51
|
Mastria G, Viganò A, Corrado A, Mancini V, Pirillo C, Badini S, Petolicchio B, Toscano M, Altieri M, Delle Chiaie R, Di Piero V. Chronic Migraine Preventive Treatment by Prefrontal-Occipital Transcranial Direct Current Stimulation (tDCS): A Proof-of-Concept Study on the Effect of Psychiatric Comorbidities. Front Neurol 2021; 12:654900. [PMID: 34079513 PMCID: PMC8166222 DOI: 10.3389/fneur.2021.654900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/29/2021] [Indexed: 12/26/2022] Open
Abstract
Chronic migraine (CM) is often complicated by medication overuse headache (MOH) and psychiatric comorbidities that may influence the clinical outcome. This study aimed to investigate the relationship between psychiatric comorbidities and the effect of transcranial direct current stimulation (tDCS) in patients with CM with or without MOH. We recruited 16 consecutive CM patients who had an unsatisfactory response to at least three pharmacological preventive therapies. They were treated with anodal right-prefrontal and cathodal occipital tDCS (intensity: 2 mA, time: 20 min) three times per week for 4 weeks. All patients underwent a psychopathological assessment before and after treatment, and five of them were diagnosed with bipolar disorder (BD). After treatment, all the patients showed a significant decrease of severe and overall headache days per month. Despite having a higher migraine burden at baseline, patients with CM and BD showed a significantly greater reduction of severe headaches and psychiatric symptoms. Overall, tDCS seems to be effective in the treatment of CM patients with a poor response to different classes of pharmacological therapies, whereas BD status positively influences the response of migraineurs to tDCS.
Collapse
Affiliation(s)
- Giulio Mastria
- Department of Human Neurosciences, Sapienza—University of Rome, Rome, Italy
- My Space Lab, Department of Clinical Neuroscience, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
| | | | - Alessandra Corrado
- Department of Human Neurosciences, Sapienza—University of Rome, Rome, Italy
| | - Valentina Mancini
- Department of Human Neurosciences, Sapienza—University of Rome, Rome, Italy
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland
| | - Cristina Pirillo
- Department of Human Neurosciences, Sapienza—University of Rome, Rome, Italy
| | - Simone Badini
- Department of Human Neurosciences, Sapienza—University of Rome, Rome, Italy
| | | | - Massimiliano Toscano
- Department of Human Neurosciences, Sapienza—University of Rome, Rome, Italy
- Department of Neurology—Fatebenefratelli Hospital, Rome, Italy
| | - Marta Altieri
- Department of Human Neurosciences, Sapienza—University of Rome, Rome, Italy
| | | | - Vittorio Di Piero
- Department of Human Neurosciences, Sapienza—University of Rome, Rome, Italy
- University Consortium for Adaptive Disorders and Head Pain—UCADH, Pavia, Italy
| |
Collapse
|
52
|
Gaudreault PO, Sharma A, Datta A, Nakamura-Palacios EM, King S, Malaker P, Wagner A, Vasa D, Parvaz MA, Parra LC, Alia-Klein N, Goldstein RZ. A double-blind sham-controlled phase 1 clinical trial of tDCS of the dorsolateral prefrontal cortex in cocaine inpatients: Craving, sleepiness, and contemplation to change. Eur J Neurosci 2021; 53:3212-3230. [PMID: 33662163 PMCID: PMC8089045 DOI: 10.1111/ejn.15172] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 02/06/2023]
Abstract
Impaired inhibitory control accompanied by enhanced salience attributed to drug-related cues, both associated with function of the dorsolateral prefrontal cortex (dlPFC), are hallmarks of drug addiction, contributing to worse symptomatology including craving. dlPFC modulation with transcranial direct current stimulation (tDCS) previously showed craving reduction in inpatients with cocaine use disorder (CUD). Our study aimed at assessing feasibility of a longer tDCS protocol in CUD (15 versus the common five/10 sessions) and replicability of previous results. In a randomized double-blind sham-controlled protocol, 17 inpatients with CUD were assigned to either a real-tDCS (right anodal/left cathodal) or a sham-tDCS condition for 15 sessions. Following the previous report, primary outcome measures were self-reported craving, anxiety, depression, and quality of life. Secondary measures included sleepiness, readiness to change drug use, and affect. We also assessed cognitive function including impulsivity. An 88% retention rate demonstrated feasibility. Partially supporting the previous results, there was a trend for self-reported craving to decrease in the real-tDCS group more than the sham-group, an effect that would reach significance with 15 subjects per group. Quality of life and impulsivity improved over time in treatment in both groups. Daytime sleepiness and readiness to change drug use showed significant Group × Time interactions whereby improvements were noted only in the real-tDCS group. One-month follow-up suggested transient effects of tDCS on sleepiness and craving. These preliminary results suggest the need for including more subjects to show a unique effect of real-tDCS on craving and examine the duration of this effect. After replication in larger sample sizes, increased vigilance and motivation to change drug use in the real-tDCS group may suggest fortification of dlPFC-supported executive functions.
Collapse
Affiliation(s)
- Pierre-Olivier Gaudreault
- Psychiatry and Neuroscience Department, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Akarsh Sharma
- Psychiatry and Neuroscience Department, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | | | - Ester M Nakamura-Palacios
- Program of Post-Graduation in Physiological Sciences, Federal University of Espirito Santo, Vitoria-ES, Brazil
| | - Sarah King
- Psychiatry and Neuroscience Department, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Pias Malaker
- Psychiatry and Neuroscience Department, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Ariella Wagner
- Psychiatry and Neuroscience Department, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Devarshi Vasa
- Psychiatry and Neuroscience Department, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Muhammad A Parvaz
- Psychiatry and Neuroscience Department, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Lucas C Parra
- Biomedical Engineering Department, City College of New York, New York City, NY, USA
| | - Nelly Alia-Klein
- Psychiatry and Neuroscience Department, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Rita Z Goldstein
- Psychiatry and Neuroscience Department, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| |
Collapse
|
53
|
Cai G, Xia Z, Charvet L, Xiao F, Datta A, Androulakis XM. A Systematic Review and Meta-Analysis on the Efficacy of Repeated Transcranial Direct Current Stimulation for Migraine. J Pain Res 2021; 14:1171-1183. [PMID: 33953607 PMCID: PMC8090858 DOI: 10.2147/jpr.s295704] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/05/2021] [Indexed: 01/03/2023] Open
Abstract
Purpose Transcranial direct current stimulation (tDCS) may have therapeutic potential in the management of migraine. However, studies to date have yielded conflicting results. We reviewed studies using repeated tDCS for longer than 4 weeks in migraine treatment, and performed meta-analysis on the efficacy of tDCS in migraine. Methods In this meta-analysis, we included the common outcome measurements reported across randomized controlled trials (RCTs). Subgroup analysis was performed at different post-treatment endpoints, and with different stimulation intensities and polarities. Results Five RCTs were included in the quantitative meta-analysis with a total of 104 migraine patients. We found a significant reduction of migraine pain intensity (MD: −1.44; CI: [−2.13, −0.76]) in active vs sham tDCS treated patients. Within active treatment groups, pain intensity and duration were significantly improved from baseline after tDCS treatment (intensity MD: −1.86; CI: [−3.30, −0.43]; duration MD: −4.42; CI: [−8.11, −0.74]) and during a follow-up period (intensity MD: −1.52; CI: [−1.84, −1.20]; duration MD: −1.94; CI: [−3.10, −0.77]). There was a significant reduction of pain intensity by both anodal (MD: −1.74; CI: [−2.80, −0.68]) and cathodal (MD: −1.49; CI: [−1.89, −1.09]) stimulation conditions. Conclusion tDCS treatment repeated over days for a period of 4 weeks or more is effective in reducing migraine pain intensity and duration of migraine episode. The benefit of tDCS can persist for at least 4 weeks after the completion of last tDCS session. Both anodal and cathodal stimulation are effective for reducing migraine pain intensity.
Collapse
Affiliation(s)
- Guoshuai Cai
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
| | - Zhu Xia
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Leigh Charvet
- Department of Neurology, NYU Grossman School of Medicine, New York City, NY, USA
| | - Feifei Xiao
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
| | - Abhishek Datta
- Research and Development, Soterix Medical, New York, NY, USA.,Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - X Michelle Androulakis
- Neurology, Columbia VA Health System, Columbia, SC, USA.,School of Medicine, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
54
|
Using high-definition transcranial direct current stimulation to investigate the role of the dorsolateral prefrontal cortex in explicit sequence learning. PLoS One 2021; 16:e0246849. [PMID: 33735211 PMCID: PMC7971701 DOI: 10.1371/journal.pone.0246849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/26/2021] [Indexed: 11/19/2022] Open
Abstract
Though we have a general understanding of the brain areas involved in motor sequence learning, there is more to discover about the neural mechanisms underlying skill acquisition. Skill acquisition may be subserved, in part, by interactions between the cerebellum and prefrontal cortex through a cerebello-thalamo-prefrontal network. In prior work, we investigated this network by targeting the cerebellum; here, we explored the consequence of stimulating the dorsolateral prefrontal cortex using high-definition transcranial direct current stimulation (HD-tDCS) before administering an explicit motor sequence learning paradigm. Using a mixed within- and between- subjects design, we employed anodal (n = 24) and cathodal (n = 25) HD-tDCS (relative to sham) to temporarily alter brain function and examine effects on skill acquisition. The results indicate that both anodal and cathodal prefrontal stimulation impedes motor sequence learning, relative to sham. These findings suggest an overall negative influence of active prefrontal stimulation on the acquisition of a sequential pattern of finger movements. Collectively, this provides novel insight on the role of the dorsolateral prefrontal cortex in initial skill acquisition, when cognitive processes such as working memory are used. Exploring methods that may improve motor learning is important in developing therapeutic strategies for motor-related diseases and rehabilitation.
Collapse
|
55
|
Xiao X, Ding M, Zhang YQ. Role of the Anterior Cingulate Cortex in Translational Pain Research. Neurosci Bull 2021; 37:405-422. [PMID: 33566301 PMCID: PMC7954910 DOI: 10.1007/s12264-020-00615-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
As the most common symptomatic reason to seek medical consultation, pain is a complex experience that has been classified into different categories and stages. In pain processing, noxious stimuli may activate the anterior cingulate cortex (ACC). But the function of ACC in the different pain conditions is not well discussed. In this review, we elaborate the commonalities and differences from accumulated evidence by a variety of pain assays for physiological pain and pathological pain including inflammatory pain, neuropathic pain, and cancer pain in the ACC, and discuss the cellular receptors and signaling molecules from animal studies. We further summarize the ACC as a new central neuromodulation target for invasive and non-invasive stimulation techniques in clinical pain management. The comprehensive understanding of pain processing in the ACC may lead to bridging the gap in translational research between basic and clinical studies and to develop new therapies.
Collapse
Affiliation(s)
- Xiao Xiao
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education; Institute of Science and Technology for Brain-Inspired Intelligence, Behavioral and Cognitive Neuroscience Center, Fudan University, Shanghai, 200433, China.
| | - Ming Ding
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education; Institute of Science and Technology for Brain-Inspired Intelligence, Behavioral and Cognitive Neuroscience Center, Fudan University, Shanghai, 200433, China
| | - Yu-Qiu Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Institutes of Brain Science; Institute of Integrative Medicine, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
56
|
Moreira A, Machado DGDS, Moscaleski L, Bikson M, Unal G, Bradley PS, Baptista AF, Morya E, Cevada T, Marques L, Zanetti V, Okano AH. Effect of tDCS on well-being and autonomic function in professional male players after official soccer matches. Physiol Behav 2021; 233:113351. [PMID: 33556409 DOI: 10.1016/j.physbeh.2021.113351] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/02/2021] [Accepted: 02/04/2021] [Indexed: 01/15/2023]
Abstract
This study aimed to examine the effect of transcranial direct current stimulation (tDCS) used as a recovery strategy, on heart rate (HR) measures and perceived well-being in 12 male professional soccer players. tDCS was applied in the days after official matches targeting the left dorsolateral prefrontal cortex (DLPFC) with 2 mA for 20 min (F3-F4 montage). Participants were randomly assigned to anodal tDCS (a-tDCS) or sham tDCS sessions. Players completed the Well-Being Questionnaire (WBQ) and performed the Submaximal Running Test (SRT) before and after tDCS. HR during exercise (HRex) was determined during the last 30 s of SRT. HR recovery (HRR) was recorded at 60 s after SRT. The HRR index was calculated from the absolute difference between HRex and HRR. A significant increase was observed for WBQ (effect of time; p<0.001; ηp2=0.417) with no effect for condition or interaction. A decrease in HRR (p = 0.014; ηp2=0.241), and an increase in HRR index were observed (p = 0.045; ηp2=0.168), with no effect for condition or interaction. No change for HRex was evident (p>0.05). These results suggest that a-tDCS over the DLPFC may have a positive effect on enhancing well-being and parasympathetic autonomic markers, which opens up a possibility for testing tDCS as a promising recovery-enhancing strategy targeting the brain in soccer players. The findings suggest that brain areas related to emotional and autonomic control might be involved in these changes with a possible interaction effect of tDCS by placebo-related effects, but more research is needed to verify this effect.
