51
|
Bradley AI, Marsh NM, Borror HR, Mostoller KE, Gama AI, Gardner RG. Acute ethanol stress induces sumoylation of conserved chromatin structural proteins in Saccharomyces cerevisiae. Mol Biol Cell 2021; 32:1121-1133. [PMID: 33788582 PMCID: PMC8351541 DOI: 10.1091/mbc.e20-11-0715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Stress is ubiquitous to life and can irreparably damage essential biomolecules and organelles in cells. To survive, organisms must sense and adapt to stressful conditions. One highly conserved adaptive stress response is through the posttranslational modification of proteins by the small ubiquitin-like modifier (SUMO). Here, we examine the effects of acute ethanol stress on protein sumoylation in the budding yeast Saccharomyces cerevisiae. We found that cells exhibit a transient sumoylation response after acute exposure to ≤7.5% vol/vol ethanol. By contrast, the sumoylation response becomes chronic at 10% ethanol exposure. Mass spectrometry analyses identified 18 proteins that are sumoylated after acute ethanol exposure, with 15 known to associate with chromatin. Upon further analysis, we found that the chromatin structural proteins Smc5 and Smc6 undergo ethanol-induced sumoylation that depends on the activity of the E3 SUMO ligase Mms21. Using cell-cycle arrest assays, we observed that Smc5 and Smc6 ethanol-induced sumoylation occurs during G1 and G2/M phases but not S phase. Acute ethanol exposure also resulted in the formation of Rad52 foci at levels comparable to Rad52 foci formation after exposure to the DNA alkylating agent methyl methanesulfonate (MMS). MMS exposure is known to induce the intra-S-phase DNA damage checkpoint via Rad53 phosphorylation, but ethanol exposure did not induce Rad53 phosphorylation. Ethanol abrogated the effect of MMS on Rad53 phosphorylation when added simultaneously. From these studies, we propose that acute ethanol exposure induces a change in chromatin leading to sumoylation of specific chromatin structural proteins.
Collapse
Affiliation(s)
- Amanda I Bradley
- Department of Pharmacology, University of Washington, Seattle, WA 98195.,Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195
| | - Nicole M Marsh
- Department of Pharmacology, University of Washington, Seattle, WA 98195
| | - Heather R Borror
- Department of Pharmacology, University of Washington, Seattle, WA 98195
| | | | - Amber I Gama
- Department of Pharmacology, University of Washington, Seattle, WA 98195
| | - Richard G Gardner
- Department of Pharmacology, University of Washington, Seattle, WA 98195.,Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195
| |
Collapse
|
52
|
Rashid M, Shah SG, Verma T, Chaudhary N, Rauniyar S, Patel VB, Gera PB, Smoot D, Ashaktorab H, Dalal SN, Gupta S. Tumor-specific overexpression of histone gene, H3C14 in gastric cancer is mediated through EGFR-FOXC1 axis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2021; 1864:194703. [PMID: 33727172 DOI: 10.1016/j.bbagrm.2021.194703] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/15/2021] [Accepted: 03/07/2021] [Indexed: 02/08/2023]
Abstract
Incorporation of different H3 histone isoforms/variants have been reported to differentially regulate gene expression via alteration in chromatin organization during diverse cellular processes. However, the differential expression of highly conserved histone H3.2 genes, H3C14 and H3C13 in human cancer has not been delineated. In this study, we investigated the expression of H3.2 genes in primary human gastric, brain, breast, colon, liver, and head and neck cancer tissues and tumor cell lines. The data showed overexpression of H3.2 transcripts in tumor samples and cell lines with respect to normal counterparts. Furthermore, TCGA data of individual and TCGA PANCAN cohort also showed significant up-regulation of H3.2 genes. Further, overexpressed H3C14 gene coding for H3.2 protein was regulated by FOXC1 transcription factor and G4-cassette in gastric cancer cell lines. Elevated expression of FOXC1 protein and transcripts were also observed in human gastric cancer samples and cell lines. Further, FOXC1 protein was predominantly localized in the nuclei of neoplastic gastric cells compared to normal counterpart. In continuation, studies with EGF induction, FOXC1 knockdown, and ChIP-qPCR for the first time identified a novel axis, EGFR-FOXC1-H3C14 for regulation of H3C14 gene overexpression in gastric cancer. Therefore, the changes the epigenomic landscape due to incorporation of differential expression H3 variant contributes to change in gene expression pattern and thereby contributing to pathogenesis of cancer.
Collapse
Affiliation(s)
- Mudasir Rashid
- KS313, Epigenetics and Chromatin Biology Group, Gupta Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, MH, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH, India
| | - Sanket Girish Shah
- KS313, Epigenetics and Chromatin Biology Group, Gupta Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, MH, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH, India
| | - Tripti Verma
- KS313, Epigenetics and Chromatin Biology Group, Gupta Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, MH, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH, India
| | - Nazia Chaudhary
- KS216, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, MH, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH, India
| | - Sukanya Rauniyar
- KS313, Epigenetics and Chromatin Biology Group, Gupta Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, MH, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH, India
| | - Vidisha Bhavesh Patel
- KS313, Epigenetics and Chromatin Biology Group, Gupta Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, MH, India
| | - Poonam B Gera
- Biorepository, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, MH, India
| | - Duane Smoot
- Department of Medicine, Meharry Medical Center, Nashville, TN 37208, United States
| | - Hassan Ashaktorab
- Department of Medicine and Cancer Center, College of Medicine, Howard University, Washington DC, WA 20060, United States
| | - Sorab N Dalal
- KS216, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, MH, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH, India
| | - Sanjay Gupta
- KS313, Epigenetics and Chromatin Biology Group, Gupta Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410210, MH, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, MH, India.
| |
Collapse
|
53
|
Sar P, Dalai S. CRISPR/Cas9 in epigenetics studies of health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 181:309-343. [PMID: 34127198 DOI: 10.1016/bs.pmbts.2021.01.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Epigenetics is the heritable phenotypic changes without altering the genotype. Epigenetic processes are such as histone methylation, acetylation, ubiquitination, sumoylation, phosphorylation, ADP ribosylation, DNA methylation and non-coding RNAs interactions associated with structural changes in chromatin. The change of structure is either open chromatin for "active" state or closed chromatin for "inactive" state, that regulates important biological phenomenon like chromatin condensation, gene expression, DNA repair, cellular development, differentiation and homeostasis, etc. However, dysregulation of epigenetic patterns causes diseases like cancer, diabetes, neurological disorder, infectious diseases, autoimmunity etc. Besides, the most important clinical uses of Epigenetics studies are i. identification of disease biomarkers and ii. development of their therapeutics. Epigenetic therapies include epi-drugs, combinatorial therapy, nanocarriers, plant-derived products that are being used for changing the epigenetic pattern to reverse gene expression. However, the developed epi- drugs cause off-target gene and transposable elements activation; promote mutagenesis and carcinogenesis in normal cells, are the major hurdles regarding their clinical use. Therefore, advanced epigenetic therapeutics are required to develop target-specific epigenetic modifications to reverse gene expression pattern. CRISPR-Cas9 (Clustered Regularly Interspaced Palindrome Repeats-associated protein 9) system-mediated gene activation mechanism paves new methods of target-specific epigenetic therapeutics to cure diseases. In this chapter, we discuss how CRISPR/Cas9 and dCas9 have recently been engineered for epigenome editing. Different strategies have been discussed used for epigenome editing based on their efficacy and complexity. Last but not least we have discussed the limitations, different uses of CRISPR/Cas9 and dCas9 in the area of genetic engineering.
Collapse
Affiliation(s)
- Pranati Sar
- Institute of Science, NIRMA University, Ahmedabad, India.
| | - Sarat Dalai
- Institute of Science, NIRMA University, Ahmedabad, India.
| |
Collapse
|
54
|
Gonzalez I, Molliex A, Navarro P. Mitotic memories of gene activity. Curr Opin Cell Biol 2021; 69:41-47. [PMID: 33454629 DOI: 10.1016/j.ceb.2020.12.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/08/2020] [Accepted: 12/13/2020] [Indexed: 11/28/2022]
Abstract
When cells enter mitosis, they undergo series of dramatic changes in their structure and function that severely hamper gene regulatory processes and gene transcription. This raises the question of how daughter cells efficiently recapitulate the gene expression profile of their mother such that cell identity can be preserved. Here, we review recent evidence supporting the view that distinct chromatin-associated mechanisms of gene-regulatory inheritance assist daughter cells in the postmitotic reestablishment of gene activity with increased fidelity.
Collapse
Affiliation(s)
- Inma Gonzalez
- Epigenomics, Proliferation and the Identity of Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS, UMR3738, Paris, France
| | - Amandine Molliex
- Epigenomics, Proliferation and the Identity of Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS, UMR3738, Paris, France
| | - Pablo Navarro
- Epigenomics, Proliferation and the Identity of Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS, UMR3738, Paris, France.
| |
Collapse
|
55
|
Olivos-Cisneros L, Ramírez-Santos J, Gutiérrez-Ospina G. Proliferation rate and differentiation potential are independent during the transition from neurogenesis to gliogenesis in the mouse embryonic spinal cord. IBRO Neurosci Rep 2021; 10:75-82. [PMID: 33842913 PMCID: PMC8019975 DOI: 10.1016/j.ibneur.2020.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 11/25/2020] [Indexed: 11/18/2022] Open
Abstract
Neural stem cells (NSC) restrict their differentiation potential as the central nervous system develops. Experimental evidence suggests that the mechanisms governing the transition from the neurogenic to the gliogenic phase irreversibly affect the ability of NSC to generate neurons. Cell cycle regulation has been associated with cell fate in different models. In this work, we assessed the temporal correlation between the loss of the neurogenic potential and cell cycle lengthening of NSC obtained from embryonic mouse spinal cords, during the transition of the neurogenic to the gliogenic phase, using neurospheres. We also used the cell cycle inhibitor Olomoucine to increase cell cycle length by decreasing the proliferation rate. Our results show that neurospheres obtained from a neurogenic stage give rise mostly to neurons, whereas those obtained from later stages produce preferentially glial cells. During the transition from neurogenesis to gliogenesis, the proliferation rate dropped, and the cell cycle length increased 1.5 folds, as monitored by DNA BrdU incorporation. Interestingly, Olomoucine-treated neurogenic-neurospheres display a reduced proliferation rate and preserve their neurogenic potential. Our results suggest that the mechanisms that restrict the differentiation potential of NSC are independent of the proliferation control. Neurosphere cultured, spinal cord NSC preserve their differentiation potential. Neurogenic NSC divide faster than those giving rise to glial cells. Cell cycle inhibitors increase in NSC transitioning from the neurogenic to the gliogenic phase. Artificial cell cycle lengthening does not affect the differentiation potential of neurogenic NSC.
Collapse
Affiliation(s)
- Leonora Olivos-Cisneros
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico
- Laboratorio de Biología de Sistemas, Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
- Corresponding author at: Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico.
| | - Jesús Ramírez-Santos
- Laboratorio de Biología de Sistemas, Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Gabriel Gutiérrez-Ospina
- Laboratorio de Biología de Sistemas, Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
- Corresponding author.
| |
Collapse
|
56
|
In silico APC/C substrate discovery reveals cell cycle-dependent degradation of UHRF1 and other chromatin regulators. PLoS Biol 2020; 18:e3000975. [PMID: 33306668 PMCID: PMC7758050 DOI: 10.1371/journal.pbio.3000975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 12/23/2020] [Accepted: 11/05/2020] [Indexed: 01/07/2023] Open
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase and critical regulator of cell cycle progression. Despite its vital role, it has remained challenging to globally map APC/C substrates. By combining orthogonal features of known substrates, we predicted APC/C substrates in silico. This analysis identified many known substrates and suggested numerous candidates. Unexpectedly, chromatin regulatory proteins are enriched among putative substrates, and we show experimentally that several chromatin proteins bind APC/C, oscillate during the cell cycle, and are degraded following APC/C activation, consistent with being direct APC/C substrates. Additional analysis revealed detailed mechanisms of ubiquitylation for UHRF1, a key chromatin regulator involved in histone ubiquitylation and DNA methylation maintenance. Disrupting UHRF1 degradation at mitotic exit accelerates G1-phase cell cycle progression and perturbs global DNA methylation patterning in the genome. We conclude that APC/C coordinates crosstalk between cell cycle and chromatin regulatory proteins. This has potential consequences in normal cell physiology, where the chromatin environment changes depending on proliferative state, as well as in disease.
