51
|
Stepler KE, Mahoney ER, Kofler J, Hohman TJ, Lopez OL, Robinson RAS. Inclusion of African American/Black adults in a pilot brain proteomics study of Alzheimer's disease. Neurobiol Dis 2020; 146:105129. [PMID: 33049317 PMCID: PMC7990397 DOI: 10.1016/j.nbd.2020.105129] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/02/2020] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) disproportionately affects certain racial and ethnic subgroups, such as African American/Black and Hispanic adults. Genetic, comorbid, and socioeconomic risk factors contribute to this disparity; however, the molecular contributions have been largely unexplored. Herein, we conducted a pilot proteomics study of postmortem brains from African American/Black and non-Hispanic White adults neuropathologically diagnosed with AD compared to closely-matched cognitively normal individuals. Examination of hippocampus, inferior parietal lobule, and globus pallidus regions using quantitative proteomics resulted in 568 differentially-expressed proteins in AD. These proteins were consistent with the literature and included glial fibrillary acidic protein, peroxiredoxin-1, and annexin A5. In addition, 351 novel proteins in AD were identified, which could partially be due to cohort diversity. From linear regression analyses, we identified 185 proteins with significant race x diagnosis interactions across various brain regions. These differences generally were reflective of differential expression of proteins in AD that occurred in only a single racial/ethnic group. Overall, this pilot study suggests that disease understanding can be furthered by including diversity in racial/ethnic groups; however, this must be done on a larger scale.
Collapse
Affiliation(s)
- Kaitlyn E Stepler
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, United States of America
| | - Emily R Mahoney
- Vanderbilt Memory & Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN 37212, United States of America; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, United States of America
| | - Julia Kofler
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, United States of America
| | - Timothy J Hohman
- Vanderbilt Memory & Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN 37212, United States of America; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, United States of America; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, United States of America; Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN 37232, United States of America
| | - Oscar L Lopez
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, United States of America; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Renã A S Robinson
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, United States of America; Vanderbilt Memory & Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN 37212, United States of America; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, United States of America; Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN 37232, United States of America; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, United States of America.
| |
Collapse
|
52
|
A systematic review and meta-analysis: The effects of probiotic supplementation on metabolic profile in patients with neurological disorders. Complement Ther Med 2020; 53:102507. [PMID: 33066850 DOI: 10.1016/j.ctim.2020.102507] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND OBJECTIVE The objective of meta-analysis of randomized controlled trials (RCTs) was to evaluate the effects of probiotic supplementation on metabolic status in patients with neurological disorders. METHODS The following databases were search up to April 2019: Pubmed, Scopus, Google scholar, Web of Science, and Cochrane Central Register of Controlled Trials. The quality of the relevant extracted data was assessed according to the Cochrane risk of bias tool. Data were pooled by the use of the inverse variance method and expressed as mean difference with 95 % Confidence Intervals (95 % CI). RESULTS Nine studies were included in this meta-analysis. The findings suggested that probiotic supplementation resulted in a significant reduction in C-reactive protein (CRP) [Weighted Mean Difference (WMD): -1.06; 95 % CI: -1.80, -0.32] and malondialdehyde (MDA) levels (WMD: -0.32; 95 % CI: -0.46, -0.18). Supplementation with probiotics also significantly reduced insulin (WMD: -3.02; 95 % CI: -3.88, -2.15) and homeostatic model assessment for insulin resistance (HOMA-IR) (WMD: -0.71; 95 % CI: -0.89, -0.52). Probiotics significantly reduced triglycerides (WMD: -18.38; 95 % CI: -25.50, -11.26) and VLDL-cholesterol (WMD: -3.16; 95 % CI: -4.53, -1.79), while they increased HDL-cholesterol levels (WMD: 1.52; 95 % CI: 0.29, 2.75). CONCLUSION This meta-analysis demonstrated that taking probiotic by patients with neurological disorders had beneficial effects on CRP, MDA, insulin, HOMA-IR, triglycerides, VLDL-cholesterol and HDL-cholesterol levels, but did not affect other metabolic parameters.
Collapse
|
53
|
Yan Z, Zhou Z, Wu Q, Chen ZB, Koo EH, Zhong S. Presymptomatic Increase of an Extracellular RNA in Blood Plasma Associates with the Development of Alzheimer’s Disease. Curr Biol 2020; 30:1771-1782.e3. [DOI: 10.1016/j.cub.2020.02.084] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/18/2020] [Accepted: 02/26/2020] [Indexed: 12/12/2022]
|
54
|
Kubis-Kubiak A, Dyba A, Piwowar A. The Interplay between Diabetes and Alzheimer's Disease-In the Hunt for Biomarkers. Int J Mol Sci 2020; 21:ijms21082744. [PMID: 32326589 PMCID: PMC7215807 DOI: 10.3390/ijms21082744] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/09/2020] [Accepted: 04/12/2020] [Indexed: 02/07/2023] Open
Abstract
The brain is an organ in which energy metabolism occurs most intensively and glucose is an essential and dominant energy substrate. There have been many studies in recent years suggesting a close relationship between type 2 diabetes mellitus (T2DM) and Alzheimer’s disease (AD) as they have many pathophysiological features in common. The condition of hyperglycemia exposes brain cells to the detrimental effects of glucose, increasing protein glycation and is the cause of different non-psychiatric complications. Numerous observational studies show that not only hyperglycemia but also blood glucose levels near lower fasting limits (72 to 99 mg/dL) increase the incidence of AD, regardless of whether T2DM will develop in the future. As the comorbidity of these diseases and earlier development of AD in T2DM sufferers exist, new AD biomarkers are being sought for etiopathogenetic changes associated with early neurodegenerative processes as a result of carbohydrate disorders. The S100B protein seem to be interesting in this respect as it may be a potential candidate, especially important in early diagnostics of these diseases, given that it plays a role in both carbohydrate metabolism disorders and neurodegenerative processes. It is therefore necessary to clarify the relationship between the concentration of the S100B protein and glucose and insulin levels. This paper draws attention to a valuable research objective that may in the future contribute to a better diagnosis of early neurodegenerative changes, in particular in subjects with T2DM and may be a good basis for planning experiments related to this issue as well as a more detailed explanation of the relationship between the neuropathological disturbances and changes of glucose and insulin concentrations in the brain.
Collapse
Affiliation(s)
- Adriana Kubis-Kubiak
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, 50367 Wroclaw, Poland;
- Correspondence:
| | - Aleksandra Dyba
- Students Science Club of the Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, 50367 Wroclaw, Poland;
| | - Agnieszka Piwowar
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, 50367 Wroclaw, Poland;
| |
Collapse
|
55
|
Vicente MC, Humphrey CM, Gargaglioni LH, Ostrowski TD. Decreased excitability of locus coeruleus neurons during hypercapnia is exaggerated in the streptozotocin-model of Alzheimer's disease. Exp Neurol 2020; 328:113250. [PMID: 32088169 DOI: 10.1016/j.expneurol.2020.113250] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/04/2020] [Accepted: 02/17/2020] [Indexed: 10/25/2022]
Abstract
The locus coeruleus (LC) is a pontine nucleus important for respiratory control and central chemoreception. It is affected in Alzheimer's disease (AD) and alteration of LC cell function may account for respiratory problems observed in AD patients. In the current study, we tested the electrophysiological properties and CO2/pH sensitivity of LC neurons in a model for AD. Sporadic AD was induced in rats by intracerebroventricular injection of 2 mg/kg streptozotocin (STZ), which induces behavioral and molecular impairments found in AD. LC neurons were recorded using the patch clamp technique and tested for responses to CO2 (10% CO2, pH = 7.0). The majority (~60%) of noradrenergic LC neurons in adult rats were inhibited by CO2 exposure as indicated by a significant decrease in action potential (AP) discharge to step depolarizations. The STZ-AD rat model had a greater sensitivity to CO2 than controls. The increased CO2-sensitivity was demonstrated by a significantly stronger inhibition of activity during hypercapnia that was in part due to hyperpolarization of the resting membrane potential. Reduction of AP discharge in both groups was generally accompanied by lower LC network activity, depolarized AP threshold, increased AP repolarization, and increased current through a subpopulation of voltage-gated K+ channels (KV). The latter was indicated by enhanced transient KV currents particularly in the STZ-AD group. Interestingly, steady-state KV currents were reduced under hypercapnia, a change that would favor enhanced AP discharge. However, the collective response of most LC neurons in adult rats, and particularly those in the STZ-AD group, was inhibited by CO2.
Collapse
Affiliation(s)
- Mariane C Vicente
- Department of Physiology, Kirksville College of Osteopathic Medicine, A.T. Still University of Health Sciences, Kirksville, MO, USA; Department of Animal Morphology and Physiology, Sao Paulo State University-UNESP/FCAV at Jaboticabal, SP, Brazil
| | - Chuma M Humphrey
- Department of Biology, Truman State University, Kirksville, MO, USA
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, Sao Paulo State University-UNESP/FCAV at Jaboticabal, SP, Brazil
| | - Tim D Ostrowski
- Department of Physiology, Kirksville College of Osteopathic Medicine, A.T. Still University of Health Sciences, Kirksville, MO, USA.
| |
Collapse
|
56
|
Zeng B, Zhao G, Liu HL. The Differential Effect of Treadmill Exercise Intensity on Hippocampal Soluble Aβ and Lipid Metabolism in APP/PS1 Mice. Neuroscience 2020; 430:73-81. [PMID: 31954827 DOI: 10.1016/j.neuroscience.2020.01.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/02/2020] [Accepted: 01/06/2020] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is characterized clinically by progressive impairments in learning and memory. Accumulating evidence suggests that regular exercise plays a neuroprotective role in aging-associated memory loss. Our previous study has confirmed that long-term treadmill exercise initiated either before or during the onset of β-amyloid (Aβ) pathology, was beneficial for reducing the levels of soluble Aβ and further improved cognition. In this study, in APP/PS1 mice, we assessed changes in soluble Aβ, and various blood biochemistry and molecular biological indices to assess whether exercise modulated lipid metabolism and thereby decelerated AD progression. Our results show that long-term treadmill exercise reduced the total cholesterol, triglyceride, and low-density lipoprotein cholesterol levels, and increased the level of high-density lipoprotein cholesterol. Exercise also decreased the levels of soluble Aβ1-40 and Aβ1-42, down-regulated retinoid X receptor expression, and up-regulated liver X receptor, Apolipoprotein E, Low density lipoprotein receptor, Low density lipoprotein receptor-related protein 1, and ATP-binding cassette transporter A1 expression. This indicates that long-term treadmill exercise alters the lipoprotein content, increases lipid metabolism and cholesterol transportation, reduces the soluble Aβ, and therein plays an important neuroprotective role and delays AD progression. We further show that medium exercise intensity (60%-70% of maximal oxygen uptake) was more efficacious in increasing lipid metabolism and reducing blood lipid levels and soluble Aβ levels, than low-intensity exercise (45-55% of maximal oxygen uptake). This research has broad prospects and implications, and offers a theoretical basis for the prevention of AD.
Collapse
Affiliation(s)
- B Zeng
- Department of Sports Medicine, China Medical University, Shenyang 110122, PR China
| | - G Zhao
- Department of Sports Medicine, China Medical University, Shenyang 110122, PR China
| | - H L Liu
- Department of Sports Medicine, China Medical University, Shenyang 110122, PR China.
| |
Collapse
|
57
|
Yuan S, Li H, Xie J, Sun X. Quantitative Trait Module-Based Genetic Analysis of Alzheimer's Disease. Int J Mol Sci 2019; 20:E5912. [PMID: 31775305 PMCID: PMC6928939 DOI: 10.3390/ijms20235912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 01/02/2023] Open
Abstract
The pathological features of Alzheimer's Disease (AD) first appear in the medial temporal lobe and then in other brain structures with the development of the disease. In this work, we investigated the association between genetic loci and subcortical structure volumes of AD on 393 samples in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. Brain subcortical structures were clustered into modules using Pearson's correlation coefficient of volumes across all samples. Module volumes were used as quantitative traits to identify not only the main effect loci but also the interactive effect loci for each module. Thirty-five subcortical structures were clustered into five modules, each corresponding to a particular brain structure/area, including the limbic system (module I), the corpus callosum (module II), thalamus-cerebellum-brainstem-pallidum (module III), the basal ganglia neostriatum (module IV), and the ventricular system (module V). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment results indicate that the gene annotations of the five modules were distinct, with few overlaps between different modules. We identified several main effect loci and interactive effect loci for each module. All these loci are related to the function of module structures and basic biological processes such as material transport and signal transduction.