Collapse
Affiliation(s)
- Alexandre Moreira
- Department of Sport, School of Physical Education and Sport, University of São Paulo, São Paulo, SP, Brazil; Brazilian Institute of Neuroscience and Neurotechnology. Research, Innovation and Dissemination Centers - The São Paulo Research Foundation (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, Brazil.
| | - Daniel Gomes da Silva Machado
- Graduate Program in Collective Health, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Luciane Moscaleski
- Center of Mathematics, Computation, and Cognition, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil; Brazilian Institute of Neuroscience and Neurotechnology. Research, Innovation and Dissemination Centers - The São Paulo Research Foundation (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, Brazil
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY, United States
| | - Gozde Unal
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY, United States
| | - Paul S Bradley
- Research Institute of Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Abrahão F Baptista
- Center of Mathematics, Computation, and Cognition, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil; Brazilian Institute of Neuroscience and Neurotechnology. Research, Innovation and Dissemination Centers - The São Paulo Research Foundation (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, Brazil
| | - Edgard Morya
- Santos Dumont Institute (Instituto Internacional de Neurociências Edmond e Lily Safra), Natal, Rio Grande do Norte, Brazil; Brazilian Institute of Neuroscience and Neurotechnology. Research, Innovation and Dissemination Centers - The São Paulo Research Foundation (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, Brazil
| | - Thais Cevada
- Sport Science Program (PPGCEE), State University of Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | | | | | - Alexandre Hideki Okano
- Center of Mathematics, Computation, and Cognition, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil; Brazilian Institute of Neuroscience and Neurotechnology. Research, Innovation and Dissemination Centers - The São Paulo Research Foundation (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, Brazil
| |
Collapse
|
57
|
Verveer I, Hill AT, Franken IHA, Yücel M, van Dongen JDM, Segrave R. Modulation of control: Can HD-tDCS targeting the dACC reduce impulsivity? Brain Res 2021; 1756:147282. [PMID: 33515536 DOI: 10.1016/j.brainres.2021.147282] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND The dorsal anterior cingulate cortex (dACC) and its neurocircuits are central in impulsivity, and maladaptive dACC activity has been implicated in psychological disorders characterized by high trait impulsivity. High-Definition transcranial Direct Current Stimulation (HD-tDCS) is a non-invasive neuromodulation tool that, with certain electrode configurations, can be optimized for targeting deeper subcorticalbrainstructures, such as the dACC. OBJECTIVES Using behavioural and electrophysiological measures we investigated whether HD-tDCS targeting the dACC could modulate two key components of impulsivity, inhibitory control and error processing. METHODS Twenty-three healthy adults with high trait impulsivity participated in two experimental sessions. Participants received active or sham HD-tDCS in counterbalanced order with a wash-out period of at least 3 days, as part of a single-blind, cross-over design. EEG was recorded during the Go-NoGo task before, directly after, and 30 min after HD-tDCS. RESULTS HD-tDCS targeting the dACC did not affect inhibitory control performance on the Go-NoGo task, but there was evidence for a delayed change in underlying neurophysiological components of motor inhibition (NoGo P3) and error processing (error related negativity; ERN) after one session of HD-tDCS. CONCLUSION HD-tDCS has potential to modulate underlying neurophysiological components of impulsivity. Future studies should further explore to what degree the dACC was affected and whether multi-session HD-tDCS has the capacity to also induce behavioural changes, particularly in clinical samples characterized by high trait impulsivity.
Collapse
Affiliation(s)
- Ilse Verveer
- Department of Psychology, Education and Child Studies, Erasmus School of Social and Behavioural Sciences, Erasmus University, Rotterdam, The Netherlands.
| | - Aron T Hill
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Melbourne, Victoria, Australia
| | - Ingmar H A Franken
- Department of Psychology, Education and Child Studies, Erasmus School of Social and Behavioural Sciences, Erasmus University, Rotterdam, The Netherlands
| | - Murat Yücel
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging Facility, Monash University, Melbourne, Victoria, Australia
| | - Josanne D M van Dongen
- Department of Psychology, Education and Child Studies, Erasmus School of Social and Behavioural Sciences, Erasmus University, Rotterdam, The Netherlands
| | - Rebecca Segrave
- BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging Facility, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
58
|
Kunori N, Takashima I. Cortical direct current stimulation improves signal transmission between the motor cortices of rats. Neurosci Lett 2021; 741:135492. [PMID: 33171210 DOI: 10.1016/j.neulet.2020.135492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 11/17/2022]
Abstract
Transcranial direct current (DC) stimulation is a noninvasive brain stimulation technique that is now widely used to improve motor and cognitive function. The neuromodulatory effects of DC is considered to extend to nearby as well as remote brain areas from the site of stimulation because of current flowing into the brain and/or signal transmission in neuronal networks. However, the effects of DC on cortico-cortical neuronal transmission are not well known. In the present study, we focused on signal transmission from the primary (M1) to secondary (M2) motor cortex of rats. Intra-cortical microstimulation (ICMS) was applied to the M1 under DC conditions, and changes in synaptic activity in the M2 were examined using current-source density analyses. The synaptic input to the M2 superficial layers was enhanced during DC stimulation, while the synaptic input to the M2 deeper layers was increased after DC stimulation. These results suggest that DC stimulation improves cortico-cortical neuronal transmission from M1 to M2, and that the effectiveness of DC may be different among different projection neuron types in the M1.
Collapse
Affiliation(s)
- Nobuo Kunori
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Ichiro Takashima
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan.
| |
Collapse
|
59
|
Could cathodal transcranial direct current stimulation modulate the power spectral density of alpha-band in migrainous occipital lobe? Neurosci Lett 2020; 742:135539. [PMID: 33278504 DOI: 10.1016/j.neulet.2020.135539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 11/16/2020] [Accepted: 11/24/2020] [Indexed: 01/03/2023]
Abstract
OBJECTIVE To identify the correlation between cathodal transcranial direct current stimulation (tDCS) and the power spectral density (PSD) of alpha-band on the occipital lobe of migraineurs. METHODS Firstly, a cross-sectional study was performed to compare the PSD of alpha-band in the occipital cortex of 25 migraineurs versus 10 healthy volunteers in resting state and during repetitive light stimuli (RLS). Secondly, the patients participated in 12 sessions of cathodal (n = 11) or sham tDCS (n = 10) over the primary visual cortex (V1) to investigate the alpha-band PSD. RESULTS The alpha-band PSD on the occipital cortex was higher in migraineurs than healthy subjects in resting state and lower during the first train of RLS. Cathodal tDCS over the V1 reduced the alpha-band occipital activity in resting state but did not interfere with the functional responses to RLS when light stimulation was turned on. CONCLUSIONS Our findings suggest that the occipital cortex of migraineurs is hypoactive in the baseline condition, but becomes hyperactive when stimulated by light. Cathodal tDCS over the V1 decreases baseline alpha PSD in patients, possibly modulating the involved neuronal circuitries, but it cannot interfere once photic stimulation starts.
Collapse
|
60
|
Lloyd DM, Wittkopf PG, Arendsen LJ, Jones AK. Is Transcranial Direct Current Stimulation (tDCS) Effective for the Treatment of Pain in Fibromyalgia? A Systematic Review and Meta-Analysis. THE JOURNAL OF PAIN 2020; 21:1085-1100. [DOI: 10.1016/j.jpain.2020.01.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/22/2019] [Accepted: 01/06/2020] [Indexed: 01/24/2023]
|
61
|
Madrid J, Benninger DH. Non-invasive brain stimulation for Parkinson's disease: Clinical evidence, latest concepts and future goals: A systematic review. J Neurosci Methods 2020; 347:108957. [PMID: 33017643 DOI: 10.1016/j.jneumeth.2020.108957] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/27/2020] [Accepted: 09/18/2020] [Indexed: 12/16/2022]
Abstract
Parkinson's disease (PD) is becoming a major public-health issue in an aging population. Available approaches to treat advanced PD still have limitations; new therapies are needed. The non-invasive brain stimulation (NIBS) may offer a complementary approach to treat advanced PD by personalized stimulation. Although NIBS is not as effective as the gold-standard levodopa, recent randomized controlled trials show promising outcomes in the treatment of PD symptoms. Nevertheless, only a few NIBS-stimulation paradigms have shown to improve PD's symptoms. Current clinical recommendations based on the level of evidence are reported in Table 1 through Table 3. Furthermore, novel technological advances hold promise and may soon enable the non-invasive stimulation of deeper brain structures for longer periods.
Collapse
Affiliation(s)
- Julian Madrid
- Service of Neurology, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.
| | - David H Benninger
- Service of Neurology, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland.
| |
Collapse
|
62
|
Rocha K, Marinho V, Magalhães F, Carvalho V, Fernandes T, Ayres M, Crespo E, Velasques B, Ribeiro P, Cagy M, Bastos VH, Gupta DS, Teixeira S. Unskilled shooters improve both accuracy and grouping shot having as reference skilled shooters cortical area: An EEG and tDCS study. Physiol Behav 2020; 224:113036. [PMID: 32598941 DOI: 10.1016/j.physbeh.2020.113036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/18/2022]
Abstract
Transcranial direct current stimulation (tDCS) has been used as a non-invasive method for enhanced motor and cognitive abilities. However, no previous study has investigated if the tDCS application in unskilled shooters on cortical sites, selected based on the cortical activity of skilled shooters, improves the accuracy and shot grouping. Sixty participants were selected, which included 10 skilled shooters and 50 unskilled shooters. After we identified the right dorsolateral prefrontal cortex (DLPFC) as the area with the highest activity in skilled shooters, we applied anodal tDCS over the right DLPFC in the unskilled shooters under two conditions: sham-tDCS (placebo) and real-tDCS (anodal tDCS). We also analyzed electroencephalography. Our results indicated that anodal tDCS application enhanced the shot accuracy (p = 0.001). Furthermore, the beta power in the EEG recording was higher in the left DLPFC, left and right parietal cortex (p = 0,001) after applying anodal tDCS, while the low-gamma power was higher in the right DLPFC in sham-tDCS (p = 0.001) and right parietal cortex after anodal-tDCS (p = 0.001). Our findings indicate that anodal tDCS can improve accuracy and shot grouping when applied over the unskilled shooters' right DLPFC. Furthermore, beta and low-gamma bands are influenced by anodal tDCS over the right DLPFC, which may be predictive of skill improvement.
