51
|
Vergori A, Cozzi Lepri A, Cicalini S, Matusali G, Bordoni V, Lanini S, Meschi S, Iannazzo R, Mazzotta V, Colavita F, Mastrorosa I, Cimini E, Mariotti D, De Pascale L, Marani A, Gallì P, Garbuglia A, Castilletti C, Puro V, Agrati C, Girardi E, Vaia F, Antinori A. Immunogenicity to COVID-19 mRNA vaccine third dose in people living with HIV. Nat Commun 2022; 13:4922. [PMID: 35995780 PMCID: PMC9395398 DOI: 10.1038/s41467-022-32263-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 07/22/2022] [Indexed: 11/09/2022] Open
Abstract
In order to investigate safety and immunogenicity of SARS-CoV-2 vaccine third dose in people living with HIV (PLWH), we analyze anti-RBD, microneutralization assay and IFN-γ production in 216 PLWH on ART with advanced disease (CD4 count <200 cell/mm3 and/or previous AIDS) receiving the third dose of a mRNA vaccine (BNT162b2 or mRNA-1273) after a median of 142 days from the second dose. Median age is 54 years, median CD4 nadir 45 cell/mm3 (20-122), 93% HIV-RNA < 50 c/mL. In 68% of PLWH at least one side-effect, generally mild, is recorded. Humoral response after the third dose was strong and higher than that achieved with the second dose (>2 log2 difference), especially when a heterologous combination with mRNA-1273 as third shot is used. In contrast, cell-mediated immunity remain stable. Our data support usefulness of third dose in PLWH currently receiving suppressive ART who presented with severe immune dysregulation.
Collapse
Affiliation(s)
- Alessandra Vergori
- HIV/AIDS Unit, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy.
| | - Alessandro Cozzi Lepri
- Centre for Clinical Research, Epidemiology, Modelling and Evaluation (CREME), Institute for Global Health, UCL, London, UK
| | - Stefania Cicalini
- HIV/AIDS Unit, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Giulia Matusali
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Veronica Bordoni
- Laboratory of Cellular Immunology and Clinical Pharmacology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Roma, Italy
| | - Simone Lanini
- HIV/AIDS Unit, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Silvia Meschi
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Roberta Iannazzo
- HIV/AIDS Unit, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Valentina Mazzotta
- HIV/AIDS Unit, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Francesca Colavita
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Ilaria Mastrorosa
- HIV/AIDS Unit, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Eleonora Cimini
- Laboratory of Cellular Immunology and Clinical Pharmacology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Roma, Italy
| | - Davide Mariotti
- Laboratory of Cellular Immunology and Clinical Pharmacology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Roma, Italy
| | - Lydia De Pascale
- HIV/AIDS Unit, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Alessandra Marani
- Health Direction, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Roma, Italy
| | - Paola Gallì
- Health Direction, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Roma, Italy
| | - AnnaRosa Garbuglia
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Concetta Castilletti
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Vincenzo Puro
- Risk Management Unit, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Roma, Italy
| | - Chiara Agrati
- Laboratory of Cellular Immunology and Clinical Pharmacology, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Roma, Italy
| | - Enrico Girardi
- Scientific Direction, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Roma, Italy
| | - Francesco Vaia
- Health Direction, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Roma, Italy
| | - Andrea Antinori
- HIV/AIDS Unit, National Institute for Infectious Diseases Lazzaro Spallanzani IRCCS, Rome, Italy
| |
Collapse
|
52
|
González-Sánchez M, García-Martínez V, Bravo S, Kobayashi H, Martínez de Toda I, González-Bermúdez B, Plaza GR, De la Fuente M. Mitochondrial DNA insertions into nuclear DNA affecting chromosome segregation: Insights for a novel mechanism of immunosenescence in mice. Mech Ageing Dev 2022; 207:111722. [PMID: 35961414 DOI: 10.1016/j.mad.2022.111722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 08/06/2022] [Accepted: 08/07/2022] [Indexed: 10/15/2022]
Abstract
Mitochondrial DNA sequences were found inserted in the nuclear genome of mouse peritoneal T lymphocytes that increased progressively with aging. These insertions were preferentially located at the pericentromeric heterochromatin. In the same individuals, binucleated T-cells with micronuclei showed a significantly increased frequency associated with age. Most of them were positive for centromere sequences, reflecting the loss of chromatids or whole chromosomes. The proliferative capacity of T lymphocytes decreased with age as well as the glutathione reductase activity, whereas the oxidized glutathione and malondialdehyde concentrations exhibited a significant increase. These results may point to a common process that provides insights for a new approach to understanding immunosenescence. We propose a novel mechanism in which mitochondrial fragments, originated by the increased oxidative stress status during aging, accumulate inside the nuclear genome of T lymphocytes in a time-dependent way. The primary entrance of mitochondrial fragments at the pericentromeric regions may compromise chromosome segregation, causing genetic loss that leads to micronuclei formation, rendering aneuploid cells with reduced proliferation capacity, one of the hallmark of immunosenescence. Future experiments deciphering the mechanistic basis of this phenomenon are needed.
Collapse
Affiliation(s)
- Mónica González-Sánchez
- Department of Genetics, Physiology and Microbiology, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain.
| | - Víctor García-Martínez
- Department of Genetics, Physiology and Microbiology, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Sara Bravo
- Department of Genetics, Physiology and Microbiology, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Hikaru Kobayashi
- Department of Genetics, Physiology and Microbiology, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Irene Martínez de Toda
- Department of Genetics, Physiology and Microbiology, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Blanca González-Bermúdez
- Center for Biomedical Technology, Universidad Politécnica de Madrid, E-28223 Pozuelo de Alarcón, Spain; Department of Materials Science, ETSI de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, E-28040 Madrid, Spain
| | - Gustavo R Plaza
- Center for Biomedical Technology, Universidad Politécnica de Madrid, E-28223 Pozuelo de Alarcón, Spain; Department of Materials Science, ETSI de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, E-28040 Madrid, Spain
| | - Mónica De la Fuente
- Department of Genetics, Physiology and Microbiology, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| |
Collapse
|
53
|
Kelutur FJ, Saptarini NM, Mustarichie R, Kurnia D. Molecular Docking of the Terpenes in Gorgonian Corals to COX-2 and
iNOS Enzymes as Anti-Inflammatory. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180819666211227162950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Because the inflammatory pathway is triggered by the enzymes cyclooxygenase-
2 (COX-2) and inducible nitric oxide synthase (iNOS), inhibitors, such as nonsteroidal anti-inflammatory
drugs (NSAIDs), are needed, although these have side effects. Therefore, the discovery and development
of natural medicine as a lead compound are needed. The gorgonian corals have been reported to contain
cyclic diterpenes with anti-inflammatory activities. The specific anti-inflammatory inhibitor potential has
not been reported regarding these secondary metabolites, whether in COX-2 or iNOS. Thus, the in silico
method is the right alternative.
Objective:
This study aimed to determine the potency of fifteen terpenes of the various gorgonian corals
to COX-2 and iNOS enzymes as an anti-inflammatory.
Methods:
Molecular docking was performed using ChemDraw Ultra 12.0, Chem3D Pro 12.0, Biovia
Discovery Studio 2016 Client®, Autodock Tools 4.2, prediction pharmacokinetics (Pre-ADMET), and
oral administration (Lipinski rule of five).
Results:
Potential terpenes based on ΔG (kcal/mol) and Ki (nM) to COX-2 were gyrosanol B (-10,32;
27,15), gyrosanol A (-10,20; 33,57), echinolabdane A (-9,81; 64,76). Only nine terpenes were specific to
COX-2 active sites, while for iNOS were palmonine F (-7.76; 2070), briarenol C (-7.55; 2910), and all
test compounds binding to the iNOS active sites. Pre-ADMET prediction obtained that HIA was very
excellent (70–100%), Caco-2 had moderate permeability (4–70 nm sec-1), and PPB had strong binding (>
90%). Eight terpenes qualified for the Lipinski rule of five.
Conclusion:
iNOS was a specific target for terpenes based on the free energy of binding (ΔG).
Collapse
Affiliation(s)
- Faruk Jayanto Kelutur
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran,
West Java, Indonesia
| | - Nyi Mekar Saptarini
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran,
West Java, Indonesia
| | - Resmi Mustarichie
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran,
West Java, Indonesia
| | - Dikdik Kurnia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran,
West Java, Indonesia
| |
Collapse
|
54
|
Wang L, Zhang YL, Jiang C, Duan FF, Yuan ZY, Huang JJ, Bi XW. Novel Signatures Based on the Lymphocyte-to-C-Reactive Protein Ratio Predict the Prognosis of Patients with Early Breast Cancer: A Retrospective Study. J Inflamm Res 2022; 15:3957-3974. [PMID: 35860229 PMCID: PMC9289276 DOI: 10.2147/jir.s364284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 07/07/2022] [Indexed: 01/08/2023] Open
Abstract
Background The value of the lymphocyte-to-C-reactive protein (CRP) ratio (LCR) in early breast cancer (BC) is unclear. We explored the correlation between the LCR and survival of patients with early BC and established effective LCR-based prognostic signatures for predicting prognosis. Methods In this retrospective study, we randomized 623 patients with early-stage BC diagnosed in December 2010 to October 2012 at the Sun Yat-sen University Cancer Center to training and verification datasets. The median follow-up of all patients was 109 months. The survival differences were calculated by Kaplan–Meier method using the Log rank test. For overall survival (OS) and disease-free survival (DFS), the independent factors in the training dataset were identified using univariate and multivariate Cox analyses, in which two-tailed P-values < 0.05 were considered statistically significant. Based on this, we respectively constructed novel signatures for survival prediction and validated the efficiency of signatures through the concordance index (C-index), calibration and receiver operating characteristic (ROC) curves in both datasets. Results The LCR, lymphatic vessel invasion (LVI), progesterone receptor (PR) status, and Ki67 index were independent prognostic factors of OS. And the LCR and LVI are associated to DFS too. High LCR was associated with better OS and DFS. We constructed the prediction signatures based on those independent prognostic factors and calculated the risk scores. Patients in the training dataset with higher risk scores had significantly worse prognosis (P < 0.001). The signature had excellent discrimination capacity, with an OS C-index of 0.785 [95% confidence interval (CI): 0.713–0.857] and 0.750 (95% CI: 0.669–0.832) in the training and verification datasets, respectively. The time–ROC curves also suggest accurate prediction by the signature. Conclusion The LCR was a significant prognostic predictor of OS and DFS in early BC. The LCR-based prognostic signatures could be a useful tool for individualized therapeutic guidance.
Collapse
Affiliation(s)
- Li Wang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Yu-Ling Zhang
- Department of Endocrinology, Jiangxi Provincial People's Hospital, Nanchang, People's Republic of China
| | - Chang Jiang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Fang-Fang Duan
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Zhong-Yu Yuan
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Jia-Jia Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Xi-Wen Bi
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| |
Collapse
|
55
|
COVID-19 and Parkinson's Disease: Possible Links in Pathology and Therapeutics. Neurotox Res 2022; 40:1586-1596. [PMID: 35829997 DOI: 10.1007/s12640-022-00540-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/30/2022] [Accepted: 06/28/2022] [Indexed: 02/07/2023]
Abstract
The outbreak of SARs-CoV-2 with emerging new variants is leading to global health crisis and has brought a major concern for patients with comorbidities. Parkinson's disease (PD) is a motor neurodegenerative disease involving various metabolic and psychological ailments along with the common occurrence of hyposmia as observed in COVID-19 patients. In addition, the observed surplus inflammatory responses in both diseases are also alarming. Alongside, angiotensin-converting enzyme 2 (ACE2) receptor, essentially required by SARS-CoV-2 to enter the cell and dopamine decarboxylase (DDC), required for dopamine synthesis is known to co-regulate in the non-neuronal cells. Taken together, these conditions suggested the probable reciprocal pathological relation between COVID-19 and PD and also suggested that during comorbidities, the disease diagnosis and therapeutics are critical and may engender severe health complications. In this review, we discuss various events and mechanisms which may have implications for the exacerbation of PD conditions and must be taken into account during the treatment of patients.
Collapse
|
56
|
Das S, Nasim F, Mishra R, Mishra R. Thymic and Peripheral T-cell Polarization in an Experimental Model of Russell's Viper Venom-induced Acute Kidney Injury. Immunol Invest 2022; 51:1452-1470. [PMID: 34380374 DOI: 10.1080/08820139.2021.1960369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Venom pathology is not restricted to the direct toxic effects of venom. Immunoinflammatory alteration as the etiology of snake venom-induced acute kidney injury (SAKI) is a less trodden path toward the development of alternative therapeutic approach. In the present study, we have associated the crest of renal damage stage to the immunological alteration, as reflected in thymic and peripheral T cell polarization in the murine model of SAKI. Renal injury in mice was confirmed from significant dysuresis and adversely altered biochemical renal markers. Histopathological alterations, as revealed by marked tubular and glomerular damage, reaffirmed kidney injury. SAKI is accompanied by significant inflammatory changes as indicated by neutrophilic leucocytosis, increased neutrophil to lymphocyte ratio and plasma CRP levels. Thymic immunophenotyping revealed significantly increased CD8+ cytotoxic T cell, and CD25+ both single positive population (p = .017-0.010) and CD44-CD25+ double negative population (DN3) (p = .002) accompanied by an insignificantly reduced CD4+ helper T cells (p = .451). Peripheral immunophenotyping revealed similar pattern as indicated by reduced helper T cells (p = .002) associated with significantly elevated cytotoxic T cells (p = .009) and CD25+ subset of both helper (p = .002) and cytotoxic (p = .024) T cells. The IL-10+ subset of both CD25+ and CD25- T cells were also found to be significantly elevated in the SAKI group (p ≤ 0.020) suggesting an immunosuppressive phenotype in SAKI. It can be concluded that T cells responds to venom-induced renal injury particularly through IL-10+ reparative phenotypes which are known for their immunosuppressive and anti-inflammatory activity.
