51
|
Ríos JD, Hughes CK, Lally J, Wienandt N, Esquivel C, Serhan CN, Weitzel EK. Neuroprotectin D1 Attenuates Blast Overpressure Induced Reactive Microglial Cells in the Cochlea. Laryngoscope 2021; 131:E2018-E2025. [PMID: 33427310 DOI: 10.1002/lary.29337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE/HYPOTHESIS We examined a neuroinflammatory response associated with glial activation in the cochlea exposed to blast overpressure and evaluated the potential therapeutic efficacy of specialized pro-resolving mediators such as neuroprotectin D1, NPD1; (10R, 17S-dihydroxy-4Z, 7Z, 11E, 13E, 15Z, 19Z-docosahexaenoic acid) in a rodent blast-induced auditory injury model. STUDY DESIGN Animal Research. METHODS A compressed-air driven shock tube was used to expose anesthetized adult male Long-Evan rats to shock waves simulating an open-field blast exposure. Approximately 30 minutes after blast exposure, rats were treated with NPD1 (100 ng/kg body wt.) or vehicle delivered intravenously via tail vein injection. Rats were then euthanized 48 hours after blast exposure. Unexposed rats were included as controls. Tissue sections containing both middle and inner ear were prepared with hematoxylin-eosin staining to elucidate histopathological changes associated with blast exposure. Cochlear tissues were evaluated for relative expression of ionized calcium-binding adaptor 1 (Iba1), as an indicator of microglial activation by immunohistochemistry and western blot analyses. RESULTS Our animal model resulted in an acute injury mechanism manifested by damage to the tympanic membrane, hemorrhage, infiltration of inflammatory cells, and increased expression of Iba1 protein. Moreover, therapeutic intervention with NPD1 significantly reduced Iba1 expression in the cochlea, suggesting a reduction of a neuroinflammatory response caused by blast overpressure. CONCLUSIONS Blast overpressure resulted in an increased expression of proteins involved in gliosis within the auditory system, which were reduced by NPD1. Treatment of NPD1 suggests an effective strategy to reduce or halt auditory microglial cell activation due to primary blast exposure. LEVEL OF EVIDENCE NA Laryngoscope, 131:E2018-E2025, 2021.
Collapse
Affiliation(s)
- José David Ríos
- US Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, Texas, U.S.A
| | - Charlotte K Hughes
- US Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, Texas, U.S.A
| | - John Lally
- US Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, Texas, U.S.A
| | - Nathan Wienandt
- US Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, Texas, U.S.A
| | - Carlos Esquivel
- Department of Defense (DoD) Hearing Center of Excellence, Defense Health Agency, Joint Base San Antonio-Lackland, San Antonio, Texas, U.S.A
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital and Department of Anesthesia, Perioperative and Pain Medicine, Harvard Medical School, Boston, Massachusetts, U.S.A
| | - Erik K Weitzel
- US Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, Texas, U.S.A.,Department of Defense (DoD) Hearing Center of Excellence, Defense Health Agency, Joint Base San Antonio-Lackland, San Antonio, Texas, U.S.A
| |
Collapse
|
52
|
Oishi T, Matsumaru D, Ota N, Kitamura H, Zhang T, Honkura Y, Katori Y, Motohashi H. Activation of the NRF2 pathway in Keap1-knockdown mice attenuates progression of age-related hearing loss. NPJ Aging Mech Dis 2020; 6:14. [PMID: 33318486 PMCID: PMC7736866 DOI: 10.1038/s41514-020-00053-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 11/12/2020] [Indexed: 12/21/2022] Open
Abstract
Age-related hearing loss (AHL) is a progressive sensorineural hearing loss in elderly people. Although no prevention or treatments have been established for AHL, recent studies have demonstrated that oxidative stress is closely related to pathogenesis of AHL, suggesting that suppression of oxidative stress leads to inhibition of AHL progression. NRF2 is a master transcription factor that regulates various antioxidant proteins and cytoprotection factors. To examine whether NRF2 pathway activation prevents AHL, we used Keap1-knockdown (Keap1FA/FA) mice, in which KEAP1, a negative regulator of NRF2, is decreased, resulting in the elevation of NRF2 activity. We compared 12-month-old Keap1FA/FA mice with age-matched wild-type (WT) mice in the same breeding colony. In the Keap1FA/FA mice, the expression levels of multiple NRF2 target genes were verified to be significantly higher than the expression levels of these genes in the WT mice. Histological analysis showed that cochlear degeneration at the apical and middle turns was ameliorated in the Keap1FA/FA mice. Auditory brainstem response (ABR) thresholds in the Keap1FA/FA mice were significantly lower than those in the WT mice, in particular at low-mid frequencies. Immunohistochemical detection of oxidative stress markers suggested that oxidative stress accumulation was attenuated in the Keap1FA/FA cochlea. Thus, we concluded that NRF2 pathway activation protects the cochlea from oxidative damage during aging, in particular at the apical and middle turns. KEAP1-inhibiting drugs and phytochemicals are expected to be effective in the prevention of AHL.
Collapse
Affiliation(s)
- Tetsuya Oishi
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan.,Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Daisuke Matsumaru
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Nao Ota
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Hiroshi Kitamura
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Tianxiang Zhang
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Yohei Honkura
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Yukio Katori
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
| | - Hozumi Motohashi
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan.
| |
Collapse
|
53
|
Ding Y, Meng W, Kong W, He Z, Chai R. The Role of FoxG1 in the Inner Ear. Front Cell Dev Biol 2020; 8:614954. [PMID: 33344461 PMCID: PMC7744801 DOI: 10.3389/fcell.2020.614954] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
Sensorineural deafness is mainly caused by damage to the tissues of the inner ear, and hearing impairment has become an increasingly serious global health problem. When the inner ear is abnormally developed or is damaged by inflammation, ototoxic drugs, or blood supply disorders, auditory signal transmission is inhibited resulting in hearing loss. Forkhead box G1 (FoxG1) is an important nuclear transcriptional regulator, which is related to the differentiation, proliferation, development, and survival of cells in the brain, telencephalon, inner ear, and other tissues. Previous studies have shown that when FoxG1 is abnormally expressed, the development and function of inner ear hair cells is impaired. This review discusses the role and regulatory mechanism of FoxG1 in inner ear tissue from various aspects – such as the effect on inner ear development, the maintenance of inner ear structure and function, and its role in the inner ear when subjected to various stimulations or injuries – in order to explain the potential significance of FoxG1 as a new target for the treatment of hearing loss.
Collapse
Affiliation(s)
- Yanyan Ding
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Meng
- Department of Otolaryngology Head and Neck, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Weijia Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zuhong He
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| |
Collapse
|
54
|
Sekulic-Jablanovic M, Wright MB, Petkovic V, Bodmer D. Pioglitazone Ameliorates Gentamicin Ototoxicity by Affecting the TLR and STAT Pathways in the Early Postnatal Organ of Corti. Front Cell Neurosci 2020; 14:566148. [PMID: 33192313 PMCID: PMC7658481 DOI: 10.3389/fncel.2020.566148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/25/2020] [Indexed: 12/20/2022] Open
Abstract
Noise trauma, infection, and ototoxic drugs are frequent external causes of hearing loss. With no pharmacological treatments currently available, understanding the mechanisms and pathways leading to auditory hair cell (HC) damage and repair is crucial for identifying potential pharmacological targets. Prior research has implicated increased reactive oxygen species (ROS) and inflammation as general mechanisms of hearing loss common to diverse causes. Novel targets of these two key mechanisms of auditory damage may provide new paths toward the prevention and treatment of hearing loss. Pioglitazone, an oral antidiabetic drug from the class of thiazolidinediones, acts as an agonist of the peroxisome proliferator-activated receptor-gamma (PPAR-γ) and is involved in the regulation of lipid and glucose metabolism. PPAR-γ is an important player in repressing the expression of inflammatory cytokines and signaling molecules. We evaluated the effects of pioglitazone in the mouse Organ of Corti (OC) explants to characterize its influence on signaling pathways involved in auditory HC damage. The OC explants was cultured with pioglitazone, gentamicin, or a combination of both agents. Pioglitazone treatment resulted in significant repression of interferon (IFN)-α and -gamma pathways and downstream cytokines, as assessed by RNA sequencing and quantitative PCR gene expression assays. More detailed investigation at the single gene and protein level showed that pioglitazone mediated its anti-inflammatory effects through alterations of the Toll-like receptor (TLR) and STAT pathways. Together, these results indicate that pioglitazone significantly represses IFN and TLR in the cochlea, dampening the activity of gentamicin-induced pathways. These data support our previous results demonstrating significant protection of auditory HCs in the OC explants exposed to pioglitazone and other PPAR-targeted agents.
Collapse
Affiliation(s)
| | | | - Vesna Petkovic
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Daniel Bodmer
- Department of Biomedicine, University of Basel, Basel, Switzerland.,Clinic for Otolaryngology, Head and Neck Surgery, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
55
|
Longenecker RJ, Gu R, Homan J, Kil J. A Novel Mouse Model of Aminoglycoside-Induced Hyperacusis and Tinnitus. Front Neurosci 2020; 14:561185. [PMID: 33041759 PMCID: PMC7530258 DOI: 10.3389/fnins.2020.561185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/20/2020] [Indexed: 11/13/2022] Open
Abstract
Aminoglycosides (AG) such as amikacin are commonly used in cystic fibrosis patients with opportunistic pulmonary infections including multi-drug resistant mycobacterium tuberculous and non-tuberculous mycobacterium. Unfortunately, this class of drugs is known to cause peripheral damage to the cochlea leading to hearing loss that can fluctuate and become permanent over time or multiple exposures. However, whether amikacin can lead to central auditory dysfunction like hyperacusis (increased sensitivity to sound) or tinnitus (perception of sound in the absence of acoustic stimulation) is not well-described in the literature. Thus, an animal model needs to be developed that documents these side effects in order to develop therapeutic solutions to reduce AG-induced auditory dysfunction. Here we present pioneer work in mice which demonstrates that amikacin can lead to fluctuating behavioral evidence of hyperacusis and tinnitus as assessed by the acoustic startle reflex. Additionally, electrophysiological assessments of hearing via auditory brainstem response demonstrate increased central activity in the auditory brainstem. These data together suggest that peripheral AG-induced dysfunction can lead to central hyperactivity and possible behavioral manifestations of hyperacusis and tinnitus. Importantly, we demonstrate that ebselen, a novel investigational drug that acts as both an antioxidant and anti-inflammatory, can mitigate AG-induced hyperacusis.