Collapse
Affiliation(s)
| | | | | | - Xiao Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; (S.Y.)
| |
Collapse
|
58
|
The Novel Perspectives of Adipokines on Brain Health. Int J Mol Sci 2019; 20:ijms20225638. [PMID: 31718027 PMCID: PMC6887733 DOI: 10.3390/ijms20225638] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022] Open
Abstract
First seen as a fat-storage tissue, the adipose tissue is considered as a critical player in the endocrine system. Precisely, adipose tissue can produce an array of bioactive factors, including cytokines, lipids, and extracellular vesicles, which target various systemic organ systems to regulate metabolism, homeostasis, and immune response. The global effects of adipokines on metabolic events are well defined, but their impacts on brain function and pathology remain poorly defined. Receptors of adipokines are widely expressed in the brain. Mounting evidence has shown that leptin and adiponectin can cross the blood–brain barrier, while evidence for newly identified adipokines is limited. Significantly, adipocyte secretion is liable to nutritional and metabolic states, where defective circuitry, impaired neuroplasticity, and elevated neuroinflammation are symptomatic. Essentially, neurotrophic and anti-inflammatory properties of adipokines underlie their neuroprotective roles in neurodegenerative diseases. Besides, adipocyte-secreted lipids in the bloodstream can act endocrine on the distant organs. In this article, we have reviewed five adipokines (leptin, adiponectin, chemerin, apelin, visfatin) and two lipokines (palmitoleic acid and lysophosphatidic acid) on their roles involving in eating behavior, neurotrophic and neuroprotective factors in the brain. Understanding and regulating these adipokines can lead to novel therapeutic strategies to counteract metabolic associated eating disorders and neurodegenerative diseases, thus promote brain health.
Collapse
|
59
|
Burns DK, Chiang C, Welsh-Bohmer KA, Brannan SK, Culp M, O'Neil J, Runyan G, Harrigan P, Plassman BL, Lutz M, Lai E, Haneline S, Yarnall D, Yarbrough D, Metz C, Ponduru S, Sundseth S, Saunders AM. The TOMMORROW study: Design of an Alzheimer's disease delay-of-onset clinical trial. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2019; 5:661-670. [PMID: 31720367 PMCID: PMC6838537 DOI: 10.1016/j.trci.2019.09.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction Alzheimer's disease (AD) is a continuum with neuropathologies manifesting years before clinical symptoms; thus, AD research is attempting to identify more disease-modifying approaches to test treatments administered before full disease expression. Designing such trials in cognitively normal elderly individuals poses unique challenges. Methods The TOMMORROW study was a phase 3 double-blind, parallel-group study designed to support qualification of a novel genetic biomarker risk assignment algorithm (BRAA) and to assess efficacy and safety of low-dose pioglitazone to delay onset of mild cognitive impairment due to AD. Eligible participants were stratified based on the BRAA (using TOMM40 rs 10524523 genotype, Apolipoprotein E genotype, and age), with high-risk individuals receiving low-dose pioglitazone or placebo and low-risk individuals receiving placebo. The primary endpoint was time to the event of mild cognitive impairment due to AD. The primary objectives were to compare the primary endpoint between high- and low-risk placebo groups (for BRAA qualification) and between high-risk pioglitazone and high-risk placebo groups (for pioglitazone efficacy). Approximately 300 individuals were also asked to participate in a volumetric magnetic resonance imaging substudy at selected sites. Results The focus of this paper is on the design of the study; study results will be presented in a separate paper. Discussion The design of the TOMMORROW study addressed many key challenges to conducting a dual-objective phase 3 pivotal AD clinical trial in presymptomatic individuals. Experiences from planning and executing the TOMMORROW study may benefit future AD prevention/delay-of-onset trials.
Collapse
Affiliation(s)
| | - Carl Chiang
- Zinfandel Pharmaceuticals, Inc., Durham, NC, USA
| | - Kathleen A Welsh-Bohmer
- Department of Neurology, Bryan Alzheimer's Disease Research Center, Duke University School of Medicine, Durham, NC, USA
| | | | - Meredith Culp
- Takeda Development Center Americas, Inc., Deerfield, IL, USA
| | - Janet O'Neil
- Takeda Development Center Americas, Inc., Deerfield, IL, USA
| | - Grant Runyan
- Takeda Development Center Americas, Inc., Deerfield, IL, USA
| | | | - Brenda L Plassman
- Department of Neurology, Bryan Alzheimer's Disease Research Center, Duke University School of Medicine, Durham, NC, USA
| | - Michael Lutz
- Department of Neurology, Bryan Alzheimer's Disease Research Center, Duke University School of Medicine, Durham, NC, USA
| | - Eric Lai
- Takeda Development Center Americas, Inc., Deerfield, IL, USA
| | | | | | | | - Craig Metz
- Zinfandel Pharmaceuticals, Inc., Durham, NC, USA
| | - Sridevi Ponduru
- Takeda Development Center Americas, Inc., Cambridge, MA, USA
| | | | | |
Collapse
|
60
|
Chaves-Filho AB, Pinto IFD, Dantas LS, Xavier AM, Inague A, Faria RL, Medeiros MHG, Glezer I, Yoshinaga MY, Miyamoto S. Alterations in lipid metabolism of spinal cord linked to amyotrophic lateral sclerosis. Sci Rep 2019; 9:11642. [PMID: 31406145 PMCID: PMC6691112 DOI: 10.1038/s41598-019-48059-7] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/26/2019] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by progressive loss of upper and lower motor neurons leading to muscle paralysis and death. While a link between dysregulated lipid metabolism and ALS has been proposed, lipidome alterations involved in disease progression are still understudied. Using a rodent model of ALS overexpressing mutant human Cu/Zn-superoxide dismutase gene (SOD1-G93A), we performed a comparative lipidomic analysis in motor cortex and spinal cord tissues of SOD1-G93A and WT rats at asymptomatic (~70 days) and symptomatic stages (~120 days). Interestingly, lipidome alterations in motor cortex were mostly related to age than ALS. In contrast, drastic changes were observed in spinal cord of SOD1-G93A 120d group, including decreased levels of cardiolipin and a 6-fold increase in several cholesteryl esters linked to polyunsaturated fatty acids. Consistent with previous studies, our findings suggest abnormal mitochondria in motor neurons and lipid droplets accumulation in aberrant astrocytes. Although the mechanism leading to cholesteryl esters accumulation remains to be established, we postulate a hypothetical model based on neuroprotection of polyunsaturated fatty acids into lipid droplets in response to increased oxidative stress. Implicated in the pathology of other neurodegenerative diseases, cholesteryl esters appear as attractive targets for further investigations.
Collapse
Affiliation(s)
| | | | - Lucas Souza Dantas
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Andre Machado Xavier
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Alex Inague
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Rodrigo Lucas Faria
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Marisa H G Medeiros
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Isaias Glezer
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marcos Yukio Yoshinaga
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Sayuri Miyamoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
61
|
Wang J, Gu BJ, Masters CL, Wang YJ. A systemic view of Alzheimer disease - insights from amyloid-β metabolism beyond the brain. Nat Rev Neurol 2019; 13:612-623. [PMID: 28960209 DOI: 10.1038/nrneurol.2017.111] [Citation(s) in RCA: 522] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer disease (AD) is the most common type of dementia, and is currently incurable; existing treatments for AD produce only a modest amelioration of symptoms. Research into this disease has conventionally focused on the CNS. However, several peripheral and systemic abnormalities are now understood to be linked to AD, and our understanding of how these alterations contribute to AD is becoming more clearly defined. This Review focuses on amyloid-β (Aβ), a major hallmark of AD. We review emerging findings of associations between systemic abnormalities and Aβ metabolism, and describe how these associations might interact with or reflect on the central pathways of Aβ production and clearance. On the basis of these findings, we propose that these abnormal systemic changes might not only develop secondary to brain dysfunction but might also affect AD progression, suggesting that the interactions between the brain and the periphery have a crucial role in the development and progression of AD. Such a systemic view of the molecular pathogenesis of AD could provide a novel perspective for understanding this disease and present new opportunities for its early diagnosis and treatment.
Collapse
Affiliation(s)
- Jun Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, 10 Changjiang branch road, Daping, Chongqing, 400042, China
| | - Ben J Gu
- The Florey Institute, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
| | - Colin L Masters
- The Florey Institute, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
| | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, 10 Changjiang branch road, Daping, Chongqing, 400042, China
| |
Collapse
|
62
|
Gamba P, Staurenghi E, Testa G, Giannelli S, Sottero B, Leonarduzzi G. A Crosstalk Between Brain Cholesterol Oxidation and Glucose Metabolism in Alzheimer's Disease. Front Neurosci 2019; 13:556. [PMID: 31213973 PMCID: PMC6554318 DOI: 10.3389/fnins.2019.00556] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/14/2019] [Indexed: 12/14/2022] Open
Abstract
In Alzheimer’s disease (AD), both cholesterol and glucose dysmetabolism precede the onset of memory deficit and contribute to the disease’s progression. It is indeed now believed that oxidized cholesterol in the form of oxysterols and altered glucose uptake are the main triggers in AD affecting production and clearance of Aβ, and tau phosphorylation. However, only a few studies highlight the relationship between them, suggesting the importance of further extensive studies on this topic. Recently, a molecular link was demonstrated between cholesterol oxidative metabolism and glucose uptake in the brain. In particular, 27-hydroxycholesterol, a key linker between hypercholesterolemia and the increased AD risk, is considered a biomarker for reduced glucose metabolism. In fact, its excess increases the activity of the renin-angiotensin system in the brain, thus reducing insulin-mediated glucose uptake, which has a major impact on brain functioning. Despite this important evidence regarding the role of 27-hydroxycholesterol in regulating glucose uptake by neurons, the involvement of other cholesterol oxidation products that have been clearly demonstrated to be key players in AD cannot be ruled out. This review highlights the current understanding of the potential role of cholesterol and glucose dysmetabolism in AD progression, and the bidirectional crosstalk between these two phenomena.
Collapse
Affiliation(s)
- Paola Gamba
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, Turin, Italy
| | - Erica Staurenghi
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, Turin, Italy
| | - Gabriella Testa
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, Turin, Italy
| | - Serena Giannelli
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, Turin, Italy
| | - Barbara Sottero
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, Turin, Italy
| | - Gabriella Leonarduzzi
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, Turin, Italy
| |
Collapse
|
63
|
Adorni MP, Ruscica M, Ferri N, Bernini F, Zimetti F. Proprotein Convertase Subtilisin/Kexin Type 9, Brain Cholesterol Homeostasis and Potential Implication for Alzheimer's Disease. Front Aging Neurosci 2019; 11:120. [PMID: 31178716 PMCID: PMC6538876 DOI: 10.3389/fnagi.2019.00120] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/07/2019] [Indexed: 02/04/2023] Open
Abstract
Alzheimer’s disease (AD) has been associated with dysregulation of brain cholesterol homeostasis. Proprotein convertase subtilisin/kexin type 9 (PCSK9), beyond the known role in the regulation of plasma low-density lipoprotein cholesterol, was first identified in the brain with a potential involvement in brain development and apoptosis. However, its role in the central nervous system (CNS) and in AD pathogenesis is still far from being understood. While in vitro and in vivo evidence led to controversial results, genetic studies apparently did not find an association between PCSK9 loss of function mutations and AD risk or prevalence. In addition, a potential impairment of cognitive performances by the treatment with the PCSK9 inhibitors, alirocumab and evolocumab, have been excluded, although ongoing studies with longer follow-up will provide further insights. PCSK9 is able to affect the expression of neuronal receptors involved in cholesterol homeostasis and neuroinflammation, and higher PCSK9 concentrations have been found in the cerebrospinal fluid (CSF) of AD patients. In this review article, we critically examined the science of PCSK9 with respect to its modulatory role of the mechanisms underlying the pathogenesis of AD. In addition, based on literature data, we made the hypothesis to consider brain PCSK9 as a negative modulator of brain cholesterol homeostasis and neuroinflammation and a potential pharmacological target for treatment.