Collapse
|
57
|
Yoo H, La H, Lee EJ, Choi HJ, Oh J, Thang NX, Hong K. ATP-Dependent Chromatin Remodeler CHD9 Controls the Proliferation of Embryonic Stem Cells in a Cell Culture Condition-Dependent Manner. BIOLOGY 2020; 9:biology9120428. [PMID: 33261017 PMCID: PMC7760864 DOI: 10.3390/biology9120428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/23/2022]
Abstract
Emerging evidence suggests that chromodomain-helicase-DNA-binding (CHD) proteins are involved in stem cell maintenance and differentiation via the coordination of chromatin structure and gene expression. However, the molecular function of some CHD proteins in stem cell regulation is still poorly understood. Herein, we show that Chd9 knockdown (KD) in mouse embryonic stem cells (ESCs) cultured in normal serum media, not in 2i-leukemia inhibitory factor (LIF) media, causes rapid cell proliferation. This is caused by transcriptional regulation related to the cell cycle and the response to growth factors. Our analysis showed that, unlike the serum cultured-Chd9 KD ESCs, the 2i-LIF-cultured-Chd9 KO ESCs displayed elevated levels of critical G1 phase regulators such as p21 and p27. Consistently, the DNA binding sites of CHD9 overlap with some transcription factor DNA motifs that are associated with genes regulating the cell cycle and growth pathways. These transcription factors include the cycle gene homology region (CHR), Arid5a, and LIN54. Collectively, our results provide new insights into CHD9-mediated gene transcription for controlling the cell cycle of ESCs.
Collapse
|
58
|
Surapaneni SK, Bhat ZR, Tikoo K. MicroRNA-941 regulates the proliferation of breast cancer cells by altering histone H3 Ser 10 phosphorylation. Sci Rep 2020; 10:17954. [PMID: 33087811 PMCID: PMC7578795 DOI: 10.1038/s41598-020-74847-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 08/25/2020] [Indexed: 12/25/2022] Open
Abstract
Breast cancer including triple negative breast cancer (TNBC) represents an important clinical challenge, as these tumours often develop resistance to conventional chemotherapeutics. MicroRNAs play a crucial role in cell-cycle regulation, differentiation, apoptosis, and migration. Herein, we performed Affymetrix Gene Chip miRNA 4.0 microarray and observed differential regulation of miRNAs (75 upregulated and 199 downregulated) in metastatic MDA-MB-231 cells as compared to immortalized human non-tumorigenic breast epithelial (MCF-10A) cells. MicroRNA-941 was significantly upregulated in MDA-MB-231 cells (almost nine-fold increase) in comparison to MCF-10A cells. Transfection of MiRNA-941 inhibitor significantly decreased the proliferation and migration of MDA-MB-231 cells by altering the expressions of p21, Cyclin D1, PP2B-B1, E-cadherin and MMP-13. Interestingly, we provide first evidence that inhibiting miR-941 prevents cell proliferation and phosphorylation of histone H3 at Ser10 residue. Xenograft model of breast cancer was developed by subcutaneous injection of MDA-MB-231 cells into the mammary fat pad of female athymic nude mice (Crl:NU-Foxn1nu). The tumours were allowed to grow to around 60 mm3, thereafter which we divided the animals into seven groups (n = 5). Notably, intratumoral injection of miR-941 inhibitor significantly abolished the tumour growth in MDA-MB-231 xenograft model. 5-Fluorouracil (10 mg/kg, i.p.) was used as positive control in our study. To the best of our knowledge, we report for the first time that targeting miR-941 improves the sensitivity of MDA-MB-231 cells to 5-fluorouracil. This can be of profound clinical significance, as it provides novel therapeutic approach for treating variety of cancers (overexpressing miRNA-941) in general and breast cancers in particular.
Collapse
Affiliation(s)
- Sunil Kumar Surapaneni
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) S.A.S. Nagar, Sahibzada Ajit Singh Nagar, India
| | - Zahid Rafiq Bhat
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) S.A.S. Nagar, Sahibzada Ajit Singh Nagar, India
| | - Kulbhushan Tikoo
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) S.A.S. Nagar, Sahibzada Ajit Singh Nagar, India.
| |
Collapse
|
59
|
Coux RX, Owens NDL, Navarro P. Chromatin accessibility and transcription factor binding through the perspective of mitosis. Transcription 2020; 11:236-240. [PMID: 33054514 PMCID: PMC7714440 DOI: 10.1080/21541264.2020.1825907] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chromatin accessibility is generally perceived as a common property of active regulatory elements where transcription factors are recruited via DNA-specific interactions and other physico-chemical properties to regulate gene transcription. Recent work in the context of mitosis provides less trivial and potentially more interesting relationships than previously anticipated.
Collapse
Affiliation(s)
- Rémi-Xavier Coux
- Epigenomics, Proliferation and the Identity of Cells, Department of Development and Stem Cell Biology, Institut Pasteur , Paris, France
| | - Nick D L Owens
- Institute of Biomedical and Clinical Science, University of Exeter Medical School , Exeter, UK
| | - Pablo Navarro
- Epigenomics, Proliferation and the Identity of Cells, Department of Development and Stem Cell Biology, Institut Pasteur , Paris, France
| |
Collapse
|
60
|
Petasny M, Bentata M, Pawellek A, Baker M, Kay G, Salton M. Splicing to Keep Cycling: The Importance of Pre-mRNA Splicing during the Cell Cycle. Trends Genet 2020; 37:266-278. [PMID: 32950269 DOI: 10.1016/j.tig.2020.08.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/09/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022]
Abstract
Pre-mRNA splicing is a fundamental process in mammalian gene expression, and alternative splicing plays an extensive role in generating protein diversity. Because the majority of genes undergo pre-mRNA splicing, most cellular processes depend on proper spliceosome function. We focus on the cell cycle and describe its dependence on pre-mRNA splicing and accurate alternative splicing. We outline the key cell-cycle factors and their known alternative splicing isoforms. We discuss different levels of pre-mRNA splicing regulation such as post-translational modifications and changes in the expression of splicing factors. We describe the effect of chromatin dynamics on pre-mRNA splicing during the cell cycle. In addition, we focus on spliceosome component SF3B1, which is mutated in many types of cancer, and describe the link between SF3B1 and its inhibitors and the cell cycle.
Collapse
Affiliation(s)
- Mayra Petasny
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Mercedes Bentata
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Andrea Pawellek
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Mai Baker
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Gillian Kay
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Maayan Salton
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel.
| |
Collapse
|
61
|
Shoaib M, Nair N, Sørensen CS. Chromatin Landscaping At Mitotic Exit Orchestrates Genome Function. Front Genet 2020; 11:103. [PMID: 32158468 PMCID: PMC7052122 DOI: 10.3389/fgene.2020.00103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/29/2020] [Indexed: 11/23/2022] Open
Abstract
Chromatin architecture is highly dynamic during different phases of cell cycle to accommodate DNA-based processes. This is particularly obvious during mitotic exit, where highly condensed rod-like chromatids need to be rapidly decondensed. Such chromatin structural transitions are tightly controlled and organized as any perturbance in this dynamic process can lead to genome dysfunction which may culminate in loss of cellular fitness. However, the mechanisms underlying cell cycle-dependent chromatin structural changes are not fully understood. In this mini review, we highlight our current knowledge of chromatin structural organization, focusing on mitotic exit. In this regard, we examine how nuclear processes are orchestrated during chromatin unfolding and compartmentalization and discuss the critical importance of cell cycle-controlled chromatin landscaping in maintaining genome integrity.
Collapse
Affiliation(s)
- Muhammad Shoaib
- Biotech Research and Innovation Centre (BRIC), Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nidhi Nair
- Biotech Research and Innovation Centre (BRIC), Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Claus Storgaard Sørensen
- Biotech Research and Innovation Centre (BRIC), Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
62
|
Liu W, Biton E, Pathania A, Matityahu A, Irudayaraj J, Onn I. Monomeric cohesin state revealed by live-cell single-molecule spectroscopy. EMBO Rep 2020; 21:e48211. [PMID: 31886609 PMCID: PMC7001500 DOI: 10.15252/embr.201948211] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 11/28/2019] [Accepted: 12/04/2019] [Indexed: 12/17/2022] Open
Abstract
The cohesin complex plays an important role in the maintenance of genome stability. Cohesin is composed of four core subunits and a set of regulatory subunits that interact with the core subunits. Less is known about cohesin dynamics in live cells and on the contribution of individual subunits to the overall complex. Understanding the tethering mechanism of cohesin is still a challenge, especially because the proposed mechanisms are still not conclusive. Models proposed to describe tethering depend on either the monomeric cohesin ring or a cohesin dimer. Here, we investigate the role of cohesin dynamics and stoichiometry in live yeast cells at single-molecule resolution. We explore the effect of regulatory subunit deletion on cohesin mobility and found that depletion of different regulatory subunits has opposing effects. Finally, we show that cohesin exists mostly as a canonical monomer throughout the cell cycle, and its monomeric form is independent of its regulatory factors. Our results demonstrate that single-molecule tools have the potential to provide new insights into the cohesin mechanism of action in live cells.
Collapse
Affiliation(s)
- Wenjie Liu
- Department of Bioengineering, Micro and Nanotechnology LaboratoryCancer Center at IllinoisUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Mills Breast Cancer InstituteCarle Foundation HospitalUrbanaILUSA
| | - Elisheva Biton
- The Azrieli Faculty of MedicineBar‐Ilan UniversitySafedIsrael
| | - Anjali Pathania
- The Azrieli Faculty of MedicineBar‐Ilan UniversitySafedIsrael
| | - Avi Matityahu
- The Azrieli Faculty of MedicineBar‐Ilan UniversitySafedIsrael
| | - Joseph Irudayaraj
- Department of Bioengineering, Micro and Nanotechnology LaboratoryCancer Center at IllinoisUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
- Mills Breast Cancer InstituteCarle Foundation HospitalUrbanaILUSA
| | - Itay Onn
- The Azrieli Faculty of MedicineBar‐Ilan UniversitySafedIsrael
| |
Collapse
|
63
|
Bhattacharjee P, Paul S, Bhattacharjee P. Understanding the mechanistic insight of arsenic exposure and decoding the histone cipher. Toxicology 2020; 430:152340. [PMID: 31805316 DOI: 10.1016/j.tox.2019.152340] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/25/2019] [Accepted: 12/02/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND The study of heritable epigenetic changes in arsenic exposure has intensified over the last decade. Groundwater arsenic contamination causes a great threat to humans and, to date, no accurate measure has been formulated for remediation. The fascinating possibilities of epi-therapeutics identify the need for an in-depth mechanistic understanding of the epigenetic landscape. OBJECTIVE In this comprehensive review, we have set to analyze major studies pertaining to histone post-translational modifications in arsenic-mediated disease development and carcinogenesis during last ten years (2008-2018). RESULTS The role of the specific histone marks in arsenic toxicity has been detailed. A comprehensive list that includes major arsenic-induced histone modifications identified for the last 10 years has been documented and details of different states of arsenic, organisms, exposure type, study platform, and findings were provided. An arsenic signature panel was suggested to help in early prognosis. An attempt has been made to identify the grey areas of research. PROSPECTS Future prospective multi-target analyses of the inter-molecular crosstalk among different histone marks are needed to be explored further in order to understand the mechanism of arsenic toxicity and carcinogenicity and to confirm the suitability of these epi-marks as prognostic markers.
