51
|
Knight Y. Brainstem Modulation of Caudal Trigeminal Nucleus: A Model for Understanding Migraine Biology and Future Drug Targets. ACTA ACUST UNITED AC 2005. [DOI: 10.1111/j.1743-5013.2005.00019.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
52
|
Javanmardi K, Parviz M, Sadr SS, Keshavarz M, Minaii B, Dehpour AR. INVOLVEMENT OF N-METHYL-d-ASPARTATE RECEPTORS and NITRIC OXIDE IN THE ROSTRAL VENTROMEDIAL MEDULLA IN MODULATING MORPHINE PAIN-INHIBITORY SIGNALS FROM THE PERIAQUEDUCTAL GREY MATTER IN RATS. Clin Exp Pharmacol Physiol 2005; 32:585-9. [PMID: 16026519 DOI: 10.1111/j.1440-1681.2005.04234.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
1. Supraspinal opioid antinociception is mediated, in part, by connections between the periaqueductal grey (PAG) and the rostral ventromedial medulla (RVM). Morphine antinociception from the PAG is decreased by serotonin, N-methyl-d-aspartate (NMDA) and opioid receptor antagonists administered into the RVM. Because the brain isoform of nitric oxide synthase (NOS) is also prominent in the RVM, the present study was designed to evaluate the effects of microinjection of the non-selective NOS inhibitor N(G)-nitro-l-arginine methyl ester (l-NAME) and the non-competitive NMDA receptor antagonist MK-801 into the RVM on PAG morphine antinociception and their potential interactions, as measured by the tail-flick test. 2. Rats were anaesthetized with sodium pentobarbital and then special cannulas were inserted stereotaxically into the RVM and PAG. After 1 week recovery, the effects of microinjection of MK-801 and l-NAME into the RVM and their interactions in altering PAG morphine (2.5 microg) antinociception elicited from the PAG were assessed. 3. Mesencephalic morphine antinociception was significantly reduced after pretreatment with l-NAME (0.6-1.3 micromol) or MK-801 (0.8 nmol). The reduction in mesencephalic morphine antinociception when MK-801 (0.8 nmol) and l-NAME (1 micromol) were microinjected sequentially into the RVM was not significantly different from the effects of MK-801 (0.8 nmol) or l-NAME (1 micromol) administered alone. 4. These data imply that NMDA receptors and nitric oxide production in the RVM modulate the transmission of opioid pain-inhibitory signals from the PAG.
Collapse
Affiliation(s)
- Kazem Javanmardi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
53
|
Morgan MM, Clayton CC, Boyer-Quick JS. Differential susceptibility of the PAG and RVM to tolerance to the antinociceptive effect of morphine in the rat. Pain 2005; 113:91-8. [PMID: 15621368 DOI: 10.1016/j.pain.2004.09.039] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2004] [Revised: 09/08/2004] [Accepted: 09/28/2004] [Indexed: 11/25/2022]
Abstract
The periaqueductal gray (PAG) and rostral ventromedial medulla (RVM) are part of a nociceptive modulatory system. Microinjection of morphine into either structure produces antinociception. Tolerance develops to ventrolateral PAG mediated antinociception with repeated microinjection of morphine. In contrast, there are no published reports of tolerance to morphine administration into the RVM. Three experiments were conducted to determine whether tolerance develops to morphine microinjections into the RVM. Experiment 1 compared tolerance to the antinociceptive effect of microinjecting morphine (5 microg/0.5 microl) into the PAG and RVM following daily injections for four consecutive days. Experiment 2 assessed tolerance to a range of morphine doses (2.5-20 microg) after injecting morphine into the RVM twice a day for two consecutive days. Experiment 3 followed a similar procedure except twice as many RVM injections were made (8 microinjections in 4 days). The degree to which tolerance developed to the antinociceptive effect of morphine was much greater with microinjections into the PAG compared to the RVM. There was a 64% drop in hot plate latency from the first to the fifth injection of morphine into the PAG, but only a 36% drop in latency following RVM microinjections. Reducing the interdose interval to two injections a day or increasing the total number of injections from 4 to 8 did not enhance the development of tolerance to RVM morphine administration. These data demonstrate that opioid-sensitive neurons in the RVM are relatively resistant to the development of tolerance compared to PAG neurons.
Collapse
Affiliation(s)
- Michael M Morgan
- Department of Psychology, Washington State University, 14204 NE Salmon Creek Avenue, Vancouver, WA 98686, USA.
| | | | | |
Collapse
|
54
|
Lane DA, Patel PA, Morgan MM. Evidence for an intrinsic mechanism of antinociceptive tolerance within the ventrolateral periaqueductal gray of rats. Neuroscience 2005; 135:227-34. [PMID: 16084660 DOI: 10.1016/j.neuroscience.2005.06.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 04/22/2005] [Accepted: 06/09/2005] [Indexed: 11/26/2022]
Abstract
Repeated microinjections of morphine into the ventrolateral periaqueductal gray produce antinociceptive tolerance. This tolerance may be a direct effect of morphine on cells within the ventrolateral periaqueductal gray or may require activation of downstream structures such as the rostral ventromedial medulla or spinal cord. Experiment 1 examined whether tolerance develops when opioid receptors in the ventrolateral periaqueductal gray are blocked prior to repeated systemic morphine administration. Microinjections of naltrexone hydrochloride (1microg/0.4microl) into the ventrolateral periaqueductal gray blocked antinociception and significantly attenuated the development of antinociceptive tolerance produced from systemic morphine administration. Experiment 2 examined whether tolerance develops when the effects of morphine are isolated to the ventrolateral periaqueductal gray. This was accomplished by microinjecting morphine (5microg/0.4microl) into the ventrolateral periaqueductal gray while simultaneously blocking the descending output through the rostral ventromedial medulla. Inhibition of neurons within the rostral ventromedial medulla by microinjecting the GABA(A) agonist muscimol (10ng/0.5microl) blocked the antinociception produced by microinjection of morphine into the ventrolateral periaqueductal gray but did not block the development of tolerance. These data demonstrate that the ventrolateral periaqueductal gray is both necessary and sufficient to produce tolerance to the antinociceptive effect of morphine. The ventrolateral periaqueductal gray is necessary in that tolerance does not develop if opiate action within the ventrolateral periaqueductal gray is blocked (experiment 1). The ventrolateral periaqueductal gray is sufficient in that tolerance occurs even when morphine's effects are restricted to the ventrolateral periaqueductal gray (experiment 2).
Collapse
Affiliation(s)
- D A Lane
- Washington State University Vancouver, 14204 Northeast Salmon Creek Avenue, Vancouver, WA 98686, USA
| | | | | |
Collapse
|
55
|
Heinricher MM, Neubert MJ, Martenson ME, Gonçalves L. Prostaglandin E2 in the medial preoptic area produces hyperalgesia and activates pain-modulating circuitry in the rostral ventromedial medulla. Neuroscience 2004; 128:389-98. [PMID: 15350650 DOI: 10.1016/j.neuroscience.2004.06.050] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2004] [Indexed: 11/22/2022]
Abstract
Prostaglandin E2 (PGE2) produced in the medial preoptic region (MPO) in response to immune signals is generally accepted to play a major role in triggering the illness response, a complex of physiological and behavioral changes induced by infection or injury. Hyperalgesia is now thought to be an important component of the illness response, yet the specific mechanisms through which the MPO acts to facilitate nociception have not been established. However, the MPO does project to the rostral ventromedial medulla (RVM), a region with a well-documented role in pain modulation, both directly and indirectly via the periaqueductal gray. To test whether PGE2 in the MPO produces thermal hyperalgesia by recruiting nociceptive modulating neurons in the RVM, we recorded the effects of focal application of PGE2 in the MPO on paw withdrawal latency and activity of identified nociceptive modulating neurons in the RVM of lightly anesthetized rats. Microinjection of a sub-pyrogenic dose of PGE2 (50 fg in 200 nl) into the MPO produced thermal hyperalgesia, as measured by a significant decrease in paw withdrawal latency. In animals displaying behavioral hyperalgesia, the PGE2 microinjection activated on-cells, RVM neurons thought to facilitate nociception, and suppressed the firing of off-cells, RVM neurons believed to have an inhibitory effect on nociception. A large body of evidence has implicated prostaglandins in the MPO in generation of the illness response, especially fever. The present study indicates that the MPO also contributes to the hyperalgesic component of the illness response, most likely by recruiting the nociceptive modulating circuitry of the RVM.
Collapse
Affiliation(s)
- M M Heinricher
- Department of Neurological Surgery, L-472, Oregon Health & Science University, Portland 97239, USA.
| | | | | | | |
Collapse
|
56
|
Heinricher MM, Martenson ME, Neubert MJ. Prostaglandin E2 in the midbrain periaqueductal gray produces hyperalgesia and activates pain-modulating circuitry in the rostral ventromedial medulla. Pain 2004; 110:419-26. [PMID: 15275794 DOI: 10.1016/j.pain.2004.04.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2004] [Revised: 04/07/2004] [Accepted: 04/19/2004] [Indexed: 11/17/2022]
Abstract
Recent years have seen significant advances in our understanding of the peripheral and spinal mechanisms through which prostaglandins contribute to nociceptive sensitization. By contrast, the possibility of a supraspinal contribution of these compounds to facilitated pain states has received relatively little attention. One possible mechanism through which prostaglandins could act supraspinally to facilitate nociception would be by recruitment of descending facilitation from brainstem pain-modulating systems. The rostral ventromedial medulla (RVM) is now known to contribute to enhanced responding in a variety of inflammatory and nerve injury models. Its major supraspinal input, the midbrain periaqueductal gray (PAG), expresses prostanoid receptors and synthetic enzymes. The aim of the present study was to determine whether direct application of prostaglandin E(2) (PGE(2)) within the ventrolateral PAG is sufficient to produce hyperalgesia, and whether any hyperalgesia could be mediated by recruiting nociceptive modulating neurons in the RVM. We determined the effects of focal application of PGE(2) in the PAG on paw withdrawal latency and activity of identified nociceptive modulating neurons in the RVM of lightly anesthetized rats. Microinjection of PGE(2) (50 fg in 200 nl) into the PAG produced a significant decrease in paw withdrawal latency. The PGE(2) microinjection activated on-cells, RVM neurons thought to facilitate nociception, and suppressed the firing of off-cells, RVM neurons believed to have an inhibitory effect on nociception. These data demonstrate a prostaglandin-sensitive descending facilitation from the PAG, and suggest that this is mediated by on- and off-cells in the RVM.
