51
|
Brás JP, Pinto S, von Doellinger O, Prata J, Coelho R, Barbosa MA, Almeida MI, Santos SG. Combining inflammatory miRNA molecules as diagnostic biomarkers for depression: a clinical study. Front Psychiatry 2023; 14:1227618. [PMID: 37575572 PMCID: PMC10413105 DOI: 10.3389/fpsyt.2023.1227618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Background Inflammation has been implicated in core features of depression pathophysiology and treatment resistance. Therefore, new challenges in the discovery of inflammatory mediators implicated in depression have emerged. MicroRNAs (miRNAs) have been found aberrantly expressed in several pathologies, increasing their potential as biomarkers and therapeutical targets. In this study, the aim was to assess the changes and biomarker potential of inflammation-related miRNAs in depression patients. Methods Depression diagnosis was performed according to the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5). 40 healthy controls and 32 depression patients were included in the study. The levels of inflammatory cytokines were measured in plasma, and expression levels of cytokines and inflammation-related miRNAs were evaluated in peripheral blood mononuclear cells (PBMCs). Results Depression patients were found to have a pro-inflammatory profile in plasma, with significantly higher levels of TNF-α and CCL2 compared with controls. In PBMCs of depression patients, TNF-α and IL-6 expression levels were significantly up and downregulated, respectively. Moreover, miR-342 levels were found upregulated, while miR-146a and miR-155 were significantly downregulated. miR-342 expression levels were positively correlated with TNF-α. Importantly, when analyzed as a diagnostic panel, receiver operating characteristics (ROC) analysis of miR-342, miR-146a, miR-155 in combination, showed to be highly specific and sensitive in distinguishing between depression patients and healthy controls. Conclusion In summary, these findings suggest that inflammation-related miRNAs are aberrantly expressed in depression patients. Moreover, we show evidences on the potential of the combination of dysregulated miRNAs as a powerful diagnostic tool for depression.
Collapse
Affiliation(s)
- João Paulo Brás
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Sara Pinto
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- FMUP-Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Orlando von Doellinger
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- FMUP-Faculdade de Medicina, Universidade do Porto, Porto, Portugal
- Departmento de Psiquiatria e Saúde Mental, Centro Hospitalar do Tâmega e Sousa, Penafiel, Portugal
| | - Joana Prata
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- FMUP-Faculdade de Medicina, Universidade do Porto, Porto, Portugal
- Departamento de Psiquiatria e Saúde Mental, Centro Hospitalar Vila Nova de Gaia/Espinho, Vila Nova de Gaia, Portugal
| | - Rui Coelho
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- FMUP-Faculdade de Medicina, Universidade do Porto, Porto, Portugal
- Departmento de Neurociências Clínicas e Saúde Mental, Centro Hospitalar São João, Porto, Portugal
| | - Mário Adolfo Barbosa
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Maria Inês Almeida
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Susana Gomes Santos
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| |
Collapse
|
52
|
Afonso GJM, Cavaleiro C, Valero J, Mota SI, Ferreiro E. Recent Advances in Extracellular Vesicles in Amyotrophic Lateral Sclerosis and Emergent Perspectives. Cells 2023; 12:1763. [PMID: 37443797 PMCID: PMC10340215 DOI: 10.3390/cells12131763] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a severe and incurable neurodegenerative disease characterized by the progressive death of motor neurons, leading to paralysis and death. It is a rare disease characterized by high patient-to-patient heterogeneity, which makes its study arduous and complex. Extracellular vesicles (EVs) have emerged as important players in the development of ALS. Thus, ALS phenotype-expressing cells can spread their abnormal bioactive cargo through the secretion of EVs, even in distant tissues. Importantly, owing to their nature and composition, EVs' formation and cargo can be exploited for better comprehension of this elusive disease and identification of novel biomarkers, as well as for potential therapeutic applications, such as those based on stem cell-derived exosomes. This review highlights recent advances in the identification of the role of EVs in ALS etiopathology and how EVs can be promising new therapeutic strategies.
Collapse
Affiliation(s)
- Gonçalo J. M. Afonso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (G.J.M.A.); (C.C.)
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- III-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Carla Cavaleiro
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (G.J.M.A.); (C.C.)
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- III-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Jorge Valero
- Instituto de Neurociencias de Castilla y León, University of Salamanca, 37007 Salamanca, Spain;
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Department of Cell Biology and Pathology, University of Salamanca, 37007 Salamanca, Spain
| | - Sandra I. Mota
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (G.J.M.A.); (C.C.)
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- III-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Elisabete Ferreiro
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (G.J.M.A.); (C.C.)
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- III-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| |
Collapse
|
53
|
Amirkhanzadeh Barandouzi Z, Bruner DW, Miller AH, Paul S, Felger JC, Wommack EC, Higgins KA, Shin DM, Saba NF, Xiao C. Associations of inflammation with neuropsychological symptom cluster in patients with Head and neck cancer: A longitudinal study. Brain Behav Immun Health 2023; 30:100649. [PMID: 37396338 PMCID: PMC10308212 DOI: 10.1016/j.bbih.2023.100649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/17/2023] [Accepted: 06/03/2023] [Indexed: 07/04/2023] Open
Abstract
Purpose Head and neck cancer (HNC) patients may experience multiple co-occurring neuropsychological symptoms (NPS) cluster, including fatigue, depression, pain, sleep disturbance, and cognitive impairment. While inflammation has been attributed as a key mechanism for some of these symptoms, its association with the NPS as a cluster of symptoms is unknown. Thus, the aim of this study was to examine the association between peripheral inflammation and NPS cluster among HNC patients over cancer treatment (radiotherapy with or without chemotherapy). Methods HNC patients were recruited and followed at pre-treatment, end of treatment, three months and one-year post-treatment. Plasma inflammatory markers, including C-reactive protein (CRP), tumor necrosis factor-alpha (TNFA), soluble tumor necrosis factor receptor-2 (sTNFR2), interleukin-1 beta (IL1-β), interleukin-6 (IL-6), interleukin-10 (IL-10), monocyte chemotactic protein-1 (MCP-1), and interleukin-1 receptor antagonist (IL-1RA) and patient-reported NPS cluster were collected at the 4 time points. Associations between inflammatory markers and the NPS cluster were analyzed using linear mixed-effects models and generalized estimating equations (GEE) models controlling covariates. Results 147 HNC patients were eligible for analysis. 56% of the patients received chemoradiotherapy as treatment. The highest NPS cluster score was reported at the end of treatment, which gradually decreased over time. An increase in inflammatory markers including CRP, sTNFR2, IL-6 and IL-1RA was associated with higher continuous NPS cluster scores (p<0.001, p = 0.003, p<0.001, p<0.001; respectively). GEE further confirmed that patients with at least two moderate symptoms had elevated sTNFR2, IL-6, and IL-1RA (p = 0.017, p = 0.038, p = 0.008; respectively). Notably, this positive association between NPS cluster and inflammatory markers was still significant at one-year post-treatment for CRP (p = 0.001), sTNFR2 (p = 0.006), and IL-1RA (p = 0.043). Conclusions Most HNC patients experienced NPS clusters over time, especially immediately after the end of treatment. Elevated inflammation, as represented by inflammatory markers, was strongly associated with worse NPS cluster over time; this trend was also notable at one-year post-treatment. Our findings suggest that peripheral inflammation plays a pivotal role in the NPS cluster over cancer treatment, including long-term follow-ups. Interventions on reducing peripheral inflammation may contribute to alleviating the NPS cluster in cancer patients.
Collapse
Affiliation(s)
| | - Deborah W. Bruner
- School of Nursing, Emory University, 1520 Clifton Road NE, Atlanta, GA, 30322, USA
| | - Andrew H. Miller
- School of Medicine, Emory University, 201 Dowman Dr, Atlanta, GA, 30322, USA
| | - Sudeshna Paul
- School of Nursing, Emory University, 1520 Clifton Road NE, Atlanta, GA, 30322, USA
| | - Jennifer C. Felger
- School of Medicine, Emory University, 201 Dowman Dr, Atlanta, GA, 30322, USA
| | - Evanthia C. Wommack
- School of Medicine, Emory University, 201 Dowman Dr, Atlanta, GA, 30322, USA
| | - Kristin A. Higgins
- School of Medicine, Emory University, 201 Dowman Dr, Atlanta, GA, 30322, USA
| | - Dong M. Shin
- School of Medicine, Emory University, 201 Dowman Dr, Atlanta, GA, 30322, USA
| | - Nabil F. Saba
- School of Medicine, Emory University, 201 Dowman Dr, Atlanta, GA, 30322, USA
| | - Canhua Xiao
- School of Nursing, Emory University, 1520 Clifton Road NE, Atlanta, GA, 30322, USA
| |
Collapse
|
54
|
Wu SK, Chen WJ, Chang JPC, Guu TW, Hsin MC, Huang CK, Mischoulon D, Capuron L, Su KP. Personalized Medicine of Omega-3 Fatty Acids in Depression Treatment in Obese and Metabolically Dysregulated Patients. J Pers Med 2023; 13:1003. [PMID: 37373992 DOI: 10.3390/jpm13061003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
The co-occurrence of depression and obesity has become a significant public health concern worldwide. Recent studies have shown that metabolic dysfunction, which is commonly observed in obese individuals and is characterized by inflammation, insulin resistance, leptin resistance, and hypertension, is a critical risk factor for depression. This dysfunction may induce structural and functional changes in the brain, ultimately contributing to depression's development. Given that obesity and depression mutually increase each other's risk of development by 50-60%, there is a need for effective interventions that address both conditions. The comorbidity of depression with obesity and metabolic dysregulation is thought to be related to chronic low-grade inflammation, characterized by increased circulating levels of pro-inflammatory cytokines and C-reactive protein (CRP). As pharmacotherapy fails in at least 30-40% of cases to adequately treat major depressive disorder, a nutritional approach is emerging as a promising alternative. Omega-3 polyunsaturated fatty acids (n-3 PUFAs) are a promising dietary intervention that can reduce inflammatory biomarkers, particularly in patients with high levels of inflammation, including pregnant women with gestational diabetes, patients with type 2 diabetes mellitus, and overweight individuals with major depressive disorder. Further efforts directed at implementing these strategies in clinical practice could contribute to improved outcomes in patients with depression, comorbid obesity, and/or metabolic dysregulation.
Collapse
Grants
- MOST 109-2320-B-038-057-MY3, 110-2321-B-006-004, 110-2811-B-039-507, 110-2320-B-039-048-MY2,110-2320-B-039-047-MY3, 110-2813-C-039-327-B, 110-2314-B-039-029-MY3, 111-2321-B-006-008, and NSTC 111-2314-B-039-041-MY3 Ministry of Science and Technology, Taiwan
- ANHRF 109-31, 109-40, 110-13, 110-26, 110-44, 110-45, 111-27, 111-28, 111-47, 111-48, and 111-52 An-Nan Hospital, China Medical University, Tainan, Taiwan
- CMRC-CMA-2 Ministry of Education (MOE), Taiwan
- CMU 110-AWARD-02, 110-N-17, 1110-SR-73 China Medical University, Taichung, Taiwan
- DMR-106-101, 106-227, 109-102, 109-244, 110-124, 111-245, 112-097, 112-086, 112-109, 112-232 and DMR-HHC-109-11, HHC-109-12, HHC-110-10, and HHC-111-8 China Medical University Hospital, Taichung, Taiwan
Collapse
Affiliation(s)
- Suet-Kei Wu
- Graduate Institute of Nutrition, China Medical University, Taichung 404, Taiwan
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung 404, Taiwan
| | - Wei-Jen Chen
- An-Nan Hospital, China Medical University, Tainan 709, Taiwan
| | - Jane Pei-Chen Chang
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung 404, Taiwan
- Department of Psychiatry, China Medical University Hospital, Taichung 404, Taiwan
- College of Medicine, China Medical University, Taichung 404, Taiwan
| | - Ta-Wei Guu
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung 404, Taiwan
- Division of Psychiatry, Department of Internal Medicine, China Medical University Beigang Hospital, Yunlin 651, Taiwan
| | - Ming-Che Hsin
- Body Science & Metabolic Disorders International Medical Centre (BMIMC), China Medical University & Hospital, Taichung 404, Taiwan
| | - Chih-Kun Huang
- Body Science & Metabolic Disorders International Medical Centre (BMIMC), China Medical University & Hospital, Taichung 404, Taiwan
| | - David Mischoulon
- Depression Clinical and Research Program, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lucile Capuron
- NutriNeuro, University of Bordeaux, INRAE, Bordeaux INP, UMR 1286, F-33076 Bordeaux, France
| | - Kuan-Pin Su
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung 404, Taiwan
- An-Nan Hospital, China Medical University, Tainan 709, Taiwan
- Department of Psychiatry, China Medical University Hospital, Taichung 404, Taiwan
- College of Medicine, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
55
|
Escobar AP, Bonansco C, Cruz G, Dagnino-Subiabre A, Fuenzalida M, Negrón I, Sotomayor-Zárate R, Martínez-Pinto J, Jorquera G. Central and Peripheral Inflammation: A Common Factor Causing Addictive and Neurological Disorders and Aging-Related Pathologies. Int J Mol Sci 2023; 24:10083. [PMID: 37373230 PMCID: PMC10298583 DOI: 10.3390/ijms241210083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Many diseases and degenerative processes affecting the nervous system and peripheral organs trigger the activation of inflammatory cascades. Inflammation can be triggered by different environmental conditions or risk factors, including drug and food addiction, stress, and aging, among others. Several pieces of evidence show that the modern lifestyle and, more recently, the confinement associated with the COVID-19 pandemic have contributed to increasing the incidence of addictive and neuropsychiatric disorders, plus cardiometabolic diseases. Here, we gather evidence on how some of these risk factors are implicated in activating central and peripheral inflammation contributing to some neuropathologies and behaviors associated with poor health. We discuss the current understanding of the cellular and molecular mechanisms involved in the generation of inflammation and how these processes occur in different cells and tissues to promote ill health and diseases. Concomitantly, we discuss how some pathology-associated and addictive behaviors contribute to worsening these inflammation mechanisms, leading to a vicious cycle that promotes disease progression. Finally, we list some drugs targeting inflammation-related pathways that may have beneficial effects on the pathological processes associated with addictive, mental, and cardiometabolic illnesses.