Collapse
Affiliation(s)
- Pritha Bhattacharjee
- Department of Zoology, University of Calcutta, Kolkata 700019, India; Department of Environmental Science, University of Calcutta, Kolkata 700019, India
| | - Somnath Paul
- Department of Epigenetics and Molecular Carcinogenesis, UT M.D. Anderson Cancer Center, Smithville, TX 78957, USA
| | - Pritha Bhattacharjee
- Department of Environmental Science, University of Calcutta, Kolkata 700019, India.
| |
Collapse
|
64
|
Li C, He X, Huang Z, Han L, Wu X, Li L, Xin Y, Ge J, Sha J, Yin Z, Wang Q. Melatonin ameliorates the advanced maternal age-associated meiotic defects in oocytes through the SIRT2-dependent H4K16 deacetylation pathway. Aging (Albany NY) 2020; 12:1610-1623. [PMID: 31980591 PMCID: PMC7053624 DOI: 10.18632/aging.102703] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 12/27/2019] [Indexed: 12/31/2022]
Abstract
It has been widely reported that advanced maternal age impairs oocyte quality. To date, various molecules have been discovered to be involved in this process. However, prevention of fertility issues associated with maternal age is still a challenge. In the present study, we find that both in vitro supplement and in vivo administration of melatonin are capable of alleviating the meiotic phenotypes of aged oocytes, specifically the spindle/chromosome disorganization and aneuploidy generation. Furthermore, we identify SIRT2 as a critical effector mediating the effects of melatonin on meiotic structure in old oocytes. Candidate screening shows that SIRT2-controlled deacetylation of histone H4K16 is essential for maintaining the meiotic apparatus in oocytes. Importantly, non-acetylatable-mimetic mutant H4K16R partially rescues the meiotic deficits in oocytes from reproductive aged mice. In contrast, overexpression of acetylation-mimetic mutant H4K16Q abolishes the beneficial effects of melatonin on the meiotic phenotypes in aged oocytes. To sum up, our data uncover that melatonin alleviates advanced maternal aged-associated meiotic defects in oocytes through the SIRT2-depenendet H4K16 deacetylation pathway.
Collapse
Affiliation(s)
- Congyang Li
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Xi He
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Zhenyue Huang
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Longsen Han
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Xinghan Wu
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Ling Li
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Yongan Xin
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Juan Ge
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Jiahao Sha
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Zhiqiang Yin
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiang Wang
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
65
|
Medwig-Kinney TN, Smith JJ, Palmisano NJ, Tank S, Zhang W, Matus DQ. A developmental gene regulatory network for C. elegans anchor cell invasion. Development 2020; 147:dev185850. [PMID: 31806663 PMCID: PMC6983719 DOI: 10.1242/dev.185850] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/25/2019] [Indexed: 01/02/2023]
Abstract
Cellular invasion is a key part of development, immunity and disease. Using an in vivo model of Caenorhabditis elegans anchor cell invasion, we characterize the gene regulatory network that promotes cell invasion. The anchor cell is initially specified in a stochastic cell fate decision mediated by Notch signaling. Previous research has identified four conserved transcription factors, fos-1 (Fos), egl-43 (EVI1/MEL), hlh-2 (E/Daughterless) and nhr-67 (NR2E1/TLX), that mediate anchor cell specification and/or invasive behavior. Connections between these transcription factors and the underlying cell biology that they regulate are poorly understood. Here, using genome editing and RNA interference, we examine transcription factor interactions before and after anchor cell specification. Initially, these transcription factors function independently of one another to regulate LIN-12 (Notch) activity. Following anchor cell specification, egl-43, hlh-2 and nhr-67 function largely parallel to fos-1 in a type I coherent feed-forward loop with positive feedback to promote invasion. Together, these results demonstrate that the same transcription factors can function in cell fate specification and differentiated cell behavior, and that a gene regulatory network can be rapidly assembled to reinforce a post-mitotic, pro-invasive state.
Collapse
Affiliation(s)
- Taylor N Medwig-Kinney
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Jayson J Smith
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Nicholas J Palmisano
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Sujata Tank
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
- Science and Technology Research Program, Smithtown High School East, St. James, NY 11780-1833, USA
| | - Wan Zhang
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| |
Collapse
|
66
|
Shah S, Verma T, Rashid M, Gadewal N, Gupta S. Histone H2A isoforms: Potential implications in epigenome plasticity and diseases in eukaryotes. J Biosci 2020; 45:4. [PMID: 31965982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Epigenetic mechanisms including the post-translational modifications of histones, incorporation of histone variants and DNA methylation have been suggested to play an important role in genome plasticity by allowing the cellular environment to define gene expression and the phenotype of an organism. Studies over the past decade have elucidated how these epigenetic mechanisms are significant in orchestrating various biological processes and contribute to different pathophysiological states. However, the role of histone isoforms and their impact on different phenotypes and physiological processes associated with diseases are not fully clear. This review is focussed on the recent advances in our understanding of the complexity of eukaryotic H2A isoforms and their roles in defining nucleosome organization. We elaborate on their potential roles in genomic complexity and regulation of gene expression, and thereby on their overall contribution towards cellular phenotype and development of diseases.
Collapse
Affiliation(s)
- Sanket Shah
- Epigenetics and Chromatin Biology Group, Caner Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai 410 210, India
| | | | | | | | | |
Collapse
|
67
|
Gao SW, Liu F. Novel insights into cell cycle regulation of cell fate determination. J Zhejiang Univ Sci B 2019; 20:467-475. [PMID: 31090272 DOI: 10.1631/jzus.b1900197] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The stem/progenitor cell has long been regarded as a central cell type in development, homeostasis, and regeneration, largely owing to its robust self-renewal and multilineage differentiation abilities. The balance between self-renewal and stem/progenitor cell differentiation requires the coordinated regulation of cell cycle progression and cell fate determination. Extensive studies have demonstrated that cell cycle states determine cell fates, because cells in different cell cycle states are characterized by distinct molecular features and functional outputs. Recent advances in high-resolution epigenome profiling, single-cell transcriptomics, and cell cycle reporter systems have provided novel insights into the cell cycle regulation of cell fate determination. Here, we review recent advances in cell cycle-dependent cell fate determination and functional heterogeneity, and the application of cell cycle manipulation for cell fate conversion. These findings will provide insight into our understanding of cell cycle regulation of cell fate determination in this field, and may facilitate its potential application in translational medicine.
Collapse
Affiliation(s)
- Su-Wei Gao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
68
|
Read DF, Atindaana E, Pyaram K, Yang F, Emery S, Cheong A, Nakama KR, Burnett C, Larragoite ET, Battivelli E, Verdin E, Planelles V, Chang CH, Telesnitsky A, Kidd JM. Stable integrant-specific differences in bimodal HIV-1 expression patterns revealed by high-throughput analysis. PLoS Pathog 2019; 15:e1007903. [PMID: 31584995 PMCID: PMC6795456 DOI: 10.1371/journal.ppat.1007903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/16/2019] [Accepted: 09/04/2019] [Indexed: 12/17/2022] Open
Abstract
HIV-1 gene expression is regulated by host and viral factors that interact with viral motifs and is influenced by proviral integration sites. Here, expression variation among integrants was followed for hundreds of individual proviral clones within polyclonal populations throughout successive rounds of virus and cultured cell replication, with limited findings using CD4+ cells from donor blood consistent with observations in immortalized cells. Tracking clonal behavior by proviral “zip codes” indicated that mutational inactivation during reverse transcription was rare, while clonal expansion and proviral expression states varied widely. By sorting for provirus expression using a GFP reporter in the nef open reading frame, distinct clone-specific variation in on/off proportions were observed that spanned three orders of magnitude. Tracking GFP phenotypes over time revealed that as cells divided, their progeny alternated between HIV transcriptional activity and non-activity. Despite these phenotypic oscillations, the overall GFP+ population within each clone was remarkably stable, with clones maintaining clone-specific equilibrium mixtures of GFP+ and GFP- cells. Integration sites were analyzed for correlations between genomic features and the epigenetic phenomena described here. Integrants inserted in the sense orientation of genes were more frequently found to be GFP negative than those in the antisense orientation, and clones with high GFP+ proportions were more distal to repressive H3K9me3 peaks than low GFP+ clones. Clones with low frequencies of GFP positivity appeared to expand more rapidly than clones for which most cells were GFP+, even though the tested proviruses were Vpr-. Thus, much of the increase in the GFP- population in these polyclonal pools over time reflected differential clonal expansion. Together, these results underscore the temporal and quantitative variability in HIV-1 gene expression among proviral clones that are conferred in the absence of metabolic or cell-type dependent variability, and shed light on cell-intrinsic layers of regulation that affect HIV-1 population dynamics. Very few HIV-1 infected cells persist in patients for more than a couple days, but those that do pose life-long health risks. Strategies designed to eliminate these cells have been based on assumptions about what viral properties allow infected cell survival. However, such approaches for HIV-1 eradication have not yet shown therapeutic promise, possibly because many assumptions about virus persistence are based on studies involving a limited number of infected cell types, the averaged behavior of cells in diverse populations, or snapshot views. Here, we developed a high-throughput approach to study hundreds of distinct HIV-1 infected cells and their progeny over time in an unbiased way. This revealed that each virus established its own pattern of gene expression that, upon infected cell division, was stably transmitted to all progeny cells. Expression patterns consisted of alternating waves of activity and inactivity, with the extent of activity differing among infected cell families over a 1000-fold range. The dynamics and variability among infected cells and within complex populations that the work here revealed has not previously been evident, and may help establish more accurate correlates of persistent HIV-1 infection.
Collapse
Affiliation(s)
- David F. Read
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Edmond Atindaana
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP) and Department of Biochemistry, Cell & Molecular Biology, University of Ghana, Legon, Greater Accra Region, Ghana
| | - Kalyani Pyaram
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Feng Yang
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Sarah Emery
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Anna Cheong
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Katherine R. Nakama
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Cleo Burnett
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Erin T. Larragoite
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Emilie Battivelli
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Eric Verdin
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Vicente Planelles
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Cheong-Hee Chang
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail: (C-HC); (AT); (JMK)
| | - Alice Telesnitsky
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail: (C-HC); (AT); (JMK)
| | - Jeffrey M. Kidd
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail: (C-HC); (AT); (JMK)
| |
Collapse
|
69
|
Dowrey T, Schwager EE, Duong J, Merkuri F, Zarate YA, Fish JL. Satb2 regulates proliferation and nuclear integrity of pre-osteoblasts. Bone 2019; 127:488-498. [PMID: 31325654 PMCID: PMC6708767 DOI: 10.1016/j.bone.2019.07.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/08/2019] [Accepted: 07/14/2019] [Indexed: 12/25/2022]
Abstract
Special AT-rich sequence binding protein 2 (Satb2) is a matrix attachment region (MAR) binding protein. Satb2 impacts skeletal development by regulating gene transcription required for osteogenic differentiation. Although its role as a high-order transcription factor is well supported, other roles for Satb2 in skeletal development remain unclear. In particular, the impact of dosage sensitivity (heterozygous mutations) and variance on phenotypic severity is still not well understood. To further investigate molecular and cellular mechanisms of Satb2-mediated skeletal defects, we used the CRISPR/Cas9 system to generate Satb2 mutations in MC3T3-E1 cells. Our data suggest that, in addition to its role in differentiation, Satb2 regulates progenitor proliferation. We also find that mutations in Satb2 cause chromatin defects including nuclear blebbing and donut-shaped nuclei. These defects may contribute to a slight increase in apoptosis in mutant cells, but apoptosis is insufficient to explain the proliferation defects. Satb2 expression exhibits population-level variation and is most highly expressed from late G1 to late G2. Based on these data, we hypothesize that Satb2 may regulate proliferation through two separate mechanisms. First, Satb2 may regulate the expression of genes necessary for cell cycle progression in pre-osteoblasts. Second, similar to other MAR-binding proteins, Satb2 may participate in DNA replication. We also hypothesize that variation in the severity or penetrance of Satb2-mediated proliferation defects is due to stochastic variation in Satb2 binding to DNA, which may be buffered in some genetic backgrounds. Further elucidation of the role of Satb2 in proliferation has potential impacts on our understanding of both skeletal defects and cancer.
