51
|
Purvis GSD, Aranda‐Tavio H, Channon KM, Greaves DR. Bruton's TK regulates myeloid cell recruitment during acute inflammation. Br J Pharmacol 2022; 179:2754-2770. [PMID: 34897650 PMCID: PMC9361009 DOI: 10.1111/bph.15778] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/27/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Bruton's TK (BTK) is a non-receptor kinase best known for its role in B lymphocyte development that is critical for proliferation and survival of leukaemic cells in B-cell malignancies. However, BTK is expressed in myeloid cells, particularly neutrophils, monocytes and macrophages where its inhibition has been reported to cause anti-inflammatory properties. EXPERIMENTAL APPROACH We explored the role of BTK on migration of myeloid cells (neutrophils, monocytes and macrophages), in vitro using chemotaxis assays and in vivo using zymosan-induced peritonitis as model systems. KEY RESULTS Using the zymosan-induced peritonitis model of sterile inflammation, we demonstrated that acute inhibition of BTK prior to zymosan challenge reduced phosphorylation of BTK in circulating neutrophils and monocytes. Moreover, pharmacological inhibition of BTK with ibrutinib specifically inhibited neutrophil and Ly6Chi monocytes, but not Ly6Clo monocyte recruitment to the peritoneum. X-linked immunodeficient (XID) mice, which have a point mutation in the Btk gene, had reduced neutrophil and monocyte recruitment to the peritoneum following zymosan challenge. Pharmacological or genetic inhibition of BTK signalling substantially reduced human monocyte and murine macrophage chemotaxis, to a range of clinically relevant chemoattractants (C5a and CCL2). We also demonstrated that inhibition of BTK in tissue resident macrophages significantly decreases chemokine secretion by reducing NF-κB activity and Akt signalling. CONCLUSION AND IMPLICATIONS Our work has identified a new role of BTK in regulating myeloid cell recruitment via two mechanisms, reducing monocyte/macrophages' ability to undergo chemotaxis and reducing chemokine secretion, via reduced NF-κB and Akt activity in tissue resident macrophages.
Collapse
Affiliation(s)
- Gareth S. D. Purvis
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
- BHF Centre of Research ExcellenceUniversity of OxfordOxfordUK
| | | | - Keith M. Channon
- BHF Centre of Research ExcellenceUniversity of OxfordOxfordUK
- Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
- Department of Cardiovascular Medicine, Radcliffe Department of MedicineJohn Radcliffe HospitalOxfordUK
| | - David R. Greaves
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
- BHF Centre of Research ExcellenceUniversity of OxfordOxfordUK
| |
Collapse
|
52
|
Downregulation of CRTC1 Is Involved in CUMS-Induced Depression-Like Behavior in the Hippocampus and Its RNA Sequencing Analysis. Mol Neurobiol 2022; 59:4405-4418. [PMID: 35556215 DOI: 10.1007/s12035-022-02787-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/26/2022] [Indexed: 10/18/2022]
Abstract
Chronic stress is an important risk factor for mood disorders including depression. The decreased level of CREB (cAMP-responsive element binding)-regulated transcription coactivator 1 (CRTC1) expression in hippocampus may be involved in depression-like behavior in some stress-induced depression models. But the mechanism of CRTC1 in mediating depression-like behavior remains unknown. In this study, chronic unpredictable mild stress (CUMS)-treated mice showed depression-like behavior accompanied by the downregulation of CRTC1 in the hippocampus. Adeno-associated virus (AAV)-CRTC1-mediated overexpression of CRTC1 in the hippocampus by stereotactic brain injection could significantly prevent depression-like behavior in CUMS-treated mice. The above data reveal that the downregulation of hippocampal CRTC1 expression participates in CUMS-induced depression-like behavior. In order to explore the key targets regulated by CRTC1, AAV-mediated CRTC1 short hairpin (shRNA) was constructed to achieve knockdown of CRTC1 in the hippocampus, and then the hippocampi were collected for RNA-sequencing (RNA-seq). The RNA-seq data show that upregulated genes were enriched in stress and immune system-associated GO terms and pathways such as response to stress and external stimulus and regulation of immune response and that downregulated genes were enriched in neural activity such as synaptic transmission and cognitive behavior. We further provided RT-qPCR data that the inflammation-related factors including Gpr84, Tlr2, Lyz2, and Icam1 were significantly upregulated in the hippocampus of both CUMS- and CRTC1 shRNA-induced models, some of them were also validated in protein levels by Western blotting. We propose a hypothesis that CUMS induces downregulation of CRTC1, which might lead to depression-like behavior via neuroinflammation pathway. This study provides new explanation for the inflammatory hypothesis of depression and some clues for exploring the molecular mechanism of CRTC1 regulation.
Collapse
|
53
|
Marsango S, Ward RJ, Jenkins L, Butcher AJ, Al Mahmud Z, Dwomoh L, Nagel F, Schulz S, Tikhonova IG, Tobin AB, Milligan G. Selective phosphorylation of threonine residues defines GPR84-arrestin interactions of biased ligands. J Biol Chem 2022; 298:101932. [PMID: 35427647 PMCID: PMC9118924 DOI: 10.1016/j.jbc.2022.101932] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
GPR84 is an immune cell-expressed, proinflammatory receptor currently being assessed as a therapeutic target in conditions including fibrosis and inflammatory bowel disease. Although it was previously shown that the orthosteric GPR84 activators 2-HTP and 6-OAU promoted its interactions with arrestin-3, a G protein-biased agonist DL-175 did not. Here, we show that replacement of all 21 serine and threonine residues within i-loop 3 of GPR84, but not the two serines in the C-terminal tail, eliminated the incorporation of [32P] and greatly reduced receptor-arrestin-3 interactions promoted by 2-HTP. GPR84 was phosphorylated constitutively on residues Ser221 and Ser224, while various other amino acids are phosphorylated in response to 2-HTP. Consistent with this, an antiserum able to identify pSer221/pSer224 recognized GPR84 from cells treated with and without activators, whereas an antiserum able to identify pThr263/pThr264 only recognized GPR84 after exposure to 2-HTP and not DL-175. Two distinct GPR84 antagonists as well as inhibition of G protein-coupled receptor kinase 2/3 prevented phosphorylation of pThr263/pThr264, but neither strategy affected constitutive phosphorylation of Ser221/Ser224. Furthermore, mutation of residues Thr263 and Thr264 to alanine generated a variant of GPR84 also limited in 2-HTP-induced interactions with arrestin-2 and -3. By contrast, this mutant was unaffected in its capacity to reduce cAMP levels. Taken together, these results define a key pair of threonine residues, regulated only by subsets of GPR84 small molecule activators and by GRK2/3 that define effective interactions with arrestins and provide novel tools to monitor the phosphorylation and functional status of GPR84.
Collapse
Affiliation(s)
- Sara Marsango
- The Centre for Translational Pharmacology, Institute of Molecular, Cellular and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Richard J Ward
- The Centre for Translational Pharmacology, Institute of Molecular, Cellular and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Laura Jenkins
- The Centre for Translational Pharmacology, Institute of Molecular, Cellular and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Adrian J Butcher
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Zobaer Al Mahmud
- The Centre for Translational Pharmacology, Institute of Molecular, Cellular and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Louis Dwomoh
- The Centre for Translational Pharmacology, Institute of Molecular, Cellular and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Stefan Schulz
- 7TM Antibodies GmbH, Jena, Germany; Institute of Pharmacology and Toxicology, University Hospital Jena, Jena, Germany
| | - Irina G Tikhonova
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, United Kingdom
| | - Andrew B Tobin
- The Centre for Translational Pharmacology, Institute of Molecular, Cellular and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Graeme Milligan
- The Centre for Translational Pharmacology, Institute of Molecular, Cellular and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
54
|
Chen LH, Zhang Q, Xiao YF, Fang YC, Xie X, Nan FJ. Phosphodiesters as GPR84 Antagonists for the Treatment of Ulcerative Colitis. J Med Chem 2022; 65:3991-4006. [PMID: 35195005 DOI: 10.1021/acs.jmedchem.1c01813] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
GPR84 is a proinflammatory G protein-coupled receptor associated with several inflammatory and fibrotic diseases. GPR84 antagonists have been evaluated in clinical trials to treat ulcerative colitis, idiopathic pulmonary fibrosis, and nonalcoholic steatohepatitis. However, the variety of potent and selective GPR84 antagonists is still limited. Through high-throughput screening, a novel phosphodiester compound hit 1 was identified as a GPR84 antagonist. The subsequent structural optimization led to the identification of compound 33 with improved potency in the calcium mobilization assay and the ability to inhibit the chemotaxis of neutrophils and macrophages upon GPR84 activation. In a DSS-induced mouse model of ulcerative colitis, compound 33 significantly alleviated colitis symptoms and reduced the disease activity index score at oral doses of 25 mg/kg qd, with an efficacy similar to that of positive control 5-aminosalicylic acid (200 mg/kg, qd, po), suggesting that compound 33 is a promising candidate for further drug development.
Collapse
Affiliation(s)
- Lin-Hai Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qing Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,CAS Key Laboratory of Receptor Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yu-Feng Xiao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - You-Chen Fang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,CAS Key Laboratory of Receptor Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xin Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,CAS Key Laboratory of Receptor Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Fa-Jun Nan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.,Yantai Institute of Materia Medica, Shandong 264000, China
| |
Collapse
|
55
|
Tejada-Martinez D, Avelar RA, Lopes I, Zhang B, Novoa G, de Magalhães JP, Trizzino M. Positive Selection and Enhancer Evolution Shaped Lifespan and Body Mass in Great Apes. Mol Biol Evol 2022; 39:msab369. [PMID: 34971383 PMCID: PMC8837823 DOI: 10.1093/molbev/msab369] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Within primates, the great apes are outliers both in terms of body size and lifespan, since they include the largest and longest-lived species in the order. Yet, the molecular bases underlying such features are poorly understood. Here, we leveraged an integrated approach to investigate multiple sources of molecular variation across primates, focusing on over 10,000 genes, including approximately 1,500 previously associated with lifespan, and additional approximately 9,000 for which an association with longevity has never been suggested. We analyzed dN/dS rates, positive selection, gene expression (RNA-seq), and gene regulation (ChIP-seq). By analyzing the correlation between dN/dS, maximum lifespan, and body mass, we identified 276 genes whose rate of evolution positively correlates with maximum lifespan in primates. Further, we identified five genes, important for tumor suppression, adaptive immunity, metastasis, and inflammation, under positive selection exclusively in the great ape lineage. RNA-seq data, generated from the liver of six species representing all the primate lineages, revealed that 8% of approximately 1,500 genes previously associated with longevity are differentially expressed in apes relative to other primates. Importantly, by integrating RNA-seq with ChIP-seq for H3K27ac (which marks active enhancers), we show that the differentially expressed longevity genes are significantly more likely than expected to be located near a novel "ape-specific" enhancer. Moreover, these particular ape-specific enhancers are enriched for young transposable elements, and specifically SINE-Vntr-Alus. In summary, we demonstrate that multiple evolutionary forces have contributed to the evolution of lifespan and body size in primates.
Collapse
Affiliation(s)
- Daniela Tejada-Martinez
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Roberto A Avelar
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Inês Lopes
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Bruce Zhang
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Guy Novoa
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología—CSIC, Madrid, Spain
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Marco Trizzino
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
56
|
Peters A, Rabe P, Liebing AD, Krumbholz P, Nordström A, Jäger E, Kraft R, Stäubert C. Hydroxycarboxylic acid receptor 3 and GPR84 – Two metabolite-sensing G protein-coupled receptors with opposing functions in innate immune cells. Pharmacol Res 2022; 176:106047. [DOI: 10.1016/j.phrs.2021.106047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/21/2022]
|
57
|
Strassheim D, Sullivan T, Irwin DC, Gerasimovskaya E, Lahm T, Klemm DJ, Dempsey EC, Stenmark KR, Karoor V. Metabolite G-Protein Coupled Receptors in Cardio-Metabolic Diseases. Cells 2021; 10:3347. [PMID: 34943862 PMCID: PMC8699532 DOI: 10.3390/cells10123347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022] Open
Abstract
G protein-coupled receptors (GPCRs) have originally been described as a family of receptors activated by hormones, neurotransmitters, and other mediators. However, in recent years GPCRs have shown to bind endogenous metabolites, which serve functions other than as signaling mediators. These receptors respond to fatty acids, mono- and disaccharides, amino acids, or various intermediates and products of metabolism, including ketone bodies, lactate, succinate, or bile acids. Given that many of these metabolic processes are dysregulated under pathological conditions, including diabetes, dyslipidemia, and obesity, receptors of endogenous metabolites have also been recognized as potential drug targets to prevent and/or treat metabolic and cardiovascular diseases. This review describes G protein-coupled receptors activated by endogenous metabolites and summarizes their physiological, pathophysiological, and potential pharmacological roles.