Collapse
Affiliation(s)
- Angélica P. Escobar
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Christian Bonansco
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Gonzalo Cruz
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Alexies Dagnino-Subiabre
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Marco Fuenzalida
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Ignacio Negrón
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Ramón Sotomayor-Zárate
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Jonathan Martínez-Pinto
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Gonzalo Jorquera
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago 7830490, Chile
| |
Collapse
|
56
|
Wu J, Li S, Zhang Y. Research progress in role of exosomes exosomes in mental disorders. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:771-781. [PMID: 37539580 PMCID: PMC10930398 DOI: 10.11817/j.issn.1672-7347.2023.220379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Indexed: 08/05/2023]
Abstract
Exosomes are a class of extracellular vesicles with a structure of lipid bilayer-membrane. In the central nervous system (CNS), exosomes can be secreted from both neurons and glial cells. Exosomes released into the extracellular matrix can freely cross the blood-brain barrier and function as crucial carriers of cellular communication and substance exchange in the CNS. Exosomes play a key role in the pathological process of mental disorders such as schizophrenia, depression, and bipolar disorder, and they have the potential to be used as a targeted carrier of antipsychotic medications. Exosomes are likely to become a new tool in the future to aid in the early prevention, accurate diagnosis, and effective treatment for people with mental disorders.
Collapse
Affiliation(s)
- Jialing Wu
- Medical Psychological Center, Second Xiangya Hospital, Central South University, Changsha 410011.
| | - Shansi Li
- Medical Psychological Center, Second Xiangya Hospital, Central South University, Changsha 410011
| | - Yi Zhang
- Medical Psychological Center, Second Xiangya Hospital, Central South University, Changsha 410011.
- Medical Psychological Institute, Central South University, Changsha 410011.
- National Clinical Research Center for Mental Disorders (Xiangya), Changsha 410011, China.
| |
Collapse
|
57
|
Wang M, Yang Y, Guo Y, Tan R, Sheng Y, Chui H, Chen P, Luo H, Ying Z, Li L, Zeng J, Zhao J. Xiaoxuming decoction cutting formula reduces LPS-stimulated inflammation in BV-2 cells by regulating miR-9-5p in microglia exosomes. Front Pharmacol 2023; 14:1183612. [PMID: 37266151 PMCID: PMC10229826 DOI: 10.3389/fphar.2023.1183612] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/04/2023] [Indexed: 06/03/2023] Open
Abstract
The Background: Stroke is one of the leading causes of morbidity and mortality, and the inflammatory mechanism plays a crucial role in stroke-related brain injury and post-ischemic tissue damage. Xiaoxuming decoction (XXMD) is the first prescription for the treatment of "zhongfeng" (a broad concept referring to stroke) in the Tang and Song Dynasties of China and has a significant position in the history of stroke treatment. Through the study of ancient medical records and modern clinical evidence, it is evident that XXMD has significant efficacy in the treatment of stroke and its sequelae, and its pharmacological mechanism may be related to post-stroke inflammation. However, XXMD contains 12 medicinal herbs with complex composition, and therefore, a simplified version of XXMD, called Xiaoxuming decoction cutting (XXMD-C), was derived based on the anti-inflammatory effects of the individual herbs. Therefore, it is necessary to explore and confirm the anti-inflammatory mechanism of XXMD-C. Aim of the study: Based on the previous experiments of our research group, it was found that both XXMD and XXMD-C have anti-inflammatory effects on LPS-induced microglia, and XXMD-C has a better anti-inflammatory effect. Since miRNAs in exosomes also participate in the occurrence and development of cardiovascular diseases, and traditional Chinese medicine can regulate exosomal miRNAs through intervention, this study aims to explore the anti-inflammatory mechanism of XXMD-C in the treatment of post-stroke inflammation through transcriptome sequencing, providing a basis for the application of XXMD-C. Materials and methods: XXMD-C was extracted using water and filtered through a 0.22 μm membrane filter. The main chemical components of the medicinal herbs in XXMD-C were rapidly qualitatively analyzed using ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). Cell viability was determined using the CCK-8 assay, and an LPS-induced BV-2 cell inflammation model was established. The expression of inflammatory cytokines was detected using ELISA and Western blot (WB). Extracellular vesicles were extracted using ultracentrifugation, and identified using transmission electron microscopy (TEM), nanoparticle tracking analysis, and WB. Differential miRNAs were screened using smallRNA-seq sequencing, and validated using RT-PCR and Western blot. Results: The UPLC-Q-TOF-MS analysis revealed that representative components including ephedrine, pseudoephedrine, cinnamaldehyde, baicalin, baicalein, wogonin, and ginsenoside Rg1 were detected in XXMD-C. The results of ELISA and WB assays showed that XXMD-C had a therapeutic effect on LPS-induced inflammation in BV-2 cells. TEM, nanoparticle tracking analysis, and WB results demonstrated the successful extraction of extracellular vesicles using high-speed centrifugation. Differential miRNA analysis by smallRNA-seq identified miR-9-5p, which was validated by RT-PCR and WB. Inhibition of miR-9-5p was found to downregulate the expression of inflammatory factors including IL-1β, IL-6, iNOS, and TNF-α. Conclusion: The study found that XXMD-C has anti-neuroinflammatory effects. Through smallRNA-seq sequencing of extracellular vesicles, miR-9-5p was identified as a key miRNA in the mechanism of XXMD-C for treating neuroinflammation, and its in vivo anti-inflammatory mechanism deserves further investigation.
Collapse
Affiliation(s)
- Menglei Wang
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
- College Pharmacy, Chengdu Medical College, Chengdu, China
| | - Yuting Yang
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Yanlei Guo
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Ruirong Tan
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Yanmei Sheng
- College Pharmacy, Chengdu Medical College, Chengdu, China
| | - Huawei Chui
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Ping Chen
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Hua Luo
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Zhujun Ying
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Li Li
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Jin Zeng
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Junning Zhao
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| |
Collapse
|
58
|
Soleymani T, Chen TY, Gonzalez-Kozlova E, Dogra N. The human neurosecretome: extracellular vesicles and particles (EVPs) of the brain for intercellular communication, therapy, and liquid-biopsy applications. Front Mol Biosci 2023; 10:1156821. [PMID: 37266331 PMCID: PMC10229797 DOI: 10.3389/fmolb.2023.1156821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/25/2023] [Indexed: 06/03/2023] Open
Abstract
Emerging evidence suggests that brain derived extracellular vesicles (EVs) and particles (EPs) can cross blood-brain barrier and mediate communication among neurons, astrocytes, microglial, and other cells of the central nervous system (CNS). Yet, a complete understanding of the molecular landscape and function of circulating EVs & EPs (EVPs) remain a major gap in knowledge. This is mainly due to the lack of technologies to isolate and separate all EVPs of heterogeneous dimensions and low buoyant density. In this review, we aim to provide a comprehensive understanding of the neurosecretome, including the extracellular vesicles that carry the molecular signature of the brain in both its microenvironment and the systemic circulation. We discuss the biogenesis of EVPs, their function, cell-to-cell communication, past and emerging isolation technologies, therapeutics, and liquid-biopsy applications. It is important to highlight that the landscape of EVPs is in a constant state of evolution; hence, we not only discuss the past literature and current landscape of the EVPs, but we also speculate as to how novel EVPs may contribute to the etiology of addiction, depression, psychiatric, neurodegenerative diseases, and aid in the real time monitoring of the "living brain". Overall, the neurosecretome is a concept we introduce here to embody the compendium of circulating particles of the brain for their function and disease pathogenesis. Finally, for the purpose of inclusion of all extracellular particles, we have used the term EVPs as defined by the International Society of Extracellular Vesicles (ISEV).
Collapse
Affiliation(s)
- Taliah Soleymani
- Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Tzu-Yi Chen
- Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Edgar Gonzalez-Kozlova
- Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Navneet Dogra
- Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
59
|
Smaniotto TÂ, Casaril AM, de Andrade Lourenço D, Sousa FS, Seixas FK, Collares T, Woloski R, da Silva Pinto L, Alves D, Savegnago L. Intranasal administration of interleukin-4 ameliorates depression-like behavior and biochemical alterations in mouse submitted to the chronic unpredictable mild stress: modulation of neuroinflammation and oxidative stress. Psychopharmacology (Berl) 2023; 240:935-950. [PMID: 36856802 DOI: 10.1007/s00213-023-06336-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 02/03/2023] [Indexed: 03/02/2023]
Abstract
Physical and psychological stress modulates the hypothalamic pituitary adrenal (HPA) axis, and the redox and inflammatory systems. Impairments in these systems have been extensively reported in major depression (MD) patients. Therefore, our study aimed to investigate the effects of the intranasal administration of interleukin-4 (IL-4) in mice with depressive-like behavior induced by chronic unpredictable mild stress (CUMS) for 28 days. On the 28th day, mice received IL-4 intranasally (1 ng/mouse) or vehicle (sterile saline), and after 30 min, they were submitted to behavioral tests or euthanasia for blood collection and removal of the adrenal glands, axillary lymph nodes, spleen, thymus, prefrontal cortices (PFC), and hippocampi (HC). A single administration of IL-4 reversed CUMS-induced depression-like behavior in the tail suspension test and splash test, without evoking locomotor changes. IL-4 administration reduced the plasma levels of corticosterone and the increased weight of suprarenal glands in stressed mice. Moreover, IL-4 restored the expression of nuclear factor erythroid 2-related factor 2 (NRF2), nuclear factor kappa B (NF-kB), interleukin 1 beta (IL-1β), IL-4, brain derived neurotrophic factor (BDNF), and indoleamine 2,3-dioxygenase (IDO) in the PFC and HC and modulated oxidative stress markers in these brain structures in stressed mice. Our results showed for the first time the antidepressant-like effect of IL-4 through the modulation of neuroinflammation and oxidative stress. The potential effect of IL-4 administered intranasally arises as an innovative strategy for MD treatment.
Collapse
Affiliation(s)
- Thiago Ângelo Smaniotto
- Technology Development Center, Division of Biotechnology, Neurobiotechnology Research Group, Federal University of Pelotas, Pelotas, RS, 96010900, Brazil
| | - Angela Maria Casaril
- Technology Development Center, Division of Biotechnology, Neurobiotechnology Research Group, Federal University of Pelotas, Pelotas, RS, 96010900, Brazil
| | - Darling de Andrade Lourenço
- Technology Development Center, Division of Biotechnology, Neurobiotechnology Research Group, Federal University of Pelotas, Pelotas, RS, 96010900, Brazil
| | - Fernanda S Sousa
- Technology Development Center, Division of Biotechnology, Cancer Biotechnology Laboratory, Federal University of Pelotas, Pelotas, RS, 96010900, Brazil
| | - Fabiana K Seixas
- Technology Development Center, Division of Biotechnology, Cancer Biotechnology Laboratory, Federal University of Pelotas, Pelotas, RS, 96010900, Brazil
| | - Tiago Collares
- Technology Development Center, Division of Biotechnology, Cancer Biotechnology Laboratory, Federal University of Pelotas, Pelotas, RS, 96010900, Brazil
| | - Rafael Woloski
- Technology Development Center, Division of Biotechnology, Bioinformatics and Proteomics Laboratory, Federal University of Pelotas, Pelotas, RS, 96010900, Brazil
| | - Luciano da Silva Pinto
- Technology Development Center, Division of Biotechnology, Bioinformatics and Proteomics Laboratory, Federal University of Pelotas, Pelotas, RS, 96010900, Brazil
| | - Diego Alves
- Center of Chemical, Pharmaceutical and Food Sciences, Laboratory of Clean Organic Synthesis, Federal University of Pelotas, Pelotas, RS, 96010900, Brazil
| | - Lucielli Savegnago
- Technology Development Center, Division of Biotechnology, Neurobiotechnology Research Group, Federal University of Pelotas, Pelotas, RS, 96010900, Brazil. .,Center of Chemical, Pharmaceutical and Food Sciences, Laboratory of Clean Organic Synthesis, Federal University of Pelotas, Pelotas, RS, 96010900, Brazil.
| |
Collapse
|
60
|
VanderZwaag J, Halvorson T, Dolhan K, Šimončičová E, Ben-Azu B, Tremblay MÈ. The Missing Piece? A Case for Microglia's Prominent Role in the Therapeutic Action of Anesthetics, Ketamine, and Psychedelics. Neurochem Res 2023; 48:1129-1166. [PMID: 36327017 DOI: 10.1007/s11064-022-03772-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 08/25/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
There is much excitement surrounding recent research of promising, mechanistically novel psychotherapeutics - psychedelic, anesthetic, and dissociative agents - as they have demonstrated surprising efficacy in treating central nervous system (CNS) disorders, such as mood disorders and addiction. However, the mechanisms by which these drugs provide such profound psychological benefits are still to be fully elucidated. Microglia, the CNS's resident innate immune cells, are emerging as a cellular target for psychiatric disorders because of their critical role in regulating neuroplasticity and the inflammatory environment of the brain. The following paper is a review of recent literature surrounding these neuropharmacological therapies and their demonstrated or hypothesized interactions with microglia. Through investigating the mechanism of action of psychedelics, such as psilocybin and lysergic acid diethylamide, ketamine, and propofol, we demonstrate a largely under-investigated role for microglia in much of the emerging research surrounding these pharmacological agents. Among others, we detail sigma-1 receptors, serotonergic and γ-aminobutyric acid signalling, and tryptophan metabolism as pathways through which these agents modulate microglial phagocytic activity and inflammatory mediator release, inducing their therapeutic effects. The current review includes a discussion on future directions in the field of microglial pharmacology and covers bidirectional implications of microglia and these novel pharmacological agents in aging and age-related disease, glial cell heterogeneity, and state-of-the-art methodologies in microglial research.