Collapse
Affiliation(s)
- Kaline Rocha
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Delta of Parnaíba, Parnaíba, Brazil; The Northeast Biotechnology Network, Federal University of Piauí, Teresina, Brazil.
| | - Victor Marinho
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Delta of Parnaíba, Parnaíba, Brazil; The Northeast Biotechnology Network, Federal University of Piauí, Teresina, Brazil
| | - Francisco Magalhães
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Delta of Parnaíba, Parnaíba, Brazil; The Northeast Biotechnology Network, Federal University of Piauí, Teresina, Brazil
| | - Valécia Carvalho
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Delta of Parnaíba, Parnaíba, Brazil; The Northeast Biotechnology Network, Federal University of Piauí, Teresina, Brazil
| | - Thayaná Fernandes
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Delta of Parnaíba, Parnaíba, Brazil
| | - Marcos Ayres
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Delta of Parnaíba, Parnaíba, Brazil; The Northeast Biotechnology Network, Federal University of Piauí, Teresina, Brazil
| | - Eric Crespo
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Delta of Parnaíba, Parnaíba, Brazil
| | - Bruna Velasques
- Brain Mapping and Sensory Motor Integration Laboratory, Institute of Psychiatry of Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Ribeiro
- Brain Mapping and Sensory Motor Integration Laboratory, Institute of Psychiatry of Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mauricio Cagy
- Biomedical Engineering Program, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Victor Hugo Bastos
- The Northeast Biotechnology Network, Federal University of Piauí, Teresina, Brazil; Brain Mapping and Functionality Laboratory, Federal University of Delta do Parnaíba, Parnaíba, Brazil
| | - Daya S Gupta
- Department of Biology, Camden County College, Blackwood, NJ, United States
| | - Silmar Teixeira
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Delta of Parnaíba, Parnaíba, Brazil; The Northeast Biotechnology Network, Federal University of Piauí, Teresina, Brazil
| |
Collapse
|
63
|
Wischnewski M, Engelhardt M, Salehinejad MA, Schutter DJLG, Kuo MF, Nitsche MA. NMDA Receptor-Mediated Motor Cortex Plasticity After 20 Hz Transcranial Alternating Current Stimulation. Cereb Cortex 2020; 29:2924-2931. [PMID: 29992259 DOI: 10.1093/cercor/bhy160] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/08/2018] [Accepted: 06/14/2018] [Indexed: 12/12/2022] Open
Abstract
Transcranial alternating current stimulation (tACS) has been shown to modulate neural oscillations and excitability levels in the primary motor cortex (M1). These effects can last for more than an hour and an involvement of N-methyl-d-aspartate receptor (NMDAR) mediated synaptic plasticity has been suggested. However, to date the cortical mechanisms underlying tACS after-effects have not been explored. Here, we applied 20 Hz beta tACS to M1 while participants received either the NMDAR antagonist dextromethorphan or a placebo and the effects on cortical beta oscillations and excitability were explored. When a placebo medication was administered, beta tACS was found to increase cortical excitability and beta oscillations for at least 60 min, whereas when dextromethorphan was administered, these effects were completely abolished. These results provide the first direct evidence that tACS can induce NMDAR-mediated plasticity in the motor cortex, which contributes to our understanding of tACS-induced influences on human motor cortex physiology.
Collapse
Affiliation(s)
- M Wischnewski
- Donders Centre for Cognition, Donders Institute, Radboud University, Nijmegen, The Netherlands.,Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - M Engelhardt
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - M A Salehinejad
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - D J L G Schutter
- Donders Centre for Cognition, Donders Institute, Radboud University, Nijmegen, The Netherlands
| | - M-F Kuo
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - M A Nitsche
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany.,Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| |
Collapse
|
64
|
Thomas F, Pixa NH, Berger A, Cheng MY, Doppelmayr M, Steinberg F. Neither Cathodal nor Anodal Transcranial Direct Current Stimulation on the Left Dorsolateral Prefrontal Cortex alone or Applied During Moderate Aerobic Exercise Modulates Executive Function. Neuroscience 2020; 443:71-83. [PMID: 32682826 DOI: 10.1016/j.neuroscience.2020.07.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/09/2020] [Accepted: 07/11/2020] [Indexed: 12/13/2022]
Abstract
There is converging evidence that both aerobic exercise (AE) and transcranial direct current stimulation (tDCS) can acutely modulate executive functions (EF). In addition, recent studies have proposed the beneficial effects of applying tDCS during AE on physical performance. This study aimed to investigate whether tDCS applied during an AE session additionally or differently effects EF. Therefore, five experiments were conducted in a counterbalanced pre-post-retention crossover design to explore the acute effects of tDCS and AE on EF (inhibition and updating) once in isolation (i.e., either cathodal, anodal tDCS or AE alone as controls) and once in a combined application (i.e., anodal and cathodal tDCS during AE versus sham tDCS during AE). No differences were found in any experiment in the cognitive test parameters. However, in the case of anodal tDCS vs. sham during AE, heart rate was significantly affected. For cathodal tDCS vs. sham during AE, a significant Anova interaction indicated that cathodal tDCS during AE slightly reduced ratings of perceived exertion. The nonsignificant effects of tDCS on EFs are in contrast to previous studies, as no replication of existing observations could be achieved. Thus, the protocol applied in this study does not provide any strong evidence that a combination of AE and tDCS has any effects on EFs, but indicates effects on physiological parameters and subjective exhaustion ratings. Further research should consider changes in AE and tDCS parameters (e.g., intensity or exercise mode) and sequence of applications (online vs. offline).
Collapse
Affiliation(s)
- F Thomas
- Institute for Sport Science, Department for Sports Psychology, Johannes Gutenberg-University Mainz, Germany
| | - N H Pixa
- Institute of Sport and Exercise Sciences, Department for Neuromotor Behavior and Training, Westfälische Wilhelms University Münster, Germany
| | - A Berger
- Institute for Sport Science, Department for Sports Psychology, Johannes Gutenberg-University Mainz, Germany
| | - M-Y Cheng
- Institute for Sport Science, Department for Sports Psychology, Johannes Gutenberg-University Mainz, Germany; School of Psychology, Shanghai University of Sport, China
| | - M Doppelmayr
- Institute for Sport Science, Department for Sports Psychology, Johannes Gutenberg-University Mainz, Germany
| | - F Steinberg
- Institute for Sport Science, Department for Sports Psychology, Johannes Gutenberg-University Mainz, Germany; School of Kinesiology, Louisiana State University, Baton Rouge, USA.
| |
Collapse
|
65
|
Xiao S, Wang B, Zhang X, Zhou J, Fu W. Acute Effects of High-Definition Transcranial Direct Current Stimulation on Foot Muscle Strength, Passive Ankle Kinesthesia, and Static Balance: A Pilot Study. Brain Sci 2020; 10:brainsci10040246. [PMID: 32326228 PMCID: PMC7226500 DOI: 10.3390/brainsci10040246] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/18/2020] [Accepted: 04/19/2020] [Indexed: 12/18/2022] Open
Abstract
This study aimed to examine the effects of single-session anodal high-definition transcranial direct current stimulation (HD-tDCS) on the strength of intrinsic foot muscles, passive ankle kinesthesia, and static balance. Methods: In this double-blinded self-controlled study, 14 healthy younger adults were asked to complete assessments of foot muscle strength, passive ankle kinesthesia, and static balance before and after a 20-minute session of either HD-tDCS or sham stimulation (i.e., control) at two visits separated by one week. Two-way repeated-measures analysis of variance was used to examine the effects of HD-tDCS on metatarsophalangeal joint flexor strength, toe flexor strength, the passive kinesthesia threshold of ankle joint, and the average sway velocity of the center of gravity. Results: All participants completed all study procedures and no side effects nor risk events were reported. Blinding was shown to be successful, with an overall accuracy of 35.7% in the guess of stimulation type (p = 0.347). No main effects of intervention, time, or their interaction were observed for foot muscle strength (p > 0.05). The average percent change in first-toe flexor strength following anodal HD-tDCS was 12.8 ± 24.2%, with 11 out of 14 participants showing an increase in strength, while the change following sham stimulation was 0.7 ± 17.3%, with 8 out of 14 participants showing an increase in strength. A main effect of time on the passive kinesthesia threshold of ankle inversion, dorsiflexion, and anteroposterior and medial–lateral average sway velocity of the center of gravity in one-leg standing with eyes closed was observed; these outcomes were reduced from pre to post stimulation (p < 0.05). No significant differences were observed for other variables between the two stimulation types. Conclusion: The results of this pilot study suggested that single-session HD-tDCS may improve the flexor strength of the first toe, although no statistically significant differences were observed between the anodal HD-tDCS and sham procedure groups. Additionally, passive ankle kinesthesia and static standing balance performance were improved from pre to post stimulation, but no significant differences were observed between the HD-tDCS and sham procedure groups. This may be potentially due to ceiling effects in this healthy cohort of a small sample size. Nevertheless, these preliminary findings may provide critical knowledge of optimal stimulation parameters, effect size, and power estimation of HD-tDCS for future trials aiming to confirm and expand the findings of this pilot study.
Collapse
Affiliation(s)
- Songlin Xiao
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China; (S.X.); (B.W.); (X.Z.)
| | - Baofeng Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China; (S.X.); (B.W.); (X.Z.)
| | - Xini Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China; (S.X.); (B.W.); (X.Z.)
| | - Junhong Zhou
- The Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA 02131, USA
- Harvard Medical School, Boston, MA 02131, USA
- Correspondence: (J.Z.); or (W.F.)
| | - Weijie Fu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China; (S.X.); (B.W.); (X.Z.)
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
- Correspondence: (J.Z.); or (W.F.)
| |
Collapse
|
66
|
Jiang N, Wei J, Li G, Wei B, Zhu FF, Hu Y. Effect of dry-electrode-based transcranial direct current stimulation on chronic low back pain and low back muscle activities: A double-blind sham-controlled study. Restor Neurol Neurosci 2020; 38:41-54. [DOI: 10.3233/rnn-190922] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Naifu Jiang
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- The Shenzhen Engineering Laboratory of Neural Rehabilitation Technology, Shenzhen, China
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Jinsong Wei
- Department of Orthopaedics, Spinal Division, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Guangsheng Li
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- Department of Orthopaedics, Spinal Division, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Bo Wei
- Department of Orthopaedics, Spinal Division, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Frank F. Zhu
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Yong Hu
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
67
|
Cortical Excitability through Anodal Transcranial Direct Current Stimulation: a Computational Approach. J Med Syst 2020; 44:48. [DOI: 10.1007/s10916-019-1490-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 10/17/2019] [Indexed: 11/25/2022]
|
68
|
Gomez-Tames J, Asai A, Hirata A. Significant group-level hotspots found in deep brain regions during transcranial direct current stimulation (tDCS): A computational analysis of electric fields. Clin Neurophysiol 2019; 131:755-765. [PMID: 31839398 DOI: 10.1016/j.clinph.2019.11.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 10/07/2019] [Accepted: 11/04/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Transcranial direct current stimulation (tDCS) is a neuromodulation scheme that delivers a small current via electrodes placed on the scalp. The target is generally assumed to be under the electrode, but deep brain regions could also be involved due to the large current spread between the electrodes. This study aims to computationally evaluate if group-level hotspots exist in deep brain regions for different electrode montages. METHODS We computed the tDCS-generated electric fields (EFs) in a group of subjects using interindividual registration methods that permitted the projection of EFs from individual realistic head models (n = 18) to a standard deep brain region. RESULTS The spatial distribution and peak values (standard deviation of 14%) of EFs varied significantly. Nevertheless, group-level EF hotspots appeared in deep brain regions. The caudate had the highest field peaks in particular for F3-F4 montage (70% of maximum cortical EF), while other regions reach field peaks of 50%. CONCLUSIONS tDCS at deeper regions may include not only modulation via underlying cortical or subcortical circuits but also modulation of deep brain regions. SIGNIFICANCE The presented EF atlas in deep brain regions can be used to explain tDCS mechanism or select the most appropriate tDCS montage.
Collapse
Affiliation(s)
- Jose Gomez-Tames
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan.
| | - Akihiro Asai
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| | - Akimasa Hirata
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan; Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| |
Collapse
|
69
|
Morya E, Monte-Silva K, Bikson M, Esmaeilpour Z, Biazoli CE, Fonseca A, Bocci T, Farzan F, Chatterjee R, Hausdorff JM, da Silva Machado DG, Brunoni AR, Mezger E, Moscaleski LA, Pegado R, Sato JR, Caetano MS, Sá KN, Tanaka C, Li LM, Baptista AF, Okano AH. Beyond the target area: an integrative view of tDCS-induced motor cortex modulation in patients and athletes. J Neuroeng Rehabil 2019; 16:141. [PMID: 31730494 PMCID: PMC6858746 DOI: 10.1186/s12984-019-0581-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023] Open
Abstract
Transcranial Direct Current Stimulation (tDCS) is a non-invasive technique used to modulate neural tissue. Neuromodulation apparently improves cognitive functions in several neurologic diseases treatment and sports performance. In this study, we present a comprehensive, integrative review of tDCS for motor rehabilitation and motor learning in healthy individuals, athletes and multiple neurologic and neuropsychiatric conditions. We also report on neuromodulation mechanisms, main applications, current knowledge including areas such as language, embodied cognition, functional and social aspects, and future directions. We present the use and perspectives of new developments in tDCS technology, namely high-definition tDCS (HD-tDCS) which promises to overcome one of the main tDCS limitation (i.e., low focality) and its application for neurological disease, pain relief, and motor learning/rehabilitation. Finally, we provided information regarding the Transcutaneous Spinal Direct Current Stimulation (tsDCS) in clinical applications, Cerebellar tDCS (ctDCS) and its influence on motor learning, and TMS combined with electroencephalography (EEG) as a tool to evaluate tDCS effects on brain function.