Collapse
Affiliation(s)
- Derek Strassheim
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Timothy Sullivan
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - David C. Irwin
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Evgenia Gerasimovskaya
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Tim Lahm
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health Denver, Denver, CO 80206, USA;
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
| | - Dwight J. Klemm
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Edward C. Dempsey
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kurt R. Stenmark
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Vijaya Karoor
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health Denver, Denver, CO 80206, USA;
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
58
|
Selecting Hub Genes and Predicting Target Genes of microRNAs in Tuberculosis via the Bioinformatics Analysis. Genet Res (Camb) 2021; 2021:6226291. [PMID: 34803519 PMCID: PMC8572619 DOI: 10.1155/2021/6226291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/31/2021] [Accepted: 10/07/2021] [Indexed: 01/22/2023] Open
Abstract
Tuberculosis (TB) is the world's most prevalently infectious disease. Molecular mechanisms behind tuberculosis remain unknown. microRNA (miRNA) is involved in a wide variety of diseases. To validate the significant genes and miRNAs in the current sample, two messenger RNA (mRNA) expression profile datasets and three miRNA expression profile datasets were downloaded from the Gene Expression Omnibus (GEO) database. The differentially expressed (DE) genes (DEGs) and miRNAs (DE miRNAs) between healthy and TB patients were filtered out. Enrichment analysis was executed, and a protein-protein interaction (PPI) network was developed to understand the enrich pathways and hub genes of TB. Additionally, the target genes of miRNA were predicted and overlapping target genes were identified. We studied a total of 181 DEGs (135 downregulated and 46 upregulated genes) and two DE miRNAs (2 downregulated miRNAs) from two gene profile datasets and three miRNA profile datasets, respectively. 10 hub genes were defined based on high degree of connectivity. A PPI network's top module was constructed. The 23 DEGs identified have a significant relationship with miRNAs. 25 critically significant Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were discovered. The detailed study revealed that, in tuberculosis, the DE miRNA and DEGs form an interaction network. The identification of novel target genes and main pathways would aid with our understanding of miRNA's function in tuberculosis progression.
Collapse
|
59
|
Conte E. Targeting monocytes/macrophages in fibrosis and cancer diseases: Therapeutic approaches. Pharmacol Ther 2021; 234:108031. [PMID: 34774879 DOI: 10.1016/j.pharmthera.2021.108031] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/19/2021] [Accepted: 11/02/2021] [Indexed: 02/08/2023]
Abstract
Over almost 140 years since their identification, the knowledge about macrophages has unbelievably evolved. The 'big eaters' from being thought of as simple phagocytic cells have been recognized as master regulators in immunity, homeostasis, healing/repair and organ development. Long considered to originate exclusively from bone marrow-derived circulating monocytes, macrophages have been also demonstrated to be the first immune cells colonizing tissues in the developing embryo and persisting in adult life by self-renewal, as long-lived tissue resident macrophages. Therefore, heterogeneous populations of macrophages with different ontogeny and functions co-exist in tissues. Macrophages act as sentinels of homeostasis and are intrinsically programmed to lead the wound healing and repair processes that occur after injury. However, in certain pathological circumstances macrophages get dysfunctional, and impaired or aberrant macrophage activities become key features of diseases. For instance, in both fibrosis and cancer, that have been defined 'wounds that do not heal', dysfunctional monocyte-derived macrophages overall play a key detrimental role. On the other hand, due to their plasticity these cells can be 're-educated' and exert anti-fibrotic and anti-cancer functions. Therefore macrophages represent an important therapeutic target in both fibrosis and cancer diseases. The current review will illustrate new insights into the role of monocytes/macrophages in these devastating diseases and summarize new therapeutic strategies and applications of macrophage-targeted drug development in their clinical setting.
Collapse
|
60
|
Wen ZQ, Liu D, Zhang Y, Cai ZJ, Xiao WF, Li YS. G Protein-Coupled Receptors in Osteoarthritis: A Novel Perspective on Pathogenesis and Treatment. Front Cell Dev Biol 2021; 9:758220. [PMID: 34746150 PMCID: PMC8564363 DOI: 10.3389/fcell.2021.758220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/27/2021] [Indexed: 11/30/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are transmembrane receptor proteins that trigger numerous intracellular signaling pathways in response to the extracellular stimuli. The GPCRs superfamily contains enormous structural and functional diversity and mediates extensive biological processes. Until now, critical roles have been established in many diseases, including osteoarthritis (OA). Existing studies have shown that GPCRs play an important role in some OA-related pathogenesis, such as cartilage matrix degradation, synovitis, subchondral bone remodeling, and osteophyte formation. However, current pharmacological treatments are mostly symptomatic and there is a paucity of disease-modifying OA drugs so far. Targeting GPCRs is capable of inhibiting cartilage matrix degradation and synovitis and up-regulating cartilage matrix synthesis, providing a new therapeutic strategy for OA. In this review, we have comprehensively summarized the structures, biofunctions, and the novel roles of GPCRs in the pathogenesis and treatment of OA, which is expected to lay the foundation for the development of novel therapeutics against OA. Even though targeting GPCRs may ameliorate OA progression, many GPCRs-related therapeutic strategies are still in the pre-clinical stage and require further investigation.
Collapse
Affiliation(s)
- Ze-Qin Wen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Di Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Yi Zhang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zi-Jun Cai
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Feng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yu-Sheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
61
|
Teng F, Tang W, Wuniqiemu T, Qin J, Zhou Y, Huang X, Wang S, Zhu X, Tang Z, Yi L, Wei Y, Dong J. N 6-Methyladenosine Methylomic Landscape of Lung Tissues in Murine Acute Allergic Asthma. Front Immunol 2021; 12:740571. [PMID: 34737744 PMCID: PMC8560743 DOI: 10.3389/fimmu.2021.740571] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022] Open
Abstract
Allergic asthma is well known as a common respiratory disorder comprising an allergic inflammatory nature and excessive immune characteristic. N 6-methyladenosine (m6A) methylation is an RNA epigenetic modification that post-transcriptionally regulates gene expression and function by affecting the RNA fate. Currently, m6A methylation is gaining attention as a mechanism of immunoregulation. However, whether m6A methylation engages the pathological process of asthma remains uncertain. Here, we present the m6A methylomic landscape in the lung tissues of ovalbumin-induced acute asthma mice using MeRIP-seq and RNA-seq. We identified 353 hypermethylated m6A peaks within 329 messenger RNAs (mRNAs) and 150 hypomethylated m6A peaks within 143 mRNAs in the lung tissues of asthmatic mice. These differentially methylated mRNAs were found to be involved in several immune function-relevant signaling pathways. In addition, we predicted 25 RNA-binding proteins that recognize the differentially methylated peak sites by exploring public databases, and the roles of these proteins are mostly related to mRNA biogenesis and metabolism. To further investigate the expression levels of the differentially methylated genes, we performed combined analysis of the m6A methylome and transcriptome data and identified 127 hypermethylated mRNAs (107 high and 20 low expression) and 43 hypomethylated mRNAs with differential expressions (9 high and 34 low expression). Of these, there are a list of mRNAs involved in immune function and regulation. The present results highlight the essential role of m6A methylation in the pathogenesis of asthma.
Collapse
Affiliation(s)
- Fangzhou Teng
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Weifeng Tang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Tulake Wuniqiemu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jingjing Qin
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Yaolong Zhou
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Xi Huang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Shiyuan Wang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Xueyi Zhu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Zhao Tang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - La Yi
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Ying Wei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.,Institutes of Integrative Medicine, Fudan University, Shanghai, China
| |
Collapse
|
62
|
Jenkins L, Marsango S, Mancini S, Mahmud ZA, Morrison A, McElroy SP, Bennett KA, Barnes M, Tobin AB, Tikhonova IG, Milligan G. Discovery and Characterization of Novel Antagonists of the Proinflammatory Orphan Receptor GPR84. ACS Pharmacol Transl Sci 2021; 4:1598-1613. [PMID: 34661077 PMCID: PMC8506611 DOI: 10.1021/acsptsci.1c00151] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Indexed: 01/30/2023]
Abstract
![]()
GPR84 is a poorly
characterized, nominally orphan, proinflammatory
G protein-coupled receptor that can be activated by medium chain length
fatty acids. It is attracting considerable interest as a potential
therapeutic target for antagonist ligands in both inflammatory bowel
diseases and idiopathic pulmonary fibrosis. Successful screening of
more than 300 000 compounds from a small molecule library followed
by detailed analysis of some 50 drug-like hits identified 3-((5,6-bis(4-methoxyphenyl)-1,2,4-triazin-3-yl)methyl)-1H-indole as a high affinity and highly selective competitive
antagonist of human GPR84. Tritiation of a di-iodinated form of the
core structure produced [3H]3-((5,6-diphenyl-1,2,4-triazin-3-yl)methyl)-1H-indole, which allowed effective measurement of receptor
levels in both transfected cell lines and lipopolysaccharide-treated
THP-1 monocyte/macrophage cells. Although this compound series lacks
significant affinity at mouse GPR84, homology modeling and molecular
dynamics simulations provided a potential rationale for this difference,
and alteration of two residues in mouse GPR84 to the equivalent amino
acids in the human orthologue, predicted to open the antagonist binding
pocket, validated this model. Sequence alignment of other species
orthologues further predicted binding of the compounds as high affinity
antagonists at macaque, pig, and dog GPR84 but not at the rat orthologue,
and pharmacological experiments confirmed these predictions. These
studies provide a new class of GPR84 antagonists that display species
selectivity defined via receptor modeling and mutagenesis.
Collapse
Affiliation(s)
- Laura Jenkins
- The Centre for Translational Pharmacology, Institute of Molecular, Cellular and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Sara Marsango
- The Centre for Translational Pharmacology, Institute of Molecular, Cellular and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Sarah Mancini
- The Centre for Translational Pharmacology, Institute of Molecular, Cellular and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Zobaer Al Mahmud
- The Centre for Translational Pharmacology, Institute of Molecular, Cellular and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Angus Morrison
- BioAscent Discovery Ltd., Bo'Ness Road, Newhouse, Lanarkshire ML1 5UH, United Kingdom
| | - Stuart P McElroy
- BioAscent Discovery Ltd., Bo'Ness Road, Newhouse, Lanarkshire ML1 5UH, United Kingdom
| | - Kirstie A Bennett
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| | - Matt Barnes
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge CB21 6DG, United Kingdom
| | - Andrew B Tobin
- The Centre for Translational Pharmacology, Institute of Molecular, Cellular and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Irina G Tikhonova
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Graeme Milligan
- The Centre for Translational Pharmacology, Institute of Molecular, Cellular and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
63
|
SLC2A5 Correlated with Immune Infiltration: A Candidate Diagnostic and Prognostic Biomarker for Lung Adenocarcinoma. J Immunol Res 2021; 2021:9938397. [PMID: 34604392 PMCID: PMC8483904 DOI: 10.1155/2021/9938397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 08/20/2021] [Indexed: 11/18/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is a major subtype of lung cancer with a relatively poor prognosis, requiring novel therapeutic approaches. Great advances in new immunotherapy strategies have shown encouraging results in lung cancer patients. This study is aimed at elucidating the function of SLC2A5 in the prognosis and pathogenesis of LUAD by analyzing public databases. The differential expression of SLC2A5 in various tissues from Oncomine, GEPIA, and other databases was obtained, and SLC2A5 expression at the protein level in normal and tumor tissues was detected with the use of the HPA database. Then, we used the UALCAN database to analyze the expression of SLC2A5 in different clinical feature subgroups. Notably, in both PrognoScan and Kaplan-Meier plotter databases, we found a certain association between SLC2A5 and poor OS outcomes in LUAD patients. Studies based on the TIMER database show a strong correlation between SLC2A5 expression and various immune cell infiltrates and markers. The data analysis in the UALCAN database showed that the decreased promoter methylation level of SLC2A5 in LUAD may lead to the high expression of SLC2A5. Finally, we used the LinkedOmics database to evaluate the SLC2A5-related coexpression and functional networks in LUAD and to investigate their role in tumor immunity. These findings suggest that SLC2A5 correlated with immune infiltration can be used as a candidate diagnostic and prognostic biomarker in LUAD patients.
Collapse
|
64
|
Inter-cellular CRISPR screens reveal regulators of cancer cell phagocytosis. Nature 2021; 597:549-554. [PMID: 34497417 PMCID: PMC9419706 DOI: 10.1038/s41586-021-03879-4] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 08/05/2021] [Indexed: 02/08/2023]
Abstract
Monoclonal antibody therapies targeting tumour antigens drive cancer cell elimination in large part by triggering macrophage phagocytosis of cancer cells1-7. However, cancer cells evade phagocytosis using mechanisms that are incompletely understood. Here we develop a platform for unbiased identification of factors that impede antibody-dependent cellular phagocytosis (ADCP) using complementary genome-wide CRISPR knockout and overexpression screens in both cancer cells and macrophages. In cancer cells, beyond known factors such as CD47, we identify many regulators of susceptibility to ADCP, including the poorly characterized enzyme adipocyte plasma membrane-associated protein (APMAP). We find that loss of APMAP synergizes with tumour antigen-targeting monoclonal antibodies and/or CD47-blocking monoclonal antibodies to drive markedly increased phagocytosis across a wide range of cancer cell types, including those that are otherwise resistant to ADCP. Additionally, we show that APMAP loss synergizes with several different tumour-targeting monoclonal antibodies to inhibit tumour growth in mice. Using genome-wide counterscreens in macrophages, we find that the G-protein-coupled receptor GPR84 mediates enhanced phagocytosis of APMAP-deficient cancer cells. This work reveals a cancer-intrinsic regulator of susceptibility to antibody-driven phagocytosis and, more broadly, expands our knowledge of the mechanisms governing cancer resistance to macrophage phagocytosis.