Collapse
Affiliation(s)
- Sreyasi Das
- Department of Physiology, Ananda Mohan College, Kolkata, India
- Department of Physiology, University of Calcutta, Kolkata, India
| | - Farhat Nasim
- Department of Physiology, University of Calcutta, Kolkata, India
| | - Roshnara Mishra
- Department of Physiology, University of Calcutta, Kolkata, India
| | | |
Collapse
|
57
|
Caputo MB, Elias J, Cesar G, Alvarez MG, Laucella SA, Albareda MC. Role of the Complement System in the Modulation of T-Cell Responses in Chronic Chagas Disease. Front Cell Infect Microbiol 2022; 12:910854. [PMID: 35846776 PMCID: PMC9282465 DOI: 10.3389/fcimb.2022.910854] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/26/2022] [Indexed: 01/19/2023] Open
Abstract
Chagas disease, caused by the intracellular pathogen Trypanosoma cruzi, is the parasitic disease with the greatest impact in Latin America and the most common cause of infectious myocarditis in the world. The immune system plays a central role in the control of T. cruzi infection but at the same time needs to be controlled to prevent the development of pathology in the host. It has been shown that persistent infection with T. cruzi induces exhaustion of parasite-specific T cell responses in subjects with chronic Chagas disease. The continuous inflammatory reaction due to parasite persistence in the heart also leads to necrosis and fibrosis. The complement system is a key element of the innate immune system, but recent findings have also shown that the interaction between its components and immune cell receptors might modulate several functions of the adaptive immune system. Moreover, the findings that most of immune cells can produce complement proteins and express their receptors have led to the notion that the complement system also has non canonical functions in the T cell. During human infection by T. cruzi, complement activation might play a dual role in the acute and chronic phases of Chagas disease; it is initially crucial in controlling parasitemia and might later contributes to the development of symptomatic forms of Chagas disease due to its role in T-cell regulation. Herein, we will discuss the putative role of effector complement molecules on T-cell immune exhaustion during chronic human T. cruzi infection.
Collapse
Affiliation(s)
- María Belén Caputo
- Investigation Department, Instituto Nacional de Parasitología Dr. Fatala Chaben, Buenos Aires, Argentina
| | - Josefina Elias
- Investigation Department, Instituto Nacional de Parasitología Dr. Fatala Chaben, Buenos Aires, Argentina
| | - Gonzalo Cesar
- Investigation Department, Instituto Nacional de Parasitología Dr. Fatala Chaben, Buenos Aires, Argentina
| | - María Gabriela Alvarez
- Chagas Section, Hospital Interzonal General de Agudos Eva Perón, Buenos Aires, Argentina
| | - Susana Adriana Laucella
- Investigation Department, Instituto Nacional de Parasitología Dr. Fatala Chaben, Buenos Aires, Argentina
- Chagas Section, Hospital Interzonal General de Agudos Eva Perón, Buenos Aires, Argentina
| | - María Cecilia Albareda
- Investigation Department, Instituto Nacional de Parasitología Dr. Fatala Chaben, Buenos Aires, Argentina
| |
Collapse
|
58
|
Challagundla N, Shah D, Yadav S, Agrawal-Rajput R. Saga of monokines in shaping tumour-immune microenvironment: Origin to execution. Cytokine 2022; 157:155948. [PMID: 35764025 DOI: 10.1016/j.cyto.2022.155948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 11/19/2022]
Abstract
Cellular communication mediated by cytokines is an important mechanism dictating immune responses, their cross talk and final immune output. Cytokines play a major role in dictating the immune outcome to cancer by regulating the events of development, differentiation and activation of innate immune cells. Cytokines are pleiotropic in nature, hence understanding their role individually or as member of network cytokines is critical to delineate their role in tumour immunity. Tumour systemically manipulates the immune system to evade and escape immune recognition for their uncontrollable growth and metastasis. The developing tumour comprise a large and diverse set of myeloid cells which are vulnerable to manipulation by the tumour-microenvironment. The innate immune cells of the monocytic lineage skew the fate of the adaptive immune cells and thus dictating cancer elimination or progression. Targeting cells at tumour cite is preposterous owing to their tight network, poor reach and abundance of immunosuppressive mechanisms. Monocytic lineage-derived cytokines (monokines) play crucial role in tumour regression or progression by either directly killing the tumour cells with TNFα or promoting its growth by TGFβ. In addition, the monokines like IL-12, IL-1β, IL-6, IL-10 and TGFβ direct the adaptive immune cells to secrete anti-tumour cytokines, TNFα, IFNγ, perforin and granzyme or pro-tumour cytokines, IL-10 and TGFβ. In this review, we elucidate the roles of monokines in dictating the fate of tumour by regulating responses at various stages of generation, differentiation and activation of immune cells along with the extensive cross talk. We have attempted to delineate the synergy and antagonism of major monokines among themselves or with tumour-derived or adaptive immune cytokines. The review provides an update on the possibilities of placing monokines to potential practical use as cytokine therapy against cancer.
Collapse
Affiliation(s)
- Naveen Challagundla
- Immunology Lab, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat 382426, India
| | - Dhruvi Shah
- Immunology Lab, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat 382426, India
| | - Shivani Yadav
- Immunology Lab, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat 382426, India
| | - Reena Agrawal-Rajput
- Immunology Lab, Indian Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat 382426, India.
| |
Collapse
|
59
|
Du W, Nair P, Johnston A, Wu PH, Wirtz D. Cell Trafficking at the Intersection of the Tumor-Immune Compartments. Annu Rev Biomed Eng 2022; 24:275-305. [PMID: 35385679 PMCID: PMC9811395 DOI: 10.1146/annurev-bioeng-110320-110749] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Migration is an essential cellular process that regulates human organ development and homeostasis as well as disease initiation and progression. In cancer, immune and tumor cell migration is strongly associated with immune cell infiltration, immune escape, and tumor cell metastasis, which ultimately account for more than 90% of cancer deaths. The biophysics and molecular regulation of the migration of cancer and immune cells have been extensively studied separately. However, accumulating evidence indicates that, in the tumor microenvironment, the motilities of immune and cancer cells are highly interdependent via secreted factors such as cytokines and chemokines. Tumor and immune cells constantly express these soluble factors, which produce a tightly intertwined regulatory network for these cells' respective migration. A mechanistic understanding of the reciprocal regulation of soluble factor-mediated cell migration can provide critical information for the development of new biomarkers of tumor progression and of tumor response to immuno-oncological treatments. We review the biophysical andbiomolecular basis for the migration of immune and tumor cells and their associated reciprocal regulatory network. We also describe ongoing attempts to translate this knowledge into the clinic.
Collapse
Affiliation(s)
- Wenxuan Du
- Institute for NanoBiotechnology Department of Chemical and Biomolecular Engineering, and Johns Hopkins Physical Sciences Oncology Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Praful Nair
- Institute for NanoBiotechnology Department of Chemical and Biomolecular Engineering, and Johns Hopkins Physical Sciences Oncology Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Adrian Johnston
- Institute for NanoBiotechnology Department of Chemical and Biomolecular Engineering, and Johns Hopkins Physical Sciences Oncology Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Pei-Hsun Wu
- Institute for NanoBiotechnology Department of Chemical and Biomolecular Engineering, and Johns Hopkins Physical Sciences Oncology Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Denis Wirtz
- Institute for NanoBiotechnology Department of Chemical and Biomolecular Engineering, and Johns Hopkins Physical Sciences Oncology Center, Johns Hopkins University, Baltimore, Maryland, USA,Department of Oncology, Department of Pathology, and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
60
|
Huang X, Yang Y, Liu Q, Tang X, Shi J, Qu H, Chen X, Gong L, Wang S, Tang S, Wang P, Tang L, Hu D, Yin X, Guan Y, Kong D, Tian F. Prognostic Characteristics of Patients With Colorectal Cancer Who Have Benign Mesenteric Lymph Node Enlargement: A Multi-institutional Cohort Study. Dis Colon Rectum 2022; 65:804-816. [PMID: 34759241 DOI: 10.1097/dcr.0000000000002085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND The characteristics of patients with colorectal cancer who have benign mesenteric lymph node enlargement are not well documented. OBJECTIVE The aim of this study is to assess the clinical and prognostic significance of benign mesenteric lymph node enlargement in patients with colorectal cancer. DESIGN This is a prospective cohort study. SETTING This study was conducted at multitertiary institutions. PATIENTS We included 601 patients with stage 0, I, and II colorectal cancer in Tianjin, Shandong, and Zhejiang from January 2010 to April 2014. Patients underwent curative surgery and were separated into 2 groups by the presence of benign mesenteric lymph node enlargement: the enlargement group (n = 275) and the control group (n = 326). MAIN OUTCOME MEASURES Univariate log rank and multivariate Cox regression analyses were constructed to identify risk factors for recurrence and mortality. RESULTS The risk of recurrence in the enlargement group after curative resection was significantly lower than in the control group, with the 1-, 3-, and 5-year disease-free survival rates being 97.1%, 91.6%, and 86.9% in the enlargement group and 95.7%, 86.2%, and 78.2% in the control group (p = 0.004). The postoperative 1-, 3-, and 5-year overall survival rates were 99.6%, 94.9%, and 90.5% in the enlargement group and 99.4%, 91.4%, and 82.1% in the control group (p = 0.001). Patients in the enlargement group had a higher percentage of patients at a younger age, family tumor history, right-sided tumors, and larger tumor size compared with the control group. For patients in the enlargement group, no significant correlation was observed between the number of enlarged lymph nodes and disease-free survival or overall survival (p = 0.113 and 0.386). Adjusted Cox regression model showed that benign mesenteric lymph node enlargement was an independent prognostic risk factor for both disease-free survival (HR, 0.587; 95% CI, 0.399-0.861; p = 0.007) and overall survival (HR, 0.506; 95% CI, 0.328-0.779; p = 0.002). LIMITATIONS No immunological results could be compared with clinicopathological findings. CONCLUSIONS The study indicates that benign mesenteric lymph node enlargement can be a useful positive factor in predicting recurrence and long-term survival concerning patients with colorectal cancer. See Video Abstract at http://links.lww.com/DCR/B785. CARACTERSTICAS PRONSTICAS DE LOS PACIENTES PORTADORES DE CNCER COLORRECTAL CON AGRANDAMIENTO BENIGNO DE LOS GANGLIOS LINFTICOS MESENTRICOS UN ESTUDIO DE COHORTE MULTIINSTITUCIONAL ANTECEDENTES:Las características de los pacientes portadores de cáncer colorrectal con agrandamiento benigno de los ganglios linfáticos mesentéricos no se encuentran bien documentados.OBJETIVO:El objetivo de este estudio es evaluar la importancia clínica y pronóstica del agrandamiento benigno de los ganglios linfáticos mesentéricos en pacientes con cáncer colorrectal.DISEÑO:Este es un estudio de cohorte de tipo prospectivo.AJUSTE:Este estudio se llevó a cabo en instituciones de educación superior.PACIENTES:Incluimos a 601 pacientes con cáncer colorrectal en estadio 0, I, II en Tianjin, Shandong y Zhejiang desde enero de 2010 hasta abril de 2014. Los pacientes fueron sometidos a cirugía curativa y fueron separaron en dos grupos tomando en cuenta la presencia del agrandamiento benigno de los ganglios linfáticos mesentéricos: grupo con agrandamiento (n = 275) y grupo control (n = 326).PRINCIPALES MEDIDAS DE RESULTADO:Se construyeron análisis de rango logarítmico de una variante y de regresión de Cox con variante múltiple para identificar los factores de riesgo de recurrencia y mortalidad.RESULTADOS:El riesgo de recurrencia en el grupo con agrandamiento tras la resección curativa fue significativamente menor que en el grupo de control, con tasas de periodo libre de enfermedad a los 1, 3 y 5 años de 97,1, 91,6, y 86,9% en el grupo de agrandamiento y con tasas de 95,7, 86,2, y 78,2% en el grupo control respectivamente (p = 0,004). Las tasas postoperatorias de supervivencia general a los 1, 3 y 5 años fueron 99,6, 94,9, y 90,5% en el grupo de agrandamiento y de 99,4, 91,4, y 82,1% en el grupo de control, respectivamente (p = 0,001). Los pacientes del grupo con agrandamiento tenían un porcentaje más elevado de menor edad, antecedente familiar tumoral, tumores del lado derecho y de mayor tamaño tumoral con respecto al grupo de control. Para los pacientes con agrandamiento, no se observó una correlación significativa entre el número de ganglios linfáticos agrandados y el periodo libre de enfermedad o la supervivencia general (p = 0,113 y 0,386). El modelo de regresión de Cox ajustado mostró que el agrandamiento benigno de los ganglios linfáticos mesentéricos era un factor de riesgo pronóstico independiente tanto para la supervivencia libre de enfermedad (cociente de riesgo 0,587; IC del 95%: 0,399-0,861; p = 0,007) como para la supervivencia global (cociente de riesgo 0,506; IC del 95%: 0,328- 0,779; p = 0,002).LIMITACIONES:No fue posible comparar los resultados inmunológicos con los hallazgos clínico-patológicos.CONCLUSIONES:El estudio indica que el agrandamiento benigno de los ganglios linfáticos mesentéricos puede ser un factor positivo útil para predecir la recurrencia y la supervivencia a largo plazo en pacientes con cáncer colorrectal. Consulte Video Resumen en http://links.lww.com/DCR/B785. (Traducción-Dr. Osvaldo Gauto).
Collapse
Affiliation(s)
- Xianghui Huang
- General Surgery Department, Ningbo First Hospital, Zhejiang University Ningbo Hospital, Ningbo, China
| | - Yichen Yang
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Qibing Liu
- Hainan Provincial Research Center for Innovative Drugs Clinical Evaluation, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xiaolong Tang
- General Surgery Department, Shandong University Qilu Hospital, Jinan, China
| | - Jingbo Shi
- General Surgery Department, Shandong University Qilu Hospital, Jinan, China
| | - Hui Qu
- General Surgery Department, Shandong University Qilu Hospital, Jinan, China
| | - Xiaofeng Chen
- General Surgery Department, Ningbo First Hospital, Zhejiang University Ningbo Hospital, Ningbo, China
| | - Lichong Gong
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Shuai Wang
- Gordon Imaging Center, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sizhe Tang
- Department of Colorectal Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Pu Wang
- Department of Colorectal Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Liang Tang
- Department of Colorectal Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Dongzhi Hu
- Department of Colorectal Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Xiaoran Yin
- Department of Oncology, The Second Affliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yu Guan
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dalu Kong
- Department of Colorectal Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Fei Tian
- Department of Colorectal Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| |
Collapse
|
61
|
Heaton BJ, Jensen RL, Line J, David CAW, Brain DE, Chadwick AE, Liptrott NJ. Exposure of human immune cells, to the antiretrovirals efavirenz and lopinavir, leads to lower glucose uptake and altered bioenergetic cell profiles through interactions with SLC2A1. Biomed Pharmacother 2022; 150:112999. [PMID: 35461087 DOI: 10.1016/j.biopha.2022.112999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 11/02/2022] Open
Abstract
SLC2A1 mediates glucose cellular uptake; key to appropriate immune function. Our previous work has shown efavirenz and lopinavir exposure inhibits T cell and macrophage responses, to known agonists, likely via interactions with glucose transporters. Using human cell lines as a model, we assessed glucose uptake and subsequent bioenergetic profiles, linked to immunological responses. Glucose uptake was measured using 2-deoxyglucose as a surrogate for endogenous glucose, using commercially available reagents. mRNA expression of SLC transporters was investigated using qPCR TaqMan™ gene expression assay. Bioenergetic assessment, on THP-1 cells, utilised the Agilent Seahorse XF Mito Stress test. In silico analysis of potential interactions between SLC2A1 and antiretrovirals was investigated using bioinformatic techniques. Efavirenz and lopinavir exposure was associated with significantly lower glucose accumulation, most notably in THP-1 cells (up to 90% lower and 70% lower with efavirenz and lopinavir, respectively). Bioenergetic assessment showed differences in the rate of ATP production (JATP); efavirenz (4 μg/mL), was shown to reduce JATP by 87% whereas lopinavir (10 μg/mL), was shown to increase the overall JATP by 77%. Putative in silico analysis indicated the antiretrovirals, apart from efavirenz, associated with the binding site of highest binding affinity to SLC2A1, similar to that of glucose. Our data suggest a role for efavirenz and lopinavir in the alteration of glucose accumulation with subsequent alteration of bioenergetic profiles, supporting our hypothesis for their inhibitory effect on immune cell activation. Clarification of the implications of this data, for in vivo immunological responses, is now warranted to define possible consequences for these, and similar, therapeutics.
