could play a role in the pathogenesis of multiple sclerosis, neurodegenerative conditions such as Alzheimer's disease and amyotrophic lateral sclerosis, and glial tumours.
Collapse
Affiliation(s)
- Roger Pamphlett
- Discipline of Pathology, The University of Sydney, Camperdown, Australia. .,Discipline of Pathology, Brain and Mind Centre, The University of Sydney and Department of Neuropathology, Royal Prince Alfred Hospital, 94 Mallett St, Camperdown, NSW, 2050, Australia.
| | - Stephen Kum Jew
- Discipline of Pathology, The University of Sydney, Camperdown, Australia
| |
Collapse
|
82
|
Wang SS, Zhang Z, Zhu TB, Chu SF, He WB, Chen NH. Myelin injury in the central nervous system and Alzheimer's disease. Brain Res Bull 2018; 140:162-168. [PMID: 29730417 DOI: 10.1016/j.brainresbull.2018.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/18/2018] [Accepted: 05/02/2018] [Indexed: 12/20/2022]
Abstract
Myelin is a membrane wrapped around the axon of the nerve cell, which is composed of the mature oligodendrocytes. The role of myelin is to insulate and prevent the nerve electrical impulses from the axon of the neurons to the axons of the other neurons, which is essential for the proper functioning of the nervous system. Minor changes in myelin thickness could lead to substantial changes in conduction speed and may thus alter neural circuit function. Demyelination is the myelin damage, which characterized by the loss of nerve sheath and the relative fatigue of the neuronal sheath and axon. Studies have shown that myelin injury may be closely related to neurodegenerative diseases and may be an early diagnostic criteria and therapeutic target. Thus this review summarizes the recent result of pathologic effect and signal pathways of myelin injury in neurodegenerative diseases, especially the Alzheimer's disease to provide new and effective therapeutic targets.
Collapse
Affiliation(s)
- Sha-Sha Wang
- School of Basic Medicine, Shanxi University of Traditional Chinese Medicine, Taiyuan 030619, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tian-Bi Zhu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Shi-Feng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wen-Bin He
- School of Basic Medicine, Shanxi University of Traditional Chinese Medicine, Taiyuan 030619, China
| | - Nai-Hong Chen
- School of Basic Medicine, Shanxi University of Traditional Chinese Medicine, Taiyuan 030619, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
83
|
Toxicological assessment of silica-coated iron oxide nanoparticles in human astrocytes. Food Chem Toxicol 2018; 118:13-23. [PMID: 29709612 DOI: 10.1016/j.fct.2018.04.058] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/23/2018] [Accepted: 04/25/2018] [Indexed: 12/31/2022]
Abstract
Iron oxide nanoparticles (ION) have great potential for an increasing number of medical and biological applications, particularly those focused on nervous system. Although ION seem to be biocompatible and present low toxicity, it is imperative to unveil the potential risk for the nervous system associated to their exposure, especially because current data on ION effects on human nervous cells are scarce. Thus, in the present study potential toxicity associated with silica-coated ION (S-ION) exposure was evaluated on human A172 glioblastoma cells. To this aim, a complete toxicological screening testing several exposure times (3 and 24 h), nanoparticle concentrations (5-100 μg/ml), and culture media (complete and serum-free) was performed to firstly assess S-ION effects at different levels, including cytotoxicity - lactate dehydrogenase assay, analysis of cell cycle and cell death production - and genotoxicity - H2AX phosphorylation assessment, comet assay, micronucleus test and DNA repair competence assay. Results obtained showed that S-ION exhibit certain cytotoxicity, especially in serum-free medium, related to cell cycle disruption and cell death induction. However, scarce genotoxic effects and no alteration of the DNA repair process were observed. Results obtained in this work contribute to increase the knowledge on the impact of ION on the human nervous system cells.