Collapse
Affiliation(s)
- Jared VanderZwaag
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Torin Halvorson
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Kira Dolhan
- Department of Psychology, University of Victoria, Vancouver, BC, Canada
- Department of Biology, University of Victoria, Vancouver, BC, Canada
| | - Eva Šimončičová
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Benneth Ben-Azu
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Marie-Ève Tremblay
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada.
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Département de médecine moléculaire, Université Laval, Québec City, QC, Canada.
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada.
- Neurology and Neurosurgery Department, McGill University, Montreal, QC, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
- Institute for Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
61
|
Liu H, Zhang X, Shi P, Yuan J, Jia Q, Pi C, Chen T, Xiong L, Chen J, Tang J, Yue R, Liu Z, Shen H, Zuo Y, Wei Y, Zhao L. α7 Nicotinic acetylcholine receptor: a key receptor in the cholinergic anti-inflammatory pathway exerting an antidepressant effect. J Neuroinflammation 2023; 20:84. [PMID: 36973813 PMCID: PMC10041767 DOI: 10.1186/s12974-023-02768-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/17/2023] [Indexed: 03/28/2023] Open
Abstract
Depression is a common mental illness, which is related to monoamine neurotransmitters and the dysfunction of the cholinergic, immune, glutamatergic, and neuroendocrine systems. The hypothesis of monoamine neurotransmitters is one of the commonly recognized pathogenic mechanisms of depression; however, the drugs designed based on this hypothesis have not achieved good clinical results. A recent study demonstrated that depression and inflammation were strongly correlated, and the activation of alpha7 nicotinic acetylcholine receptor (α7 nAChR)-mediated cholinergic anti-inflammatory pathway (CAP) in the cholinergic system exhibited good therapeutic effects against depression. Therefore, anti-inflammation might be a potential direction for the treatment of depression. Moreover, it is also necessary to further reveal the key role of inflammation and α7 nAChR in the pathogenesis of depression. This review focused on the correlations between inflammation and depression as well-discussed the crucial role of α7 nAChR in the CAP.
Collapse
Affiliation(s)
- Huiyang Liu
- grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000 People’s Republic of China
- grid.488387.8Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan People’s Republic of China
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- grid.488387.8Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Xiaomei Zhang
- grid.469520.c0000 0004 1757 8917Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, Institute of Medicinal Chemistry of Chinese Medicine, Chongqing Academy of Chinese Materia Medica, Chongqing, 400065 People’s Republic of China
| | - Peng Shi
- grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000 People’s Republic of China
- grid.488387.8Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan People’s Republic of China
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- grid.488387.8Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Jiyuan Yuan
- grid.488387.8Clinical Trial Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Qiang Jia
- grid.488387.8Ethics Committee Office, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Chao Pi
- grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000 People’s Republic of China
| | - Tao Chen
- grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000 People’s Republic of China
- grid.488387.8Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan People’s Republic of China
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- grid.488387.8Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Linjin Xiong
- grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000 People’s Republic of China
- grid.488387.8Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan People’s Republic of China
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- grid.488387.8Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Jinglin Chen
- grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000 People’s Republic of China
- grid.488387.8Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan People’s Republic of China
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- grid.488387.8Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Jia Tang
- grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000 People’s Republic of China
- grid.488387.8Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan People’s Republic of China
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- grid.488387.8Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Ruxu Yue
- grid.410578.f0000 0001 1114 4286Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000 People’s Republic of China
- grid.488387.8Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan People’s Republic of China
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- grid.488387.8Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Zerong Liu
- Central Nervous System Drug Key Laboratory of Sichuan Province, Sichuan Credit Pharmaceutical CO., Ltd., Luzhou, 646000 Sichuan China
- grid.190737.b0000 0001 0154 0904Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030 China
| | - Hongping Shen
- grid.488387.8Clinical Trial Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Ying Zuo
- grid.488387.8Department of Comprehensive Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan China
| | - Yumeng Wei
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Ling Zhao
- grid.488387.8Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou, 646000 Sichuan People’s Republic of China
- grid.410578.f0000 0001 1114 4286Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- grid.488387.8Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| |
Collapse
|
62
|
He Q, Wu KCH, Bennett AN, Fan B, Liu J, Huang R, Kong APS, Tian X, Kwok MKM, Chan KHK. Non-steroidal anti-inflammatory drug target gene associations with major depressive disorders: a Mendelian randomisation study integrating GWAS, eQTL and mQTL Data. THE PHARMACOGENOMICS JOURNAL 2023:10.1038/s41397-023-00302-1. [PMID: 36966195 PMCID: PMC10382318 DOI: 10.1038/s41397-023-00302-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 02/10/2023] [Accepted: 03/07/2023] [Indexed: 03/27/2023]
Abstract
Previous observational studies reported associations between non-steroidal anti-inflammatory drugs (NSAIDs) and major depressive disorder (MDD), however, these associations are often inconsistent and underlying biological mechanisms are still poorly understood. We conducted a two-sample Mendelian randomisation (MR) study to examine relationships between genetic variants and NSAID target gene expression or DNA methylation (DNAm) using publicly available expression, methylation quantitative trait loci (eQTL or mQTL) data and genetic variant-disease associations from genome-wide association studies (GWAS of MDD). We also assessed drug exposure using gene expression and DNAm levels of NSAID targets as proxies. Genetic variants were robustly adjusted for multiple comparisons related to gene expression, DNAm was used as MR instrumental variables and GWAS statistics of MDD as the outcome. A 1-standard deviation (SD) lower expression of NEU1 in blood was related to lower C-reactive protein (CRP) levels of -0.215 mg/L (95% confidence interval (CI): 0.128-0.426) and a decreased risk of MDD (odds ratio [OR] = 0.806; 95% CI: 0.735-0.885; p = 5.36 × 10-6). A concordant direction of association was also observed for NEU1 DNAm levels in blood and a risk of MDD (OR = 0.886; 95% CI: 0.836-0.939; p = 4.71 × 10-5). Further, the genetic variants associated with MDD were mediated by NEU1 expression via DNAm (β = -0.519; 95% CI: -0.717 to -0.320256; p = 3.16 × 10-7). We did not observe causal relationships between inflammatory genetic marker estimations and MDD risk. Yet, we identified a concordant association of NEU1 messenger RNA and an adverse direction of association of higher NEU1 DNAm with MDD risk. These results warrant increased pharmacovigilance and further in vivo or in vitro studies to investigate NEU1 inhibitors or supplements for MDD.
Collapse
Affiliation(s)
- Qian He
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Kevin Chun Hei Wu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Adam N Bennett
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Beifang Fan
- Department of Mental Health, Shenzhen Nanshan Centre for Chronic Disease Control, Shenzhen, China
| | - Jundong Liu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Ruixuan Huang
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Alice P S Kong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiaoyu Tian
- School of Biomedical Sciences and Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, China
- Heart and Vascular Institute and Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Man Ki Maggie Kwok
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kei Hang Katie Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China.
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, China.
- Department of Epidemiology, Centre for Global Cardiometabolic Health, Brown University, Providence, RI, USA.
| |
Collapse
|
63
|
Inhibition of Microglial Activation by Amitriptyline and Doxepin in Interferon-β Pre-Treated Astrocyte–Microglia Co-Culture Model of Inflammation. Brain Sci 2023; 13:brainsci13030493. [PMID: 36979303 PMCID: PMC10046476 DOI: 10.3390/brainsci13030493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Depression may occur in patients with multiple sclerosis, especially during interferon-β (IFN-β) treatment, and therapy with antidepressants may be necessary. Interactions of IFN-β with antidepressants concerning glia-mediated inflammation have not yet been studied. Primary rat co-cultures of astrocytes containing 5% (M5, consistent with “physiological” conditions) or 30% (M30, consistent with “pathological, inflammatory” conditions) of microglia were incubated with 10 ng/mL amitriptyline or doxepin for 2 h, or with 2000 U/mL IFN-β for 22 h. To investigate the effects of antidepressants on IFN-β treatment, amitriptyline or doxepin was added to IFN-β pre-treated co-cultures. An MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was performed to measure the glial cell viability, immunocytochemistry was performed to evaluate the microglial activation state, and ELISA was performed to measure pro-inflammatory TNF-α and IL-6 cytokine concentrations. Incubation of inflammatory astrocyte–microglia co-cultures with amitriptyline, doxepin or IFN-β alone, or co-incubation of IFN-β pre-treated co-cultures with both antidepressants, significantly reduced the extent of inflammation, with the inhibition of microglial activation. TNF-α and IL-6 levels were not affected. Accordingly, the two antidepressants did not interfere with the anti-inflammatory effect of IFN-β on astrocytes and microglia. Furthermore, no cytotoxic effects on glial cells were observed. This is the first in vitro study offering novel perspectives in IFN-β treatment and accompanying depression regarding glia.
Collapse
|
64
|
Therapeutic potential of natural molecules against Alzheimer's disease via SIRT1 modulation. Biomed Pharmacother 2023; 161:114474. [PMID: 36878051 DOI: 10.1016/j.biopha.2023.114474] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease mainly characterized by progressive cognitive dysfunction and memory impairment. Recent studies have shown that regulating silent information regulator 1 (SIRT1) expression has a significant neuroprotective effect, and SIRT1 may become a new therapeutic target for AD. Natural molecules are an important source of drug development for use in AD therapy and may regulate a wide range of biological events by regulating SIRT1 as well as other SIRT1-mediated signaling pathways. This review aims to summarize the correlation between SIRT1 and AD and to identify in vivo and in vitro studies investigating the anti-AD properties of natural molecules as modulators of SIRT1 and SIRT1-mediated signaling pathways. A literature search was conducted for studies published between January 2000 and October 2022 using various literature databases, including Web of Science, PubMed, Google Scholar, Science Direct, and EMBASE. Natural molecules, such as resveratrol, quercetin, icariin, bisdemethoxycurcumin, dihydromyricetin, salidroside, patchouli, sesamin, rhein, ligustilide, tetramethoxyflavanone, 1-theanine, schisandrin, curcumin, betaine, pterostilbene, ampelopsin, schisanhenol, and eriodictyol, have the potential to modulate SIRT1 and SIRT1 signaling pathways, thereby combating AD. The natural molecules modulating SIRT1 discussed in this review provide a potentially novel multi-mechanistic therapeutic strategy for AD. However, future clinical trials need to be conducted to further investigate their beneficial properties and to determine the safety and efficacy of SIRT1 natural activators against AD.
Collapse
|
65
|
Yan M, Tang L, Dai L, Lei C, Xiong M, Zhang X, He M, Tian Y, Xiong J, Ke W, Zhang Z, Zhang C, Deng X, Zhang Z. Cofilin promotes tau pathology in Alzheimer's disease. Cell Rep 2023; 42:112138. [PMID: 36807141 DOI: 10.1016/j.celrep.2023.112138] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/20/2022] [Accepted: 02/02/2023] [Indexed: 02/19/2023] Open
Abstract
The molecular mechanisms mediating the aggregation and transmission of tau in AD remain unclear. Here, we show that the actin-binding protein cofilin is cleaved by a cysteine protease asparagine endopeptidase (AEP) at N138 in the brains of patients with AD. The AEP-generated cofilin 1-138 fragment interacts with tau and promotes its aggregation. The mixed fibrils consisting of cofilin 1-138 and tau are more pathogenic to cells than pure tau fibrils. Furthermore, overexpression of cofilin 1-138 in the brain facilitates the propagation of pathological tau aggregates and promotes AD-like cognitive impairments in tau P301S mice. However, mice infected with adeno-associated viruses (AAVs) encoding an AEP-uncleavable cofilin mutant show attenuated tau pathology and cognitive impairments compared with mice injected with AAVs encoding wild-type cofilin. Together, these observations support the role of the cofilin 1-138 fragment in the aggregation and transmission of tau pathology during the onset and progression of AD.
Collapse
Affiliation(s)
- Mingmin Yan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Department of Neurology, Hubei No. 3 People's Hospital of Jianghan University, Wuhan 430060, China
| | - Li Tang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lijun Dai
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Chuntao Lei
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430060, China
| | - Min Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xingyu Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Mingyang He
- Hubei Provincial Institute for Food Supervision and Test, Wuhan 430060, China
| | - Ye Tian
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jing Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Wei Ke
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430060, China
| | - Xiaorong Deng
- Department of Neurology, Hubei No. 3 People's Hospital of Jianghan University, Wuhan 430060, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
66
|
Theoharides TC, Kempuraj D. Role of SARS-CoV-2 Spike-Protein-Induced Activation of Microglia and Mast Cells in the Pathogenesis of Neuro-COVID. Cells 2023; 12:688. [PMID: 36899824 PMCID: PMC10001285 DOI: 10.3390/cells12050688] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/07/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). About 45% of COVID-19 patients experience several symptoms a few months after the initial infection and develop post-acute sequelae of SARS-CoV-2 (PASC), referred to as "Long-COVID," characterized by persistent physical and mental fatigue. However, the exact pathogenetic mechanisms affecting the brain are still not well-understood. There is increasing evidence of neurovascular inflammation in the brain. However, the precise role of the neuroinflammatory response that contributes to the disease severity of COVID-19 and long COVID pathogenesis is not clearly understood. Here, we review the reports that the SARS-CoV-2 spike protein can cause blood-brain barrier (BBB) dysfunction and damage neurons either directly, or via activation of brain mast cells and microglia and the release of various neuroinflammatory molecules. Moreover, we provide recent evidence that the novel flavanol eriodictyol is particularly suited for development as an effective treatment alone or together with oleuropein and sulforaphane (ViralProtek®), all of which have potent anti-viral and anti-inflammatory actions.