Collapse
Affiliation(s)
- Mary M Heinricher
- Department of Neurological Surgery, L-472, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| | | | | |
Collapse
|
57
|
Heinricher MM, Neubert MJ. Neural Basis for the Hyperalgesic Action of Cholecystokinin in the Rostral Ventromedial Medulla. J Neurophysiol 2004; 92:1982-9. [PMID: 15152023 DOI: 10.1152/jn.00411.2004] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The analgesic actions of opioids can be modified by endogenous “anti-opioid” peptides, among them cholecystokinin (CCK). CCK is now thought to have a broader, pronociceptive role, and contributes to hyperalgesia in inflammatory and neuropathic pain states. The aim of this study was to determine whether anti-opioid and pronociceptive actions of CCK have a common underlying mechanism. We showed previously that a low dose of CCK microinjected into the rostral ventromedial medulla (RVM) blocked the analgesic effect of systemically administered morphine by preventing activation of off-cells, which are the antinociceptive output of this well characterized pain-modulating region. At this anti-opioid dose, CCK had no effect on the spontaneous activity of these neurons or on the activity of on-cells (hypothesized to facilitate nociception) or “neutral cells” (which have no known role in pain modulation). In this study, we used microinjection of a higher dose of CCK into the RVM to test whether activation of on-cells could explain the pronociceptive action of this peptide. Paw withdrawal latencies to noxious heat and the activity of a characterized RVM neuron were recorded in rats lightly anesthetized with methohexital. CCK (30 ng/200 nl) activated on-cells selectively and produced behavioral hyperalgesia. Firing of off-cells and neutral cells was unaffected. These data show that direct, selective activation of RVM on-cells by CCK is sufficient to produce thermal hyperalgesia and indicate that the anti-opioid and pronociceptive effects of this peptide are mediated by actions on different RVM cell classes.
Collapse
Affiliation(s)
- Mary M Heinricher
- Dept. Neurological Surgery, L-472, Oregon Health and Science Univ., Portland, OR 97239, USA.
| | | |
Collapse
|
58
|
Meng ID, Johansen JP, Harasawa I, Fields HL. Kappa opioids inhibit physiologically identified medullary pain modulating neurons and reduce morphine antinociception. J Neurophysiol 2004; 93:1138-44. [PMID: 15456805 DOI: 10.1152/jn.00320.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Microinjection of kappa opioid receptor (KOR) agonists into the rostral ventromedial medulla (RVM) attenuates mu-opioid receptor mediated antinociception and stress-induced analgesia, yet is also reported to have an analgesic effect. To determine how KOR agonists produce both antinociceptive and antianalgesic actions within the RVM, the KOR agonist U69593 was microinjected directly into the RVM while concurrently monitoring tail flick latencies and RVM neuronal activity. Among RVM neurons recorded in vivo, two types show robust changes in activity just prior to the nocifensive tail flick reflex: ON cells burst just prior to a tail flick and their activity is pronociceptive, whereas OFF cells pause just prior to the tail flick and their activity is antinociceptive. Although RVM microinjection of U69593 did not affect tail flick latencies on its own, it did attenuate the on cell burst, an effect blocked by co-injection of the KOR antagonist, nor-binaltorphimine (nor-BNI). Furthermore, U69593 inhibited ongoing activity in subsets of OFF cells (4/11) and NEUTRAL cells (3/9). Microinjection of U69593 into the RVM also attenuated morphine antinociception and suppressed the excitation of off cells. Together with previous in vivo and in vitro studies, these results are consistent with the idea that KOR agonists can be either pronociceptive through direct inhibition of OFF cells, or antianalgesic through both postsynaptic inhibition and presynaptic inhibition of glutamate inputs to RVM OFF cells.
Collapse
Affiliation(s)
- I D Meng
- Department of Neurology, University of California, San Francisco, California, USA.
| | | | | | | |
Collapse
|
59
|
Affiliation(s)
- Howard Fields
- University of California, 513 Parnassus Avenue, San Francisco, California 94143, USA.
| |
Collapse
|
60
|
Neubert MJ, Kincaid W, Heinricher MM. Nociceptive facilitating neurons in the rostral ventromedial medulla. Pain 2004; 110:158-65. [PMID: 15275763 DOI: 10.1016/j.pain.2004.03.017] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2003] [Revised: 02/04/2004] [Accepted: 03/09/2004] [Indexed: 10/26/2022]
Abstract
The role of the periaqueductal gray-rostral ventromedial medulla (RVM) system in descending inhibition of nociception has been studied for over 30 years. The neural basis for this antinociceptive action is reasonably well understood, with strong evidence that activation of a class of RVM neurons termed 'off-cells' exerts a net inhibitory effect on nociception. However, it has recently become clear that this system can facilitate, as well as inhibit pain. Although the mechanisms underlying the facilitation of nociception have not been conclusively identified, indirect evidence points to activation of a class of neurons termed 'on-cells' as mediating descending facilitation. Here we used focal infusion of the tridecapeptide neurotensin within the RVM in lightly anesthetized rats to activate on-cells selectively. Neurotensin has been shown in awake animals to produce a dose-related, bi-directional effect on nociception when applied within the RVM, with hyperalgesia at low doses, and analgesia at higher doses. Using a combination of single cell recording and behavioral testing, we now show that on-cells are activated selectively by low-dose neurotensin, and that the activation of on-cells by neurotensin results in enhanced nociceptive responding, as measured by the paw withdrawal reflex. Furthermore, higher neurotensin doses recruit off-cells in addition to on-cells, producing behavioral antinociception. Selective activation of on-cells is thus sufficient to produce hyperalgesia, confirming the role of these neurons in facilitating nociception. Activation of on-cells likely contributes to enhanced sensitivity to noxious stimulation or reduced sensitivity to analgesic drugs in a variety of conditions.
Collapse
Affiliation(s)
- Miranda J Neubert
- Department of Neurological Surgery, L-472, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | |
Collapse
|
61
|
Lane DA, Tortorici V, Morgan MM. Behavioral and electrophysiological evidence for tolerance to continuous morphine administration into the ventrolateral periaqueductal gray. Neuroscience 2004; 125:63-9. [PMID: 15051146 DOI: 10.1016/j.neuroscience.2004.01.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2004] [Indexed: 11/26/2022]
Abstract
Repeated microinjections of morphine into the ventrolateral periaqueductal gray (vPAG) produce tolerance to the antinociceptive effect of morphine [Behav Neurosci 113 (1999) 833]. These results may be a direct effect of morphine on cells within the vPAG or be caused by cues linked to the microinjection procedure (i.e. associative tolerance). The objective of this paper was to determine whether continuous administration of morphine into the vPAG (i.e. no cues) would produce tolerance. Tolerance was assessed by measuring changes in behavior and changes in the activity of neurons in the rostral ventromedial medulla (RVM), the primary output target of the PAG. Rats were implanted with an osmotic minipump that released morphine (2.5 or 5 microg/h) or saline into the vPAG continuously. Continuous administration of morphine produced an increase in hotplate latency when measured 6 h after initiation of treatment. Tolerance to this antinociception was evident within 24 h. After 3 days, rats were anesthetized and the activity of RVM neurons was assessed. Although acute morphine administration into the RVM inhibits the activity of RVM on-cells and enhances the activity of off-cells, these neurons appeared normal following 3 days of continuous morphine administration. Systemic naloxone administration produced hyperalgesia that was associated with a marked increase in on-cell activity and a complete cessation of off-cell activity. The loss of morphine inhibition of nociception, measured behaviorally and electrophysiologically, demonstrates that tolerance is caused by a direct action of morphine on vPAG neurons.
Collapse
Affiliation(s)
- D A Lane
- Washington State University Vancouver, 14204 Northeast Salmon Creek Avenue, Vancouver, WA 98686, USA
| | | | | |
Collapse
|
62
|
|
63
|
Liu JG, Rovnaghi CR, Garg S, Anand KJS. Opioid receptor desensitization contributes to thermal hyperalgesia in infant rats. Eur J Pharmacol 2004; 491:127-36. [PMID: 15140629 DOI: 10.1016/j.ejphar.2004.03.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Accepted: 03/23/2004] [Indexed: 11/18/2022]
Abstract
Central nociceptive processing includes spinal and supraspinal neurons, but the supraspinal mechanisms mediating changes in pain threshold remain unclear. We investigated the role of forebrain neurons in capsaicin-induced hyperalgesia. Long-Evans rat pups at 21 days were randomized to undisturbed control group, or to receive tactile stimulation, saline injection (0.9% w/v) or capsaicin injection (0.01% w/v) applied to each paw at hourly intervals. Thermal paw withdrawal latency was measured 1 h later, forebrains were removed and purified forebrain neuronal membranes were assayed for adenylyl cyclase activity and opioid receptor function. Capsaicin-injected rats had decreased thermal latency (P < 0.0001) compared to the other groups. Neuronal membranes showed increased basal (P = 0.0003) and forskolin-stimulated (P=0.0002) adenylyl cyclase activity in the capsaicin group compared to other groups. The selective mu-opioid receptor agonist, [D-Ala2, N-Me-Phe4, Gly5-ol]enkephalin (DAMGO) was less effective in inhibiting adenylyl cyclase activity in the capsaicin group (P < 0.001) compared to other groups. These effects were naloxone-reversible and pertussis toxin-sensitive (P < 0.01) in the control, tactile stimulation and saline injection groups but not in the capsaicin group. Binding capacity and affinity for micro-opioid receptors were similar in all four groups, suggesting that receptor downregulation was not involved. Exposure to DAMGO increased [35S]GTPgammaS binding to neuronal membranes from the control, tactile and saline groups (P<0.001) in a naloxone-reversible and pertussis toxin-sensitive manner (P < 0.01) but not in the capsaicin group, suggesting mu-opioid receptor desensitization. Dose responses to systemic morphine were also reduced in the capsaicin group compared to the tactile group (P < 0.05). Capsaicin-induced hyperalgesia in 21-day-old rats was associated with an uncoupling of micro-opioid receptors in the forebrain. Opioid receptor desensitization in the forebrain may reduce opioidergic inputs to the descending inhibitory controls, associated with behavioral hyperalgesia and reduced responsiveness to morphine analgesia in capsaicin-injected young rats.