Collapse
|
84
|
Farnsworth B, Peuckert C, Zimmermann B, Jazin E, Kettunen P, Emilsson LS. Gene Expression of Quaking in Sporadic Alzheimer's Disease Patients is Both Upregulated and Related to Expression Levels of Genes Involved in Amyloid Plaque and Neurofibrillary Tangle Formation. J Alzheimers Dis 2018; 53:209-19. [PMID: 27163826 PMCID: PMC4942724 DOI: 10.3233/jad-160160] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Quaking (QKI) is a gene exclusively expressed within glial cells. QKI has previously been implicated in various neurological disorders and diseases, including Alzheimer’s disease (AD), a condition for which increasing evidence suggests a central role of glia cells. The objective of the present study was to investigate the expression levels of QKI and three QKI isoforms (QKI5, QKI6, and QKI7) in AD. Genes that have previously been related to the ontogeny and progression of AD, specifically APP, PSEN1, PSEN2, and MAPT, were also investigated. A real-time PCR assay of 123 samples from human postmortem sporadic AD patients and control brains was performed. The expression values were analyzed with an analysis of covariance model and subsequent multiple regressions to explore the possibility of related expression values between QKI, QKI isoforms, and AD-related genes. Further, the sequences of AD-related genes were analyzed for the presence of QKI binding domains. QKI and all measured QKI isoforms were found to be significantly upregulated in AD samples, relative to control samples. However, APP, PSEN1, PSEN2, and MAPT were not found to be significantly different. QKI and QKI isoforms were found to be predictive for the variance of APP, PSEN1, PSEN2, and MAPT, and putative QKI binding sites suggests an interaction with QKI. Overall, these results implicate a possible role of QKI in AD, although the exact mechanism by which this occurs remains to be uncovered.
Collapse
Affiliation(s)
- Bryn Farnsworth
- Department of Evolution and Development, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Christiane Peuckert
- Department of Neuroscience, Uppsala Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Bettina Zimmermann
- Department of Evolution and Development, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Elena Jazin
- Department of Evolution and Development, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Petronella Kettunen
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Neuropathology, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Lina Sors Emilsson
- Department of Evolution and Development, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
85
|
Li N, Zheng P, Liu Y. The CD24-Siglec G axis protects mice against cuprizone-induced oligodendrocyte loss: targeting danger signal for neuroprotection. Cell Mol Immunol 2018; 15:79-81. [PMID: 28757612 PMCID: PMC5827176 DOI: 10.1038/cmi.2017.47] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 05/18/2017] [Indexed: 12/11/2022] Open
Affiliation(s)
- Ning Li
- Center for Cancer and Immunology Research, Children’s Research Institute, Children’s National Health System, Washington, DC 20010, USA
| | - Pan Zheng
- Center for Cancer and Immunology Research, Children’s Research Institute, Children’s National Health System, Washington, DC 20010, USA
| | - Yang Liu
- Center for Cancer and Immunology Research, Children’s Research Institute, Children’s National Health System, Washington, DC 20010, USA
| |
Collapse
|
86
|
Jeong YJ, Yoon HJ, Kang DY. Assessment of change in glucose metabolism in white matter of amyloid-positive patients with Alzheimer disease using F-18 FDG PET. Medicine (Baltimore) 2017; 96:e9042. [PMID: 29310421 PMCID: PMC5728822 DOI: 10.1097/md.0000000000009042] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
In Alzheimer disease (AD), neuroinflammation is an important process related to the deposition of beta-amyloid plaques and the activation of microglia. The inflammatory process can occur in both the gray matter and the white matter. We evaluated glucose metabolism of the white matter in AD patients and compared the value with cognitive parameters of the patients.Eighteen AD patients and 18 healthy subjects underwent F-18 fluorodeoxyglucose (FDG) and F-18 florbetaben positron emission tomography (PET). After segmentation of the white matter in both PET images, the specific binding ratio (SBR) of the global and regional cerebral white matter was checked. We evaluated the differences in SBR of the global and regional white matter between AD patients and healthy subjects. Then, we assessed the correlation between SBR and cognitive parameters in AD patients.In F-18 FDG PET images, the global white matter SBR was significantly higher in AD patients than in healthy subjects. In the regional analysis, the white matter SBR was significantly higher for the frontal, temporal, and parietal areas in AD patients. In the correlation analysis with F-18 FDG PET, SBR was significantly correlated with the Global Deterioration Scale, Mini-Mental State Examination scores, and amyloid deposition.Glucose metabolism of the white matter was significantly higher in AD patients than in healthy subjects and it was related to the scores of cognitive parameters. We suggest that F-18 FDG PET, like 18-kDa translocator protein PET, could be used as an indicator of neuroinflammation; however, further research is needed for a direct comparison between the 2 tests.