Collapse
Affiliation(s)
| | - Rende Gu
- Sound Pharmaceuticals, Inc., Seattle, WA, United States
| | | | - Jonathan Kil
- Sound Pharmaceuticals, Inc., Seattle, WA, United States
| |
Collapse
|
56
|
Rai V, Wood MB, Feng H, Schabla NM, Tu S, Zuo J. The immune response after noise damage in the cochlea is characterized by a heterogeneous mix of adaptive and innate immune cells. Sci Rep 2020; 10:15167. [PMID: 32938973 PMCID: PMC7495466 DOI: 10.1038/s41598-020-72181-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/24/2020] [Indexed: 02/08/2023] Open
Abstract
Cells of the immune system are present in the adult cochlea and respond to damage caused by noise exposure. However, the types of immune cells involved and their locations within the cochlea are unclear. We used flow cytometry and immunostaining to reveal the heterogeneity of the immune cells in the cochlea and validated the presence of immune cell gene expression by analyzing existing single-cell RNA-sequencing (scRNAseq) data. We demonstrate that cell types of both the innate and adaptive immune system are present in the cochlea. In response to noise damage, immune cells increase in number. B, T, NK, and myeloid cells (macrophages and neutrophils) are the predominant immune cells present. Interestingly, immune cells appear to respond to noise damage by infiltrating the organ of Corti. Our studies highlight the need to further understand the role of these immune cells within the cochlea after noise exposure.
Collapse
MESH Headings
- Adaptive Immunity
- Animals
- B-Lymphocytes/immunology
- B-Lymphocytes/pathology
- Cochlea/immunology
- Cochlea/injuries
- Cochlea/pathology
- Disease Models, Animal
- Evoked Potentials, Auditory, Brain Stem/immunology
- Female
- Hearing Loss, Noise-Induced/immunology
- Hearing Loss, Noise-Induced/pathology
- Hearing Loss, Noise-Induced/physiopathology
- Immunity, Innate
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Leukocyte Common Antigens/metabolism
- Macrophages/immunology
- Macrophages/pathology
- Male
- Mice
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Transgenic
- Neutrophils/immunology
- Neutrophils/pathology
- Organ of Corti/immunology
- Organ of Corti/injuries
- Organ of Corti/pathology
- RNA-Seq
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
Collapse
Affiliation(s)
- Vikrant Rai
- Department of Biomedical Science, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE, 68178, USA
| | - Megan B Wood
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD, 21205, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Hao Feng
- Department of Biomedical Science, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE, 68178, USA
| | - Nathan M Schabla
- Department of Medical Microbiology and Immunology and Flow Cytometry Core, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE, 68178, USA
| | - Shu Tu
- Department of Biomedical Science, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE, 68178, USA
| | - Jian Zuo
- Department of Biomedical Science, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE, 68178, USA.
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
57
|
Szepesy J, Miklós G, Farkas J, Kucsera D, Giricz Z, Gáborján A, Polony G, Szirmai Á, Tamás L, Köles L, Varga ZV, Zelles T. Anti-PD-1 Therapy Does Not Influence Hearing Ability in the Most Sensitive Frequency Range, but Mitigates Outer Hair Cell Loss in the Basal Cochlear Region. Int J Mol Sci 2020; 21:ijms21186701. [PMID: 32933159 PMCID: PMC7555949 DOI: 10.3390/ijms21186701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 08/29/2020] [Accepted: 09/08/2020] [Indexed: 12/20/2022] Open
Abstract
The administration of immune checkpoint inhibitors (ICIs) often leads to immune-related adverse events. However, their effect on auditory function is largely unexplored. Thorough preclinical studies have not been published yet, only sporadic cases and pharmacovigilance reports suggest their significance. Here we investigated the effect of anti-PD-1 antibody treatment (4 weeks, intraperitoneally, 200 μg/mouse, 3 times/week) on hearing function and cochlear morphology in C57BL/6J mice. ICI treatment did not influence the hearing thresholds in click or tone burst stimuli at 4–32 kHz frequencies measured by auditory brainstem response. The number and morphology of spiral ganglion neurons were unaltered in all cochlear turns. The apical-middle turns (<32 kHz) showed preservation of the inner and outer hair cells (OHCs), whilst ICI treatment mitigated the age-related loss of OHCs in the basal turn (>32 kHz). The number of Iba1-positive macrophages has also increased moderately in this high frequency region. We conclude that a 4-week long ICI treatment does not affect functional and morphological integrity of the inner ear in the most relevant hearing range (4–32 kHz; apical-middle turns), but a noticeable preservation of OHCs and an increase in macrophage activity appeared in the >32 kHz basal part of the cochlea.
Collapse
Affiliation(s)
- Judit Szepesy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (G.M.); (J.F.); (D.K.); (Z.G.); (L.K.); (Z.V.V.)
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, H-1083 Budapest, Hungary; (A.G.); (G.P.); (Á.S.); (L.T.)
| | - Gabriella Miklós
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (G.M.); (J.F.); (D.K.); (Z.G.); (L.K.); (Z.V.V.)
| | - János Farkas
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (G.M.); (J.F.); (D.K.); (Z.G.); (L.K.); (Z.V.V.)
| | - Dániel Kucsera
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (G.M.); (J.F.); (D.K.); (Z.G.); (L.K.); (Z.V.V.)
- HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, H-1089 Budapest, Hungary
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (G.M.); (J.F.); (D.K.); (Z.G.); (L.K.); (Z.V.V.)
- Pharmahungary Group, H-6722 Szeged, Hungary
| | - Anita Gáborján
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, H-1083 Budapest, Hungary; (A.G.); (G.P.); (Á.S.); (L.T.)
| | - Gábor Polony
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, H-1083 Budapest, Hungary; (A.G.); (G.P.); (Á.S.); (L.T.)
| | - Ágnes Szirmai
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, H-1083 Budapest, Hungary; (A.G.); (G.P.); (Á.S.); (L.T.)
| | - László Tamás
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, H-1083 Budapest, Hungary; (A.G.); (G.P.); (Á.S.); (L.T.)
| | - László Köles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (G.M.); (J.F.); (D.K.); (Z.G.); (L.K.); (Z.V.V.)
| | - Zoltán V. Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (G.M.); (J.F.); (D.K.); (Z.G.); (L.K.); (Z.V.V.)
- HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, H-1089 Budapest, Hungary
| | - Tibor Zelles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary; (J.S.); (G.M.); (J.F.); (D.K.); (Z.G.); (L.K.); (Z.V.V.)
- Department of Pharmacology, Institute of Experimental Medicine, H-1083 Budapest, Hungary
- Correspondence: ; Tel.: +36-1-210-4416/56297; Fax: +36-1-210-4412
| |
Collapse
|
58
|
Keithley EM. Pathology and mechanisms of cochlear aging. J Neurosci Res 2020; 98:1674-1684. [PMID: 31066107 PMCID: PMC7496655 DOI: 10.1002/jnr.24439] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/22/2019] [Accepted: 04/23/2019] [Indexed: 12/21/2022]
Abstract
Presbycusis, or age-related hearing loss (ARHL), occurs in most mammals with variations in the age of onset, rate of decline, and magnitude of degeneration in the central nervous system and inner ear. The affected cochlear structures include the stria vascularis and its vasculature, spiral ligament, sensory hair cells and auditory neurons. Dysfunction of the stria vascularis results in a reduced endocochlear potential. Without this potential, the cochlear amplification provided by the electro-motility of the outer hair cells is insufficient, and a high-frequency hearing-loss results. Degeneration of the sensory cells, especially the outer hair cells also leads to hearing loss due to lack of amplification. Neuronal degeneration, another hallmark of ARHL, most likely underlies difficulties with speech discrimination, especially in noisy environments. Noise exposure is a major cause of ARHL. It is well-known to cause sensory cell degeneration, especially the outer hair cells at the high frequency end of the cochlea. Even loud, but not uncomfortable, sound levels can lead to synaptopathy and ultimately neuronal degeneration. Even in the absence of a noisy environment, aged cells degenerate. This pathology most likely results from damage to mitochondria and contributes to degenerative changes in the stria vascularis, hair cells, and neurons. The genetic underpinnings of ARHL are still unknown and most likely involve various combinations of genes. At present, the only effective strategy for reducing ARHL is prevention of noise exposure. If future strategies can improve mitochondrial activity and reduce oxidative damage in old age, these should also bring relief.
Collapse
Affiliation(s)
- Elizabeth M. Keithley
- Division of Otolaryngology ‐ Head and Neck SurgeryUniversity of CaliforniaSan DiegoCalifornia
| |
Collapse
|
59
|
Abstract
The ability of sepsis to induce acute phase hearing impairment has been evaluated in septic and sepsis-surviving mice. The relationship between septicemia and long-term hearing impairment remains unknown in humans.The data were obtained from the Taiwan Longitudinal National Health Insurance Database from 2000 to 2013. We identified patients suffering from septicemia after discharge, excluding those younger than 18 years old and older than 65 years old. The comparison group was matched based on age, sex, and comorbidities. The outcome was hearing impairment occurring after septicemia. The risk factors associated with hearing impairment were established using multivariate Cox proportional hazard regression.Our study found that septicemia associated with hearing impairment had an adjusted hazard ratio (HR) of 53.11 (95% confidence interval [CI]: 41.74-67.59). The other factors related to hearing impairment in young and middle-aged septicemia survivors included male sex (adjusted HR 1.31 [95% CI: 1.14-1.5]), chronic kidney disease (adjusted HR 1.63 [95% CI: 1.38-1.94]), and otoscleroisis (adjusted HR 231.54 [95% CI: 31.61-1695.8]).Our study revealed that septicemia was associated with increased development of hearing impairment in young and middle-aged humans in the long term. Clinicians should be aware of long-term septicemia-related hearing impairment and provide prevention strategies for otopathy in septicemia survivors.