Collapse
Affiliation(s)
- Maria Pia Adorni
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy
| | - Massimiliano Ruscica
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Nicola Ferri
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Padova, Italy
| | - Franco Bernini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy
| | - Francesca Zimetti
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy
| |
Collapse
|
64
|
Apolipoprotein E/Amyloid-β Complex Accumulates in Alzheimer Disease Cortical Synapses via Apolipoprotein E Receptors and Is Enhanced by APOE4. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1621-1636. [PMID: 31108099 DOI: 10.1016/j.ajpath.2019.04.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 01/08/2023]
Abstract
Apolipoprotein E (apoE) colocalizes with amyloid-β (Aβ) in Alzheimer disease (AD) plaques and in synapses, and evidence suggests that direct interactions between apoE and Aβ are important for apoE's effects in AD. The present work examines the hypothesis that apoE receptors mediate uptake of apoE/Aβ complex into synaptic terminals. Western blot analysis shows multiple SDS-stable assemblies in synaptosomes from human AD cortex; apoE/Aβ complex was markedly increased in AD compared with aged control samples. Complex formation between apoE and Aβ was confirmed by coimmunoprecipitation experiments. The apoE receptors low-density lipoprotein receptor (LDLR) and LDLR-related protein 1 (LRP1) were quantified in synaptosomes using flow cytometry, revealing up-regulation of LRP1 in early- and late-stage AD. Dual-labeling flow cytometry analysis of LRP1- and LDLR positives indicate most (approximately 65%) of LDLR and LRP1 is associated with postsynaptic density-95 (PSD-95)-positive synaptosomes, indicating that remaining LRP1 and LDLR receptors are exclusively presynaptic. Flow cytometry analysis of Nile red labeling revealed a reduction in cholesterol esters in AD synaptosomes. Dual-labeling experiments showed apoE and Aβ concentration into LDLR and LRP1-positive synaptosomes, along with free and esterified cholesterol. Synaptic Aβ was increased by apoE4 in control and AD samples. These results are consistent with uptake of apoE/Aβ complex and associated lipids into synaptic terminals, with subsequent Aβ clearance in control synapses and accumulation in AD synapses.
Collapse
|
65
|
Pardeshi R, Bolshette N, Gadhave K, Arfeen M, Ahmed S, Jamwal R, Hammock BD, Lahkar M, Goswami SK. Docosahexaenoic Acid Increases the Potency of Soluble Epoxide Hydrolase Inhibitor in Alleviating Streptozotocin-Induced Alzheimer's Disease-Like Complications of Diabetes. Front Pharmacol 2019; 10:288. [PMID: 31068802 PMCID: PMC6491817 DOI: 10.3389/fphar.2019.00288] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/11/2019] [Indexed: 01/05/2023] Open
Abstract
Diabetes is a risk factor for Alzheimer's disease and it is associated with significant memory loss. In the present study, we hypothesized that the soluble epoxide hydrolase (sEH) inhibitor N-[1-(1-oxopropyl)-4-piperidinyl]-N'-[4-(trifluoromethoxy)phenyl)-urea (also known as TPPU) could alleviate diabetes-aggravated Alzheimer's disease-like symptoms by improving memory and cognition, and reducing the oxidative stress and inflammation associated with this condition. Also, we evaluated the effect of edaravone, an antioxidant on diabetes-induced Alzheimer's-like complications and the additive effect of docosahexaenoic acid (DHA) on the efficacy of TPPU. Diabetes was induced in male Sprague-Dawley rats by intraperitoneally administering streptozotocin (STZ). Six weeks after induction of diabetes, animals were either treated with vehicle, edaravone (3 or 10 mg/kg), TPPU (1 mg/kg) or TPPU (1 mg/kg) + DHA (100 mg/kg) for 2 weeks. The results demonstrate that the treatments increased the memory response of diabetic rats, in comparison to untreated diabetic rats. Indeed, DHA + TPPU were more effective than TPPU alone in reducing the symptoms monitored. All drug treatments reduced oxidative stress and minimized inflammation in the brain of diabetic rats. Expression of the amyloid precursor protein (APP) was increased in the brain of diabetic rats. Treatment with edaravone (10 mg/kg), TPPU or TPPU + DHA minimized the level of APP. The activity of acetylcholinesterase (AChE) which metabolizes acetylcholine was increased in the brain of diabetic rats. All the treatments except edaravone (3 mg/kg) were effective in decreasing the activity of AChE and TPPU + DHA was more efficacious than TPPU alone. Intriguingly, the histological changes in hippocampus after treatment with TPPU + DHA showed significant protection of neurons against STZ-induced neuronal damage. Overall, we found that DHA improved the efficacy of TPPU in increasing neuronal survival and memory, decreasing oxidative stress and inflammation possibly by stabilizing anti-inflammatory and neuroprotective epoxides of DHA. In the future, further evaluating the detailed mechanisms of action of sEH inhibitor and DHA could help to develop a strategy for the management of Alzheimer's-like complications in diabetes.
Collapse
Affiliation(s)
- Rohit Pardeshi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College and Hospital, Guwahati, India
| | - Nityanand Bolshette
- Institutional Level Biotech Hub (IBT Hub), Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College and Hospital, Guwahati, India
| | - Kundlik Gadhave
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, India
| | - Mohammad Arfeen
- Laboratory of Neurobiology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College and Hospital, Guwahati, India
| | - Sahabuddin Ahmed
- Laboratory of Neurobiology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College and Hospital, Guwahati, India
| | - Rohitash Jamwal
- Biomedical and Pharmaceutical Sciences, The University of Rhode Island, Kingston, RI, United States
| | - Bruce D. Hammock
- Hammock Laboratory of Pesticide Biotechnology, Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - Mangala Lahkar
- Institutional Level Biotech Hub (IBT Hub), Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College and Hospital, Guwahati, India
| | - Sumanta Kumar Goswami
- Hammock Laboratory of Pesticide Biotechnology, Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| |
Collapse
|
66
|
Levchenko SM, Kuzmin AN, Ohulchanskyy TY, Pliss A, Qu J, Prasad PN. Near-Infrared Irradiation Affects Lipid Metabolism in Neuronal Cells, Inducing Lipid Droplets Formation. ACS Chem Neurosci 2019; 10:1517-1523. [PMID: 30499655 DOI: 10.1021/acschemneuro.8b00508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
It is known that lipids play an outstanding role in cellular regulation, and their dysfunction has been linked to many diseases. Thus, modulation of lipid metabolism may provide new pathways for disease treatment or prevention. In this work, near-infrared (NIR) light was applied to modulate lipid metabolism and increase intracellular lipid content in rat cortical neurons (RCN). Using label-free CARS microscopy, we have monitored the intracellular lipid content in RCN at a single-cell level. A major increase in average level of lipid per cell after treatment with laser diode at 808 nm was found, nonlinearly dependent on the irradiation dose. Moreover, a striking formation of lipid droplets (LDs) in the irradiated RCN was discovered. Further experiments and analysis reveal a strong correlation between NIR light induced generation of reactive oxygen species (ROS), lipids level, and LDs formation in RCN. Our findings can contribute to a development of therapeutic approaches for neurological disorders via NIR light control of lipid metabolism in neuronal cells.
Collapse
Affiliation(s)
- Svitlana M. Levchenko
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong Province 518060, China
| | - Andrey N. Kuzmin
- Institute for Lasers, Photonics and Biophotonics, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
- Advanced
Cytometry
Instrumentation Systems, LLC, 640 Ellicott Street − Suite 499, Buffalo, New York 14203, United States
| | - Tymish Y. Ohulchanskyy
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong Province 518060, China
| | - Artem Pliss
- Institute for Lasers, Photonics and Biophotonics, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
- Advanced
Cytometry
Instrumentation Systems, LLC, 640 Ellicott Street − Suite 499, Buffalo, New York 14203, United States
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong Province 518060, China
| | - Paras N. Prasad
- Institute for Lasers, Photonics and Biophotonics, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| |
Collapse
|
67
|
Byun MS, Kim HJ, Yi D, Choi HJ, Baek H, Lee JH, Choe YM, Lee SH, Ko K, Sohn BK, Lee JY, Lee Y, Kim YK, Lee YS, Lee DY. Region-specific association between basal blood insulin and cerebral glucose metabolism in older adults. NEUROIMAGE-CLINICAL 2019; 22:101765. [PMID: 30904824 PMCID: PMC6434096 DOI: 10.1016/j.nicl.2019.101765] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 12/31/2018] [Accepted: 03/10/2019] [Indexed: 01/30/2023]
Abstract
Background Although previous studies have suggested that insulin plays a role in brain function, it still remains unclear whether or not insulin has a region-specific association with neuronal and synaptic activity in the living human brain. We investigated the regional pattern of association between basal blood insulin and resting-state cerebral glucose metabolism (CMglu), a proxy for neuronal and synaptic activity, in older adults. Method A total of 234 nondiabetic, cognitively normal (CN) older adults underwent comprehensive clinical assessment, resting-state 18F-fluodeoxyglucose (FDG)-positron emission tomography (PET) and blood sampling to determine overnight fasting blood insulin and glucose levels, as well as apolipoprotein E (APOE) genotyping. Results An exploratory voxel-wise analysis of FDG-PET without a priori hypothesis demonstrated a positive association between basal blood insulin levels and resting-state CMglu in specific cerebral cortices and hippocampus, rather than in non-specific overall cerebral regions, even after controlling for the effects of APOE e4 carrier status, vascular risk factor score, body mass index, fasting blood glucose, and demographic variables. Particularly, a positive association of basal blood insulin with CMglu in the right posterior hippocampus and adjacent parahippocampal region as well as in the right inferior parietal region remained significant after multiple comparison correction. Conversely, no region showed negative association between basal blood insulin and CMglu. Conclusions Our finding suggests that basal fasting blood insulin may have association with neuronal and synaptic activity in specific cerebral regions, particularly in the hippocampal/parahippocampal and inferior parietal regions. We investigated regional pattern of association between basal blood insulin and resting-state cerebral glucose metabolism. Significant clusters with positive associations were found mainly in the hippocampal and inferior parietal regions. Our finding suggests a region-specific association of basal blood insulin with resting-state cerebral glucose metabolism. Further studies to elucidate underlying mechanism and implication of this region-specific association will be necessary.