Collapse
Affiliation(s)
- Bethany J Heaton
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Liverpool, UK; Centre of Excellence for Long-Acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, UK
| | - Rebecca L Jensen
- Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Liverpool, UK
| | - James Line
- Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Liverpool, UK
| | - Christopher A W David
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Liverpool, UK; Centre of Excellence for Long-Acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, UK
| | - Danielle E Brain
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Liverpool, UK; Centre of Excellence for Long-Acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, UK
| | - Amy E Chadwick
- Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Liverpool, UK
| | - Neill J Liptrott
- Immunocompatibility Group, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Liverpool, UK; Centre of Excellence for Long-Acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, UK; Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Liverpool, UK.
| |
Collapse
|
62
|
Abbas MN, Chlastáková A, Jmel MA, Iliaki-Giannakoudaki E, Chmelař J, Kotsyfakis M. Serpins in Tick Physiology and Tick-Host Interaction. Front Cell Infect Microbiol 2022; 12:892770. [PMID: 35711658 PMCID: PMC9195624 DOI: 10.3389/fcimb.2022.892770] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Tick saliva has been extensively studied in the context of tick-host interactions because it is involved in host homeostasis modulation and microbial pathogen transmission to the host. Accumulated knowledge about the tick saliva composition at the molecular level has revealed that serine protease inhibitors play a key role in the tick-host interaction. Serpins are one highly expressed group of protease inhibitors in tick salivary glands, their expression can be induced during tick blood-feeding, and they have many biological functions at the tick-host interface. Indeed, tick serpins have an important role in inhibiting host hemostatic processes and in the modulation of the innate and adaptive immune responses of their vertebrate hosts. Tick serpins have also been studied as potential candidates for therapeutic use and vaccine development. In this review, we critically summarize the current state of knowledge about the biological role of tick serpins in shaping tick-host interactions with emphasis on the mechanisms by which they modulate host immunity. Their potential use in drug and vaccine development is also discussed.
Collapse
Affiliation(s)
- Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Adéla Chlastáková
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
- Laboratory of Molecular Biology of Ticks, Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Mohamed Amine Jmel
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | | | - Jindřich Chmelař
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
- *Correspondence: Jindřich Chmelař, ; Michail Kotsyfakis,
| | - Michail Kotsyfakis
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
- *Correspondence: Jindřich Chmelař, ; Michail Kotsyfakis,
| |
Collapse
|
63
|
Gerecke C, Egea Rodrigues C, Homann T, Kleuser B. The Role of Ten-Eleven Translocation Proteins in Inflammation. Front Immunol 2022; 13:861351. [PMID: 35386689 PMCID: PMC8977485 DOI: 10.3389/fimmu.2022.861351] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
Ten-eleven translocation proteins (TET1-3) are dioxygenases that oxidize 5-methyldeoxycytosine, thus taking part in passive and active demethylation. TETs have shown to be involved in immune cell development, affecting from self-renewal of stem cells and lineage commitment to terminal differentiation. In fact, dysfunction of TET proteins have been vastly associated with both myeloid and lymphoid leukemias. Recently, there has been accumulating evidence suggesting that TETs regulate immune cell function during innate and adaptive immune responses, thereby modulating inflammation. In this work, we pursue to review the current and recent evidence on the mechanistic aspects by which TETs regulate immune cell maturation and function. We will also discuss the complex interplay of TET expression and activity by several factors to modulate a multitude of inflammatory processes. Thus, modulating TET enzymes could be a novel pharmacological approach to target inflammation-related diseases and myeloid and lymphoid leukemias, when their activity is dysregulated.
Collapse
Affiliation(s)
- Christian Gerecke
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Freie Universität Berlin, Germany
| | - Caue Egea Rodrigues
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Freie Universität Berlin, Germany
| | - Thomas Homann
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Freie Universität Berlin, Germany
| | - Burkhard Kleuser
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Freie Universität Berlin, Germany
| |
Collapse
|
64
|
Canine memory T-cell subsets in health and disease. Vet Immunol Immunopathol 2022; 246:110401. [PMID: 35255296 DOI: 10.1016/j.vetimm.2022.110401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/31/2022] [Accepted: 02/10/2022] [Indexed: 11/22/2022]
Abstract
A more complete understanding of canine T-lymphocyte immunity is necessary for improving diagnostic and therapeutic approaches to canine diseases, developing cell-based canine immunotherapeutics, and evaluating dogs as large mammal models for comparative immunology research. The aim of this study was to utilize CD45RA (indicating antigen inexperience) and CD62L (indicating lymph node homing capability), to quantify canine memory T-cell subsets in healthy dogs and dogs with various diseases. Peripheral blood mononuclear cells (PBMCs) were prospectively collected from dogs belonging to one of four groups:dermatologic inflammation (n = 9), solid tumors (n = 9), lymphoma (n = 9), and age-/weight-matched healthy control dogs (n = 15). Dogs receiving prednisone or any other immunomodulating medication within two weeks were excluded. Flow cytometry was performed and T-cell subsets were defined as CD4+ or CD8+, and naïve (TN), central memory (CM), effector memory (EM), or terminal effector memory re-expressing CD45RA (TEMRA). T-cell subset proportions were compared between each disease group and their healthy age-/weight-matched controls using a Mann-Whitney test. Significantly increased %CD8+ TN (P = 0.036) and decreased %CD8+ TEMRA (P = 0.045) were detected in dogs with dermatologic inflammation compared to healthy controls. Furthermore, %CD4+ TN positively correlated with Canine Atopic Dermatitis Extent and Severity Index (CADESI) score within the inflammation group (ρ = 0.817, P = 0.011). No significant differences between either cancer group and their healthy controls were detected. Taken together, these data indicate that dermatologic inflammation can alter proportions of peripheral blood T-cell subsets, possibly due to the migration of antigen-specific T-cells into tissues. Furthermore, these findings support the utility of CD45RA and CD62L in characterizing clinical canine immune responses.
Collapse
|
65
|
Chan SHT, Yu T, Zhang Z, Chang LY, Guo C, Bo Y, Tam T, Lau AKH, Lao XQ. Total and differential white blood cell count and cause-specific mortality in 436 750 Taiwanese adults. Nutr Metab Cardiovasc Dis 2022; 32:937-947. [PMID: 35078679 DOI: 10.1016/j.numecd.2021.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/04/2021] [Accepted: 11/06/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND AIMS White blood cell (WBC) count is an easily obtainable biomarker of systematic inflammation. Our study aimed to investigate the associations of differential WBC count with all-cause and cause-specific mortality in a general Asian population. METHODS AND RESULTS Cox proportional hazards model was used to evaluate the associations of WBC count with mortality separately for men and women, with adjustment for multiple variables including age, smoking, and other lifestyle factors. Stratified analyses by age, smoking, diabetes, and hypertension were conducted to explore potential effect modification. Elevated WBC count was significantly associated with increased mortality risk. The adjusted hazard ratios of total WBC (10th decile compared to decile of lowest risk) for all-cause mortality were 1.42 (95% CI: 1.33, 1.53) for men and 1.54 (95% CI: 1.42, 1.68) for women. Similar risks were observed for neutrophils, monocytes, and neutrophil/lymphocyte (NL) ratio. The highest deciles of neutrophils, monocytes, and NL ratio were also positively associated with risk of cardiovascular/cerebrovascular, cancer, and respiratory mortality after adjusting for covariates. Results for all-cause mortality remained statistically significant for participants who were <60 years old, non-smokers, non-diabetic, and non-hypertensive. CONCLUSIONS Total and differential WBC counts (neutrophils, monocytes, and NL ratios) are positively associated with increased risk of all-cause mortality, cardiovascular and cerebrovascular, cancer, and respiratory mortality among Taiwanese adults.
Collapse
Affiliation(s)
- Shin Heng Teresa Chan
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tsung Yu
- Department of Public Health, National Cheng Kung University, Tainan, Taiwan
| | - Zilong Zhang
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China; School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ly-Yun Chang
- Institute of Sociology, Academia Sinica, Taipei, Taiwan
| | - Cui Guo
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yacong Bo
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tony Tam
- Department of Sociology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Alexis K H Lau
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong SAR, China; Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
| | - Xiang Qian Lao
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
66
|
Local induction of regulatory T cells prevents inflammatory bone loss in ligature-induced experimental periodontitis in mice. Sci Rep 2022; 12:5032. [PMID: 35322204 PMCID: PMC8943171 DOI: 10.1038/s41598-022-09150-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/16/2022] [Indexed: 11/15/2022] Open
Abstract
Periodontitis (periodontal disease) is a highly prevalent disease, affecting over 65 million adults in the United States alone. Characterized by an overburden of invasive bacteria, gum inflammation and plaque buildup, over time, these symptoms can result in severe loss of gingival tissue attachment, bone resorption and even tooth loss. Although current treatments (local antibiotics and scaling and root planing procedures) target the bacterial dysbiosis, they do not address the underlying inflammatory imbalance in the periodontium. In the healthy steady state, the body naturally combats destructive, imbalanced inflammatory responses through regulatory pathways mediated by cells such as regulatory T cells (Tregs). Consequently, we hypothesized that local enrichment of regulatory lymphocytes (Tregs) could restore local, immunological homeostasis and prevent the main outcome of bone loss. Accordingly, we locally delivered a combination of TGFβ, Rapamycin, and IL2 microspheres in a ligature-induced murine periodontitis model. Herein, we have demonstrated this preventative treatment decreases alveolar bone loss, increases the local ratio of Tregs to T effector cells and changes the local microenvironment’s expression of inflammatory and regenerative markers. Ultimately, these Treg-inducing microspheres appear promising as a method to improve periodontitis outcomes and may be able to serve as a platform delivery system to treat other inflammatory diseases.
Collapse
|
67
|
Dutt TS, LaVergne SM, Webb TL, Baxter BA, Stromberg S, McFann K, Berry K, Tipton M, Alnachoukati O, Zier L, Ebel G, Dunn J, Henao-Tamayo M, Ryan EP. Comprehensive Immune Profiling Reveals CD56 + Monocytes and CD31 + Endothelial Cells Are Increased in Severe COVID-19 Disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:685-696. [PMID: 34987111 DOI: 10.4049/jimmunol.2100830] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/15/2021] [Indexed: 01/08/2023]
Abstract
Immune response dysregulation plays a key role in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogenesis. In this study, we evaluated immune and endothelial blood cell profiles of patients with coronavirus disease 2019 (COVID-19) to determine critical differences between those with mild, moderate, or severe COVID-19 using spectral flow cytometry. We examined a suite of immune phenotypes, including monocytes, T cells, NK cells, B cells, endothelial cells, and neutrophils, alongside surface and intracellular markers of activation. Our results showed progressive lymphopenia and depletion of T cell subsets (CD3+, CD4+, and CD8+) in patients with severe disease and a significant increase in the CD56+CD14+Ki67+IFN-γ+ monocyte population in patients with moderate and severe COVID-19 that has not been previously described. Enhanced circulating endothelial cells (CD45-CD31+CD34+CD146+), circulating endothelial progenitors (CD45-CD31+CD34+/-CD146-), and neutrophils (CD11b+CD66b+) were coevaluated for COVID-19 severity. Spearman correlation analysis demonstrated the synergism among age, obesity, and hypertension with upregulated CD56+ monocytes, endothelial cells, and decreased T cells that lead to severe outcomes of SARS-CoV-2 infection. Circulating monocytes and endothelial cells may represent important cellular markers for monitoring postacute sequelae and impacts of SARS-CoV-2 infection during convalescence and for their role in immune host defense in high-risk adults after vaccination.