Collapse
Affiliation(s)
- Chun-Gu Cheng
- Department of Emergency Medicine, Taoyuan Armed Forces General Hospital, National Defense Medical Center, Taoyuan
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei
- Department of Emergency and Critical Medicine, Wan Fang Hospital, Taipei Medical University
| | - Wu-Chien Chien
- Department of Medical Research, Tri-Service General Hospital
- School of Public Health
- Graduate Institute of Life and Medical Sciences
| | - Hung-Che Lin
- Graduate Institute of Life and Medical Sciences
- Department of Otolaryngology-Head and Neck Surgery
| | - Hui-Chen Lin
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chi-Hsiang Chung
- Department of Medical Research, Tri-Service General Hospital
- School of Public Health
| | - Chun-An Cheng
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
60
|
Sardone R, Lampignano L, Guerra V, Zupo R, Donghia R, Castellana F, Battista P, Bortone I, Procino F, Castellana M, Passantino A, Rucco R, Lozupone M, Seripa D, Panza F, De Pergola G, Giannelli G, Logroscino G, Boeing H, Quaranta N. Relationship between Inflammatory Food Consumption and Age-Related Hearing Loss in a Prospective Observational Cohort: Results from the Salus in Apulia Study. Nutrients 2020; 12:E426. [PMID: 32046004 PMCID: PMC7071162 DOI: 10.3390/nu12020426] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/20/2022] Open
Abstract
Age related hearing loss (ARHL) affects about one third of the elderly population. It is suggested that the senescence of the hair cells could be modulated by inflammation. Thus, intake of anti- and pro-inflammatory foods is of high interest. METHODS From the MICOL study population, 734 participants were selected that participated in the 2013 to 2018 examination including hearing ability and from which past data collected in 2005/2008 was available. ARHL status was determined and compared cross-sectionally and retrospectively according to clinical and lifestyle data including food and micronutrient intake. RESULTS ARHL status was associated with higher age but not with education, smoking, relative weight (BMI), and clinical-chemical blood markers in the crossectional and retrospective analyses. Higher intake of fruit juices among ARHL-participants was seen cross-sectionally, and of sugary foods, high-caloric drinks, beer, and spirits retrospectively. No difference was found for the other 26 food groups and for dietary micronutrients with the exception of past vitamin A, which was higher among normal hearing subjects. CONCLUSIONS Pro-inflammatory foods with a high-sugar content and also beer and spirits were found to be assocated with positive ARHL-status, but not anti-inflammatory foods. Diet could be a candidate for lifestyle advice for the prevention of ARHL.
Collapse
Affiliation(s)
- Rodolfo Sardone
- Frailty Phenotypes Research Unit, “Salus in Apulia Study”, National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy (F.P.)
| | - Luisa Lampignano
- Frailty Phenotypes Research Unit, “Salus in Apulia Study”, National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy (F.P.)
| | - Vito Guerra
- Data Analysis Unit, National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy; (V.G.)
| | - Roberta Zupo
- Frailty Phenotypes Research Unit, “Salus in Apulia Study”, National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy (F.P.)
| | - Rossella Donghia
- Data Analysis Unit, National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy; (V.G.)
| | - Fabio Castellana
- Frailty Phenotypes Research Unit, “Salus in Apulia Study”, National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy (F.P.)
| | - Petronilla Battista
- Department of Cardiology and Cardiac Rehabilitation, Scientific Clinical Institutes Maugeri, IRCCS Institute of Bari, 70124 Bari, Italy
| | - Ilaria Bortone
- Frailty Phenotypes Research Unit, “Salus in Apulia Study”, National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy (F.P.)
| | - Filippo Procino
- Frailty Phenotypes Research Unit, “Salus in Apulia Study”, National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy (F.P.)
| | - Marco Castellana
- Frailty Phenotypes Research Unit, “Salus in Apulia Study”, National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy (F.P.)
| | - Andrea Passantino
- Department of Cardiology and Cardiac Rehabilitation, Scientific Clinical Institutes Maugeri, IRCCS Institute of Bari, 70124 Bari, Italy
| | - Roberta Rucco
- Frailty Phenotypes Research Unit, “Salus in Apulia Study”, National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy (F.P.)
| | - Madia Lozupone
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro, 70100 Bari, Italy
| | - Davide Seripa
- Research Laboratory, Complex Structure of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy
| | - Francesco Panza
- Frailty Phenotypes Research Unit, “Salus in Apulia Study”, National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy (F.P.)
| | - Giovanni De Pergola
- Clinical Nutrition Unit, Medical Oncology, Department of Biomedical Science and Human Oncology, University of Bari Aldo Moro, School of Medicine, 70100 Bari, Italy
| | - Gianluigi Giannelli
- Frailty Phenotypes Research Unit, “Salus in Apulia Study”, National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy (F.P.)
| | - Giancarlo Logroscino
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro, 70100 Bari, Italy
- Department of Clinical Research in Neurology, “Pia Fondazione Cardinale G. Panico”, Tricase, 73039 Lecce, Italy
| | - Heiner Boeing
- German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany
| | - Nicola Quaranta
- Otolaryngology Unit, Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, 70100 Bari, Italy
| |
Collapse
|
61
|
The dual role of curcumin and ferulic acid in counteracting chemoresistance and cisplatin-induced ototoxicity. Sci Rep 2020; 10:1063. [PMID: 31974389 PMCID: PMC6978317 DOI: 10.1038/s41598-020-57965-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/09/2020] [Indexed: 12/24/2022] Open
Abstract
Platinum-based agents, such as cisplatin, form the mainstay of currently used chemotherapeutic regimens for several malignancies; however, the main limitations are chemoresistance and ototoxic side effects. In this study we used two different polyphenols, curcumin and ferulic acid as adjuvant chemotherapeutics evaluating (1) in vivo their antioxidant effects in protecting against cisplatin ototoxicity and (2) in vitro the transcription factors involved in tumor progression and cisplatin resistance. We reported that both polyphenols show antioxidant and oto-protective activity in the cochlea by up-regulating Nrf-2/HO-1 pathway and downregulating p53 phosphorylation. However, only curcumin is able to influence inflammatory pathways counteracting NF-κB activation. In human cancer cells, curcumin converts the anti-oxidant effect into a pro-oxidant and anti-inflammatory one. Curcumin exerts permissive and chemosensitive properties by targeting the cisplatin chemoresistant factors Nrf-2, NF-κB and STAT-3 phosphorylation. Ferulic acid shows a biphasic response: it is pro-oxidant at lower concentrations and anti-oxidant at higher concentrations promoting chemoresistance. Thus, polyphenols, mainly curcumin, targeting ROS-modulated pathways may be a promising tool for cancer therapy. Thanks to their biphasic activity of antioxidant in normal cells undergoing stressful conditions and pro-oxidant in cancer cells, these polyphenols probably engage an interplay among the key factors Nrf-2, NF-κB, STAT-3 and p53.
Collapse
|
62
|
Lassale C, Vullo P, Cadar D, Batty GD, Steptoe A, Zaninotto P. Association of inflammatory markers with hearing impairment: The English Longitudinal Study of Ageing. Brain Behav Immun 2020; 83:112-119. [PMID: 31562886 PMCID: PMC6906240 DOI: 10.1016/j.bbi.2019.09.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Hearing impairment is common at an older age and has considerable social, health and economic implications. With an increase in the ageing population, there is a need to identify modifiable risk factors for hearing impairment. A shared aetiology with cardiovascular disease (CVD) has been advanced as CVD risk factors (e.g. obesity, type 2 diabetes) are associated with a greater risk of hearing impairment. Moreover, low-grade inflammation is implicated in the aetiology of CVD. Accordingly, our aim was to investigate the association between several markers of inflammation - C-reactive protein, fibrinogen and white blood cell count - and hearing impairment. METHODS Participants of the English Longitudinal Study of Ageing aged 50-93 were included. Inflammatory marker data from both wave 4 (baseline, 2008/09) and wave 6 (2012/13) were averaged to measure systemic inflammation. Hearing acuity was measured with a simple handheld tone-producing device at follow-up (2014/15). RESULTS Among 4879 participants with a median age of 63 years at baseline, 1878 (38.4%) people presented hearing impairment at follow-up. All three biomarkers were positively and linearly associated with hearing impairment independent of age and sex. After further adjustment for covariates, including cardiovascular risk factors (smoking, physical activity, obesity, diabetes, hypertension, cholesterol), memory and depression, only the association with white blood cell count remained significant: odds ratio per log-unit increase; 95% confidence interval = 1.46; 1.11, 1.93. CONCLUSIONS While white blood cell count was positively associated with hearing impairment in older adults, no relationships were found for two other markers of low-grade inflammation.