Collapse
Affiliation(s)
- Min Soo Byun
- Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, Republic of Korea
| | - Hyun Jung Kim
- Department of Psychiatry, Changsan Convalescent Hospital, Changwon, Republic of Korea
| | - Dahyun Yi
- Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, Republic of Korea
| | - Hyo Jung Choi
- Department of Psychiatry, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Hyewon Baek
- Department of Neuropsychiatry, Kyunggi Provincial Hospital for the Elderly, Yongin, Republic of Korea
| | - Jun Ho Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Young Min Choe
- Department of Neuropsychiatry, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Republic of Korea
| | - Seung Hoon Lee
- Department of Neuropsychiatry, Bucheon Geriatric Medical Center, Bucheon, Republic of Korea
| | - Kang Ko
- Department of Neuropsychiatry, National Center for Mental Health, Seoul, Republic of Korea
| | - Bo Kyung Sohn
- Department of Psychiatry, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Republic of Korea
| | - Jun-Young Lee
- Department of Psychiatry, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Younghwa Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Yun-Sang Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dong Young Lee
- Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, Republic of Korea; Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | | |
Collapse
|
68
|
Association of Glucose Fluctuations with Sarcopenia in Older Adults with Type 2 Diabetes Mellitus. J Clin Med 2019; 8:jcm8030319. [PMID: 30845785 PMCID: PMC6463152 DOI: 10.3390/jcm8030319] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 12/16/2022] Open
Abstract
Type 2 diabetes mellitus accelerates loss of muscle mass and strength. Patients with Alzheimer’s disease (AD) also show these conditions, even in the early stages of AD. The mechanism linking glucose management with these muscle changes has not been elucidated but has implications for clarifying these associations and developing preventive strategies to maintain functional capacity. This study included 69 type 2 diabetes patients with a diagnosis of cognitive impairment (n = 32) and patients with normal cognition (n = 37). We investigated the prevalence of sarcopenia in diabetes patients with and without cognitive impairment and examined the association of glucose alterations with sarcopenia. Daily glucose levels were evaluated using self-monitoring of blood glucose, and we focused on the effects of glucose fluctuations, postprandial hyperglycemia, and the frequency of hypoglycemia on sarcopenia. Diabetes patients with cognitive impairment displayed a high prevalence of sarcopenia, and glucose fluctuations were independently associated with sarcopenia, even after adjusting for glycated hemoglobin A1c (HbA1c) levels and associated factors. In particular, glucose fluctuations were significantly associated with a low muscle mass, low grip strength, and slow walking speed. Our observation suggests the importance of glucose management by considering glucose fluctuations to prevent the development of disability.
Collapse
|
69
|
Chen S, Chen ST, Sun Y, Xu Z, Wang Y, Yao SY, Yao WB, Gao XD. Fibroblast growth factor 21 ameliorates neurodegeneration in rat and cellular models of Alzheimer's disease. Redox Biol 2019; 22:101133. [PMID: 30785085 PMCID: PMC6383137 DOI: 10.1016/j.redox.2019.101133] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/27/2019] [Accepted: 01/30/2019] [Indexed: 12/31/2022] Open
Abstract
Our understanding of the mechanisms underlying process in Alzheimer's disease (AD) is far from completion and new therapeutic targets are urgently needed. Recently, the link between dementia and diabetes mellitus (DM) prompted us to search for new therapeutic strategies from glucose metabolism regulators for neurodegeneration. Previous studies have indicated that fibroblast growth factor 21 (FGF21), an attractive and potential therapeutic treatment for DM, may exert diverse effects in the central nervous system. However, the specific biological function and mechanisms of FGF21 on AD is still largely unknown. We report here a study in vivo and in vitro of the neuroprotective effects of FGF21 on cell apoptosis, tau hyperphosphorylation and oxidative stress induced by amyloid β-peptide 25–35. In the present study, the results also further provided evidence for molecular mechanisms by which FGF21 exerted its beneficial effects in neuron and suggested that the regulation of protein phosphatase 2A / mitogen-activated protein kinases / hypoxia-inducible factor-1α pathway may play a key role in mediating the neuroprotective effects of FGF21 against AD-like pathologies. In vivo and in vitro evidence for Aβ -induced neurodegeneration ameliorated by FGF21. FGF21 alleviated tau and oxidative stress pathologies in AD rat and cellular models. PP2A / MAPKs / HIF-1α pathway was involved in the neuroprotective effect of FGF21.
Collapse
Affiliation(s)
- Song Chen
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Su-Ting Chen
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yan Sun
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Zheng Xu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Ying Wang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Si-Yuan Yao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wen-Bing Yao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Xiang-Dong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
70
|
Hussain G, Anwar H, Rasul A, Imran A, Qasim M, Zafar S, Imran M, Kamran SKS, Aziz N, Razzaq A, Ahmad W, Shabbir A, Iqbal J, Baig SM, Ali M, Gonzalez de Aguilar JL, Sun T, Muhammad A, Muhammad Umair A. Lipids as biomarkers of brain disorders. Crit Rev Food Sci Nutr 2019; 60:351-374. [DOI: 10.1080/10408398.2018.1529653] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ghulam Hussain
- Department of Physiology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Haseeb Anwar
- Department of Physiology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Azhar Rasul
- Department of Zoology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Ali Imran
- Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Shamaila Zafar
- Department of Physiology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Syed Kashif Shahid Kamran
- Department of Physiology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Nimra Aziz
- Department of Physiology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Aroona Razzaq
- Department of Physiology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Waseem Ahmad
- Department of Physiology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Asghar Shabbir
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Javed Iqbal
- Department of Neurology, Allied Hospital, Faisalabad, Pakistan
| | - Shahid Mahmood Baig
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), PIEAS, Faisalabad, Pakistan
| | - Muhammad Ali
- Department of Zoology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Jose-Luis Gonzalez de Aguilar
- Université de Strasbourg, Strasbourg, France
- Mécanismes Centraux et Péripheriques de la Neurodégénérescence, INSERM, Strasbourg, France
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian Province, China
| | - Atif Muhammad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | | |
Collapse
|
71
|
Stepler KE, Robinson RAS. The Potential of ‘Omics to Link Lipid Metabolism and Genetic and Comorbidity Risk Factors of Alzheimer’s Disease in African Americans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1118:1-28. [DOI: 10.1007/978-3-030-05542-4_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
72
|
The Structure and the Regulation of Glycogen Phosphorylases in Brain. ADVANCES IN NEUROBIOLOGY 2019; 23:125-145. [DOI: 10.1007/978-3-030-27480-1_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
73
|
Shinohara M, Sato N. The Roles of Apolipoprotein E, Lipids, and Glucose in the Pathogenesis of Alzheimer’s Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1128:85-101. [DOI: 10.1007/978-981-13-3540-2_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
74
|
Low Phytanic Acid-Concentrated DHA Prevents Cognitive Deficit and Regulates Alzheimer Disease Mediators in an ApoE -/- Mice Experimental Model. Nutrients 2018; 11:nu11010011. [PMID: 30577526 PMCID: PMC6356727 DOI: 10.3390/nu11010011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/14/2018] [Accepted: 12/15/2018] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD) is the main cause of dementia and cognitive impairment. It has been associated with a significant diminution of omega-3 polyunsaturated fatty acid docosahexaenoic acid (DHA) levels in the brain. Clinical trials with DHA as a treatment in neurological diseases have shown inconsistent results. Previously, we reported that the presence of phytanic acid (PhA) in standard DHA compositions could be blunting DHA’s beneficial effects. Therefore, we aimed to analyze the effects of a low PhA-concentrated DHA and a standard PhA-concentrated DHA in Apolipoprotein E knockout (ApoE−/−) mice. Behavioral tests and protein expression of pro-inflammatory, pro-oxidant, antioxidant factors, and AD-related mediators were evaluated. Low PhA-concentrated DHA decreased Aβ, ß-amyloid precursor protein (APP), p-tau, Ca2+/calmodulin-dependent protein kinase II (CAMKII), caspase 3, and catalase, and increased brain derived neurotrophic factor (BDNF) when compared to standard PhA-concentrated DHA. Low PhA-concentrated DHA decreased interleukin (IL)-6 and tumor necrosis factor alpha (TNF-α) protein expression in ApoE−/− mice when compared to standard PhA-concentrated DHA. No significant differences were found in p22phox, inducible nitric oxide synthase (iNOS), glutathione peroxidase (GPx), superoxide dismutase 1 (SOD-1), and tau protein expression. The positive actions of a low PhA-concentrated DHA were functionally reflected by improving the cognitive deficit in the AD experimental model. Therefore, reduction of PhA content in DHA compositions could highlight a novel pathway for the neurodegeneration processes related to AD.
Collapse
|
75
|
Levchenko SM, Qu J. Biomolecular Component Analysis of Phospholipids Composition in Live HeLa Cells. BIOSENSORS-BASEL 2018; 8:bios8040123. [PMID: 30563051 PMCID: PMC6315881 DOI: 10.3390/bios8040123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 12/19/2022]
Abstract
The alteration of the phospholipid composition within the cell, in particular the ratio between saturated and unsaturated fatty acids, can serve as an important biomarker to prognosis of the disease progression (e.g., fatty-liver disease, prostate cancer, or neurodegenerative disorders). Major techniques for lipid analysis in biological samples require a lipid extraction procedure that is not compatible with live cell studies. To address this challenge, we apply microRaman-Biomolecular Component Analysis (BCA) for comparative analysis of phospholipid composition and sensing the saturation degree of fatty acid lipid chain in live HeLa cells and lipids extracted from HeLa cells. After processing raw Raman data, acquired in lipid droplets (LDs) free cytoplasmic area, LDs and extracted lipids with BCA, the lipid component was isolated. Despite the similarity in general profiles of processed Raman spectra acquired in live cells and extracted lipids, some clear differences that reflect diversity in their phospholipids composition were revealed. Furthermore, using the direct relation between the number of double bonds in the fatty acid chain and the intensity ratio of the corresponding Raman bands, the saturation degree of fatty acids was estimated.
Collapse
Affiliation(s)
- Svitlana M Levchenko
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
76
|
Spallazzi M, Dobisch L, Becke A, Berron D, Stucht D, Oeltze-Jafra S, Caffarra P, Speck O, Düzel E. Hippocampal vascularization patterns: A high-resolution 7 Tesla time-of-flight magnetic resonance angiography study. NEUROIMAGE-CLINICAL 2018; 21:101609. [PMID: 30581106 PMCID: PMC6413539 DOI: 10.1016/j.nicl.2018.11.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/03/2018] [Accepted: 11/18/2018] [Indexed: 01/11/2023]
Abstract
Considerable evidence suggests a close relationship between vascular and degenerative pathology in the human hippocampus. Due to the intrinsic fragility of its vascular network, the hippocampus appears less able to cope with hypoperfusion and anoxia than other cortical areas. Although hippocampal blood supply is generally provided by the collateral branches of the posterior cerebral artery (PCA) and the anterior choroidal artery (AChA), different vascularization patterns have been detected postmortem. To date, a methodology that enables the classification of individual hippocampal vascularization patterns in vivo has not been established. In this study, using high-resolution 7 Tesla time-of-flight angiography data (0.3 mm isotropic resolution) in young adults, we classified individual variability in hippocampal vascularization patterns involved in medial temporal lobe blood supply in vivo. A strong concordance between our classification and previous autopsy findings was found, along with interesting anatomical observations, such as the variable contribution of the AChA to hippocampal supply, the relationships between hippocampal and PCA patterns, and the different distribution patterns of the right and left hemispheres. The approach presented here for determining hippocampal vascularization patterns in vivo may provide new insights into not only the vulnerability of the hippocampus to vascular and neurodegenerative diseases but also hippocampal vascular plasticity after exercise training. First attempt to classify human hippocampal vascularization in vivo using 7Tesla Angiography Good concordance between in vivo findings and autopsy studies A new avenue to investigate interindividual variability in hippocampal vascular plasticity A new avenue for linking individual vascular anatomical phenotypes to neurodegenerative and vascular pathology
Collapse
Affiliation(s)
| | - Laura Dobisch
- Institute for Cognitive Neurology and Dementia Research, University of Magdeburg, Germany; German Center for Neurodegenerative Diseases, Magdeburg, Germany
| | - Andreas Becke
- Institute for Cognitive Neurology and Dementia Research, University of Magdeburg, Germany; German Center for Neurodegenerative Diseases, Magdeburg, Germany
| | - David Berron
- Institute for Cognitive Neurology and Dementia Research, University of Magdeburg, Germany; German Center for Neurodegenerative Diseases, Magdeburg, Germany
| | - Daniel Stucht
- Department of Biomedical Magnetic Resonance, Otto-von-Guericke University Magdeburg, Germany
| | | | | | - Oliver Speck
- German Center for Neurodegenerative Diseases, Magdeburg, Germany; Department of Biomedical Magnetic Resonance, Otto-von-Guericke University Magdeburg, Germany; Leibniz Institute for Neurobiology, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Emrah Düzel
- Institute for Cognitive Neurology and Dementia Research, University of Magdeburg, Germany; German Center for Neurodegenerative Diseases, Magdeburg, Germany; Institute of Cognitive Neuroscience, Univ. College London, London, United Kingdom.