Collapse
Affiliation(s)
- Taru S Dutt
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO
| | - Stephanie M LaVergne
- Department of Environmental Radiological and Health Sciences, Colorado State University, Fort Collins, CO
| | - Tracy L Webb
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO
| | - Bridget A Baxter
- Department of Environmental Radiological and Health Sciences, Colorado State University, Fort Collins, CO
| | - Sophia Stromberg
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO
| | - Kim McFann
- University of Colorado Health, Medical Center of the Rockies, Loveland, CO
| | - Kailey Berry
- Department of Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, CO
| | - Madison Tipton
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO; and
| | - Omar Alnachoukati
- University of Colorado Health, Medical Center of the Rockies, Loveland, CO
| | - Linda Zier
- University of Colorado Health, Medical Center of the Rockies, Loveland, CO
| | - Greg Ebel
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO
| | - Julie Dunn
- University of Colorado Health, Medical Center of the Rockies, Loveland, CO.,University of Colorado Anschutz School of Medicine, Aurora, CO
| | - Marcela Henao-Tamayo
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO
| | - Elizabeth P Ryan
- Department of Environmental Radiological and Health Sciences, Colorado State University, Fort Collins, CO;
| |
Collapse
|
68
|
Dabravolski SA, Nikiforov NG, Zhuravlev AD, Orekhov NA, Grechko AV, Orekhov AN. Role of the mtDNA Mutations and Mitophagy in Inflammaging. Int J Mol Sci 2022; 23:ijms23031323. [PMID: 35163247 PMCID: PMC8836173 DOI: 10.3390/ijms23031323] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 12/14/2022] Open
Abstract
Ageing is an unavoidable multi-factorial process, characterised by a gradual decrease in physiological functionality and increasing vulnerability of the organism to environmental factors and pathogens, ending, eventually, in death. One of the most elaborated ageing theories implies a direct connection between ROS-mediated mtDNA damage and mutations. In this review, we focus on the role of mitochondrial metabolism, mitochondria generated ROS, mitochondrial dynamics and mitophagy in normal ageing and pathological conditions, such as inflammation. Also, a chronic form of inflammation, which could change the long-term status of the immune system in an age-dependent way, is discussed. Finally, the role of inflammaging in the most common neurodegenerative diseases, such as Alzheimer’s and Parkinson’s, is also discussed.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Clinical Diagnostics, Vitebsk State Academy of Veterinary Medicine [UO VGAVM], 7/11 Dovatora Str., 210026 Vitebsk, Belarus
- Correspondence:
| | - Nikita G. Nikiforov
- AP Avtsyn Research Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; (N.G.N.); (A.D.Z.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova Street, 119334 Moscow, Russia
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Alexander D. Zhuravlev
- AP Avtsyn Research Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; (N.G.N.); (A.D.Z.)
| | - Nikolay A. Orekhov
- Institute for Atherosclerosis Research, Osennyaya Street 4-1-207, 121609 Moscow, Russia; (N.A.O.); (A.N.O.)
| | - Andrey V. Grechko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 14-3 Solyanka Street, 109240 Moscow, Russia;
| | - Alexander N. Orekhov
- Institute for Atherosclerosis Research, Osennyaya Street 4-1-207, 121609 Moscow, Russia; (N.A.O.); (A.N.O.)
| |
Collapse
|
69
|
SOCS2 expression in hematopoietic and non-hematopoietic cells during Trypanosoma cruzi infection: Correlation with immune response and cardiac dysfunction. Clin Immunol 2021; 234:108913. [PMID: 34954347 DOI: 10.1016/j.clim.2021.108913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 11/23/2022]
Abstract
Chagas disease has a complex pathogenesis wherein the host immune response is essential for controlling its development. Suppressor of cytokine signaling(SOCS)2 is a crucial protein that regulates cytokine production. In this study, SOCS2 deficiency resulted in an initial imbalance of IL12- and IL-10-producing neutrophils and dendritic cells (DCs), which caused a long-lasting impact reducing inflammatory neutrophils and DCs, and tolerogenic DCs at the peak of acute disease. A reduced number of inflammatory and pro-resolving macrophages, and IL17A-producing CD4+ T cells, and increased lymphocyte apoptosis was found in SOCS2-deficient mice. Electrocardiogram analysis of chimeric mice showed that WT mice that received SOCS2 KO bone marrow transplantation presented increased heart dysfunction. Taken together, the results demonstrated that SOCS2 is a crucial regulator of the immune response during Trypanosoma cruzi infection, and suggest that a SOCS2 genetic polymorphism, or failure of its expression, may increase the susceptibility of cardiomyopathy development in Chagasic patients.
Collapse
|
70
|
Wang J, Liu N, Jiang H, Li Q, Xing D. Reactive Oxygen Species in Anticancer Immunity: A Double-Edged Sword. Front Bioeng Biotechnol 2021; 9:784612. [PMID: 34869295 PMCID: PMC8635923 DOI: 10.3389/fbioe.2021.784612] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/29/2021] [Indexed: 11/22/2022] Open
Abstract
Reactive oxygen species (ROS) are critical mediators in many physiological processes including innate and adaptive immunity, making the modulation of ROS level a powerful strategy to augment anticancer immunity. However, current evidences suggest the necessity of a deeper understanding of their multiple roles, which may vary with their concentration, location and the immune microenvironment they are in. Here, we have reviewed the reported effects of ROS on macrophage polarization, immune checkpoint blocking (ICB) therapy, T cell activation and expansion, as well as the induction of immunogenic cell death. A majority of reports are indicating detrimental effects of ROS, but it is unadvisable to simply scavenge them because of their pleiotropic effects in most occasions (except in T cell activation and expansion where ROS are generally undesirable). Therefore, clinical success will need a clearer illustration of their multi-faced functions, as well as more advanced technologies to tune ROS level with high spatiotemporal control and species-specificity. With such progresses, the efficacy of current immunotherapies will be greatly improved by combining with ROS-targeted therapies.
Collapse
Affiliation(s)
- Jie Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Ning Liu
- Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Hongfei Jiang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Qian Li
- Qingdao Cancer Institute, Qingdao University, Qingdao, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Qingdao Cancer Institute, Qingdao University, Qingdao, China.,School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
71
|
Oduro-Mensah D, Oduro-Mensah E, Quashie P, Awandare G, Okine L. Explaining the unexpected COVID-19 trends and potential impact across Africa. F1000Res 2021; 10:1177. [PMID: 36605410 PMCID: PMC9763772 DOI: 10.12688/f1000research.74363.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2021] [Indexed: 11/03/2023] Open
Abstract
Official COVID-19 case counts and mortality rates across Africa are lower than had been anticipated. Research reports, however, indicate far higher exposure rates than the official counts in some countries. Particularly in Western and Central Africa, where mortality rates are disproportionately lower than the rest of the continent, this occurrence may be due to immune response adaptations resulting from (1) frequent exposure to certain pro-inflammatory pathogens, and (2) a prevalence of low-grade inflammation coupled with peculiar modifications to the immune response based on one's immunobiography. We suggest that the two factors lead to a situation where post infection, there is a rapid ramp-up of innate immune responses, enough to induce effective defense and protection against plethora pathogens. Alongside current efforts at procuring and distributing vaccines, we draw attention to the need for work towards appreciating the impact of the apparently widespread, asymptomatic SARS-CoV-2 infections on Africa's populations vis a vis systemic inflammation status and long-term consequences for public health.
Collapse
Affiliation(s)
- Daniel Oduro-Mensah
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- West African Center for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | | | - Peter Quashie
- West African Center for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, LG 581, Ghana
| | - Gordon Awandare
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- West African Center for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Laud Okine
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- West African Center for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
72
|
Oduro-Mensah D, Oduro-Mensah E, Quashie P, Awandare G, Okine L. Explaining the unexpected COVID-19 trends and potential impact across Africa. F1000Res 2021; 10:1177. [PMID: 36605410 PMCID: PMC9763772 DOI: 10.12688/f1000research.74363.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/16/2022] [Indexed: 11/23/2022] Open
Abstract
Official COVID-19 case counts and mortality rates across Africa are lower than had been anticipated. Research reports, however, indicate far higher exposure rates than the official counts in some countries. Particularly in Western and Central Africa, where mortality rates are disproportionately lower than the rest of the continent, this occurrence may be due to immune response adaptations resulting from (1) frequent exposure to certain pro-inflammatory pathogens, and (2) a prevalence of low-grade inflammation coupled with peculiar modifications to the immune response based on one's immunobiography. We suggest that the two factors lead to a situation where post infection, there is a rapid ramp-up of innate immune responses, enough to induce effective defense and protection against plethora pathogens. Alongside current efforts at procuring and distributing vaccines, we draw attention to the need for work towards appreciating the impact of the apparently widespread, asymptomatic SARS-CoV-2 infections on Africa's populations vis a vis systemic inflammation status and long-term consequences for public health.
Collapse
Affiliation(s)
- Daniel Oduro-Mensah
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- West African Center for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | | | - Peter Quashie
- West African Center for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, LG 581, Ghana
| | - Gordon Awandare
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- West African Center for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Laud Okine
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
- West African Center for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
73
|
Alam MS, Czajkowsky DM. SARS-CoV-2 infection and oxidative stress: Pathophysiological insight into thrombosis and therapeutic opportunities. Cytokine Growth Factor Rev 2021; 63:44-57. [PMID: 34836751 PMCID: PMC8591899 DOI: 10.1016/j.cytogfr.2021.11.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 01/08/2023]
Abstract
The current coronavirus disease 2019 (COVID-19) pandemic has presented unprecedented challenges to global health. Although the majority of COVID-19 patients exhibit mild-to-no symptoms, many patients develop severe disease and need immediate hospitalization, with most severe infections associated with a dysregulated immune response attributed to a cytokine storm. Epidemiological studies suggest that overall COVID-19 severity and morbidity correlate with underlying comorbidities, including diabetes, obesity, cardiovascular diseases, and immunosuppressive conditions. Patients with such comorbidities exhibit elevated levels of reactive oxygen species (ROS) and oxidative stress caused by an increased accumulation of angiotensin II and by activation of the NADPH oxidase pathway. Moreover, accumulating evidence suggests that oxidative stress coupled with the cytokine storm contribute to COVID-19 pathogenesis and immunopathogenesis by causing endotheliitis and endothelial cell dysfunction and by activating the blood clotting cascade that results in blood coagulation and microvascular thrombosis. In this review, we survey the mechanisms of how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces oxidative stress and the consequences of this stress on patient health. We further shed light on aspects of the host immunity that are crucial to prevent the disease during the early phase of infection. A better understanding of the disease pathophysiology as well as preventive measures aimed at lowering ROS levels may pave the way to mitigate SARS-CoV-2-induced complications and decrease mortality.
Collapse
Affiliation(s)
- Mohammad Shah Alam
- Department of Anatomy and Histology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh.
| | - Daniel M Czajkowsky
- Bio-ID Centre, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
74
|
Oh HJ, Jin H, Nah SY, Lee BY. Gintonin-enriched fraction improves sarcopenia by maintaining immune homeostasis in 20- to 24-month-old C57BL/6J mice. J Ginseng Res 2021; 45:744-753. [PMID: 34764729 PMCID: PMC8570963 DOI: 10.1016/j.jgr.2021.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 11/15/2022] Open
Abstract
Background Gintonin-enriched fraction (GEF) is a new non-saponin component glycolipoprotein isolated from ginseng root. This study examined the effect of GEF on age-related sarcopenia in old C57BL/6J mice. Methods Young (3–6 months) and old (20–24 months) C57BL/6J mice received oral GEF (50 mg/kg/day or 150 mg/kg/day) daily for 5 weeks. During the oral administration period, body weight and grip strength were measured weekly. After sacrifice, muscles from the hindlimb were excised and used for hematoxylin and eosin staining and western blotting to determine the effects of GEF on sarcopenia. The thymus was photographed to compare size, and flow cytometry was performed to examine the effect of GEF on immune homeostasis in the thymus and spleen. Blood samples were collected, and the concentrations of pro-inflammatory cytokines and IGF-1 were measured. Results GEF caused a significant increase in muscle strength, mass, and fiber size in old mice. GEF restored age-related disruption of immune homeostasis by maintaining T cell compartments and regulating inflammatory biomarkers. Thus, GEF reduced common low-grade chronic inflammatory parameters, which are the main cause of muscle loss. Conclusion GEF maintained immune homeostasis and inhibited markers of chronic inflammation, resulting in anti-sarcopenia effects in aged C57BL/6J mice. Thus, GEF is a potential therapeutic agent that slows sarcopenia in the elderly.
Collapse
Affiliation(s)
- Hyun-Ji Oh
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam, Kyonggi, Republic of Korea
| | - Heegu Jin
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam, Kyonggi, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Boo-Yong Lee
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam, Kyonggi, Republic of Korea
| |
Collapse
|
75
|
Maity S, Biswas C, Banerjee S, Guchhait R, Adhikari M, Chatterjee A, Pramanick K. Interaction of plastic particles with heavy metals and the resulting toxicological impacts: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:60291-60307. [PMID: 34528197 DOI: 10.1007/s11356-021-16448-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
Interactions of plastic particles with different organic/inorganic pollutants including heavy metals impact their ecotoxicological potential, and proper understanding in this regard is important for their ecological risk assessment. However, many studies have reported the interactions between micro-/nanoplastics (MNPs) and heavy metals (HMs), but the most prevalent interactive forces and factors monitoring their interactions are still not clear. So, the present review represents the mechanisms of interactions with special emphasis on major interactive forces and biophysicochemical and environmental factors influencing trace element's adsorption onto the surface of MNPs. Electrostatic interaction and pore-filling mechanism can best explain the HMs adsorption to MNPs. A number of biophysicochemical factors (such as biofilm, size, crystallinity, and surface charge) and environmental factors (such as pH, salt, and temperature) act together for mediating interactions and ecotoxicities of MNPs and HMs in the real environment. From a toxicological point of view, the synergistic mode of action may be more active in animals, whereas the antagonistic activity may be prevalent in plants. Besides polymer density, biofilm formation and agglomeration property of MNPs can control the vertical distribution of MNPs along the water column. Finally, the ecotoxicological potential of MNPs in the natural environment can be considered as a function of spatiotemporal variation in abiotic (including MNPs and heavy metals) and biotic components. This review will be helpful in the detail understanding of ecotoxicological risk assessment of MNPs in relation to their interaction with heavy metals.
Collapse
Affiliation(s)
- Sukhendu Maity
- Integrative Biology Research Unit (IBRU), Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal, 700073, India
| | - Chayan Biswas
- Integrative Biology Research Unit (IBRU), Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal, 700073, India
| | - Sambuddha Banerjee
- Integrative Biology Research Unit (IBRU), Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal, 700073, India
| | - Rajkumar Guchhait
- Mahishadal Raj College, Garkamalpur, Purba Medinipur, West Bengal, 721628, India
| | - Madhuchhanda Adhikari
- Integrative Biology Research Unit (IBRU), Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal, 700073, India
| | - Ankit Chatterjee
- Integrative Biology Research Unit (IBRU), Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal, 700073, India
| | - Kousik Pramanick
- Integrative Biology Research Unit (IBRU), Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal, 700073, India.
| |
Collapse
|
76
|
Association between time-related changes in routine blood morphological parameters and renal function after transcatheter aortic valve implantation - a preliminary study. POLISH JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY 2021; 18:152-158. [PMID: 34703472 PMCID: PMC8525280 DOI: 10.5114/kitp.2021.109368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 11/17/2022]
Abstract
Introduction Transcatheter aortic valve implantation (TAVI) although minimally invasive is still accompanied by changes in blood morphological parameters, some of them linked to unfavorable outcomes. Aim To find any association between changes in blood morphology reflecting an inflammatory response and acute kidney injury (AKI). Material and methods This study involved 176 consecutive transfemoral TAVI patients with a mean age of 78.4 ±7.0 years. Serum creatinine concentration (CREA) and blood morphology were analyzed in the blood samples taken before the procedure, then approximately 1, 24, 48 and 72 hours after the procedure, and lastly at the time of discharge. Post-procedural maximal or minimal values (max/min) and max/min-to-bs ratio of the laboratory parameters were also calculated. Results Leucocyte (WBC) and neutrophil (NEUT) counts increased significantly after the procedure whereas lymphocyte (LYMPH) counts declined markedly, reaching the highest or lowest values 24 hours after the procedure. A significant increase in neutrophil-to-lymphocyte ratio (NLR) was observed. Platelet count (PLT) dropped to a minimum at 72 hours after TAVI but at discharge did not return to the admission level. TAVI was associated with a marked increase in CREA with a peak at 48 hours after the procedure (135.7 ±75.9 μM/l). Patients with AKI (n = 65; 36.9%) presented more pronounced variations in relative changes in counts of all blood morphological parameters. A positive moderate (r = 0.412) correlation between maximal NLR and relative CREA changes was noted. Conclusions TAVI is associated with significant changes in blood morphological parameters that reflect an inflammatory response. They are more pronounced among subjects with post-procedural AKI.