Collapse
Affiliation(s)
- Theoharis C. Theoharides
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Duraisamy Kempuraj
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
67
|
Li D, Xie J, Wang L, Sun Y, Hu Y, Tian Y. Genetic susceptibility and lifestyle modify the association of long-term air pollution exposure on major depressive disorder: a prospective study in UK Biobank. BMC Med 2023; 21:67. [PMID: 36810050 PMCID: PMC9945634 DOI: 10.1186/s12916-023-02783-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 02/13/2023] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND Evidence linking air pollution to major depressive disorder (MDD) remains sparse and results are heterogeneous. In addition, the evidence about the interaction and joint associations of genetic risk and lifestyle with air pollution on incident MDD risk remains unclear. We aimed to examine the association of various air pollutants with the risk of incident MDD and assessed whether genetic susceptibility and lifestyle influence the associations. METHODS This population-based prospective cohort study analyzed data collected between March 2006 and October 2010 from 354,897 participants aged 37 to 73 years from the UK Biobank. Annual average concentrations of PM2.5, PM10, NO2, and NOx were estimated using a Land Use Regression model. A lifestyle score was determined based on a combination of smoking, alcohol drinking, physical activity, television viewing time, sleep duration, and diet. A polygenic risk score (PRS) was defined using 17 MDD-associated genetic loci. RESULTS During a median follow-up of 9.7 years (3,427,084 person-years), 14,710 incident MDD events were ascertained. PM2.5 (HR: 1.16, 95% CI: 1.07-1.26; per 5 μg/m3) and NOx (HR: 1.02, 95% CI: 1.01-1.05; per 20 μg/m3) were associated with increased risk of MDD. There was a significant interaction between the genetic susceptibility and air pollution for MDD (P-interaction < 0.05). Compared with participants with low genetic risk and low air pollution, those with high genetic risk and high PM2.5 exposure had the highest risk of incident MDD (PM2.5: HR: 1.34, 95% CI: 1.23-1.46). We also observed an interaction between PM2.5 exposure and unhealthy lifestyle (P-interaction < 0.05). Participants with the least healthy lifestyle and high air pollution exposures had the highest MDD risk when compared to those with the most healthy lifestyle and low air pollution (PM2.5: HR: 2.22, 95% CI: 1.92-2.58; PM10: HR: 2.09, 95% CI: 1.78-2.45; NO2: HR: 2.11, 95% CI: 1.82-2.46; NOx: HR: 2.28, 95% CI: 1.97-2.64). CONCLUSIONS Long-term exposure to air pollution is associated with MDD risk. Identifying individuals with high genetic risk and developing healthy lifestyle for reducing the harm of air pollution to public mental health.
Collapse
Affiliation(s)
- Dankang Li
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China.,Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China
| | - Junqing Xie
- Center for Statistics in Medicine, NDORMS, University of Oxford, The Botnar Research Centre, Oxford, UK
| | - Lulin Wang
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China.,Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yonghua Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No.38 Xueyuan Road, Beijing, 100191, China
| | - Yaohua Tian
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China. .,Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China.
| |
Collapse
|
68
|
Zhao T, Piao LH, Li DP, Xu SH, Wang SY, Yuan HB, Zhang CX. BDNF gene hydroxymethylation in hippocampus related to neuroinflammation-induced depression-like behaviors in mice. J Affect Disord 2023; 323:723-730. [PMID: 36529411 DOI: 10.1016/j.jad.2022.12.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/31/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Neuroinflammation is a multifactorial condition related to glial cells and neurons activation, and it is implicated in CNS disorders including depression. BDNF is a crucial molecule that related to the pathology of depression, and it is the target of DNA methylation. DNA hydroxymethylation, an active demethylation process can convert 5-mC to 5-hmC by Tets catalyzation to regulate gene transcription. The regulatory function for BDNF gene in response to neuroinflammation remains poorly understood. METHODS Neuroinflammation and depressive-like behaviors were induced by lipopolysaccharide (LPS) administration in mice. The microglial activation and cellular 5-hmC localization in the hippocampus were confirmed by immunostaining. The transcripts of Tets and BDNF were examined by qPCR method. The global 5-hmC levels and enrichment of 5-hmC in BDNF gene in the hippocampus were analyzed using dot bolt and hMeDIP-sequencing analysis. RESULTS LPS administration induced a spectrum of depression-like behaviors (including behavioral despair and anhedonia) and increased expression of Iba-1, a marker for microglia activation, in hippocampus, demonstrating that LPS treatment cloud provide stable model of neuroinflammation with depressive-like behaviors as expected. Our results showed that Tet1, Tet2 and Tet3 mRNA expressions and consequent global 5-hmC levels were significantly decreased in the hippocampus of LPS group compared to saline group. We also demonstrated that 5-hmC fluorescence in the hippocampus located in excitatory neurons identified by CaMK II immunostaining. Furthermore, we demonstrated that the enrichment of 5-hmC in BDNF gene was decreased and corresponding BDNF mRNA was down-regulated in the hippocampus in LPS group compared to saline group. CONCLUSION Neuroinflammation-triggered aberrant BDNF gene hydroxymethylation in the hippocampus is an important epigenetic element that relates with depression-like behaviors.
Collapse
Affiliation(s)
- Te Zhao
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Lian-Hua Piao
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Dan-Ping Li
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Shi-Han Xu
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Shu-Yi Wang
- The Second Bethune Clinical Medical College of Jilin University, Changchun, Jilin 130021, China
| | - Hai-Bo Yuan
- Department of Respiratory Medicine & Sleep Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| | - Chun-Xiao Zhang
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
69
|
Review of Technological Challenges in Personalised Medicine and Early Diagnosis of Neurodegenerative Disorders. Int J Mol Sci 2023; 24:ijms24043321. [PMID: 36834733 PMCID: PMC9968142 DOI: 10.3390/ijms24043321] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Neurodegenerative disorders are characterised by progressive neuron loss in specific brain areas. The most common are Alzheimer's disease and Parkinson's disease; in both cases, diagnosis is based on clinical tests with limited capability to discriminate between similar neurodegenerative disorders and detect the early stages of the disease. It is common that by the time a patient is diagnosed with the disease, the level of neurodegeneration is already severe. Thus, it is critical to find new diagnostic methods that allow earlier and more accurate disease detection. This study reviews the methods available for the clinical diagnosis of neurodegenerative diseases and potentially interesting new technologies. Neuroimaging techniques are the most widely used in clinical practice, and new techniques such as magnetic resonance imaging (MRI) and positron emission tomography (PET) have significantly improved the diagnosis quality. Identifying biomarkers in peripheral samples such as blood or cerebrospinal fluid is a major focus of the current research on neurodegenerative diseases. The discovery of good markers could allow preventive screening to identify early or asymptomatic stages of the neurodegenerative process. These methods, in combination with artificial intelligence, could contribute to the generation of predictive models that will help clinicians in the early diagnosis, stratification, and prognostic assessment of patients, leading to improvements in patient treatment and quality of life.
Collapse
|
70
|
Therapeutic treatment with fluoxetine using the chronic unpredictable stress model induces changes in neurotransmitters and circulating miRNAs in extracellular vesicles. Heliyon 2023; 9:e13442. [PMID: 36852042 PMCID: PMC9958461 DOI: 10.1016/j.heliyon.2023.e13442] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/10/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
The most widely prescribed antidepressant, fluoxetine (FLX), is known for its antioxidant and anti-inflammatory effects when administered post-stress. Few studies have evaluated the effects of FLX treatment when chronic stress has induced deleterious effects in patients. Our objective was to evaluate FLX treatment (20 mg/kg/day, i.v.) once these effects are manifested, and the drug's relation to extracellular circulating microRNAs associated with inflammation, a hedonic response (sucrose intake), the forced swim test (FST), and corticosterone levels (CORT) and monoamine concentrations in limbic areas. A group of Wistar rats was divided into groups: Control; FLX; CUMS (for six weeks of exposure to chronic, unpredictable mild stress); and CUMS + FLX, a mixed group. After CUMS, the rats performed the FST, and serum levels of CORT and six microRNAs (miR-16, -21, -144, -155, -146a, -223) were analyzed, as were levels of dopamine, noradrenaline, and serotonin in the prefrontal cortex, hippocampus, and hypothalamus. CUMS reduced body weight, sucrose intake, and hippocampal noradrenaline levels, but increased CORT, immobility behavior on the FST, dopamine concentrations in the prefrontal cortex, and all miRNAs except miR-146a expression. Administering FLX during CUMS reduced CORT levels and immobility behavior on the FST and increased the expression of miR-16, -21, -146a, -223, and dopamine. FLX protects against the deleterious effects of stress by reducing CORT and has an antidepressant effect on the FST, with minimally-modified neurotransmitter levels. FLX increased the expression of miRNAs as part of the antidepressant effect. It also regulates both neuroinflammation and serotoninergic neurotransmission through miRNAs, such as the miR-16.
Collapse
|
71
|
Maurya SK, Gupta S, Mishra R. Transcriptional and epigenetic regulation of microglia in maintenance of brain homeostasis and neurodegeneration. Front Mol Neurosci 2023; 15:1072046. [PMID: 36698776 PMCID: PMC9870594 DOI: 10.3389/fnmol.2022.1072046] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/15/2022] [Indexed: 01/12/2023] Open
Abstract
The emerging role of microglia in brain homeostasis, neurodegeneration, and neurodevelopmental disorders has attracted considerable interest. In addition, recent developments in microglial functions and associated pathways have shed new light on their fundamental role in the immunological surveillance of the brain. Understanding the interconnections between microglia, neurons, and non-neuronal cells have opened up additional avenues for research in this evolving field. Furthermore, the study of microglia at the transcriptional and epigenetic levels has enhanced our knowledge of these native brain immune cells. Moreover, exploring various facets of microglia biology will facilitate the early detection, treatment, and management of neurological disorders. Consequently, the present review aimed to provide comprehensive insight on microglia biology and its influence on brain development, homeostasis, management of disease, and highlights microglia as potential therapeutic targets in neurodegenerative and neurodevelopmental diseases.
Collapse
Affiliation(s)
- Shashank Kumar Maurya
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, India,*Correspondence: Shashank Kumar Maurya, ;
| | - Suchi Gupta
- Tech Cell Innovations Private Limited, Centre for Medical Innovation and Entrepreneurship (CMIE), All India Institute of Medical Sciences, New Delhi, India
| | - Rajnikant Mishra
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, India
| |
Collapse
|
72
|
Lu R, Zhang L, Wang H, Li M, Feng W, Zheng X. Echinacoside exerts antidepressant-like effects through enhancing BDNF-CREB pathway and inhibiting neuroinflammation via regulating microglia M1/M2 polarization and JAK1/STAT3 pathway. Front Pharmacol 2023; 13:993483. [PMID: 36686689 PMCID: PMC9846169 DOI: 10.3389/fphar.2022.993483] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/15/2022] [Indexed: 01/05/2023] Open
Abstract
The present study was performed to investigate the antidepressant effect of echinacoside (ECH) using chronic unpredictable mild stress (CUMS) induced depression mice and lipopolysaccharide (LPS)-stimulated N9 microglial cells. CUMS treatment was performed on C57BL/6 mice for 28 days, followed by gavaging with different doses of echinacoside (15 and 60 mg/kg) for 21 consecutive days. Sucrose preference test (SPT), open field test (OFT), tail suspension test (TST), and forced swimming test (FST) were measured to assess the effects of echinacoside on CUMS-Induced Depressive-Like Behaviors. After that, the pathological changes of hippocampus were determined by Hematoxylin and eosin (HE) staining and Nissl staining; the neurotransmitters, pro-inflammatory cytokines and indoleamine 2,3-dioxygenase (IDO) levels, and the hypothalamic-pituitary-adrenal (HPA) axis activity were determined by enzyme linked immunosorbent assay (ELISA); Iba 1were evaluated by Immunofluorescence assay; Key protein expression levels of CREB/BDNF signal pathway were measured by western blotting. Subsequently, N9 cells were stimulated with 1 μg/ml LPS to induce N9 microglia activation, and were treated with 5-20 μM of echinacoside for 24 h. After that, the levels of NO, interleukin (IL)-1β, IL-6, tumor necrosis factor alpha (TNF-α), IL-4, IL-10, and transforming growth factor beta (TGF-β) in N9 cell culture supernatants were measured by enzyme-linked immunosorbent assay (ELISA) kits; morphology and Iba 1 expression level were observed by high-content screening assay; the M1 markers of CD11b, CD86 and M2 markers of CD206 were analyzed by imaging flow cytometry. Results show that treatment with echinacoside reversed CUMS-increased immobility time in OFT, TST, FST and reversed CUMS-reduced sucrose preference in SPT. In addition, echinacoside reduced the levels of pro-inflammatory cytokines and Iba 1. Moreover, echinacoside significantly increased p-CREB/CREB ratio and BDNF level in hippocampus. Furthermore, echinacoside reduced the secretion of inflammatory factors and inhibited microglia M1 polarization in N9 cells. In conclusion, echinacoside may be beneficial for the treatment of depression diseases through regulating the microglia balance by inhibiting the polarization of microglia to M1 phenotype, and improving hippocampal neurogenesis by the CREB-BDNF signaling pathway.
Collapse
Affiliation(s)
- Renrui Lu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Li Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Huihui Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Meng Li
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Weisheng Feng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China,*Correspondence: Weisheng Feng, ; Xiaoke Zheng,
| | - Xiaoke Zheng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China,*Correspondence: Weisheng Feng, ; Xiaoke Zheng,
| |
Collapse
|
73
|
Intranasal interferon-beta alleviates anxiety and depressive-like behaviors by modulating microglia polarization in an Alzheimer's disease model. Neurosci Lett 2023; 792:136968. [PMID: 36396023 DOI: 10.1016/j.neulet.2022.136968] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/30/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
Alzheimer's disease (AD) patients frequently experience neuropsychiatric symptoms (NPS), which are linked to a lower quality of life and a faster rate of disease progression. A growing body of research indicates that several microglial phenotypes control the inflammatory response and are crucial in the pathophysiology of AD-related NPS. Given the crucial role played by inflammatory mediators produced by microglia in developing of NPS, interferon-beta (IFNβ), a cytokine with anti-inflammatory capabilities, maybe a successful treatment for NPS caused by AD. In this investigation, using a rat model of AD, we examined the impact of intranasal treatment of IFNβ on anxious/depressive-like behavior and microglial M1/M2 polarization. The rat hippocampus was bilaterally injected with lentiviruses harboring mutant human amyloid precursor protein. Rats were given recombinant IFNβ1a (68,000 IU/rat) via the intranasal route, starting on day 23 following viral infection and continuing until day 49. On days 47-49, the elevated plus maze, forced swim, and tail suspension tests were applied to measure anxiety- and depressive-like behavior. Additionally, qPCR was utilized to quantify the expression of M1 markers (CD68, CD86, and CD40) and M2 markers (Ym1, CD206, Arg1, GDNF, BDNF, and SOCS1). Our findings demonstrated that decreased M2 marker expression is accompanied by anxious/depressive-like behavior when the mutant human APP gene is overexpressed in the hippocampus. In the rat model of AD, IFNβ therapy reduces anxious/depressive-like behaviors, at least in part by polarizing microglia towards M2. Therefore, IFNβ may be a viable therapeutic drug for reducing NPS in the context of AD.