Collapse
Affiliation(s)
- Edgard Morya
- Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, Rio Grande do Norte Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
| | - Kátia Monte-Silva
- Universidade Federal de Pernambuco, Recife, Pernambuco Brazil
- Núcleo de Assistência e Pesquisa em Neuromodulação (NAPeN), Universidade Federal do ABC (UFABC)/Universidade de São Paulo (USP)/Universidade Cidade de São Paulo (UNICID)/Universidade Federal de Pernambuco (UFPE), Escola Bahiana de Medicina e Saúde Pública (EBMSP), Santo André, Brazil
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY USA
| | - Zeinab Esmaeilpour
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY USA
| | - Claudinei Eduardo Biazoli
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
| | - Andre Fonseca
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
| | - Tommaso Bocci
- Aldo Ravelli Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, International Medical School, University of Milan, Milan, Italy
| | - Faranak Farzan
- School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, British Columbia Canada
| | - Raaj Chatterjee
- School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, British Columbia Canada
| | - Jeffrey M. Hausdorff
- Department of Physical Therapy, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | | | | | - Eva Mezger
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Luciane Aparecida Moscaleski
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
| | - Rodrigo Pegado
- Graduate Program in Rehabilitation Science, Universidade Federal do Rio Grande do Norte, Santa Cruz, Rio Grande do Norte Brazil
| | - João Ricardo Sato
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
| | - Marcelo Salvador Caetano
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
| | - Kátia Nunes Sá
- Núcleo de Assistência e Pesquisa em Neuromodulação (NAPeN), Universidade Federal do ABC (UFABC)/Universidade de São Paulo (USP)/Universidade Cidade de São Paulo (UNICID)/Universidade Federal de Pernambuco (UFPE), Escola Bahiana de Medicina e Saúde Pública (EBMSP), Santo André, Brazil
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia Brazil
| | - Clarice Tanaka
- Núcleo de Assistência e Pesquisa em Neuromodulação (NAPeN), Universidade Federal do ABC (UFABC)/Universidade de São Paulo (USP)/Universidade Cidade de São Paulo (UNICID)/Universidade Federal de Pernambuco (UFPE), Escola Bahiana de Medicina e Saúde Pública (EBMSP), Santo André, Brazil
- Laboratório de Investigações Médicas-54, Universidade de São Paulo, São Paulo, São Paulo Brazil
| | - Li Min Li
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
| | - Abrahão Fontes Baptista
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
- Núcleo de Assistência e Pesquisa em Neuromodulação (NAPeN), Universidade Federal do ABC (UFABC)/Universidade de São Paulo (USP)/Universidade Cidade de São Paulo (UNICID)/Universidade Federal de Pernambuco (UFPE), Escola Bahiana de Medicina e Saúde Pública (EBMSP), Santo André, Brazil
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia Brazil
- Laboratório de Investigações Médicas-54, Universidade de São Paulo, São Paulo, São Paulo Brazil
| | - Alexandre Hideki Okano
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
- Núcleo de Assistência e Pesquisa em Neuromodulação (NAPeN), Universidade Federal do ABC (UFABC)/Universidade de São Paulo (USP)/Universidade Cidade de São Paulo (UNICID)/Universidade Federal de Pernambuco (UFPE), Escola Bahiana de Medicina e Saúde Pública (EBMSP), Santo André, Brazil
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
- Graduate Program in Physical Education. State University of Londrina, Londrina, Paraná, Brazil
| |
Collapse
|
70
|
Moisset X, Lanteri-Minet M, Fontaine D. Neurostimulation methods in the treatment of chronic pain. J Neural Transm (Vienna) 2019; 127:673-686. [PMID: 31637517 DOI: 10.1007/s00702-019-02092-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/06/2019] [Indexed: 02/07/2023]
Abstract
The goal of this narrative review was to give an up-to-date overview of the peripheral and central neurostimulation methods that can be used to treat chronic pain. Special focus has been given to three pain conditions: neuropathic pain, nociplastic pain and primary headaches. Both non-invasive and invasive techniques are briefly presented together with their pain relief potentials. For non-invasive stimulation techniques, data concerning transcutaneous electrical nerve stimulation (TENS), transcranial direct current stimulation (tDCS), repetitive transcranial magnetic stimulation (rTMS), remote electrical neuromodulation (REN) and vagus nerve stimulation (VNS) are provided. Concerning invasive stimulation techniques, occipital nerve stimulation (ONS), vagus nerve stimulation (VNS), epidural motor cortex stimulation (EMCS), spinal cord stimulation (SCS) and deep brain stimulation (DBS) are presented. The action mode of all these techniques is only partly understood but can be very different from one technique to the other. Patients' selection is still a challenge. Recent consensus-based guidelines for clinical practice are presented when available. The development of closed-loop devices could be of interest in the future, although the clinical benefit over open loop is not proven yet.
Collapse
Affiliation(s)
- X Moisset
- Service de Neurologie, Université Clermont-Auvergne, INSERM, Neuro-Dol, CHU Clermont-Ferrand, Clermont-Ferrand, France.
| | - M Lanteri-Minet
- Pain Department, CHU Nice, FHU InovPain Côte Azur University, Nice, France
- Université Clermont-Auvergne, INSERM, Neuro-Dol, Clermont-Ferrand, France
| | - D Fontaine
- Department of Neurosurgery, Université Côte Azur University, CHU de Nice, FHU InovPain, Nice, France
| |
Collapse
|
71
|
Evaluation of acute anodal direct current stimulation-induced effects on somatosensory-evoked responses in the rat. Brain Res 2019; 1720:146318. [DOI: 10.1016/j.brainres.2019.146318] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/29/2019] [Accepted: 07/01/2019] [Indexed: 01/02/2023]
|
72
|
Ekhtiari H, Tavakoli H, Addolorato G, Baeken C, Bonci A, Campanella S, Castelo-Branco L, Challet-Bouju G, Clark VP, Claus E, Dannon PN, Del Felice A, den Uyl T, Diana M, di Giannantonio M, Fedota JR, Fitzgerald P, Gallimberti L, Grall-Bronnec M, Herremans SC, Herrmann MJ, Jamil A, Khedr E, Kouimtsidis C, Kozak K, Krupitsky E, Lamm C, Lechner WV, Madeo G, Malmir N, Martinotti G, McDonald WM, Montemitro C, Nakamura-Palacios EM, Nasehi M, Noël X, Nosratabadi M, Paulus M, Pettorruso M, Pradhan B, Praharaj SK, Rafferty H, Sahlem G, Salmeron BJ, Sauvaget A, Schluter RS, Sergiou C, Shahbabaie A, Sheffer C, Spagnolo PA, Steele VR, Yuan TF, van Dongen JDM, Van Waes V, Venkatasubramanian G, Verdejo-García A, Verveer I, Welsh JW, Wesley MJ, Witkiewitz K, Yavari F, Zarrindast MR, Zawertailo L, Zhang X, Cha YH, George TP, Frohlich F, Goudriaan AE, Fecteau S, Daughters SB, Stein EA, Fregni F, Nitsche MA, Zangen A, Bikson M, Hanlon CA. Transcranial electrical and magnetic stimulation (tES and TMS) for addiction medicine: A consensus paper on the present state of the science and the road ahead. Neurosci Biobehav Rev 2019; 104:118-140. [PMID: 31271802 PMCID: PMC7293143 DOI: 10.1016/j.neubiorev.2019.06.007] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/30/2019] [Accepted: 06/08/2019] [Indexed: 12/21/2022]
Abstract
There is growing interest in non-invasive brain stimulation (NIBS) as a novel treatment option for substance-use disorders (SUDs). Recent momentum stems from a foundation of preclinical neuroscience demonstrating links between neural circuits and drug consuming behavior, as well as recent FDA-approval of NIBS treatments for mental health disorders that share overlapping pathology with SUDs. As with any emerging field, enthusiasm must be tempered by reason; lessons learned from the past should be prudently applied to future therapies. Here, an international ensemble of experts provides an overview of the state of transcranial-electrical (tES) and transcranial-magnetic (TMS) stimulation applied in SUDs. This consensus paper provides a systematic literature review on published data - emphasizing the heterogeneity of methods and outcome measures while suggesting strategies to help bridge knowledge gaps. The goal of this effort is to provide the community with guidelines for best practices in tES/TMS SUD research. We hope this will accelerate the speed at which the community translates basic neuroscience into advanced neuromodulation tools for clinical practice in addiction medicine.
Collapse
Affiliation(s)
| | - Hosna Tavakoli
- Institute for Cognitive Science Studies (ICSS), Iran; Iranian National Center for Addiction Studies (INCAS), Iran
| | - Giovanni Addolorato
- Alcohol Use Disorder Unit, Division of Internal Medicine, Gastroenterology and Hepatology Unit, Catholic University of Rome, A. Gemelli Hospital, Rome, Italy; Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy
| | - Chris Baeken
- Department of Psychiatry and Medical Psychology, University Hospital Ghent, Ghent, Belgium
| | - Antonello Bonci
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | - Vincent P Clark
- University of New Mexico, USA; The Mind Research Network, USA
| | | | | | - Alessandra Del Felice
- University of Padova, Department of Neuroscience, Padova, Italy; Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
| | | | - Marco Diana
- 'G. Minardi' Laboratory of Cognitive Neuroscience, Department of Chemistry and Pharmacy, University of Sassari, Italy
| | | | - John R Fedota
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | | | - Luigi Gallimberti
- Novella Fronda Foundation, Human Science and Brain Research, Padua, Italy
| | | | - Sarah C Herremans
- Department of Psychiatry and Medical Psychology, University Hospital Ghent, Ghent, Belgium
| | - Martin J Herrmann
- Center of Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany
| | - Asif Jamil
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | | | | | - Karolina Kozak
- University of Toronto, Canada; Centre for Addiction and Mental Health (CAMH), Canada
| | - Evgeny Krupitsky
- V. M. Bekhterev National Medical Research Center for Psychiatry and Neurology, St.-Petersburg, Russia; St.-Petersburg First Pavlov State Medical University, Russia
| | - Claus Lamm
- Department of Basic Psychological Research and Research Methods, Faculty of Psychology, University of Vienna, Austria
| | | | - Graziella Madeo
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | | | | | - William M McDonald
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Chiara Montemitro
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA; University G.d'Annunzio of Chieti-Pescara, Italy
| | | | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Xavier Noël
- Université Libre de Bruxelles (ULB), Belgium
| | | | | | | | | | - Samir K Praharaj
- Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Haley Rafferty
- Spaulding Rehabilitation Hospital, Harvard Medical School, USA
| | | | - Betty Jo Salmeron
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Anne Sauvaget
- Laboratory «Movement, Interactions, Performance» (E.A. 4334), University of Nantes, 25 Bis Boulevard Guy Mollet, BP 72206, 44322, Nantes Cedex 3, France; CHU de Nantes Addictology and Liaison Psychiatry Department, University Hospital Nantes, Nantes Cedex 3, France
| | - Renée S Schluter
- Laureate Institute for Brain Research, USA; Institute for Cognitive Science Studies (ICSS), Iran
| | | | - Alireza Shahbabaie
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | | | | | - Vaughn R Steele
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Ti-Fei Yuan
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, China
| | | | - Vincent Van Waes
- Laboratoire de Neurosciences Intégratives et Cliniques EA481, Université Bourgogne Franche-Comté, Besançon, France
| | | | | | | | - Justine W Welsh
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | - Fatemeh Yavari
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Laurie Zawertailo
- University of Toronto, Canada; Centre for Addiction and Mental Health (CAMH), Canada
| | - Xiaochu Zhang
- University of Science and Technology of China, China
| | | | - Tony P George
- University of Toronto, Canada; Centre for Addiction and Mental Health (CAMH), Canada
| | | | - Anna E Goudriaan
- Department of Psychiatry, Amsterdam Institute for Addiction Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Arkin, Department of Research and Quality of Care, Amsterdam, The Netherlands
| | | | | | - Elliot A Stein
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Felipe Fregni
- Spaulding Rehabilitation Hospital, Harvard Medical School, USA
| | - Michael A Nitsche
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; University Medical Hospital Bergmannsheil, Dept. Neurology, Bochum, Germany
| | | | | | | |
Collapse
|
73
|
Ferreira NR, Junqueira YN, Corrêa NB, Fonseca EO, Brito NBM, Menezes TA, Magini M, Fidalgo TKS, Ferreira DMTP, de Lima RL, Carvalho AC, DosSantos MF. The efficacy of transcranial direct current stimulation and transcranial magnetic stimulation for chronic orofacial pain: A systematic review. PLoS One 2019; 14:e0221110. [PMID: 31415654 PMCID: PMC6695170 DOI: 10.1371/journal.pone.0221110] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Transcranial Direct Current Stimulation (tDCS) and Transcranial Magnetic Stimulation (TMS) have been described as promising alternatives to treat different pain syndromes. This study evaluated the effects of TMS and tDCS in the treatment of chronic orofacial pain, through a systematic review. METHODS An electronic search was performed in major databases: MEDLINE, Scopus, Web of Science, Cochrane, Embase, LILACS, BBO, Open Gray and CINAHL. The eligibility criteria comprised randomized clinical trials (RCTs) that applied TMS or tDCS to treat chronic orofacial pain. The variables analyzed were pain, functional limitation, quality of life, tolerance to treatment, somatosensory changes, and adverse effects. The risk of bias was assessed through the Cochrane Collaboration tool, and the certainty of evidence was evaluated through GRADE. The protocol was registered in the PROSPERO database (CRD42018090774). RESULTS The electronic search resulted in 636 studies. Thereafter, the eligibility criteria were applied and the duplicates removed, resulting in eight RCTs (four TMS and four tDCS). The findings of these studies suggest that rTMS applied to the Motor cortex (M1), the dorsolateral prefrontal cortex (DLPFC) and the secondary somatosensory cortex (S2) provide adequate orofacial pain relief. Two studies reported significant pain improvement with tDCS applied over M1 while the other two failed to demonstrate significant effects compared to placebo. CONCLUSIONS rTMS, applied to M1, DLPFC or S2, is a promising approach for the treatment of chronic orofacial pain. Moreover, tDCS targeting M1 seems to be also effective in chronic orofacial pain treatment. The included studies used a wide variety of therapeutic protocols. In addition, most of them used small sample sizes, with a high risk of biases in their methodologies, thus producing a low quality of evidence. The results indicate that further research should be carried out with caution and with better-standardized therapeutic protocols.