Collapse
|
77
|
Yuan X, Liu J, Wang F, Hu XF, Wen F, Tang XE, Yang SS, Zhong SW, Zhou ZH, Li Y. Pathological changes and antigen localization in the small intestine of rabbits infected with Eimeria magna. WORLD RABBIT SCIENCE 2021. [DOI: 10.4995/wrs.2021.15254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
<p>Coccidiosis is a major disease caused by various <em>Eimeria</em> species in rabbits. The aim of the present study was to investigate the haematological and pathological changes in rabbits infected with <em>E. magna</em>. Moreover, the localisation of coccidial antigens was examined in the intestines of rabbits with two kinds of serum as primary antibodies. In the present study, forty-five 28-day-old weaned rabbits were randomly divided into three groups and reared in three separate places. Group A was infected with 20×10<sup>3</sup> sporulated oocysts of <em>E. magna</em>, group B was only used to produce anti-<em>E. intestinalis</em> serum by infecting them with 3×10<sup>3</sup> sporulated oocysts of <em>E. intestinalis</em>, and group C was designated as the control group. According to histopathological evaluation of group A, the epithelial cells of the jejunum and ileum were parasitised with a large number of oocysts and other stages of <em>E. magna</em>. The haematological results showed that red blood cell counts, haemoglobin counts, haematocrit levels and the percentage of lymphocytes were significantly decreased in group A compared with group C (<em>P</em><0.01), but white blood cell counts and the percentage of neutrophils were significantly increased (<em>P</em><0.01). The weight of group A began to decrease on the 5<sup>th</sup> day after infection, and this decrease continued until the 9th day. Immunohistochemistry staining revealed that two kinds of coccidial antigens were basically located at the same sites of the intestine when anti-<em>E. intestinalis</em> serum and anti-<em>E. magna</em> serum were used as primary antibodies. Most likely, <em>E. magna</em> and <em>E. intestinalis</em> antigens have some similar antigenic determinants; this finding provides a theoretical basis for screening for common antigens of these two coccidian species.</p>
Collapse
|
78
|
A T-Cell Epitope-Based Multi-Epitope Vaccine Designed Using Human HLA Specific T Cell Epitopes Induces a Near-Sterile Immunity against Experimental Visceral Leishmaniasis in Hamsters. Vaccines (Basel) 2021; 9:vaccines9101058. [PMID: 34696166 PMCID: PMC8537199 DOI: 10.3390/vaccines9101058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/08/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022] Open
Abstract
Visceral leishmaniasis is a neglected tropical disease affecting 12 million people annually. Even in the second decade of the 21st century, it has remained without an effective vaccine for human use. In the current study, we designed three multiepitope vaccine candidates by the selection of multiple IFN-γ inducing MHC-I and MHC-II binder T-cell specific epitopes from three previously identified antigen genes of Leishmania donovani from our lab by an immuno-informatic approach using IFNepitope, the Immune Epitope Database (IEDB) T cell epitope identification tools, NET-MHC-1, and NET MHC-2 webservers. We tested the protective potential of these three multiepitope proteins as a vaccine in a hamster model of visceral leishmaniasis. The immunization data revealed that the vaccine candidates induced a very high level of Th1 biased protective immune response in-vivo in a hamster model of experimental visceral leishmaniasis, with one of the candidates inducing a near-sterile immunity. The vaccinated animals displayed highly activated monocyte macrophages with the capability of clearing intracellular parasites due to increased respiratory burst. Additionally, these proteins induced activation of polyfunctional T cells secreting INF-γ, TNF-α, and IL-2 in an ex-vivo stimulation of human peripheral blood mononuclear cells, further supporting the protective nature of the designed candidates.
Collapse
|
79
|
Abstract
The immune (innate and adaptive) system has evolved to protect the host from any danger present in the surrounding outer environment (microbes and associated MAMPs or PAMPs, xenobiotics, and allergens) and dangers originated within the host called danger or damage-associated molecular patterns (DAMPs) and recognizing and clearing the cells dying due to apoptosis. It also helps to lower the tissue damage during trauma and initiates the healing process. The pattern recognition receptors (PRRs) play a crucial role in recognizing different PAMPs or MAMPs and DAMPs to initiate the pro-inflammatory immune response to clear them. Toll-like receptors (TLRs) are first recognized PRRs and their discovery proved milestone in the field of immunology as it filled the gap between the first recognition of the pathogen by the immune system and the initiation of the appropriate immune response required to clear the infection by innate immune cells (macrophages, neutrophils, dendritic cells or DCs, and mast cells). However, in addition to their expression by innate immune cells and controlling their function, TLRs are also expressed by adaptive immune cells. We have identified 10 TLRs (TLR1-TLR10) in humans and 12 TLRs (TLR1-TLR13) in laboratory mice till date as TLR10 in mice is present only as a defective pseudogene. The present chapter starts with the introduction of innate immunity, timing of TLR evolution, and the evolution of adaptive immune system and its receptors (T cell receptors or TCRs and B cell receptors or BCRs). The next section describes the role of TLRs in the innate immune function and signaling involved in the generation of inflammation. The subsequent sections describe the expression and function of different TLRs in murine and human adaptive immune cells (B cells and different types of T cells, including CD4+T cells, CD8+T cells, CD4+CD25+Tregs, and CD8+CD25+Tregs, etc.). The modulation of TLRs expressed on T and B cells has a great potential to develop different vaccine candidates, adjuvants, immunotherapies to target various microbial infections, including current COVID-19 pandemic, cancers, and autoimmune and autoinflammatory diseases.
Collapse
Affiliation(s)
- Vijay Kumar
- Children's Health Queensland Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, Brisbane, QLD, Australia.
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center (UTHSC), Memphis, TN, USA.
| |
Collapse
|
80
|
Islam SMS, Ryu HM, Sayeed HM, Byun HO, Jung JY, Kim HA, Suh CH, Sohn S. Eubacterium rectale Attenuates HSV-1 Induced Systemic Inflammation in Mice by Inhibiting CD83. Front Immunol 2021; 12:712312. [PMID: 34531862 PMCID: PMC8438521 DOI: 10.3389/fimmu.2021.712312] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/13/2021] [Indexed: 12/13/2022] Open
Abstract
The purpose of this study was to determine whether administration of the microorganism Eubacterium rectale (E. rectale) could regulate dendritic cell (DC) activation and systemic inflammation in herpes simplex virus type 1-induced Behçet's disease (BD). E. rectale, butyrate-producing bacteria, was administered to BD mice. Peripheral blood leukocytes (PBL) and lymph node cells were isolated and analyzed by flow cytometry. 16S rRNA metagenomic analysis was performed in the feces of mice to determine the differences in the composition of the microbial population between normal and BD mice. Serum cytokine levels were measured by enzyme-linked immunosorbent assay. The frequency of DC activation marker CD83 positive cells was significantly increased in PBL of BD mice. Frequencies of CD83+ cells were also significantly increased in patients with active BD. 16S rRNA metagenomic analysis revealed different gut microbiota composition between normal and BD mice. The administration of E. rectale to BD mice reduced the frequency of CD83+ cells and significantly increased the frequency of NK1.1+ cells with the improvement of symptoms. The co-administration of colchicine and E. rectale also significantly reduced the frequency of CD83+ cells. Differences in gut microbiota were observed between normal mice and BD mice, and the administration of E. rectale downregulated the frequency of CD83, which was associated with BD deterioration. These data indicate that E. rectale could be a new therapeutic adjuvant for BD management.
Collapse
Affiliation(s)
- S. M. Shamsul Islam
- Department of Biomedical Science, Ajou University School of Medicine, Suwon, South Korea
| | - Hye-Myung Ryu
- Department of Microbiology, Ajou University School of Medicine, Suwon, South Korea
| | - Hasan M. Sayeed
- Department of Biomedical Science, Ajou University School of Medicine, Suwon, South Korea
| | - Hae-Ok Byun
- Department of Microbiology, Ajou University School of Medicine, Suwon, South Korea
| | - Ju-Yang Jung
- Department of Rheumatology, Ajou University School of Medicine, Suwon, South Korea
| | - Hyoun-Ah Kim
- Department of Rheumatology, Ajou University School of Medicine, Suwon, South Korea
| | - Chang-Hee Suh
- Department of Rheumatology, Ajou University School of Medicine, Suwon, South Korea
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Seonghyang Sohn
- Department of Biomedical Science, Ajou University School of Medicine, Suwon, South Korea
- Department of Microbiology, Ajou University School of Medicine, Suwon, South Korea
| |
Collapse
|
81
|
de Haan L, Suijker J, van Roey R, Berges N, Petrova E, Queiroz K, Strijker W, Olivier T, Poeschke O, Garg S, van den Broek LJ. A Microfluidic 3D Endothelium-on-a-Chip Model to Study Transendothelial Migration of T Cells in Health and Disease. Int J Mol Sci 2021; 22:8234. [PMID: 34361000 PMCID: PMC8347346 DOI: 10.3390/ijms22158234] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 01/01/2023] Open
Abstract
The recruitment of T cells is a crucial component in the inflammatory cascade of the body. The process involves the transport of T cells through the vascular system and their stable arrest to vessel walls at the site of inflammation, followed by extravasation and subsequent infiltration into tissue. Here, we describe an assay to study 3D T cell dynamics under flow in real time using a high-throughput, artificial membrane-free microfluidic platform that allows unimpeded extravasation of T cells. We show that primary human T cells adhere to endothelial vessel walls upon perfusion of microvessels and can be stimulated to undergo transendothelial migration (TEM) by TNFα-mediated vascular inflammation and the presence of CXCL12 gradients or ECM-embedded melanoma cells. Notably, migratory behavior was found to differ depending on T cell activation states. The assay is unique in its comprehensiveness for modelling T cell trafficking, arrest, extravasation and migration, all in one system, combined with its throughput, quality of imaging and ease of use. We envision routine use of this assay to study immunological processes and expect it to spur research in the fields of immunological disorders, immuno-oncology and the development of novel immunotherapeutics.
Collapse
Affiliation(s)
- Luuk de Haan
- Mimetas BV, de Limes 7, 2342 DH Oegstgeest, The Netherlands; (L.d.H.); (J.S.); (R.v.R.); (K.Q.); (W.S.); (T.O.)
| | - Johnny Suijker
- Mimetas BV, de Limes 7, 2342 DH Oegstgeest, The Netherlands; (L.d.H.); (J.S.); (R.v.R.); (K.Q.); (W.S.); (T.O.)
| | - Ruthger van Roey
- Mimetas BV, de Limes 7, 2342 DH Oegstgeest, The Netherlands; (L.d.H.); (J.S.); (R.v.R.); (K.Q.); (W.S.); (T.O.)
| | - Nina Berges
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany; (N.B.); (E.P.); (O.P.); (S.G.)
| | - Elissaveta Petrova
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany; (N.B.); (E.P.); (O.P.); (S.G.)
| | - Karla Queiroz
- Mimetas BV, de Limes 7, 2342 DH Oegstgeest, The Netherlands; (L.d.H.); (J.S.); (R.v.R.); (K.Q.); (W.S.); (T.O.)
| | - Wouter Strijker
- Mimetas BV, de Limes 7, 2342 DH Oegstgeest, The Netherlands; (L.d.H.); (J.S.); (R.v.R.); (K.Q.); (W.S.); (T.O.)
| | - Thomas Olivier
- Mimetas BV, de Limes 7, 2342 DH Oegstgeest, The Netherlands; (L.d.H.); (J.S.); (R.v.R.); (K.Q.); (W.S.); (T.O.)
| | - Oliver Poeschke
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany; (N.B.); (E.P.); (O.P.); (S.G.)
| | - Sakshi Garg
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany; (N.B.); (E.P.); (O.P.); (S.G.)
| | - Lenie J. van den Broek
- Mimetas BV, de Limes 7, 2342 DH Oegstgeest, The Netherlands; (L.d.H.); (J.S.); (R.v.R.); (K.Q.); (W.S.); (T.O.)
| |
Collapse
|
82
|
Martínez Leo EE, Peñafiel AM, Hernández Escalante VM, Cabrera Araujo ZM. Ultra-processed diet, systemic oxidative stress, and breach of immunologic tolerance. Nutrition 2021; 91-92:111419. [PMID: 34399404 DOI: 10.1016/j.nut.2021.111419] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/24/2021] [Accepted: 07/13/2021] [Indexed: 12/28/2022]
Abstract
In recent years, consumption of ultra-processed food around the world has been increasing. The nutritional profile of an ultra-processed diet is associated with the development of cellular alterations that lead to oxidative stress. The chronic prooxidative state leads to an environment that influences the proliferation, apoptosis, and signaling pathways of immune cells. Likewise, the decrease in the transcription factor NRF2, owing to exacerbated production of reactive oxygen species, leads to changes in immune function and response to infections. This review aims to analyze the connection between an ultra-processed diet, systemic oxidative stress, and immune tolerance, as a contribution to the scientific evidence on the impact of oxidative stress on health and the possible risk of infections-an important consideration in the association of eating pattern and the immune response.
Collapse
Affiliation(s)
- Edwin E Martínez Leo
- Research Department, University Latino, Merida, Mexico; School of Medicine, Autonomous University of Yucatan, Merida, Mexico.
| | | | | | | |
Collapse
|
83
|
Lu Y, Ren C, Jiang J. The Relationship Between Prognostic Nutritional Index and All-Cause Mortality in Critically Ill Patients: A Retrospective Study. Int J Gen Med 2021; 14:3619-3626. [PMID: 34305408 PMCID: PMC8296707 DOI: 10.2147/ijgm.s318896] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/02/2021] [Indexed: 01/21/2023] Open
Abstract
Purpose The effectiveness and prognostic value of the prognostic nutritional index (PNI) in critically ill patients are unknown. Hence, this study aimed to analyze the relationship between the PNI and all-cause mortality in critically ill patients. Patients and Methods Patient data were obtained from the Multiparameter Intelligent Monitoring in Intensive Care III database. The relationship between the PNI and in-hospital mortality was analyzed using receiver operating characteristic curve analysis and a logistic regression model. Propensity score matching (PSM) was used to eliminate the bias caused by confounding factors. The Kaplan-Meier curve and Cox regression model were used to test the effect of the PNI on 30-, 90-, 180-, and 365-day mortality. Results A low PNI score is an independent risk factor for in-hospital mortality in critically ill patients. A total of 3644 cases were successfully matched using PSM. The PSM group with balanced covariates obtained similar results in the three models, which were statistically significant. The Kaplan-Meier curve and Cox regression model showed that the PNI was negatively correlated with 30-, 90-, 180-, and 365-day all-cause mortality. Conclusion The PNI score is an independent risk factor for all-cause mortality in critically ill patients, where a low PNI score is associated with increased mortality.