Collapse
Affiliation(s)
- Camille Lassale
- Department of Epidemiology and Public Health, University College London, London, UK; Department of Behavioural Science and Health, University College London, London, UK; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.
| | - Pierluigi Vullo
- Department of Epidemiology and Public Health, University College London, London UK
| | - Dorina Cadar
- Department of Behavioural Science and Health, University College London, London UK
| | - G David Batty
- Department of Epidemiology and Public Health, University College London, London UK,School of Biological & Population Health Sciences, Oregon State University, USA
| | - Andrew Steptoe
- Department of Behavioural Science and Health, University College London, London UK
| | - Paola Zaninotto
- Department of Epidemiology and Public Health, University College London, London UK
| |
Collapse
|
63
|
Kalinec GM, Gao L, Cohn W, Whitelegge JP, Faull KF, Kalinec F. Extracellular Vesicles From Auditory Cells as Nanocarriers for Anti-inflammatory Drugs and Pro-resolving Mediators. Front Cell Neurosci 2019; 13:530. [PMID: 31849615 PMCID: PMC6895008 DOI: 10.3389/fncel.2019.00530] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 11/14/2019] [Indexed: 12/31/2022] Open
Abstract
Drug- and noise-related hearing loss are both associated with inflammatory responses in the inner ear. We propose that intracochlear delivery of a combination of pro-resolving mediators, specialized proteins and lipids that accelerate the return to homeostasis by modifying the immune response rather than by inhibiting inflammation, might have a profound effect on the prevention of sensorineural hearing loss. However, intracochlear delivery of such agents requires a reliable and effective method to convey them, fully active, directly to the target cells. The present study provides evidence that extracellular vesicles (EVs) from auditory HEI-OC1 cells may incorporate significant quantities of anti-inflammatory drugs, pro-resolving mediators and their polyunsaturated fatty acid precursors as cargo, and potentially could work as carriers for their intracochlear delivery. EVs generated by HEI-OC1 cells were divided by size into two fractions, small (≤150 nm diameter) and large (>150 nm diameter), and loaded with aspirin, lipoxin A4, resolvin D1, and the polyunsaturated fatty acids (PUFA) arachidonic, eicosapentaenoic, docosahexanoic, and linoleic. Bottom-up proteomics revealed a differential distribution of selected proteins between small and large vesicles. Only 17.4% of these proteins were present in both fractions, whereas 61.5% were unique to smaller vesicles and only 3.7% were exclusively found in the larger ones. Importantly, the pro-resolving protein mediators Annexin A1 and Galectins 1 and 3 were only detected in small vesicles. Lipidomic studies, on the other hand, showed that small vesicles contained higher levels of eicosanoids than large ones and, although all of them incorporated the drugs and molecules investigated, small vesicles were more efficiently loaded with PUFA and the large ones with aspirin, LXA4 and resolvin D1. Importantly, our data indicate that the vesicles contain all necessary enzymatic components for the de novo generation of eicosanoids from fatty acid precursors, including pro-inflammatory agents, suggesting that their cargo should be carefully tailored to avoid interference with their therapeutic purpose. Altogether, these results support the idea that both small and large EVs from auditory HEI-OC1 cells could be used as nanocarriers for anti-inflammatory drugs and pro-resolving mediators.
Collapse
Affiliation(s)
- Gilda M Kalinec
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Lucy Gao
- Pasarow Mass Spectrometry Laboratory, Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Whitaker Cohn
- Pasarow Mass Spectrometry Laboratory, Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Julian P Whitelegge
- Pasarow Mass Spectrometry Laboratory, Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kym F Faull
- Pasarow Mass Spectrometry Laboratory, Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Federico Kalinec
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
64
|
Evidence Supporting the Hypothesis That Inflammation-Induced Vasospasm Is Involved in the Pathogenesis of Acquired Sensorineural Hearing Loss. Int J Otolaryngol 2019; 2019:4367240. [PMID: 31781229 PMCID: PMC6875011 DOI: 10.1155/2019/4367240] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/04/2019] [Accepted: 10/19/2019] [Indexed: 12/15/2022] Open
Abstract
Sensorineural hearing loss is mainly acquired and affects an estimated 1.3 billion humans worldwide. It is related to aging, noise, infection, ototoxic drugs, and genetic defects. It is essential to identify reversible and preventable causes to be able to reduce the burden of this disease. Inflammation is involved in most causes and leads to tissue injury through vasospasm-associated ischemia. Vasospasm is reversible. This review summarized evidence linking inflammation-induced vasospasm to several forms of acquired sensorineural hearing loss. The link between vasospasm and sensorineural hearing loss is directly evident in subarachnoid haemorrhage, which involves the release of vasoconstriction-inducing cytokines like interleukin-1, endothelin-1, and tumour necrosis factor. These proinflammatory cytokines can also be released in response to infection, autoimmune disease, and acute or chronically increased inflammation in the ageing organism as in presbyacusis or in noise-induced cochlear injury. Evidence of vasospasm and hearing loss has also been discovered in bacterial meningitis and brain injury. Resolution of inflammation-induced vasospasm has been associated with improvement of hearing in autoimmune diseases involving overproduction of interleukin-1 from inflammasomes. There is mainly indirect evidence for vasospasm-associated sensorineural hearing loss in most forms of systemic or injury- or infection-induced local vascular inflammation. This opens up avenues in prevention and treatment of vascular and systemic inflammation as well as vasospasm itself as a way to prevent and treat most forms of acquired sensorineural hearing loss. Future research needs to investigate interventions antagonising vasospasm and vasospasm-inducing proinflammatory cytokines and their production in randomised controlled trials of prevention and treatment of acquired sensorineural hearing loss. Prime candidates for interventions are hereby inflammasome inhibitors and vasospasm-reducing drugs like nitric oxide donors, rho-kinase inhibitors, and magnesium which have the potential to reduce sensorineural hearing loss in meningitis, exposure to noise, brain injury, arteriosclerosis, and advanced age-related and autoimmune disease-related inflammation.
Collapse
|
65
|
Naert G, Pasdelou MP, Le Prell CG. Use of the guinea pig in studies on the development and prevention of acquired sensorineural hearing loss, with an emphasis on noise. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3743. [PMID: 31795705 PMCID: PMC7195866 DOI: 10.1121/1.5132711] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/30/2019] [Accepted: 08/12/2019] [Indexed: 05/10/2023]
Abstract
Guinea pigs have been used in diverse studies to better understand acquired hearing loss induced by noise and ototoxic drugs. The guinea pig has its best hearing at slightly higher frequencies relative to humans, but its hearing is more similar to humans than the rat or mouse. Like other rodents, it is more vulnerable to noise injury than the human or nonhuman primate models. There is a wealth of information on auditory function and vulnerability of the inner ear to diverse insults in the guinea pig. With respect to the assessment of potential otoprotective agents, guinea pigs are also docile animals that are relatively easy to dose via systemic injections or gavage. Of interest, the cochlea and the round window are easily accessible, notably for direct cochlear therapy, as in the chinchilla, making the guinea pig a most relevant and suitable model for hearing. This article reviews the use of the guinea pig in basic auditory research, provides detailed discussion of its use in studies on noise injury and other injuries leading to acquired sensorineural hearing loss, and lists some therapeutics assessed in these laboratory animal models to prevent acquired sensorineural hearing loss.
Collapse
Affiliation(s)
| | | | - Colleen G Le Prell
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas 75080, USA
| |
Collapse
|
66
|
Frye MD, Ryan AF, Kurabi A. Inflammation associated with noise-induced hearing loss. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:4020. [PMID: 31795714 PMCID: PMC7480080 DOI: 10.1121/1.5132545] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 06/17/2019] [Accepted: 06/20/2019] [Indexed: 05/22/2023]
Abstract
Inflammation is a complex biological response to harmful stimuli including infection, tissue damage, and toxins. Thus, it is not surprising that cochlear damage by noise includes an inflammatory component. One mechanism by which inflammation is generated by tissue damage is the activation of damage-associated molecular patterns (DAMPs). Many of the cellular receptors for DAMPS, including Toll-like receptors, NOD-like receptors, and DNA receptors, are also receptors for pathogens, and function in the innate immune system. DAMP receptors are known to be expressed by cochlear cells, and binding of molecules released by damaged cells to these receptors result in the activation of cell stress pathways. This leads to the generation of pro-inflammatory cytokines and chemokines that recruit pro-inflammatory leukocytes. Extensive evidence indicates pro-inflammatory cytokines including TNF alpha and interleukin 1 beta, and chemokines including CCL2, are induced in the cochlea after noise exposure. The recruitment of macrophages into the cochlea has also been demonstrated. These provide substrates for noise damage to be enhanced by inflammation. Evidence is provided by the effectiveness of anti-inflammatory drugs in ameliorating noise-induced hearing loss. Involvement of inflammation provides a wide variety of additional anti-inflammatory and pro-resolution agents as potential pharmacological interventions in noise-induced hearing loss.
Collapse
Affiliation(s)
- Mitchell D Frye
- Callier Center for Communication Disorders, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, Texas 75080, USA
| | - Allen F Ryan
- Department of Surgery/Otolaryngology, University of California San Diego, School of Medicine, and Veterans Administration Medical Center, La Jolla, California 92093, USA
| | - Arwa Kurabi
- Department of Surgery/Otolaryngology, University of California San Diego, School of Medicine, and Veterans Administration Medical Center, La Jolla, California 92093, USA
| |
Collapse
|
67
|
The nuclear transcription factor FoxG1 affects the sensitivity of mimetic aging hair cells to inflammation by regulating autophagy pathways. Redox Biol 2019; 28:101364. [PMID: 31731101 PMCID: PMC6920089 DOI: 10.1016/j.redox.2019.101364] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/22/2019] [Accepted: 10/27/2019] [Indexed: 12/18/2022] Open
Abstract
Inflammation is a self-defense response to protect individuals from infection and tissue damage, but excessive or persistent inflammation can have adverse effects on cell survival. Many individuals become especially susceptible to chronic-inflammation-induced sensorineural hearing loss as they age, but the intrinsic molecular mechanism behind aging individuals' increased risk of hearing loss remains unclear. FoxG1 (forkhead box transcription factor G1) is a key transcription factor that plays important roles in hair cell survival through the regulation of mitochondrial function, but how the function of FoxG1 changes during aging and under inflammatory conditions is unknown. In this study, we first found that FoxG1 expression and autophagy both increased gradually in the low concentration lipopolysaccharide (LPS)-induced inflammation model, while after high concentration of LPS treatment both FoxG1 expression and autophagy levels decreased as the concentration of LPS increased. We then used siRNA to downregulate Foxg1 expression in hair cell-like OC-1 cells and found that cell death and apoptosis were significantly increased after LPS injury. Furthermore, we used d-galactose (D-gal) to create an aging model with hair cell-like OC-1 cells and cochlear explant cultures in vitro and found that the expression of Foxg1 and the level of autophagy were both decreased after D-gal and LPS co-treatment. Lastly, we knocked down the expression of Foxg1 under aged inflammation conditions and found increased numbers of dead and apoptotic cells. Together these results suggest that FoxG1 affects the sensitivity of mimetic aging hair cells to inflammation by regulating autophagy pathways.