Collapse
Affiliation(s)
- Natália R. Ferreira
- Laboratório de Morfogênese Celular (LMC), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Radiologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ygor N. Junqueira
- Campus Macaé, Universidade Federal do Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
| | - Nathália B. Corrêa
- Campus Macaé, Universidade Federal do Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
| | - Estevão O. Fonseca
- Laboratório de Morfogênese Celular (LMC), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Campus Macaé, Universidade Federal do Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
| | - Nathália B. M. Brito
- Campus Macaé, Universidade Federal do Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
| | - Thayná A. Menezes
- Campus Macaé, Universidade Federal do Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
| | - Márcio Magini
- Laboratório de Análise e Processamento de Sinais, Universidade Federal do Rio de Janeiro, Campus Macaé, Macaé, Rio de Janeiro, Brazil
| | - Tatiana K. S. Fidalgo
- Departamento de Odontologia Preventiva e Comunitária, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniele M. T. P. Ferreira
- Biblioteca do Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo L. de Lima
- Departamento de Ortodontia e Odontopediatria, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antônio C. Carvalho
- Laboratório de Morfogênese Celular (LMC), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos F. DosSantos
- Laboratório de Morfogênese Celular (LMC), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa de Pós-Graduação em Radiologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
74
|
Huang Y, Datta A, Bikson M, Parra LC. Realistic volumetric-approach to simulate transcranial electric stimulation-ROAST-a fully automated open-source pipeline. J Neural Eng 2019; 16:056006. [PMID: 31071686 PMCID: PMC7328433 DOI: 10.1088/1741-2552/ab208d] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Research in the area of transcranial electrical stimulation (TES) often relies on computational models of current flow in the brain. Models are built based on magnetic resonance images (MRI) of the human head to capture detailed individual anatomy. To simulate current flow on an individual, the subject's MRI is segmented, virtual electrodes are placed on this anatomical model, the volume is tessellated into a mesh, and a finite element model (FEM) is solved numerically to estimate the current flow. Various software tools are available for each of these steps, as well as processing pipelines that connect these tools for automated or semi-automated processing. The goal of the present tool-realistic volumetric-approach to simulate transcranial electric simulation (ROAST)-is to provide an end-to-end pipeline that can automatically process individual heads with realistic volumetric anatomy leveraging open-source software and custom scripts to improve segmentation and execute electrode placement. APPROACH ROAST combines the segmentation algorithm of SPM12, a Matlab script for touch-up and automatic electrode placement, the finite element mesher iso2mesh and the solver getDP. We compared its performance with commercial FEM software, and SimNIBS, a well-established open-source modeling pipeline. MAIN RESULTS The electric fields estimated with ROAST differ little from the results obtained with commercial meshing and FEM solving software. We also do not find large differences between the various automated segmentation methods used by ROAST and SimNIBS. We do find bigger differences when volumetric segmentation are converted into surfaces in SimNIBS. However, evaluation on intracranial recordings from human subjects suggests that ROAST and SimNIBS are not significantly different in predicting field distribution, provided that users have detailed knowledge of SimNIBS. SIGNIFICANCE We hope that the detailed comparisons presented here of various choices in this modeling pipeline can provide guidance for future tool development. We released ROAST as an open-source, easy-to-install and fully-automated pipeline for individualized TES modeling.
Collapse
Affiliation(s)
- Yu Huang
- Department of Biomedical Engineering, City College of the City University of New York, New York, NY 10031, United States of America. Research & Development, Soterix Medical Inc., New York, NY 10001, United States of America
| | | | | | | |
Collapse
|
75
|
Maudrich T, Kenville R, Nikulin VV, Maudrich D, Villringer A, Ragert P. Inverse relationship between amplitude and latency of physiological mirror activity during repetitive isometric contractions. Neuroscience 2019; 406:300-313. [DOI: 10.1016/j.neuroscience.2019.03.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023]
|
76
|
Ghosh S. Improvement of gait and balance by non-invasive brain stimulation: its use in rehabilitation. Expert Rev Neurother 2019; 19:133-144. [DOI: 10.1080/14737175.2019.1564042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Soumya Ghosh
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, University of Western Australia, Nedlands, Australia
| |
Collapse
|
77
|
Duarte D, Castelo-Branco LEC, Uygur Kucukseymen E, Fregni F. Developing an optimized strategy with transcranial direct current stimulation to enhance the endogenous pain control system in fibromyalgia. Expert Rev Med Devices 2018; 15:863-873. [PMID: 30501532 PMCID: PMC6644718 DOI: 10.1080/17434440.2018.1551129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/19/2018] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Fibromyalgia affects more than 5 million people in the United States and has a detrimental impact on individuals' quality of life. Current pharmacological treatments provide limited benefits to relieve the pain of fibromyalgia, along with a risk of adverse effects; a scenario that explains the increasing interest for multimodal approaches. A tailored strategy to focus on this dysfunctional endogenous pain inhibitory system is transcranial direct current stimulation (tDCS) of the primary motor cortex. By combining tDCS with aerobic exercise, the effects can be optimized. Areas covered: The relevant literature was reviewed and discussed the methodological issues for designing a mechanistic clinical trial to test this combined intervention. Also, we reviewed the neural control of different pathways that integrate the endogenous pain inhibitory system, as well as the effects of tDCS and aerobic exercise both alone and combined. In addition, potential neurophysiological assessments are addressed: conditioned pain modulation, temporal slow pain summation, transcranial magnetic stimulation, and electroencephalography in the context of fibromyalgia. Expert commentary: By understanding the neural mechanisms underlying pain processing and potential optimized interventions in fibromyalgia with higher accuracy, the field has an evident potential of advancement in the direction of new neuromarkers and tailored therapies.
Collapse
Affiliation(s)
- Dante Duarte
- a Laboratory of Neuromodulation & Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation , Spaulding Rehabilitation Hospital, Harvard Medical School , Boston , MA , USA
| | - Luis Eduardo Coutinho Castelo-Branco
- a Laboratory of Neuromodulation & Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation , Spaulding Rehabilitation Hospital, Harvard Medical School , Boston , MA , USA
| | - Elif Uygur Kucukseymen
- a Laboratory of Neuromodulation & Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation , Spaulding Rehabilitation Hospital, Harvard Medical School , Boston , MA , USA
| | - Felipe Fregni
- a Laboratory of Neuromodulation & Center for Clinical Research Learning, Department of Physical Medicine and Rehabilitation , Spaulding Rehabilitation Hospital, Harvard Medical School , Boston , MA , USA
| |
Collapse
|
78
|
The Contribution of Endogenous Modulatory Systems to TMS- and tDCS-Induced Analgesia: Evidence from PET Studies. Pain Res Manag 2018; 2018:2368386. [PMID: 30538794 PMCID: PMC6257907 DOI: 10.1155/2018/2368386] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/23/2018] [Accepted: 09/25/2018] [Indexed: 12/17/2022]
Abstract
Chronic pain is an important public health issue. Moreover, its adequate management is still considered a major clinical problem, mainly due to its incredible complexity and still poorly understood pathophysiology. Recent scientific evidence coming from neuroimaging research, particularly functional magnetic resonance (fMRI) and positron emission tomography (PET) studies, indicates that chronic pain is associated with structural and functional changes in several brain structures that integrate antinociceptive pathways and endogenous modulatory systems. Furthermore, the last two decades have witnessed a huge increase in the number of studies evaluating the clinical effects of noninvasive neuromodulatory methods, especially transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), which have been proved to effectively modulate the cortical excitability, resulting in satisfactory analgesic effects with minimal adverse events. Nevertheless, the precise neuromechanisms whereby such methods provide pain control are still largely unexplored. Recent studies have brought valuable information regarding the recruitment of different modulatory systems and related neurotransmitters, including glutamate, dopamine, and endogenous opioids. However, the specific neurocircuits involved in the analgesia produced by those therapies have not been fully elucidated. This review focuses on the current literature correlating the clinical effects of noninvasive methods of brain stimulation to the changes in the activity of endogenous modulatory systems.
Collapse
|
79
|
Moisset X, Lefaucheur JP. Non pharmacological treatment for neuropathic pain: Invasive and non-invasive cortical stimulation. Rev Neurol (Paris) 2018; 175:51-58. [PMID: 30322590 DOI: 10.1016/j.neurol.2018.09.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/10/2018] [Indexed: 01/10/2023]
Abstract
The use of medications in chronic neuropathic pain may be limited with regard to efficacy and tolerance. Therefore, non-pharmacological approaches, using electrical stimulation of the cortex has been proposed as an alternative. First, in the early nineties, surgically-implanted epidural motor cortex stimulation (EMCS) was proven to be effective to relieve refractory neuropathic pain. Later, non-invasive stimulation techniques were found to produce similar analgesic effects, at least by means of repetitive transcranial magnetic stimulation (rTMS) targeting the primary motor cortex (M1). Following "high-frequency" rTMS (e.g., stimulation frequency ranging from 5 to 20Hz) delivered to the precentral gyrus (e.g., M1 region), it is possible to obtain an analgesic effect via the modulation of several remote brain regions involved in nociceptive information processing or control. This pain reduction can last for weeks beyond the time of the stimulation, especially if repeated sessions are performed, probably related to processes of long-term synaptic plasticity. Transcranial direct current stimulation (tDCS), another form of transcranial stimulation, using low-intensity electrical currents, generally delivered by a pair of large electrodes, has also shown some efficacy to improve patients with chronic pain syndromes. The mechanism of action of tDCS differs from that of EMCS and rTMS, but the cortical target is the same, which is M1. Although the level of evidence of therapeutic efficacy in the context of neuropathic pain is lower for tDCS than for rTMS, interesting perspectives are opened by using at-home tDCS protocols for long-term management. Now, there is a scientific basis for recommending both EMCS and rTMS of M1 to treat refractory chronic neuropathic pain, but their application in clinical practice remains limited due to practical and regulatory issues.