Collapse
Affiliation(s)
- Yan Lu
- Clinical Laboratory, DongYang People's Hospital, Dongyang, 322100, Zhejiang, People's Republic of China
| | - Chaoxiang Ren
- Clinical Laboratory, DongYang People's Hospital, Dongyang, 322100, Zhejiang, People's Republic of China
| | - Jinwen Jiang
- Clinical Laboratory, DongYang People's Hospital, Dongyang, 322100, Zhejiang, People's Republic of China
| |
Collapse
|
84
|
NO-synthase activity and nitric oxide content in lymphoid cells of thymus and spleen of rats under conditions of diet-induced obesity. UKRAINIAN BIOCHEMICAL JOURNAL 2021. [DOI: 10.15407/ubj93.03.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
85
|
Fernandes SG, Dsouza R, Khattar E. External environmental agents influence telomere length and telomerase activity by modulating internal cellular processes: Implications in human aging. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 85:103633. [PMID: 33711516 DOI: 10.1016/j.etap.2021.103633] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/30/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
External environment affects cellular physiological processes and impact the stability of our genome. The most important structural components of our linear chromosomes which endure the impact by these agents, are the chromosomal ends called telomeres. Telomeres preserve the integrity of our genome by preventing end to end fusions and telomeric loss through by inhibiting DNA damage response (DDR) activation. This is accomplished by the presence of a six membered shelterin complex at telomeres. Further, telomeres cannot be replicated by normal DNA polymerase and require a special enzyme called telomerase which is expressed only in stem cells, few immune cells and germ cells. Telomeres are rich in guanine content and thus become extremely prone to damage arising due to physiological processes like oxidative stress and inflammation. External environmental factors which includes various physical, biological and chemical agents also affect telomere homeostasis by increasing oxidative stress and inflammation. In the present review, we highlight the effect of these external factors on telomerase activity and telomere length. We also discuss how the external agents affect the physiological processes, thus modulating telomere stability. Further, we describe its implication in the development of aging and its related pathologies.
Collapse
Affiliation(s)
- Stina George Fernandes
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be University), Vile Parle West, Mumbai, 400056, India
| | - Rebecca Dsouza
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be University), Vile Parle West, Mumbai, 400056, India
| | - Ekta Khattar
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be University), Vile Parle West, Mumbai, 400056, India.
| |
Collapse
|
86
|
Oliveira DS, de Souza JG, Alvarez-Flores MP, Cunegundes PS, DeOcesano-Pereira C, Lobba AM, Gomes RN, Chudzinski-Tavassi AM. Lonomia obliqua Venom Induces NF-κB Activation and a Pro-Inflammatory Profile in THP-1-Derived Macrophage. Toxins (Basel) 2021; 13:462. [PMID: 34209394 PMCID: PMC8309978 DOI: 10.3390/toxins13070462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 01/04/2023] Open
Abstract
Envenomation caused by contact with Lonomia obliqua bristles is characterized by pain, an intense systemic proinflammatory reaction and disturbances in the coagulation cascade that can cause severe clinical manifestations and death. However, the role of immune system components in these effects is still poorly understood. In this study, we evaluated the cytotoxic effect of L. obliqua venom on THP-1-derived macrophages and its ability to modulate inflammatory markers, as well as the cytokine and chemokine release profile. Our results show that L. obliqua venom is able to directly exert a potent pro-inflammatory reaction in macrophages, characterized by the activation of the NF-κB transcription factor pathway, the expression of CD80 and CD83, and the release of pro-inflammatory mediators such as TNF-α, IL-1β, IL-6, IL-8 and CXCL10. These results suggest that macrophages can play an important role during the orchestration of the inflammatory response present in envenomation caused by Lonomia obliqua caterpillars.
Collapse
Affiliation(s)
- Douglas Souza Oliveira
- Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, Butantã 05503-900, SP, Brazil; (D.S.O.); (J.G.d.S.); (M.P.A.-F.); (P.S.C.); (C.D.-P.); (A.M.L.); (R.N.G.)
- Development and Innovation Department, Butantan Institute, Butantã 05503-900, SP, Brazil
- Biochemistry Department, Federal University of São Paulo, Vila Clementino 04044-020, SP, Brazil
| | - Jean Gabriel de Souza
- Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, Butantã 05503-900, SP, Brazil; (D.S.O.); (J.G.d.S.); (M.P.A.-F.); (P.S.C.); (C.D.-P.); (A.M.L.); (R.N.G.)
| | - Miryam Paola Alvarez-Flores
- Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, Butantã 05503-900, SP, Brazil; (D.S.O.); (J.G.d.S.); (M.P.A.-F.); (P.S.C.); (C.D.-P.); (A.M.L.); (R.N.G.)
- Development and Innovation Department, Butantan Institute, Butantã 05503-900, SP, Brazil
| | - Priscila S. Cunegundes
- Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, Butantã 05503-900, SP, Brazil; (D.S.O.); (J.G.d.S.); (M.P.A.-F.); (P.S.C.); (C.D.-P.); (A.M.L.); (R.N.G.)
- Development and Innovation Department, Butantan Institute, Butantã 05503-900, SP, Brazil
- Biochemistry Department, Federal University of São Paulo, Vila Clementino 04044-020, SP, Brazil
| | - Carlos DeOcesano-Pereira
- Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, Butantã 05503-900, SP, Brazil; (D.S.O.); (J.G.d.S.); (M.P.A.-F.); (P.S.C.); (C.D.-P.); (A.M.L.); (R.N.G.)
- Development and Innovation Department, Butantan Institute, Butantã 05503-900, SP, Brazil
| | - Aline Maia Lobba
- Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, Butantã 05503-900, SP, Brazil; (D.S.O.); (J.G.d.S.); (M.P.A.-F.); (P.S.C.); (C.D.-P.); (A.M.L.); (R.N.G.)
- Development and Innovation Department, Butantan Institute, Butantã 05503-900, SP, Brazil
| | - Renata N. Gomes
- Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, Butantã 05503-900, SP, Brazil; (D.S.O.); (J.G.d.S.); (M.P.A.-F.); (P.S.C.); (C.D.-P.); (A.M.L.); (R.N.G.)
- Development and Innovation Department, Butantan Institute, Butantã 05503-900, SP, Brazil
| | - Ana Marisa Chudzinski-Tavassi
- Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, Butantã 05503-900, SP, Brazil; (D.S.O.); (J.G.d.S.); (M.P.A.-F.); (P.S.C.); (C.D.-P.); (A.M.L.); (R.N.G.)
- Development and Innovation Department, Butantan Institute, Butantã 05503-900, SP, Brazil
| |
Collapse
|
87
|
Liebold I, Grützkau A, Göckeritz A, Gerl V, Lindquist R, Feist E, Zänker M, Häupl T, Poddubnyy D, Zernicke J, Smiljanovic B, Alexander T, Burmester GR, Gay S, Stuhlmüller B. Peripheral blood mononuclear cells are hypomethylated in active rheumatoid arthritis and methylation correlates with disease activity. Rheumatology (Oxford) 2021; 60:1984-1995. [PMID: 33200208 DOI: 10.1093/rheumatology/keaa649] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/31/2020] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Epigenetic modifications are dynamic and influence cellular disease activity. The aim of this study was to investigate global DNA methylation in peripheral blood mononuclear cells (PBMCs) of RA patients to clarify whether global DNA methylation pattern testing might be useful in monitoring disease activity as well as the response to therapeutics. METHODS Flow cytometric measurement of 5-methyl-cytosine (5'-mC) was established using the cell line U937. In the subsequent prospective study, 62 blood samples were investigated, including 17 healthy donors and 45 RA patients at baseline and after 3 months of treatment with methotrexate, the IL-6 receptor inhibitor sarilumab, and Janus kinase inhibitors. Methylation status was assessed with an anti-5'-mC antibody and analysed in PBMCs and CD4+, CD8+, CD14+ and CD19+ subsets. Signal intensities of 5'-mC were correlated with 28-joint DASs with ESR and CRP (DAS28-ESR and DAS28-CRP). RESULTS Compared with healthy individuals, PBMCs of RA patients showed a significant global DNA hypomethylation. Signal intensities of 5'-mC correlated with transcription levels of DNMT1, DNMT3B and MTR genes involved in methylation processes. Using flow cytometry, significant good correlations and linear regression values were achieved in RA patients between global methylation levels and DAS28-ESR values for PBMCs (r = -0.55, P = 0.002), lymphocytes (r = -0.57, P = 0.001), CD4+ (r = -0.57, P = 0.001), CD8+ (r = -0.54, P = 0.001), CD14+ (r = -0.49, P = 0.008) and CD19+ (r = -0.52, P = 0.004) cells. CONCLUSIONS The degree of global DNA methylation was found to be associated with disease activity. Based on this novel approach, the degree of global methylation is a promising biomarker for therapy monitoring and the prediction of therapy outcome in inflammatory diseases.
Collapse
Affiliation(s)
- Ilka Liebold
- Division of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Institute of Health, Freie Universität and Humboldt-Universität, Berlin, Germany
| | - Andreas Grützkau
- Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), a Leibniz-Institute, Berlin, Germany
| | - Anika Göckeritz
- Division of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Institute of Health, Freie Universität and Humboldt-Universität, Berlin, Germany
| | - Velia Gerl
- Division of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Institute of Health, Freie Universität and Humboldt-Universität, Berlin, Germany
| | - Randall Lindquist
- Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), a Leibniz-Institute, Berlin, Germany
| | - Eugen Feist
- Division of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Institute of Health, Freie Universität and Humboldt-Universität, Berlin, Germany.,Department of Rheumatology, Helios Fachklinik, Vogelsang-Gommern, Germany
| | - Michael Zänker
- Immanuel Klinikum Bernau Herzzentrum Brandenburg, Medizinische Hochschule Brandenburg, Bernau, Germany
| | - Thomas Häupl
- Division of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Institute of Health, Freie Universität and Humboldt-Universität, Berlin, Germany
| | - Denis Poddubnyy
- Division of Gastroenterology, Infectious Diseases and Rheumatology, Charité - Universitätsmedizin Berlin, Corporate Member of Berlin Institute of Health, Freie Universität and Humboldt-Universität, Berlin, Germany
| | - Jan Zernicke
- Division of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Institute of Health, Freie Universität and Humboldt-Universität, Berlin, Germany
| | - Biljana Smiljanovic
- Division of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Institute of Health, Freie Universität and Humboldt-Universität, Berlin, Germany
| | - Tobias Alexander
- Division of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Institute of Health, Freie Universität and Humboldt-Universität, Berlin, Germany
| | - Gerd R Burmester
- Division of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Institute of Health, Freie Universität and Humboldt-Universität, Berlin, Germany
| | - Steffen Gay
- Center of Experimental Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Bruno Stuhlmüller
- Division of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Institute of Health, Freie Universität and Humboldt-Universität, Berlin, Germany
| |
Collapse
|
88
|
How May Obesity-Induced Oxidative Stress Affect the Outcome of COVID-19 Vaccines? Lesson Learned from the Infection. Stress 2021. [DOI: 10.3390/stresses1020010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) outbreak, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has induced a global emergency [...]
Collapse
|
89
|
Mazzoni A, Salvati L, Maggi L, Annunziato F, Cosmi L. Hallmarks of immune response in COVID-19: Exploring dysregulation and exhaustion. Semin Immunol 2021; 55:101508. [PMID: 34728121 PMCID: PMC8547971 DOI: 10.1016/j.smim.2021.101508] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 01/08/2023]
Abstract
One and half year following the occurrence of COVID-19 pandemic, significant efforts from laboratories all over the world generated a huge amount of data describing the prototypical features of immunity in the course of SARS-CoV-2 infection. In this Review, we rationalize and organize the main observations, trying to define a "core" signature of immunity in COVID-19. We identified six hallmarks describing the main alterations occurring in the early infection phase and in the course of the disease, which predispose to severe illness. The six hallmarks are dysregulated type I IFN activity, hyperinflammation, lymphopenia, lymphocyte impairment, dysregulated myeloid response, and heterogeneous adaptive immunity to SARS-CoV-2. Dysregulation and exhaustion came out as the trait d'union, connecting abnormalities affecting both innate and adaptive immunity, humoral and cellular responses.
Collapse
Affiliation(s)
- Alessio Mazzoni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Lorenzo Salvati
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Laura Maggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
90
|
Chirivì M, Maiullari F, Milan M, Presutti D, Cordiglieri C, Crosti M, Sarnicola ML, Soluri A, Volpi M, Święszkowski W, Prati D, Rizzi M, Costantini M, Seliktar D, Parisi C, Bearzi C, Rizzi R. Tumor Extracellular Matrix Stiffness Promptly Modulates the Phenotype and Gene Expression of Infiltrating T Lymphocytes. Int J Mol Sci 2021; 22:5862. [PMID: 34070750 PMCID: PMC8198248 DOI: 10.3390/ijms22115862] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
The immune system is a fine modulator of the tumor biology supporting or inhibiting its progression, growth, invasion and conveys the pharmacological treatment effect. Tumors, on their side, have developed escaping mechanisms from the immune system action ranging from the direct secretion of biochemical signals to an indirect reaction, in which the cellular actors of the tumor microenvironment (TME) collaborate to mechanically condition the extracellular matrix (ECM) making it inhospitable to immune cells. TME is composed of several cell lines besides cancer cells, including tumor-associated macrophages, cancer-associated fibroblasts, CD4+ and CD8+ lymphocytes, and innate immunity cells. These populations interface with each other to prepare a conservative response, capable of evading the defense mechanisms implemented by the host's immune system. The presence or absence, in particular, of cytotoxic CD8+ cells in the vicinity of the main tumor mass, is able to predict, respectively, the success or failure of drug therapy. Among various mechanisms of immunescaping, in this study, we characterized the modulation of the phenotypic profile of CD4+ and CD8+ cells in resting and activated states, in response to the mechanical pressure exerted by a three-dimensional in vitro system, able to recapitulate the rheological and stiffness properties of the tumor ECM.