Collapse
|
74
|
Safari H, Mashayekhan S. Inflammation and Mental Health Disorders: Immunomodulation as a Potential Therapy for Psychiatric Conditions. Curr Pharm Des 2023; 29:2841-2852. [PMID: 37946352 DOI: 10.2174/0113816128251883231031054700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 09/22/2023] [Indexed: 11/12/2023]
Abstract
Mood disorders are the leading cause of disability worldwide and their incidence has significantly increased after the COVID-19 pandemic. Despite the continuous surge in the number of people diagnosed with psychiatric disorders, the treatment methods for these conditions remain limited. A significant number of people either do not respond to therapy or discontinue the drugs due to their severe side effects. Therefore, alternative therapeutic interventions are needed. Previous studies have shown a correlation between immunological alterations and the occurrence of mental health disorders, yet immunomodulatory therapies have been barely investigated for combating psychiatric conditions. In this article, we have reviewed the immunological alterations that occur during the onset of mental health disorders, including microglial activation, an increased number of circulating innate immune cells, reduced activity of natural killer cells, altered T cell morphology and functionality, and an increased secretion of pro-inflammatory cytokines. This article also examines key studies that demonstrate the therapeutic efficacy of anti-inflammatory medications in mental health disorders. These studies suggest that immunomodulation can potentially be used as a complementary therapy for controlling psychiatric conditions after careful screening of candidate drugs and consideration of their efficacy and side effects in clinical trials.
Collapse
Affiliation(s)
- Hanieh Safari
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Shohreh Mashayekhan
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
75
|
Kong L, Zhang D, Huang S, Lai J, Lu L, Zhang J, Hu S. Extracellular Vesicles in Mental Disorders: A State-of-art Review. Int J Biol Sci 2023; 19:1094-1109. [PMID: 36923936 PMCID: PMC10008693 DOI: 10.7150/ijbs.79666] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/26/2023] [Indexed: 03/13/2023] Open
Abstract
Extracellular vesicles (EVs) are nanoscale particles with various physiological functions including mediating cellular communication in the central nervous system (CNS), which indicates a linkage between these particles and mental disorders such as schizophrenia, bipolar disorder, major depressive disorder, etc. To date, known characteristics of mental disorders are mainly neuroinflammation and dysfunctions of homeostasis in the CNS, and EVs are proven to be able to regulate these pathological processes. In addition, studies have found that some cargo of EVs, especially miRNAs, were significantly up- or down-regulated in patients with mental disorders. For many years, interest has been generated in exploring new diagnostic and therapeutic methods for mental disorders, but scale assessment and routine drug intervention are still the first-line applications so far. Therefore, underlying the downstream functions of EVs and their cargo may help uncover the pathogenetic mechanisms of mental disorders as well as provide novel biomarkers and therapeutic candidates. This review aims to address the connection between EVs and mental disorders, and discuss the current strategies that focus on EVs-related psychiatric detection and therapy.
Collapse
Affiliation(s)
- Lingzhuo Kong
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Danhua Zhang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shu Huang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jianbo Lai
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou 310003, China.,Brain Research Institute of Zhejiang University, Hangzhou 310003, China.,Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou 310003, China.,Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, and MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit (No.2018RU006), Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Jing Zhang
- Department of Pathology, First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China.,National Health and Disease Human Brain Tissue Resource Center, Zhejiang University, Zhejiang, China
| | - Shaohua Hu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou 310003, China.,Brain Research Institute of Zhejiang University, Hangzhou 310003, China.,Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou 310003, China.,Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, and MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
76
|
Antibiotic use and the development of depression: A systematic review. J Psychosom Res 2023; 164:111113. [PMID: 36502554 DOI: 10.1016/j.jpsychores.2022.111113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Increasingly, disruption of the gastrointestinal ecosystem is thought to be involved in the pathogenesis of several medical conditions, including depression. Antibiotics can induce substantial changes in the gastrointestinal microbiota and several lines of evidence suggest that antibiotics exposure may increase the risk of developing depression. This systematic review examined this potential association. METHODS PubMed, Ovid EMBASE, CINAHL, and PsychINFO databases, as well as unpublished resources, were searched for studies in humans published from 2000 onwards. The studies needed to consider the connection between antibiotic exposure (either alone or in combination with other antibiotics and medications) and the development of depressive symptoms and/or disorders (in isolation to other psychological conditions). RESULTS Nine studies met the eligibility criteria. All were observational in nature. The studies were conducted in different age groups with various indications for receiving antibiotics. Together, these relatively low-quality studies suggest a potential association between antibiotic exposure and subsequent development of depression symptoms. Specifically, studies from the United Kingdom and Sweden indicate that the risk of depression is increased by at least 20%, with the former (over 1 million participants) reporting an increased risk with the number of courses and agents used, that persists with a slow decline over the ten years following exposure. CONCLUSIONS The inherent limitations associated with the studies' methodologies make a reliable conclusion difficult. While the risk of antimicrobial resistance may prohibit large randomised clinical trials in healthy individuals, future placebo-controlled trials with antibiotics-based protocols (e.g. for acne) should explore their effect on mental health.
Collapse
|
77
|
Lyu Q, Zhou X, Shi LQ, Chen HY, Lu M, Ma XD, Ren L. Exosomes may be the carrier of acupuncture treatment for major depressive disorder. Front Behav Neurosci 2023; 17:1107265. [PMID: 36873772 PMCID: PMC9978012 DOI: 10.3389/fnbeh.2023.1107265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
The incidence of major depressive disorder (MDD) is increasing all over the world. There is a great need for complementary or alternative therapies with high safety, few side effects, and precise efficacy to care for MDD. In China, acupuncture has significant laboratory data and clinical trials to demonstrate its antidepressant efficacy. However, there is no clear answer as to how it works. Exosomes are membranous vesicles that rely on cellular multivesicular bodies (MVBs) fused to the cell membrane for release into the extracellular matrix. Almost all cell types are capable of producing and releasing exosomes. As a result, exosomes contain complex RNAs and proteins from their relatives (Cells that secretes exosomes). They can cross biological barriers and participate in biological activities, such as cell migration, angiogenesis, and immune regulation. These properties have made them a popular research topic. Some experts have suggested that exosomes may serve as delivery vehicles for acupuncture to work. This presents both an opportunity and a new challenge for improving the protocols of acupuncture as a treatment for MDD. To better define the relationship between MDD, exosomes, and acupuncture, we reviewed the literature from the last few years. Inclusion criteria included randomized controlled trials and basic trials evaluating acupuncture in the treatment or prevention of MDD, the role of exosomes in the development and progression of MDD, and the role of exosomes in acupuncture. We believe that acupuncture may affect the distribution of exosomes in vivo, and exosomes may be a new carrier for acupuncture treatment of MDD in the future.
Collapse
Affiliation(s)
- Qin Lyu
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Xin Zhou
- Department of Acupuncture and Moxibustion, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Liu-Qing Shi
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Hai-Yang Chen
- Department of Acupuncture and Moxibustion, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Mei Lu
- Department of Acupuncture and Moxibustion, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Xian-De Ma
- Teaching and Experiment Center, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Lu Ren
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
78
|
Larosa A, Wong TP. The hippocampus in stress susceptibility and resilience: Reviewing molecular and functional markers. Prog Neuropsychopharmacol Biol Psychiatry 2022; 119:110601. [PMID: 35842073 DOI: 10.1016/j.pnpbp.2022.110601] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/22/2022] [Accepted: 07/10/2022] [Indexed: 10/17/2022]
Abstract
Understanding the individual variability that comes with the likelihood of developing stress-related psychopathologies is of paramount importance when addressing mechanisms of their neurobiology. This article focuses on the hippocampus as a region that is highly influenced by chronic stress exposure and that has strong ties to the development of related disorders, such as depression and post-traumatic stress disorder. We first outline three commonly used animal models that have been used to separate animals into susceptible and resilient cohorts. Next, we review molecular and functional hippocampal markers of susceptibility and resilience. We propose that the hippocampus plays a crucial role in the differences in the processing and storage of stress-related information in animals with different stress susceptibilities. These hippocampal markers not only help us attain a more comprehensive understanding of the various facets of stress-related pathophysiology, but also could be targeted for the development of new treatments.
Collapse
Affiliation(s)
- Amanda Larosa
- Neuroscience Division, Douglas Research Centre, Montreal, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Tak Pan Wong
- Neuroscience Division, Douglas Research Centre, Montreal, QC, Canada; Dept. of Psychiatry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
79
|
Song JJ, Li H, Wang N, Zhou XY, Liu Y, Zhang Z, Feng Q, Chen YL, Liu D, Liang J, Ma XY, Wen XR, Fu YY. Gastrodin ameliorates the lipopolysaccharide-induced neuroinflammation in mice by downregulating miR-107-3p. Front Pharmacol 2022; 13:1044375. [PMID: 36569291 PMCID: PMC9773390 DOI: 10.3389/fphar.2022.1044375] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Background: Neuroinflammation plays a pivotal role in the pathogenesis of Central Nervous System (CNS) diseases. The phenolic glucoside gastrodin (GAS), has been known to treat CNS disorders by exerting anti-inflammatory activities. Our aim was to investigate the potential neuroprotective mechanisms of GAS on lipopolysaccharide (LPS)-induced mice. Methods: Male C57BL/6J mice were treated by LPS, before which GAS was adminisrated. The behavior tests such as forced swim test, tail suspension test, and elevated plus maze were performed to evaluate depressive-anxiety-like behaviors. A high-throughput sequencing (HTS) analysis was performed to screen out distinctive miRNAs which were validated using quantitative real-time PCR. Then, miRNA agomir or NC was injected stereotaxically into hippocampus of mice to explore the role of miRNA on GAS in response to LPS. Furthermore, Immunofluorescence and the hematoxylin and eosin (H&E) staining were employed to observe the cellular morphology. The protein levels of pro-inflammatory factors were evaluated by western blot. Finally, the target mRNA of miRNA was predicted using bioinformatics analysis. GO and KEGG enrichment analyses were conducted to clarify the potential function of target protein, which were visualized by bubble charts. Results: The behavioral data showed that mice in the LPS group had obvious depressive-anxiety-like behaviors, and 100 mg/kg GAS could improve these behavioral changes and alleviate the levels of pro-inflammatory cytokines in the hippocampus when mice were exposed to LPS for 6 h. Meanwhile, LPS-induced microglia and astrocyte activation in the CA1, CA2, CA3, and DG regions of the hippocampus were also reversed by GAS. Furthermore, miR-107-3p were screened out and verified for GAS in response to LPS. Importantly, miR-107-3p overexpression negatively abrogated the neuroprotective effects of GAS. Moreover, KPNA1 might be the target molecular of miR-107-3p. KPNA1 might regulate 12 neuroinflammation-related genes, which were mainly involved in cytokine-mediated signaling pathway. Conclusion: These results suggested that GAS might alleviate the LPS-induced neuroinflammation and depressive-anxiety-like behaviors in mice by downregulating miR-107-3p and upregulating the downstream target KPNA1. The indicates miR-107-3p may provide a new strategy for the treatment of CNS diseases.
Collapse
Affiliation(s)
- Jin-Jin Song
- Department of Genetics, Key Laboratory of Genetic Foundation and Clinical Application, Xuzhou Engineering Research Center of Medical Genetics and Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China,Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Hui Li
- Department of Genetics, Key Laboratory of Genetic Foundation and Clinical Application, Xuzhou Engineering Research Center of Medical Genetics and Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Nan Wang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Xiao-Yan Zhou
- Department of Genetics, Key Laboratory of Genetic Foundation and Clinical Application, Xuzhou Engineering Research Center of Medical Genetics and Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China,Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Yan Liu
- Department of Genetics, Key Laboratory of Genetic Foundation and Clinical Application, Xuzhou Engineering Research Center of Medical Genetics and Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China,Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Zhen Zhang
- Department of Genetics, Key Laboratory of Genetic Foundation and Clinical Application, Xuzhou Engineering Research Center of Medical Genetics and Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qian Feng
- Department of Genetics, Key Laboratory of Genetic Foundation and Clinical Application, Xuzhou Engineering Research Center of Medical Genetics and Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China,Clinical Laboratory, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yu-Ling Chen
- Department of Genetics, Key Laboratory of Genetic Foundation and Clinical Application, Xuzhou Engineering Research Center of Medical Genetics and Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dan Liu
- Department of Genetics, Key Laboratory of Genetic Foundation and Clinical Application, Xuzhou Engineering Research Center of Medical Genetics and Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jia Liang
- Department of Genetics, Key Laboratory of Genetic Foundation and Clinical Application, Xuzhou Engineering Research Center of Medical Genetics and Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiang-Yu Ma
- Department of Genetics, Key Laboratory of Genetic Foundation and Clinical Application, Xuzhou Engineering Research Center of Medical Genetics and Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiang-Ru Wen
- College of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China,*Correspondence: Xiang-Ru Wen, ; Yan-Yan Fu,
| | - Yan-Yan Fu
- Department of Genetics, Key Laboratory of Genetic Foundation and Clinical Application, Xuzhou Engineering Research Center of Medical Genetics and Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China,Department of Cell Biology and Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, China,*Correspondence: Xiang-Ru Wen, ; Yan-Yan Fu,
| |
Collapse
|
80
|
Wang Y, Liu YJ, Zhang MM, Zhou H, Gao YH, Cheng WJ, Ye ZW, Yuan ZY, Xu GH, Li CF, Yi LT. CY-09 Alleviates the Depression-like Behaviors via Inhibiting NLRP3 Inflammasome-Mediated Neuroinflammation in Lipopolysaccharide-Induced Mice. ACS Chem Neurosci 2022; 13:3291-3302. [PMID: 36399525 DOI: 10.1021/acschemneuro.2c00348] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Depression is a serious mental illness, mainly characterized as large mood swings and sleep, diet, and cognitive function disorders. NLPR3, one of the inflammasomes that can be activated by a variety of stimuli to promote the maturation and secretion of pro-inflammatory cytokines, has been considered to be involved in the pathophysiology of depression. In this study, the putative role of CY-09, a selective and direct inhibitor of NLRP3, was evaluated in the lipopolysaccharide (LPS)-induced mice. The results of the study indicated that CY-09 significantly decreased the levels of NLRP3 in the hippocampus of LPS-induced mice. In addition, CY-09 increased the sucrose preference and shortened the immobility time in LPS-induced mice, suggesting the antidepressant-like effects of inhibiting NLRP3 inflammasome. Biochemical analysis showed that LPS significantly activated the NLRP3/ASC/cytokine signaling pathway and caused microglial activation, while CY-09 prevented the changes. Moreover, CY-09 increased the brain-derived neurotrophic factor (BDNF) only in microglia but not in the whole hippocampus. Meanwhile, CY-09 did not promote neurogenesis in the hippocampus of LPS mice. In conclusion, the results of the study showed that the antidepressant-like effects of NLRP3 inhibitor CY-09 were mediated by alleviating neuroinflammation in microglia and independent of the neurotrophic function in the hippocampus.