Collapse
Affiliation(s)
- X Moisset
- Inserm, service de neurologie Clermont-Ferrand, université Clermont-Auvergne, Neuro-Dol, CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France.
| | - J-P Lefaucheur
- Service de physiologie, explorations fonctionnelles, EA 4391, faculté de médecine, université Paris Est Créteil, 94000 Créteil, France; Hôpital Henri-Mondor, Assistance publique-Hôpitaux de Paris, 94000 Créteil, France
| |
Collapse
|
80
|
Jiang N, Li G, Wei J, Wei B, Zhu FF, Hu Y. Transcranial direct current stimulation of the primary motor cortex on postoperative pain and spontaneous oscillatory electroencephalographic activity following lumbar spine surgery: A pilot study. Restor Neurol Neurosci 2018; 36:605-620. [DOI: 10.3233/rnn-180816] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Naifu Jiang
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Guangsheng Li
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- Spinal Division, Department of Orthopaedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jinsong Wei
- Spinal Division, Department of Orthopaedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Bo Wei
- Spinal Division, Department of Orthopaedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Frank F. Zhu
- Faculty of Education, The University of Hong Kong, Hong Kong
| | - Yong Hu
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
81
|
Testing assumptions on prefrontal transcranial direct current stimulation: Comparison of electrode montages using multimodal fMRI. Brain Stimul 2018; 11:998-1007. [DOI: 10.1016/j.brs.2018.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/25/2018] [Accepted: 05/01/2018] [Indexed: 11/19/2022] Open
|
82
|
Magis D, D’Ostilio K, Lisicki M, Lee C, Schoenen J. Anodal frontal tDCS for chronic cluster headache treatment: a proof-of-concept trial targeting the anterior cingulate cortex and searching for nociceptive correlates. J Headache Pain 2018; 19:72. [PMID: 30128947 PMCID: PMC6102161 DOI: 10.1186/s10194-018-0904-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/06/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Percutaneous occipital nerve stimulation (ONS) is effective in refractory chronic cluster headache (rCCH) patients. Responders to ONS differ from non-responders by greater glucose metabolism in subgenual anterior cingulate cortex (sgACC). We reasoned that transcranial direct current stimulation (tDCS), a non-invasive approach, might be able to activate this area and thus improve rCCH patients. Our objective was to explore in a pilot trial the therapeutic potential of tDCS (anode at Fz, cathode over C7) and its possible effects on pain perception, frontal executive functions and mood in rCCH patients. METHODS Thirty-one patients were asked to apply daily 20-min sessions of 2 mA tDCS for 4 or 8 weeks after a 1-month baseline. CH attacks were monitored with paper diaries. The primary outcome measure was change in weekly attacks between baseline and the last week of tDCS. Twenty-three patients were available for a modified ITT analysis, 21 for per-protocol analysis. We also explored treatment-related changes in thermal pain thresholds and nociceptive blink reflexes (nBR), frontal lobe function and mood scales. RESULTS In the per-protocol analysis there was a mean 35% decrease of attack frequency (p = 0.0001) with 41% of patients having a ≥ 50% decrease. Attack duration and intensity were also significantly reduced. After 8 weeks (n = 10), the 50% responder rate was 45%, but at follow-up 2 weeks after tDCS (n = 16) mean attack frequency had returned to baseline levels. The treatment effect was significant in patients with high baseline thermal pain thresholds in the forehead (n = 12), but not in those with low thresholds (n = 9). The Frontal Assessment Battery score increased after tDCS (p = 0.01), while there was no change in depression scores or nBR. CONCLUSION tDCS with a Fz-C7 montage may have a preventive effect in rCCH patients, especially those with low pain sensitivity, suggesting that a sham-controlled trial in cluster headache is worthwhile. Whether the therapeutic effect is due to activation of the sgACC that can in theory be reached by the electrical field, or of other prefrontal cortical areas remains to be determined.
Collapse
Affiliation(s)
- Delphine Magis
- Headache Research Unit, University Department of Neurology CHR, CHU de Liège, Boulevard du 12ème de Ligne 1, 4000 Liège, Belgium
| | - Kevin D’Ostilio
- Headache Research Unit, University Department of Neurology CHR, CHU de Liège, Boulevard du 12ème de Ligne 1, 4000 Liège, Belgium
| | - Marco Lisicki
- Headache Research Unit, University Department of Neurology CHR, CHU de Liège, Boulevard du 12ème de Ligne 1, 4000 Liège, Belgium
| | - Chany Lee
- Department of Biomedical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763 South Korea
| | - Jean Schoenen
- Headache Research Unit, University Department of Neurology CHR, CHU de Liège, Boulevard du 12ème de Ligne 1, 4000 Liège, Belgium
| |
Collapse
|
83
|
Antonaci F, Rossi E, Voiticovschi-Iosob C, Dalla Volta G, Marceglia S. Frontal infrared thermography in healthy individuals and chronic migraine patients: Reliability of the method. Cephalalgia 2018; 39:489-496. [PMID: 29989426 DOI: 10.1177/0333102418788341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND The use of frontal infrared thermography in the diagnosis of primary headaches provided scattering results due to measurement fluctuations and different types of headaches or research protocols. OBJECTIVE This study aims to assess the reliability of frontal infrared thermography in healthy individuals and provide a preliminary evaluation in chronic migraine patients using a commercial infrared thermal camera. METHODS Thermographic images were acquired in 20 controls and 15 patients at three consecutive time-points in two daily sessions. The Side Difference and Asymmetry Index parameters were defined. The reproducibility of the measurements, the correlation of Asymmetry Index and Side Difference with clinical evaluations and patient perceptions, and the ability of the parameters to discriminate between patients and controls were investigated. RESULTS We reported a good reproducibility of the measurements (Inter-class Correlation Coefficient > 0.75 and Coefficient of Variation < 13.4%), independent from external factors. The Side Difference was significantly different between patients and controls ( p < 0.001). The Asymmetry Index showed good correlation with the side of unilateral pain ( p = 0.0056). CONCLUSIONS Frontal infrared thermography can be used to quantify the difference between the right and the left side of frontal vascular changes in chronic migraine patients, provided that standardized conditions are satisfied.
Collapse
Affiliation(s)
- Fabio Antonaci
- 1 Headache Centre, C. Mondino National Institute of Neurology Foundation, IRCCS, Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Elena Rossi
- 2 Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy.,3 Newronika srl, Milan, Italy
| | | | - Giorgio Dalla Volta
- 5 Unità Operativa Neurologia, Istituto Clinico Città di Brescia, Brescia, Italy
| | - Sara Marceglia
- 6 Dipartimento di Ingegneria e Architettura, Università degli Studi di Trieste, Trieste, Italy
| |
Collapse
|
84
|
Turski CA, Kessler-Jones A, Chow C, Hermann B, Hsu D, Jones J, Seeger SK, Chappell R, Boly M, Ikonomidou C. Extended Multiple-Field High-Definition transcranial direct current stimulation (HD-tDCS) is well tolerated and safe in healthy adults. Restor Neurol Neurosci 2018; 35:631-642. [PMID: 29172010 DOI: 10.3233/rnn-170757] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND High definition transcranial direct current stimulation (HD-tDCS) has been administered over single brain regions for small numbers of sessions. Safety, feasibility and tolerability of HD-tDCS over multiple brain regions, multiple daily stimulations and long periods are not established. OBJECTIVE We studied safety, feasibility and tolerability of daily HD-tDCS over 2-4 brain regions for 20 sessions in healthy adults. METHODS Five healthy adults underwent physical and neurological examination, electrocardiogram (EKG), electroencephalogram (EEG) and cognitive screening (ImpACT) before, during and after HD-tDCS. Four networks (left/right temporoparietal and frontal) were stimulated in sequence (20 min each) using HD-tDCS in 20 daily sessions. Sessions 1-10 included sequential stimulation of both temporoparietal networks, sessions 11-15 stimulations of 4 networks and sessions 16-20 two daily stimulation cycles of 4 networks/cycle (1.5 mA/network). Side effects, ImpACT scores and EEG power spectrum were compared before and after HD-tDCS. RESULTS All subjects completed the trial. Adverse events were tingling, transient redness at the stimulation site, perception of continuing stimulation after end of session and one self-resolving headache. EEG power spectrum showed decreased delta power in frontal areas several days after HD-tDCS. While at the group level ImpACT scores did not differ before and after stimulations, we found a trend for correlation between decreased EEG delta power and individual improvements in ImpACT scores after HD-tDCS. CONCLUSION Prolonged, repeat daily stimulation of multiple brain regions using HD-tDCS is feasible and safe in healthy adults. Preliminary EEG results suggest that HD-tDCS may induce long lasting changes in excitability in the brain.
Collapse
Affiliation(s)
| | | | - Clara Chow
- Department of Neurology, University of Wisconsin, Madison, WI, USA
| | - Bruce Hermann
- Department of Neurology, University of Wisconsin, Madison, WI, USA
| | - David Hsu
- Department of Neurology, University of Wisconsin, Madison, WI, USA
| | - Jana Jones
- Department of Neurology, University of Wisconsin, Madison, WI, USA
| | - Susanne K Seeger
- Department of Neurology, University of Wisconsin, Madison, WI, USA
| | - Rick Chappell
- Departments of Statistics and Biostatistics/Medical Informatics, University of Wisconsin, Madison, WI, USA
| | - Melanie Boly
- Department of Neurology, University of Wisconsin, Madison, WI, USA.,Department of Psychiatry, University of Wisconsin, Madison, WI, USA
| | | |
Collapse
|
85
|
To WT, De Ridder D, Hart J, Vanneste S. Changing Brain Networks Through Non-invasive Neuromodulation. Front Hum Neurosci 2018; 12:128. [PMID: 29706876 PMCID: PMC5908883 DOI: 10.3389/fnhum.2018.00128] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/19/2018] [Indexed: 01/10/2023] Open
Abstract
Background/Objective: Non-invasive neuromodulation techniques, such as repetitive Transcranial Magnetic Stimulation (rTMS) and transcranial Direct Current Stimulation (tDCS), have increasingly been investigated for their potential as treatments for neurological and psychiatric disorders. Despite widespread dissemination of these techniques, the underlying therapeutic mechanisms and the ideal stimulation site for a given disorder remain unknown. Increasing evidence support the possibility of non-invasive neuromodulation affecting a brain network rather than just the local stimulation target. In this article, we present evidence in a clinical setting to support the idea that non-invasive neuromodulation changes brain networks. Method: This article addresses the idea that non-invasive neuromodulation modulates brain networks, rather than just the local stimulation target, using neuromodulation studies in tinnitus and major depression as examples. We present studies that support this hypothesis from different perspectives. Main Results/Conclusion: Studies stimulating the same brain region, such as the dorsolateral prefrontal cortex (DLPFC), have shown to be effective for several disorders and studies using different stimulation sites for the same disorder have shown similar results. These findings, as well as results from studies investigating brain network connectivity on both macro and micro levels, suggest that non-invasive neuromodulation affects a brain network rather than just the local stimulation site targeted. We propose that non-invasive neuromodulation should be approached from a network perspective and emphasize the therapeutic potential of this approach through the modulation of targeted brain networks.
Collapse
Affiliation(s)
- Wing Ting To
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
| | - Dirk De Ridder
- Department of Surgical Sciences, Section of Neurosurgery, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - John Hart
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
| | - Sven Vanneste
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
| |
Collapse
|
86
|
To WT, Eroh J, Hart J, Vanneste S. Exploring the effects of anodal and cathodal high definition transcranial direct current stimulation targeting the dorsal anterior cingulate cortex. Sci Rep 2018. [PMID: 29535340 PMCID: PMC5849683 DOI: 10.1038/s41598-018-22730-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The dorsal anterior cingulate cortex (dACC) has been identified as a core region affected by many disorders, representing a promising target for neuromodulation. High Definition-transcranial Direct Current Stimulation (HD-tDCS) is a non-invasive neuromodulation technique that has already shown promising outcomes and has been tested to engage deeper structures. This study investigates whether it is possible to modulate dACC activity using anodal and cathodal HD-tDCS. Furthermore, it examines what effects anodal and cathodal HD-tDCS targeting dACC have on cognitive and emotional processing. Forty-five healthy subjects were randomly assigned to 1 of 3 groups: anodal, cathodal, and sham. Resting-state electroencephalography (rsEEG) and a cognitive and emotional Counting Stroop task were administered before and after HD-tDCS. RsEEG showed changes: anodal HD-tDCS showed significant increase in beta frequency band activity in dACC, while cathodal HD-tDCS led to significant increase in activity at dorsal and rostral ACC in the theta frequency band. Behavioral changes were also found after anodal HD-tDCS in the cognitive Counting Stroop for incongruent trials and after cathodal HD-tDCS in the emotional Counting Stroop for emotional trials. This study demonstrated that HD-tDCS is able to modulate dACC activity, suggesting that it has the potential to be used as a treatment tool.