Collapse
|
68
|
A Polymer-Based Extended Release System for Stable, Long-term Intracochlear Drug Delivery. Otol Neurotol 2019; 39:1195-1202. [PMID: 30199502 DOI: 10.1097/mao.0000000000001977] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Investigate a new polymer-based drug coating suitability for safe intracochlear delivery and ability to maintain long-term physiologically active levels of the corticosteroid fluticasone propionate. STUDY DESIGN In vitro dissolution study to evaluate release profiles of polymer-coated drug particles and in vivo studies using a guinea pig model to measure perilymph drug concentrations at specific time points after implantation with polymer-coated drug particles and evaluate their effect on hearing function. METHODS Polymer-coated fluticasone propionate (FP) particles were surgically implanted in guinea pigs through the round window membrane into the cochlear scala tympani. In the pilot study, pre- and post-op hearing thresholds were conducted on days 7, 14, and 42. In a second study, post-op hearing thresholds were conducted on days 90, 120, and 180. Perilymph drug concentrations were measured on the same time points. RESULTS In 15 of 16 animals from day 7 through day 90, drug levels were within the targeted range, with no initial burst release detected. Drug was present in all animals on day 90 and was detected in some animals at 120 and 180 days. Hearing was tested and compared with non-implanted ears. Very good hearing preservation was observed in ears implanted with intracochlear particles when compared with contralateral ears. CONCLUSIONS The polymer-based extended release system is effective in providing long-term, stable drug delivery for at least 90 days with good hearing outcomes. The results of this study support the potential for achieving long-term drug delivery with a single intracochlear administration.
Collapse
|
69
|
Fulop DB, Humli V, Szepesy J, Ott V, Reglodi D, Gaszner B, Nemeth A, Szirmai A, Tamas L, Hashimoto H, Zelles T, Tamas A. Hearing impairment and associated morphological changes in pituitary adenylate cyclase activating polypeptide (PACAP)-deficient mice. Sci Rep 2019; 9:14598. [PMID: 31601840 PMCID: PMC6787024 DOI: 10.1038/s41598-019-50775-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/17/2019] [Indexed: 12/18/2022] Open
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a regulatory and cytoprotective neuropeptide, its deficiency implies accelerated aging in mice. It is present in the auditory system having antiapoptotic effects. Expression of Ca2+-binding proteins and its PAC1 receptor differs in the inner ear of PACAP-deficient (KO) and wild-type (WT) mice. Our aim was to elucidate the functional role of PACAP in the auditory system. Auditory brainstem response (ABR) tests found higher hearing thresholds in KO mice at click and low frequency burst stimuli. Hearing impairment at higher frequencies showed as reduced ABR wave amplitudes and latencies in KO animals. Increase in neuronal activity, demonstrated by c-Fos immunolabeling, was lower in KO mice after noise exposure in the ventral and dorsal cochlear nuclei. Noise induced neuronal activation was similar in further relay nuclei of the auditory pathway of WT and KO mice. Based on the similar inflammatory and angiogenic protein profile data from cochlear duct lysates, neither inflammation nor disturbed angiogenesis, as potential pathological components in sensorineural hearing losses, seem to be involved in the pathomechanism of the presented functional and morphological changes in PACAP KO mice. The hearing impairment is probably concomitant with the markedly accelerated aging processes in these animals.
Collapse
Affiliation(s)
- Daniel Balazs Fulop
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs Medical School, Pecs, Hungary
| | - Viktoria Humli
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Judit Szepesy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Virag Ott
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs Medical School, Pecs, Hungary
| | - Dora Reglodi
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs Medical School, Pecs, Hungary
| | - Balazs Gaszner
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs Medical School, Pecs, Hungary
| | - Adrienn Nemeth
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs Medical School, Pecs, Hungary.,Department of Otorhinolaryngology, University of Pecs Medical School, Pecs, Hungary
| | - Agnes Szirmai
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, Budapest, Hungary
| | - Laszlo Tamas
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, Budapest, Hungary
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan.,Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka, Japan.,Division of Bioscience, Institute for Datability Science, Osaka University, Suita, Osaka, Japan
| | - Tibor Zelles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary. .,Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| | - Andrea Tamas
- Department of Anatomy, MTA-PTE PACAP Research Team, Centre for Neuroscience, University of Pecs Medical School, Pecs, Hungary.
| |
Collapse
|
70
|
Sheth S, Sheehan K, Dhukhwa A, Al Aameri RFH, Mamillapalli C, Mukherjea D, Rybak LP, Ramkumar V. Oral Administration of Caffeine Exacerbates Cisplatin-Induced Hearing Loss. Sci Rep 2019; 9:9571. [PMID: 31267026 PMCID: PMC6606569 DOI: 10.1038/s41598-019-45964-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/14/2019] [Indexed: 12/31/2022] Open
Abstract
Adenosine A1 receptors (A1AR) are well characterized for their role in cytoprotection. Previous studies have demonstrated the presence of these receptors in the cochlea where their activation were shown to suppress cisplatin-induced inflammatory response and the resulting ototoxicity. Inhibition of A1AR by caffeine, a widely consumed psychoactive substance, could antagonize the endogenous protective role of these receptors in cochlea and potentiate cisplatin-induced hearing loss. This hypothesis was tested in a rat model of cisplatin ototoxicity following oral administration of caffeine. We report here that single-dose administration of caffeine exacerbates cisplatin-induced hearing loss without increasing the damage to outer hair cells (OHCs), but increased synaptopathy and inflammation in the cochlea. These effects of caffeine were mediated by its blockade of A1AR, as co-administration of R-PIA, an A1AR agonist, reversed the detrimental actions of caffeine and cisplatin on hearing loss. Multiple doses of caffeine exacerbated cisplatin ototoxicity which was associated with damage to OHCs and cochlear synaptopathy. These findings highlight a possible drug-drug interaction between caffeine and cisplatin for ototoxicity and suggest that caffeine consumption should be cautioned in cancer patients treated with a chemotherapeutic regimen containing cisplatin.
Collapse
Affiliation(s)
- Sandeep Sheth
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Kelly Sheehan
- Department of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Asmita Dhukhwa
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Raheem F H Al Aameri
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Chaitanya Mamillapalli
- Department of Internal Medicine (Division of Endocrinology), Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Debashree Mukherjea
- Department of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Leonard P Rybak
- Department of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Vickram Ramkumar
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States.
| |
Collapse
|
71
|
Bayoumy AB, de Ru JA. The use of hyperbaric oxygen therapy in acute hearing loss: a narrative review. Eur Arch Otorhinolaryngol 2019; 276:1859-1880. [PMID: 31111252 PMCID: PMC6581929 DOI: 10.1007/s00405-019-05469-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/08/2019] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Acute hearing loss can have a major impact on a patient's life. This holds true for both acute acoustic trauma (AAT) and idiopathic sudden sensorineural hearing loss (ISSHL), two devastating conditions for which no highly effective treatment options exist. This narrative review provides the rationale and evidence for HBOT in AAT and ISSHL. METHODS Narrative review of all the literature available on HBOT in acute hearing loss, studies were retrieved from systematic searches on PubMed and by cross referencing. DISCUSSION First, the etiological mechanisms of acute hearing loss and the mechanism of action of HBOT were discussed. Furthermore, we have provided an overview of 68 studies that clinically investigated the effect of HBOT in the last couple of decades. For future studies, it is recommend to start as early as possible with therapy, preferably within 48 h and to use combination therapy consisting of HBOT and corticosteroids. IMPLICATIONS FOR PRACTICE HBOT has been used quite extensively for acute hearing loss in the last couple of decades. Based on the amount of studies showing a positive effect, HBOT should be discussed with patients (shared decision making) as optional therapy in case of AAT and ISSHL.
Collapse
Affiliation(s)
- A B Bayoumy
- Department of Otorhinolaryngology, Central Military Hospital Utrecht, Ministry of Defense, Lundlaan 1, 3584 EZ, Utrecht, The Netherlands
| | - J A de Ru
- Department of Otorhinolaryngology, Central Military Hospital Utrecht, Ministry of Defense, Lundlaan 1, 3584 EZ, Utrecht, The Netherlands.
- Department of Otorhinolaryngology, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
72
|
Warnecke A, Prenzler NK, Schmitt H, Daemen K, Keil J, Dursin M, Lenarz T, Falk CS. Defining the Inflammatory Microenvironment in the Human Cochlea by Perilymph Analysis: Toward Liquid Biopsy of the Cochlea. Front Neurol 2019; 10:665. [PMID: 31293504 PMCID: PMC6603180 DOI: 10.3389/fneur.2019.00665] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 06/06/2019] [Indexed: 12/20/2022] Open
Abstract
The molecular pathomechanisms in the majority of patients suffering from acute or progressive sensorineural hearing loss cannot be determined yet. The size and the complex architecture of the cochlea make biopsy and in-depth histological analyses impossible without severe damage of the organ. Thus, histopathology correlated to inner disease is only possible after death. The establishment of a technique for perilymph sampling during cochlear implantation may enable a liquid biopsy and characterization of the cochlear microenvironment. Inflammatory processes may not only participate in disease onset and progression in the inner ear, but may also control performance of the implant. However, little is known about cytokines and chemokines in the human inner ear as predictive markers for cochlear implant performance. First attempts to use multiplex protein arrays for inflammatory markers were successful for the identification of cytokines, chemokines, and endothelial markers present in the human perilymph. Moreover, unsupervised cluster and principal component analyses were used to group patients by lead cytokines and to correlate certain proteins to clinical data. Endothelial and epithelial factors were detected at higher concentrations than typical pro-inflammatory cytokines such as TNF-a or IL-6. Significant differences in VEGF family members have been observed comparing patients with deafness to patients with residual hearing with significantly reduced VEGF-D levels in patients with deafness. In addition, there is a trend toward higher IGFBP-1 levels in these patients. Hence, endothelial and epithelial factors in combination with cytokines may present robust biomarker candidates and will be investigated in future studies in more detail. Thus, multiplex protein arrays are feasible in very small perilymph samples allowing a qualitative and quantitative analysis of inflammatory markers. More results are required to advance this method for elucidating the development and course of specific inner ear diseases or for perioperative characterization of cochlear implant patients.