Collapse
Affiliation(s)
- Yu Wang
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Yi-Jie Liu
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Man-Man Zhang
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Han Zhou
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Yi-Han Gao
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Wen-Jing Cheng
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Zi-Wei Ye
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Zhong-Yu Yuan
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Guang-Hui Xu
- Xiamen Medicine Research Institute, Xiamen 361008, Fujian Province, PR China
| | - Cheng-Fu Li
- Xiamen Hospital of Traditional Chinese Medicine, Xiamen 361009, Fujian Province, PR China
| | - Li-Tao Yi
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China.,Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China.,Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, PR China
| |
Collapse
|
81
|
Li Z, Wang Q, Zhang Z, Zhang X, Wu X, Li L, Zhang Y, Yu Y. A20, as a downstream factor of Nrf2, is involved in the anti-neuroinflammatory and antidepressant-like effects of luteolin. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
82
|
Chauhan S, Behl T, Sehgal A, Singh S, Sharma N, Gupta S, Albratty M, Najmi A, Meraya AM, Alhazmi HA. Understanding the Intricate Role of Exosomes in Pathogenesis of Alzheimer's Disease. Neurotox Res 2022; 40:1758-1773. [PMID: 36564606 DOI: 10.1007/s12640-022-00621-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease causes loss of memory and deterioration of mental abilities is utmost predominant neurodegenerative disease accounting 70-80% cases of dementia. The appearance of plaques of amyloid-β and neurofibrillary tangles in the brain post-mortems of Alzheimer's patients established them as key participants in the etiology of Alzheimer's disease. Exosomes exist as extracellular vesicles of nano-size which are present throughout the body. Exosomes are known to spread toxic hyperphosphorylated tau and amyloid-β between the cells and are linked to the loss of neurons by inducing apoptosis. Exosomes have progressed from cell trashcans to multifunctional organelles which are involved in various functions like internalisation and transmission of macromolecules such as lipids, proteins, and nucleic acids. This review covers current findings on relationship of exosomes in biogenesis and angiogenesis of Alzheimer's disease and functions of exosomes in the etiology of AD. Furthermore, the roles of exosomes in development, diagnosis, treatment, and its importance as therapeutic targets and biomarkers for Alzheimer's disease have also been highlighted.
Collapse
Affiliation(s)
- Simran Chauhan
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Tapan Behl
- School of Health Sciences, University of Petroleum and Energy Studies, Uttarakhand, Dehradun, 248007, India.
| | - Aayush Sehgal
- GHG Khalsa College of Pharmacy, Sadhar, Ludhiana, Punjab, Gurusar, 141104, India
| | - Sukhbir Singh
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Haryana, Mullana-Ambala, 133207, India.
| | - Neelam Sharma
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Haryana, Mullana-Ambala, 133207, India
| | - Sumeet Gupta
- Department of Pharmacology, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Haryana, Mullana-Ambala, 133207, India
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| | - Abdulkarim M Meraya
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, Jazan Uniersity, Jazan, 45124, Saudi Arabia
| | - Hassan A Alhazmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jzan University, Jazan, 45142, Saudi Arabia
- Substance Abuse and Toxicology Research Centre, Jzan University, Jazan, 45142, Saudi Arabia
| |
Collapse
|
83
|
Joseph J, Rahmani B, Cole Y, Puttagunta N, Lin E, Khan ZK, Jain P. Can Soluble Immune Checkpoint Molecules on Exosomes Mediate Inflammation? J Neuroimmune Pharmacol 2022; 17:381-397. [PMID: 34697721 PMCID: PMC10128092 DOI: 10.1007/s11481-021-10018-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/25/2021] [Indexed: 01/13/2023]
Abstract
Immune checkpoints (ICPs) are major co-signaling pathways that trigger effector functions in immune cells, with isoforms that are either membrane bound, engaging in direct cell to cell activation locally, or soluble, acting at distant sites by circulating freely or potentially via extracellular vesicles (EVs). Exosomes are small EVs secreted by a variety of cells carrying various proteins and nucleic acids. They are distributed extensively through biological fluids and have major impacts on infectious diseases, cancer, and neuroinflammation. Similarly, ICPs play key roles in a variety of disease conditions and have been extensively utilized as a prognostic tool for various cancers. Herein, we explored if the association between exosomes and ICPs could be a significant contributor of inflammation, particularly in the setting of cancer, neuroinflammation and viral infections, wherein the up regulation in both exosomal proteins and ICPs correlate with immunosuppressive effects. The detailed literature review of existing data highlights the significance and complexity of these two important pathways in mediating cancer and potentiating neuroinflammation via modulating overall immune response. Cells increasingly secret exosomes in response to intracellular signals from invading pathogens or cancerous transformations. These exosomes can carry a variety of cargo including proteins, nucleic acids, cytokines, and receptors/ligands that have functional consequences on recipient cells. Illustration generated using BioRender software.
Collapse
Affiliation(s)
- Julie Joseph
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, PA, 19129, USA
| | - Benjamin Rahmani
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, PA, 19129, USA
| | - Yonesha Cole
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, PA, 19129, USA
| | - Neha Puttagunta
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, PA, 19129, USA
| | - Edward Lin
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, PA, 19129, USA
| | - Zafar K Khan
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, PA, 19129, USA
| | - Pooja Jain
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, PA, 19129, USA. .,Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, PA, 19129, USA.
| |
Collapse
|
84
|
Song X, Li Y, Guo R, Yu Q, Liu S, Teng Q, Chen ZR, Xie J, Gong S, Liu K. Cochlear resident macrophage mediates development of ribbon synapses via CX3CR1/CX3CL1 axis. Front Mol Neurosci 2022; 15:1031278. [PMID: 36518186 PMCID: PMC9742371 DOI: 10.3389/fnmol.2022.1031278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/31/2022] [Indexed: 08/11/2023] Open
Abstract
Cochlear ribbon synapses formed between spiral ganglion neurons and inner hair cells in postnatal mice must undergo significant morphological and functional development to reach auditory maturation. However, the mechanisms underlying cochlear ribbon synapse remodeling remain unclear. This study found that cochlear resident macrophages are essential for cochlear ribbon synapse development and maturation in mice via the CX3CR1/CX3CL1 axis. CX3CR1 expression (a macrophage surface-specific receptor) and macrophage count in the cochlea were significantly increased from postnatal day 7 then decreased from days 14 to 28. Seven-day treatment with CX3CR1 inhibitors and artificial upregulation of CX3CL1 levels in the inner ear environment using the semicircular canal injection technique were initiated on day 7, and this resulted in a significant increase in hearing threshold on day 28. Additionally, abnormalities in the morphology and number of cochlear ribbon synapses were detected on day P14, which may be associated with hearing impairment. In conclusion, macrophage regulation of cochlear ribbon synapse remodeling via the CX3CR1/CX3CL1 axis is required during hearing development and offers a new perspective on immune-related hearing loss throughout auditory development. Importantly, it could be a new treatment target for sensorineural hearing loss.
Collapse
Affiliation(s)
- Xinyu Song
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Center for Hearing Loss, Capital Medical University, Beijing, China
| | - Yang Li
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Center for Hearing Loss, Capital Medical University, Beijing, China
| | - Rui Guo
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Center for Hearing Loss, Capital Medical University, Beijing, China
| | - Qianru Yu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Center for Hearing Loss, Capital Medical University, Beijing, China
| | - Shan Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Center for Hearing Loss, Capital Medical University, Beijing, China
| | - Qi Teng
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Center for Hearing Loss, Capital Medical University, Beijing, China
| | - Zhong-Rui Chen
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Center for Hearing Loss, Capital Medical University, Beijing, China
| | - Jing Xie
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Center for Hearing Loss, Capital Medical University, Beijing, China
| | - Shusheng Gong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Center for Hearing Loss, Capital Medical University, Beijing, China
| | - Ke Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Center for Hearing Loss, Capital Medical University, Beijing, China
| |
Collapse
|
85
|
Liao K, Niu F, Hu G, Buch S. Morphine-mediated release of astrocyte-derived extracellular vesicle miR-23a induces loss of pericyte coverage at the blood-brain barrier: Implications for neuroinflammation. Front Cell Dev Biol 2022; 10:984375. [PMID: 36478740 PMCID: PMC9720401 DOI: 10.3389/fcell.2022.984375] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/07/2022] [Indexed: 08/08/2023] Open
Abstract
Opioids such as morphine are the most potent and efficacious drugs currently available for pain management. Paradoxically, opioids have also been implicated in inducing neuroinflammation and associated neurocognitive decline. Pericytes, a critical component of the neurovascular unit (NVU), are centrally positioned between endothelial cells and astrocytes, maintaining function of the blood-brain barrier (BBB) nd regulating neuroinflammation by controlling monocyte influx under various pathological conditions. The role of pericytes in morphine-mediated neuroinflammation however, has received less attention, especially in the context of how pericytes crosstalk with other central nervous system (CNS) cells. The current study was undertaken to examine the effect of miRNAs released from morphine-stimulated human primary astrocyte-derived extracellular vesicles (morphine-ADEVs) in mediating pericyte loss at the blood-brain barrier, leading, in turn, to increased influx of peripheral monocytes. Our findings suggest that the heterogeneous nuclear ribonucleoprotein complex A2/B1 (hnRNP A2/B1) plays role in morphine-mediated upregulation and release of miR-23a in ADEVs, and through action of morphine via mu opioid receptor.We further demonstrated that miR-23a in morphine-ADEVs could be taken up by pericytes, resulting in downregulation of PTEN expression, ultimately leading to increased pericyte migration. Furthermore, both overexpression of PTEN and blocking the miR-23a target site at PTEN 3UTR (by transfecting miR-23a-PTEN target protector), attenuated morphine-ADEV-mediated pericyte migration. We also demonstrated that in the microvessels isolated from morphine-administered mice, there were fewer PDGFβR + pericytes co-localizing with CD31+ brain endothelial cells compared with those from saline mice. In line with these findings, we also observed increased loss of pericytes and a concomitantly increased influx of monocytes in the brains of morphine-administered pericyte-labeled NG2-DsRed mice compared with saline mice. In conclusion, our findings indicate morphine-ADEVs mediated loss of pericyte coverage at the brain endothelium, thereby increasing the influx of peripheral monocytes in the central nervous system, leading to neuroinflammation.
Collapse
Affiliation(s)
- Ke Liao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Fang Niu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
86
|
D'Elia ATD, Juruena MF, Coimbra BM, Mello MF, Mello AF. Increased immuno-inflammatory mediators in women with post-traumatic stress disorder after sexual assault: 1-Year follow-up. J Psychiatr Res 2022; 155:241-251. [PMID: 36113394 DOI: 10.1016/j.jpsychires.2022.08.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 08/21/2022] [Accepted: 08/31/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND Sexual violence is a traumatic event that can trigger post-traumatic stress disorder (PTSD) and generate biological responses to stress characterized by inhibiting the hypothalamic-pituitary axis (HPA), altering immune activity, and changing the structure and function of the brain. PTSD is associated with increased levels of inflammatory markers. This study aimed to measure differences in inflammatory markers and HPA hormone levels between women with PTSD due to sexual violence and controls at baseline and after 1-year follow-up. METHODS Fifty-eight women with PTSD resulting from sexual assault occurring up to 6 months prior were compared to 41 female controls. The patients were followed for 1 year. At baseline (T1), we measured inflammatory biomarkers. We also applied the Mini International Neuropsychiatric Interview (MINI), the Clinician-Administered Post-Traumatic Stress Disorder Scale-5, the Beck Depression Inventory, the Beck Anxiety Inventory, and the Childhood Trauma Questionnaire. The patients were randomized to receive treatment with sertraline or interpersonal psychotherapy for 14 weeks (T2) and then continued the usual treatment if deemed necessary for 1 year. The same interviews and examinations were repeated after 1 year (T3). RESULTS At baseline, the patients had significantly higher adrenocorticotropic hormone levels, compared to controls; however, there was no baseline difference in inflammatory markers or cortisol. After 1 year, there were significantly higher levels of interleukin-1β (p < 0.0001), monocyte chemoattractant protein-1 (p < 0.0001), tumor necrosis factor-α (p < 0.0001), c-reactive protein (p < 0.0001), and cortisol (p = 0.046) in the patient group. In addition to PTSD, 56 patients presented with a major depressive episode at T1 (according to the MINI). At the end of 1 year, there was a significant improvement in depressive (p < 0.001), anxiety (p = 0.03), and PTSD symptoms (p < 0.001) regardless of the treatment received. DISCUSSION The increase of the inflammatory markers after 1 year, even with symptomatic improvement, may indicate that PTSD following sexual violence is associated with high depressive symptoms. This association may have a different pattern of immunoendocrine alterations than PTSD only. Furthermore, these alterations may persist in the long term, even with the improvement of the symptoms, probably generating an immunological imprint that can lead to future clinical consequences. This study adds to the current knowledge of PTSD neurobiology and contributes to broadening approaches to this disorder.