Collapse
|
65
|
Boehme M, Guzzetta KE, Bastiaanssen TFS, van de Wouw M, Moloney GM, Gual-Grau A, Spichak S, Olavarría-Ramírez L, Fitzgerald P, Morillas E, Ritz NL, Jaggar M, Cowan CSM, Crispie F, Donoso F, Halitzki E, Neto MC, Sichetti M, Golubeva AV, Fitzgerald RS, Claesson MJ, Cotter PD, O'Leary OF, Dinan TG, Cryan JF. Microbiota from young mice counteracts selective age-associated behavioral deficits. NATURE AGING 2021; 1:666-676. [PMID: 37117767 DOI: 10.1038/s43587-021-00093-9] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 06/25/2021] [Indexed: 04/30/2023]
Abstract
The gut microbiota is increasingly recognized as an important regulator of host immunity and brain health. The aging process yields dramatic alterations in the microbiota, which is linked to poorer health and frailty in elderly populations. However, there is limited evidence for a mechanistic role of the gut microbiota in brain health and neuroimmunity during aging processes. Therefore, we conducted fecal microbiota transplantation from either young (3-4 months) or old (19-20 months) donor mice into aged recipient mice (19-20 months). Transplant of a microbiota from young donors reversed aging-associated differences in peripheral and brain immunity, as well as the hippocampal metabolome and transcriptome of aging recipient mice. Finally, the young donor-derived microbiota attenuated selective age-associated impairments in cognitive behavior when transplanted into an aged host. Our results reveal that the microbiome may be a suitable therapeutic target to promote healthy aging.
Collapse
Affiliation(s)
- Marcus Boehme
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Katherine E Guzzetta
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Thomaz F S Bastiaanssen
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | | | - Gerard M Moloney
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | | | - Simon Spichak
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | | | | | | | - Nathaniel L Ritz
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Minal Jaggar
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Fiona Crispie
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Francisco Donoso
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Evelyn Halitzki
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Marta C Neto
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Marzia Sichetti
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Anna V Golubeva
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Rachel S Fitzgerald
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Marcus J Claesson
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Paul D Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Olivia F O'Leary
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
66
|
Han FY, Conboy‐Schmidt L, Rybachuk G, Volk HA, Zanghi B, Pan Y, Borges K. Dietary medium chain triglycerides for management of epilepsy: New data from human, dog, and rodent studies. Epilepsia 2021; 62:1790-1806. [PMID: 34169513 PMCID: PMC8453917 DOI: 10.1111/epi.16972] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 12/17/2022]
Abstract
Many studies show that glucose metabolism in epileptic brain areas can be impaired. Energy is crucial to maintain normal brain function, including ion and neurotransmitter balances. Energy deficits can lead to disruption of ion gradients, which can trigger neuronal depolarization and generation of seizures. Thus, perturbed metabolic processing of glucose in epileptogenic brain areas indicates a specific nutritional need for people and animals with epilepsy, as they are likely to benefit from auxiliary brain fuels other than glucose. Ketogenic diets provide the ketone bodies acetoacetate and β-hydroxybutyrate, which can be used as auxiliary fuel by the brain. In approximately 50% children and adults with certain types of epilepsy, who can tolerate and maintain these dietary regimens, seizure frequency can be effectively reduced. More recent data demonstrate that addition of medium chain triglycerides (MCTs), which provide the medium chain fatty acids octanoic and decanoic acid, as well as ketone bodies as auxiliary brain energy, can be beneficial in rodent seizure models, and dogs and humans with epilepsy. Here, this evidence is reviewed, including tolerance in 65% of humans, efficacy studies in dogs, possible anticonvulsant mechanisms of actions of MCTs, and specifically decanoic acid as well as metabolic and antioxidant mechanisms. In conclusion, MCTs are a promising adjunct to standard pharmacological treatment for both humans and dogs with epilepsy, as they lack central nervous system side effects found with current antiepileptic drugs. There is now a need for larger clinical trials in children, adults, and dogs to find the ideal composition and doses of MCTs and the types of epilepsy that respond best.
Collapse
Affiliation(s)
- Felicity Y. Han
- Faculty of MedicineSchool of Biomedical SciencesUniversity of QueenslandSt. LuciaQueenslandAustralia
| | | | - Galena Rybachuk
- Technical CommunicationsNestlé Purina PetCare EMENABarcelonaSpain
| | - Holger A. Volk
- Department of Small Animal Medicine and SurgeryUniversity of Veterinary MedicineHanoverGermany
| | - Brian Zanghi
- Research and DevelopmentNestlé Purina PetCareSt. LouisMissouriUSA
| | - Yuanlong Pan
- Research and DevelopmentNestlé Purina PetCareSt. LouisMissouriUSA
| | - Karin Borges
- Faculty of MedicineSchool of Biomedical SciencesUniversity of QueenslandSt. LuciaQueenslandAustralia
| |
Collapse
|
67
|
Immune-metabolic receptor GPR84 surrogate and endogenous agonists, 6-OAU and lauric acid, alter Brucella abortus 544 infection in both in vitro and in vivo systems. Microb Pathog 2021; 158:105079. [PMID: 34245824 DOI: 10.1016/j.micpath.2021.105079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 01/18/2023]
Abstract
Brucella abortus, one of the most important members of the genus Brucella responsible for human disease, is an intracellular pathogen capable of avoiding or interfering components of the host immune responses that are critical for its virulence. GPR84, on the other hand, is a seven-transmembrane GPCR involved in the inflammatory response and its induced expression was associated with B. abortus infection of RAW264.7 cells. Here we examined the effects of the reported GPR84 surrogate and endogenous agonists, namely 6-n-octylaminouracil (6-OAU) and lauric acid (LU), respectively in the progression of B. abortus infection in a cell and mouse models. The in vitro studies revealed the LU had bactericidal effect against Brucella starting at 24 h post-incubation. Adhesion of Brucella to RAW264.7 cells was attenuated in both 6-OAU and LU treatments. Brucella uptake was observed to be inhibited in a dose and time-dependent manner in 6-OAU but only at the highest non-cytotoxic concentration in LU-treated cells. However, survival of Brucella within the cells was reduced only in LU-treated cells. We also investigated the possible inhibitory effects of the agonist in other Gram-negative bacterium, Salmonella Typhimurium and we found that both adhesion and uptake were inhibited in 6-OAU treatment and only the intracellular survival for LU treatment. Furthermore, 6-OAU treatment reduced ERK phosphorylation and MCP-1 secretion during Brucella infection as well as reduced MALT1 protein expression and ROS production in cells without infection. LU treatment attenuated ERK and JNK phosphorylation, MCP-1 secretion and NO accumulation but increased ROS production during infection, and similar pattern with MALT1 protein expression. The in vivo studies showed that both treatments via oral route augmented resistance to Brucella infection but more pronounced with 6-AOU as observed with reduced bacterial proliferation in spleens and livers. At 7 d post-treatment and 14 d post-infection, 6-OAU-treated mice displayed reduced IFN-γ serum level. At 7 d post-infection, high serum level of MCP-1 was observed in both treatments with the addition of TNF-α in LU group. IL-6 was increased in both treatments at 14 d post-infection with higher TNF-α, MCP-1 and IL-10 in LU group. Taken together, 6-OAU and LU are potential candidates representing pharmaceutical strategy against brucellosis and possibly other intracellular pathogens or inflammatory diseases.
Collapse
|
68
|
Huang L, Gao L, Chen C. Role of Medium-Chain Fatty Acids in Healthy Metabolism: A Clinical Perspective. Trends Endocrinol Metab 2021; 32:351-366. [PMID: 33832826 DOI: 10.1016/j.tem.2021.03.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 12/22/2022]
Abstract
Medium-chain fatty acids (MCFAs) serve not only as an energy source but also regulate glucose and lipid metabolism. The unique transport and rapid metabolism of MCFAs provide additional clinical benefits over other substrates such as long-chain fatty acids (LCFAs) and have prompted interest in the use of MCFAs for treating metabolic and neurological disorders. This review focuses on the metabolic role of MCFAs in modulating cellular signaling and regulating key circulating metabolites and hormones. The potential of MCFAs in treating various metabolic diseases in a clinical setting has also been analyzed.
Collapse
Affiliation(s)
- Lili Huang
- School of Biomedical Science and Institute for Molecular Bioscience, University of Queensland, St Lucia, Brisbane, Australia
| | - Lin Gao
- School of Biomedical Science and Institute for Molecular Bioscience, University of Queensland, St Lucia, Brisbane, Australia
| | - Chen Chen
- School of Biomedical Science and Institute for Molecular Bioscience, University of Queensland, St Lucia, Brisbane, Australia.
| |
Collapse
|
69
|
Timmis H, Van Kaem T, Desrivot J, Dupont S, Meuleners L, Beetens J, Helmer E, Santermans E, Huettner S. GLPG1205, a GPR84 Modulator: Safety, Pharmacokinetics, and Pharmacodynamics in Healthy Subjects. Clin Pharmacol Drug Dev 2021; 10:994-1006. [PMID: 33960725 PMCID: PMC8453901 DOI: 10.1002/cpdd.955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/22/2021] [Indexed: 12/27/2022]
Abstract
GLPG1205 is a modulator of GPR84, a G‐protein–coupled receptor reported to be associated with several diseases. Safety, tolerability, pharmacokinetics, and pharmacodynamics of GLPG1205 in healthy subjects were evaluated in 2 randomized, double‐blind, placebo‐controlled, single‐site, phase 1 studies. In study 1, 16 (aged 21‐48 years) and 24 (24‐50 years) healthy men received single doses of GLPG1205 10 to 800 mg, and GLPG1205 50, 100, or 200 mg once daily for 14 days, respectively, or placebo. Study 2 evaluated the effect of aging on GLPG1205 pharmacokinetics: 24 healthy men (aged 37–83 years), weight‐matched into 3 age cohorts (65‐74, ≥75, and 18‐50 years), received GLPG1205 50 mg or placebo once daily for 14 days; an open‐label part of this study evaluated a GLPG1205 250‐mg loading dose followed by 50 mg once daily for 13 days in 8 healthy men (aged 68‐74 years). Single (up to 800 mg) and multiple (maximum tolerated dose 100 mg once daily) GLPG1205 doses had favorable safety and tolerability profiles. After single administration of GLPG1205, median time to occurrence of maximum observed plasma concentration and arithmetic mean apparent terminal half‐life ranged from 2.0 to 4.0 and from 30.1 to 140 hours, respectively. Age did not affect GLPG1205 exposure. GPR84 receptor occupancy with GLPG1205 vs placebo confirmed target engagement. These results support further clinical development of GLPG1205.
Collapse
|
70
|
Verkerke ARP, Kajimura S. Oil does more than light the lamp: The multifaceted role of lipids in thermogenic fat. Dev Cell 2021; 56:1408-1416. [PMID: 34004150 DOI: 10.1016/j.devcel.2021.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/25/2021] [Accepted: 04/16/2021] [Indexed: 01/23/2023]
Abstract
Brown and beige adipocytes, or thermogenic fat, were initially thought to be merely a thermogenic organ. However, emerging evidence suggests its multifaceted roles in the regulation of systemic glucose and lipid homeostasis that go beyond enhancing thermogenesis. One of the important functions of thermogenic fat is as a "metabolic sink" for glucose, fatty acids, and amino acids, which profoundly impacts metabolite clearance and oxidation. Importantly, lipids are not only the predominant fuel source used for thermogenesis but are also essential molecules for development, cellular signaling, and structural components. Here, we review the multifaceted role of lipids in thermogenic adipocytes.
Collapse
Affiliation(s)
- Anthony R P Verkerke
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Shingo Kajimura
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
71
|
Zhao M, Wang Z, Yang M, Ding Y, Zhao M, Wu H, Zhang Y, Lu Q. The Roles of Orphan G Protein-Coupled Receptors in Autoimmune Diseases. Clin Rev Allergy Immunol 2021; 60:220-243. [PMID: 33411320 DOI: 10.1007/s12016-020-08829-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2020] [Indexed: 12/26/2022]
Abstract
G protein-coupled receptors (GPCRs) constitute the largest family of plasma membrane receptors in nature and mediate the effects of a variety of extracellular signals, such as hormone, neurotransmitter, odor, and light signals. Due to their involvement in a broad range of physiological and pathological processes and their accessibility, GPCRs are widely used as pharmacological targets of treatment. Orphan G protein-coupled receptors (oGPCRs) are GPCRs for which no natural ligands have been found, and they not only play important roles in various physiological functions, such as sensory perception, reproduction, development, growth, metabolism, and responsiveness, but are also closely related to many major diseases, such as central nervous system (CNS) diseases, metabolic diseases, and cancer. Recently, many studies have reported that oGPCRs play increasingly important roles as key factors in the occurrence and progression of autoimmune diseases. Therefore, oGPCRs are likely to become potential therapeutic targets and may provide a breakthrough in the study of autoimmune diseases. In this article, we focus on reviewing the recent research progress and clinical treatment effects of oGPCRs in three common autoimmune diseases: multiple sclerosis (MS), rheumatoid arthritis (RA), and systemic lupus erythematosus (SLE), shedding light on novel strategies for treatments.