Collapse
Affiliation(s)
- Jing-Gen Liu
- Pain Neurobiology Laboratory, Arkansas Children's Hospital Research Institute, 1120 Marshall Street, Little Rock, AR 72202, USA
| | | | | | | |
Collapse
|
64
|
Liaw WJ, Zhang B, Tao F, Yaster M, Johns RA, Tao YX. Knockdown of spinal cord postsynaptic density protein-95 prevents the development of morphine tolerance in rats. Neuroscience 2004; 123:11-5. [PMID: 14667437 DOI: 10.1016/j.neuroscience.2003.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The activation of spinal cord N-methyl-D-aspartate (NMDA) receptors and subsequent intracellular cascades play a pivotal role in the development of opioid tolerance. Postsynaptic density protein-95 (PSD-95), a molecular scaffolding protein, assembles a specific set of signaling proteins around NMDA receptors at neuronal synapses. The current study investigated the possible involvement of PSD-95 in the development of opioid tolerance. Opioid tolerance was induced by intrathecal injection of morphine sulfate (20 microg/10 microl) twice a day for 4 consecutive days. Co-administration of morphine twice daily and PSD-95 antisense oligodeoxynucleotide (50 microg/10 microl) once daily for 4 days not only markedly reduced the PSD-95 expression and its binding to NMDA receptors in spinal cord but also significantly prevented the development of morphine tolerance. In contrast, co-administration of morphine twice daily and PSD-95 missense oligodeoxynucleotide (50 microg/10 microl) once daily for 4 days did not produce these effects. The PSD-95 antisense oligodeoxynucleotide at the doses we used did not affect baseline response to noxious thermal stimulation or locomotor function. The present study indicates that the deficiency of spinal cord PSD-95 attenuates the development of opioid tolerance. These results suggest that PSD-95 might be involved in the central mechanisms of opioid tolerance and provide a possible new target for prevention of development of opioid tolerance.
Collapse
Affiliation(s)
- W-J Liaw
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 355 Ross, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
65
|
Compton P, Athanasos P, Elashoff D. Withdrawal hyperalgesia after acute opioid physical dependence in nonaddicted humans: a preliminary study. THE JOURNAL OF PAIN 2004; 4:511-9. [PMID: 14636819 DOI: 10.1016/j.jpain.2003.08.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hyperalgesia has been demonstrated to be a cardinal sign of physical withdrawal from opioids in preclinical models for more than 30 years, although few empirical data exist to support its occurrence in humans. In this preliminary study we used the acute opioid physical dependence (APD) model to test for the presence of hyperalgesia to experimental cold-pressor pain in 4 healthy non-opioid-dependent men via 3 different pretreatment opioid administration protocols previously demonstrated to induce APD (morphine 18 mg/70 kg intramuscular, morphine 10 mg/70 kg intravenous, hydromorphone 2 mg/70 kg intravenous), repeated on 2 separate occasions, and placebo. Cold-pressor pain threshold and tolerance were examined before opioid administration and 5 and 15 minutes after precipitated withdrawal with naloxone 10 mg/70 kg intravenous. Paired t tests comparing change scores between the opioid pretreatments and placebo showed that pain threshold and tolerance to the cold-pressor uniformly decreased across all APD induction methods, and the effect size was large (approximately 70% of baseline) and reproducible. These findings provide initial support for the existence of opioid-induced hyperalgesia, which has been conceptualized as a coexisting opponent process to opioid-induced analgesia and proposed to be an alternative explanation for the development of analgesic tolerance to opioids.
Collapse
Affiliation(s)
- Peggy Compton
- School of Nursing, University of California at Los Angeles, Los Angeles, California 90095-6918, USA.
| | | | | |
Collapse
|
66
|
Craft RM, Morgan MM, Lane DA. Oestradiol dampens reflex-related activity of on- and off-cells in the rostral ventromedial medulla of female rats. Neuroscience 2004; 125:1061-8. [PMID: 15120865 DOI: 10.1016/j.neuroscience.2003.12.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2003] [Indexed: 11/24/2022]
Abstract
The present study was conducted to determine whether the ovarian steroid oestradiol alters the activity of nociceptive modulatory neurons in the rostral ventromedial medulla (RVM). Adult female rats were ovariectomized and implanted s.c. with an oestradiol-filled or placebo capsule. Sixteen to 37 days later, rats were anaesthetised for single unit recording from RVM neurons. On-cells were characterised by a burst of activity, and off-cells by a pause in activity immediately preceding reflexive withdrawal of the tail from 51 and 54 degrees C water. Although on- and off-cells were evident in both oestradiol- and placebo-treated rats, the reflex-related on-cell burst and off-cell pause were dampened in oestradiol-treated rats. On-cells from oestradiol-treated rats had a mean activity burst of 9.1+/-2.2 Hz in the 2 s preceding the tail withdrawal reflex to 51 degrees C water, compared with 17.9+/-4.3 Hz for on-cells in placebo controls. Off-cell activity during the 2 s preceding tail withdrawal was 4.8+/-2.2 vs. 0.1+/-0.1 Hz in oestradiol vs. placebo-treated females, respectively. Similar changes in on- and off-cell activity occurred when the tail was placed in 54 degrees C water. The present data demonstrate that oestradiol constrains the magnitude of the shift in RVM on- and off-cell activity associated with nociceptive reflexes.
Collapse
Affiliation(s)
- R M Craft
- Department of Psychology, PO Box 644820, Washington State University, Pullman, WA 99164-4820, USA.
| | | | | |
Collapse
|
67
|
Ossipov MH, Lai J, King T, Vanderah TW, Malan TP, Hruby VJ, Porreca F. Antinociceptive and nociceptive actions of opioids. ACTA ACUST UNITED AC 2004; 61:126-48. [PMID: 15362157 DOI: 10.1002/neu.20091] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although the opioids are the principal treatment options for moderate to severe pain, their use is also associated with the development of tolerance, defined as the progressive need for higher doses to achieve a constant analgesic effect. The mechanisms which underlie this phenomenon remain unclear. Recent studies revealed that cholecystokinin (CCK) is upregulated in the rostral ventromedial medulla (RVM) during persistent opioid exposure. CCK is both antiopioid and pronociceptive, and activates descending pain facilitation mechanisms from the RVM enhancing nociceptive transmission at the spinal cord and promoting hyperalgesia. The neuroplastic changes elicited by opioid exposure reflect adaptive changes to promote increased pain transmission and consequent diminished antinociception (i.e., tolerance).
Collapse
Affiliation(s)
- Michael H Ossipov
- Departments of Pharmacology, Anesthesiology and Chemistry, University of Arizona, Tucson, Arizona 85724, USA
| | | | | | | | | | | | | |
Collapse
|
68
|
Protein kinase c ϵ and γ: roles in age-specific modulation of acute opioid-withdrawal allodynia. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1537-5897(03)00027-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
69
|
Xie YF, Tang JS, Jia H. The roles of different types of glutamate receptors involved in the mediation of nucleus submedius (Sm) glutamate-evoked antinociception in the rat. Brain Res 2003; 988:146-53. [PMID: 14519536 DOI: 10.1016/s0006-8993(03)03359-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Based on our previous findings that glutamate microinjected into the thalamic nucleus submedius (Sm) inhibits dose-dependently the rat tail-flick (TF) reflex, this study investigated which glutamate receptor subtype is involved in mediating this effect. The effects of an NMDA (N-methyl-D-aspartate), non-NMDA or metabotropic glutamate receptor (mGluR) antagonist microinjected into Sm on the TF reflex were examined in untreated or in Sm glutamate treated (microinjection into the Sm) rats. The TF latencies were measured in each of these groups of rats every 5 min. Injection of DNQX [6,7-dinitroquinoxaline-2,3(1H,4H)-dione], a non-NMDA receptor antagonist, or (+/-)-MCPG [(+/-)-alpha-methyl-4-carboxyphenylglycine], a mGluR antagonist, into the Sm blocked the inhibitory effects induced by a subsequent microinjection of glutamate into the same Sm site. The TF latency increased only by 6.6+/-1.6 or 9.0+/-1.1%, respectively, of the baseline value, which was markedly less than that (51.3+/-8.4 or 50.7+/-5.3%) obtained from injection of glutamate only (P<0.001, n=8). However, pre-microinjection of MK-801 [(+)-5-methyl-10,11-dibenzo[a,d]cyclohepten-5,10-imine], an NMDA receptor antagonist, into the Sm had no effect on the Sm glutamate-evoked inhibition of the TF reflex. The TF latency change (40.0+/-11.1%) was not significantly different (P>0.05, n=8) compared with that obtained from glutamate injection alone. These observations suggest that non-NMDA and metabotropic glutamate receptors, but not NMDA receptors, are involved in mediating Sm glutamate-evoked antinociception.