Collapse
Affiliation(s)
- Ana Teresa D D'Elia
- Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.
| | - Mario F Juruena
- Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil; Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neurosciences, Kings College London, London, United Kingdom
| | - Bruno M Coimbra
- Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil; Amsterdam UMC, location University of Amsterdam, Department of Psychiatry, Amsterdam Public Health Research Institute and Amsterdam Neuroscience Research Institute, Amsterdam, the Netherlands
| | - Marcelo F Mello
- Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Andrea F Mello
- Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| |
Collapse
|
87
|
Pauwels MJ, Xie J, Ceroi A, Balusu S, Castelein J, Van Wonterghem E, Van Imschoot G, Ward A, Menheniott TR, Gustafsson O, Combes F, El Andaloussi S, Sanders NN, Mäger I, Van Hoecke L, Vandenbroucke RE. Choroid plexus-derived extracellular vesicles exhibit brain targeting characteristics. Biomaterials 2022; 290:121830. [PMID: 36302306 DOI: 10.1016/j.biomaterials.2022.121830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/16/2022] [Accepted: 09/25/2022] [Indexed: 11/17/2022]
Abstract
The brain is protected against invading organisms and other unwanted substances by tightly regulated barriers. However, these central nervous system (CNS) barriers impede the delivery of drugs into the brain via the blood circulation and are therefore considered major hurdles in the treatment of neurological disorders. Consequently, there is a high need for efficient delivery systems that are able to cross these strict barriers. While most research focuses on the blood-brain barrier (BBB), the design of drug delivery platforms that are able to cross the blood-cerebrospinal fluid (CSF) barrier, formed by a single layer of choroid plexus epithelial cells, remains a largely unexplored domain. The discovery that extracellular vesicles (EVs) make up a natural mechanism for information transfer between cells and across cell layers, has stimulated interest in their potential use as drug delivery platform. Here, we report that choroid plexus epithelial cell-derived EVs exhibit the capacity to home to the brain after peripheral administration. Moreover, these vesicles are able to functionally deliver cargo into the brain. Our findings underline the therapeutic potential of choroid plexus-derived EVs as a brain drug delivery vehicle via targeting of the blood-CSF interface.
Collapse
Affiliation(s)
- Marie J Pauwels
- VIB Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - Junhua Xie
- VIB Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - Adam Ceroi
- VIB Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - Sriram Balusu
- VIB Center for the Biology of Disease, VIB, Herestraat 49, 3000, Leuven, Belgium
| | - Jonas Castelein
- VIB Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - Elien Van Wonterghem
- VIB Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - Griet Van Imschoot
- VIB Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - Andrew Ward
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Trevelyan R Menheniott
- Murdoch Children's Research Institute, Flemington Rd. Parkville, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Flemington Rd. Parkville, Melbourne, Victoria, Australia
| | - Oskar Gustafsson
- Department of Laboratory Medicine, Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Francis Combes
- Department of Biotechnology and Nanomedicine, SINTEF AS, Sem Sælands V. 2A, N-7034 Trondheim, Norway
| | - Samir El Andaloussi
- Department of Laboratory Medicine, Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Niek N Sanders
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium; Cancer Research Institute Ghent (CRIG), 9000, Ghent, Belgium
| | - Imre Mäger
- Institute of Technology, University of Tartu, 50 411, Tartu, Estonia; Department of Paediatrics, University of Oxford, Oxford, OX3 9DU, UK
| | - Lien Van Hoecke
- VIB Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - Roosmarijn E Vandenbroucke
- VIB Center for Inflammation Research, VIB, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium.
| |
Collapse
|
88
|
Ren Y, Hu S, Pu H, Zhou Y, Jiang M, Li Y, Deng C, Gao J, Xu M, Ge C. Juglanin ameliorates depression-like behavior in chronic unpredictable mild stress-induced mice by improving AMPK signaling. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
89
|
Wu M, Zhao L, Wang Y, Guo Q, An Q, Geng J, Zhang C, Guo Z. Ketamine Regulates the Autophagy Flux and Polarization of Microglia through the HMGB1-RAGE Axis and Exerts Antidepressant Effects in Mice. J Neuropathol Exp Neurol 2022; 81:931-942. [PMID: 35582883 DOI: 10.1093/jnen/nlac035] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Depression is a leading cause of disability worldwide. Here, we explored the role of the HMGB1-RAGE pathway in lipopolysaccharide (LPS)-induced depression-like behavior and microglial autophagy flux, neuroinflammation, and polarization in a mouse model. Male C57BL/6 mice were infused with LPS in the abdominal cavity to induce a depression model. They then underwent testing to assess behavior and cognition. Real-time fluorescent quantitative polymerase chain reaction was used to detect the expression of the M1/M2 microglia polarization markers, HMGB1, and RAGE. Microglial activation and phenotypic transformation in the hippocampus were identified. mRFP-GFP-LC3 and Western blotting were used to detect autophagy flux in each treatment group. Finally, an LPS-induced BV2 cell model was developed to verify the involvement of the HMGB1-RAGE pathway, autophagy flux, and polarization. Ketamine improved LPS-induced depression-like behavior, inhibited the LPS-induced upregulation of HMGB1 and RAGE and the nuclear translocation of HMGB1. Moreover, ketamine reversed the blocked autophagy flux of microglia caused by LPS and regulated microglial autophagy flux through the HMGB1-RAGE pathway and microglial polarization. These results suggest that ketamine may reduce HMGB1 and RAGE accumulation in patients with depression, thereby providing a new therapeutic target for preventing and treating this disease.
Collapse
Affiliation(s)
- Meng Wu
- From the Department of Anesthesiology, Peking University Shougang Hospital, Beijing, China
| | - Lin Zhao
- From the Department of Anesthesiology, Peking University Shougang Hospital, Beijing, China
| | - Ye Wang
- From the Department of Anesthesiology, Peking University Shougang Hospital, Beijing, China
| | - Qianqian Guo
- From the Department of Anesthesiology, Peking University Shougang Hospital, Beijing, China
| | - Qi An
- From the Department of Anesthesiology, Peking University Shougang Hospital, Beijing, China
| | | | - Changsheng Zhang
- Anesthesia and Operation Center, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhenggang Guo
- From the Department of Anesthesiology, Peking University Shougang Hospital, Beijing, China
| |
Collapse
|
90
|
Zhang J, Wang T, Zhang Y, Lu P, Shi N, Zhu W, Cai C, He N. Soft integration of a neural cells network and bionic interfaces. Front Bioeng Biotechnol 2022; 10:950235. [PMID: 36246365 PMCID: PMC9558115 DOI: 10.3389/fbioe.2022.950235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 09/12/2022] [Indexed: 11/28/2022] Open
Abstract
Both glial cells and neurons can be considered basic computational units in neural networks, and the brain–computer interface (BCI) can play a role in awakening the latency portion and being sensitive to positive feedback through learning. However, high-quality information gained from BCI requires invasive approaches such as microelectrodes implanted under the endocranium. As a hard foreign object in the aqueous microenvironment, the soft cerebral cortex’s chronic inflammation state and scar tissue appear subsequently. To avoid the obvious defects caused by hard electrodes, this review focuses on the bioinspired neural interface, guiding and optimizing the implant system for better biocompatibility and accuracy. At the same time, the bionic techniques of signal reception and transmission interfaces are summarized and the structural units with functions similar to nerve cells are introduced. Multiple electrical and electromagnetic transmissions, regulating the secretion of neuromodulators or neurotransmitters via nanofluidic channels, have been flexibly applied. The accurate regulation of neural networks from the nanoscale to the cellular reconstruction of protein pathways will make BCI the extension of the brain.
Collapse
Affiliation(s)
- Jixiang Zhang
- State Key Laboratory of Bioelectronics, National Demonstration Centre for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Ting Wang
- State Key Laboratory of Bioelectronics, National Demonstration Centre for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
- Southeast University Jiangbei New Area Innovation Institute, Nanjing, China
- *Correspondence: Ting Wang,
| | - Yixin Zhang
- State Key Laboratory of Bioelectronics, National Demonstration Centre for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Pengyu Lu
- State Key Laboratory of Bioelectronics, National Demonstration Centre for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Neng Shi
- State Key Laboratory of Bioelectronics, National Demonstration Centre for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | | | - Chenglong Cai
- State Key Laboratory of Bioelectronics, National Demonstration Centre for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
- Southeast University Jiangbei New Area Innovation Institute, Nanjing, China
| | - Nongyue He
- State Key Laboratory of Bioelectronics, National Demonstration Centre for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
91
|
Brisch R, Wojtylak S, Saniotis A, Steiner J, Gos T, Kumaratilake J, Henneberg M, Wolf R. The role of microglia in neuropsychiatric disorders and suicide. Eur Arch Psychiatry Clin Neurosci 2022; 272:929-945. [PMID: 34595576 PMCID: PMC9388452 DOI: 10.1007/s00406-021-01334-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023]
Abstract
This narrative review examines the possible role of microglial cells, first, in neuroinflammation and, second, in schizophrenia, depression, and suicide. Recent research on the interactions between microglia, astrocytes and neurons and their involvement in pathophysiological processes of neuropsychiatric disorders is presented. This review focuses on results from postmortem, positron emission tomography (PET) imaging studies, and animal models of schizophrenia and depression. Third, the effects of antipsychotic and antidepressant drug therapy, and of electroconvulsive therapy on microglial cells are explored and the upcoming development of therapeutic drugs targeting microglia is described. Finally, there is a discussion on the role of microglia in the evolutionary progression of human lineage. This view may contribute to a new understanding of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ralf Brisch
- Department of Forensic Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Szymon Wojtylak
- Department of Pathomorphology, Medical University of Gdańsk, Gdańsk, Poland
| | - Arthur Saniotis
- Department of Anthropology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
- Department of Pharmacy, Knowledge University, Erbil, Kurdistan Region, Iraq
| | - Johann Steiner
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University, Magdeburg, Germany
| | - Tomasz Gos
- Department of Forensic Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Jaliya Kumaratilake
- Biological Anthropology and Comparative Anatomy Research Unit, Medical School, The University of Adelaide, Adelaide, Australia
| | - Maciej Henneberg
- Biological Anthropology and Comparative Anatomy Research Unit, Medical School, The University of Adelaide, Adelaide, Australia
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - Rainer Wolf
- Department of Nursing and Health, Hochschule Fulda, University of Applied Sciences, Fulda, Germany.
| |
Collapse
|
92
|
Mudra Rakshasa-Loots A, Whalley HC, Vera JH, Cox SR. Neuroinflammation in HIV-associated depression: evidence and future perspectives. Mol Psychiatry 2022; 27:3619-3632. [PMID: 35618889 PMCID: PMC9708589 DOI: 10.1038/s41380-022-01619-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 02/08/2023]
Abstract
People living with HIV face a high risk of mental illness, especially depression. We do not yet know the precise neurobiological mechanisms underlying HIV-associated depression. Depression severity in the general population has been linked to acute and chronic markers of systemic inflammation. Given the associations between depression and peripheral inflammation, and since HIV infection in the brain elicits a neuroinflammatory response, it is possible that neuroinflammation contributes to the high prevalence of depression amongst people living with HIV. The purpose of this review was to synthesise existing evidence for associations between inflammation, depression, and HIV. While there is strong evidence for independent associations between these three conditions, few preclinical or clinical studies have attempted to characterise their interrelationship, representing a major gap in the literature. This review identifies key areas of debate in the field and offers perspectives for future investigations of the pathophysiology of HIV-associated depression. Reproducing findings across diverse populations will be crucial in obtaining robust and generalisable results to elucidate the precise role of neuroinflammation in this pathophysiology.
Collapse
Affiliation(s)
- Arish Mudra Rakshasa-Loots
- Edinburgh Neuroscience, School of Biomedical Sciences, The University of Edinburgh, Edinburgh, UK.
- Lothian Birth Cohorts Group, Department of Psychology, The University of Edinburgh, Edinburgh, UK.
| | - Heather C Whalley
- Division of Psychiatry, Centre for Clinical Brain Sciences, Royal Edinburgh Hospital, The University of Edinburgh, Edinburgh, UK
| | - Jaime H Vera
- Department of Global Health and Infection, Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Simon R Cox
- Lothian Birth Cohorts Group, Department of Psychology, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
93
|
Sambolín-Escobales L, Feliciano-Quiñones A, Tirado-Castro L, Suárez C, Pacheco-Cruz D, Irizarry-Méndez N, Fonseca-Ferrer W, Hernández-López A, Colón-Romero M, Porter JT. Infusion of C20:0 ceramide into ventral hippocampus triggers anhedonia-like behavior in female and male rats. Front Behav Neurosci 2022; 16:899627. [PMID: 36090653 PMCID: PMC9449580 DOI: 10.3389/fnbeh.2022.899627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Increased long-chain C20:0 ceramides have been found in the serum of patients with depression. Moreover, ceramides are linked with increased microglia reactivity and inflammatory cytokine production, which are associated with depression. Since ceramides can readily cross the blood brain barrier, peripheral C20:0 ceramides could enter the brain, activate microglia, and induce depressive-like behavior. In this study, we determined whether localized infusion of C20:0 ceramides into the ventral hippocampus (VH) of rats is sufficient to activate microglia and induce depressive-like behaviors. Adult male and female rats received infusions of C20:0 ceramides or vehicle solution every other day for 2 weeks. After the third infusion, C20:0-infused animals showed reduced sucrose preference suggesting anhedonia-like behavior. In contrast, infusions of C20:0 ceramides did not affect immobility in the forced swim test or sucrose grooming suggesting that the behavioral effects of ceramides are task dependent. Furthermore, C20:0-infusions did not increase Iba-1 + microglia or inflammatory markers in the VH suggesting that localized increases in C20:0 ceramides in the VH are sufficient to induce anhedonia-like behavior without microglia activation.