Collapse
Affiliation(s)
- Mingming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zheyu Wang
- University of South China, Hengyang, Hunan, China.,Maternal & Child Health Care Hospital Hainan Province, Haikou, Hainan, China
| | - Ming Yang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Ding
- Maternal & Child Health Care Hospital Hainan Province, Haikou, Hainan, China.,Hainan Province Dermatol Disease Hospital, Haikou, Hainan, China
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Yan Zhang
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China. .,Zhejiang Laboratory for Systems & Precison Medicine, Zhejiang University Medical Center, Hangzhou, 311121, China. .,Zhejiang Provincial Key Laboratory of Immunity and Inflammatory Diseases, Hangzhou, 310058, China. .,MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
| |
Collapse
|
72
|
Cooper PO, Haas MR, Noonepalle SKR, Shook BA. Dermal Drivers of Injury-Induced Inflammation: Contribution of Adipocytes and Fibroblasts. Int J Mol Sci 2021; 22:1933. [PMID: 33669239 PMCID: PMC7919834 DOI: 10.3390/ijms22041933] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 02/07/2023] Open
Abstract
Irregular inflammatory responses are a major contributor to tissue dysfunction and inefficient repair. Skin has proven to be a powerful model to study mechanisms that regulate inflammation. In particular, skin wound healing is dependent on a rapid, robust immune response and subsequent dampening of inflammatory signaling. While injury-induced inflammation has historically been attributed to keratinocytes and immune cells, a vast body of evidence supports the ability of non-immune cells to coordinate inflammation in numerous tissues and diseases. In this review, we concentrate on the active participation of tissue-resident adipocytes and fibroblasts in pro-inflammatory signaling after injury, and how altered cellular communication from these cells can contribute to irregular inflammation associated with aberrant wound healing. Furthering our understanding of how tissue-resident mesenchymal cells contribute to inflammation will likely reveal new targets that can be manipulated to regulate inflammation and repair.
Collapse
Affiliation(s)
| | | | | | - Brett A. Shook
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA; (P.O.C.); (M.R.H.); (S.k.R.N.)
| |
Collapse
|
73
|
Xin G, Chen Y, Topchyan P, Kasmani MY, Burns R, Volberding PJ, Wu X, Cohn A, Chen Y, Lin CW, Ho PC, Silverstein R, Dwinell MB, Cui W. Targeting PIM1-Mediated Metabolism in Myeloid Suppressor Cells to Treat Cancer. Cancer Immunol Res 2021; 9:454-469. [PMID: 33579728 DOI: 10.1158/2326-6066.cir-20-0433] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 11/18/2020] [Accepted: 02/10/2021] [Indexed: 12/24/2022]
Abstract
There is a strong correlation between myeloid-derived suppressor cells (MDSC) and resistance to immune checkpoint blockade (ICB), but the detailed mechanisms underlying this correlation are largely unknown. Using single-cell RNA sequencing analysis in a bilateral tumor model, we found that immunosuppressive myeloid cells with characteristics of fatty acid oxidative metabolism dominate the immune-cell landscape in ICB-resistant subjects. In addition, we uncovered a previously underappreciated role of a serine/threonine kinase, PIM1, in regulating lipid oxidative metabolism via PPARγ-mediated activities. Enforced PPARγ expression sufficiently rescued metabolic and functional defects of Pim1 -/- MDSCs. Consistent with this, pharmacologic inhibition of PIM kinase by AZD1208 treatment significantly disrupted the myeloid cell-mediated immunosuppressive microenvironment and unleashed CD8+ T-cell-mediated antitumor immunity, which enhanced PD-L1 blockade in preclinical cancer models. PIM kinase inhibition also sensitized nonresponders to PD-L1 blockade by selectively targeting suppressive myeloid cells. Overall, we have identified PIM1 as a metabolic modulator in MDSCs that is associated with ICB resistance and can be therapeutically targeted to overcome ICB resistance.
Collapse
Affiliation(s)
- Gang Xin
- Versiti Blood Research Institute, Milwaukee, Wisconsin. .,Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, Ohio.,Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Yao Chen
- Versiti Blood Research Institute, Milwaukee, Wisconsin.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Paytsar Topchyan
- Versiti Blood Research Institute, Milwaukee, Wisconsin.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Moujtaba Y Kasmani
- Versiti Blood Research Institute, Milwaukee, Wisconsin.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Robert Burns
- Versiti Blood Research Institute, Milwaukee, Wisconsin
| | - Peter J Volberding
- Versiti Blood Research Institute, Milwaukee, Wisconsin.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Xiaopeng Wu
- Versiti Blood Research Institute, Milwaukee, Wisconsin
| | - Alexandra Cohn
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Yiliang Chen
- Versiti Blood Research Institute, Milwaukee, Wisconsin
| | - Chien-Wei Lin
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ping-Chih Ho
- Department of Oncology, University of Lausanne, Lausanne, Switzerland.,Ludwig Institute of Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Roy Silverstein
- Versiti Blood Research Institute, Milwaukee, Wisconsin.,Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michael B Dwinell
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Center for Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Weiguo Cui
- Versiti Blood Research Institute, Milwaukee, Wisconsin. .,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
74
|
Grundmann M, Bender E, Schamberger J, Eitner F. Pharmacology of Free Fatty Acid Receptors and Their Allosteric Modulators. Int J Mol Sci 2021; 22:ijms22041763. [PMID: 33578942 PMCID: PMC7916689 DOI: 10.3390/ijms22041763] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 12/19/2022] Open
Abstract
The physiological function of free fatty acids (FFAs) has long been regarded as indirect in terms of their activities as educts and products in metabolic pathways. The observation that FFAs can also act as signaling molecules at FFA receptors (FFARs), a family of G protein-coupled receptors (GPCRs), has changed the understanding of the interplay of metabolites and host responses. Free fatty acids of different chain lengths and saturation statuses activate FFARs as endogenous agonists via binding at the orthosteric receptor site. After FFAR deorphanization, researchers from the pharmaceutical industry as well as academia have identified several ligands targeting allosteric sites of FFARs with the aim of developing drugs to treat various diseases such as metabolic, (auto)inflammatory, infectious, endocrinological, cardiovascular, and renal disorders. GPCRs are the largest group of transmembrane proteins and constitute the most successful drug targets in medical history. To leverage the rich biology of this target class, the drug industry seeks alternative approaches to address GPCR signaling. Allosteric GPCR ligands are recognized as attractive modalities because of their auspicious pharmacological profiles compared to orthosteric ligands. While the majority of marketed GPCR drugs interact exclusively with the orthosteric binding site, allosteric mechanisms in GPCR biology stay medically underexploited, with only several allosteric ligands currently approved. This review summarizes the current knowledge on the biology of FFAR1 (GPR40), FFAR2 (GPR43), FFAR3 (GPR41), FFAR4 (GPR120), and GPR84, including structural aspects of FFAR1, and discusses the molecular pharmacology of FFAR allosteric ligands as well as the opportunities and challenges in research from the perspective of drug discovery.
Collapse
Affiliation(s)
- Manuel Grundmann
- Research and Early Development, Bayer Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany;
- Correspondence:
| | - Eckhard Bender
- Drug Discovery Sciences, Bayer Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany; (E.B.); (J.S.)
| | - Jens Schamberger
- Drug Discovery Sciences, Bayer Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany; (E.B.); (J.S.)
| | - Frank Eitner
- Research and Early Development, Bayer Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany;
| |
Collapse
|
75
|
Common and Differential Dynamics of the Function of Peripheral Blood Mononuclear Cells between Holstein and Jersey Cows in Heat-Stress Environment. Animals (Basel) 2020; 11:ani11010019. [PMID: 33374309 PMCID: PMC7824059 DOI: 10.3390/ani11010019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/10/2020] [Accepted: 12/22/2020] [Indexed: 01/06/2023] Open
Abstract
Simple Summary Seasonal change, particularly changing to hot and humid season, has a negative effect on dairy cows in various ways, including productivity, reproduction, metabolism, and immunity. In high-temperature and humid weather, dairy cows are vulnerable to diseases by weakened immune system. However, the cause of this has not been fully described. Therefore, this study aims to understand changes of specific gene expression and immune pathways based on transcriptome analysis from peripheral blood mononuclear cells of Holstein and Jersey dairy cows between normal and heat-stress environmental conditions. We observed that the two breeds of dairy cow have common and different immune shifts according to the changes of temperature and humidity condition. Overall, the findings of this study improve the understanding of the underlying mechanisms by which seasonal changes affect dairy cow immunity. Abstract Heat stress has been reported to affect the immunity of dairy cows. However, the mechanisms through which this occurs are not fully understood. Two breeds of dairy cow, Holstein and Jersey, have distinct characteristics, including productivity, heat resistance, and disease in high-temperature environments. The objective of this study is to understand the dynamics of the immune response of two breeds of dairy cow to environmental change. Ribonucleic acid sequencing (RNA-seq) results were analyzed to characterize the gene expression change of peripheral blood mononuclear cells (PBMCs) in Holstein and Jersey cows between moderate temperature-humidity index (THI) and high THI environmental conditions. Many of the differentially expressed genes (DEGs) identified are associated with critical immunological functions, particularly phagocytosis, chemokines, and cytokine response. Among the DEGs, CXCL3 and IL1A were the top down-regulated genes in both breeds of dairy cow, and many DEGs were related to antimicrobial immunity. Functional analysis revealed that cytokine and chemokine response-associated pathways in both Holstein and Jersey PBMCs were the most important pathways affected by the THI environmental condition. However, there were also breed-specific genes and pathways that altered according to THI environmental condition. Collectively, there were both common and breed-specific altered genes and pathways in Holstein and Jersey cows. The findings of this study expand our understanding of the dynamics of immunity in different breeds of dairy cow between moderate THI and high THI environmental conditions.
Collapse
|
76
|
Chen LH, Zhang Q, Xie X, Nan FJ. Modulation of the G-Protein-Coupled Receptor 84 (GPR84) by Agonists and Antagonists. J Med Chem 2020; 63:15399-15409. [PMID: 33267584 DOI: 10.1021/acs.jmedchem.0c01378] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Since the discovery of medium-chain fatty acids as GPR84 ligands, significant advancements have been made in the development of GPR84 agonists and antagonists. Most agonists have lipid-like structures except for 3,3'-diindolylmethane (DIM), which acts as an allosteric agonist. GPR84 activation in macrophages leads to increased cytokine secretion, chemotaxis, and phagocytosis, revealing the proinflammatory role of GPR84 associated with various inflammatory responses. Three GPR84 antagonists (S)-2-((1,4-dioxan-2-yl)methoxy)-9-(cyclopropylethynyl)-6,7-dihydro-4H-pyrimido[6,1-a]isoquinolin-4-one (GLPG1205), sodium 2-(3-pentylphenyl)acetate (PBI-4050), and sodium 2-(3,5-dipentylphenyl)acetate (PBI-4547) have displayed therapeutic effects in animal models of several inflammatory and fibrotic diseases and are being evaluated in clinical studies. Although GLPG1205 has failed in a clinical trial for ulcerative colitis, it is undergoing another phase II clinical study for idiopathic pulmonary fibrosis. Further studies are needed to resolve the GPR84 structure, identify more endogenous ligands, elucidate their physiological and pathological roles, and fulfill the therapeutic potential of GPR84 antagonists and agonists.
Collapse
Affiliation(s)
- Lin-Hai Chen
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qing Zhang
- CAS Key Laboratory of Receptor Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xin Xie
- CAS Key Laboratory of Receptor Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Fa-Jun Nan
- State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,Yantai Institute of Materia Medica, Shandong 264000, China
| |
Collapse
|
77
|
Regulatory role of Gpr84 in the switch of alveolar macrophages from CD11b lo to CD11b hi status during lung injury process. Mucosal Immunol 2020; 13:892-907. [PMID: 32719411 DOI: 10.1038/s41385-020-0321-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 02/04/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is a kind of comprehensive disease with excessive inflammation and high clinical mortality. Multiple immune cells are involved in the ARDS process. Amongst these populations, lung-resident alveolar macrophages (AMs) are known to participate in the regulation of ARDS. GPR84, a metabolite-sensing GPCR sensing medium-chain fatty acids (MCFAs), is highly expressed in LPS-challenged macrophages and considered as a pro-inflammatory receptor. In this study, it was hypothesized that Gpr84 may be involved in pulmonary homeostasis via its regulatory effect on the switch of AM status. In LPS-induced ALI mouse model, we identified the internal LPS-induced switch of AMs from CD11blo to more inflamed CD11bhi status, which is deeply related to the exacerbated imbalance of homeostasis in the lung injury process. Gpr84 was highly expressed in ALI lung tissues and involved in cytokine release, phagocytosis and status switch of AMs through positive regulatory crosstalk with TLR4-related pathways via CD14 and LBP, which relied on Akt, Erk1/2, and STAT3. If conserved in humans, GPR84 may represent a potential therapeutic target for ARDS.