Collapse
Affiliation(s)
- Todd Dowrey
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, United States of America
| | - Evelyn E Schwager
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, United States of America
| | - Julieann Duong
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, United States of America
| | - Fjodor Merkuri
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, United States of America
| | - Yuri A Zarate
- Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Jennifer L Fish
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, United States of America.
| |
Collapse
|
70
|
Jang J, Han D, Golkaram M, Audouard M, Liu G, Bridges D, Hellander S, Chialastri A, Dey SS, Petzold LR, Kosik KS. Control over single-cell distribution of G1 lengths by WNT governs pluripotency. PLoS Biol 2019; 17:e3000453. [PMID: 31557150 PMCID: PMC6782112 DOI: 10.1371/journal.pbio.3000453] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 10/08/2019] [Accepted: 09/04/2019] [Indexed: 01/10/2023] Open
Abstract
The link between single-cell variation and population-level fate choices lacks a mechanistic explanation despite extensive observations of gene expression and epigenetic variation among individual cells. Here, we found that single human embryonic stem cells (hESCs) have different and biased differentiation potentials toward either neuroectoderm or mesendoderm depending on their G1 lengths before the onset of differentiation. Single-cell variation in G1 length operates in a dynamic equilibrium that establishes a G1 length probability distribution for a population of hESCs and predicts differentiation outcome toward neuroectoderm or mesendoderm lineages. Although sister stem cells generally share G1 lengths, a variable proportion of cells have asymmetric G1 lengths, which maintains the population dispersion. Environmental Wingless-INT (WNT) levels can control the G1 length distribution, apparently as a means of priming the fate of hESC populations once they undergo differentiation. As a downstream mechanism, global 5-hydroxymethylcytosine levels are regulated by G1 length and thereby link G1 length to differentiation outcomes of hESCs. Overall, our findings suggest that intrapopulation heterogeneity in G1 length underlies the pluripotent differentiation potential of stem cell populations. The link between single-cell variation and population-level fate choices lacks a mechanistic explanation. This study finds that the duration of the G1 cell cycle phase in stem cells varies within the population, giving rise to a probability distribution of G1 length that is responsive to Wnt signalling and that predicts cells’ differentiation potential upon exit from pluripotency.
Collapse
Affiliation(s)
- Jiwon Jang
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California, United States of America
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Dasol Han
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Mahdi Golkaram
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Morgane Audouard
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Guojing Liu
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Daniel Bridges
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California, United States of America
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Stefan Hellander
- Department of Computer Science, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Alex Chialastri
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Siddharth S. Dey
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California, United States of America
- Center for Bioengineering, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Linda R. Petzold
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, California, United States of America
- Department of Computer Science, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Kenneth S. Kosik
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, California, United States of America
- * E-mail:
| |
Collapse
|
71
|
Ardakany AR, Ay F, Lonardi S. Selfish: discovery of differential chromatin interactions via a self-similarity measure. Bioinformatics 2019; 35:i145-i153. [PMID: 31510653 PMCID: PMC6612869 DOI: 10.1093/bioinformatics/btz362] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
MOTIVATION High-throughput conformation capture experiments, such as Hi-C provide genome-wide maps of chromatin interactions, enabling life scientists to investigate the role of the three-dimensional structure of genomes in gene regulation and other essential cellular functions. A fundamental problem in the analysis of Hi-C data is how to compare two contact maps derived from Hi-C experiments. Detecting similarities and differences between contact maps are critical in evaluating the reproducibility of replicate experiments and for identifying differential genomic regions with biological significance. Due to the complexity of chromatin conformations and the presence of technology-driven and sequence-specific biases, the comparative analysis of Hi-C data is analytically and computationally challenging. RESULTS We present a novel method called Selfish for the comparative analysis of Hi-C data that takes advantage of the structural self-similarity in contact maps. We define a novel self-similarity measure to design algorithms for (i) measuring reproducibility for Hi-C replicate experiments and (ii) finding differential chromatin interactions between two contact maps. Extensive experimental results on simulated and real data show that Selfish is more accurate and robust than state-of-the-art methods. AVAILABILITY AND IMPLEMENTATION https://github.com/ucrbioinfo/Selfish.
Collapse
Affiliation(s)
- Abbas Roayaei Ardakany
- Department of Computer Science and Engineering, University of California, Riverside, Riverside, CA, USA
| | - Ferhat Ay
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, UC San Diego, La Jolla, CA, USA
- School of Medicine, Department of Pediatrics, UC San Diego, La Jolla, CA, USA
| | - Stefano Lonardi
- Department of Computer Science and Engineering, University of California, Riverside, Riverside, CA, USA
| |
Collapse
|
72
|
Brunk CF, Martin WF. Archaeal Histone Contributions to the Origin of Eukaryotes. Trends Microbiol 2019; 27:703-714. [PMID: 31076245 DOI: 10.1016/j.tim.2019.04.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 04/01/2019] [Accepted: 04/11/2019] [Indexed: 12/14/2022]
Abstract
The eukaryotic lineage arose from bacterial and archaeal cells that underwent a symbiotic merger. At the origin of the eukaryote lineage, the bacterial partner contributed genes, metabolic energy, and the building blocks of the endomembrane system. What did the archaeal partner donate that made the eukaryotic experiment a success? The archaeal partner provided the potential for complex information processing. Archaeal histones were crucial in that regard by providing the basic functional unit with which eukaryotes organize DNA into nucleosomes, exert epigenetic control of gene expression, transcribe genes with CCAAT-box promoters, and a manifest cell cycle with condensed chromosomes. While mitochondrial energy lifted energetic constraints on eukaryotic protein production, histone-based chromatin organization paved the path to eukaryotic genome complexity, a critical hurdle en route to the evolution of complex cells.
Collapse
Affiliation(s)
- Clifford F Brunk
- Department of Ecology and Evolutionary Biology and Molecular Biology Institute University of California Los Angeles, Los Angeles, USA
| | - William F Martin
- Institute of Molecular Evolution Heinrich-Heine-Universitaet Duesseldorf, Dusseldorf, Germany.
| |
Collapse
|
73
|
Festuccia N, Owens N, Papadopoulou T, Gonzalez I, Tachtsidi A, Vandoermel-Pournin S, Gallego E, Gutierrez N, Dubois A, Cohen-Tannoudji M, Navarro P. Transcription factor activity and nucleosome organization in mitosis. Genome Res 2019; 29:250-260. [PMID: 30655337 PMCID: PMC6360816 DOI: 10.1101/gr.243048.118] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/05/2018] [Indexed: 12/23/2022]
Abstract
Mitotic bookmarking transcription factors (BFs) maintain the capacity to bind to their targets during mitosis, despite major rearrangements of the chromatin. While they were thought to propagate gene regulatory information through mitosis by statically occupying their DNA targets, it has recently become clear that BFs are highly dynamic in mitotic cells. This represents both a technical and a conceptual challenge to study and understand the function of BFs: First, formaldehyde has been suggested to be unable to efficiently capture these transient interactions, leading to profound contradictions in the literature; and second, if BFs are not permanently bound to their targets during mitosis, it becomes unclear how they convey regulatory information to daughter cells. Here, comparing formaldehyde to alternative fixatives we clarify the nature of the chromosomal association of previously proposed BFs in embryonic stem cells: While ESRRB can be considered as a canonical BF that binds at selected regulatory regions in mitosis, SOX2 and POU5F1 (also known as OCT4) establish DNA sequence-independent interactions with the mitotic chromosomes, either throughout the chromosomal arms (SOX2) or at pericentromeric regions (POU5F1). Moreover, we show that ordered nucleosomal arrays are retained during mitosis at ESRRB bookmarked sites, whereas regions losing transcription factor binding display a profound loss of order. By maintaining nucleosome positioning during mitosis, ESRRB might ensure the rapid post-mitotic re-establishment of functional regulatory complexes at selected enhancers and promoters. Our results provide a mechanistic framework that reconciles dynamic mitotic binding with the transmission of gene regulatory information across cell division.
Collapse
Affiliation(s)
- Nicola Festuccia
- Epigenetics of Stem Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 75015 Paris, France.,Equipe Labellisée LIGUE Contre le Cancer
| | - Nick Owens
- Epigenetics of Stem Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 75015 Paris, France.,Equipe Labellisée LIGUE Contre le Cancer
| | - Thaleia Papadopoulou
- Epigenetics of Stem Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 75015 Paris, France.,Equipe Labellisée LIGUE Contre le Cancer
| | - Inma Gonzalez
- Epigenetics of Stem Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 75015 Paris, France.,Equipe Labellisée LIGUE Contre le Cancer
| | - Alexandra Tachtsidi
- Epigenetics of Stem Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 75015 Paris, France.,Equipe Labellisée LIGUE Contre le Cancer.,Sorbonne Université, Collège Doctoral, F-75005 Paris, France
| | - Sandrine Vandoermel-Pournin
- Mouse Functional Genetics, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, 75015 Paris, France
| | - Elena Gallego
- Epigenetics of Stem Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 75015 Paris, France.,Equipe Labellisée LIGUE Contre le Cancer
| | - Nancy Gutierrez
- Epigenetics of Stem Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 75015 Paris, France.,Equipe Labellisée LIGUE Contre le Cancer
| | - Agnès Dubois
- Epigenetics of Stem Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 75015 Paris, France.,Equipe Labellisée LIGUE Contre le Cancer
| | - Michel Cohen-Tannoudji
- Mouse Functional Genetics, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, 75015 Paris, France
| | - Pablo Navarro
- Epigenetics of Stem Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 75015 Paris, France.,Equipe Labellisée LIGUE Contre le Cancer
| |
Collapse
|
74
|
Torres-Zelada EF, Stephenson RE, Alpsoy A, Anderson BD, Swanson SK, Florens L, Dykhuizen EC, Washburn MP, Weake VM. The Drosophila Dbf4 ortholog Chiffon forms a complex with Gcn5 that is necessary for histone acetylation and viability. J Cell Sci 2019; 132:jcs.214072. [PMID: 30559249 DOI: 10.1242/jcs.214072] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 12/11/2018] [Indexed: 02/05/2023] Open
Abstract
Metazoans contain two homologs of the Gcn5-binding protein Ada2, Ada2a and Ada2b, which nucleate formation of the ATAC and SAGA complexes, respectively. In Drosophila melanogaster, there are two splice isoforms of Ada2b: Ada2b-PA and Ada2b-PB. Here, we show that only the Ada2b-PB isoform is in SAGA; in contrast, Ada2b-PA associates with Gcn5, Ada3, Sgf29 and Chiffon, forming the Chiffon histone acetyltransferase (CHAT) complex. Chiffon is the Drosophila ortholog of Dbf4, which binds and activates the cell cycle kinase Cdc7 to initiate DNA replication. In flies, Chiffon and Cdc7 are required in ovary follicle cells for gene amplification, a specialized form of DNA re-replication. Although chiffon was previously reported to be dispensable for viability, here, we find that Chiffon is required for both histone acetylation and viability in flies. Surprisingly, we show that chiffon is a dicistronic gene that encodes distinct Cdc7- and CHAT-binding polypeptides. Although the Cdc7-binding domain of Chiffon is not required for viability in flies, the CHAT-binding domain is essential for viability, but is not required for gene amplification, arguing against a role in DNA replication.