Collapse
Affiliation(s)
- Yu-Feng Xie
- Department of Physiology, School of Medicine, Xi'an Jiaotong University, Xi'an Yanta Street W 76, Xi'an, Shaanxi 710061, China
| | | | | |
Collapse
|
70
|
Roles of alpha1- and alpha2-adrenoceptors in the nucleus raphe magnus in opioid analgesia and opioid abstinence-induced hyperalgesia. J Neurosci 2003. [PMID: 12944526 DOI: 10.1523/jneurosci.23-21-07950.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Noradrenaline and alpha-adrenoceptors have been implicated in the modulation of pain in various behavioral conditions. Noradrenergic neurons and synaptic inputs are present in neuronal circuits critical for pain modulation, but their actions on neurons in those circuits and consequently the mechanisms underlying noradrenergic modulation of pain remain unclear. In this study, both recordings in vitro and behavioral analyses in vivo were used to examine cellular and behavioral actions mediated by alpha1- and alpha2-adrenoceptors on neurons in the nucleus raphe magnus. We found that alpha1- and alpha2-receptors were colocalized in the majority of a class of neurons (primary cells) that inhibit spinal pain transmission and are excited during opioid analgesia. Activation of the alpha1-receptor depolarized whereas alpha2-receptor activation hyperpolarized these neurons through a decrease and an increase, respectively, in potassium conductance. Blockade of the excitatory alpha1-receptor or activation of the inhibitory alpha2-receptor significantly attenuated the analgesia induced by local opioid application, suggesting that alpha1-receptor-mediated synaptic inputs in these primary cells contribute to their excitation during opioid analgesia. In the other cell class (secondary cells) that is thought to facilitate spinal nociception and is inhibited by analgesic opioids, only alpha1-receptors were present. Blocking the alpha1-receptor in these cells significantly reduced the hyperalgesia (increased pain) induced by opioid abstinence. Thus, state-dependent activation of alpha1-mediated synaptic inputs onto functionally distinct populations of medullary pain-modulating neurons contributes to opioid-induced analgesia and opioid withdrawal-induced hyperalgesia.
Collapse
|
71
|
Taylor BK, Basbaum AI. Systemic morphine-induced release of serotonin in the rostroventral medulla is not mimicked by morphine microinjection into the periaqueductal gray. J Neurochem 2003; 86:1129-41. [PMID: 12911621 DOI: 10.1046/j.1471-4159.2003.01907.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We used in vivo microdialysis in awake rats to test the hypothesis that intravenous morphine increases serotonin (5-HT) release within the rostral ventromedial medulla (RVM). We also injected morphine into various sites along the rostrocaudal extent of the periaqueductal gray (PAG), and examined the extent of its diffusion to the RVM. Intravenous morphine (3.0 mg/kg) produced thermal antinociception and increased RVM dialysate 5-HT, 5-hydroxyindole acetic acid (5-HIAA), and homovanillic acid (HVA) in a naloxone-reversible manner. As neither PAG microinjection of morphine (5 micro g/0.5 micro L) nor RVM administration of fentanyl or d-Ala(2),NMePhe(4),Gly-ol(5)]enkephalin (DAMGO) increased RVM 5-HT, we were unable to determine the precise site of action of morphine. Surprisingly, peak morphine levels in the RVM were higher after microinjection into the caudal PAG as compared to either intravenous injection or microinjection into more rostral sites within the PAG. Naloxone-precipitated withdrawal in morphine-tolerant rats not only increased extracellular 5-HT in the RVM, but also dopamine (DA) and HVA. We conclude that substantial amounts of morphine diffuse from the PAG to the RVM, and speculate that opioid receptor interactions at multiple brain sites mediate the analgesic effects of PAG morphine. Further studies will be required to elucidate the contribution of 5-HT and DA release in the RVM to opioid analgesia and opioid withdrawal.
Collapse
Affiliation(s)
- Bradley K Taylor
- Department of Pharmacology SL83, Health Sciences Center, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70118, USA.
| | | |
Collapse
|
72
|
Ossipov MH, Lai J, Vanderah TW, Porreca F. Induction of pain facilitation by sustained opioid exposure: relationship to opioid antinociceptive tolerance. Life Sci 2003; 73:783-800. [PMID: 12801599 DOI: 10.1016/s0024-3205(03)00410-7] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Opioid analgesics are frequently used for the long-term management of chronic pain states, including cancer pain. The prolonged use of opioids is associated with a requirement for increasing doses to manage pain at a consistent level, reflecting the phenomenon of analgesic tolerance. It is now becoming clearer that patients receiving long-term opioid therapy can develop unexpected abnormal pain. Such paradoxical opioid-induced pain, as well as tolerance to the antinociceptive actions of opioids, has been reliably measured in animals during the period of continuous opioid delivery. Several recent studies have demonstrated that such pain may be secondary to neuroplastic changes that result, in part, from an activation of descending pain facilitation mechanisms arising from the rostral ventromedial medulla (RVM). One mechanism which may mediate such pain facilitation is through the increased activity of CCK in the RVM. Secondary consequences from descending facilitation may be produced. For example, opioid-induced upregulation of spinal dynorphin levels seem to depend on intact descending pathways from the RVM reflecting spinal neuroplasticity secondary to changes at supraspinal levels. Increased expression of spinal dynorphin reflects a trophic action of sustained opioid exposure which promotes an increased pain state. Spinal dynorphin may promote pain, in part, by enhancing the evoked release of excitatory transmitters from primary afferents. In this regard, opioids also produce trophic actions by increasing CGRP expression in the dorsal root ganglia. Increased pain elicited by opioids is a critical factor in the behavioral manifestation of opioid tolerance as manipulations which block abnormal pain also block antinociceptive tolerance. Manipulations that have blocked enhanced pain and antinociceptive tolerance include reversible and permanent ablation of descending facilitation from the RVM. Thus, opioids elicit systems-level adaptations resulting in pain due to descending facilitation, upregulation of spinal dynorphin and enhanced release of excitatory transmitters from primary afferents. Adaptive changes produced by sustained opioid exposure including trophic effects to enhance pain transmitters suggest the need for careful evaluation of the consequences of long-term opioid administration to patients.
Collapse
Affiliation(s)
- Michael H Ossipov
- Department of Pharmacology, University of Arizona, Tucson 85724, USA
| | | | | | | |
Collapse
|
73
|
Abstract
Animals made ill by intraperitoneal injection with toxins, such as lithium chloride (LiCl) or lipopolysaccharides (LPS), or presented with cues associated with LiCl become hyperalgesic [Pain 56 (1994) 227]. The descending pronociceptive neurocircuitry and spinal pharmacology that underlie these effects bear the same features as those that mediate analgesic tolerance to morphine [Neurosci. Biobehav. Rev. 23 (1999) 1059]. Thus, we examined whether LiCl, LPS or cues paired with LiCl could reduce morphine analgesia. Morphine analgesia in the tail flick test was reduced 24 h but not 7 days following injection with LiCl, and 24 h following injection with LPS. In addition, morphine analgesia was reduced in the hot plate test 40 min and 24 h following LiCl. Furthermore, these effects occurred in the absence of detectable hyperalgesia indicating that illness-induced tolerance was not the result of an increase in pain sensitivity offsetting analgesia. Finally, rats tested in a context associated with LiCl demonstrated less morphine analgesia than rats tested in a context not associated with LiCl or rats naive to LiCl suggesting that illness activates descending mechanisms that antagonize analgesia rather than simply desensitizing opioid receptors. Thus, in addition to provoking hyperalgesia, illness-inducing agents also activate endogenous antianalgesic mechanisms.
Collapse
Affiliation(s)
- Ian N Johnston
- Department of Psychology, University of Colorado, Boulder, CO 80303-0345, USA.
| | | |
Collapse
|
74
|
Abstract
Moderately painful stimuli applied during sleep evoke motor and neural responses indicative of arousal, but seldom cause awakening. Different reactions occur in response to acute pain stimulation across behavioral states; pain reactions are modulated by the activity of serotonergic and non-serotonergic cells in the raphe magnus (RM). Serotonergic RM cells have state-dependent discharge and may inhibit simple motor withdrawal responses during waking. ON and OFF cells are non-serotonergic RM neurons thought to facilitate and inhibit pain, respectively. These cells display reciprocal spontaneous discharge patterns across the sleep-wake cycle, with ON cells most active during waking and OFF cells most active during sleep. We propose that they also play an important role in modulating the alertness evoked by any brief external stimulus, either noxious or innocuous. ON cells may facilitate alertness during waking and OFF cells suppress arousals during sleep. In the presence of chronic pain, both ON and OFF cell discharge appear to increase. The increase in ON cell discharge may contribute to enhancing pain sensitivity and alertness. Future research is needed to understand why sleep is so adversely affected in chronic pain patients, whereas sleep is minimally disrupted, even by acutely painful stimuli, in humans and animals without chronic pain.
Collapse
Affiliation(s)
- H Foo
- Department of Neurobiology, Pharmacology, and Physiology, University of Chicago, Illinois 60637, USA
| | | |
Collapse
|
75
|
Rostral ventromedial medulla neurons that project to the spinal cord express multiple opioid receptor phenotypes. J Neurosci 2003. [PMID: 12486178 DOI: 10.1523/jneurosci.22-24-10847.2002] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The rostral ventromedial medulla (RVM) forms part of a descending pathway that modulates nociceptive neurotransmission at the level of the spinal cord dorsal horn. However, the involvement of descending RVM systems in opioid analgesia are a matter of some debate. In the present study, patch-clamp recordings of RVM neurons were made from rats that had received retrograde tracer injections into the spinal cord. More than 90% of identified spinally projecting RVM neurons responded to opioid agonists. Of these neurons, 53% responded only to the mu-opioid agonist D-Ala2, N-Me-Phe4, Gly-ol5 enkephalin, 14% responded only to the kappa-opioid agonist U-69593, and another group responded to both mu and kappa opioids (23%). In unidentified RVM neurons, a larger proportion of neurons responded only to mu opioids (75%), with smaller proportions of kappa- (4%) and mu/kappa-opioid (13%) responders. These RVM slices were then immunostained for tryptophan hydroxylase (TPH), a marker of serotonergic neurons. Forty-percent of spinally projecting neurons and 11% of unidentified neurons were TPH positive. Of the TPH-positive spinally projecting neurons, there were similar proportions of mu- (33%), kappa- (25%), and mu/kappa-opioid (33%) responders. Most of the TPH-negative spinally projecting neurons were mu-opioid responders (67%). These findings indicate that functional opioid receptor subtypes exist on spinally projecting serotonergic and nonserotonergic RVM neurons. The proportions of mu- and kappa-opioid receptors expressed differ between serotonergic and nonserotonergic neurons and between retrogradely labeled and unlabeled RVM neurons. We conclude that important roles exist for both serotonergic and nonserotonergic RVM neurons in the mediation of opioid effects.