Collapse
|
78
|
Cipollina G, Davari Serej A, Di Nolfi G, Gazzano A, Marsala A, Spatafora MG, Peviani M. Heterogeneity of Neuroinflammatory Responses in Amyotrophic Lateral Sclerosis: A Challenge or an Opportunity? Int J Mol Sci 2020; 21:E7923. [PMID: 33113845 PMCID: PMC7662281 DOI: 10.3390/ijms21217923] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a complex pathology: (i) the neurodegeneration is chronic and progressive; it starts focally in specific central nervous system (CNS) areas and spreads to different districts; (ii) multiple cell types further than motor neurons (i.e., glial/immune system cells) are actively involved in the disease; (iii) both neurosupportive and neurotoxic neuroinflammatory responses were identified. Microglia cells (a key player of neuroinflammation in the CNS) attracted great interest as potential target cell population that could be modulated to counteract disease progression, at least in preclinical ALS models. However, the heterogeneous/multifaceted microglia cell responses occurring in different CNS districts during the disease represent a hurdle for clinical translation of single-drug therapies. To address this issue, over the past ten years, several studies attempted to dissect the complexity of microglia responses in ALS. In this review, we shall summarize these results highlighting how the heterogeneous signature displayed by ALS microglia reflects not only the extent of neuronal demise in different regions of the CNS, but also variable engagement in the attempts to cope with the neuronal damage. We shall discuss novel avenues opened by the advent of single-cell and spatial transcriptomics technologies, underlining the potential for discovery of novel therapeutic targets, as well as more specific diagnostic/prognostic not-invasive markers of neuroinflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marco Peviani
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, via Ferrata 9, 27100 Pavia, Italy; (G.C.); (A.D.S.); (G.D.N.); (A.G.); (A.M.); (M.G.S.)
| |
Collapse
|
79
|
Wen Y, Lambrecht J, Ju C, Tacke F. Hepatic macrophages in liver homeostasis and diseases-diversity, plasticity and therapeutic opportunities. Cell Mol Immunol 2020; 18:45-56. [PMID: 33041338 DOI: 10.1038/s41423-020-00558-8] [Citation(s) in RCA: 332] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023] Open
Abstract
Macrophages, which are key cellular components of the liver, have emerged as essential players in the maintenance of hepatic homeostasis and in injury and repair processes in acute and chronic liver diseases. Upon liver injury, resident Kupffer cells (KCs) sense disturbances in homeostasis, interact with hepatic cell populations and release chemokines to recruit circulating leukocytes, including monocytes, which subsequently differentiate into monocyte-derived macrophages (MoMϕs) in the liver. Both KCs and MoMϕs contribute to both the progression and resolution of tissue inflammation and injury in various liver diseases. The diversity of hepatic macrophage subsets and their plasticity explain their different functional responses in distinct liver diseases. In this review, we highlight novel findings regarding the origins and functions of hepatic macrophages and discuss the potential of targeting macrophages as a therapeutic strategy for liver disease.
Collapse
Affiliation(s)
- Yankai Wen
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Joeri Lambrecht
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Cynthia Ju
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany.
| |
Collapse
|
80
|
Luscombe VB, Lucy D, Bataille CJR, Russell AJ, Greaves DR. 20 Years an Orphan: Is GPR84 a Plausible Medium-Chain Fatty Acid-Sensing Receptor? DNA Cell Biol 2020; 39:1926-1937. [PMID: 33001759 DOI: 10.1089/dna.2020.5846] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
GPR84 is an inflammation-induced receptor highly expressed on immune cells, yet its endogenous ligand is still unknown. This makes any interpretation of its physiological activity in vivo difficult. However, experiments with potent synthetic agonists have highlighted what the receptor can do, namely, enhance proinflammatory signaling and macrophage effector functions such as phagocytosis. Developing drugs to block these effects has attracted interest from the scientific community with the aim of decreasing disease activity in inflammatory disorders or enhancing inflammation resolution. In this review, we critically reassess the widely held belief that the major role of GPR84 is that of being a medium-chain fatty acid (MCFA) receptor. While MCFAs have been shown to activate GPR84, it remains to be demonstrated that they are present in relevant tissues at appropriate concentrations. In contrast to four other "full-time" free fatty acid receptor subtypes, GPR84 is not expressed by enteroendocrine cells and has limited expression in the gastrointestinal tract. Across multiple tissues and cell types, the highest expression levels of GPR84 are observed hours after exposure to an inflammatory stimulus. These factors obscure the relationship between ligand and receptor in the human body and do not support the exclusive physiological pairing of MCFAs with GPR84. To maximize the chances of developing efficacious drugs for inflammatory diseases, we must advance our understanding of GPR84 and what it does in vivo.
Collapse
Affiliation(s)
- Vincent B Luscombe
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Daniel Lucy
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom.,Department of Chemistry and University of Oxford, Oxford, United Kingdom
| | | | - Angela J Russell
- Department of Chemistry and University of Oxford, Oxford, United Kingdom.,Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - David R Greaves
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
81
|
Marsango S, Barki N, Jenkins L, Tobin AB, Milligan G. Therapeutic validation of an orphan G protein-coupled receptor: The case of GPR84. Br J Pharmacol 2020; 179:3529-3541. [PMID: 32869860 PMCID: PMC9361006 DOI: 10.1111/bph.15248] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/04/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
Despite the importance of members of the GPCR superfamily as targets of a broad range of effective medicines many GPCRs remain poorly characterised. GPR84 is an example. Expression of GPR84 is strongly up regulated in immune cells in a range of pro-inflammatory settings and clinical trials to treat idiopathic pulmonary fibrosis are currently ongoing using ligands with differing levels of selectivity and affinity as GPR84 antagonists. Although blockade of GPR84 may potentially prove effective also in diseases associated with inflammation of the lower gut there is emerging interest in defining if agonists of GPR84 might find utility in conditions in which regulation of metabolism or energy sensing is compromised. Here, we consider the physiological and pathological expression profile of GPR84 and, in the absence of direct structural information, recent developments and use of GPR84 pharmacological tool compounds to study its broader role and biology.
Collapse
Affiliation(s)
- Sara Marsango
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Natasja Barki
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Laura Jenkins
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Andrew B Tobin
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Graeme Milligan
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
82
|
Purvis GSD, Collino M, Aranda-Tavio H, Chiazza F, O'Riordan CE, Zeboudj L, Mohammad S, Collotta D, Verta R, Guisot NES, Bunyard P, Yaqoob MM, Greaves DR, Thiemermann C. Inhibition of Bruton's TK regulates macrophage NF-κB and NLRP3 inflammasome activation in metabolic inflammation. Br J Pharmacol 2020; 177:4416-4432. [PMID: 32608058 PMCID: PMC7484557 DOI: 10.1111/bph.15182] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 06/11/2020] [Accepted: 06/14/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE There are no medications currently available to treat metabolic inflammation. Bruton's tyrosine kinase (BTK) is highly expressed in monocytes and macrophages and regulates NF-κB and NLRP3 inflammasome activity; both propagate metabolic inflammation in diet-induced obesity. EXPERIMENTAL APPROACH Using an in vivo model of chronic inflammation, high-fat diet (HFD) feeding, in male C57BL/6J mice and in vitro assays in primary murine and human macrophages, we investigated if ibrutinib, an FDA approved BTK inhibitor, may represent a novel anti-inflammatory medication to treat metabolic inflammation. KEY RESULTS HFD-feeding was associated with increased BTK expression and activation, which was significantly correlated with monocyte/macrophage accumulation in the liver, adipose tissue, and kidney. Ibrutinib treatment to HFD-fed mice inhibited the activation of BTK and reduced monocyte/macrophage recruitment to the liver, adipose tissue, and kidney. Ibrutinib treatment to HFD-fed mice decreased the activation of NF-κB and the NLRP3 inflammasome. As a result, ibrutinib treated mice fed HFD had improved glycaemic control through restored signalling by the IRS-1/Akt/GSK-3β pathway, protecting mice against the development of hepatosteatosis and proteinuria. We show that BTK regulates NF-κB and the NLRP3 inflammasome specifically in primary murine and human macrophages, the in vivo cellular target of ibrutinib. CONCLUSION AND IMPLICATIONS We provide "proof of concept" evidence that BTK is a novel therapeutic target for the treatment of diet-induced metabolic inflammation and ibrutinib may be a candidate for drug repurposing as an anti-inflammatory agent for the treatment of metabolic inflammation in T2D and microvascular disease.
Collapse
Affiliation(s)
- Gareth S D Purvis
- William Harvey Research Institute, Queen Mary University of London, London, UK.,Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Massimo Collino
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | | | - Fausto Chiazza
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | | | - Lynda Zeboudj
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Shireen Mohammad
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Debora Collotta
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Roberta Verta
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | | | | | - Magdi M Yaqoob
- William Harvey Research Institute, Queen Mary University of London, London, UK.,Centre for Diabetic Kidney Disease, Bart's and The London Hospital, London, UK
| | - David R Greaves
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Christoph Thiemermann
- William Harvey Research Institute, Queen Mary University of London, London, UK.,Centre for Diabetic Kidney Disease, Bart's and The London Hospital, London, UK
| |
Collapse
|
83
|
Simard JC, Thibodeau JF, Leduc M, Tremblay M, Laverdure A, Sarra-Bournet F, Gagnon W, Ouboudinar J, Gervais L, Felton A, Letourneau S, Geerts L, Cloutier MP, Hince K, Corpuz R, Blais A, Quintela VM, Duceppe JS, Abbott SD, Blais A, Zacharie B, Laurin P, Laplante SR, Kennedy CRJ, Hébert RL, Leblond FA, Grouix B, Gagnon L. Fatty acid mimetic PBI-4547 restores metabolic homeostasis via GPR84 in mice with non-alcoholic fatty liver disease. Sci Rep 2020; 10:12778. [PMID: 32728158 PMCID: PMC7391726 DOI: 10.1038/s41598-020-69675-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic Fatty Liver Disease (NAFLD) is the most common form of liver disease and is associated with metabolic dysregulation. Although G protein-coupled receptor 84 (GPR84) has been associated with inflammation, its role in metabolic regulation remains elusive. The aim of our study was to evaluate the potential of PBI-4547 for the treatment of NAFLD and to validate the role of its main target receptor, GPR84. We report that PBI-4547 is a fatty acid mimetic, acting concomitantly as a GPR84 antagonist and GPR40/GPR120 agonist. In a mouse model of diet-induced obesity, PBI-4547 treatment improved metabolic dysregulation, reduced hepatic steatosis, ballooning and NAFLD score. PBI-4547 stimulated fatty acid oxidation and induced gene expression of mitochondrial uncoupling proteins in the liver. Liver metabolomics revealed that PBI-4547 improved metabolic dysregulation induced by a high-fat diet regimen. In Gpr84−/− mice, PBI-4547 treatment failed to improve various key NAFLD-associated parameters, as was observed in wildtype littermates. Taken together, these results highlight a detrimental role for the GPR84 receptor in the context of meta-inflammation and suggest that GPR84 antagonism via PBI-4547 may reflect a novel treatment approach for NAFLD and its related complications.