Collapse
Affiliation(s)
| | - Robert E Stephenson
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Aktan Alpsoy
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Benjamin D Anderson
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Selene K Swanson
- Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA
| | - Laurence Florens
- Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA
| | - Emily C Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Michael P Washburn
- Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Vikki M Weake
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA .,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
75
|
Gruppuso PA, Boylan JM, Zabala V, Neretti N, Abshiru NA, Sikora JW, Doud EH, Camarillo JM, Thomas PM, Kelleher NL, Sanders JA. Stability of histone post-translational modifications in samples derived from liver tissue and primary hepatic cells. PLoS One 2018; 13:e0203351. [PMID: 30192817 PMCID: PMC6128477 DOI: 10.1371/journal.pone.0203351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/20/2018] [Indexed: 12/15/2022] Open
Abstract
Chromatin structure, a key contributor to the regulation of gene expression, is modulated by a broad array of histone post-translational modifications (PTMs). Taken together, these “histone marks” comprise what is often referred to as the “histone code”. The quantitative analysis of histone PTMs by mass spectrometry (MS) offers the ability to examine the response of the histone code to physiological signals. However, few studies have examined the stability of histone PTMs through the process of isolating and culturing primary cells. To address this, we used bottom-up, MS-based analysis of histone PTMs in liver, freshly isolated hepatocytes, and cultured hepatocytes from adult male Fisher F344 rats. Correlations between liver, freshly isolated cells, and primary cultures were generally high, with R2 values exceeding 0.9. However, a number of acetylation marks, including those on H2A K9, H2A1 K13, H3 K4, H3 K14, H4 K8, H4 K12 and H4 K16 differed significantly among the three sources. Inducing proliferation of primary adult hepatocytes in culture affected several marks on histones H3.1/3.2 and H4. We conclude that hepatocyte isolation, culturing and cell cycle status all contribute to steady-state changes in the levels of a number of histone PTMs, indicating changes in histone marks that are rapidly induced in response to alterations in the cellular milieu. This has implications for studies aimed at assigning biological significance to histone modifications in tumors versus cancer cells, the developmental behavior of stem cells, and the attribution of changes in histone PTMs to altered cell metabolism.
Collapse
Affiliation(s)
- Philip A. Gruppuso
- Department of Pediatrics, Brown University and Rhode Island Hospital, Providence, RI, United States of America
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States of America
| | - Joan M. Boylan
- Department of Pediatrics, Brown University and Rhode Island Hospital, Providence, RI, United States of America
| | - Valerie Zabala
- Department of Pediatrics, Brown University and Rhode Island Hospital, Providence, RI, United States of America
| | - Nicola Neretti
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States of America
| | - Nebiyu A. Abshiru
- National Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, Illinois, United States of America
| | - Jacek W. Sikora
- National Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, Illinois, United States of America
| | - Emma H. Doud
- National Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, Illinois, United States of America
| | - Jeannie M. Camarillo
- National Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, Illinois, United States of America
| | - Paul M. Thomas
- National Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, Illinois, United States of America
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Neil L. Kelleher
- National Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, Illinois, United States of America
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
- Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Department of Chemistry, Northwestern University, Evanston, Illinois, United States of America
| | - Jennifer A. Sanders
- Department of Pediatrics, Brown University and Rhode Island Hospital, Providence, RI, United States of America
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States of America
- * E-mail:
| |
Collapse
|
76
|
Azad GK, Swagatika S, Kumawat M, Kumawat R, Tomar RS. Modifying Chromatin by Histone Tail Clipping. J Mol Biol 2018; 430:3051-3067. [DOI: 10.1016/j.jmb.2018.07.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/10/2018] [Accepted: 07/10/2018] [Indexed: 12/15/2022]
|
77
|
Chromatin dynamics at the core of kidney fibrosis. Matrix Biol 2018; 68-69:194-229. [DOI: 10.1016/j.matbio.2018.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 02/16/2018] [Accepted: 02/17/2018] [Indexed: 02/06/2023]
|
78
|
Tikhodeyev ON. The mechanisms of epigenetic inheritance: how diverse are they? Biol Rev Camb Philos Soc 2018; 93:1987-2005. [PMID: 29790249 DOI: 10.1111/brv.12429] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/22/2018] [Accepted: 04/27/2018] [Indexed: 12/18/2022]
Abstract
Although epigenetic inheritance (EI) is a rapidly growing field of modern biology, it still has no clear place in fundamental genetic concepts which are traditionally based on the hereditary role of DNA. Moreover, not all mechanisms of EI attract the same attention, with most studies focused on DNA methylation, histone modification, RNA interference and amyloid prionization, but relatively few considering other mechanisms such as stable inhibition of plastid translation. Herein, we discuss all known and some hypothetical mechanisms that can underlie the stable inheritance of phenotypically distinct hereditary factors that lack differences in DNA sequence. These mechanisms include (i) regulation of transcription by DNA methylation, histone modifications, and transcription factors, (ii) RNA splicing, (iii) RNA-mediated post-transcriptional silencing, (iv) organellar translation, (v) protein processing by truncation, (vi) post-translational chemical modifications, (vii) protein folding, and (viii) homologous and non-homologous protein interactions. The breadth of this list suggests that any or almost any regulatory mechanism that participates in gene expression or gene-product functioning, under certain circumstances, may produce EI. Although the modes of EI are highly variable, in many epigenetic systems, stable allelic variants can be distinguished. Irrespective of their nature, all such alleles have an underlying similarity: each is a bimodular hereditary unit, whose features depend on (i) a certain epigenetic mark (epigenetic determinant) in the DNA sequence or its product, and (ii) the DNA sequence itself (DNA determinant; if this is absent, the epigenetic allele fails to perpetuate). Thus, stable allelic epigenetic inheritance (SAEI) does not contradict the hereditary role of DNA, but involves additional molecular mechanisms with no or almost no limitations to their variety.
Collapse
Affiliation(s)
- Oleg N Tikhodeyev
- Department of Genetics & Biotechnology, Saint-Petersburg State University, Saint-Petersburg 199034, Russia
| |
Collapse
|
79
|
Hsu KW, Huang CY, Tam KW, Lin CY, Huang LC, Lin CL, Hsieh WS, Chi WM, Chang YJ, Wei PL, Chen ST, Lee CH. The Application of Non-Invasive Apoptosis Detection Sensor (NIADS) on Histone Deacetylation Inhibitor (HDACi)-Induced Breast Cancer Cell Death. Int J Mol Sci 2018; 19:ijms19020452. [PMID: 29393914 PMCID: PMC5855674 DOI: 10.3390/ijms19020452] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/22/2018] [Accepted: 01/26/2018] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most common malignancy in women and the second leading cause of cancer death in women. Triple negative breast cancer (TNBC) subtype is a breast cancer subset without ER (estrogen receptor), PR (progesterone receptor) and HER2 (human epidermal growth factor receptor 2) expression, limiting treatment options and presenting a poorer survival rate. Thus, we investigated whether histone deacetylation inhibitor (HDACi) could be used as potential anti-cancer therapy on breast cancer cells. In this study, we found TNBC and HER2-enriched breast cancers are extremely sensitive to Panobinostat, Belinostat of HDACi via experiments of cell viability assay, apoptotic marker identification and flow cytometry measurement. On the other hand, we developed a bioluminescence-based live cell non-invasive apoptosis detection sensor (NIADS) detection system to evaluate the quantitative and kinetic analyses of apoptotic cell death by HDAC treatment on breast cancer cells. In addition, the use of HDACi may also contribute a synergic anti-cancer effect with co-treatment of chemotherapeutic agent such as doxorubicin on TNBC cells (MDA-MB-231), but not in breast normal epithelia cells (MCF-10A), providing therapeutic benefits against breast tumor in the clinic.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Biological Assay
- Cell Line, Tumor
- Epithelial Cells/drug effects
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Female
- Flow Cytometry
- Gene Expression Regulation, Neoplastic
- Histone Deacetylase Inhibitors/pharmacology
- Histone Deacetylases/genetics
- Histone Deacetylases/metabolism
- Humans
- Hydroxamic Acids/pharmacology
- Indoles/pharmacology
- Mammary Glands, Human/drug effects
- Mammary Glands, Human/metabolism
- Mammary Glands, Human/pathology
- Panobinostat
- Receptor, ErbB-2/deficiency
- Receptor, ErbB-2/genetics
- Receptors, Estrogen/deficiency
- Receptors, Estrogen/genetics
- Receptors, Progesterone/deficiency
- Receptors, Progesterone/genetics
- Sulfonamides/pharmacology
- Triple Negative Breast Neoplasms/drug therapy
- Triple Negative Breast Neoplasms/genetics
- Triple Negative Breast Neoplasms/metabolism
- Triple Negative Breast Neoplasms/pathology
Collapse
Affiliation(s)
- Kai-Wen Hsu
- Research Center for Tumor Medical Science, China Medical University, Taichung 40402, Taiwan;
- Graduate Institutes of New Drug Development, China Medical University, Taichung 40402, Taiwan
| | - Chien-Yu Huang
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-Y.H.); (K.-W.T.); (Y.-J.C.); (P.-L.W.)
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561,Taiwan
| | - Ka-Wai Tam
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-Y.H.); (K.-W.T.); (Y.-J.C.); (P.-L.W.)
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561,Taiwan
| | - Chun-Yu Lin
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 30068, Taiwan;
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Kyoto 611-0011, Japan
| | - Li-Chi Huang
- Department of Endocrinology and metabolism, Cathay General Hospital, Taipei 10630, Taiwan; (L.-C.H.); (C.-L.L.)
| | - Ching-Ling Lin
- Department of Endocrinology and metabolism, Cathay General Hospital, Taipei 10630, Taiwan; (L.-C.H.); (C.-L.L.)
| | - Wen-Shyang Hsieh
- Department of Laboratory Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei 23561, Taiwan; (W.-S.H.); (W.-M.C.)
| | - Wei-Ming Chi
- Department of Laboratory Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei 23561, Taiwan; (W.-S.H.); (W.-M.C.)
| | - Yu-Jia Chang
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-Y.H.); (K.-W.T.); (Y.-J.C.); (P.-L.W.)
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Po-Li Wei
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-Y.H.); (K.-W.T.); (Y.-J.C.); (P.-L.W.)
- Division of Colorectal Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Cancer Research Center and Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei 11031, Taiwan
| | - Shou-Tung Chen
- Comprehensive Breast Cancer Center, Changhua Christian Hospital, Changhua 50006, Taiwan
- Correspondence: (S.-T.C.); (C.-H.L.); Tel.: +886-2-2736-1661 (ext. 3331) (C.-H.L.)
| | - Chia-Hwa Lee
- Department of Laboratory Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei 23561, Taiwan; (W.-S.H.); (W.-M.C.)