Collapse
Affiliation(s)
- Wing Ting To
- The University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 West Campbell Road, Texas, 75080, USA.
| | - Justin Eroh
- The University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 West Campbell Road, Texas, 75080, USA
| | - John Hart
- The University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 West Campbell Road, Texas, 75080, USA
| | - Sven Vanneste
- The University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 West Campbell Road, Texas, 75080, USA
| |
Collapse
|
87
|
|
88
|
Hartwigsen G, Saur D. Neuroimaging of stroke recovery from aphasia - Insights into plasticity of the human language network. Neuroimage 2017; 190:14-31. [PMID: 29175498 DOI: 10.1016/j.neuroimage.2017.11.056] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/02/2017] [Accepted: 11/22/2017] [Indexed: 12/15/2022] Open
Abstract
The role of left and right hemisphere brain regions in language recovery after stroke-induced aphasia remains controversial. Here, we summarize how neuroimaging studies increase the current understanding of functional interactions, reorganization and plasticity in the language network. We first discuss the temporal dynamics across the time course of language recovery, with a main focus on longitudinal studies from the acute to the chronic phase after stroke. These studies show that the functional contribution of perilesional and spared left hemisphere as well as contralesional right hemisphere regions to language recovery changes over time. The second section introduces critical variables and recent advances on early prediction of subsequent outcome. In the third section, we outline how multi-method approaches that combine neuroimaging techniques with non-invasive brain stimulation elucidate mechanisms of plasticity and reorganization in the language network. These approaches provide novel insights into general mechanisms of plasticity in the language network and might ultimately support recovery processes during speech and language therapy. Finally, the neurobiological correlates of therapy-induced plasticity are discussed. We argue that future studies should integrate individualized approaches that might vary the combination of language therapy with specific non-invasive brain stimulation protocols across the time course of recovery. The way forward will include the combination of such approaches with large data sets obtained from multicentre studies.
Collapse
Affiliation(s)
- Gesa Hartwigsen
- Research Group Modulation of Language Networks, Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Dorothee Saur
- Language & Aphasia Laboratory, Department of Neurology, University of Leipzig, Germany.
| |
Collapse
|
89
|
Thair H, Holloway AL, Newport R, Smith AD. Transcranial Direct Current Stimulation (tDCS): A Beginner's Guide for Design and Implementation. Front Neurosci 2017; 11:641. [PMID: 29213226 PMCID: PMC5702643 DOI: 10.3389/fnins.2017.00641] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 11/06/2017] [Indexed: 12/22/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is a popular brain stimulation method that is used to modulate cortical excitability, producing facilitatory or inhibitory effects upon a variety of behaviors. There is, however, a current lack of consensus between studies, with many results suggesting that polarity-specific effects are difficult to obtain. This article explores some of these differences and highlights the experimental parameters that may underlie their occurrence. We provide a general, practical snapshot of tDCS methodology, including what it is used for, how to use it, and considerations for designing an effective and safe experiment. Our aim is to equip researchers who are new to tDCS with the essential knowledge so that they can make informed and well-rounded decisions when designing and running successful experiments. By summarizing the varied approaches, stimulation parameters, and outcomes, this article should help inform future tDCS research in a variety of fields.
Collapse
Affiliation(s)
- Hayley Thair
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | - Amy L Holloway
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | - Roger Newport
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | - Alastair D Smith
- School of Psychology, University of Nottingham, Nottingham, United Kingdom.,School of Psychology, University of Plymouth, Plymouth, United Kingdom
| |
Collapse
|
90
|
Lozano-Soto E, Soto-León V, Sabbarese S, Ruiz-Alvarez L, Sanchez-del-Rio M, Aguilar J, Strange BA, Foffani G, Oliviero A. Transcranial static magnetic field stimulation (tSMS) of the visual cortex decreases experimental photophobia. Cephalalgia 2017; 38:1493-1497. [DOI: 10.1177/0333102417736899] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background Transcranial static magnetic field stimulation (tSMS) reduces cortical excitability in humans. Methods The objective of this study was to determine whether tSMS over the occipital cortex is effective in reducing experimental photophobia. In a sham-controlled double-blind crossover study, tSMS (or sham) was applied for 10 minutes with a cylindrical magnet on the occiput of 20 healthy subjects. We assessed subjective discomfort induced by low-intensity and high-intensity visual stimuli presented in a dark room before, during and after tSMS (or sham). Results Compared to sham, tSMS significantly reduced the discomfort induced by high-intensity light stimuli. Conclusions The visual cortex may contribute to visual discomfort in experimental photophobia, providing a rationale for investigating tSMS as a possible treatment for photophobia in migraine.
Collapse
Affiliation(s)
- Elena Lozano-Soto
- FENNSI Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Vanesa Soto-León
- FENNSI Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Simona Sabbarese
- FENNSI Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Lara Ruiz-Alvarez
- FENNSI Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
- Neurology Service, Hospital del Henares. Coslada, Madrid, Spain
| | | | - Juan Aguilar
- Experimental Neurophysiology Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Bryan A Strange
- Laboratory for Clinical Neuroscience, CTB, Universidad Politecnica de Madrid, Madrid, Spain
- Department of Neuroimaging, Alzheimer’s Disease Research Centre, Reina Sofia-CIEN Foundation, Madrid, Spain
| | - Guglielmo Foffani
- HM CINAC, Hospital Universitario HM Puerta del Sur, Universidad CEU-San Pablo, Madrid, Spain
- Neural Bioengineering Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Antonio Oliviero
- FENNSI Group, Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| |
Collapse
|
91
|
Cortese F, Pierelli F, Bove I, Di Lorenzo C, Evangelista M, Perrotta A, Serrao M, Parisi V, Coppola G. Anodal transcranial direct current stimulation over the left temporal pole restores normal visual evoked potential habituation in interictal migraineurs. J Headache Pain 2017; 18:70. [PMID: 28726157 PMCID: PMC5517389 DOI: 10.1186/s10194-017-0778-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/04/2017] [Indexed: 02/02/2023] Open
Abstract
Background Neuroimaging data has implicated the temporal pole (TP) in migraine pathophysiology; the density and functional activity of the TP were reported to fluctuate in accordance with the migraine cycle. Yet, the exact link between TP morpho-functional abnormalities and migraine is unknown. Here, we examined whether non-invasive anodal transcranial direct current stimulation (tDCS) ameliorates abnormal interictal multimodal sensory processing in patients with migraine. Methods We examined the habituation of visual evoked potentials and median nerve somatosensory evoked potentials (SSEP) before and immediately after 20-min anodal tDCS (2 mA) or sham stimulation delivered over the left TP in interictal migraineurs. Results Prior to tDCS, interictal migraineurs did not exhibit habituation in response to repetitive visual or somatosensory stimulation. After anodal tDCS but not sham stimulation, migraineurs exhibited normal habituation responses to visual stimulation; however, tDCS had no effect on SSEP habituation in migraineurs. Conclusion Our study shows for the first time that enhancing excitability of the TP with anodal tDCS normalizes abnormal interictal visual information processing in migraineurs. This finding has implications for the role of the TP in migraine, and specifically highlights the ventral stream of the visual pathway as a pathophysiological neural substrate for abnormal visual processing in migraine.
Collapse
Affiliation(s)
- Francesca Cortese
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Corso della Repubblica, 79 - 04100, Latina, Italy.
| | - Francesco Pierelli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Corso della Repubblica, 79 - 04100, Latina, Italy.,INM Neuromed IRCCS, Pozzilli (IS), Italy
| | - Ilaria Bove
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Corso della Repubblica, 79 - 04100, Latina, Italy
| | | | - Maurizio Evangelista
- Università Cattolica del Sacro Cuore/CIC, Istituto di Anestesiologia, Rianimazione e Terapia del Dolore, Rome, Italy
| | | | - Mariano Serrao
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Corso della Repubblica, 79 - 04100, Latina, Italy
| | - Vincenzo Parisi
- G. B. Bietti Foundation IRCCS, Research Unit of Neurophysiology of Vision and Neuro-Ophthalmology, Rome, Italy
| | - Gianluca Coppola
- G. B. Bietti Foundation IRCCS, Research Unit of Neurophysiology of Vision and Neuro-Ophthalmology, Rome, Italy
| |
Collapse
|
92
|
Wörsching J, Padberg F, Helbich K, Hasan A, Koch L, Goerigk S, Stoecklein S, Ertl-Wagner B, Keeser D. Test-retest reliability of prefrontal transcranial Direct Current Stimulation (tDCS) effects on functional MRI connectivity in healthy subjects. Neuroimage 2017; 155:187-201. [PMID: 28450138 DOI: 10.1016/j.neuroimage.2017.04.052] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 04/22/2017] [Indexed: 01/01/2023] Open
Abstract
Transcranial Direct Current Stimulation (tDCS) of the prefrontal cortex (PFC) can be used for probing functional brain connectivity and meets general interest as novel therapeutic intervention in psychiatric and neurological disorders. Along with a more extensive use, it is important to understand the interplay between neural systems and stimulation protocols requiring basic methodological work. Here, we examined the test-retest (TRT) characteristics of tDCS-induced modulations in resting-state functional-connectivity MRI (RS fcMRI). Twenty healthy subjects received 20minutes of either active or sham tDCS of the dorsolateral PFC (2mA, anode over F3 and cathode over F4, international 10-20 system), preceded and ensued by a RS fcMRI (10minutes each). All subject underwent three tDCS sessions with one-week intervals in between. Effects of tDCS on RS fcMRI were determined at an individual as well as at a group level using both ROI-based and independent-component analyses (ICA). To evaluate the TRT reliability of individual active-tDCS and sham effects on RS fcMRI, voxel-wise intra-class correlation coefficients (ICC) of post-tDCS maps between testing sessions were calculated. For both approaches, results revealed low reliability of RS fcMRI after active tDCS (ICC(2,1) = -0.09 - 0.16). Reliability of RS fcMRI (baselines only) was low to moderate for ROI-derived (ICC(2,1) = 0.13 - 0.50) and low for ICA-derived connectivity (ICC(2,1) = 0.19 - 0.34). Thus, for ROI-based analyses, the distribution of voxel-wise ICC was shifted to lower TRT reliability after active, but not after sham tDCS, for which the distribution was similar to baseline. The intra-individual variation observed here resembles variability of tDCS effects in motor regions and may be one reason why in this study robust tDCS effects at a group level were missing. The data can be used for appropriately designing large scale studies investigating methodological issues such as sources of variability and localisation of tDCS effects.
Collapse
Affiliation(s)
- Jana Wörsching
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany.
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany
| | - Konstantin Helbich
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany
| | - Alkomiet Hasan
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany
| | - Lena Koch
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany
| | - Stephan Goerigk
- Department of Psychological Methodology and Assessment, Ludwig-Maximilians-University, Munich, Germany
| | - Sophia Stoecklein
- Institute for Clinical Radiology, Ludwig-Maximilians-University, Munich, Germany
| | - Birgit Ertl-Wagner
- Institute for Clinical Radiology, Ludwig-Maximilians-University, Munich, Germany
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University, Munich, Germany; Institute for Clinical Radiology, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
93
|
Cortical neurostimulation for neuropathic pain: state of the art and perspectives. Pain 2016; 157 Suppl 1:S81-S89. [PMID: 26785160 DOI: 10.1097/j.pain.0000000000000401] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The treatment of neuropathic pain by neuromodulation is an objective for more than 40 years in modern clinical practice. With respect to spinal cord and deep brain structures, the cerebral cortex is the most recently evaluated target of invasive neuromodulation therapy for pain. In the early 90s, the first successes of invasive epidural motor cortex stimulation (EMCS) were published. A few years later was developed repetitive transcranial magnetic stimulation (rTMS), a noninvasive stimulation technique. Then, electrical transcranial stimulation returned valid and is currently in full development, with transcranial direct current stimulation (tDCS). Regarding transcranial approaches, the main studied and validated target was still the motor cortex, but other cortical targets are under investigation. The mechanisms of action of these techniques share similarities, especially between EMCS and rTMS, but they also have differences that could justify specific indications and applications. It is therefore important to know the principles and to assess the merit of these techniques on the basis of a rigorous assessment of the results, to avoid fad. Various types of chronic neuropathic pain syndromes can be significantly relieved by EMCS or repeated daily sessions of high-frequency (5-20 Hz) rTMS or anodal tDCS over weeks, at least when pain is lateralized and stimulation is applied to the motor cortex contralateral to pain side. However, cortical stimulation therapy remains to be optimized, especially by improving EMCS electrode design, rTMS targeting, or tDCS montage, to reduce the rate of nonresponders, who do not experience clinically relevant effects of these techniques.