| |
Collapse
|
77
|
Hill E, Clifton P, Goodwill AM, Dennerstein L, Campbell S, Szoeke C. Dietary patterns and β-amyloid deposition in aging Australian women. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2018; 4:535-541. [PMID: 30386818 PMCID: PMC6205110 DOI: 10.1016/j.trci.2018.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Evidence indicates that associations between diet and Alzheimer's disease may occur through biomarker pathways such as amyloid-β (Aβ); however, few studies have investigated dietary/Aβ relationships, and no study has investigated this relationship in women. METHODS Dietary patterns were extrapolated for 115 participants from the Women's Health Aging Project. Aβ deposition was measured via in vivo F-18 florbetaben positron emission tomography scanning. RESULTS Participants were, on average, aged 70 years (±2.63 SD), had 13 years of education (±3.57 SD), a BMI of 28 kg/m2 (±5.46 SD), and a daily energy intake of 5161 kJ (±1679.03 SD). Four dietary patterns were identified: high fat, Mediterranean, junk food, and low fat. Adherence to the junk food diet was a significant predictor of Aβ deposition (β = .10, P = .03). DISCUSSION This study highlights the potential of diet to influence neurodegenerative disease and as a potential modifiable lifestyle risk factor for Alzheimer's disease.
Collapse
Affiliation(s)
- Edward Hill
- Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Parkville, Victoria, Australia
- School of Psychology, Australian Catholic University, Melbourne, Victoria, Australia
- Institute for Health and Ageing, Australian Catholic University, Melbourne, Victoria, Australia
| | - Peter Clifton
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Alicia M. Goodwill
- Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Parkville, Victoria, Australia
- School of Psychology, Australian Catholic University, Melbourne, Victoria, Australia
- Institute for Health and Ageing, Australian Catholic University, Melbourne, Victoria, Australia
| | - Lorraine Dennerstein
- Department of Psychiatry, University of Melbourne, Parkville, Victoria, Australia
| | | | - Cassandra Szoeke
- Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Parkville, Victoria, Australia
- School of Psychology, Australian Catholic University, Melbourne, Victoria, Australia
- Institute for Health and Ageing, Australian Catholic University, Melbourne, Victoria, Australia
| |
Collapse
|
78
|
Hopp SC, Bihlmeyer NA, Corradi JP, Vanderburg C, Cacace AM, Das S, Clark TW, Betensky RA, Hyman BT, Hudry E. Neuronal calcineurin transcriptional targets parallel changes observed in Alzheimer disease brain. J Neurochem 2018; 147:24-39. [PMID: 29806693 DOI: 10.1111/jnc.14469] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/11/2018] [Accepted: 05/09/2018] [Indexed: 01/23/2023]
Abstract
Synaptic dysfunction and loss are core pathological features in Alzheimer disease (AD). In the vicinity of amyloid-β plaques in animal models, synaptic toxicity occurs and is associated with chronic activation of the phosphatase calcineurin (CN). Indeed, pharmacological inhibition of CN blocks amyloid-β synaptotoxicity. We therefore hypothesized that CN-mediated transcriptional changes may contribute to AD neuropathology and tested this by examining the impact of CN over-expression on neuronal gene expression in vivo. We found dramatic transcriptional down-regulation, especially of synaptic mRNAs, in neurons chronically exposed to CN activation. Importantly, the transcriptional profile parallels the changes in human AD tissue. Bioinformatics analyses suggest that both nuclear factor of activated T cells and numerous microRNAs may all be impacted by CN, and parallel findings are observed in AD. These data and analyses support the hypothesis that at least part of the synaptic failure characterizing AD may result from aberrant CN activation leading to down-regulation of synaptic genes, potentially via activation of specific transcription factors and expression of repressive microRNAs. OPEN PRACTICES Open Science: This manuscript was awarded with the Open Materials Badge. For more information see: https://cos.io/our-services/open-science-badges/ Read the Editorial Highlight for this article on page 8.
Collapse
Affiliation(s)
- Sarah C Hopp
- Alzheimer's disease Research Laboratory, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Nathan A Bihlmeyer
- MIND Informatics, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Cambridge, Massachusetts, USA
| | - John P Corradi
- Exploratory Biology and Genomics, Bristol-Myers Squibb, Wallingford, Connecticut, USA
| | - Charles Vanderburg
- Alzheimer's disease Research Laboratory, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Angela M Cacace
- Exploratory Biology and Genomics, Bristol-Myers Squibb, Wallingford, Connecticut, USA
| | - Sudeshna Das
- MIND Informatics, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Cambridge, Massachusetts, USA
| | - Timothy W Clark
- MIND Informatics, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Cambridge, Massachusetts, USA
| | - Rebecca A Betensky
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Bradley T Hyman
- Alzheimer's disease Research Laboratory, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Eloise Hudry
- Alzheimer's disease Research Laboratory, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| |
Collapse
|
79
|
Xu Z, Chen S, Wang Y, Chen S, Yao W, Gao X. Neuroprotective effects of silk fibroin hydrolysate against Aβ25–35 induced cytotoxicity in SH-SY5Y cells and primary hippocampal neurons by regulating ROS inactivation of PP2A. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.03.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
80
|
Loss of P2X7 receptor function dampens whole body energy expenditure and fatty acid oxidation. Purinergic Signal 2018; 14:299-305. [PMID: 29754194 DOI: 10.1007/s11302-018-9610-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/01/2018] [Indexed: 12/24/2022] Open
Abstract
The established role of ATP-responsive P2X7 receptor in inflammatory, neurodegenerative, and immune diseases is now expanding to include several aspects of metabolic dysregulation. Indeed, P2X7 receptors are involved in β cell function, insulin secretion, and liability to diabetes, and loss of P2X7 function may increase the risk of hepatic steatosis and disrupt adipogenesis. Recently, body weight gain, abnormal lipid accumulation, adipocyte hyperplasia, increased fat mass, and ectopic fat distribution have been found in P2X7 KO mice. Here, we hypothesized that such clinical picture of dysregulated lipid metabolism might be the result of altered in vivo energy metabolism. By indirect calorimetry, we assessed 24 h of energy expenditure (EE) and respiratory exchange ratio (RER) as quotient of carbohydrate to fat oxidation in P2X7 KO mice. Moreover, we assessed the same parameters in aged-matched WT counterparts that underwent a 7-day treatment with the P2X7 antagonist A804598. We found that loss of P2X7 function elicits a severe decrease of EE that was less pronounced in A804598-treated mice. In parallel, P2X7KO mice show a drastic increase of RER, thus indicating the occurrence of a greater ratio of carbohydrate to fat oxidation. Decreased EE and fat oxidation is predictive of body weight gain, which was here confirmed. Taken together, our data provide evidence that P2X7 loss of function produces defective energy homeostasis that, together with disrupted adipogenesis, might help to explain accumulation of adipose tissue and contribute to disclose the potential role of P2X7 in metabolic diseases.
Collapse
|
81
|
Serum metabolomics study in a group of Parkinson's disease patients from northern India. Clin Chim Acta 2018; 480:214-219. [DOI: 10.1016/j.cca.2018.02.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 02/12/2018] [Accepted: 02/19/2018] [Indexed: 12/14/2022]
|
82
|
Hanon O, Vidal JS, Lehmann S, Bombois S, Allinquant B, Tréluyer JM, Gelé P, Delmaire C, Blanc F, Mangin JF, Buée L, Touchon J, Hugon J, Vellas B, Galbrun E, Benetos A, Berrut G, Paillaud E, Wallon D, Castelnovo G, Volpe-Gillot L, Paccalin M, Robert PH, Godefroy O, Dantoine T, Camus V, Belmin J, Vandel P, Novella JL, Duron E, Rigaud AS, Schraen-Maschke S, Gabelle A. Plasma amyloid levels within the Alzheimer's process and correlations with central biomarkers. Alzheimers Dement 2018; 14:858-868. [PMID: 29458036 DOI: 10.1016/j.jalz.2018.01.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/01/2017] [Accepted: 01/08/2018] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Diagnostic relevance of plasma amyloid β (Aβ) for Alzheimer's disease (AD) process yields conflicting results. The objective of the study was to assess plasma levels of Aβ42 and Aβ40 in amnestic mild cognitive impairment (MCI), nonamnestic MCI, and AD patients and to investigate relationships between peripheral and central biomarkers. METHODS One thousand forty participants (417 amnestic MCI, 122 nonamnestic MCI, and 501 AD) from the Biomarker of AmyLoïd pepTide and AlZheimer's diseAse Risk multicenter prospective study with cognition, plasma, cerebrospinal fluid (CSF), and magnetic resonance imaging assessments were included. RESULTS Plasma Aβ1-42 and Aβ1-40 were lower in AD (36.9 [11.7] and 263 [80] pg/mL) than in amnestic MCI (38.2 [11.9] and 269 [68] pg/mL) than in nonamnestic MCI (39.7 [10.5] and 272 [52] pg/mL), respectively (P = .01 for overall difference between groups for Aβ1-42 and P = .04 for Aβ1-40). Globally, plasma Aβ1-42 correlated with age, Mini-Mental State Examination, and APOE ε4 allele. Plasma Aβ1-42 correlated with all CSF biomarkers in MCI but only with CSF Aβ42 in AD. DISCUSSION Plasma Aβ was associated with cognitive status and CSF biomarkers, suggesting the interest of plasma amyloid biomarkers for diagnosis purpose.