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Ph.D. Program in Medicine Biotechnology, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Comprehensive Cancer Center of Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: (S.-T.C.); (C.-H.L.); Tel.: +886-2-2736-1661 (ext. 3331) (C.-H.L.)
| |
Collapse
|
80
|
Abstract
Just like all matter, proteins can also switch between gas, liquid and solid phases. Protein phase transition has claimed the spotlight in recent years as a novel way of how cells compartmentalize and regulate biochemical reactions. Moreover, this discovery has provided a new framework for the study of membrane-less organelle biogenesis and protein aggregation in neurodegenerative disorders. We now argue that this framework could be useful in the study of cell cycle regulation and cancer. Based on our work on phase transitions of arginine-rich proteins in neurodegeneration, via combining mass spectroscopy with bioinformatics analyses, we found that also numerous proteins involved in the regulation of the cell cycle can undergo protein phase separation. Indeed, several proteins whose function affects the cell cycle or are associated with cancer, have been recently found to phase separate from the test tube to cells. Investigating the role of this process for cell cycle proteins and understanding its molecular underpinnings will provide pivotal insights into the biology of cell cycle progression and cancer.
Collapse
Affiliation(s)
- Steven Boeynaems
- Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven-University of Leuven, 3000 Leuven, Belgium
- Laboratory of Neurobiology, VIB, Center for Brain and Disease Research, 3000 Leuven, Belgium
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Peter Tompa
- VIB, Center for Structural Biology (CSB), Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven-University of Leuven, 3000 Leuven, Belgium
- Laboratory of Neurobiology, VIB, Center for Brain and Disease Research, 3000 Leuven, Belgium
| |
Collapse
|
81
|
Sherwood DR, Plastino J. Invading, Leading and Navigating Cells in Caenorhabditis elegans: Insights into Cell Movement in Vivo. Genetics 2018; 208:53-78. [PMID: 29301948 PMCID: PMC5753875 DOI: 10.1534/genetics.117.300082] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 10/26/2017] [Indexed: 12/30/2022] Open
Abstract
Highly regulated cell migration events are crucial during animal tissue formation and the trafficking of cells to sites of infection and injury. Misregulation of cell movement underlies numerous human diseases, including cancer. Although originally studied primarily in two-dimensional in vitro assays, most cell migrations in vivo occur in complex three-dimensional tissue environments that are difficult to recapitulate in cell culture or ex vivo Further, it is now known that cells can mobilize a diverse repertoire of migration modes and subcellular structures to move through and around tissues. This review provides an overview of three distinct cellular movement events in Caenorhabditis elegans-cell invasion through basement membrane, leader cell migration during organ formation, and individual cell migration around tissues-which together illustrate powerful experimental models of diverse modes of movement in vivo We discuss new insights into migration that are emerging from these in vivo studies and important future directions toward understanding the remarkable and assorted ways that cells move in animals.
Collapse
Affiliation(s)
- David R Sherwood
- Department of Biology, Regeneration Next, Duke University, Durham, North Carolina 27705
| | - Julie Plastino
- Institut Curie, PSL Research University, CNRS, UMR 168, F-75005 Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 168, F-75005 Paris, France
| |
Collapse
|
82
|
Wilkinson AC, Nakauchi H, Göttgens B. Mammalian Transcription Factor Networks: Recent Advances in Interrogating Biological Complexity. Cell Syst 2017; 5:319-331. [PMID: 29073372 PMCID: PMC5928788 DOI: 10.1016/j.cels.2017.07.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 06/29/2017] [Accepted: 07/20/2017] [Indexed: 12/11/2022]
Abstract
Transcription factor (TF) networks are a key determinant of cell fate decisions in mammalian development and adult tissue homeostasis and are frequently corrupted in disease. However, our inability to experimentally resolve and interrogate the complexity of mammalian TF networks has hampered the progress in this field. Recent technological advances, in particular large-scale genome-wide approaches, single-cell methodologies, live-cell imaging, and genome editing, are emerging as important technologies in TF network biology. Several recent studies even suggest a need to re-evaluate established models of mammalian TF networks. Here, we provide a brief overview of current and emerging methods to define mammalian TF networks. We also discuss how these emerging technologies facilitate new ways to interrogate complex TF networks, consider the current open questions in the field, and comment on potential future directions and biomedical applications.
Collapse
Affiliation(s)
- Adam C Wilkinson
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | - Hiromitsu Nakauchi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA; Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Berthold Göttgens
- Department of Haematology, Cambridge Institute for Medical Research and Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0XY, UK.
| |
Collapse
|
83
|
Festuccia N, Gonzalez I, Owens N, Navarro P. Mitotic bookmarking in development and stem cells. Development 2017; 144:3633-3645. [DOI: 10.1242/dev.146522] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The changes imposed on the nucleus, chromatin and its regulators during mitosis lead to the dismantlement of most gene regulatory processes. However, an increasing number of transcriptional regulators are being identified as capable of binding their genomic targets during mitosis. These so-called ‘mitotic bookmarking factors’ encompass transcription factors and chromatin modifiers that are believed to convey gene regulatory information from mother to daughter cells. In this Primer, we review mitotic bookmarking processes in development and stem cells and discuss the interest and potential importance of this concept with regard to epigenetic regulation and cell fate transitions involving cellular proliferation.
Collapse
Affiliation(s)
- Nicola Festuccia
- Epigenetics of Stem Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 25 rue du Docteur Roux, 75015 Paris, France
| | - Inma Gonzalez
- Epigenetics of Stem Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 25 rue du Docteur Roux, 75015 Paris, France
| | - Nick Owens
- Epigenetics of Stem Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 25 rue du Docteur Roux, 75015 Paris, France
| | - Pablo Navarro
- Epigenetics of Stem Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 25 rue du Docteur Roux, 75015 Paris, France
| |
Collapse
|
84
|
Soufi A, Dalton S. Cycling through developmental decisions: how cell cycle dynamics control pluripotency, differentiation and reprogramming. Development 2017; 143:4301-4311. [PMID: 27899507 DOI: 10.1242/dev.142075] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A strong connection exists between the cell cycle and mechanisms required for executing cell fate decisions in a wide-range of developmental contexts. Terminal differentiation is often associated with cell cycle exit, whereas cell fate switches are frequently linked to cell cycle transitions in dividing cells. These phenomena have been investigated in the context of reprogramming, differentiation and trans-differentiation but the underpinning molecular mechanisms remain unclear. Most progress to address the connection between cell fate and the cell cycle has been made in pluripotent stem cells, in which the transition through mitosis and G1 phase is crucial for establishing a window of opportunity for pluripotency exit and the initiation of differentiation. This Review will summarize recent developments in this area and place them in a broader context that has implications for a wide range of developmental scenarios.
Collapse
Affiliation(s)
- Abdenour Soufi
- Institute of Stem Cell Research, MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Stephen Dalton
- Center for Molecular Medicine and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
85
|
Valor LM, Rodríguez-Bayona B, Ramos-Amaya AB, Brieva JA, Campos-Caro A. The transcriptional profiling of human in vivo-generated plasma cells identifies selective imbalances in monoclonal gammopathies. PLoS One 2017; 12:e0183264. [PMID: 28817638 PMCID: PMC5560601 DOI: 10.1371/journal.pone.0183264] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 08/01/2017] [Indexed: 12/13/2022] Open
Abstract
Plasma cells (PC) represent the heterogeneous final stage of the B cells (BC) differentiation process. To characterize the transition of BC into PC, transcriptomes from human naïve BC were compared to those of three functionally-different subsets of human in vivo-generated PC: i) tonsil PC, mainly consisting of early PC; ii) PC released to the blood after a potent booster-immunization (mostly cycling plasmablasts); and, iii) bone marrow CD138+ PC that represent highly mature PC and include the long-lived PC compartment. This transcriptional transition involves subsets of genes related to key processes for PC maturation: the already known protein processing, apoptosis and homeostasis, and of new discovery including histones, macromolecule assembly, zinc-finger transcription factors and neuromodulation. This human PC signature is partially reproduced in vitro and is conserved in mouse. Moreover, the present study identifies genes that define PC subtypes (e.g., proliferation-associated genes for circulating PC and transcriptional-related genes for tonsil and bone marrow PC) and proposes some putative transcriptional regulators of the human PC signatures (e.g., OCT/POU, XBP1/CREB, E2F, among others). Finally, we also identified a restricted imbalance of the present PC transcriptional program in monoclonal gammopathies that correlated with PC malignancy.
Collapse
Affiliation(s)
- Luis M. Valor
- Unidad de Investigación, Hospital Universitario Puerta del Mar and Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Cádiz, Spain
| | - Beatriz Rodríguez-Bayona
- Unidad de Investigación, Hospital Universitario Puerta del Mar and Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Cádiz, Spain
| | - Ana B. Ramos-Amaya
- Unidad de Investigación, Hospital Universitario Puerta del Mar and Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Cádiz, Spain
| | - José A. Brieva
- Unidad de Investigación, Hospital Universitario Puerta del Mar and Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Cádiz, Spain
| | - Antonio Campos-Caro
- Unidad de Investigación, Hospital Universitario Puerta del Mar and Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz (INiBICA), Cádiz, Spain
- * E-mail:
| |
Collapse
|
86
|
Waisman A, Vazquez Echegaray C, Solari C, Cosentino MS, Martyn I, Deglincerti A, Ozair MZ, Ruzo A, Barañao L, Miriuka S, Brivanlou A, Guberman A. Inhibition of Cell Division and DNA Replication Impair Mouse-Naïve Pluripotency Exit. J Mol Biol 2017; 429:2802-2815. [PMID: 28684247 DOI: 10.1016/j.jmb.2017.06.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 06/24/2017] [Accepted: 06/28/2017] [Indexed: 12/27/2022]
Abstract
The cell cycle has gained attention as a key determinant for cell fate decisions, but the contribution of DNA replication and mitosis in stem cell differentiation has not been extensively studied. To understand if these processes act as "windows of opportunity" for changes in cell identity, we established synchronized cultures of mouse embryonic stem cells as they exit the ground state of pluripotency. We show that initial transcriptional changes in this transition do not require passage through mitosis and that conversion to primed pluripotency is linked to lineage priming in the G1 phase. Importantly, we demonstrate that impairment of DNA replication severely blocks transcriptional switch to primed pluripotency, even in the absence of p53 activity induced by the DNA damage response. Our data suggest an important role for DNA replication during mouse embryonic stem cell differentiation, which could shed light on why pluripotent cells are only receptive to differentiation signals during G1, that is, before the S phase.
Collapse
Affiliation(s)
- Ariel Waisman
- Universidad de Buenos Aires, Laboratorio de Regulación Génica en Células Madre, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química Biológica (IQUIBICEN), Buenos Aires, Argentina
| | - Camila Vazquez Echegaray
- Universidad de Buenos Aires, Laboratorio de Regulación Génica en Células Madre, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química Biológica (IQUIBICEN), Buenos Aires, Argentina
| | - Claudia Solari
- Universidad de Buenos Aires, Laboratorio de Regulación Génica en Células Madre, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química Biológica (IQUIBICEN), Buenos Aires, Argentina
| | - María Soledad Cosentino
- Universidad de Buenos Aires, Laboratorio de Regulación Génica en Células Madre, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química Biológica (IQUIBICEN), Buenos Aires, Argentina
| | - Iain Martyn
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA
| | - Alessia Deglincerti
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA
| | - Mohammad Zeeshan Ozair
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA
| | - Albert Ruzo
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA
| | - Lino Barañao
- Universidad de Buenos Aires, Laboratorio de Regulación Génica en Células Madre, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Santiago Miriuka
- CONICET-Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (FLENI), Laboratorio de Investigación de Aplicación a Neurociencias (LIAN), Buenos Aires, Argentina
| | - Ali Brivanlou
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA
| | - Alejandra Guberman
- Universidad de Buenos Aires, Laboratorio de Regulación Génica en Células Madre, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química Biológica (IQUIBICEN), Buenos Aires, Argentina; Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
87
|
Meserve JH, Duronio RJ. A population of G2-arrested cells are selected as sensory organ precursors for the interommatidial bristles of the Drosophila eye. Dev Biol 2017. [PMID: 28645749 DOI: 10.1016/j.ydbio.2017.06.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Cell cycle progression and differentiation are highly coordinated during the development of multicellular organisms. The mechanisms by which these processes are coordinated and how their coordination contributes to normal development are not fully understood. Here, we determine the developmental fate of a population of precursor cells in the developing Drosophila melanogaster retina that arrest in G2 phase of the cell cycle and investigate whether cell cycle phase-specific arrest influences the fate of these cells. We demonstrate that retinal precursor cells that arrest in G2 during larval development are selected as sensory organ precursors (SOPs) during pupal development and undergo two cell divisions to generate the four-cell interommatidial mechanosensory bristles. While G2 arrest is not required for bristle development, preventing G2 arrest results in incorrect bristle positioning in the adult eye. We conclude that G2-arrested cells provide a positional cue during development to ensure proper spacing of bristles in the eye. Our results suggest that the control of cell cycle progression refines cell fate decisions and that the relationship between these two processes is not necessarily deterministic.