Collapse
|
94
|
Imaging transcranial direct current stimulation (tDCS) of the prefrontal cortex—correlation or causality in stimulation-mediated effects? Neurosci Biobehav Rev 2016; 69:333-56. [DOI: 10.1016/j.neubiorev.2016.08.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 06/30/2016] [Accepted: 08/01/2016] [Indexed: 02/03/2023]
|
95
|
Cancelli A, Cottone C, Tecchio F, Truong DQ, Dmochowski J, Bikson M. A simple method for EEG guided transcranial electrical stimulation without models. J Neural Eng 2016; 13:036022. [PMID: 27172063 DOI: 10.1088/1741-2560/13/3/036022] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE There is longstanding interest in using EEG measurements to inform transcranial Electrical Stimulation (tES) but adoption is lacking because users need a simple and adaptable recipe. The conventional approach is to use anatomical head-models for both source localization (the EEG inverse problem) and current flow modeling (the tES forward model), but this approach is computationally demanding, requires an anatomical MRI, and strict assumptions about the target brain regions. We evaluate techniques whereby tES dose is derived from EEG without the need for an anatomical head model, target assumptions, difficult case-by-case conjecture, or many stimulation electrodes. APPROACH We developed a simple two-step approach to EEG-guided tES that based on the topography of the EEG: (1) selects locations to be used for stimulation; (2) determines current applied to each electrode. Each step is performed based solely on the EEG with no need for head models or source localization. Cortical dipoles represent idealized brain targets. EEG-guided tES strategies are verified using a finite element method simulation of the EEG generated by a dipole, oriented either tangential or radial to the scalp surface, and then simulating the tES-generated electric field produced by each model-free technique. These model-free approaches are compared to a 'gold standard' numerically optimized dose of tES that assumes perfect understanding of the dipole location and head anatomy. We vary the number of electrodes from a few to over three hundred, with focality or intensity as optimization criterion. MAIN RESULTS Model-free approaches evaluated include (1) voltage-to-voltage, (2) voltage-to-current; (3) Laplacian; and two Ad-Hoc techniques (4) dipole sink-to-sink; and (5) sink to concentric. Our results demonstrate that simple ad hoc approaches can achieve reasonable targeting for the case of a cortical dipole, remarkably with only 2-8 electrodes and no need for a model of the head. SIGNIFICANCE Our approach is verified directly only for a theoretically localized source, but may be potentially applied to an arbitrary EEG topography. For its simplicity and linearity, our recipe for model-free EEG guided tES lends itself to broad adoption and can be applied to static (tDCS), time-variant (e.g., tACS, tRNS, tPCS), or closed-loop tES.
Collapse
Affiliation(s)
- Andrea Cancelli
- Laboratory of Electrophysiology for Translational neuroScience (LET'S)-ISTC-CNR, Italy. Institute of Neurology, Catholic University, Rome, Italy
| | | | | | | | | | | |
Collapse
|
96
|
Dimov LF, Franciosi AC, Campos ACP, Brunoni AR, Pagano RL. Top-Down Effect of Direct Current Stimulation on the Nociceptive Response of Rats. PLoS One 2016; 11:e0153506. [PMID: 27071073 PMCID: PMC4829148 DOI: 10.1371/journal.pone.0153506] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 03/30/2016] [Indexed: 01/06/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) is an emerging, noninvasive technique of neurostimulation for treating pain. However, the mechanisms and pathways involved in its analgesic effects are poorly understood. Therefore, we investigated the effects of direct current stimulation (DCS) on thermal and mechanical nociceptive thresholds and on the activation of the midbrain periaqueductal gray (PAG) and the dorsal horn of the spinal cord (DHSC) in rats; these central nervous system areas are associated with pain processing. Male Wistar rats underwent cathodal DCS of the motor cortex and, while still under stimulation, were evaluated using tail-flick and paw pressure nociceptive tests. Sham stimulation and naive rats were used as controls. We used a randomized design; the assays were not blinded to the experimenter. Immunoreactivity of the early growth response gene 1 (Egr-1), which is a marker of neuronal activation, was evaluated in the PAG and DHSC, and enkephalin immunoreactivity was evaluated in the DHSC. DCS did not change the thermal nociceptive threshold; however, it increased the mechanical nociceptive threshold of both hind paws compared with that of controls, characterizing a topographical effect. DCS decreased the Egr-1 labeling in the PAG and DHSC as well as the immunoreactivity of spinal enkephalin. Altogether, the data suggest that DCS disinhibits the midbrain descending analgesic pathway, consequently inhibiting spinal nociceptive neurons and causing an increase in the nociceptive threshold. This study reinforces the idea that the motor cortex participates in the neurocircuitry that is involved in analgesia and further clarifies the mechanisms of action of tDCS in pain treatment.
Collapse
Affiliation(s)
- Luiz Fabio Dimov
- Laboratory of Neuromodulation and Experimental Pain, Hospital Sírio Libanês, Rua Prof Daher Cutait, 69, Sao Paulo, SP, 01308-060, Brazil
| | - Adriano Cardozo Franciosi
- Laboratory of Neuromodulation and Experimental Pain, Hospital Sírio Libanês, Rua Prof Daher Cutait, 69, Sao Paulo, SP, 01308-060, Brazil
| | - Ana Carolina Pinheiro Campos
- Laboratory of Neuromodulation and Experimental Pain, Hospital Sírio Libanês, Rua Prof Daher Cutait, 69, Sao Paulo, SP, 01308-060, Brazil
| | - André Russowsky Brunoni
- Service of Interdisciplinary Neuromodulation (SIN), Department and Institute of Psychiatry, Faculty of Medicine of University of São Paulo, Laboratory of Neuroscience (LIM27), Department and Institute of Psychiatry, University of São Paulo, Rua Doutor Ovidio Pires de Campos, 785, Sao Paulo, SP, 05403-000, Brazil.,Center for Clinical and Epidemiological Research & Interdisciplinary Center for Applied Neuromodulation (CINA), University Hospital, University of São Paulo, São Paulo, Avenida Professor Lineu Prestes 2565, ext. 3, Sao Paulo, SP, 05508-000, Brazil
| | - Rosana Lima Pagano
- Laboratory of Neuromodulation and Experimental Pain, Hospital Sírio Libanês, Rua Prof Daher Cutait, 69, Sao Paulo, SP, 01308-060, Brazil
| |
Collapse
|
97
|
Gbadeyan O, Steinhauser M, McMahon K, Meinzer M. Safety, Tolerability, Blinding Efficacy and Behavioural Effects of a Novel MRI-Compatible, High-Definition tDCS Set-Up. Brain Stimul 2016; 9:545-52. [PMID: 27108392 DOI: 10.1016/j.brs.2016.03.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/01/2016] [Accepted: 03/24/2016] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND High-definition transcranial direct current stimulation (HD-tDCS) may allow more specific neural modulation than conventional-tDCS. OBJECTIVE We compared safety, tolerability, blinding efficacy and cognitive effects of a novel HD-tDCS set-up to that of conventional-tDCS and established compatibility with simultaneous functional magnetic resonance imaging (fMRI). METHODS Two groups of healthy participants completed a visual flanker task either with conventional (N = 30) or HD-tDCS (N = 30) administered to the right dorsolateral prefrontal cortex (1 mA) in a double-blind, sham-tDCS-controlled, cross-over design. HD-tDCS was administered with a one-channel DC-stimulator using a small conductive rubber "centre" electrode and a circular return electrode, mimicking the frequently used 4 × 1 HD-tDCS set-up. Tolerability, adverse effects, impact on performance and blinding efficacy were compared within and between the two montages. In a separate experiment, potential heating and impact on image quality of the novel HD-tDCS set-up were assessed during simultaneous fMRI. RESULTS Both montages elicited only mild adverse effects and those were less pronounced for the novel HD-tDCS set-up. Participant and investigator blinding was achieved with both montages. Only HD-tDCS resulted in significant modulation of the conflict adaptation effect during the flanker task; however, no differences were found for the direct comparison of the two montages. No significant heating occurred during fMRI and only minor effects on image quality were observed during HD-tDCS. CONCLUSIONS This study confirmed safety, tolerability and blinding efficacy of a novel, re-usable and MRI-compatible HD-tDCS set-up. It also highlights its potential to exert beneficial effects on behavioural performance. Use of this novel set-up during simultaneous fMRI in future studies will help clarify the neural mechanisms by which this HD-tDCS impacts on behavioural and neural function.
Collapse
Affiliation(s)
- Oyetunde Gbadeyan
- Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Marco Steinhauser
- Department of Psychology, Catholic University of Eichstätt-Ingolstadt, Eichstätt, Bavaria, Germany
| | - Katie McMahon
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | - Marcus Meinzer
- Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
98
|
To WT, Hart J, De Ridder D, Vanneste S. Considering the influence of stimulation parameters on the effect of conventional and high-definition transcranial direct current stimulation. Expert Rev Med Devices 2016; 13:391-404. [DOI: 10.1586/17434440.2016.1153968] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
99
|
DosSantos MF, Ferreira N, Toback RL, Carvalho AC, DaSilva AF. Potential Mechanisms Supporting the Value of Motor Cortex Stimulation to Treat Chronic Pain Syndromes. Front Neurosci 2016; 10:18. [PMID: 26903788 PMCID: PMC4749700 DOI: 10.3389/fnins.2016.00018] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/14/2016] [Indexed: 12/12/2022] Open
Abstract
Throughout the first years of the twenty-first century, neurotechnologies such as motor cortex stimulation (MCS), transcranial magnetic stimulation (TMS), and transcranial direct current stimulation (tDCS) have attracted scientific attention and been considered as potential tools to centrally modulate chronic pain, especially for those conditions more difficult to manage and refractory to all types of available pharmacological therapies. Interestingly, although the role of the motor cortex in pain has not been fully clarified, it is one of the cortical areas most commonly targeted by invasive and non-invasive neuromodulation technologies. Recent studies have provided significant advances concerning the establishment of the clinical effectiveness of primary MCS to treat different chronic pain syndromes. Concurrently, the neuromechanisms related to each method of primary motor cortex (M1) modulation have been unveiled. In this respect, the most consistent scientific evidence originates from MCS studies, which indicate the activation of top-down controls driven by M1 stimulation. This concept has also been applied to explain M1-TMS mechanisms. Nevertheless, activation of remote areas in the brain, including cortical and subcortical structures, has been reported with both invasive and non-invasive methods and the participation of major neurotransmitters (e.g., glutamate, GABA, and serotonin) as well as the release of endogenous opioids has been demonstrated. In this critical review, the putative mechanisms underlying the use of MCS to provide relief from chronic migraine and other types of chronic pain are discussed. Emphasis is placed on the most recent scientific evidence obtained from chronic pain research studies involving MCS and non-invasive neuromodulation methods (e.g., tDCS and TMS), which are analyzed comparatively.
Collapse
Affiliation(s)
| | - Natália Ferreira
- Departamento de Radiologia, Faculdade de Medicina, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Rebecca L. Toback
- Headache and Orofacial Pain Effort, Department of Biologic and Materials Sciences and Michigan Center for Oral Health Research, School of Dentistry, University of MichiganAnn Arbor, MI, USA
| | - Antônio C. Carvalho
- Departamento de Radiologia, Faculdade de Medicina, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Alexandre F. DaSilva
- Headache and Orofacial Pain Effort, Department of Biologic and Materials Sciences and Michigan Center for Oral Health Research, School of Dentistry, University of MichiganAnn Arbor, MI, USA
| |
Collapse
|