Collapse
|
76
|
MESH Headings
- Adaptation, Physiological
- Analgesics, Opioid/administration & dosage
- Analgesics, Opioid/adverse effects
- Analgesics, Opioid/pharmacology
- Analgesics, Opioid/toxicity
- Animals
- Cats
- Dose-Response Relationship, Drug
- Drug Tolerance/physiology
- Humans
- Hyperalgesia/chemically induced
- Models, Neurological
- Narcotic Antagonists/pharmacology
- Neuronal Plasticity/drug effects
- Neuropeptides/pharmacology
- Nitric Oxide/physiology
- Pain/physiopathology
- Protein Kinase C/physiology
- Rats
- Receptors, N-Methyl-D-Aspartate/drug effects
- Receptors, N-Methyl-D-Aspartate/physiology
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/physiology
- Substance Withdrawal Syndrome/etiology
- Substance Withdrawal Syndrome/physiopathology
Collapse
Affiliation(s)
- Guy Simonnet
- Laboratoire Homéostasie-Allostasie-Pathologie, Université Victor-Ségalen Bordeaux 2, France.
| | | |
Collapse
|
77
|
Affiliation(s)
- Jianren Mao
- MGH Pain Center, Department of Anesthesia and Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
78
|
Tortorici V, Morgan MM. Comparison of morphine and kainic acid microinjections into identical PAG sites on the activity of RVM neurons. J Neurophysiol 2002; 88:1707-15. [PMID: 12364500 DOI: 10.1152/jn.2002.88.4.1707] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The rostral ventromedial medulla (RVM) modulates nociception through changes in the activity of two classes of neuron, ON- and OFF-cells. The activity of these neurons is regulated, in part, by input from the periaqueductal gray (PAG). The objective of this study was to determine whether PAG-mediated antinociception is associated with excitation of both ON- and OFF-cells in the RVM. Microinjection of morphine into the ventrolateral PAG produced antinociception at 50% of the injection sites. This antinociception was associated with continuous activation of RVM OFF-cells and inhibition of both the spontaneous and reflex-related activity of RVM ON-cells. Microinjection of kainic acid into the same injection sites produced antinociception 92% (37/40) of the time. Although kainic acid directly excites PAG output neurons, the changes in ON- and OFF-cell activity associated with microinjection of kainic acid into the ventrolateral PAG were the same as when morphine was injected. That is, ON-cells were inhibited and OFF-cells were activated. These data indicate that the excitatory connection between the PAG and RVM is directed at RVM OFF-cells specifically. In addition, these data suggest that direct activation of PAG output neurons, as occurs with kainic acid, is much more likely to produce antinociception than disinhibition of output neurons as occurs following morphine administration.
Collapse
Affiliation(s)
- V Tortorici
- Instituto Venezolano de Investigaciones Científicas, Caracas 1020-A, Venezuela.
| | | |
Collapse
|
79
|
Thurston-Stanfield CL. Effects of temperature and volume on intraperitoneal saline-induced changes in blood pressure, nociception, and neural activity in the rostroventral medulla. Brain Res 2002; 951:59-68. [PMID: 12231457 DOI: 10.1016/s0006-8993(02)03135-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
ON and OFF cells of the rostral ventromedial medulla are hypothesized to modulate nociception with ON cells facilitating pain and OFF cells inhibiting pain. The current study analyzed the effects of intraperitoneal saline at different volumes and temperatures on nociception (tail flick reflex), blood pressure, and the activity of ON and OFF cells in lightly anesthetized rats. At large volumes (20 cc/kg), room temperature saline excited 7/11 ON cells and inhibited 10/12 OFF cells for 2-5 min. In contrast, large volumes (20 cc/kg) of body temperature saline (37 degrees C) excited only 1/10 ON cells and inhibited only 3/13 OFF cells, and small volumes (1-2 cc/kg) of room temperature saline excited only 3/10 ON cells and inhibited only 4/11 OFF cells. Tail flick latency increased following saline administration at large volumes with a significant effect of time, but not temperature. The excitation of ON cells and inhibition of OFF cells indicate that cold intraperitoneal saline could be painful and the increase in tail flick latency may indicate a diffuse noxious inhibitory control. It is also possible that the changes in ON and OFF cell activity caused a hyperalgesia that was masked by a simultaneous hypoalgesia that was mediated independent of the ON and OFF cells. Because intraperitoneal saline may produce pain or hyperalgesia, care should be used when saline is used experimentally or clinically.
Collapse
|
80
|
Sustained morphine exposure induces a spinal dynorphin-dependent enhancement of excitatory transmitter release from primary afferent fibers. J Neurosci 2002. [PMID: 12151554 DOI: 10.1523/jneurosci.22-15-06747.2002] [Citation(s) in RCA: 179] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Paradoxical opioid-induced pain has been demonstrated repeatedly in humans and animals. The mechanisms of such pain are unknown but may relate to opioid-induced activation of descending pain facilitatory systems and enhanced expression and pronociceptive actions of spinal dynorphin. Here, the possibility that these opioid-induced central changes might mediate increased excitability to the spinal cord was tested. Tactile and thermal hypersensitivity was observed at 7, but not 1, days after subcutaneous morphine pellet implantation; placebo pellets produced no effects. Basal and capsaicin-evoked release of calcitonin gene-related peptide (CGRP) was measured in minced spinal tissues taken from naive rats or rats on post-pellet days 1 and 7. The content and evoked release of CGRP were significantly increased in tissues from morphine-exposed rats at 7, but not 1, days after implantation. Morphine increased spinal dynorphin content on day 7 in rats with sham bilateral lesions of the dorsolateral funiculus (DLF) but not in rats with DLF lesions. Pharmacological application of dynorphin A(2-13), a non-opioid fragment, to tissues from naive rats enhanced the evoked release of CGRP. Enhanced evoked release of CGRP from morphine-pelleted rats was blocked by dynorphin antiserum or by previous lesions of the DLF. Sustained morphine induces plasticity in both primary afferents and spinal cord, including increased CGRP and dynorphin content. Morphine-induced elevation of spinal dynorphin content depends on descending influences and enhances stimulated CGRP release. Enhanced transmitter release may allow increased stimulus-evoked spinal excitation, which is likely to be critical for opioid-induced paradoxical pain. Such pain may manifest behaviorally as antinociceptive tolerance.
Collapse
|
81
|
Time-dependent descending facilitation from the rostral ventromedial medulla maintains, but does not initiate, neuropathic pain. J Neurosci 2002. [PMID: 12077208 DOI: 10.1523/jneurosci.22-12-05129.2002] [Citation(s) in RCA: 239] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although injury-induced afferent discharge declines significantly over time, experimental neuropathic pain persists unchanged for long periods. These observations suggest that processes that initiate experimental neuropathic pain may differ from those that maintain such pain. Here, the role of descending facilitation arising from developing plasticity in the rostral ventromedial medulla (RVM) in the initiation and maintenance of experimental neuropathic pain was explored. Tactile and thermal hypersensitivity were induced in rats by spinal nerve ligation (SNL). RVM lidocaine blocked SNL-induced tactile and thermal hypersensitivity on post-SNL days 6-12 but not on post-SNL day 3. Lesion of RVM cells expressing mu-opioid receptors with dermorphin-saporin did not prevent the onset of SNL-induced tactile and thermal hypersensitivity, but these signs reversed to baseline levels beginning on post-SNL day 4. Similarly, lesions of the dorsolateral funiculus (DLF) did not prevent the onset of SNL-induced tactile and thermal hypersensitivity, but these signs reversed to baseline levels beginning on post-SNL day 4. Lesions of the DLF also blocked the SNL-induced increase in spinal dynorphin content, which has been suggested to promote neuropathic pain. These data distinguish mechanisms that initiate the neuropathic state as independent of descending supraspinal influences and additional mechanism(s) that require supraspinal facilitation to maintain such pain. In addition, the data indicate that these time-dependent descending influences can underlie some of the SNL-induced plasticity at the spinal level. Such time-dependent descending influences driving associated spinal changes, such as the upregulation of dynorphin, are key elements in the maintenance, but not initiation, of neuropathic states.
Collapse
|
82
|
Abstract
Upon receipt in the dorsal horn (DH) of the spinal cord, nociceptive (pain-signalling) information from the viscera, skin and other organs is subject to extensive processing by a diversity of mechanisms, certain of which enhance, and certain of which inhibit, its transfer to higher centres. In this regard, a network of descending pathways projecting from cerebral structures to the DH plays a complex and crucial role. Specific centrifugal pathways either suppress (descending inhibition) or potentiate (descending facilitation) passage of nociceptive messages to the brain. Engagement of descending inhibition by the opioid analgesic, morphine, fulfils an important role in its pain-relieving properties, while induction of analgesia by the adrenergic agonist, clonidine, reflects actions at alpha(2)-adrenoceptors (alpha(2)-ARs) in the DH normally recruited by descending pathways. However, opioids and adrenergic agents exploit but a tiny fraction of the vast panoply of mechanisms now known to be involved in the induction and/or expression of descending controls. For example, no drug interfering with descending facilitation is currently available for clinical use. The present review focuses on: (1) the organisation of descending pathways and their pathophysiological significance; (2) the role of individual transmitters and specific receptor types in the modulation and expression of mechanisms of descending inhibition and facilitation and (3) the advantages and limitations of established and innovative analgesic strategies which act by manipulation of descending controls. Knowledge of descending pathways has increased exponentially in recent years, so this is an opportune moment to survey their operation and therapeutic relevance to the improved management of pain.