Collapse
Affiliation(s)
- Athanasia Warnecke
- Department of Otolaryngology, Hannover Medical School, Hanover, Germany.,Cluster of Excellence of the German Research Foundation (DFG; "Deutsche Forschungsgemeinschaft") "Hearing4all", Oldenburg, Germany
| | - Nils K Prenzler
- Department of Otolaryngology, Hannover Medical School, Hanover, Germany
| | - Heike Schmitt
- Department of Otolaryngology, Hannover Medical School, Hanover, Germany.,Cluster of Excellence of the German Research Foundation (DFG; "Deutsche Forschungsgemeinschaft") "Hearing4all", Oldenburg, Germany
| | - Kerstin Daemen
- Hannover Medical School, Institute of Transplant Immunology, Hanover, Germany
| | - Jana Keil
- Hannover Medical School, Institute of Transplant Immunology, Hanover, Germany
| | - Martin Dursin
- Department of Otolaryngology, Hannover Medical School, Hanover, Germany
| | - Thomas Lenarz
- Department of Otolaryngology, Hannover Medical School, Hanover, Germany.,Cluster of Excellence of the German Research Foundation (DFG; "Deutsche Forschungsgemeinschaft") "Hearing4all", Oldenburg, Germany
| | - Christine S Falk
- Hannover Medical School, Institute of Transplant Immunology, Hanover, Germany
| |
Collapse
|
73
|
Köles L, Szepesy J, Berekméri E, Zelles T. Purinergic Signaling and Cochlear Injury-Targeting the Immune System? Int J Mol Sci 2019; 20:ijms20122979. [PMID: 31216722 PMCID: PMC6627352 DOI: 10.3390/ijms20122979] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 02/06/2023] Open
Abstract
Hearing impairment is the most common sensory deficit, affecting more than 400 million people worldwide. Sensorineural hearing losses currently lack any specific or efficient pharmacotherapy largely due to the insufficient knowledge of the pathomechanism. Purinergic signaling plays a substantial role in cochlear (patho)physiology. P2 (ionotropic P2X and the metabotropic P2Y) as well as adenosine receptors expressed on cochlear sensory and non-sensory cells are involved mostly in protective mechanisms of the cochlea. They are implicated in the sensitivity adjustment of the receptor cells by a K+ shunt and can attenuate the cochlear amplification by modifying cochlear micromechanics. Cochlear blood flow is also regulated by purines. Here, we propose to comprehend this field with the purine-immune interactions in the cochlea. The role of harmful immune mechanisms in sensorineural hearing losses has been emerging in the horizon of cochlear pathologies. In addition to decreasing hearing sensitivity and increasing cochlear blood supply, influencing the immune system can be the additional avenue for pharmacological targeting of purinergic signaling in the cochlea. Elucidating this complexity of purinergic effects on cochlear functions is necessary and it can result in development of new therapeutic approaches in hearing disabilities, especially in the noise-induced ones.
Collapse
Affiliation(s)
- László Köles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary.
| | - Judit Szepesy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary.
| | - Eszter Berekméri
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary.
- Department of Ecology, University of Veterinary Medicine, H-1078 Budapest, Hungary.
| | - Tibor Zelles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary.
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1083 Budapest, Hungary.
| |
Collapse
|
74
|
Erni ST, Fernandes G, Buri M, Perny M, Rutten RJ, van Noort JM, Senn P, Grandgirard D, Roccio M, Leib SL. Anti-inflammatory and Oto-Protective Effect of the Small Heat Shock Protein Alpha B-Crystallin (HspB5) in Experimental Pneumococcal Meningitis. Front Neurol 2019; 10:570. [PMID: 31244750 PMCID: PMC6573805 DOI: 10.3389/fneur.2019.00570] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/15/2019] [Indexed: 12/18/2022] Open
Abstract
Sensorineural hearing loss is the most common long-term deficit after pneumococcal meningitis (PM), occurring in up to 30% of surviving patients. The infection and the following overshooting inflammatory host response damage the vulnerable sensory cells of the inner ear, resulting in loss of hair cells and spiral ganglion neurons, ultimately leading to elevated hearing thresholds. Here, we tested the oto-protective properties of the small heat shock protein alpha B-crystallin (HspB5) with previously reported anti-inflammatory, anti-apoptotic and neuroprotective functions, in an experimental model of PM-induced hearing loss. We analyzed the effect of local and systemic delivery of HspB5 in an infant rat model of PM, as well as ex vivo, using whole mount cultures. Cytokine secretion profile, hearing thresholds and inner ear damage were assessed at predefined stages of the disease up to 1 month after infection. PM was accompanied by elevated pro-inflammatory cytokine concentrations in the cerebrospinal fluid (CSF), leukocyte and neutrophil infiltration in the perilymphatic spaces of the cochlea with neutrophils extracellular trap formation during the acute phase of the disease. Elevated hearing thresholds were measured after recovery from meningitis. Intracisternal but not intraperitoneal administration of HspB5 significantly reduced the levels of TNF-α, IL-6 IFN-γ and IL-10 in the acute phase of the disease. This resulted in a greater outer hair cell survival, as well as improved hearing thresholds at later stages. These results suggest that high local concentrations of HspB5 are needed to prevent inner ear damage in acute PM. HspB5 represents a promising therapeutic option to improve the auditory outcome and counteract hearing loss after PM.
Collapse
Affiliation(s)
- Silvia T Erni
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland.,Cluster for Regenerative Neuroscience, DBMR, University of Bern, Bern, Switzerland.,Laboratory of Inner Ear Research, DBMR, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Gabriella Fernandes
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland.,Cluster for Regenerative Neuroscience, DBMR, University of Bern, Bern, Switzerland.,Laboratory of Inner Ear Research, DBMR, University of Bern, Bern, Switzerland
| | - Michelle Buri
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland.,Cluster for Regenerative Neuroscience, DBMR, University of Bern, Bern, Switzerland
| | - Michael Perny
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland.,Cluster for Regenerative Neuroscience, DBMR, University of Bern, Bern, Switzerland.,Laboratory of Inner Ear Research, DBMR, University of Bern, Bern, Switzerland
| | | | | | - Pascal Senn
- Service d'oto-rhino-laryngologie (ORL) et de chirurgie cervico-faciale, Département des Neurosciences Cliniques, Hôpitaux Universitaires de Genève, Geneva, Switzerland
| | - Denis Grandgirard
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland.,Cluster for Regenerative Neuroscience, DBMR, University of Bern, Bern, Switzerland
| | - Marta Roccio
- Cluster for Regenerative Neuroscience, DBMR, University of Bern, Bern, Switzerland.,Laboratory of Inner Ear Research, DBMR, University of Bern, Bern, Switzerland.,Department of Otorhinolaryngology, Head & Neck Surgery, Inselspital, Bern, Switzerland
| | - Stephen L Leib
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland.,Cluster for Regenerative Neuroscience, DBMR, University of Bern, Bern, Switzerland
| |
Collapse
|
75
|
Warchol ME. Interactions between Macrophages and the Sensory Cells of the Inner Ear. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a033555. [PMID: 30181352 DOI: 10.1101/cshperspect.a033555] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Macrophages are present in most somatic tissues, where they detect and attack invading pathogens. Macrophages also participate in many nonimmune functions, particularly those related to tissue maintenance and injury response. The sensory organs of the inner ear contain resident populations of macrophages, and additional macrophages enter the ear after acoustic trauma or ototoxicity. As expected, such macrophages participate in the clearance of cellular debris. However, otic macrophages can also influence the long-term survival of both hair cells and afferent neurons after injury. The signals that recruit macrophages into the injured ear, as well as the precise contributions of macrophages to inner ear pathology, remain to be determined.
Collapse
Affiliation(s)
- Mark E Warchol
- Department of Otolaryngology, Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
76
|
Fetoni AR, Paciello F, Rolesi R, Paludetti G, Troiani D. Targeting dysregulation of redox homeostasis in noise-induced hearing loss: Oxidative stress and ROS signaling. Free Radic Biol Med 2019; 135:46-59. [PMID: 30802489 DOI: 10.1016/j.freeradbiomed.2019.02.022] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/04/2019] [Accepted: 02/18/2019] [Indexed: 12/20/2022]
Abstract
Hearing loss caused by exposure to recreational and occupational noise remains a worldwide disabling condition and dysregulation of redox homeostasis is the hallmark of cochlear damage induced by noise exposure. In this review we discuss the dual function of ROS to both promote cell damage (oxidative stress) and cell adaptive responses (ROS signaling) in the cochlea undergoing a stressful condition such as noise exposure. We focus on animal models of noise-induced hearing loss (NIHL) and on the function of exogenous antioxidants to maintaining a physiological role of ROS signaling by distinguishing the effect of exogenous "direct" antioxidants (i.e. CoQ10, NAC), that react with ROS to decrease oxidative stress, from the exogenous "indirect" antioxidants (i.e. nutraceutics and phenolic compounds) that can activate cellular redox enzymes through the Keap1-Nrf2-ARE pathway. The anti-inflammatory properties of Nrf2 signaling are discussed in relation to the ROS/inflammation interplay in noise exposure. Unveiling the mechanisms of ROS regulating redox-associated signaling pathways is essential in providing relevant targets for innovative and effective therapeutic strategies against NIHL.