Collapse
Affiliation(s)
- Olivier Hanon
- Memory Resource and Research Centre of de Paris-Broca-Ile de France, Hopital Broca, APHP, Paris, France; EA 4468, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| | - Jean-Sébastien Vidal
- Memory Resource and Research Centre of de Paris-Broca-Ile de France, Hopital Broca, APHP, Paris, France; EA 4468, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Sylvain Lehmann
- Laboratoire de Protéomique Clinique, Department of Biochemistry, Saint Eloi Hospital, IRMB, Inserm U1183, Université de Montpellier, Montpellier, France
| | - Stéphanie Bombois
- Memory Clinic, CHU Lille, Lille, France; Université Lille, Inserm U1171, Degenerative and Vascular Cognitive Disorders, Lille, France
| | | | - Jean-Marc Tréluyer
- Unité de recherche Clinique, Hôpital Universitaire Necker-Enfants Malades, APHP, Université Paris Descartes, Paris, France
| | - Patrick Gelé
- Department of Biology and Pathology, CHU de Lille, Lille, France; Université Lille, INSERM UMRS 1172, Alzheimer's & Tauopathies, Centre de Biologie Pathologie Génétique, CHU Lille, Lille, France
| | - Christine Delmaire
- Memory Clinic, CHU Lille, Lille, France; Université Lille, Inserm U1171, Degenerative and Vascular Cognitive Disorders, Lille, France
| | - Fredéric Blanc
- Memory Resource and Research Centre of Strasbourg/Colmar, CHRU de Strasbourg, Strasbourg, France; University of Strasbourg and French National Centre for Scientific Research (CNRS), ICube Laboratory and Fédération de Médecine Translationnelle de Strasbourg (FMTS), Team Imagerie Multimodale Intégrative en Santé (IMIS)/Neurocrypto, Strasbourg, France
| | - Jean-François Mangin
- CATI Multicenter Neuroimaging Platform, Neurospin, CEA, cati-neuroimaging.com, Paris Saclay University, Gif-sur-Yvette, France
| | - Luc Buée
- Department of Biology and Pathology, CHU de Lille, Lille, France; Université Lille, INSERM UMRS 1172, Alzheimer's & Tauopathies, Centre de Biologie Pathologie Génétique, CHU Lille, Lille, France
| | - Jacques Touchon
- Memory Resource and Research Centre of Montpellier, Department of Neurology, CHU Gui de Chauliac, Université de Montpellier, Montpellier, France
| | - Jacques Hugon
- Memory Resource and Research Centre of Paris Nord-Ile de France, Groupe Hospitalier Saint Louis-Lariboisière-Fernand Widal, APHP, Paris, France; University of Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Bruno Vellas
- Memory Resource and Research Centre of Midi-Pyrénées, CHU La Grave-Casselardit, Toulouse, France
| | - Evelyne Galbrun
- Department of Gérontology 2, Centre Hospitalier Émile-Roux, AP-HP, Limeil-Brévannes, France
| | - Athanase Benetos
- Memory Resource and Research Centre of Lorraine, CHU de Nancy, Nancy, France
| | - Gilles Berrut
- Memory Research Resource Center of Nantes, CHU de Nantes, Nantes, France
| | - Elèna Paillaud
- Department of Internal Medicine and Geriatrics, Hôpital Henri-Mondor, APHP, Créteil, France
| | - David Wallon
- Memory Resource and Research Centre of Haute-Normandie, CHU Charles Nicolle, Rouen, France; Inserm U1079, IRIB, Université de Rouen-Normandie, Rouen, France
| | | | | | - Marc Paccalin
- Memory Resource and Research Centre of Poitiers, CHU de Poitiers, Poitiers, France
| | | | - Olivier Godefroy
- Memory Resource and Research Centre of Amiens Picardie, CHU d'Amiens-Picardie, Amiens, France
| | - Thierry Dantoine
- Memory Research Resource Center of Limoges, CHU de Limoges, Limoges, France
| | - Vincent Camus
- Memory Resource and Research Centre of Tours, CHRU de Tours, Tours, France; Inserm U930 Imagerie et Cerveau, Université François-Rabelais de Tours, Tours, France
| | - Joël Belmin
- Service de Gériatrie à orientation Cardiologique et Neurologique, Hôpitaux Universitaires Pitie-Salpêtrière-Charles Foix, APHP, Paris, France; DHU FAST, Sorbonne Universités, UPMC Université Paris 06, Paris, France
| | - Pierre Vandel
- Memory Resource and Research Centre of Besançon-Franche-Comté, CHU de Besançon, Besançon, France; EA 481 Neuroscience, IFR 133, University of Bourgogne Franche-Comté, Besançon, France
| | - Jean-Luc Novella
- Memory Resource and Research Centre of Champagne Ardenne, CHU de Reims, Reims, France; EA 3797, Université de Reims Champagne Ardenne, Reims, France
| | - Emmanuelle Duron
- Memory Resource and Research Centre of de Paris-Broca-Ile de France, Hopital Broca, APHP, Paris, France; EA 4468, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Anne-Sophie Rigaud
- Memory Resource and Research Centre of de Paris-Broca-Ile de France, Hopital Broca, APHP, Paris, France; EA 4468, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Suzanna Schraen-Maschke
- Department of Biology and Pathology, CHU de Lille, Lille, France; Université Lille, INSERM UMRS 1172, Alzheimer's & Tauopathies, Centre de Biologie Pathologie Génétique, CHU Lille, Lille, France
| | - Audrey Gabelle
- Memory Resource and Research Centre of Montpellier, Department of Neurology, CHU Gui de Chauliac, Université de Montpellier, Montpellier, France
| | | |
Collapse
|
83
|
Cui H, Deng M, Zhang Y, Yin F, Liu J. Geniposide Increases Unfolded Protein Response-Mediating HRD1 Expression to Accelerate APP Degradation in Primary Cortical Neurons. Neurochem Res 2018; 43:669-680. [DOI: 10.1007/s11064-018-2469-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/03/2017] [Accepted: 01/08/2018] [Indexed: 02/20/2023]
|
84
|
Li HH, Lin CL, Huang CN. Neuroprotective effects of statins against amyloid β-induced neurotoxicity. Neural Regen Res 2018; 13:198-206. [PMID: 29557360 PMCID: PMC5879882 DOI: 10.4103/1673-5374.226379] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A growing body of evidence suggests that disruption of the homeostasis of lipid metabolism affects the pathogenesis of Alzheimer's disease (AD). In particular, dysregulation of cholesterol homeostasis in the brain has been reported to considerably increase the risk of developing AD. Thus, dysregulation of lipid homeostasis may increase the amyloid β (Aβ) levels by affecting amyloid precursor protein (APP) cleavage, which is the most important risk factor involved in the pathogenesis of AD. Previous research demonstrated that Aβ can trigger neuronal insulin resistance, which plays an important role in response to Aβ-induced neurotoxicity in AD. Epidemiological studies also suggested that statin use is associated with a decreased incidence of AD. Therefore, statins are believed to be a good candidate for conferring neuroprotective effects against AD. Statins may play a beneficial role in reducing Aβ-induced neurotoxicity. Their effect involves a putative mechanism beyond its cholesterol-lowering effects in preventing Aβ-induced neurotoxicity. However, the underlying molecular mechanisms of the protective effect of statins have not been clearly determined in Aβ-induced neurotoxicity. Given that statins may provide benefits beyond the inhibition of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, these drugs may also improve the brain. Thus, statins may have beneficial effects on impaired insulin signaling by activating AMP-activated protein kinase (AMPK) in neuronal cells. They play a potential therapeutic role in targeting Aβ-mediated neurotoxicity.
Collapse
Affiliation(s)
- Hsin-Hua Li
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, China
| | - Chih-Li Lin
- Institute of Medicine, Chung Shan Medical University; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan, China
| | - Chien-Ning Huang
- Institute of Medicine, Chung Shan Medical University; Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan, China
| |
Collapse
|
85
|
Oleic Acid and Hydroxytyrosol Inhibit Cholesterol and Fatty Acid Synthesis in C6 Glioma Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9076052. [PMID: 29435099 PMCID: PMC5757140 DOI: 10.1155/2017/9076052] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/08/2017] [Accepted: 12/05/2017] [Indexed: 12/12/2022]
Abstract
Recently, the discovery of natural compounds capable of modulating nervous system function has revealed new perspectives for a healthier brain. Here, we investigated the effects of oleic acid (OA) and hydroxytyrosol (HTyr), two important extra virgin olive oil compounds, on lipid synthesis in C6 glioma cells. OA and HTyr inhibited both de novo fatty acid and cholesterol syntheses without affecting cell viability. The inhibitory effect of the individual compounds was more pronounced if OA and HTyr were administered in combination. A reduction of polar lipid biosynthesis was also detected, while triglyceride synthesis was marginally affected. To clarify the lipid-lowering mechanism of these compounds, their effects on the activity of key enzymes of fatty acid biosynthesis (acetyl-CoA carboxylase-ACC and fatty acid synthase-FAS) and cholesterologenesis (3-hydroxy-3-methylglutaryl-CoA reductase-HMGCR) were investigated in situ by using digitonin-permeabilized C6 cells. ACC and HMGCR activities were especially reduced after 4 h of 25 μM OA and HTyr treatment. No change in FAS activity was observed. Inhibition of ACC and HMGCR activities is corroborated by the decrease of their mRNA abundance and protein level. Our results indicate a direct and rapid downregulatory effect of the two olive oil compounds on lipid synthesis in C6 cells.
Collapse
|
86
|
Kornelius E, Li HH, Peng CH, Hsiao HW, Yang YS, Huang CN, Lin CL. Mevastatin promotes neuronal survival against Aβ-induced neurotoxicity through AMPK activation. Metab Brain Dis 2017; 32:1999-2007. [PMID: 28840430 DOI: 10.1007/s11011-017-0091-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 08/11/2017] [Indexed: 01/26/2023]
Abstract
Statins or HMG-CoA reductase inhibitors have been shown to be effective at lowering cholesterol levels, and the application of these molecules has gradually emerged as an attractive therapeutic strategy for neurodegenerative diseases. Epidemiological studies suggest that statin use is associated with a decreased incidence of Alzheimer's disease (AD). Thus, statins may play a beneficial role in reducing amyloid β (Aβ) toxicity, the most relevant pathological feature and pathogenesis of AD. However, the precise mechanisms involved in statin-inhibited Aβ toxicity remain unclear. In the present study, we report that mevastatin significantly protects against Aβ-induced neurotoxicity in SK-N-MC neuronal cells by restoring impaired insulin signaling. This protection appears to be associated with the activation of AMP-activated protein kinase (AMPK), which has long been known to increase insulin sensitivity. Our results also indicate that high levels of cholesterol likely underlie Aβ-induced neurotoxicity and that activation of AMPK by mevastatin alleviates insulin resistance. Signaling through the insulin receptor substrate-1/Akt pathway appears to lead to cell survival. These findings demonstrate that mevastatin plays a potential therapeutic role in targeting Aβ-mediated neurotoxicity. The molecule presents a novel therapeutic strategy for further studies in AD prevention and therapeutics.
Collapse
Affiliation(s)
- Edy Kornelius
- Institute of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., Taichung City, 40201, Taiwan
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hsin-Hua Li
- Institute of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., Taichung City, 40201, Taiwan
| | - Chiung-Huei Peng
- Division of Basic Medical Science, Hungkuang University, Taichung, Taiwan
| | - Hui-Wen Hsiao
- Institute of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., Taichung City, 40201, Taiwan
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Sun Yang
- Institute of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., Taichung City, 40201, Taiwan
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chien-Ning Huang
- Institute of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., Taichung City, 40201, Taiwan.
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Chung Shan Medical University Hospital, Taichung, Taiwan.
| | - Chih-Li Lin
- Institute of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., Taichung City, 40201, Taiwan.
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
87
|
González-Ruiz V, Pezzatti J, Roux A, Stoppini L, Boccard J, Rudaz S. Unravelling the effects of multiple experimental factors in metabolomics, analysis of human neural cells with hydrophilic interaction liquid chromatography hyphenated to high resolution mass spectrometry. J Chromatogr A 2017; 1527:53-60. [DOI: 10.1016/j.chroma.2017.10.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 10/16/2017] [Accepted: 10/23/2017] [Indexed: 01/07/2023]
|
88
|
Taylor MK, Sullivan DK, Swerdlow RH, Vidoni ED, Morris JK, Mahnken JD, Burns JM. A high-glycemic diet is associated with cerebral amyloid burden in cognitively normal older adults. Am J Clin Nutr 2017; 106:1463-1470. [PMID: 29070566 PMCID: PMC5698843 DOI: 10.3945/ajcn.117.162263] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/02/2017] [Indexed: 12/19/2022] Open
Abstract
Background: Little is known about the relation between dietary intake and cerebral amyloid accumulation in aging.Objective: We assessed the association of dietary glycemic measures with cerebral amyloid burden and cognitive performance in cognitively normal older adults.Design: We performed cross-sectional analyses relating dietary glycemic measures [adherence to a high-glycemic-load diet (HGLDiet) pattern, intakes of sugar and carbohydrates, and glycemic load] with cerebral amyloid burden (measured by florbetapir F-18 positron emission tomography) and cognitive performance in 128 cognitively normal older adults who provided eligibility screening data for the University of Kansas's Alzheimer's Prevention through Exercise (APEX) Study. The study began in November 2013 and is currently ongoing.Results: Amyloid was elevated in 26% (n = 33) of participants. HGLDiet pattern adherence (P = 0.01), sugar intake (P = 0.03), and carbohydrate intake (P = 0.05) were significantly higher in participants with elevated amyloid burden. The HGLDiet pattern was positively associated with amyloid burden both globally and in all regions of interest independently of age, sex, and education (all P ≤ 0.001). Individual dietary glycemic measures (sugar intake, carbohydrate intake, and glycemic load) were also positively associated with global amyloid load and nearly all regions of interest independently of age, sex, and educational level (P ≤ 0.05). Cognitive performance was associated only with daily sugar intake, with higher sugar consumption associated with poorer global cognitive performance (global composite measure and Mini-Mental State Examination) and performance on subtests of Digit Symbol, Trail Making Test B, and Block Design, controlling for age, sex, and education.Conclusion: A high-glycemic diet was associated with greater cerebral amyloid burden, which suggests diet as a potential modifiable behavior for cerebral amyloid accumulation and subsequent Alzheimer disease risk. This trial was registered at clinicaltrials.gov as NCT02000583.