Collapse
Affiliation(s)
- Maila Chirivì
- Fondazione Istituto Nazionale di Genetica Molecolare, 20122 Milan, Italy; (M.C.); (F.M.); (M.M.); (C.C.); (M.C.); (M.L.S.); (C.B.)
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100 Latina, Italy
| | - Fabio Maiullari
- Fondazione Istituto Nazionale di Genetica Molecolare, 20122 Milan, Italy; (M.C.); (F.M.); (M.M.); (C.C.); (M.C.); (M.L.S.); (C.B.)
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Marika Milan
- Fondazione Istituto Nazionale di Genetica Molecolare, 20122 Milan, Italy; (M.C.); (F.M.); (M.M.); (C.C.); (M.C.); (M.L.S.); (C.B.)
- Institute of Biochemistry and Cell Biology, National Research Council of Italy (IBBC-CNR), Via Ercole Ramarini, 32, Monterotondo, 00015 Rome, Italy; (A.S.); (C.P.)
| | - Dario Presutti
- Institute of Physical Chemistry Polish Academy of Sciences, Marcina Kasprzaka 44/52, 01-224 Warszawa, Poland; (D.P.); (M.C.)
| | - Chiara Cordiglieri
- Fondazione Istituto Nazionale di Genetica Molecolare, 20122 Milan, Italy; (M.C.); (F.M.); (M.M.); (C.C.); (M.C.); (M.L.S.); (C.B.)
| | - Mariacristina Crosti
- Fondazione Istituto Nazionale di Genetica Molecolare, 20122 Milan, Italy; (M.C.); (F.M.); (M.M.); (C.C.); (M.C.); (M.L.S.); (C.B.)
| | - Maria Lucia Sarnicola
- Fondazione Istituto Nazionale di Genetica Molecolare, 20122 Milan, Italy; (M.C.); (F.M.); (M.M.); (C.C.); (M.C.); (M.L.S.); (C.B.)
| | - Andrea Soluri
- Institute of Biochemistry and Cell Biology, National Research Council of Italy (IBBC-CNR), Via Ercole Ramarini, 32, Monterotondo, 00015 Rome, Italy; (A.S.); (C.P.)
- Unit of Molecular Neurosciences, University Campus Bio-Medico, 00128 Roma, Italy
| | - Marina Volpi
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 02-507 Warsaw, Poland; (M.V.); (W.Ś.)
| | - Wojciech Święszkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 02-507 Warsaw, Poland; (M.V.); (W.Ś.)
| | - Daniele Prati
- Department of Transfusion Medicine and Hematology, IRCCS Granda Hospital Maggiore Policlinico Foundation, Via Francesco Sforza 35, 20122 Milan, Italy;
| | - Marta Rizzi
- Ufficio Programmazione e Grant Office, National Research Council of Italy (UPGO-CNR), Piazzale Aldo Moro 7, 00185 Rome, Italy;
| | - Marco Costantini
- Institute of Physical Chemistry Polish Academy of Sciences, Marcina Kasprzaka 44/52, 01-224 Warszawa, Poland; (D.P.); (M.C.)
| | - Dror Seliktar
- Department of Biomedical Engineering, Technion Institute, Haifa 32000, Israel;
| | - Chiara Parisi
- Institute of Biochemistry and Cell Biology, National Research Council of Italy (IBBC-CNR), Via Ercole Ramarini, 32, Monterotondo, 00015 Rome, Italy; (A.S.); (C.P.)
| | - Claudia Bearzi
- Fondazione Istituto Nazionale di Genetica Molecolare, 20122 Milan, Italy; (M.C.); (F.M.); (M.M.); (C.C.); (M.C.); (M.L.S.); (C.B.)
- Institute of Genetic and Biomedical Research, UOS of Milan, National Research Council (IRGB-CNR), Via Gaudenzio Fantoli 16/15, 20138 Milan, Italy
| | - Roberto Rizzi
- Fondazione Istituto Nazionale di Genetica Molecolare, 20122 Milan, Italy; (M.C.); (F.M.); (M.M.); (C.C.); (M.C.); (M.L.S.); (C.B.)
- Institute of Biomedical Technologies, National Research Council (ITB-CNR), Via Fratelli Cervi, 93, Segrate, 20090 Milan, Italy
| |
Collapse
|
91
|
Hamooya BM, Mulenga LB, Masenga SK, Fwemba I, Chirwa L, Siwingwa M, Halwiindi H, Koethe JR, Lipworth L, Heimburger DC, Musonda P, Mutale W. Metabolic syndrome in Zambian adults with human immunodeficiency virus on antiretroviral therapy: Prevalence and associated factors. Medicine (Baltimore) 2021; 100:e25236. [PMID: 33832083 PMCID: PMC8036111 DOI: 10.1097/md.0000000000025236] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/25/2021] [Indexed: 01/05/2023] Open
Abstract
Metabolic syndrome (MetS) is a constellation of factors including hypertension, abdominal obesity, dyslipidemia, and insulin resistance that separately and together significantly increase risk for cardiovascular disease (CVD) and diabetes. In sub-Saharan Africa, with a substantial burden of human immunodeficiency virus (HIV) and increasing prevalence of CVD and diabetes, there is a paucity of epidemiological data on demographic, laboratory, and clinical characteristics associated with MetS among people with HIV (people with human [PWH]). Therefore, this study aimed to determine the burden and factors influencing MetS in antiretroviral therapy (ART)-experienced individuals in Zambia.We collected cross-sectional demographic, lifestyle, anthropometric, clinical, and laboratory data in a cohort of ART-experienced (on ART for ≥6 months) adults in 24 urban HIV treatment clinics of Zambia between August, 2016 and May, 2020. MetS was defined as having ≥3 of the following characteristics: low high density lipoprotein cholesterol (HDL-c) (<1.0 mmol/L for men, <1.3 for women), elevated waist circumference (≥94 cm for men, ≥80 cm for women), elevated triglycerides (≥1.7 mmol/L), elevated fasting blood glucose (≥5.6 mmol/L), and elevated blood pressure (BP) (systolic BP ≥130 or diastolic BP ≥85 mm Hg). Virological failure (VF) was defined as HIV viral load ≥1000 copies/mL. The following statistical methods were used: Chi-square test, Wilcoxon rank-sum test, and multivariable logistic regression.Among 1108 participants, the median age (interquartile range [IQR]) was 41 years (34, 49); 666 (60.1%) were females. The prevalence of MetS was 26.3% (95% confidence interval [CI] 23.9-29.1). Age (adjusted odds ratio [OR] 1.07; 95% CI 1.04-1.11), female sex (OR 3.02; 95% CI 1.55-5.91), VF (OR 1.98; 95% CI 1.01-3.87), dolutegravir (DTG)-based regimen (OR 2.10; 95% CI 1.05-4.20), hip-circumference (OR 1.03; 95% CI 1.01-1.05), T-lymphocyte count (OR 2.23; 95% CI 1.44-3.43), high-sensitivity C-reactive protein (hsCRP) (OR 1.14; 95% CI 1.01-1.29), and fasting insulin (OR 1.02; 95% CI 1.01-1.04) were significantly associated with MetS.Metabolic syndrome was highly prevalent among HIV+ adults receiving ART in Zambia and associated with demographic, clinical, anthropometric, and inflammatory characteristics. The association between MetS and dolutegravir requires further investigation, as does elucidation of the impact of MetS on ART outcomes in sub-Saharan African PWH.
Collapse
Affiliation(s)
- Benson M. Hamooya
- University of Zambia School of Public Health
- Mulungushi University School of Medicine and Health Sciences, Livingstone
- Vanderbilt Institute for Global Health
| | - Lloyd B. Mulenga
- Ministry of Health
- University of Zambia School of Medicine, Lusaka, Zambia
- University Teaching Hospital, Adult Infectious Disease Center, Zambia
| | - Sepiso K. Masenga
- Mulungushi University School of Medicine and Health Sciences, Livingstone
- Vanderbilt Institute for Global Health
- Department of Biomedical Sciences, University of Zambia School of Health Sciences, Lusaka
| | | | - Lameck Chirwa
- University Teaching Hospital, Adult Infectious Disease Center, Zambia
| | - Mpanji Siwingwa
- University Teaching Hospital, Adult Infectious Disease Center, Zambia
| | | | - John R. Koethe
- Vanderbilt Institute for Global Health
- Vanderbilt University Medical Center Nashville, Tennessee
| | - Loren Lipworth
- Vanderbilt University Medical Center Nashville, Tennessee
| | - Douglas C. Heimburger
- Vanderbilt Institute for Global Health
- University of Zambia School of Medicine, Lusaka, Zambia
- Vanderbilt University Medical Center Nashville, Tennessee
| | | | | |
Collapse
|
92
|
Gegunde S, Alfonso A, Alvariño R, Alonso E, Botana LM. Cyclophilins A, B, and C Role in Human T Lymphocytes Upon Inflammatory Conditions. Front Immunol 2021; 12:609196. [PMID: 33859635 PMCID: PMC8042163 DOI: 10.3389/fimmu.2021.609196] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/15/2021] [Indexed: 02/01/2023] Open
Abstract
Cyclophilins (Cyps) are a group of peptidyl-prolyl cis/trans isomerases that play crucial roles in regulatory mechanisms of cellular physiology and pathology in several inflammatory conditions. Their receptor, CD147, also participates in the development and progression of the inflammatory response. Nevertheless, the main function of Cyps and their receptor are yet to be deciphered. The release of CypA and the expression of the CD147 receptor in activated T lymphocytes were already described, however, no data are available about other Cyps in these cells. Therefore, in the present work intra and extracellular CypA, B and C levels were measured followed by induced inflammatory conditions. After activation of T lymphocytes by incubation with concanavalin A, both intra and extracellular Cyps levels and the CD147 membrane receptor expression were increased leading to cell migration towards circulating CypA and CypB as chemoattractants. When CypA was modulated by natural and synthetic compounds, the inflammatory cascade was avoided including T cell migration. Our results strengthen the relationship between CypA, B, and C, their receptor, and the inflammatory process in human T lymphocytes, associating CypC with these cells for the first time.
Collapse
Affiliation(s)
- Sandra Gegunde
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain.,Grupo Investigación Biodiscovery, Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
| | - Amparo Alfonso
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain.,Grupo Investigación Biodiscovery, Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
| | - Rebeca Alvariño
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain.,Grupo Investigación Biodiscovery, Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
| | - Eva Alonso
- Grupo Investigación Biodiscovery, Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
| | - Luis M Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain.,Grupo Investigación Biodiscovery, Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
93
|
Naslavsky MS, Vidigal M, Matos LDRB, Cória VR, Batista PB, Razuk Á, Saldiva PHN, Dolhnikoff M, Schidlowski L, Prando C, Cunha-Neto E, Condino-Neto A, Passos-Bueno MR, Zatz M. Extreme phenotypes approach to investigate host genetics and COVID-19 outcomes. Genet Mol Biol 2021; 44:e20200302. [PMID: 33651876 PMCID: PMC7924362 DOI: 10.1590/1678-4685-gmb-2020-0302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
COVID-19 comprises clinical outcomes of SARS-CoV-2 infection and is highly heterogeneous, ranging from asymptomatic individuals to deceased young adults without comorbidities. There is growing evidence that host genetics play an important role in COVID-19 severity, including inborn errors of immunity, age-related inflammation and immunosenescence. Here we present a brief review on the known order of events from infection to severe system-wide disturbance due to COVID-19 and summarize potential candidate genes and pathways. Finally, we propose a strategy of subject's ascertainment based on phenotypic extremes to take part in genomic studies and elucidate intrinsic risk factors involved in COVID-19 severe outcomes.
Collapse
Affiliation(s)
- Michel Satya Naslavsky
- Universidade de São Paulo, Instituto de Biociências, Departamento de Genética e Biologia Evolutiva, Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, São Paulo, SP, Brazil
| | - Mateus Vidigal
- Universidade de São Paulo, Instituto de Biociências, Departamento de Genética e Biologia Evolutiva, Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, São Paulo, SP, Brazil
| | - Larissa do Rêgo Barros Matos
- Universidade de São Paulo, Instituto de Biociências, Departamento de Genética e Biologia Evolutiva, Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, São Paulo, SP, Brazil
| | - Vivian Romanholi Cória
- Universidade de São Paulo, Instituto de Biociências, Departamento de Genética e Biologia Evolutiva, Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, São Paulo, SP, Brazil
| | | | | | | | - Marisa Dolhnikoff
- Faculdade de Medicina da Universidade de São Paulo (FMUSP), Departamento de Patologia, São Paulo, SP, Brazil
| | - Laire Schidlowski
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Hospital Pequeno Príncipe, Curitiba, PR, Brazil
| | - Carolina Prando
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Hospital Pequeno Príncipe, Curitiba, PR, Brazil
| | - Edécio Cunha-Neto
- Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Instituto do Coração, São Paulo, SP, Brazil
| | - Antonio Condino-Neto
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Laboratório de Imunologia Humana, São Paulo, Brazil
| | - Maria Rita Passos-Bueno
- Universidade de São Paulo, Instituto de Biociências, Departamento de Genética e Biologia Evolutiva, Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, São Paulo, SP, Brazil
| | - Mayana Zatz
- Universidade de São Paulo, Instituto de Biociências, Departamento de Genética e Biologia Evolutiva, Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, São Paulo, SP, Brazil
| |
Collapse
|
94
|
Lin W, Shen P, Song Y, Huang Y, Tu S. Reactive Oxygen Species in Autoimmune Cells: Function, Differentiation, and Metabolism. Front Immunol 2021; 12:635021. [PMID: 33717180 PMCID: PMC7946999 DOI: 10.3389/fimmu.2021.635021] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/08/2021] [Indexed: 12/19/2022] Open
Abstract
Accumulated reactive oxygen species (ROS) directly contribute to biomacromolecule damage and influence various inflammatory responses. Reactive oxygen species act as mediator between innate and adaptive immune cells, thereby influencing the antigen-presenting process that results in T cell activation. Evidence from patients with chronic granulomatous disease and mouse models support the function of ROS in preventing abnormal autoimmunity; for example, by supporting maintenance of macrophage efferocytosis and T helper 1/T helper 2 and T helper 17/ regulatory T cell balance. The failure of many anti-oxidation treatments indicates that ROS cannot be considered entirely harmful. Indeed, enhancement of ROS may sometimes be required. In a mouse model of rheumatoid arthritis (RA), absence of NOX2-derived ROS led to higher prevalence and more severe symptoms. In patients with RA, naïve CD4+ T cells exhibit inhibited glycolysis and enhanced pentose phosphate pathway (PPP) activity, leading to ROS exhaustion. In this "reductive" state, CD4+ T cell immune homeostasis is disrupted, triggering joint destruction, together with oxidative stress in the synovium.