Collapse
Affiliation(s)
- Lubriel Sambolín-Escobales
- Division of Pharmacology, Basic Sciences Department, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Adariana Feliciano-Quiñones
- Division of Pharmacology, Basic Sciences Department, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Lizmarie Tirado-Castro
- Division of Pharmacology, Basic Sciences Department, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Cristina Suárez
- Division of Pharmacology, Basic Sciences Department, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Dariangelly Pacheco-Cruz
- Biology and Biotechnology Department, Pontifical Catholic University of Puerto Rico, Ponce, Puerto Rico
| | - Nashaly Irizarry-Méndez
- Division of Pharmacology, Basic Sciences Department, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | | | - Anixa Hernández-López
- Division of Pharmacology, Basic Sciences Department, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - María Colón-Romero
- Division of Pharmacology, Basic Sciences Department, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - James T. Porter
- Division of Pharmacology, Basic Sciences Department, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
- *Correspondence: James T. Porter,
| |
Collapse
|
94
|
Zhu ZH, Yin XY, Xu TS, Tao WW, Yao GD, Wang PJ, Qi Q, Jia QF, Wang J, Zhu Y, Hui L. Morinda officinalis oligosaccharides mitigate chronic mild stress-induced inflammation and depression-like behaviour by deactivating the MyD88/PI3K pathway via E2F2. Front Pharmacol 2022; 13:855964. [PMID: 36052143 PMCID: PMC9426723 DOI: 10.3389/fphar.2022.855964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Morinda officinalis oligosaccharides (MOs) are natural herbal extracts that have been shown to exert antidepressant effects. However, the mechanism of this effect remains unclear. Here, we explored the mechanism by which MOs improved experimental depression. Using a chronic mild stress (CMS) murine model, we examined whether MOs could protect against depressive-like behaviour. Lipopolysaccharide (LPS)- and ATP-treated BV2 cells were used to examine the potential mechanism by which MOs mediate the inflammatory response. We found that MOs prevented the CMS-induced reduction in the sucrose preference ratio in the sucrose preference test (SPT) and shortened the immobility durations in both the tail suspension test (TST) and forced swim test (FST). We also noticed that MOs suppressed inflammatory effects by deactivating the MyD88/PI3K pathway via E2F2 in CMS mice or LPS- and ATP-stimulated BV2 cells. Furthermore, overexpression of E2F2 blunted the beneficial effects of MOs in vitro. Collectively, these data showed that MOs exerted antidepressant effects in CMS mice by targeting E2F2-mediated MyD88/PI3K signalling pathway.
Collapse
Affiliation(s)
- Zhen-Hua Zhu
- Research Center of Biological Psychiatry, Suzhou Guangji Hospital, Medical College of Soochow University, Suzhou, China
| | - Xu-Yuan Yin
- Research Center of Biological Psychiatry, Suzhou Guangji Hospital, Medical College of Soochow University, Suzhou, China
| | - Tu-Sun Xu
- Research Center of Biological Psychiatry, Suzhou Guangji Hospital, Medical College of Soochow University, Suzhou, China
| | - Wei-Wei Tao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guang-Da Yao
- Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Nanjing, China
| | - Pei-Jie Wang
- Research Center of Biological Psychiatry, Suzhou Guangji Hospital, Medical College of Soochow University, Suzhou, China
| | - Qi Qi
- Research Center of Biological Psychiatry, Suzhou Guangji Hospital, Medical College of Soochow University, Suzhou, China
| | - Qiu-Fang Jia
- Research Center of Biological Psychiatry, Suzhou Guangji Hospital, Medical College of Soochow University, Suzhou, China
| | - Jing Wang
- Research Center of Biological Psychiatry, Suzhou Guangji Hospital, Medical College of Soochow University, Suzhou, China
| | - Yue Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Yue Zhu, ; Li Hui,
| | - Li Hui
- Research Center of Biological Psychiatry, Suzhou Guangji Hospital, Medical College of Soochow University, Suzhou, China
- *Correspondence: Yue Zhu, ; Li Hui,
| |
Collapse
|
95
|
Jiang H, Zhang Y, Yue J, Shi Y, Xiao B, Xiao W, Luo Z. Non-coding RNAs: The Neuroinflammatory Regulators in Neurodegenerative Diseases. Front Neurol 2022; 13:929290. [PMID: 36034298 PMCID: PMC9414873 DOI: 10.3389/fneur.2022.929290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/23/2022] [Indexed: 01/09/2023] Open
Abstract
As a common indication of nervous system diseases, neuroinflammation has attracted more and more attention, especially in the process of a variety of neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease. Two types of non-coding RNAs (ncRNAs) are widely involved in the process of neuroinflammation in neurodegenerative diseases, namely long non-coding RNAs (lncRNAs) and microRNAs (miRNAs). However, no research has systematically summarized that lncRNAs and miRNAs regulate neurodegenerative diseases through neuroinflammatory mechanisms. In this study, we summarize four main mechanisms of lncRNAs and miRNAs involved in neuroinflammation in neurodegenerative diseases, including the imbalance between proinflammatory and neuroprotective cells in microglia and astrocytes, NLRP3 inflammasome, oxidative stress, and mitochondrial dysfunction, and inflammatory mediators. We hope to clarify the regulatory mechanism of lncRNAs and miRNAs in neurodegenerative diseases and provide new insights into the etiological treatment of neurodegenerative diseases from the perspective of neuroinflammation.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ying Zhang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Juan Yue
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yuchen Shi
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
| | - Wenbiao Xiao
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Wenbiao Xiao
| | - Zhaohui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha, China
- Zhaohui Luo
| |
Collapse
|
96
|
Fan X, Wang S, Hu S, Yang B, Zhang H. Host-microbiota interactions: The aryl hydrocarbon receptor in the acute and chronic phases of cerebral ischemia. Front Immunol 2022; 13:967300. [PMID: 36032153 PMCID: PMC9411800 DOI: 10.3389/fimmu.2022.967300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
The relationship between gut microbiota and brain function has been studied intensively in recent years, and gut microbiota has been linked to a couple of neurological disorders including stroke. There are multiple studies linking gut microbiota to stroke in the “microbiota-gut-brain” axis. The aryl hydrocarbon receptor (AHR) is an important mediator of acute ischemic damage and can result in subsequent neuroinflammation. AHR can affect these responses by sensing microbiota metabolites especially tryptophan metabolites and is engaged in the regulation of acute ischemic brain injury and chronic neuroinflammation after stroke. As an important regulator in the “microbiota-gut-brain” axis, AHR has the potential to be used as a new therapeutic target for ischemic stroke treatment. In this review, we discuss the research progress on AHR regarding its role in ischemic stroke and prospects to be used as a therapeutic target for ischemic stroke treatment, aiming to provide a potential direction for the development of new treatments for ischemic stroke.
Collapse
Affiliation(s)
- Xuemei Fan
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuai Wang
- Department of Intensive Care Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuqi Hu
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bingjie Yang
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Zhang
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Hao Zhang,
| |
Collapse
|
97
|
Fan Z, Ma H, Li Y, Wu Y, Wang J, Xiong L, Fang Z, Zhang X. Neuronal MD2 induces long-term mental impairments in septic mice by facilitating necroptosis and apoptosis. Front Pharmacol 2022; 13:884821. [PMID: 36016572 PMCID: PMC9396348 DOI: 10.3389/fphar.2022.884821] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Sepsis-associated encephalopathy (SAE) is a complication of sepsis with high morbidity rates. Long-lasting mental health issues in patients with SAE result in a substantial decrease in quality of life. However, its underlying mechanism is unclear, and effective treatments are not available. In the current study, we explored the role of apoptosis and necroptosis related to mental dysfunction in sepsis. In a mouse model of sepsis constructed by cecal ligation and puncture (CLP), altered behavior was detected by the open field, elevated-plus maze and forced swimming tests on the fourteenth day. Moreover, apoptosis- and necroptosis-associated proteins and morphological changes were examined in the hippocampus of septic mice. Long-lasting depression-like behaviors were detected in the CLP mice, as well as significant increases in neuronal apoptosis and necroptosis. Importantly, we found that apoptosis and necroptosis were related according to Ramsay’s rule in the brains of the septic mice. Inhibiting myeloid differentiation factor 2 (MD2), the crosstalk mediator of apoptosis and necroptosis, in neurons effectively reduced neuronal loss and alleviated depression-like behaviors in the septic mice. These results suggest that neuronal death in the hippocampus contributes to the mental impairments in SAE and that inhibiting neuronal MD2 is a new strategy for treating mental health issues in sepsis by inhibiting necroptosis and apoptosis.
Collapse
Affiliation(s)
- Zhongmin Fan
- Department of Critical Care Medicine and Department of Anesthesiology and Perioprative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Hongwei Ma
- Department of Critical Care Medicine and Department of Anesthesiology and Perioprative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yi Li
- Department of Critical Care Medicine and Department of Anesthesiology and Perioprative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - You Wu
- Department of Critical Care Medicine and Department of Anesthesiology and Perioprative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jiajia Wang
- Department of Critical Care Medicine and Department of Anesthesiology and Perioprative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Lize Xiong
- Department of Critical Care Medicine and Department of Anesthesiology and Perioprative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- Translational Research Institute of Brain and Brain-Like Intelligence and Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Zongping Fang
- Department of Critical Care Medicine and Department of Anesthesiology and Perioprative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Zongping Fang, ; Xijing Zhang,
| | - Xijing Zhang
- Department of Critical Care Medicine and Department of Anesthesiology and Perioprative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Zongping Fang, ; Xijing Zhang,
| |
Collapse
|
98
|
Chikatimalla R, Dasaradhan T, Koneti J, Cherukuri SP, Kalluru R, Gadde S. Depression in Parkinson's Disease: A Narrative Review. Cureus 2022; 14:e27750. [PMID: 36106206 PMCID: PMC9447473 DOI: 10.7759/cureus.27750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2022] [Indexed: 11/24/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative age-related disorder that affects the central nervous system (CNS) and is characterized by uncontrollable movements such as shaking, stiffness, and loss of balance and coordination. Depression is a common non-motor manifestation of PD, but unfortunately, depression remains unrecognized and often undertreated. The underlying pathophysiology of depression in PD is complicated, and many studies have been conducted to know the exact cause, but the question remains unanswered. In this article, we discuss various pathophysiologies by which depression occurs in PD. The most widely accepted theories are neuroinflammation and monoamine oxidase theory. This article also explored the pharmacological treatment of depression in PD; this involves standard antidepressant therapy such as tricyclic antidepressants (TCA), serotonin-norepinephrine reuptake inhibitors (SNRI), selective serotonin reuptake inhibitors (SSRI), and monoamine oxidase inhibitors (MAO); non-pharmacological treatments such as electroconvulsive therapy (ECT), cognitive-behavioral therapy (CBT) have also been discussed. However, physicians hesitate to prescribe antidepressants to patients with PD due to concerns about harmful drug-drug interactions between antidepressants and antiparkinsonian drugs. Despite the complicated link between PD and depression, the co-administration of antidepressants and antiparkinsonian drugs is safe and beneficial when appropriately managed. However, early recognition and initiation of treatment of depression in PD reduces the longitudinal course and improves the cross-sectional picture. This review article also explored the clinical and diagnostic findings and impact on the quality of life of depression in PD.
Collapse
|
99
|
Zou Y, Mu D, Ma X, Wang D, Zhong J, Gao J, Yu S, Qiu L. Review on the roles of specific cell-derived exosomes in Alzheimer's disease. Front Neurosci 2022; 16:936760. [PMID: 35968378 PMCID: PMC9366882 DOI: 10.3389/fnins.2022.936760] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/08/2022] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is the sixth leading cause of death worldwide and cannot be effectively cured or prevented; thus, early diagnosis, and intervention are important. The importance of exosomes, membrane-bound extracellular vesicles produced in the endosome of eukaryotic cells, in the development, diagnosis, and treatment of AD has been recognized; however, their specific functions remain controversial and even unclear. With the development of exosome extraction, isolation, and characterization, many studies have focused on exosomes derived from different cells and body fluids. In this study, we summarized the roles of exosomes derived from different body fluids and cells, such as neuron, glial, stem, and endothelial cells, in the development, diagnosis, monitoring, and treatment of AD. We also emphasize the necessity to focus on exosomes from biological fluids and specific cells that are less invasive to target. Moreover, aside from the concentrations of classic and novel biomarkers in exosomes, the size and number of exosomes may also influence early and differential diagnosis of AD.
Collapse
Affiliation(s)
- Yutong Zou
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Danni Mu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Xiaoli Ma
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
- Medical Science Research Center (MRC), Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing, China
| | - Danchen Wang
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Jian Zhong
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
| | - Jing Gao
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Songlin Yu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
- Songlin Yu
| | - Ling Qiu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Ling Qiu
| |
Collapse
|
100
|
Pain and Opioid-Induced Gut Microbial Dysbiosis. Biomedicines 2022; 10:biomedicines10081815. [PMID: 36009361 PMCID: PMC9404803 DOI: 10.3390/biomedicines10081815] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/10/2022] [Accepted: 07/22/2022] [Indexed: 12/12/2022] Open
Abstract
Opioid-induced dysbiosis (OID) is a specific condition describing the consequences of opioid use on the bacterial composition of the gut. Opioids have been shown to affect the epithelial barrier in the gut and modulate inflammatory pathways, possibly mediating opioid tolerance or opioid-induced hyperalgesia; in combination, these allow the invasion and proliferation of non-native bacterial colonies. There is also evidence that the gut-brain axis is linked to the emotional and cognitive aspects of the brain with intestinal function, which can be a factor that affects mental health. For example, Mycobacterium, Escherichia coli and Clostridium difficile are linked to Irritable Bowel Disease; Lactobacillaceae and Enterococcacae have associations with Parkinson’s disease, and Alistipes has increased prevalence in depression. However, changes to the gut microbiome can be therapeutically influenced with treatments such as faecal microbiota transplantation, targeted antibiotic therapy and probiotics. There is also evidence of emerging therapies to combat OID. This review has collated evidence that shows that there are correlations between OID and depression, Parkinson’s Disease, infection, and more. Specifically, in pain management, targeting OID deserves specific investigations.
Collapse
|