Collapse
Affiliation(s)
- Mark J Millan
- Department of Psychopharmacology, Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy/Seine, Paris, France.
| |
Collapse
|
83
|
McGaraughty S, Heinricher MM. Microinjection of morphine into various amygdaloid nuclei differentially affects nociceptive responsiveness and RVM neuronal activity. Pain 2002; 96:153-62. [PMID: 11932071 DOI: 10.1016/s0304-3959(01)00440-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The goal of the present study was to identify nuclei of the amygdala in which opioid-sensitive systems can act to recruit nociceptive modulatory circuitry in the rostral ventromedial medulla (RVM) and affect nociceptive responsiveness. In lightly anesthetized rats, 10 microg of morphine was bilaterally microinjected into basolateral, cortical, medial, central, and lateral nuclei of the amygdala to determine the relative influence on the activity of identified ON, OFF and NEUTRAL cells in the RVM and on the latency of the tail flick reflex evoked by noxious radiant heat. Infusions of morphine into the basolateral nuclei resulted in a substantial, naloxone-reversible increase in tail flick latency, and significantly increased ongoing firing of OFF cells and depressed that of ON cells. The reflex-related changes in cell firing were also attenuated. Morphine infusions into the cortical nuclei resulted in a small (approximately 1 s) but significant increase in tail flick latency. As with basolateral microinjections, ongoing activity of the OFF cells was increased, and although the ongoing firing of ON cells was not significantly changed, the reflex-related burst that characterizes these neurons was reduced. Microinjections in the medial nuclei again altered ongoing activity of both ON cells and OFF cells. However, the duration of the OFF cell pause and tail flick latency were unchanged. NEUTRAL cells were not affected by morphine at any site. Morphine applied within the central, medial lateral and dorsal lateral nuclei had no effect on RVM neurons or on the tail flick. Thus, focal application of morphine within the basolateral nucleus of the amygdala produced hypoalgesia and influenced RVM ON and OFF cells in a manner similar to that seen following systemic or RVM opioid administration. Opioid action within the medial and cortical nuclei also influenced RVM cell activity, but did not prevent the reflex-related OFF cell pause, and failed to alter the tail flick substantially. These observations, plus the lack of an opioid-activated influence from the central and lateral nuclei, demonstrate fundamental differences among systems linking the different amygdalar nuclei with the RVM. One way in which the modulatory circuitry of the RVM might be engaged physiologically in behaving animals is via opioid-mediated activation of the basolateral nucleus.
Collapse
Affiliation(s)
- Steve McGaraughty
- Department of Neurological Surgery, Oregon Health Sciences University, Portland, OR 97201, USA.
| | | |
Collapse
|
84
|
Mason P. Contributions of the medullary raphe and ventromedial reticular region to pain modulation and other homeostatic functions. Annu Rev Neurosci 2001; 24:737-77. [PMID: 11520917 DOI: 10.1146/annurev.neuro.24.1.737] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The raphe magnus is part of an interrelated region of medullary raphe and ventromedial reticular nuclei that project to all areas of the spinal gray. Activation of raphe and reticular neurons evokes modulatory effects in sensory, autonomic, and motor spinal processes. Two physiological types of nonserotonergic cells are observed in the medullary raphe and are thought to modulate spinal pain processing in opposing directions. Recent evidence suggests that these cells may modulate stimulus-evoked arousal or alerting rather than pain-evoked withdrawals. Nonserotonergic cells are also likely to modulate spinal autonomic and motor circuits involved in thermoregulation and sexual function. Medullary serotonergic cells have state-dependent discharge and are likely to contribute to the modulation of pain processing, thermoregulation, and sexual function in the spinal cord. The medullary raphe and ventromedial reticular region may set sensory, autonomic, and motor spinal circuits into configurations that are appropriate to the current behavioral state.
Collapse
Affiliation(s)
- P Mason
- Department of Neurobiology, University of Chicago, Chicago, Illinois 60637, USA.
| |
Collapse
|
85
|
Hernández N, Vanegas H. Encoding of noxious stimulus intensity by putative pain modulating neurons in the rostral ventromedial medulla and by simultaneously recorded nociceptive neurons in the spinal dorsal horn of rats. Pain 2001; 91:307-315. [PMID: 11275388 DOI: 10.1016/s0304-3959(00)00452-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Neurons in the nucleus raphe magnus and adjacent structures of the rostral ventromedial medulla (RVM) are involved in the control of nociceptive transmission. In the RVM the so-called on-cells are excited, and the so-called off-cells are inhibited, by noxious stimuli applied almost anywhere on the body surface, thus showing that they receive information from spinal and trigeminal nociceptive neurons. In deeply anesthetized rats, recordings were made from RVM neurons that resembled on- and off-cells (herein called putative on- and off-cells) in order to investigate (1) how they encode the intensity of thermal noxious stimuli (46--56 degrees C) applied to a hindpaw, and (2) how their encoding properties relate to those of simultaneously recorded spinal neurons. In 49 of 98 cases, a graded increase in the stimulus temperature caused a monotonic decrease in the response latency of putative on-cells, putative off-cells and spinal neurons, while the response discharge rate monotonically increased for putative on-cells and spinal neurons and decreased for putative off-cells. In the majority of simultaneous recordings of RVM and spinal neurons, the latency and discharge rate of the putative on- or off-cell were highly correlated with the latency and discharge rate of the spinal neuron, and the stimulus/response slopes were similar. These results show that putative on- and off-cells can encode the stimulus intensity in terms of response latency and discharge rate, and suggest that such encoding closely reflects spinal neuronal encoding. This may be relevant for the transmission and modulation of pain information by RVM neurons.
Collapse
Affiliation(s)
- Norma Hernández
- Instituto Venezolano de Investigaciones CientÍficas (IVIC), Apartado 21827, Caracas 1020A, Venezuela
| | | |
Collapse
|
86
|
Hirakawa N, Tershner SA, Fields HL, Manning BH. Bi-directional changes in affective state elicited by manipulation of medullary pain-modulatory circuitry. Neuroscience 2001; 100:861-71. [PMID: 11036220 DOI: 10.1016/s0306-4522(00)00329-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The rostral ventromedial medulla contains three physiologically defined classes of pain-modulating neuron that project to the spinal and trigeminal dorsal horns. OFF cells contribute to anti-nociceptive processes, ON cells contribute to pro-nociceptive processes (i.e. hyperalgesia) and neutral cells tonically modulate spinal nociceptive responsiveness. In the setting of noxious peripheral input, the different cell classes in this region permit bi-directional modulation of pain perception (analgesia vs hyperalgesia). It is unclear, however, whether changes in the activity of these neurons are relevant to the behaving animal in the absence of a painful stimulus. Here, we pharmacologically manipulated neurons in the rostral ventromedial medulla and used the place-conditioning paradigm to assess changes in the affective state of the animal. Local microinjection of the alpha(1)-adrenoceptor agonist methoxamine (50.0 microg in 0.5 microl; to activate ON cells, primarily), combined with local microinjection of the kappa-opioid receptor agonist U69,593 (0.178 microg in 0.5 microl; to inhibit OFF cells), produced an increase in spinal nociceptive reactivity (i.e. hyperalgesia on the tail flick assay) and a negative affective state (as inferred from the production of conditioned place avoidance) in the conscious, freely moving rat. Additional microinjection experiments using various concentrations of methoxamine alone or U69, 593 alone revealed that the rostral ventromedial medulla is capable of eliciting a range of affective changes resulting in conditioned place avoidance, no place-conditioning effect or conditioned place preference (reflecting production of a positive affective state). Overall, however, there was no consistent relationship between place-conditioning effects and changes in spinal nociceptive reactivity. This is the first report of bi-directional changes in affective state (i.e. reward or aversion production) associated with pharmacological manipulation of a brain region traditionally associated with bi-directional pain modulation. We conclude that, in addition to its well-described pain-modulating effects, the rostral ventromedial medulla is capable of modifying animal behavior in the absence of a painful stimulus by bi-directionally influencing the animal's affective state.
Collapse
Affiliation(s)
- N Hirakawa
- Departments of Neurology and Physiology, and the W. M. Keck Foundation Center for Integrative Neuroscience, University of California at San Francisco, 94143-0453, USA
| | | | | | | |
Collapse
|
87
|
Tonic descending facilitation from the rostral ventromedial medulla mediates opioid-induced abnormal pain and antinociceptive tolerance. J Neurosci 2001. [PMID: 11150345 DOI: 10.1523/jneurosci.21-01-00279.2001] [Citation(s) in RCA: 212] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Many clinical case reports have suggested that sustained opioid exposure can elicit unexpected, paradoxical pain. Here, we explore the possibility that (1) opioid-induced pain results from tonic activation of descending pain facilitation arising in the rostral ventromedial medulla (RVM) and (2) the presence of such pain manifests behaviorally as antinociceptive tolerance. Rats implanted subcutaneously with pellets or osmotic minipumps delivering morphine displayed time-related tactile allodynia and thermal hyperalgesia (i. e., opioid-induced "pain"); placebo pellets or saline minipumps did not change thresholds. Opioid-induced pain was observed while morphine delivery continued and while the rats were not in withdrawal. RVM lidocaine, or bilateral lesions of the dorsolateral funiculus (DLF), did not change response thresholds in placebo-pelleted rats but blocked opioid-induced pain. The intrathecal morphine antinociceptive dose-response curve (DRC) in morphine-pelleted rats was displaced to the right of that in placebo-pelleted rats, indicating antinociceptive "tolerance." RVM lidocaine or bilateral DLF lesion did not alter the intrathecal morphine DRC in placebo-pelleted rats but blocked the rightward displacement seen in morphine-pelleted animals. The subcutaneous morphine antinociceptive DRC in morphine-pelleted rats was displaced to the right of that in placebo-pelleted rats; this right shift was blocked by RVM lidocaine. The data show that (1) opioids elicit pain through tonic activation of bulbospinal facilitation from the RVM, (2) increased pain decreases spinal opioid antinociceptive potency, and (3) blockade of pain restores antinociceptive potency, revealing no change in antinociceptive signal transduction. These studies offer a mechanism for paradoxical opioid-induced pain and allow the development of approaches by which the loss of analgesic activity of opioids might be inhibited.