Collapse
Affiliation(s)
- Anna Rita Fetoni
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Institute of Otolaryngology, Università Cattolica del Sacro Cuore, Rome, Italy; CNR Institute of Cell Biology and Neurobiology, Monterotondo, Italy
| | - Fabiola Paciello
- Institute of Otolaryngology, Università Cattolica del Sacro Cuore, Rome, Italy; CNR Institute of Cell Biology and Neurobiology, Monterotondo, Italy
| | - Rolando Rolesi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Institute of Otolaryngology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gaetano Paludetti
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Institute of Otolaryngology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Diana Troiani
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
77
|
Hong H, Dooley KE, Starbird LE, Francis HW, Farley JE. Adverse outcome pathway for aminoglycoside ototoxicity in drug-resistant tuberculosis treatment. Arch Toxicol 2019; 93:1385-1399. [PMID: 30963202 DOI: 10.1007/s00204-019-02407-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/06/2019] [Indexed: 12/22/2022]
Abstract
Individuals treated for multidrug-resistant tuberculosis (MDR-TB) with aminoglycosides (AGs) in resource-limited settings often experience permanent hearing loss. However, AG ototoxicity has never been conceptually integrated or causally linked to MDR-TB patients' pre-treatment health condition. We sought to develop a framework that examines the relationships between pre-treatment conditions and AG-induced hearing loss among MDR-TB-infected individuals in sub-Saharan Africa. The adverse outcome pathway (AOP) approach was used to develop a framework linking key events (KEs) within a biological pathway that results in adverse outcomes (AO), which are associated with chemical perturbation of a molecular initiating event (MIE). This AOP describes pathways initiating from AG accumulation in hair cells, sound transducers of the inner ear immediately after AG administration. After administration, the drug catalyzes cellular oxidative stress due to overproduction of reactive oxygen species. Since oxidative stress inhibits mitochondrial protein synthesis, hair cells undergo apoptotic cell death, resulting in irreversible hearing loss (AO). We identified the following pre-treatment conditions that worsen the causal linkage between MIE and AO: HIV, malnutrition, aging, noise, smoking, and alcohol use. The KEs are: (1) nephrotoxicity, pre-existing hearing loss, and hypoalbuminemia that catalyzes AG accumulation; (2) immunodeficiency and antioxidant deficiency that trigger oxidative stress pathways; and (3) co-administration of mitochondrial toxic drugs that hinder mitochondrial protein synthesis, causing apoptosis. This AOP clearly warrants the development of personalized interventions for patients undergoing MDR-TB treatment. Such interventions (i.e., choosing less ototoxic drugs, scheduling frequent monitoring, modifying nutritional status, avoiding poly-pharmacy) will be required to limit the burden of AG ototoxicity.
Collapse
Affiliation(s)
- Hyejeong Hong
- Johns Hopkins University School of Nursing, 525 North Wolfe Street, Baltimore, MD, 21205, USA. .,Johns Hopkins University School of Nursing, The REACH Initiative, 855 N. Wolfe Street, 21205, Baltimore, MD, USA.
| | - Kelly E Dooley
- Divisions of Clinical Pharmacology and Infectious Disease, Johns Hopkins University School of Medicine, 600 North Wolfe Street, 21205, Baltimore, MD, USA
| | - Laura E Starbird
- Center for Health Policy, Columbia University School of Nursing, 560 W 168 St, 10032, New York, NY, USA
| | - Howard W Francis
- Division of Head and Neck Surgery and Communication Sciences, Duke University School of Medicine, 40 Duke Medicine Circle, 27710, Durham, NC, USA
| | - Jason E Farley
- Johns Hopkins University School of Nursing, 525 North Wolfe Street, Baltimore, MD, 21205, USA.,Johns Hopkins University School of Nursing, The REACH Initiative, 855 N. Wolfe Street, 21205, Baltimore, MD, USA
| |
Collapse
|
78
|
Celaya AM, Sánchez-Pérez I, Bermúdez-Muñoz JM, Rodríguez-de la Rosa L, Pintado-Berninches L, Perona R, Murillo-Cuesta S, Varela-Nieto I. Deficit of mitogen-activated protein kinase phosphatase 1 (DUSP1) accelerates progressive hearing loss. eLife 2019; 8:39159. [PMID: 30938680 PMCID: PMC6464786 DOI: 10.7554/elife.39159] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 04/01/2019] [Indexed: 12/12/2022] Open
Abstract
Mitogen-activated protein kinases (MAPK) such as p38 and the c-Jun N-terminal kinases (JNKs) are activated during the cellular response to stress signals. Their activity is regulated by the MAPK-phosphatase 1 (DUSP1), a key component of the anti-inflammatory response. Stress kinases are well-described elements of the response to otic injury and the otoprotective potential of JNK inhibitors is being tested in clinical trials. By contrast, there are no studies exploring the role of DUSP1 in hearing and hearing loss. Here we show that Dusp1 expression is age-regulated in the mouse cochlea. Dusp1 gene knock-out caused premature progressive hearing loss, as confirmed by auditory evoked responses in Dusp1-/- mice. Hearing loss correlated with cell death in hair cells, degeneration of spiral neurons and increased macrophage infiltration. Dusp1-/- mouse cochleae showed imbalanced redox status and dysregulated expression of cytokines. These data suggest that DUSP1 is essential for cochlear homeostasis in the response to stress during ageing.
Collapse
Affiliation(s)
- Adelaida M Celaya
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), CIBER, ISCIII, Madrid, Spain
| | - Isabel Sánchez-Pérez
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), CIBER, ISCIII, Madrid, Spain.,Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain.,Biochemistry Department, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain.,Biomedicine Unit UCLM-CSIC, Madrid, Spain
| | - Jose M Bermúdez-Muñoz
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), CIBER, ISCIII, Madrid, Spain
| | - Lourdes Rodríguez-de la Rosa
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), CIBER, ISCIII, Madrid, Spain.,Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Laura Pintado-Berninches
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.,Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Rosario Perona
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), CIBER, ISCIII, Madrid, Spain.,Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Silvia Murillo-Cuesta
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), CIBER, ISCIII, Madrid, Spain
| | - Isabel Varela-Nieto
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), CIBER, ISCIII, Madrid, Spain
| |
Collapse
|
79
|
Perin P, Voigt FF, Bethge P, Helmchen F, Pizzala R. iDISCO+ for the Study of Neuroimmune Architecture of the Rat Auditory Brainstem. Front Neuroanat 2019; 13:15. [PMID: 30814937 PMCID: PMC6381022 DOI: 10.3389/fnana.2019.00015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/31/2019] [Indexed: 01/20/2023] Open
Abstract
The lower stations of the auditory system display a complex anatomy. The inner ear labyrinth is composed of several interconnecting membranous structures encased in cavities of the temporal bone, and the cerebellopontine angle contains fragile structures such as meningeal folds, the choroid plexus (CP), and highly variable vascular formations. For this reason, most histological studies of the auditory system have either focused on the inner ear or the CNS by physically detaching the temporal bone from the brainstem. However, several studies of neuroimmune interactions have pinpointed the importance of structures such as meninges and CP; in the auditory system, an immune function has also been suggested for inner ear structures such as the endolymphatic duct (ED) and sac. All these structures are thin, fragile, and have complex 3D shapes. In order to study the immune cell populations located on these structures and their relevance to the inner ear and auditory brainstem in health and disease, we obtained a clarified-decalcified preparation of the rat hindbrain still attached to the intact temporal bone. This preparation may be immunolabeled using a clearing protocol (based on iDISCO+) to show location and functional state of immune cells. The observed macrophage distribution suggests the presence of CP-mediated communication pathways between the inner ear and the cochlear nuclei.
Collapse
Affiliation(s)
- Paola Perin
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Fabian F Voigt
- Brain Research Institute, University of Zurich, Zürich, Switzerland.,Center for Neurosciences, University of Zurich and ETH Zurich, Zürich, Switzerland
| | - Philipp Bethge
- Brain Research Institute, University of Zurich, Zürich, Switzerland.,Center for Neurosciences, University of Zurich and ETH Zurich, Zürich, Switzerland
| | - Fritjof Helmchen
- Brain Research Institute, University of Zurich, Zürich, Switzerland.,Center for Neurosciences, University of Zurich and ETH Zurich, Zürich, Switzerland
| | - Roberto Pizzala
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
80
|
Bivona G, Agnello L, Lo Sasso B, Scazzone C, Butera D, Gambino CM, Iacolino G, Bellia C, Ciaccio M. Vitamin D in malaria: more hypotheses than clues. Heliyon 2019; 5:e01183. [PMID: 30793054 PMCID: PMC6370580 DOI: 10.1016/j.heliyon.2019.e01183] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 12/15/2022] Open
Abstract
Vitamin D is a secosteroid hormone regulating calcium and phosphate metabolism, immune response and brain development. Low blood 25(OH)D levels have been reported in patients affected by infectious diseases caused by parasites, including malaria. Despite the high effectiveness of antimalarials, malaria is burdened with high morbidity and mortality, and the search for additional therapies is rapidly growing. Furthermore, available preventive measures have proved to be barely effective so far. Finding new prevention and therapy tools is a matter of urgency. Studies on animal models and humans have hypothesized some mechanisms by which the hormone can influence malaria pathogenesis, and the role of Vitamin D supplementation in preventing and treating this disease has been suggested. Few studies on the association between Vitamin D and malaria are available and disagreeing results have been reported. Studies in humans reporting an association between low 25(OH)D circulating levels and Malaria have a small sample size and observational study-set. Randomized controlled trials are needed in order to understand if Vitamin D administration might play a role in preventing and treating malaria.