Collapse
Affiliation(s)
- Matthew K Taylor
- Departments of Dietetics and Nutrition and,University of Kansas Alzheimer’s Disease Center, Fairway, KS
| | - Debra K Sullivan
- Departments of Dietetics and Nutrition and,University of Kansas Alzheimer’s Disease Center, Fairway, KS
| | | | - Eric D Vidoni
- University of Kansas Alzheimer’s Disease Center, Fairway, KS
| | - Jill K Morris
- University of Kansas Alzheimer’s Disease Center, Fairway, KS
| | - Jonathan D Mahnken
- Biostatistics, University of Kansas Medical Center, Kansas City, KS; and,University of Kansas Alzheimer’s Disease Center, Fairway, KS
| | - Jeffrey M Burns
- University of Kansas Alzheimer's Disease Center, Fairway, KS
| |
Collapse
|
89
|
Gao R, Ku T, Ji X, Zhang Y, Li G, Sang N. Abnormal energy metabolism and tau phosphorylation in the brains of middle-aged mice in response to atmospheric PM 2.5 exposure. J Environ Sci (China) 2017; 62:145-153. [PMID: 29289286 DOI: 10.1016/j.jes.2017.06.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 06/07/2023]
Abstract
In light of the accelerated aging of the global population and the deterioration of the atmosphere pollution, we sought to clarify the potential mechanisms by which fine particulate matter (PM2.5) can cause cognitive impairment and neurodegeneration through the alteration of mitochondrial structure and function. The results indicate that PM2.5 inhalation reduces ATP production by disrupting the aerobic tricarboxylic acid cycle and oxidative phosphorylation, thereby causing the hypophosphorylation of tau in the cortices of middle-aged mice. Furthermore, excessive reactive oxygen species generation was involved in the impairment. Interestingly, these alterations were partially reversed after exposure to PM2.5 ended. These findings clarify the mechanism involved in mitochondrial abnormality-related neuropathological dysfunction in response to atmospheric PM2.5 inhalation and provide an optimistic sight for alleviating the adverse health outcomes in polluted areas.
Collapse
Affiliation(s)
- Rui Gao
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Tingting Ku
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Xiaotong Ji
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Yingying Zhang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China.
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
90
|
Pearsall EA, Cheng R, Zhou K, Takahashi Y, Matlock HG, Vadvalkar SS, Shin Y, Fredrick TW, Gantner ML, Meng S, Fu Z, Gong Y, Kinter M, Humphries KM, Szweda LI, Smith LEH, Ma JX. PPARα is essential for retinal lipid metabolism and neuronal survival. BMC Biol 2017; 15:113. [PMID: 29183319 PMCID: PMC5706156 DOI: 10.1186/s12915-017-0451-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 11/06/2017] [Indexed: 11/29/2022] Open
Abstract
Background Peroxisome proliferator activated receptor-alpha (PPARα) is a ubiquitously expressed nuclear receptor. The role of endogenous PPARα in retinal neuronal homeostasis is unknown. Retinal photoreceptors are the highest energy-consuming cells in the body, requiring abundant energy substrates. PPARα is a known regulator of lipid metabolism, and we hypothesized that it may regulate lipid use for oxidative phosphorylation in energetically demanding retinal neurons. Results We found that endogenous PPARα is essential for the maintenance and survival of retinal neurons, with Pparα-/- mice developing retinal degeneration first detected at 8 weeks of age. Using extracellular flux analysis, we identified that PPARα mediates retinal utilization of lipids as an energy substrate, and that ablation of PPARα ultimately results in retinal bioenergetic deficiency and neurodegeneration. This may be due to PPARα regulation of lipid transporters, which facilitate the internalization of fatty acids into cell membranes and mitochondria for oxidation and ATP production. Conclusion We identify an endogenous role for PPARα in retinal neuronal survival and lipid metabolism, and furthermore underscore the importance of fatty acid oxidation in photoreceptor survival. We also suggest PPARα as a putative therapeutic target for age-related macular degeneration, which may be due in part to decreased mitochondrial efficiency and subsequent energetic deficits. Electronic supplementary material The online version of this article (doi:10.1186/s12915-017-0451-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elizabeth A Pearsall
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.,Department of Physiology, University of Oklahoma Health Sciences Center, 941 Stanton L. Young Blvd., BSEB 328B, Oklahoma City, OK, 73104, USA
| | - Rui Cheng
- Department of Physiology, University of Oklahoma Health Sciences Center, 941 Stanton L. Young Blvd., BSEB 328B, Oklahoma City, OK, 73104, USA
| | - Kelu Zhou
- Department of Physiology, University of Oklahoma Health Sciences Center, 941 Stanton L. Young Blvd., BSEB 328B, Oklahoma City, OK, 73104, USA
| | - Yusuke Takahashi
- Department of Physiology, University of Oklahoma Health Sciences Center, 941 Stanton L. Young Blvd., BSEB 328B, Oklahoma City, OK, 73104, USA.,Section of Diabetes and Endocrinology, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - H Greg Matlock
- Department of Physiology, University of Oklahoma Health Sciences Center, 941 Stanton L. Young Blvd., BSEB 328B, Oklahoma City, OK, 73104, USA
| | - Shraddha S Vadvalkar
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Younghwa Shin
- Department of Physiology, University of Oklahoma Health Sciences Center, 941 Stanton L. Young Blvd., BSEB 328B, Oklahoma City, OK, 73104, USA
| | - Thomas W Fredrick
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Marin L Gantner
- The Lowy Medical Research Institute, La Jolla, CA, 92037, USA
| | - Steven Meng
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yan Gong
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Michael Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Kenneth M Humphries
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Luke I Szweda
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Lois E H Smith
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jian-Xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, 941 Stanton L. Young Blvd., BSEB 328B, Oklahoma City, OK, 73104, USA. .,Section of Diabetes and Endocrinology, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
91
|
Taleski G, Sontag E. Protein phosphatase 2A and tau: an orchestrated 'Pas de Deux'. FEBS Lett 2017; 592:1079-1095. [PMID: 29121398 DOI: 10.1002/1873-3468.12907] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/18/2017] [Accepted: 11/02/2017] [Indexed: 12/21/2022]
Abstract
The neuronal microtubule-associated protein tau serves a critical role in regulating axonal microtubule dynamics to support neuronal and synaptic functions. Furthermore, it contributes to glutamatergic regulation and synaptic plasticity. Emerging evidence also suggests that tau serves as a signaling scaffold. Tau function and subcellular localization are tightly regulated, in part, by the orchestrated interplay between phosphorylation and dephosphorylation events. Significantly, protein phosphatase type 2A (PP2A), encompassing the regulatory PPP2R2A (or Bα) subunit, is a major brain heterotrimeric enzyme and the primary tau Ser/Thr phosphatase in vivo. Herein, we closely examine how the intimate and compartmentalized interactions between PP2A and tau regulate tau phosphorylation and function, and play an essential role in neuronal homeostasis. We also review evidence supporting a strong link between deregulation of tau-PP2A functional interactions and the molecular underpinnings of various neurodegenerative diseases collectively called tauopathies. Lastly, we discuss the opportunities and associated challenges in more specifically targeting PP2A-tau interactions for drug development for tauopathies.
Collapse
Affiliation(s)
- Goce Taleski
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, Hunter Medical Research Institute, University of Newcastle, Callaghan, Australia
| | - Estelle Sontag
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, Hunter Medical Research Institute, University of Newcastle, Callaghan, Australia
| |
Collapse
|
92
|
Byun MS, Kim HJ, Yi D, Choi HJ, Baek H, Lee JH, Choe YM, Sohn BK, Lee JY, Lee Y, Ko H, Kim YK, Lee YS, Sohn CH, Woo JI, Lee DY. Differential effects of blood insulin and HbA1c on cerebral amyloid burden and neurodegeneration in nondiabetic cognitively normal older adults. Neurobiol Aging 2017; 59:15-21. [DOI: 10.1016/j.neurobiolaging.2017.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 01/08/2023]
|
93
|
Mathys J, Gholamrezaee M, Henry H, von Gunten A, Popp J. Decreasing body mass index is associated with cerebrospinal fluid markers of Alzheimer's pathology in MCI and mild dementia. Exp Gerontol 2017; 100:45-53. [PMID: 29054536 DOI: 10.1016/j.exger.2017.10.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/19/2017] [Accepted: 10/16/2017] [Indexed: 01/24/2023]
Abstract
BACKGROUND Several studies have identified an association between body mass index (BMI) and the incidence and severity of Alzheimer's disease (AD) but this relationship is not fully understood. OBJECTIVE The primary objective of this study was to assess the possible association between BMI and cerebrospinal fluid (CSF) biomarkers of AD pathology in subjects with normal cognition and cognitive impairment. The secondary objective was to test whether BMI may contribute to improve the accuracy of a clinical model to predict AD pathology in memory clinic patients with cognitive impairment. METHOD One hundred and seven elderly subjects with cognitive impairment (91 memory clinic patients with mild cognitive impairment [MCI] and 16 with dementia of AD type) and 55 cognitively healthy volunteers were included in this study. All subjects received a comprehensive clinical and neuropsychological evaluation and a lumbar puncture for CSF biomarker analysis. Multiple linear regressions and receiver operating characteristic (ROC) analyses were carried out to assess the association between BMI and the CSF biomarkers of AD pathology. RESULTS BMI was positively correlated with the CSF levels of Aβ42 and negatively with tau and P-tau181 in participants with cognitive impairment. The associations were independent of age, sex, educational level, type and severity of cognitive impairment, cerebrovascular risk factors and the presence of the APOEε4 allele. Furthermore, BMI significantly improved the sensitivity and specificity of a multi-factorial model to predict the presence of an AD CSF biomarker profile. CONCLUSION Lower BMI is associated with cerebral AD pathology rather than with cognitive impairment in elderly subjects with MCI and mild dementia. Along with other clinical factors, decreasing BMI may help the clinician to identify patients with cognitive impairment due to AD.