Collapse
Affiliation(s)
- Joy H Meserve
- Curriculum in Genetics & Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Robert J Duronio
- Curriculum in Genetics & Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA; Departments of Biology and Genetics, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
88
|
Fletcher RB, Das D, Gadye L, Street KN, Baudhuin A, Wagner A, Cole MB, Flores Q, Choi YG, Yosef N, Purdom E, Dudoit S, Risso D, Ngai J. Deconstructing Olfactory Stem Cell Trajectories at Single-Cell Resolution. Cell Stem Cell 2017; 20:817-830.e8. [PMID: 28506465 PMCID: PMC5484588 DOI: 10.1016/j.stem.2017.04.003] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 03/02/2017] [Accepted: 04/10/2017] [Indexed: 01/08/2023]
Abstract
A detailed understanding of the paths that stem cells traverse to generate mature progeny is vital for elucidating the mechanisms governing cell fate decisions and tissue homeostasis. Adult stem cells maintain and regenerate multiple mature cell lineages in the olfactory epithelium. Here we integrate single-cell RNA sequencing and robust statistical analyses with in vivo lineage tracing to define a detailed map of the postnatal olfactory epithelium, revealing cell fate potentials and branchpoints in olfactory stem cell lineage trajectories. Olfactory stem cells produce support cells via direct fate conversion in the absence of cell division, and their multipotency at the population level reflects collective unipotent cell fate decisions by single stem cells. We further demonstrate that Wnt signaling regulates stem cell fate by promoting neuronal fate choices. This integrated approach reveals the mechanisms guiding olfactory lineage trajectories and provides a model for deconstructing similar hierarchies in other stem cell niches.
Collapse
Affiliation(s)
- Russell B Fletcher
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Diya Das
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Levi Gadye
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - Kelly N Street
- Division of Biostatistics, University of California, Berkeley, CA 94720, USA; Center for Computational Biology, University of California, Berkeley, CA 94720, USA
| | - Ariane Baudhuin
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Allon Wagner
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA 94720, USA; Center for Computational Biology, University of California, Berkeley, CA 94720, USA
| | - Michael B Cole
- Department of Physics, University of California, Berkeley, CA 94720, USA; Center for Computational Biology, University of California, Berkeley, CA 94720, USA
| | - Quetzal Flores
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Yoon Gi Choi
- QB3 Functional Genomics Laboratory, University of California, Berkeley, CA 94720, USA
| | - Nir Yosef
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA 94720, USA; Center for Computational Biology, University of California, Berkeley, CA 94720, USA
| | - Elizabeth Purdom
- Department of Statistics, University of California, Berkeley, CA 94720, USA; Center for Computational Biology, University of California, Berkeley, CA 94720, USA
| | - Sandrine Dudoit
- Division of Biostatistics, University of California, Berkeley, CA 94720, USA; Department of Statistics, University of California, Berkeley, CA 94720, USA; Center for Computational Biology, University of California, Berkeley, CA 94720, USA
| | - Davide Risso
- Division of Biostatistics, University of California, Berkeley, CA 94720, USA
| | - John Ngai
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA; QB3 Functional Genomics Laboratory, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
89
|
Golloshi R, Sanders JT, McCord RP. Genome organization during the cell cycle: unity in division. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2017; 9. [PMID: 28510289 DOI: 10.1002/wsbm.1389] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/12/2017] [Accepted: 03/14/2017] [Indexed: 12/11/2022]
Abstract
During the cell cycle, the genome must undergo dramatic changes in structure, from a decondensed, yet highly organized interphase structure to a condensed, generic mitotic chromosome and then back again. For faithful cell division, the genome must be replicated and chromosomes and sister chromatids physically segregated from one another. Throughout these processes, there is feedback and tension between the information-storing role and the physical properties of chromosomes. With a combination of recent techniques in fluorescence microscopy, chromosome conformation capture (Hi-C), biophysical experiments, and computational modeling, we can now attribute mechanisms to many long-observed features of chromosome structure changes during cell division. Apparent conflicts that arise when integrating the concepts from these different proposed mechanisms emphasize that orchestrating chromosome organization during cell division requires a complex system of factors rather than a simple pathway. Cell division is both essential for and threatening to proper genome organization. As interphase three-dimensional (3D) genome structure is quite static at a global level, cell division provides an important window of opportunity to make substantial changes in 3D genome organization in daughter cells, allowing for proper differentiation and development. Mistakes in the process of chromosome condensation or rebuilding the structure after mitosis can lead to diseases such as cancer, premature aging, and neurodegeneration. WIREs Syst Biol Med 2017, 9:e1389. doi: 10.1002/wsbm.1389 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Rosela Golloshi
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | | | | |
Collapse
|
90
|
O-GlcNAcylation and chromatin remodeling in mammals: an up-to-date overview. Biochem Soc Trans 2017; 45:323-338. [PMID: 28408473 DOI: 10.1042/bst20160388] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/30/2016] [Accepted: 01/05/2017] [Indexed: 02/07/2023]
Abstract
Post-translational modifications of histones and the dynamic DNA methylation cycle are finely regulated by a myriad of chromatin-binding factors and chromatin-modifying enzymes. Epigenetic modifications ensure local changes in the architecture of chromatin, thus controlling in fine the accessibility of the machinery of transcription, replication or DNA repair to the chromatin. Over the past decade, the nutrient-sensor enzyme O-GlcNAc transferase (OGT) has emerged as a modulator of chromatin remodeling. In mammals, OGT acts either directly through dynamic and reversible O-GlcNAcylation of histones and chromatin effectors, or in an indirect manner through its recruitment into chromatin-bound multiprotein complexes. In particular, there is an increasing amount of evidence of a cross-talk between OGT and the DNA dioxygenase ten-eleven translocation proteins that catalyze active DNA demethylation. Conversely, the stability of OGT itself can be controlled by the histone lysine-specific demethylase 2 (LSD2). Finally, a few studies have explored the role of O-GlcNAcase (OGA) in chromatin remodeling. In this review, we summarize the recent findings on the link between OGT, OGA and chromatin regulators in mammalian cellular models, and discuss their relevance in physiological and pathological conditions.
Collapse
|
91
|
Abstract
Steady-state gene expression across the cell cycle has been studied extensively. However, transcriptional gene regulation and the dynamics of histone modification at different cell-cycle stages are largely unknown. By applying a combination of global nuclear run-on sequencing (GRO-seq), RNA sequencing (RNA-seq), and histone-modification Chip sequencing (ChIP-seq), we depicted a comprehensive transcriptional landscape at the G0/G1, G1/S, and M phases of breast cancer MCF-7 cells. Importantly, GRO-seq and RNA-seq analysis identified different cell-cycle-regulated genes, suggesting a lag between transcription and steady-state expression during the cell cycle. Interestingly, we identified genes actively transcribed at early M phase that are longer in length and have low expression and are accompanied by a global increase in active histone 3 lysine 4 methylation (H3K4me2) and histone 3 lysine 27 acetylation (H3K27ac) modifications. In addition, we identified 2,440 cell-cycle-regulated enhancer RNAs (eRNAs) that are strongly associated with differential active transcription but not with stable expression levels across the cell cycle. Motif analysis of dynamic eRNAs predicted Kruppel-like factor 4 (KLF4) as a key regulator of G1/S transition, and this identification was validated experimentally. Taken together, our combined analysis characterized the transcriptional and histone-modification profile of the human cell cycle and identified dynamic transcriptional signatures across the cell cycle.
Collapse
|
92
|
Hayashi T, Lombaert IMA, Hauser BR, Patel VN, Hoffman MP. Exosomal MicroRNA Transport from Salivary Mesenchyme Regulates Epithelial Progenitor Expansion during Organogenesis. Dev Cell 2016; 40:95-103. [PMID: 28041903 DOI: 10.1016/j.devcel.2016.12.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/23/2016] [Accepted: 12/01/2016] [Indexed: 12/20/2022]
Abstract
Epithelial-mesenchymal interactions involve fundamental communication between tissues during organogenesis and are primarily regulated by growth factors and extracellular matrix. It is unclear whether RNA-containing exosomes are mobile genetic signals regulating epithelial-mesenchymal interactions. Here we identify that exosomes loaded with mesenchyme-specific mature microRNA contribute mobile genetic signals from mesenchyme to epithelium. The mature mesenchymal miR-133b-3p, loaded into exosomes, was transported from mesenchyme to the salivary epithelium, which did not express primary miR-133b-3p. Knockdown of miR-133b-3p in culture decreased endbud morphogenesis, reduced proliferation of epithelial KIT+ progenitors, and increased expression of a target gene, Disco-interacting protein 2 homolog B (Dip2b). DIP2B, which is involved in DNA methylation, was localized with 5-methylcytosine in the prophase nucleus of a subset of KIT+ progenitors during mitosis. In summary, exosomal transport of miR-133b-3p from mesenchyme to epithelium decreases DIP2B, which may function as an epigenetic regulator of genes responsible for KIT+ progenitor expansion during organogenesis.
Collapse
Affiliation(s)
- Toru Hayashi
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Isabelle M A Lombaert
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Belinda R Hauser
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vaishali N Patel
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew P Hoffman
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
93
|
Legionella pneumophila prevents proliferation of its natural host Acanthamoeba castellanii. Sci Rep 2016; 6:36448. [PMID: 27805070 PMCID: PMC5091012 DOI: 10.1038/srep36448] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/14/2016] [Indexed: 12/12/2022] Open
Abstract
Legionella pneumophila is a ubiquitous, pathogenic, Gram-negative bacterium responsible for legionellosis. Like many other amoeba-resistant microorganisms, L. pneumophila resists host clearance and multiplies inside the cell. Through its Dot/Icm type IV secretion system, the bacterium injects more than three hundred effectors that modulate host cell physiology in order to promote its own intracellular replication. Here we report that L. pneumophila prevents proliferation of its natural host Acanthamoeba castellanii. Infected amoebae could not undergo DNA replication and no cell division was observed. The Dot/Icm secretion system was necessary for L. pneumophila to prevent the eukaryotic proliferation. The absence of proliferation was associated with altered amoebal morphology and with a decrease of mRNA transcript levels of CDC2b, a putative regulator of the A. castellanii cell cycle. Complementation of CDC28-deficient Saccharomyces cerevisiae by the CDC2b cDNA was sufficient to restore proliferation of CDC28-deficient S. cerevisiae and suggests for the first time that CDC2b from A. castellanii could be functional and a bona fide cyclin-dependent kinase. Hence, our results reveal that L. pneumophila impairs proliferation of A. castellanii and this effect could involve the cell cycle protein CDC2b.