Collapse
|
88
|
Saiepour MH, Semnanian S, Fathollahi Y. Occurrence of morphine tolerance and dependence in the nucleus paragigantocellularis neurons. Eur J Pharmacol 2001; 411:85-92. [PMID: 11137862 DOI: 10.1016/s0014-2999(00)00862-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The occurrence of morphine tolerance and dependence in the nucleus paragigantocellularis neurons was investigated. The spontaneous activity was recorded from the nucleus paragigantocellularis neurons of urethane-anesthetized rats, using single unit recording. Morphine microinjected (20 mg/ml, 120-200 nl) into the nucleus paragigantocellularis of control rats had both excitatory and inhibitory effects. These effects were reversed by microinjection of naloxone, revealing the possible involvement of mu receptors. Morphine microinjected into morphine-dependent rats failed to change the spontaneous activity of the nucleus paragigantocellularis neurons that accounts for the occurrence of tolerance to morphine in these neurons. Microinjection of naloxone (25 mg/ml, 120-200 nl) in control rats had no effect on the spontaneous firing rate of the nucleus paragigantocellularis neurons but in morphine-dependent rats, either alone or after morphine microinjection, naloxone increased neuronal activity significantly, indicating the occurrence of dependence on morphine in the nucleus paragigantocellularis neurons. These data show that the nucleus paragigantocellularis neurons may play a role in physical dependence on morphine. This conclusion is consistent with the finding, that activation of the nucleus paragigantocellularis by electrical stimulation in morphine-naive rats can elicit behaviors similar to those observed during naloxone-precipitated morphine withdrawal.
Collapse
Affiliation(s)
- M H Saiepour
- Institute of Biochemistry and Biophysics, University of Tehran, P.O. Box 13145-1384, Tehran, Iran.
| | | | | |
Collapse
|
89
|
Heinricher MM, McGaraughty S, Tortorici V. Circuitry underlying antiopioid actions of cholecystokinin within the rostral ventromedial medulla. J Neurophysiol 2001; 85:280-6. [PMID: 11152727 DOI: 10.1152/jn.2001.85.1.280] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is now well established that the analgesic actions of opioids can be modified by "anti-analgesic" or "antiopioid" peptides, among them cholecystokinin (CCK). Although the focus of much recent work concerned with CCK-opioid interactions has been at the level of the spinal cord, CCK also acts within the brain to modify opioid analgesia. The aim of the present study was to characterize the actions of CCK in a brain region in which the circuitry mediating the analgesic actions of opioids is relatively well understood, the rostral ventromedial medulla (RVM). Single-cell recording was combined with local infusion of CCK in the RVM and systemic administration of morphine in lightly anesthetized rats. The tail-flick reflex was used as a behavioral index of nociceptive responsiveness. Two classes of RVM neurons with distinct responses to opioids have been identified. OFF cells are activated, indirectly, by morphine and mu-opioid agonists, and there is strong evidence that this activation is crucial to opioid antinociception. ON cells, thought to facilitate nociception, are directly inhibited by opioids. Cells of a third class, NEUTRAL cells, do not respond to opioids, and whether they have any role in nociceptive modulation is unknown. CCK microinjected into the RVM by itself had no effect on tail flick latency or the firing of any cell class but significantly attenuated opioid activation of OFF cells and inhibition of the tail flick. Opioid suppression of ON-cell firing was not significantly altered by CCK. Thus CCK acting within the RVM attenuates the analgesic effect of systemically administered morphine by preventing activation of the putative pain inhibiting output neurons of the RVM, the OFF cells. CCK thus differs from another antiopioid peptide, orphanin FQ/nociceptin, which interferes with opioid analgesia by potently suppressing all OFF-cell firing.
Collapse
Affiliation(s)
- M M Heinricher
- Department of Neurological Surgery, Oregon Health Sciences University, Portland, Oregon 97201, USA.
| | | | | |
Collapse
|
90
|
Gao K, Mason P. Serotonergic Raphe magnus cells that respond to noxious tail heat are not ON or OFF cells. J Neurophysiol 2000; 84:1719-25. [PMID: 11024064 DOI: 10.1152/jn.2000.84.4.1719] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pharmacological studies have suggested that serotonergic cells in RM contribute to both the inhibition and facilitation of spinal nociceptive transmission. Physiological studies in the medullary nucleus raphe magnus (RM) and adjacent nucleus reticularis magnocellularis have identified putative nociceptive-inhibitory OFF cells and nociceptive-facilitatory neurons ON cells by their responses to noxious thermal stimulation. The present study was designed to determine 1) whether any serotonergic RM cells respond to noxious thermal stimulation and 2) whether noxious heat-responsive serotonergic cells should be classified as ON or OFF cells. Serotonergic cells (n = 150) were identified by physiological criteria in anesthetized rats; 30 of 32 cells tested contained serotonin immunoreactivity. Noxious tail heat elicited a neuronal response in less than a quarter of the serotonergic cells. Most serotonergic cells that responded to tail heat were excited (n = 25), while a small minority of the cells tested were inhibited (n = 8). The tail heat-evoked responses of serotonergic cells were small in magnitude, averaging five to eight spikes in 10 s. Excitatory responses rarely persisted for more than 10 s, while inhibitory responses rarely persisted for more than 20 s. The tail heat-evoked responses of serotonergic cells were compared to those of non-serotonergic cells (n = 186). Non-serotonergic cells that responded to noxious tail heat had significantly greater response magnitudes, averaging 75-95 spikes in 10 s, than heat-responsive serotonergic cells. In addition, most heat-responsive non-serotonergic cells responded for at least 30 s after stimulus onset. These results demonstrate that the tail heat-evoked responses of serotonergic RM cells are qualitatively and quantitatively distinct from those of non-serotonergic ON and OFF cells. It is therefore unlikely that serotonergic RM cells, even the subpopulation that responds to noxious tail heat, share a physiological function with ON and OFF cells.
Collapse
Affiliation(s)
- K Gao
- Department of Neurobiology, Pharmacology and Physiology and the Committee on Neurobiology, University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
91
|
|
92
|
Pan Z, Hirakawa N, Fields HL. A cellular mechanism for the bidirectional pain-modulating actions of orphanin FQ/nociceptin. Neuron 2000; 26:515-22. [PMID: 10839369 DOI: 10.1016/s0896-6273(00)81183-6] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Orphanin FQ/nociceptin (OFQ/N) and its receptor share substantial structural features and cellular actions with classic opioid peptides and receptors, but have distinct pharmacological profiles and behavioral effects. Currently there is an active debate about whether OFQ/N produces hyperalgesia or analgesia. Using a well-defined brainstem pain-modulating circuit, we show that OFQ/N can cause either an apparent hyperalgesia by antagonizing mu opioid-induced analgesia or a net analgesic effect by reducing the hyperalgesia during opioid abstinence. It presumably produces these two opposite actions by inhibiting two distinct groups of neurons whose activation mediates the two effects of opioid administration. OFQ/N antagonism of the hyperalgesia may have significance for the treatment of opioid withdrawal and sensitized pain.
Collapse
Affiliation(s)
- Z Pan
- Department of Neurology, The W.M. Keck Center for Integrative Neuroscience, University of California, San Francisco 94143, USA.
| | | | | |
Collapse
|
93
|
McNally GP. Pain facilitatory circuits in the mammalian central nervous system: their behavioral significance and role in morphine analgesic tolerance. Neurosci Biobehav Rev 1999; 23:1059-78. [PMID: 10643817 DOI: 10.1016/s0149-7634(99)00040-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Sensitivity to noxious stimulation is not invariant; rather, it is modulated by discrete pain inhibitory and facilitatory circuits. This paper reviews the neural circuits for pain facilitation, describes the conditions governing their environmental activation, and examines their role in an animal's behavioral repertoire. Mechanisms for pain facilitation are contrasted at both the neural and behavioral level with mechanisms for pain inhibition. In addition, the involvement of mechanisms for pain facilitation in morphine analgesic tolerance is discussed, and the implications of this involvement for accounts of the role of associative processes in analgesic tolerance are highlighted.
Collapse
Affiliation(s)
- G P McNally
- Mental Health Research Institute, University of Michigan, Ann Arbor 48109-0720, USA.
| |
Collapse
|
94
|
Célèrier E, Laulin J, Larcher A, Le Moal M, Simonnet G. Evidence for opiate-activated NMDA processes masking opiate analgesia in rats. Brain Res 1999; 847:18-25. [PMID: 10564731 DOI: 10.1016/s0006-8993(99)01998-8] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The acute interaction between opioid receptors and N-methyl-D-aspartate (NMDA) receptors on nociception was examined in rats using tail-flick and paw-pressure vocalisation tests. When injected at various times (1 to 6 h) after morphine (5 to 20 mg/kg, i.v.) or fentanyl (4x40 microgram/kg, i.v.), the opioid receptor antagonist naloxone (1 mg/kg, s.c.) not only abolished the opiate-induced increase in nociceptive threshold, but also reduced it below the basal value (hyperalgesia). The noncompetitive NMDA receptor antagonist MK-801 (0.15 or 0.30 mg/kg, s.c.) prevented the naloxone-precipitated hyperalgesia and enhanced the antinociceptive effects of morphine (7.5 mg/kg, i.v.) and fentanyl (4x40 microgram/kg, i.v.). These results indicate that the antinociceptive effects of morphine and fentanyl, two opiate analgesics widely used in humans in the management of pain, are blunted by concomitant NMDA-dependent opposing effects which are only revealed when the predominant antinociceptive effect is sharply blocked by naloxone. This study provides new rationale for beneficial adjunction of NMDA receptor antagonists with opiates for relieving pain by preventing pain facilitatory processes triggered by opiate treatment per se.