Collapse
Affiliation(s)
- Jean-Christophe Simard
- Liminal R&D Biosciences Inc., 500 Boulevard Cartier Ouest (Suite 150), Laval, QC, H7V 5B7, Canada
| | - Jean-François Thibodeau
- Liminal R&D Biosciences Inc., 500 Boulevard Cartier Ouest (Suite 150), Laval, QC, H7V 5B7, Canada. .,Department of Cellular and Molecular Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| | - Martin Leduc
- Liminal R&D Biosciences Inc., 500 Boulevard Cartier Ouest (Suite 150), Laval, QC, H7V 5B7, Canada
| | - Mikael Tremblay
- Liminal R&D Biosciences Inc., 500 Boulevard Cartier Ouest (Suite 150), Laval, QC, H7V 5B7, Canada
| | - Alexandre Laverdure
- Liminal R&D Biosciences Inc., 500 Boulevard Cartier Ouest (Suite 150), Laval, QC, H7V 5B7, Canada
| | - François Sarra-Bournet
- Liminal R&D Biosciences Inc., 500 Boulevard Cartier Ouest (Suite 150), Laval, QC, H7V 5B7, Canada
| | - William Gagnon
- Liminal R&D Biosciences Inc., 500 Boulevard Cartier Ouest (Suite 150), Laval, QC, H7V 5B7, Canada
| | - Jugurtha Ouboudinar
- Liminal R&D Biosciences Inc., 500 Boulevard Cartier Ouest (Suite 150), Laval, QC, H7V 5B7, Canada
| | - Liette Gervais
- Liminal R&D Biosciences Inc., 500 Boulevard Cartier Ouest (Suite 150), Laval, QC, H7V 5B7, Canada
| | - Alexandra Felton
- Liminal R&D Biosciences Inc., 500 Boulevard Cartier Ouest (Suite 150), Laval, QC, H7V 5B7, Canada
| | - Sylvie Letourneau
- Liminal R&D Biosciences Inc., 500 Boulevard Cartier Ouest (Suite 150), Laval, QC, H7V 5B7, Canada
| | - Lilianne Geerts
- Liminal R&D Biosciences Inc., 500 Boulevard Cartier Ouest (Suite 150), Laval, QC, H7V 5B7, Canada
| | - Marie-Pier Cloutier
- Liminal R&D Biosciences Inc., 500 Boulevard Cartier Ouest (Suite 150), Laval, QC, H7V 5B7, Canada
| | - Kathy Hince
- Liminal R&D Biosciences Inc., 500 Boulevard Cartier Ouest (Suite 150), Laval, QC, H7V 5B7, Canada
| | - Ramon Corpuz
- Liminal R&D Biosciences Inc., 500 Boulevard Cartier Ouest (Suite 150), Laval, QC, H7V 5B7, Canada
| | - Alexandra Blais
- Liminal R&D Biosciences Inc., 500 Boulevard Cartier Ouest (Suite 150), Laval, QC, H7V 5B7, Canada
| | - Vanessa Marques Quintela
- Liminal R&D Biosciences Inc., 500 Boulevard Cartier Ouest (Suite 150), Laval, QC, H7V 5B7, Canada
| | - Jean-Simon Duceppe
- Liminal R&D Biosciences Inc., 500 Boulevard Cartier Ouest (Suite 150), Laval, QC, H7V 5B7, Canada
| | - Shaun D Abbott
- Liminal R&D Biosciences Inc., 500 Boulevard Cartier Ouest (Suite 150), Laval, QC, H7V 5B7, Canada
| | - Amélie Blais
- Department of Cellular and Molecular Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Boulos Zacharie
- Liminal R&D Biosciences Inc., 500 Boulevard Cartier Ouest (Suite 150), Laval, QC, H7V 5B7, Canada
| | - Pierre Laurin
- Liminal R&D Biosciences Inc., 500 Boulevard Cartier Ouest (Suite 150), Laval, QC, H7V 5B7, Canada
| | - Steven R Laplante
- Institut National de La Recherche Scientifique, Institut Armand-Frappier, 531 Boul. Des Prairies, Laval, QC, H7V 5B7, Canada
| | - Christopher R J Kennedy
- Department of Cellular and Molecular Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Richard L Hébert
- Department of Cellular and Molecular Medicine, Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - François A Leblond
- Liminal R&D Biosciences Inc., 500 Boulevard Cartier Ouest (Suite 150), Laval, QC, H7V 5B7, Canada
| | - Brigitte Grouix
- Liminal R&D Biosciences Inc., 500 Boulevard Cartier Ouest (Suite 150), Laval, QC, H7V 5B7, Canada
| | - Lyne Gagnon
- Liminal R&D Biosciences Inc., 500 Boulevard Cartier Ouest (Suite 150), Laval, QC, H7V 5B7, Canada
| |
Collapse
|
84
|
Smeuninx B, Boslem E, Febbraio MA. Current and Future Treatments in the Fight Against Non-Alcoholic Fatty Liver Disease. Cancers (Basel) 2020; 12:E1714. [PMID: 32605253 PMCID: PMC7407591 DOI: 10.3390/cancers12071714] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023] Open
Abstract
Obesity is recognised as a risk factor for many types of cancers, in particular hepatocellular carcinoma (HCC). A critical factor in the development of HCC from non-alcoholic fatty liver disease (NAFLD) is the presence of non-alcoholic steatohepatitis (NASH). Therapies aimed at NASH to reduce the risk of HCC are sparse and largely unsuccessful. Lifestyle modifications such as diet and regular exercise have poor adherence. Moreover, current pharmacological treatments such as pioglitazone and vitamin E have limited effects on fibrosis, a key risk factor in HCC progression. As NAFLD is becoming more prevalent in developed countries due to rising rates of obesity, a need for directed treatment is imperative. Numerous novel therapies including PPAR agonists, anti-fibrotic therapies and agents targeting inflammation, oxidative stress and the gut-liver axis are currently in development, with the aim of targeting key processes in the progression of NASH and HCC. Here, we critically evaluate literature on the aetiology of NAFLD-related HCC, and explore the potential treatment options for NASH and HCC.
Collapse
Affiliation(s)
| | | | - Mark A. Febbraio
- Cellular & Molecular Metabolism Laboratory, Monash Institute of Pharmacological Sciences, Monash University, Parkville, VIC 3052, Australia; (B.S.); (E.B.)
| |
Collapse
|
85
|
Lambrecht J, van Grunsven LA, Tacke F. Current and emerging pharmacotherapeutic interventions for the treatment of liver fibrosis. Expert Opin Pharmacother 2020; 21:1637-1650. [PMID: 32543284 DOI: 10.1080/14656566.2020.1774553] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Chronic liver disease is due to various causes of persistent liver damage and will eventually lead to the development of liver fibrosis. If no treatment is initiated, this condition may progress to cirrhosis and hepatocellular carcinoma. Current treatments comprise the elimination of the cause of injury, such as by lifestyle changes, alcohol abstinence, and antiviral agents. However, such etiology-driven therapy is often insufficient in patients with late-stage fibrosis/cirrhosis, therefore maintaining the need for efficient antifibrotic pharmacotherapeutic interventions. AREAS COVERED The authors discuss the recent advances in the development of antifibrotic drugs, which target various pathways of the fibrogenesis process, including cell death, inflammation, gut-liver axis, and myofibroblast activation. Due to the significant burden of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH), various agents which specifically target metabolic pathways and their related receptors/ligands have been developed. For some of them, e.g., obeticholic acid, advanced stage clinical trials indicate antifibrotic efficacy in NAFLD and NASH. EXPERT OPINION Significant advances have been made in the development of novel antifibrotic pharmacotherapeutics. The authors expect that the development of combinatorial therapies, which combine compounds that target various pathways of fibrosis progression, will have a major impact as future etiology-independent therapies.
Collapse
Affiliation(s)
- Joeri Lambrecht
- Liver Cell Biology Research Group, Vrije Universiteit Brussel , Brussels, Belgium
| | - Leo A van Grunsven
- Liver Cell Biology Research Group, Vrije Universiteit Brussel , Brussels, Belgium
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité University Medical Center , Berlin, Germany
| |
Collapse
|
86
|
Shook BA, Wasko RR, Mano O, Rutenberg-Schoenberg M, Rudolph MC, Zirak B, Rivera-Gonzalez GC, López-Giráldez F, Zarini S, Rezza A, Clark DA, Rendl M, Rosenblum MD, Gerstein MB, Horsley V. Dermal Adipocyte Lipolysis and Myofibroblast Conversion Are Required for Efficient Skin Repair. Cell Stem Cell 2020; 26:880-895.e6. [PMID: 32302523 PMCID: PMC7853423 DOI: 10.1016/j.stem.2020.03.013] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 11/20/2019] [Accepted: 03/18/2020] [Indexed: 12/26/2022]
Abstract
Mature adipocytes store fatty acids and are a common component of tissue stroma. Adipocyte function in regulating bone marrow, skin, muscle, and mammary gland biology is emerging, but the role of adipocyte-derived lipids in tissue homeostasis and repair is poorly understood. Here, we identify an essential role for adipocyte lipolysis in regulating inflammation and repair after injury in skin. Genetic mouse studies revealed that dermal adipocytes are necessary to initiate inflammation after injury and promote subsequent repair. We find through histological, ultrastructural, lipidomic, and genetic experiments in mice that adipocytes adjacent to skin injury initiate lipid release necessary for macrophage inflammation. Tamoxifen-inducible genetic lineage tracing of mature adipocytes and single-cell RNA sequencing revealed that dermal adipocytes alter their fate and generate ECM-producing myofibroblasts within wounds. Thus, adipocytes regulate multiple aspects of repair and may be therapeutic for inflammatory diseases and defective wound healing associated with aging and diabetes.
Collapse
Affiliation(s)
- Brett A Shook
- Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Renee R Wasko
- Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Omer Mano
- Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA
| | - Michael Rutenberg-Schoenberg
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Michael C Rudolph
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado, Denver Anschutz Medical Campus, CO 80045, USA
| | - Bahar Zirak
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | - Simona Zarini
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA
| | - Amélie Rezza
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 11766, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 11766, USA
| | - Damon A Clark
- Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA
| | - Michael Rendl
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 11766, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 11766, USA
| | - Michael D Rosenblum
- Department of Dermatology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mark B Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Valerie Horsley
- Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Department of Dermatology, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
87
|
Mucke HA. Patent highlights December 2019-January 2020. Pharm Pat Anal 2020; 9:67-74. [PMID: 32539539 DOI: 10.4155/ppa-2020-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/02/2020] [Indexed: 11/17/2022]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
Collapse
|
88
|
Schanz O, Chijiiwa R, Cengiz SC, Majlesain Y, Weighardt H, Takeyama H, Förster I. Dietary AhR Ligands Regulate AhRR Expression in Intestinal Immune Cells and Intestinal Microbiota Composition. Int J Mol Sci 2020; 21:ijms21093189. [PMID: 32366032 PMCID: PMC7246938 DOI: 10.3390/ijms21093189] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
A diet rich in vegetables and fruit is generally considered healthy because of a high content of phytochemicals, vitamins, and fiber. The phytochemical indole-3-carbinol (I3C), a derivative of glucobrassicin, is sold as a dietary supplement promising diverse health benefits. I3C metabolites act as ligands of the aryl hydrocarbon receptor (AhR), an important sensor for environmental polyaromatic chemicals. Here, we investigated how dietary AhR ligand supplementation influences AhR target gene expression and intestinal microbiota composition. For this, we used AhR repressor (AhRR)-reporter mice as a tool to study AhR activation in the intestine following dietary I3C-supplementation in comparison with AhR ligand-deprived diets, including a high fat diet. AhRR expression in intestinal immune cells was mainly driven by dietary AhR ligands and was independent of microbial metabolites. A lack of dietary AhR ligands caused enhanced susceptibility to dextran sodium sulfate (DSS)-induced colitis and correlated with the expansion of Enterobacteriaceae, whereas Clostridiales, Muribaculaceae, and Rikenellaceae were strongly reduced. I3C supplementation largely reverted this effect. Comparison of I3C-induced changes in microbiota composition using wild-type (WT), AhRR-deficient, and AhR-deficient mice revealed both AhR-dependent and -independent alterations in the microbiome. Overall, our study demonstrates that dietary AhR ligand supplementation has a profound influence on Ahrr expression in intestinal immune cells as well as microbiota composition.
Collapse
Affiliation(s)
- Oliver Schanz
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany; (O.S.); (S.C.C.); (Y.M.)
| | - Rieka Chijiiwa
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan;
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Sevgi Can Cengiz
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany; (O.S.); (S.C.C.); (Y.M.)
| | - Yasmin Majlesain
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany; (O.S.); (S.C.C.); (Y.M.)
| | - Heike Weighardt
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany; (O.S.); (S.C.C.); (Y.M.)
- Correspondence: (H.W.); (H.T.); (I.F.); Tel.: +49-228-73-62706 (H.W.); +81-3-5369-7326 (H.T.); +49-228-73-62780 (I.F.)
| | - Haruko Takeyama
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan;
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Correspondence: (H.W.); (H.T.); (I.F.); Tel.: +49-228-73-62706 (H.W.); +81-3-5369-7326 (H.T.); +49-228-73-62780 (I.F.)
| | - Irmgard Förster
- Immunology and Environment, Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Straße 31, 53115 Bonn, Germany; (O.S.); (S.C.C.); (Y.M.)
- Correspondence: (H.W.); (H.T.); (I.F.); Tel.: +49-228-73-62706 (H.W.); +81-3-5369-7326 (H.T.); +49-228-73-62780 (I.F.)
| |
Collapse
|
89
|
Puengel T, De Vos S, Hundertmark J, Kohlhepp M, Guldiken N, Pujuguet P, Auberval M, Marsais F, Shoji KF, Saniere L, Trautwein C, Luedde T, Strnad P, Brys R, Clément-Lacroix P, Tacke F. The Medium-Chain Fatty Acid Receptor GPR84 Mediates Myeloid Cell Infiltration Promoting Steatohepatitis and Fibrosis. J Clin Med 2020; 9:E1140. [PMID: 32316235 PMCID: PMC7231190 DOI: 10.3390/jcm9041140] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/05/2020] [Accepted: 04/14/2020] [Indexed: 12/17/2022] Open
Abstract
Medium-chain fatty acids (MCFAs) have been associated with anti-steatotic effects in hepatocytes. Expression of the MCFA receptor GPR84 (G protein-coupled receptor 84) is induced in immune cells under inflammatory conditions and can promote fibrogenesis. We aimed at deciphering the role of GPR84 in the pathogenesis of non-alcoholic steatohepatitis (NASH), exploring its potential as a therapeutic target. GPR84 expression is upregulated in liver from patients with non-alcoholic fatty liver disease (NAFLD), correlating with the histological degree of inflammation and fibrosis. In mouse and human, activated monocytes and neutrophils upregulate GPR84 expression. Chemotaxis of these myeloid cells by GPR84 stimulation is inhibited by two novel, small molecule GPR84 antagonists. Upon acute liver injury in mice, treatment with GPR84 antagonists significantly reduced the hepatic recruitment of neutrophils, monocytes, and monocyte-derived macrophages (MoMF). We, therefore, evaluated the therapeutic inhibition of GPR84 by these two novel antagonists in comparison to selonsertib, an apoptosis signal-regulating kinase 1 (ASK1) inhibitor, in three NASH mouse models. Pharmacological inhibition of GPR84 significantly reduced macrophage accumulation and ameliorated inflammation and fibrosis, to an extent similar to selonsertib. In conclusion, our findings support that GPR84 mediates myeloid cell infiltration in liver injury and is a promising therapeutic target in steatohepatitis and fibrosis.