Collapse
Affiliation(s)
- Young Jin Jeong
- Department of Nuclear Medicine, Dong-A University Hospital, Dong-A University College of Medicine
- Institute of Convergence Bio-Health, Dong-A University, Busan, Republic of Korea
| | - Hyun Jin Yoon
- Department of Nuclear Medicine, Dong-A University Hospital, Dong-A University College of Medicine
- Institute of Convergence Bio-Health, Dong-A University, Busan, Republic of Korea
| | - Do-Young Kang
- Department of Nuclear Medicine, Dong-A University Hospital, Dong-A University College of Medicine
- Institute of Convergence Bio-Health, Dong-A University, Busan, Republic of Korea
| |
Collapse
|
87
|
Merlo S, Spampinato SF, Sortino MA. Estrogen and Alzheimer's disease: Still an attractive topic despite disappointment from early clinical results. Eur J Pharmacol 2017; 817:51-58. [DOI: 10.1016/j.ejphar.2017.05.059] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/13/2017] [Accepted: 05/30/2017] [Indexed: 01/06/2023]
|
88
|
Gongol B, Marin TL, Jeppson JD, Mayagoitia K, Shin S, Sanchez N, Kirsch WM, Vinters HV, Wilson CG, Ghribi O, Soriano S. Cellular hormetic response to 27-hydroxycholesterol promotes neuroprotection through AICD induction of MAST4 abundance and kinase activity. Sci Rep 2017; 7:13898. [PMID: 29066835 PMCID: PMC5654999 DOI: 10.1038/s41598-017-13933-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 10/03/2017] [Indexed: 01/10/2023] Open
Abstract
The function of the amyloid precursor protein (APP) in brain health remains unclear. This study elucidated a novel cytoprotective signaling pathway initiated by the APP transcriptionally active intracellular domain (AICD) in response to 27-hydroxycholesterol (27OHC), an oxidized cholesterol metabolite associated with neurodegeneration. The cellular response to 27OHC was hormetic, such that low, but not high, doses promoted AICD transactivation of microtubule associated serine/threonine kinase family member 4 (MAST4). MAST4 in turn phosphorylated and inhibited FOXO1-dependent transcriptional repression of rhotekin 2 (RTKN2), an oxysterol stress responder, to optimize cell survival. A palmitate-rich diet, which increases serum 27OHC, or APP ablation, abrogated this response in vivo. Further, this pathway was downregulated in human Alzheimer's Disease (AD) brains but not in frontotemporal dementia brains. These results unveil MAST4 as functional kinase of FOXO1 in a 27OHC AICD-driven, hormetic pathway providing insight for therapeutic approaches against cholesterol associated neuronal disorders.
Collapse
Affiliation(s)
- Brendan Gongol
- Department of Pathology and Human Anatomy, Division of Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
- Cardiopulmonary Sciences, Schools of Allied Health Professions and Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Traci L Marin
- Cardiopulmonary Sciences, Schools of Allied Health Professions and Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - John D Jeppson
- Department of Pathology and Human Anatomy, Division of Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Karina Mayagoitia
- Department of Pathology and Human Anatomy, Division of Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Samuel Shin
- Department of Pathology and Human Anatomy, Division of Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Nicholas Sanchez
- Department of Basic Sciences, Division of Biochemistry, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Wolff M Kirsch
- Department of Basic Sciences, Division of Biochemistry, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Harry V Vinters
- Section of Neuropathology, Ronald Reagan UCLA Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, 90095, USA
| | - Christopher G Wilson
- Department of Basic Sciences, Division of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Othman Ghribi
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Salvador Soriano
- Department of Pathology and Human Anatomy, Division of Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.