Collapse
Affiliation(s)
- E Célèrier
- INSERM U 259, Laboratoire Psychobiologie des Comportements Adaptatifs, Université de Bordeaux II, 1 Rue Camille Saint-Saëns, 33077, Bordeaux, France
| | | | | | | | | |
Collapse
|
95
|
Abstract
Tissue injury is associated with sensitization of nociceptors and subsequent changes in the excitability of central (spinal) neurons, termed central sensitization. Nociceptor sensitization and central sensitization are considered to underlie, respectively, development of primary hyperalgesia and secondary hyperalgesia. Because central sensitization is considered to reflect plasticity at spinal synapses, the spinal cord has been the principal focus of studies of mechanisms of hyperalgesia. Not surprisingly, glutamate, acting at a spinal N-methyl-D-aspartate (NMDA) receptor, has been implicated in development of secondary hyperalgesia associated with somatic, neural, and visceral structures. Downstream of NMDA receptor activation, spinal nitric oxide (NO.), protein kinase C, and other mediators have been implicated in maintaining such hyperalgesia. Accumulating evidence, however, reveals a significant contribution of supraspinal influences to development and maintenance of hyperalgesia. Spinal cord transection prevents development of secondary, but not primary, mechanical and/or thermal hyperalgesia after topical mustard oil application, carrageenan inflammation, or nerve-root ligation. Similarly, inactivation of the rostral ventromedial medulla (RVM) attenuates hyperalgesia and central sensitization in several models of persistent pain. Inhibition of medullary NMDA receptors or NO. generation attenuates somatic and visceral hyperalgesia. In support, topical mustard oil application or colonic inflammation increases expression of NO. synthase in the RVM. These data suggest a prominent role for the RVM in mediating the sensitization of spinal neurons and development of secondary hyperalgesia. Results to date suggest that peripheral injury and persistent input engage spinobulbospinal mechanisms that may be the prepotent contributors to central sensitization and development of secondary hyperalgesia.
Collapse
Affiliation(s)
- M O Urban
- Department of Pharmacology, College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
96
|
Abstract
Neurons in the medullary raphe magnus (RM) that are important in the descending modulation of nociceptive transmission are classified by their response to noxious tail heat as ON, OFF, or NEUTRAL cells. Experiments in anesthetized animals demonstrate that RM ON cells facilitate and OFF cells inhibit nociceptive transmission. Yet little is known of the physiology of these cells in the unanesthetized animal. The first aim of the present experiments was to determine whether cells with ON- and OFF-like responses to noxious heat exist in the unanesthetized rat. Second, to determine if RM cells have state-dependent discharge, the activity of RM neurons was recorded during waking and sleeping states. Noxious heat applied during waking and slow wave sleep excited one group of cells (ON-U) in unanesthetized rats. Other cells were inhibited by noxious heat (OFF-U) applied during waking and slow wave sleep states in unanesthetized rats. NEUTRAL-U cells did not respond to noxious thermal stimulation applied during either slow wave sleep or waking. ON-U and OFF-U cells were more likely to respond to noxious heat during slow wave sleep than during waking and were least likely to respond when the animal was eating or drinking. Although RM cells rarely respond to innocuous stimulation applied during anesthesia, ON-U and OFF-U cells were excited and inhibited, respectively, by innocuous somatosensory stimulation in the unanesthetized rat. The spontaneous activity of >90% of the RM neurons recorded in the unanesthetized rat was influenced by behavioral state. OFF-U cells discharged sporadically during waking but were continuously active during slow wave sleep. By contrast, ON-U and NEUTRAL-U cells discharged in bursts during waking and either ceased to discharge entirely or discharged at a low rate during slow wave sleep. We suggest that OFF cell discharge functions to suppress pain-evoked reactions during sleep, whereas ON cell discharge facilitates pain-evoked responses during waking.
Collapse
Affiliation(s)
- C G Leung
- Department of Pharmacological and Physiological Sciences and the Committee on Neurobiology, The University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
97
|
|
98
|
Heinricher MM, McGaraughty S, Grandy DK. Circuitry underlying antiopioid actions of orphanin FQ in the rostral ventromedial medulla. J Neurophysiol 1997; 78:3351-8. [PMID: 9405549 DOI: 10.1152/jn.1997.78.6.3351] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Several laboratories recently identified a 17 amino-acid peptide, termed "nociceptin" or "orphanin FQ (OFQ)", as the endogenous ligand for the LC132 (or "opioid receptor-like1") receptor. Taken together with the fact that the cellular effects of OFQ are to a large extent opioid-like, the close relationship between the LC132 receptor and known opioid receptors raised expectations that the behavioral effects of this peptide would resemble those of opioids. However studies of the role of OFQ in nociception have not provided a unified view. The aim of the present study was to use a combination of electrophysiological and pharmacological techniques to characterize the actions of OFQ in a brain region in which the circuitry mediating the analgesic actions of opioids has been relatively well characterized, the rostral ventromedial medulla (RVM). Single-cell recording was combined with opioid administration and local infusion of OFQ in the RVM of rats lightlyanesthetized with barbiturates. The tail flick reflex was used as a behavioral index of nociceptive responsiveness. Two classes of physiologically identifiable RVM neurons with distinct responses to opioids have been characterized. -cells are activated, although indirectly, by opioids, and there is strong evidence that this activation is crucial to opioid antinociception. -cells, thought to enable nociception, are directly inhibited by opioids. Cells of a third class, cells, do not respond to opioids and whether or not they have any role in nociceptive modulation remains an open question. OFQ infused within the RVM profoundly suppressed the firing of all classes of RVM neurons, blocking opioid-induced activation of -cells. The antinociceptive effects of a micro-opioid agonist infused at the same site were significantly attenuated in these animals. Those of systemically administered morphine, which can produce its antinociceptive effects by acting at a number of CNS sites, were not blocked by RVM OFQ. Inasmuch as activation of -cells can account for the antinociceptive action of opioids within the RVM, these results demonstrate that, at least within the medulla, OFQ can exert a functional "antiopioid" effect by suppressing firing of this cell class. However to the extent that antinociceptive and pronociceptive outflows from various brain regions involved in both transmission and modulation of nociception are active under different conditions, focal application of OFQ in different regions could potentially produce either hypalgesia or hyperalgesia.
Collapse
Affiliation(s)
- M M Heinricher
- Division of Neurosurgery, Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | | | |
Collapse
|
99
|
Rohde DS, McKay WR, Chang DS, Abbadie C, Basbaum AI. The contribution of supraspinal, peripheral and intrinsic spinal circuits to the pattern and magnitude of Fos-like immunoreactivity in the lumbar spinal cord of the rat withdrawing from morphine. Neuroscience 1997; 80:599-612. [PMID: 9284361 DOI: 10.1016/s0306-4522(97)00096-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Withdrawal from morphine evokes increases in Fos-like immunoreactivity in the spinal cord, particularly in the superficial dorsal horn, laminae I/II. To determine the origin of the increased Fos-like immunoreactivity, we selectively targeted central or peripheral opioid receptors with naloxone-methiodide, an antagonist that does not cross the blood-brain barrier, or induced withdrawal after eliminating possible sources of input to the superficial dorsal horn. To induce tolerance, we implanted rats with morphine or placebo pellets (75 mg, six pellets over three days). On day 4, withdrawal was precipitated and after 1 h, the rats were killed, their spinal cords removed and 50 microm transverse sections of the spinal cord immunoreacted with a rabbit polyclonal antiserum directed against the Fos protein. In placebo-pelleted rats, none of the different procedures, viz. spinal transection, unilateral dorsal rhizotomy (L4-S2), neonatal capsaicin treatment or direct intrathecal opioid antagonist injection, induced expression of the Fos protein. However, both spinally transected and rhizotomized withdrawing animals showed significant increases in Fos-like immunoreactivity in laminae I/II, compared to intact withdrawing rats. Neonatal treatment with capsaicin, which eliminates C-fibres, did not alter Fos-like-immunoreactivity. Selective withdrawal of morphine from peripheral opioid receptors by naloxone-methiodide did not induce Fos-like immunoreactivity in the lumbar spinal cord greater than that recorded in nonwithdrawing rats. However, intrathecal injection of naloxone-methiodide increased Fos-like immunoreactivity in laminae I/II and the ventral horn to a greater extent than did subcutaneous injection of naloxone. We hypothesize that the increased Fos expression after systemic withdrawal in spinally-transected rats results from a loss of descending inhibitory control that is activated during withdrawal. The increase in withdrawal-induced Fos-like immunoreactivity after rhizotomy may be secondary to loss of inhibitory controls exerted by large diameter primary afferents or to deafferentation-induced reorganization in the dorsal horn. Since capsaicin did not alter the magnitude of Fos-like immunoreactivity in withdrawing rats, we conclude that hyperactivity of opioid receptor-laden C-fibres is not a necessary contributor to the withdrawal-induced increase in Fos-like immunoreactivity in laminae I and II. Taken together with the results recorded after intrathecal injection of naloxone-methiodide in tolerant rats, we conclude that the pattern of lumbar spinal cord Fos expression following systemic withdrawal is primarily a consequence of increased activity in opioid receptor-containing circuits intrinsic to the dorsal horn and that the magnitude of Fos expression is normally dampened by supraspinal and primary afferent-derived inhibitory inputs.
Collapse
Affiliation(s)
- D S Rohde
- Biomedical Sciences Program, University of California San Francisco, 94143, U.S.A
| | | | | | | | | |
Collapse
|
100
|
Feng JQ, Kendig JJ. Propofol potentiates the depressant effect of alfentanil in isolated neonatal rat spinal cord and blocks naloxone-precipitated hyperresponsiveness. Neurosci Lett 1997; 229:9-12. [PMID: 9224789 DOI: 10.1016/s0304-3940(97)00410-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Our previous studies have shown that a benzodiazepine potentiates opioid actions on spinal cord by blocking a hyperresponsiveness that may be related to the development of opioid tolerance and withdrawal. The present study was designed to test whether propofol, which like benzodiazepines acts on GABA(A) receptors, displays similar interactions with opioids. Spinal cords isolated from 1-7 day old rats were arranged to record the slow ventral root potential (sVRP) elicited by stimulating a lumbar dorsal root. A concentration of propofol which by itself did not depress sVRP significantly enhanced the apparent potency of alfentanil and blocked the increase in sVRP observed when alfentanil is followed by naloxone. The results suggest that enhancement of GABA inhibition may increase opioid potency by inhibiting the development of acute tolerance.
Collapse
Affiliation(s)
- J Q Feng
- Department of Anesthesia, Stanford University School of Medicine, CA 94305-5117, USA
| | | |
Collapse
|