Collapse
Affiliation(s)
- Jules Mathys
- Old Age Psychiatry, Department of Psychiatry, University Hospital of Lausanne, Lausanne, Switzerland
| | - Mehdi Gholamrezaee
- Departement of Psychiatry, University Hospital of Lausanne, Lausanne, Switzerland
| | - Hugues Henry
- Departement of Laboratory Medicine, University Hospital of Lausanne, Lausanne, Switzerland
| | - Armin von Gunten
- Old Age Psychiatry, Department of Psychiatry, University Hospital of Lausanne, Lausanne, Switzerland
| | - Julius Popp
- Old Age Psychiatry, Department of Psychiatry, University Hospital of Lausanne, Lausanne, Switzerland; Geriatric Psychiatry, Geneva University Hospitals and University of Geneva, Switzerland.
| |
Collapse
|
94
|
Paul KC, Sinsheimer JS, Cockburn M, Bronstein JM, Bordelon Y, Ritz B. Organophosphate pesticides and PON1 L55M in Parkinson's disease progression. ENVIRONMENT INTERNATIONAL 2017; 107:75-81. [PMID: 28689109 PMCID: PMC5600289 DOI: 10.1016/j.envint.2017.06.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/08/2017] [Accepted: 06/22/2017] [Indexed: 05/13/2023]
Abstract
BACKGROUND Parkinson's disease (PD) has motor and non-motor features that contribute to its phenotype and functional decline. Organophosphate (OP) pesticides and PON1 L55M, which influences OP metabolism, have been implicated in multiple mechanisms related to neuronal cell death and may influence PD symptom progression. OBJECTIVE To investigate whether ambient agricultural OP exposure and PON1 L55M influence the rate of motor, cognitive, and mood-related symptom progression in PD. METHODS We followed a longitudinal cohort of 246 incident PD patients on average over 5years (7.5years after diagnosis), repeatedly measuring symptom progression with the Mini-Mental State Exam (MMSE), Unified Parkinson's Disease Rating Scale (UPDRS), and Geriatric Depressive Scale (GDS). OP exposures were generated with a geographic information system (GIS) based exposure assessment tool. We employed repeated-measures regression to assess associations between OP exposure and/or PON1 L55M genotype and progression. RESULTS High OP exposures were associated with faster progression of motor (UPDRS β=0.24, 95% CI=-0.01, 0.49) and cognitive scores (MMSE β=-0.06, 95% CI=-0.11, -0.01). PON1 55MM was associated with faster progression of motor (UPDRS β=0.28, 95% CI=0.08, 0.48) and depressive symptoms (GDS β=0.07; 95% CI=0.01, 0.13). We also found the PON1 L55M variant to interact with OP exposures in influencing MMSE cognitive scores (β=-1.26, 95% CI=-2.43, -0.09). CONCLUSION Our study provides preliminary support for the involvement of OP pesticides and PON1 in PD-related motor, cognitive, or depressive symptom progression. Future studies are needed to replicate findings and examine whether elderly populations generally are similarly impacted by pesticides or PON1 55M genotypes.
Collapse
Affiliation(s)
- Kimberly C Paul
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California, USA
| | - Janet S Sinsheimer
- Department of Biostatistics, UCLA Fielding School of Public Health, Los Angeles, California, USA; Departments of Human Genetics and Biomathematics, David Geffen School of Medicine, Los Angeles, California, USA
| | - Myles Cockburn
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, CA, USA
| | - Jeff M Bronstein
- Department of Neurology, David Geffen School of Medicine, Los Angeles, California, USA
| | - Yvette Bordelon
- Department of Neurology, David Geffen School of Medicine, Los Angeles, California, USA
| | - Beate Ritz
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California, USA; Department of Neurology, David Geffen School of Medicine, Los Angeles, California, USA.
| |
Collapse
|
95
|
Bidirectional interactions between diabetes and Alzheimer's disease. Neurochem Int 2017; 108:296-302. [PMID: 28551028 DOI: 10.1016/j.neuint.2017.04.020] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 04/24/2017] [Accepted: 04/27/2017] [Indexed: 01/21/2023]
|
96
|
Pardeshi R, Bolshette N, Gadhave K, Ahire A, Ahmed S, Cassano T, Gupta VB, Lahkar M. Insulin signaling: An opportunistic target to minify the risk of Alzheimer's disease. Psychoneuroendocrinology 2017. [PMID: 28624654 DOI: 10.1016/j.psyneuen.2017.05.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD) is progressive neurodegenerative disorder characterized by accumulation of senile plaques, neurofibrillary tangles (NFT) and neurodegeneration. The diabetes mellitus (DM) is one of the risk factors for AD pathogenesis by impairment in insulin signaling and glucose metabolism in central as well as peripheral system. Insulin resistance, impaired glucose and lipid metabolism are leading to the Aβ (Aβ) aggregation, Tau phosphorylation, mitochondrial dysfunction, oxidative stress, protein misfolding, memory impairment and also mark over Aβ transport through central to peripheral and vice versa. Several pathways, like enzymatic degradation of Aβ, forkhead box protein O1 (FOXO) signaling, insulin signaling shared common pathological mechanism for both AD and DM. Recent evidence showed that hyperinsulinemia and hyperglycemia affect the onset and progression of AD differently. Some researchers have suggested that hyperglycemia influences vascular tone, while hyperinsulinemia may underlie mitochondrial deficit. The objective of this review is to determine whether existing evidence supports the concept that impairment in insulin signaling and glucose metabolism play an important role in pathogenesis of AD. In the first part of this review, we tried to explain the interconnecting link between AD and DM, whereas the second part includes more information on insulin resistance and its involvement in AD pathogenesis. In the final part of this review, we have focused more toward the AD treatment by targeting insulin signaling like anti-diabetic, antioxidant, nutraceuticals and dietary supplements. To date, more researches should be done in this field in order to explore the pathways in insulin signaling, which might ameliorate the treatment options and reduce the risk of AD due to DM.
Collapse
Affiliation(s)
- Rohit Pardeshi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati 781032, Assam, India
| | - Nityanand Bolshette
- Institutional Level Biotech hub (IBT hub), Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati 781032, Assam, India
| | - Kundlik Gadhave
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati 781032, Assam, India
| | - Ashutosh Ahire
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati 781032, Assam, India
| | - Sahabuddin Ahmed
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati 781032, Assam, India
| | - Tommaso Cassano
- Department of Clinical and Experimental Medicine, University of Foggia, Via Luigi Pinto, c/o Ospedali Riuniti, 71122 Foggia, Italy
| | - Veer Bala Gupta
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical Sciences, Edith-Cowan University, Joondalup, WA 6027, Australia
| | - Mangala Lahkar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati 781032, Assam, India; Institutional Level Biotech hub (IBT hub), Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati 781032, Assam, India; Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati 781032, Assam, India.
| |
Collapse
|
97
|
Carelli-Alinovi C, Misiti F. Erythrocytes as Potential Link between Diabetes and Alzheimer's Disease. Front Aging Neurosci 2017; 9:276. [PMID: 28890694 PMCID: PMC5574872 DOI: 10.3389/fnagi.2017.00276] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 08/03/2017] [Indexed: 12/20/2022] Open
Abstract
Many studies support the existence of an association between type 2 diabetes (T2DM) and Alzheimer's disease (AD). In AD, in addition to brain, a number of peripheral tissues and cells are affected, including red blood cell (RBC) and because there are currently no reliable diagnostic biomarkers of AD in the blood, a gradually increasing attention has been given to the study of RBC's alterations. Recently it has been evidenced in diabetes, RBC alterations superimposable to the ones occurring in AD RBC. Furthermore, growing evidence suggests that oxidative stress plays a pivotal role in the development of RBC's alterations and vice versa. Once again this represents a further evidence of a shared pathway between AD and T2DM. The present review summarizes the two disorders, highlighting the role of RBC in the postulated common biochemical links, and suggests RBC as a possible target for clinical trials.
Collapse
Affiliation(s)
- Cristiana Carelli-Alinovi
- School of Medicine, Biochemistry and Clinical Biochemistry Institute, Università Cattolica del Sacro CuoreRome, Italy
| | - Francesco Misiti
- Human, Social and Health Department, University of Cassino and Lazio MeridionaleCassino, Italy
| |
Collapse
|
98
|
Chiang GC, Mao X, Kang G, Chang E, Pandya S, Vallabhajosula S, Isaacson R, Ravdin LD, Shungu DC. Relationships among Cortical Glutathione Levels, Brain Amyloidosis, and Memory in Healthy Older Adults Investigated In Vivo with 1H-MRS and Pittsburgh Compound-B PET. AJNR Am J Neuroradiol 2017; 38:1130-1137. [PMID: 28341718 PMCID: PMC5471116 DOI: 10.3174/ajnr.a5143] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/19/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND PURPOSE Oxidative stress has been implicated as an important pathologic mechanism in the development of Alzheimer disease. The purpose of this study was to assess whether glutathione levels, detected noninvasively with proton MR spectroscopy, are associated with brain amyloidosis and memory in a community-dwelling cohort of healthy older adults. MATERIALS AND METHODS Fifteen cognitively healthy subjects were prospectively enrolled in this study. All subjects underwent 1H-MR spectroscopy of glutathione, a positron-emission tomography scan with an amyloid tracer, and neuropsychological testing by using the Repeatable Battery for the Assessment of Neuropsychological Status. Associations among glutathione levels, brain amyloidosis, and memory were assessed by using multivariate regression models. RESULTS Lower glutathione levels were associated with greater brain amyloidosis in the temporal (P = .03) and parietal (P = .05) regions, adjusted for apolipoprotein E ε4 carrier status. There were no significant associations between glutathione levels and cognitive scores. CONCLUSIONS This study found an association between cortical glutathione levels and brain amyloidosis in healthy older adults, suggesting a potential role for 1H-MR spectroscopy measures of glutathione as a noninvasive biomarker of early Alzheimer disease pathogenesis.
Collapse
Affiliation(s)
- G C Chiang
- From the Departments of Radiology (G.C.C., X.M., G.K., E.C., S.P., S.V., D.C.S.)
| | - X Mao
- From the Departments of Radiology (G.C.C., X.M., G.K., E.C., S.P., S.V., D.C.S.)
| | - G Kang
- From the Departments of Radiology (G.C.C., X.M., G.K., E.C., S.P., S.V., D.C.S.)
| | - E Chang
- From the Departments of Radiology (G.C.C., X.M., G.K., E.C., S.P., S.V., D.C.S.)
| | - S Pandya
- From the Departments of Radiology (G.C.C., X.M., G.K., E.C., S.P., S.V., D.C.S.)
| | - S Vallabhajosula
- From the Departments of Radiology (G.C.C., X.M., G.K., E.C., S.P., S.V., D.C.S.)
| | - R Isaacson
- Neurology (R.I., L.D.R.), Weill Cornell Medical College, NewYork-Presbyterian Hospital, New York, New York
| | - L D Ravdin
- Neurology (R.I., L.D.R.), Weill Cornell Medical College, NewYork-Presbyterian Hospital, New York, New York
| | - D C Shungu
- From the Departments of Radiology (G.C.C., X.M., G.K., E.C., S.P., S.V., D.C.S.)
| |
Collapse
|
99
|
Fathallah M, Krasuski RA. Deep thoughts on lipids and cognition. Curr Opin Lipidol 2017; 28:288-289. [PMID: 28459769 DOI: 10.1097/mol.0000000000000417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
100
|
The role of perivascular innervation and neurally mediated vasoreactivity in the pathophysiology of Alzheimer's disease. Clin Sci (Lond) 2017; 131:1207-1214. [DOI: 10.1042/cs20160769] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/22/2017] [Accepted: 02/24/2017] [Indexed: 11/17/2022]
Abstract
Neuronal death is a hallmark of Alzheimer's disease (AD) and considerable work has been done to understand how the loss of interconnectivity between neurons contributes to the associated dementia. Often overlooked however, is how the loss of neuronal innervation of blood vessels, termed perivascular innervation, may also contribute to the pathogenesis of AD. There is now considerable evidence supporting a crucial role for the neurovascular unit (NVU) in mediating the clearance of the β-amyloid (Aβ) peptide, one of the main pathological constituents of AD, from the brain. Moreover, efficient removal appears to be dependent on the communication of cells within the NVU to maintain adequate vascular tone and pulsatility. This review summarizes the composition of the NVU, including the sources of perivascular innervation and how the NVU mediates Aβ clearance from the brain. It also explores evidence supporting the hypothesis that loss of neurally mediated vasoreactivity contributes to Aβ pathology in the AD brain.
Collapse
|