Collapse
Affiliation(s)
- Tobias Puengel
- Department of Medicine III, RWTH-University Hospital Aachen, 52074 Aachen, Germany; (T.P.); (N.G.); (C.T.); (T.L.); (P.S.)
- Department of Hepatology & Gastroenterology, Charité University Medicine Berlin, 13353 Berlin, Germany; (J.H.); (M.K.)
| | - Steve De Vos
- Galapagos SA, 102 avenue Gaston Roussel, 93230 Romainville, France; (S.D.V.); (P.P.); (M.A.); (F.M.); (K.F.S.); (L.S.); (P.C.-L.)
- Galapagos NV, Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium;
| | - Jana Hundertmark
- Department of Hepatology & Gastroenterology, Charité University Medicine Berlin, 13353 Berlin, Germany; (J.H.); (M.K.)
| | - Marlene Kohlhepp
- Department of Hepatology & Gastroenterology, Charité University Medicine Berlin, 13353 Berlin, Germany; (J.H.); (M.K.)
| | - Nurdan Guldiken
- Department of Medicine III, RWTH-University Hospital Aachen, 52074 Aachen, Germany; (T.P.); (N.G.); (C.T.); (T.L.); (P.S.)
| | - Philippe Pujuguet
- Galapagos SA, 102 avenue Gaston Roussel, 93230 Romainville, France; (S.D.V.); (P.P.); (M.A.); (F.M.); (K.F.S.); (L.S.); (P.C.-L.)
| | - Marielle Auberval
- Galapagos SA, 102 avenue Gaston Roussel, 93230 Romainville, France; (S.D.V.); (P.P.); (M.A.); (F.M.); (K.F.S.); (L.S.); (P.C.-L.)
| | - Florence Marsais
- Galapagos SA, 102 avenue Gaston Roussel, 93230 Romainville, France; (S.D.V.); (P.P.); (M.A.); (F.M.); (K.F.S.); (L.S.); (P.C.-L.)
| | - Kenji F. Shoji
- Galapagos SA, 102 avenue Gaston Roussel, 93230 Romainville, France; (S.D.V.); (P.P.); (M.A.); (F.M.); (K.F.S.); (L.S.); (P.C.-L.)
| | - Laurent Saniere
- Galapagos SA, 102 avenue Gaston Roussel, 93230 Romainville, France; (S.D.V.); (P.P.); (M.A.); (F.M.); (K.F.S.); (L.S.); (P.C.-L.)
| | - Christian Trautwein
- Department of Medicine III, RWTH-University Hospital Aachen, 52074 Aachen, Germany; (T.P.); (N.G.); (C.T.); (T.L.); (P.S.)
| | - Tom Luedde
- Department of Medicine III, RWTH-University Hospital Aachen, 52074 Aachen, Germany; (T.P.); (N.G.); (C.T.); (T.L.); (P.S.)
| | - Pavel Strnad
- Department of Medicine III, RWTH-University Hospital Aachen, 52074 Aachen, Germany; (T.P.); (N.G.); (C.T.); (T.L.); (P.S.)
| | - Reginald Brys
- Galapagos NV, Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium;
| | - Philippe Clément-Lacroix
- Galapagos SA, 102 avenue Gaston Roussel, 93230 Romainville, France; (S.D.V.); (P.P.); (M.A.); (F.M.); (K.F.S.); (L.S.); (P.C.-L.)
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité University Medicine Berlin, 13353 Berlin, Germany; (J.H.); (M.K.)
| |
Collapse
|
90
|
Vitamin D metabolites influence expression of genes concerning cellular viability and function in insulin producing β-cells (INS1E). Gene 2020; 746:144649. [PMID: 32251702 DOI: 10.1016/j.gene.2020.144649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Studies have shown that vitamin D can enhance glucose-stimulated insulin secretion (GSIS) and change the expression of genes in pancreatic β-cells. Still the mechanisms linking vitamin D and GSIS are unknown. MATERIAL AND METHODS We used an established β-cell line, INS1E. INS1E cells were pre-treated with 10 nM 1,25(OH)2vitamin D or 10 nM 25(OH)vitamin D for 72 h and stimulated with 22 mM glucose for 60 min. RNA was extracted for gene expression analysis. RESULTS Expression of genes affecting viability, apoptosis and GSIS changed after pre-treatment with both 1,25(OH)2vitamin D and 25(OH)vitamin D in INS1E cells. Stimulation with glucose after pre-treatment of INS1E cells with 1,25(OH)2vitamin D resulted in 181 differentially expressed genes, whereas 526 genes were differentially expressed after pre-treatment with 25(OH)vitamin D. CONCLUSION Vitamin D metabolites may affect pancreatic β-cells and GSIS through changed gene expression for genes involved in β-cell function and viability.
Collapse
|
91
|
Tong DL, Kempsell KE, Szakmany T, Ball G. Development of a Bioinformatics Framework for Identification and Validation of Genomic Biomarkers and Key Immunopathology Processes and Controllers in Infectious and Non-infectious Severe Inflammatory Response Syndrome. Front Immunol 2020; 11:380. [PMID: 32318053 PMCID: PMC7147506 DOI: 10.3389/fimmu.2020.00380] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/17/2020] [Indexed: 12/12/2022] Open
Abstract
Sepsis is defined as dysregulated host response caused by systemic infection, leading to organ failure. It is a life-threatening condition, often requiring admission to an intensive care unit (ICU). The causative agents and processes involved are multifactorial but are characterized by an overarching inflammatory response, sharing elements in common with severe inflammatory response syndrome (SIRS) of non-infectious origin. Sepsis presents with a range of pathophysiological and genetic features which make clinical differentiation from SIRS very challenging. This may reflect a poor understanding of the key gene inter-activities and/or pathway associations underlying these disease processes. Improved understanding is critical for early differential recognition of sepsis and SIRS and to improve patient management and clinical outcomes. Judicious selection of gene biomarkers suitable for development of diagnostic tests/testing could make differentiation of sepsis and SIRS feasible. Here we describe a methodologic framework for the identification and validation of biomarkers in SIRS, sepsis and septic shock patients, using a 2-tier gene screening, artificial neural network (ANN) data mining technique, using previously published gene expression datasets. Eight key hub markers have been identified which may delineate distinct, core disease processes and which show potential for informing underlying immunological and pathological processes and thus patient stratification and treatment. These do not show sufficient fold change differences between the different disease states to be useful as primary diagnostic biomarkers, but are instrumental in identifying candidate pathways and other associated biomarkers for further exploration.
Collapse
Affiliation(s)
- Dong Ling Tong
- Artificial Intelligence Laboratory, Faculty of Engineering and Computing, First City University College, Petaling Jaya, Malaysia.,School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Karen E Kempsell
- Public Health England, National Infection Service, Porton Down, Salisbury, United Kingdom
| | - Tamas Szakmany
- Department of Anaesthesia Intensive Care and Pain Medicine, Division of Population Medicine, Cardiff University, Cardiff, United Kingdom
| | - Graham Ball
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
92
|
Peters A, Rabe P, Krumbholz P, Kalwa H, Kraft R, Schöneberg T, Stäubert C. Natural biased signaling of hydroxycarboxylic acid receptor 3 and G protein-coupled receptor 84. Cell Commun Signal 2020; 18:31. [PMID: 32102673 PMCID: PMC7045412 DOI: 10.1186/s12964-020-0516-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/29/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Medium-chain fatty acids and their 3-hydroxy derivatives are metabolites endogenously produced in humans, food-derived or originating from bacteria. They activate G protein-coupled receptors, including GPR84 and HCA3, which regulate metabolism and immune functions. Although both receptors are coupled to Gi proteins, share at least one agonist and show overlapping tissue expression, GPR84 exerts pro-inflammatory effects whereas HCA3 is involved in anti-inflammatory responses. Here, we analyzed signaling kinetics of both HCA3 and GPR84, to unravel signal transduction components that may explain their physiological differences. METHODS To study the signaling kinetics and components involved in signal transduction of both receptors we applied the label-free dynamic mass redistribution technology in combination with classical cAMP, ERK signaling and β-arrestin-2 recruitment assays. For phenotypical analyses, we used spheroid cell culture models. RESULTS We present strong evidence for a natural biased signaling of structurally highly similar agonists at HCA3 and GPR84. We show that HCA3 signaling and trafficking depends on dynamin-2 function. Activation of HCA3 by 3-hydroxyoctanoic acid but not 3-hydroxydecanoic acid leads to β-arrestin-2 recruitment, which is relevant for cell-cell adhesion. GPR84 stimulation with 3-hydroxydecanoic acid causes a sustained ERK activation but activation of GPR84 is not followed by β-arrestin-2 recruitment. CONCLUSIONS In summary, our results highlight that biased agonism is a physiological property of HCA3 and GPR84 with relevance for innate immune functions potentially to differentiate between endogenous, non-pathogenic compounds and compounds originating from e.g. pathogenic bacteria. Video Abstract.
Collapse
Affiliation(s)
- Anna Peters
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany
| | - Philipp Rabe
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany
| | - Petra Krumbholz
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany
| | - Hermann Kalwa
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, Leipzig University, Härtelstraße 16-18, 04107, Leipzig, Germany
| | - Robert Kraft
- Carl Ludwig Institute for Physiology, Medical Faculty, Leipzig University, 04103, Leipzig, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany
| | - Claudia Stäubert
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany.
| |
Collapse
|
93
|
Fatty acid metabolism in the progression and resolution of CNS disorders. Adv Drug Deliv Rev 2020; 159:198-213. [PMID: 31987838 DOI: 10.1016/j.addr.2020.01.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/13/2020] [Accepted: 01/23/2020] [Indexed: 12/15/2022]
Abstract
Recent advances in lipidomics and metabolomics have unveiled the complexity of fatty acid metabolism and the fatty acid lipidome in health and disease. A growing body of evidence indicates that imbalances in the metabolism and level of fatty acids drive the initiation and progression of central nervous system (CNS) disorders such as multiple sclerosis, Alzheimer's disease, and Parkinson's disease. Here, we provide an in-depth overview on the impact of the β-oxidation, synthesis, desaturation, elongation, and peroxidation of fatty acids on the pathophysiology of these and other neurological disorders. Furthermore, we discuss the impact of individual fatty acids species, acquired through the diet or endogenously synthesized in mammals, on neuroinflammation, neurodegeneration, and CNS repair. The findings discussed in this review highlight the therapeutic potential of modulators of fatty acid metabolism and the fatty acid lipidome in CNS disorders, and underscore the diagnostic value of lipidome signatures in these diseases.
Collapse
|
94
|
Smirlis D, Dingli F, Pescher P, Prina E, Loew D, Rachidi N, Späth GF. SILAC-based quantitative proteomics reveals pleiotropic, phenotypic modulation in primary murine macrophages infected with the protozoan pathogen Leishmania donovani. J Proteomics 2019; 213:103617. [PMID: 31846769 DOI: 10.1016/j.jprot.2019.103617] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 12/04/2019] [Accepted: 12/13/2019] [Indexed: 01/06/2023]
Abstract
Leishmaniases are major vector-borne tropical diseases responsible for great human morbidity and mortality, caused by protozoan, trypanosomatid parasites of the genus Leishmania. In the mammalian host, parasites survive and multiply within mononuclear phagocytes, especially macrophages. However, the underlying mechanisms by which Leishmania spp. affect their host are not fully understood. Herein, proteomic alterations of primary, bone marrow-derived BALB/c macrophages are documented after 72 h of infection with Leishmania donovani insect-stage promastigotes, applying a SILAC-based, quantitative proteomics approach. The protocol was optimised by combining strong anion exchange and gel electrophoresis fractionation that displayed similar depth of analysis (combined total of 6189 mouse proteins). Our analyses revealed 86 differentially modulated proteins (35 showing increased and 51 decreased abundance) in response to Leishmania donovani infection. The proteomics results were validated by analysing the abundance of selected proteins. Intracellular Leishmania donovani infection led to changes in various host cell biological processes, including primary metabolism and catabolic process, with a significant enrichment in lysosomal organisation. Overall, our analysis establishes the first proteome of bona fide primary macrophages infected ex vivo with Leishmania donovani, revealing new mechanisms acting at the host/pathogen interface. SIGNIFICANCE: Little is known on proteome changes that occur in primary macrophages after Leishmania donovani infection. This study describes a SILAC-based quantitative proteomics approach to characterise changes of bone marrow-derived macrophages infected with L. donovani promastigotes for 72 h. With the application of SILAC and the use of SAX and GEL fractionation methods, we have tested new routes for proteome quantification of primary macrophages. The protocols developed here can be applicable to other diseases and pathologies. Moreover, this study sheds important new light on the "proteomic reprogramming" of infected macrophages in response to L. donovani promastigotes that affects primary metabolism, cellular catabolic processes, and lysosomal/vacuole organisation. Thus, our study reveals key molecules and processes that act at the host/pathogen interface that may inform on new immuno- or chemotherapeutic interventions to combat leishmaniasis.