| |
Collapse
|
89
|
He F, Peng Y, Yang Z, Ge Z, Tian Y, Ma T, Li H. Activated ClC-2 Inhibits p-Akt to Repress Myelination in GDM Newborn Rats. Int J Biol Sci 2017; 13:179-188. [PMID: 28255270 PMCID: PMC5332872 DOI: 10.7150/ijbs.17716] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/08/2016] [Indexed: 12/15/2022] Open
Abstract
This study aims to investigate the effect and mechanism of type 2 voltage-gated chloride channel (ClC-2) on myelin development of newborn rats' cerebral white matter with gestational diabetes mellitus (GDM). In this study, GDM model was induced in late pregnant rat model. The alteration of ClC-2 expression in various developmental stages of cerebral white matter with/without being exposed to high glucose was analyzed using RT-PCR, active oxygen detection, TUNEL staining, Western Blot as well as immuno-histochemical staining. Our results showed that ClC-2 mRNA and protein expressions in GDM group were significantly increased in white matter of fetal rats after E18 stage, and elevated the level of TNF-α and iNOS in white matter at P0 and P3 stage of newborn rats. Meanwhile, In GDM group, reactive oxygen species (ROS) levels of the white matter at E18, P0, and P3 stage were significantly higher than control group. Furthermore, the expression level of myelin transcription factor Olig2 at P0 stage and CNPase at P3 stage were strikingly lower than that of the control group. In GDM group, ClC-2 expression in the corpus callosum (CC) and cingulate gyrus (CG) regains, and TUNEL positive cell number were increased at P0 and P3 stage. However, PDGFα positive cell number at P0 stage and CNPase expression at P3 stage were significantly decreased. Caspase-3 was also increased in those white matter regions in GDM group, but p-Akt expression was inhibited. While DIDS (a chloride channel blocker) can reverse these changes. In conclusion, ClC-2 and caspase-3 were induced by GDM, which resulted in apoptosis and myelination inhibition. The effect was caused by repressing PI3K-Akt signaling pathway. Application of ClC-2 inhibitor DIDS showed protective effects on cerebral white matter damage stimulated by high glucose concentration.
Collapse
Affiliation(s)
- Feixiang He
- Department of Histology and Embryology, Third Military Medical University, Chongqing, China.; Battalion 5 of Cadet Brigade, Third Military Medical University, Chongqing, China
| | - Yuchen Peng
- Battalion 4 of Cadet Brigade, Third Military Medical University, Chongqing, China
| | - Zhi Yang
- Battalion 5 of Cadet Brigade, Third Military Medical University, Chongqing, China
| | - Zilu Ge
- Battalion 5 of Cadet Brigade, Third Military Medical University, Chongqing, China
| | - Yanping Tian
- Department of Histology and Embryology, Third Military Medical University, Chongqing, China
| | - Teng Ma
- Department of Histology and Embryology, Third Military Medical University, Chongqing, China
| | - Hongli Li
- Department of Histology and Embryology, Third Military Medical University, Chongqing, China
| |
Collapse
|
90
|
Chiarini A, Armato U, Liu D, Dal Prà I. Calcium-Sensing Receptors of Human Neural Cells Play Crucial Roles in Alzheimer's Disease. Front Physiol 2016; 7:134. [PMID: 27199760 PMCID: PMC4844916 DOI: 10.3389/fphys.2016.00134] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/28/2016] [Indexed: 12/21/2022] Open
Abstract
In aged subjects, late-onset Alzheimer's disease (LOAD) starts in the lateral entorhinal allocortex where a failure of clearance mechanisms triggers an accumulation of neurotoxic amyloid-β42 oligomers (Aβ42-os). In neurons and astrocytes, Aβ42-os enhance the transcription of Aβ precursor protein (APP) and β-secretase/BACE1 genes. Thus, by acting together with γ-secretase, the surpluses of APP and BACE1 amplify the endogenous production of Aβ42-os which pile up, damage mitochondria, and are oversecreted. At the plasmalemma, exogenous Aβ42-os bind neurons' and astrocytes' calcium-sensing receptors (CaSRs) activating a set of intracellular signaling pathways which upkeep Aβ42-os intracellular accumulation and oversecretion by hindering Aβ42-os proteolysis. In addition, Aβ42-os accumulating in the extracellular milieu spread and reach mounting numbers of adjacent and remoter teams of neurons and