Collapse
Affiliation(s)
- Weiji Lin
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Shen
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaqin Song
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Huang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shenghao Tu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
95
|
Health disparities: Intracellular consequences of social determinants of health. Toxicol Appl Pharmacol 2021; 416:115444. [PMID: 33549591 DOI: 10.1016/j.taap.2021.115444] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 12/14/2022]
Abstract
Health disparities exist dependent on socioeconomic status, living conditions, race/ethnicity, diet, and exposures to environmental pollutants. Herein, the various exposures contributing to a person's exposome are collectively considered social determinants of health (SDOH), and the SDOH-exposome impacts health more than health care. This review discusses the extent of evidence of the physiologic consequences of these exposures at the intracellular level. We consider how the SDOH-exposome, which captures how individuals live, work and age, induces cell processes that modulate a conceptual "redox rheostat." Like an electrical resistor, the SDOH-exposome, along with genetic predisposition and age, regulate reductive and oxidative (redox) stress circuits and thereby stimulate inflammation. Regardless of the source of the SDOH-exposome that induces chronic inflammation and immunosenescence, the outcome influences cardiometabolic diseases, cancers, infections, sepsis, neurodegeneration and autoimmune diseases. The endogenous redox rheostat is connected with regulatory molecules such as NAD+/NADH and SIRT1 that drive redox pathways. In addition to these intracellular and mitochondrial processes, we discuss how the SDOH-exposome can influence the balance between metabolism and regulation of immune responsiveness involving the two main molecular drivers of inflammation, the NLRP3 inflammasome and NF-κB induction. Mitochondrial and inflammasome activities play key roles in mediating defenses against pathogens and controlling inflammation before diverse cell death pathways are induced. Specifically, pyroptosis, cell death by inflammation, is intimately associated with common disease outcomes that are influenced by the SDOH-exposome. Redox influences on immunometabolism including protein cysteines and ion fluxes are discussed regarding health outcomes. In summary, this review presents a translational research perspective, with evidence from in vitro and in vivo models as well as clinical and epidemiological studies, to outline the intracellular consequences of the SDOH-exposome that drive health disparities in patients and populations. The relevance of this conceptual and theoretical model considering the SARS-CoV-2 pandemic are highlighted. Finally, the case of asthma is presented as a chronic condition that is modified by adverse SDOH exposures and is manifested through the dysregulation of immune cell redox regulatory processes we highlight in this review.
Collapse
|
96
|
Deng Z, Hu X, Alahdal M, Liu J, Zhao Z, Chen X, Xie J, Duan L, Wang D, Li W. High expression of MAPK-14 promoting the death of chondrocytes is an important signal of osteoarthritis process. PeerJ 2021; 9:e10656. [PMID: 33520453 PMCID: PMC7812924 DOI: 10.7717/peerj.10656] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/07/2020] [Indexed: 01/17/2023] Open
Abstract
Background Osteoarthritis (OA) is one of the most common degenerative diseases worldwide. Many researchers are studying the pathogenesis of OA, however, it is still unclear. Methods Screening and validation of OA relevant hub genes are an important part of exploring their potential molecular mechanism. Therefore, this study aims to explore and verify the mechanisms of hub genes in the OA by bioinformatics, qPCR, fluorescence and propidium iodide staining. Results Microarray datasets GSE43923, GSE55457 and GSE12021 were collected in the Gene Expression Omnibus (GEO), including 45 samples, which divided into 23 osteoarthritis knee joint samples and 22 samples of normal knee joint. Thereafter, 265 differentiallyexpressedgenes (DEGs) were identified in all, which divided into 199 upregulated genes and 66 downregulated genes. The hub genes MAPK-14, PTPRC, PTPN12 were upregulated, while B9D1 was downregulated. In order to further confirm the expression of screening differential genes in human chondrocytes, the human chondrocytes were extracted from a joint replacement surgery and stained with toluidine blue for identification. Compared with normal chondrocytes, OA chondrocytes had high expression of COL I protein and low expression of COL II protein. The expression levels of MAPK-14, PTPRC and PTPN12 in OA chondrocytes were significantly higher than the expression levels of B9D1 in normal chondrocytes. Moreover, the inflammatory necrosis of OA chondrocytes was increased compared with the normal chondrocytes by propidium iodide staining. Conclusions The high expression of MAPK-14 works as a promoter of chondrocytes death and an important signal of the osteoarthritis process.
Collapse
Affiliation(s)
- Zhiqin Deng
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong, China
| | - Xiaotian Hu
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong, China.,Anhui Medical University, Hefei, China
| | - Murad Alahdal
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong, China
| | - Jianquan Liu
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong, China
| | - Zhe Zhao
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong, China
| | - Xiaoqiang Chen
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong, China
| | - Junxiong Xie
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong, China
| | - Li Duan
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong, China
| | - Daping Wang
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong, China.,Anhui Medical University, Hefei, China
| | - Wencui Li
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, Guangdong, China
| |
Collapse
|
97
|
Ha E, Bang SY, Lim J, Yun JH, Kim JM, Bae JB, Lee HS, Kim BJ, Kim K, Bae SC. Genetic variants shape rheumatoid arthritis-specific transcriptomic features in CD4 + T cells through differential DNA methylation, explaining a substantial proportion of heritability. Ann Rheum Dis 2021; 80:876-883. [PMID: 33436383 DOI: 10.1136/annrheumdis-2020-219152] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/10/2020] [Accepted: 12/30/2020] [Indexed: 01/03/2023]
Abstract
OBJECTIVE CD4+ T cells have been suggested as the most disease-relevant cell type in rheumatoid arthritis (RA) in which RA-risk non-coding variants exhibit allele-specific effects on regulation of RA-driving genes. This study aimed to understand RA-specific signatures in CD4+ T cells using multi-omics data, interpreting inter-omics relationships in shaping the RA transcriptomic landscape. METHODS We profiled genome-wide variants, gene expression and DNA methylation in CD4+ T cells from 82 patients with RA and 40 healthy controls using high-throughput technologies. We investigated differentially expressed genes (DEGs) and differential methylated regions (DMRs) in RA and localised quantitative trait loci (QTLs) for expression and methylation. We then integrated these based on individual-level correlations to inspect DEG-regulating sources and investigated the potential regulatory roles of RA-risk variants by a partitioned-heritability enrichment analysis with RA genome-wide association summary statistics. RESULTS A large number of RA-specific DEGs were identified (n=2575), highlighting T cell differentiation and activation pathways. RA-specific DMRs, preferentially located in T cell regulatory regions, were correlated with the expression levels of 548 DEGs mostly in the same topologically associating domains. In addition, expressional variances in 771 and 83 DEGs were partially explained by expression QTLs for DEGs and methylation QTLs (meQTLs) for DEG-correlated DMRs, respectively. A large number of RA variants were moderately to strongly correlated with meQTLs. DEG-correlated DMRs, enriched with meQTLs, had strongly enriched heritability of RA. CONCLUSION Our findings revealed that the methylomic changes, driven by RA heritability-explaining variants, shape the differential expression of a substantial fraction of DEGs in CD4+ T cells in patients with RA, reinforcing the importance of a multidimensional approach in disease-relevant tissues.
Collapse
Affiliation(s)
- Eunji Ha
- Department of Biology and Department of Life and Nanopharmaceutical SciencesBiology, Kyung Hee University, Seoul, Republic of Korea
| | - So-Young Bang
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea.,Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea
| | - Jiwoo Lim
- Department of Biology and Department of Life and Nanopharmaceutical SciencesBiology, Kyung Hee University, Seoul, Republic of Korea
| | - Jun Ho Yun
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Osong Health Technology Administration Complex, Cheongju, Republic of Korea
| | - Jeong-Min Kim
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Osong Health Technology Administration Complex, Cheongju, Republic of Korea
| | - Jae-Bum Bae
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Osong Health Technology Administration Complex, Cheongju, Republic of Korea
| | - Hye-Soon Lee
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea.,Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea
| | - Bong-Jo Kim
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Osong Health Technology Administration Complex, Cheongju, Republic of Korea
| | - Kwangwoo Kim
- Department of Biology and Department of Life and Nanopharmaceutical SciencesBiology, Kyung Hee University, Seoul, Republic of Korea
| | - Sang-Cheol Bae
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea .,Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea
| |
Collapse
|
98
|
Lu Y, Huang Z, Wang M, Tang K, Wang S, Gao P, Xie J, Wang T, Zhao J. Clinical characteristics and predictors of mortality in young adults with severe COVID-19: a retrospective observational study. Ann Clin Microbiol Antimicrob 2021; 20:3. [PMID: 33407543 PMCID: PMC7787410 DOI: 10.1186/s12941-020-00412-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 12/17/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Little is yet known whether pathogenesis of COVID-19 is different between young and elder patients. Our study aimed to investigate the clinical characteristics and provide predictors of mortality for young adults with severe COVID-19. METHODS A total of 77 young adults with confirmed severe COVID-19 were recruited retrospectively at Tongji Hospital. Clinical characteristics, laboratory findings, treatment and outcomes were obtained from electronic medical records. The prognostic effects of variables were analyzed using logistic regression model. RESULTS In this retrospective cohort, non-survivors showed higher incidence of dyspnea and co-existing laboratory abnormalities, compared with young survivals in severe COVID-19. Multivariate logistic regression analysis showed that lymphopenia, elevated level of d-dimer, hypersensitive cardiac troponin I (hs-CTnI) and high sensitivity C-reactive protein (hs-CRP) were independent predictors of mortality in young adults with severe COVID-19. Further analysis showed that severely young adults with two or more factors abnormalities above would be more prone to death. The similar predictive effect of above four factors had been observed in all-age patients with severe COVID-19. CONCLUSION Lymphopenia, elevated level of d-dimer, hs-CTnI and hs-CRP predicted clinical outcomes of young adults with severe COVID-19.
Collapse
Affiliation(s)
- Yanjiao Lu
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhenli Huang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Meijia Wang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kun Tang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shanshan Wang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Pengfei Gao
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Henan University of Science and Technology, Luoyang, 471003, China
| | - Jungang Xie
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tao Wang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Jianping Zhao
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
99
|
Bakadia BM, Boni BOO, Ahmed AAQ, Yang G. The impact of oxidative stress damage induced by the environmental stressors on COVID-19. Life Sci 2021; 264:118653. [PMID: 33115606 PMCID: PMC7586125 DOI: 10.1016/j.lfs.2020.118653] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022]
Abstract
The ongoing pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a substantial stressor that is greatly impacting environmental sustainability. Besides, the different pre-existing environmental stressors and coronavirus disease-2019 (COVID-19)-related stressors are further worsening the effects of the viral disease by inducing the generation of oxidative stress. The generated oxidative stress results in nucleic acid damage associated with viral mutations, that could potentially reduce the effectiveness of COVID-19 management, including the vaccine approach. The current review is aimed to overview the impact of the oxidative stress damage induced by various environmental stressors on COVID-19. The available data regarding the COVID-19-related stressors and the effects of oxidative stress damage induced by the chronic stress, exposure to free radicals, and malnutrition are also analyzed to showcase the promising options, which could be investigated further for sustainable control of the pandemic.
Collapse
Affiliation(s)
- Bianza Moise Bakadia
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Biaou Oscar Ode Boni
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Abeer Ahmed Qaed Ahmed
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
100
|
Ruiz-Cantero MC, González-Cano R, Tejada MÁ, Santos-Caballero M, Perazzoli G, Nieto FR, Cobos EJ. Sigma-1 receptor: A drug target for the modulation of neuroimmune and neuroglial interactions during chronic pain. Pharmacol Res 2021; 163:105339. [PMID: 33276102 DOI: 10.1016/j.phrs.2020.105339] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022]
Abstract
Immune and glial cells play a pivotal role in chronic pain. Therefore, it is possible that the pharmacological modulation of neurotransmission from an exclusively neuronal perspective may not be enough for adequate pain management, and the modulation of complex interactions between neurons and other cell types might be needed for successful pain relief. In this article, we review the current scientific evidence for the modulatory effects of sigma-1 receptors on communication between the immune and nervous systems during inflammation, as well as the influence of this receptor on peripheral and central neuroinflammation. Several experimental models of pathological pain are considered, including peripheral and central neuropathic pain, osteoarthritic, and cancer pain. Sigma-1 receptor inhibition prevents peripheral (macrophage infiltration into the dorsal root ganglion) and central (activation of microglia and astrocytes) neuroinflammation in several pain models, and enhances immune-driven peripheral opioid analgesia during painful inflammation, maximizing the analgesic potential of peripheral immune cells. Therefore, sigma-1 antagonists may constitute a new class of analgesics with an unprecedented mechanism of action and potential utility in several painful disorders.
Collapse
Affiliation(s)
- M Carmen Ruiz-Cantero
- Department of Pharmacology, and Neurosciences Institute (Biomedical Research Center), University of Granada, Granada, Spain; Biosanitary Research Institute ibs.GRANADA, Granada, Spain
| | - Rafael González-Cano
- Department of Pharmacology, and Neurosciences Institute (Biomedical Research Center), University of Granada, Granada, Spain; Biosanitary Research Institute ibs.GRANADA, Granada, Spain
| | - Miguel Á Tejada
- Department of Pharmacology, and Neurosciences Institute (Biomedical Research Center), University of Granada, Granada, Spain; INCLIVA Health Research Institute, Valencia, Spain
| | - Miriam Santos-Caballero
- Department of Pharmacology, and Neurosciences Institute (Biomedical Research Center), University of Granada, Granada, Spain; Biosanitary Research Institute ibs.GRANADA, Granada, Spain
| | - Gloria Perazzoli
- Biosanitary Research Institute ibs.GRANADA, Granada, Spain; Department of Nursing, Physiotherapy and Medicine, University of Almería, Almería, Spain
| | - Francisco R Nieto
- Department of Pharmacology, and Neurosciences Institute (Biomedical Research Center), University of Granada, Granada, Spain; Biosanitary Research Institute ibs.GRANADA, Granada, Spain.
| | - Enrique J Cobos
- Department of Pharmacology, and Neurosciences Institute (Biomedical Research Center), University of Granada, Granada, Spain; Biosanitary Research Institute ibs.GRANADA, Granada, Spain; Teófilo Hernando Institute for Drug Discovery, Madrid, Spain.
| |
Collapse
|