Collapse
Affiliation(s)
- Despina Smirlis
- Institut Pasteur and Institut National de Santé et Recherche Médicale INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France; Hellenic Pasteur Institute, Molecular Parasitology Laboratory, Athens, Greece.
| | - Florent Dingli
- Laboratoire de Spectrométrie de Masse Protéomique, Centre de Recherche, Institut Curie, Université de recherche PSL, Paris, France
| | - Pascale Pescher
- Institut Pasteur and Institut National de Santé et Recherche Médicale INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
| | - Eric Prina
- Institut Pasteur and Institut National de Santé et Recherche Médicale INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
| | - Damarys Loew
- Laboratoire de Spectrométrie de Masse Protéomique, Centre de Recherche, Institut Curie, Université de recherche PSL, Paris, France
| | - Najma Rachidi
- Institut Pasteur and Institut National de Santé et Recherche Médicale INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
| | - Gerald F Späth
- Institut Pasteur and Institut National de Santé et Recherche Médicale INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France.
| |
Collapse
|
95
|
Köse M, Pillaiyar T, Namasivayam V, De Filippo E, Sylvester K, Ulven T, von Kügelgen I, Müller CE. An Agonist Radioligand for the Proinflammatory Lipid-Activated G Protein-Coupled Receptor GPR84 Providing Structural Insights. J Med Chem 2019; 63:2391-2410. [PMID: 31721581 DOI: 10.1021/acs.jmedchem.9b01339] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The orphan G protein-coupled receptor (GPCR) GPR84 is expressed on immune cells mediating proinflammatory and immunostimulatory effects. In this study, we prepared the fully efficacious, nonbiased GPR84 agonist 6-hexylamino-2,4(1H,3H)-pyrimidinedione (6) in tritium-labeled form ([3H]PSB-1584) by hydrogenation of a hexenyl-substituted precursor with tritium gas. The radioligand was characterized by kinetic, saturation, and competition assays using membranes of Chinese hamster ovary cells recombinantly expressing the human GPR84. [3H]6 reversibly labeled the receptor with high affinity (KD 2.08 nM). Structurally diverse orthosteric and allosteric ligands, including newly designed and synthesized compounds, were studied in competition binding assays. A homology model of GPR84 was generated to perform docking studies rationalizing the experimental data. The radioligand was additionally used for labeling GPR84 in native cells and tissues. [3H]6 constitutes the first GPR84 agonist radioligand representing a powerful tool for this poorly investigated GPCR, which has potential as a future drug target.
Collapse
Affiliation(s)
- Meryem Köse
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Thanigaimalai Pillaiyar
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Elisabetta De Filippo
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Katharina Sylvester
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Trond Ulven
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Ivar von Kügelgen
- Department of Pharmacology and Toxicology, Pharma Center Bonn, Sigmund-Freud-Str. 25, D-53127 Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| |
Collapse
|
96
|
Lucy D, Purvis GSD, Zeboudj L, Chatzopoulou M, Recio C, Bataille CJR, Wynne GM, Greaves DR, Russell AJ. A Biased Agonist at Immunometabolic Receptor GPR84 Causes Distinct Functional Effects in Macrophages. ACS Chem Biol 2019; 14:2055-2064. [PMID: 31465201 DOI: 10.1021/acschembio.9b00533] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
GPR84 is an orphan G-protein-coupled receptor that is expressed on immune cells and implicated in several inflammatory diseases. The validation of GPR84 as a therapeutic target is hindered by the narrow range of available chemical tools and consequent poor understanding of GPR84 pathophysiology. Here we describe the discovery and characterization of DL-175, a potent, selective, and structurally novel GPR84 agonist and the first to display significantly biased signaling across GPR84-overexpressing cells, primary murine macrophages, and human U937 cells. By comparing DL-175 with reported GPR84 ligands, we show for the first time that biased GPR84 agonists have markedly different abilities to induce chemotaxis in human myeloid cells, while causing similar levels of phagocytosis enhancement. This work demonstrates that biased agonism at GPR84 enables the selective activation of functional responses in immune cells and delivers a high-quality chemical probe for further investigation.
Collapse
Affiliation(s)
- Daniel Lucy
- Department of Chemistry, University of Oxford, Mansfield Road Oxford OX1 3TA, U.K
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, U.K
| | - Gareth S. D. Purvis
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, U.K
| | - Lynda Zeboudj
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, U.K
| | - Maria Chatzopoulou
- Department of Chemistry, University of Oxford, Mansfield Road Oxford OX1 3TA, U.K
| | - Carlota Recio
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, U.K
| | | | - Graham M. Wynne
- Department of Chemistry, University of Oxford, Mansfield Road Oxford OX1 3TA, U.K
| | - David R. Greaves
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, U.K
| | - Angela J. Russell
- Department of Chemistry, University of Oxford, Mansfield Road Oxford OX1 3TA, U.K
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, U.K
| |
Collapse
|
97
|
Sinha P, Calfee CS. Peeking under the Hood of Acute Respiratory Distress Syndrome Phenotypes: Deeper Insights into Biological Heterogeneity. Am J Respir Crit Care Med 2019; 200:4-6. [PMID: 30753791 PMCID: PMC6603053 DOI: 10.1164/rccm.201901-0195ed] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Pratik Sinha
- 1 Department of Medicine
- 2 Department of Anesthesia University of California, San Francisco San Francisco, California and
| | - Carolyn S Calfee
- 1 Department of Medicine
- 2 Department of Anesthesia University of California, San Francisco San Francisco, California and
- 3 Cardiovascular Research Institute University of California, San Francisco San Francisco, California
| |
Collapse
|
98
|
Live Monitoring and Analysis of Fungal Growth, Viability, and Mycelial Morphology Using the IncuCyte NeuroTrack Processing Module. mBio 2019; 10:mBio.00673-19. [PMID: 31138745 PMCID: PMC6538782 DOI: 10.1128/mbio.00673-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pathogenic fungi remain a major cause of infectious complications in immunocompromised patients. Microscopic techniques are crucial for our understanding of fungal biology, host-pathogen interaction, and the pleiotropic effects of antifungal drugs on fungal cell growth and morphogenesis. Taking advantage of the morphological similarities of neuronal cell networks and mycelial growth patterns, we employed the IncuCyte time-lapse microscopy system and its NeuroTrack image analysis software package to study growth and branching of a variety of pathogenic yeasts and molds. Using optimized image processing definitions, we validated IncuCyte NeuroTrack analysis as a reliable and efficient tool for translational applications such as antifungal efficacy evaluation and coculture with host immune effector cells. Hence, the IncuCyte system and its NeuroTrack module provide an appealing platform for efficient in vitro studies of antifungal compounds and immunotherapeutic strategies in medical mycology. Efficient live-imaging methods are pivotal to understand fungal morphogenesis, especially as it relates to interactions with host immune cells and mechanisms of antifungal drugs. Due to the notable similarities in growth patterns of neuronal cells and mycelial networks, we sought to repurpose the NeuroTrack (NT) processing module of the IncuCyte time-lapse microscopy system as a tool to quantify mycelial growth and branching of pathogenic fungi. We showed the robustness of NT analysis to study Candida albicans and five different molds and confirmed established characteristics of mycelial growth kinetics. We also documented high intra- and interassay reproducibility of the NT module for a spectrum of spore inocula and culture periods. Using GFP-expressing Aspergillus fumigatus and Rhizopus arrhizus, the feasibility of fluorescence-based NT analysis was validated. In addition, we performed proof-of-concept experiments of NT analysis for several translational applications such as studying the morphogenesis of a filamentation-defective C. albicans mutant, the effects of different classes of antifungals (polyenes, azoles, and echinocandins), and coculture with host immune cells. High accuracy was found, even at high immune cell-to-fungus ratios or in the presence of fungal debris. For antifungal efficacy studies, addition of a cytotoxicity dye further refined IncuCyte-based analysis, facilitating real-time determination of fungistatic and fungicidal activity in a single assay. Complementing conventional MIC-based assays, NT analysis is an appealing method to study fungal morphogenesis and viability in the context of antifungal compound screening and evaluation of novel immune therapeutics.
Collapse
|
99
|
Mancini SJ, Mahmud ZA, Jenkins L, Bolognini D, Newman R, Barnes M, Edye ME, McMahon SB, Tobin AB, Milligan G. On-target and off-target effects of novel orthosteric and allosteric activators of GPR84. Sci Rep 2019; 9:1861. [PMID: 30755705 PMCID: PMC6372602 DOI: 10.1038/s41598-019-38539-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/20/2018] [Indexed: 12/03/2022] Open
Abstract
Many members of the G protein-coupled receptor family, including examples with clear therapeutic potential, remain poorly characterised. This often reflects limited availability of suitable tool ligands with which to interrogate receptor function. In the case of GPR84, currently a target for the treatment of idiopathic pulmonary fibrosis, recent times have seen the description of novel orthosteric and allosteric agonists. Using 2-(hexylthiol)pyrimidine-4,6 diol (2-HTP) and di(5,7-difluoro-1H-indole-3-yl)methane (PSB-16671) as exemplars of each class, in cell lines transfected to express either human or mouse GPR84, both ligands acted as effective on-target activators and with high co-operativity in their interactions. This was also the case in lipopolysaccharide-activated model human and mouse immune cell lines. However in mouse bone-marrow-derived neutrophils, where expression of GPR84 is particularly high, the capacity of PSB-16671 but not of 2-HTP to promote G protein activation was predominantly off-target because it was not blocked by an antagonist of GPR84 and was preserved in neutrophils isolated from GPR84 deficient mice. These results illustrate the challenges of attempting to study and define functions of poorly characterised receptors using ligands that have been developed via medicinal chemistry programmes, but where assessed activity has been limited largely to the initially identified target.
Collapse
Affiliation(s)
- Sarah J Mancini
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Zobaer Al Mahmud
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Laura Jenkins
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Daniele Bolognini
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Robert Newman
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, CB21 6DG, United Kingdom
| | - Matt Barnes
- Sosei Heptares, Steinmetz Building, Granta Park, Great Abington, Cambridge, CB21 6DG, United Kingdom
| | - Michelle E Edye
- Wolfson Centre for Age-Related Diseases, King's College London, London, SE1 1UL, United Kingdom
| | - Stephen B McMahon
- Wolfson Centre for Age-Related Diseases, King's College London, London, SE1 1UL, United Kingdom
| | - Andrew B Tobin
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Graeme Milligan
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, G12 8QQ, United Kingdom.
| |
Collapse
|
100
|
Luo Q, Feng Y, Xie Y, Shao Y, Wu M, Deng X, Yuan WE, Chen Y, Shi X. Nanoparticle-microRNA-146a-5p polyplexes ameliorate diabetic peripheral neuropathy by modulating inflammation and apoptosis. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 17:188-197. [PMID: 30721753 DOI: 10.1016/j.nano.2019.01.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 12/19/2018] [Accepted: 01/10/2019] [Indexed: 01/22/2023]
Abstract
Nontoxic and nonimmunogenic nanoparticles play an increasingly important role in the application of pharmaceutical nanocarriers. The pathogenesis of diabetic peripheral neuropathy (DPN) has been extensively studied. However, the role of microRNAs in DPN remains to be clarified. We verified in vitro that miR-146a-5p mimics inhibited the expression of proinflammatory cytokines and apoptosis. Then, we explored the protective effect of nanoparticle-miRNA-146a-5p polyplexes (nano-miR-146a-5p) on DPN rats. We demonstrated that nano-miR-146a-5p improved nerve conduction velocity and alleviated the morphological damage and demyelination of the sciatic nerve of DPN rats. The expression of the inflammatory cytokines, caspase-3, and cleaved caspase-3 in the sciatic nerve was inhibited by nano-miR-146a-5p. Additionally, nano-miR-146a-5p increased the expression of myelin basic protein. These results all indicated that nano-miR-146a-5p had a protective effect on peripheral nerves in the DPN rat model, which may occur through the regulation of the inflammatory response and apoptosis.
Collapse
Affiliation(s)
- Qiong Luo
- Department of Endocrinology, Jinshan Hospital, Fudan University, Shanghai, China; Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yonghao Feng
- Department of Endocrinology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yangmei Xie
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yiye Shao
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Men Wu
- Department of Endocrinology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Xiaolin Deng
- Department of Endocrinology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Wei-En Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yinghui Chen
- Department of Neurology, Huashan Hospital North, Fudan University, Shanghai, China.
| | - Xiaohong Shi
- Department of Endocrinology, Jinshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|