astrocytes which in turn are recruited, again via Aβ42-os•CaSR-governed mechanisms, to produce and release additional Aβ42-os amounts. This relentless self-sustaining mechanism drives AD progression toward upper cortical areas. Later on accumulating Aβ42-os elicit the advent of hyperphosphorylated (p)-Tau oligomers which acting together with Aβ42-os and other glial neurotoxins cooperatively destroy wider and wider cognition-related cortical areas. In parallel, Aβ42-os•CaSR signals also elicit an excess production and secretion of nitric oxide and vascular endothelial growth factor-A from astrocytes, of Aβ42-os and myelin basic protein from oligodendrocytes, and of proinflammatory cytokines, nitric oxide and (likely) Aβ42-os from microglia. Activated astrocytes and microglia survive the toxic onslaught, whereas neurons and oligodendrocytes increasingly die. However, we have shown that highly selective allosteric CaSR antagonists (calcilytics), like NPS 2143 and NPS 89626, efficiently suppress all the neurotoxic effects Aβ42-os•CaSR signaling drives in cultured cortical untransformed human neurons and astrocytes. In fact, calcilytics increase Aβ42 proteolysis and discontinue the oversecretion of Aβ42-os, nitric oxide, and vascular endothelial growth factor-A from both astrocytes and neurons. Seemingly, calcilytics would also benefit the other types of glial cells and cerebrovascular cells otherwise damaged by the effects of Aβ42-os•CaSR signaling. Thus, given at amnestic minor cognitive impairment (aMCI) or initial symptomatic stages, calcilytics could prevent or terminate the propagation of LOAD neuropathology and preserve human neurons' viability and hence patients' cognitive abilities.
Collapse
Affiliation(s)
- Anna Chiarini
- Human Histology and Embryology Unit, University of Verona Medical SchoolVerona, Italy
| | - Ubaldo Armato
- Human Histology and Embryology Unit, University of Verona Medical SchoolVerona, Italy
| | - Daisong Liu
- Human Histology and Embryology Unit, University of Verona Medical SchoolVerona, Italy
- Proteomics Laboratory, Institute for Burn Research, Third Military Medical UniversityChongqing, China
| | - Ilaria Dal Prà
- Human Histology and Embryology Unit, University of Verona Medical SchoolVerona, Italy
| |
Collapse
|
91
|
Roher AE, Maarouf CL, Kokjohn TA. Familial Presenilin Mutations and Sporadic Alzheimer’s Disease Pathology: Is the Assumption of Biochemical Equivalence Justified? J Alzheimers Dis 2016; 50:645-58. [DOI: 10.3233/jad-150757] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Alex E. Roher
- Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Chera L. Maarouf
- Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Tyler A. Kokjohn
- Department of Microbiology, Midwestern University School of Medicine, Glendale, AZ, USA
| |
Collapse
|
92
|
Abstract
Berberine, an important protoberberine isoquinoline alkaloid, has several pharmacological activities, including antimicrobial, glucose- and cholesterol-lowering, antitumoral, and immunomodulatory properties. Substantial studies suggest that berberine may be beneficial to Alzheimer's disease (AD) by limiting the pathogenesis of extracellular amyloid plaques and intracellular neurofibrillary tangles. Increasing evidence has indicated that berberine exerts a protective role in atherosclerosis related to lipid- and glucose-lowering properties, implicating that berberine has the potential to inhibit these risk factors for AD. This review also attempts to discuss the pharmacological basis through which berberine may retard oxidative stress and neuroinflammation to exhibit its protective role in AD. Accordingly, berberine might be considered a potential therapeutic approach to prevent or delay the process of AD. However, more detailed investigations along with a safety assessment of berberine are warranted to clarify the role of berberine in limiting these risk factors and AD-related pathologies.
Collapse
Affiliation(s)
- Zhiyou Cai
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, Shiyan, Hubei Province
| | - Chuanling Wang
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, Shiyan, Hubei Province
| | - Wenming Yang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, People's Republic of China
| |
Collapse
|