Collapse
|
94
|
Yu S, Yang F, Shen WH. Genome maintenance in the context of 4D chromatin condensation. Cell Mol Life Sci 2016; 73:3137-50. [PMID: 27098512 PMCID: PMC4956502 DOI: 10.1007/s00018-016-2221-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/07/2016] [Indexed: 12/20/2022]
Abstract
The eukaryotic genome is packaged in the three-dimensional nuclear space by forming loops, domains, and compartments in a hierarchical manner. However, when duplicated genomes prepare for segregation, mitotic cells eliminate topologically associating domains and abandon the compartmentalized structure. Alongside chromatin architecture reorganization during the transition from interphase to mitosis, cells halt most DNA-templated processes such as transcription and repair. The intrinsically condensed chromatin serves as a sophisticated signaling module subjected to selective relaxation for programmed genomic activities. To understand the elaborate genome-epigenome interplay during cell cycle progression, the steady three-dimensional genome requires a time scale to form a dynamic four-dimensional and a more comprehensive portrait. In this review, we will dissect the functions of critical chromatin architectural components in constructing and maintaining an orderly packaged chromatin environment. We will also highlight the importance of the spatially and temporally conscious orchestration of chromatin remodeling to ensure high-fidelity genetic transmission.
Collapse
Affiliation(s)
- Sonia Yu
- Department of Radiation Oncology, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, NY, 10065, USA
| | - Fan Yang
- Department of Radiation Oncology, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, NY, 10065, USA
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Wen H Shen
- Department of Radiation Oncology, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
95
|
Linking the Cell Cycle to Cell Fate Decisions. Trends Cell Biol 2016; 25:592-600. [PMID: 26410405 DOI: 10.1016/j.tcb.2015.07.007] [Citation(s) in RCA: 232] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 06/20/2015] [Accepted: 07/17/2015] [Indexed: 12/25/2022]
Abstract
Pluripotent stem cells (PSCs) retain the ability to differentiate into a wide range of cell types while undergoing self-renewal. They also exhibit an unusual mode of cell cycle regulation, reflected by a cell cycle structure where G1 and G2 phases are truncated. When individual PSCs are exposed to specification cues, they activate developmental programs and remodel the cell cycle so that the length of G1 and overall cell division times increase. The response of individual stem cells to pro-differentiation signals is strikingly heterogeneous, resulting in asynchronous differentiation. Recent evidence indicates that this phenomenon is due to cell cycle-dependent mechanisms that restrict the initial activation of developmental genes to the G1 phase. This suggests a broad biological mechanism where multipotent cells are 'primed' to initiate cell fate decisions during their transition through G1. Here, I discuss mechanisms underpinning the commitment towards the differentiated state and its relation to the cell cycle.
Collapse
|
96
|
Djakbarova U, Marzluff WF, Köseoğlu MM. DDB1 and CUL4 associated factor 11 (DCAF11) mediates degradation of Stem-loop binding protein at the end of S phase. Cell Cycle 2016; 15:1986-96. [PMID: 27254819 DOI: 10.1080/15384101.2016.1191708] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In eukaryotes, bulk histone expression occurs in the S phase of the cell cycle. This highly conserved system is crucial for genomic stability and proper gene expression. In metazoans, Stem-loop binding protein (SLBP), which binds to 3' ends of canonical histone mRNAs, is a key factor in histone biosynthesis. SLBP is mainly expressed in S phase and this is a major mechanism to limit bulk histone production to the S phase. At the end of S phase, SLBP is rapidly degraded by proteasome, depending on two phosphorylations on Thr 60 and Thr 61. Previously, we showed that SLBP fragment (aa 51-108) fused to GST, is sufficient to mimic the late S phase (S/G2) degradation of SLBP. Here, using this fusion protein as bait, we performed pull-down experiments and found that DCAF11, which is a substrate receptor of CRL4 complexes, binds to the phosphorylated SLBP fragment. We further confirmed the interaction of full-length SLBP with DCAF11 and Cul4A by co-immunoprecipitation experiments. We also showed that DCAF11 cannot bind to the Thr61/Ala mutant SLBP, which is not degraded at the end of S phase. Using ectopic expression and siRNA experiments, we demonstrated that SLBP expression is inversely correlated with DCAF11 levels, consistent with the model that DCAF11 mediates SLBP degradation. Finally, we found that ectopic expression of the S/G2 stable mutant SLBP (Thr61/Ala) is significantly more toxic to the cells, in comparison to wild type SLBP. Overall, we concluded that CRL4-DCAF11 mediates the degradation of SLBP at the end of S phase and this degradation is essential for the viability of cells.
Collapse
Affiliation(s)
- Umidahan Djakbarova
- a Department of Genetics and Bioengineering , Fatih University , Istanbul , Turkey.,b Bionanotechnology Center , Fatih University , Istanbul , Turkey
| | - William F Marzluff
- c Department of Biochemistry and Biophysics , University of North Carolina at Chapel Hill , Chapel Hill , NC , USA.,d Program in Molecular Biology and Biotechnology , University of North Carolina at Chapel Hill , Chapel Hill , NC , USA
| | - M Murat Köseoğlu
- a Department of Genetics and Bioengineering , Fatih University , Istanbul , Turkey.,b Bionanotechnology Center , Fatih University , Istanbul , Turkey
| |
Collapse
|
97
|
Tian Z, Guo F, Biswas S, Deng W. Rationale and Methodology of Reprogramming for Generation of Induced Pluripotent Stem Cells and Induced Neural Progenitor Cells. Int J Mol Sci 2016; 17:E594. [PMID: 27104529 PMCID: PMC4849048 DOI: 10.3390/ijms17040594] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/14/2016] [Accepted: 04/14/2016] [Indexed: 01/23/2023] Open
Abstract
Great progress has been made regarding the capabilities to modify somatic cell fate ever since the technology for generation of induced pluripotent stem cells (iPSCs) was discovered in 2006. Later, induced neural progenitor cells (iNPCs) were generated from mouse and human cells, bypassing some of the concerns and risks of using iPSCs in neuroscience applications. To overcome the limitation of viral vector induced reprogramming, bioactive small molecules (SM) have been explored to enhance the efficiency of reprogramming or even replace transcription factors (TFs), making the reprogrammed cells more amenable to clinical application. The chemical induced reprogramming process is a simple process from a technical perspective, but the choice of SM at each step is vital during the procedure. The mechanisms underlying cell transdifferentiation are still poorly understood, although, several experimental data and insights have indicated the rationale of cell reprogramming. The process begins with the forced expression of specific TFs or activation/inhibition of cell signaling pathways by bioactive chemicals in defined culture condition, which initiates the further reactivation of endogenous gene program and an optimal stoichiometric expression of the endogenous pluri- or multi-potency genes, and finally leads to the birth of reprogrammed cells such as iPSCs and iNPCs. In this review, we first outline the rationale and discuss the methodology of iPSCs and iNPCs in a stepwise manner; and then we also discuss the chemical-based reprogramming of iPSCs and iNPCs.
Collapse
Affiliation(s)
- Zuojun Tian
- Department of Neurology, the Institute of Guangzhou Respiratory Disease, State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA 95817, USA.
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA.
| | - Fuzheng Guo
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA.
| | - Sangita Biswas
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA 95817, USA.
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA.
| | - Wenbin Deng
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA 95817, USA.
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA.
| |
Collapse
|
98
|
Matus DQ, Lohmer LL, Kelley LC, Schindler AJ, Kohrman AQ, Barkoulas M, Zhang W, Chi Q, Sherwood DR. Invasive Cell Fate Requires G1 Cell-Cycle Arrest and Histone Deacetylase-Mediated Changes in Gene Expression. Dev Cell 2016; 35:162-74. [PMID: 26506306 DOI: 10.1016/j.devcel.2015.10.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/01/2015] [Accepted: 10/02/2015] [Indexed: 12/19/2022]
Abstract
Despite critical roles in development and cancer, the mechanisms that specify invasive cellular behavior are poorly understood. Through a screen of transcription factors in Caenorhabditis elegans, we identified G1 cell-cycle arrest as a precisely regulated requirement of the anchor cell (AC) invasion program. We show that the nuclear receptor nhr-67/tlx directs the AC into G1 arrest in part through regulation of the cyclin-dependent kinase inhibitor cki-1. Loss of nhr-67 resulted in non-invasive, mitotic ACs that failed to express matrix metalloproteinases or actin regulators and lack invadopodia, F-actin-rich membrane protrusions that facilitate invasion. We further show that G1 arrest is necessary for the histone deacetylase HDA-1, a key regulator of differentiation, to promote pro-invasive gene expression and invadopodia formation. Together, these results suggest that invasive cell fate requires G1 arrest and that strategies targeting both G1-arrested and actively cycling cells may be needed to halt metastatic cancer.
Collapse
Affiliation(s)
- David Q Matus
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA; Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA.
| | - Lauren L Lohmer
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Laura C Kelley
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Adam J Schindler
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Abraham Q Kohrman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Michalis Barkoulas
- Department of Life Sciences, Imperial College London, Imperial College Road SAF Building, London SW7 2AZ, UK
| | - Wan Zhang
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Qiuyi Chi
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - David R Sherwood
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA.
| |
Collapse
|
99
|
Julian LM, Carpenedo RL, Rothberg JLM, Stanford WL. Formula G1: Cell cycle in the driver's seat of stem cell fate determination. Bioessays 2016; 38:325-32. [DOI: 10.1002/bies.201500187] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Lisa M. Julian
- Sprott Centre for Stem Cell Research; Regenerative Medicine Program; Ottawa Hospital Research Institute; Ottawa ON Canada
- Faculty of Graduate and Postdoctoral Studies; Ottawa; ON Canada
| | - Richard L. Carpenedo
- Sprott Centre for Stem Cell Research; Regenerative Medicine Program; Ottawa Hospital Research Institute; Ottawa ON Canada
- Faculty of Graduate and Postdoctoral Studies; Ottawa; ON Canada
| | - Janet L. Manias Rothberg
- Sprott Centre for Stem Cell Research; Regenerative Medicine Program; Ottawa Hospital Research Institute; Ottawa ON Canada
- Faculty of Graduate and Postdoctoral Studies; Ottawa; ON Canada
- Department of Cellular and Molecular Medicine; University of Ottawa; Ottawa ON Canada
| | - William L. Stanford
- Sprott Centre for Stem Cell Research; Regenerative Medicine Program; Ottawa Hospital Research Institute; Ottawa ON Canada
- Faculty of Graduate and Postdoctoral Studies; Ottawa; ON Canada
- Department of Cellular and Molecular Medicine; University of Ottawa; Ottawa ON Canada
- Department of Biochemistry; Microbiology and Immunology; University of Ottawa; Ottawa ON Canada
- Ottawa Institute of Systems Biology; Ottawa; Ontario Canada
| |
Collapse
|
100
|
Abstract
A close relationship between proliferation and cell fate specification has been well documented in many developmental systems. In addition to the gradual cell fate changes accompanying normal development and tissue homeostasis, it is now commonly appreciated that cell fate could also undergo drastic changes, as illustrated by the induction of pluripotency from many differentiated somatic cell types during the process of Yamanaka reprogramming. Strikingly, the drastic cell fate change induced by Yamanaka factors (Oct4, Sox2, Klf4, and c-Myc) is preceded by extensive cell cycle acceleration. Prompted by our recent discovery that progression toward pluripotency from rare somatic cells could bypass the stochastic phase of reprogramming and that a key feature of these somatic cells is an ultrafast cell cycle (~8 h/cycle), we assess whether cell cycle dynamics could provide a general framework for controlling cell fate. Several potential mechanisms on how cell cycle dynamics may impact cell fate determination by regulating chromatin, key transcription factor concentration, or their interactions are discussed. Specific challenges and implications for studying and manipulating cell fate are considered.
Collapse
|