Collapse
Affiliation(s)
- Giulia Bivona
- Section of Clinical Biochemistry and Clinical Molecular Medicine, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Italy
| | - Luisa Agnello
- Section of Clinical Biochemistry and Clinical Molecular Medicine, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Italy
| | - Bruna Lo Sasso
- Section of Clinical Biochemistry and Clinical Molecular Medicine, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Italy
| | - Concetta Scazzone
- Section of Clinical Biochemistry and Clinical Molecular Medicine, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Italy
| | - Daniela Butera
- Section of Clinical Biochemistry and Clinical Molecular Medicine, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Italy
| | - Caterina Maria Gambino
- Section of Clinical Biochemistry and Clinical Molecular Medicine, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Italy
| | - Giorgia Iacolino
- Section of Clinical Biochemistry and Clinical Molecular Medicine, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Italy
| | - Chiara Bellia
- Section of Clinical Biochemistry and Clinical Molecular Medicine, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Italy
| | - Marcello Ciaccio
- Section of Clinical Biochemistry and Clinical Molecular Medicine, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Italy
- Department and U.O.C. Laboratory Medicine, University Hospital “Paolo Giaccone” of Palermo, Italy
| |
Collapse
|
81
|
Abstract
OBJECTIVES To evaluate whether gout is associated with a higher risk of hearing loss in older adults. DESIGN Retrospective cohort study. SETTING USA. PARTICIPANTS 5% random sample of US Medicare claims 2006-2012, representative of US adults aged 65 years or older. PRIMARY AND SECONDARY OUTCOMES Incident (new) hearing loss identified by the presence of at least two claims at least 4 weeks apart with an International Classification of Diseases, Ninth Revision, 389.xx, with no respective claim in the baseline 1-year observation period. RESULTS Among the 1.71 million eligible people, 89 409 developed incident hearing impairment. The crude incidence rates of incident hearing impairment in people with versus without gout were 16.9 vs. 8.7 per 1000 person-years. Using Cox regression analyses adjusted for demographics, medical comorbidity and common cardiovascular and gout medications, we found that gout was associated with a significantly higher HR of incident hearing impairment, HR was 1.44 (95% CI 1.40 to 1.49, p<0.0001). Findings were confirmed in sensitivity analyses that substituted continuous Charlson-Romano Index with categorical variable or all comorbidities and additionally cardiovascular risk factors, with minimal attenuation of HR. CONCLUSIONS Gout is associated with a higher risk of development of hearing loss in older adults. Future studies need to assess the underlying mechanisms of this association.
Collapse
Affiliation(s)
- Jasvinder A Singh
- Medicine Service, VA Medical Center, Birmingham, Alabama, USA
- Department of Medicine, School of Medicine, University of Alabama, Birmingham, Alabama, USA
- Division of Epidemiology, School of Public Health, University of Alabama, Birmingham, Alabama, USA
| | - John D Cleveland
- Department of Medicine, School of Medicine, University of Alabama, Birmingham, Alabama, USA
| |
Collapse
|
82
|
Targeted PCR Array Analysis of Genes in Innate Immunity and Glucocorticoid Signaling Pathways in Mice Cochleae Following Acoustic Trauma. Otol Neurotol 2018; 39:e593-e600. [DOI: 10.1097/mao.0000000000001874] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
83
|
Frye MD, Zhang C, Hu BH. Lower level noise exposure that produces only TTS modulates the immune homeostasis of cochlear macrophages. J Neuroimmunol 2018; 323:152-166. [PMID: 30196827 DOI: 10.1016/j.jneuroim.2018.06.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/29/2018] [Accepted: 06/30/2018] [Indexed: 02/07/2023]
Abstract
Noise exposure producing temporary threshold shifts (TTS) has been demonstrated to cause permanent changes to cochlear physiology and hearing function. Several explanations have been purported to underlie these long-term changes in cochlear function, such as damage to sensory cell stereocilia and synaptic connections between sensory cells and their innervation by spiral ganglion neurons, and demyelination of the auditory nerve. Though these structural defects have been implicated in hearing difficulty, cochlear responses to this stress damage remains poorly understood. Here, we report the activation of the cochlear immune system following exposure to lower level noise (LLN) that causes only TTS. Using multiple morphological, molecular and functional parameters, we assessed the responses of macrophages, the primary immune cell population in the cochlea, to the LLN exposure. This study reveals that a LLN that causes only TTS increases the macrophage population in cochlear regions immediately adjacent to sensory cells and their innervations. Many of these cells acquire an activated morphology and express the immune molecules CCL2 and ICAM1 that are important for macrophage inflammatory activity and adhesion. However, LLN exposure reduces macrophage phagocytic ability. While the activated morphology of cochlear macrophages reverses, the complete recovery is not achieved 2 months after the LLN exposure. Taken together, these observations clearly implicate the cochlear immune system in the cochlear response to LLN that causes no permanent threshold change.
Collapse
Affiliation(s)
- Mitchell D Frye
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA.
| | - Celia Zhang
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA.
| | - Bo Hua Hu
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA.
| |
Collapse
|
84
|
Fitzakerley JL, Trachte GJ. Genetics of guanylyl cyclase pathways in the cochlea and their influence on hearing. Physiol Genomics 2018; 50:780-806. [PMID: 29958079 DOI: 10.1152/physiolgenomics.00056.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although hearing loss is the most common sensory deficit in Western societies, there are no successful pharmacological treatments for this disorder. Recent experiments have demonstrated that manipulation of intracellular cyclic guanosine monophosphate (cGMP) concentrations can have both beneficial and harmful effects on hearing. In this review, we will examine the role of cGMP as a key second messenger involved in many aspects of cochlear function and discuss the known functions of downstream effectors of cGMP in sound processing. The nitric oxide-stimulated soluble guanylyl cyclase system (sGC) and the two natriuretic peptide-stimulated particulate GCs (pGCs) will be more extensively covered because they have been studied most thoroughly. The cochlear GC systems are attractive targets for medical interventions that improve hearing while simultaneously representing an under investigated source of sensorineural hearing loss.
Collapse
Affiliation(s)
- Janet L Fitzakerley
- Department of Biomedical Sciences, University of Minnesota Medical School , Duluth, Minnesota
| | - George J Trachte
- Department of Biomedical Sciences, University of Minnesota Medical School , Duluth, Minnesota
| |
Collapse
|
85
|
Edderkaoui B, Sargsyan L, Hetrick A, Li H. Deficiency of Duffy Antigen Receptor for Chemokines Ameliorated Cochlear Damage From Noise Exposure. Front Mol Neurosci 2018; 11:173. [PMID: 29899689 PMCID: PMC5988871 DOI: 10.3389/fnmol.2018.00173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/08/2018] [Indexed: 01/06/2023] Open
Abstract
Cochlear inflammatory response to various environmental insults, including acoustic and ototoxic overexposures, has been increasingly become a topic of interest. As the immune response is associated with both pathology and protection, targeting specific components of the immune response is expected to dissect the relationships between cellular damage and inflammation-associated protection and repair in the cochlea. Duffy antigen receptor for chemokines (DARC) is a member of a group of atypical chemokine receptors, and essential for chemokine-regulated leukocyte/neutrophil trafficking during inflammation. Previous studies have reported that Darc deficiency alters chemokine bioavailability and leukocyte homeostasis, leading to significant anti-inflammatory effects in tissues following injury. In this study, we have used Darc knockout mice to determine the impact of a deficiency in this gene on cochlear development, as well as function in cochlea subjected to various stresses. We observed that DARC is not required for normal development of cochlear function, as evidenced by typical hearing sensitivity in juvenile Darc-KO mice, as compared to wild type (WT) C57BL/6 mice. However, Darc-KO mice exhibited improved hearing recovery after intense noise exposure when compared to wild-type. The auditory brainstem response (ABR) threshold shift between KO and WT mice was most obvious at 1-week post-noise exposure. At cochlear locations above the frequency range of the energy band of damaging noise, both hair cell survival and ribbon synapse density were improved in Darc deficient animals. In addition, the mRNA levels of some major inflammatory effectors, including Mcp-1 and Gdf15, were altered in Darc-KO mice compared to control mice at 1, 3 and 7 days post-noise exposure. These data collectively suggest that the normal Darc-dependent inflammatory response slows down the process of hearing recovery, and exacerbates cellular damage in the cochlea after noise exposure.
Collapse
Affiliation(s)
- Bouchra Edderkaoui
- Research Service, VA Loma Linda Healthcare System, Loma Linda, CA, United States.,Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Liana Sargsyan
- Research Service, VA Loma Linda Healthcare System, Loma Linda, CA, United States
| | - Alisa Hetrick
- Research Service, VA Loma Linda Healthcare System, Loma Linda, CA, United States
| | - Hongzhe Li
- Research Service, VA Loma Linda Healthcare System, Loma Linda, CA, United States.,Loma Linda University School of Medicine, Loma Linda, CA, United States.,Department of Otolaryngology-Head and Neck Surgery, Loma Linda University School of Medicine, Loma Linda, CA, United States
| |
Collapse
|
86
|
Hu BH, Zhang C, Frye MD. Immune cells and non-immune cells with immune function in mammalian cochleae. Hear Res 2018; 362:14-24. [PMID: 29310977 PMCID: PMC5911222 DOI: 10.1016/j.heares.2017.12.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/21/2017] [Accepted: 12/08/2017] [Indexed: 02/07/2023]
Abstract
The cochlea has an immune environment dominated by macrophages under resting conditions. When stressed, circulating monocytes enter the cochlea. These immune mediators, along with cochlear resident cells, organize a complex defense response against pathological challenges. Since the cochlea has minimal exposure to pathogens, most inflammatory conditions in the cochlea are sterile. Although the immune response is initiated for the protection of the cochlea, off-target effects can cause collateral damage to cochlear cells. A better understanding of cochlear immune capacity and regulation would therefore lead to development of new therapeutic treatments. Over the past decade, there have been many advances in our understanding of cochlear immune capacity. In this review, we provide an update and overview of the cellular components of cochlear immune capacity with a focus on macrophages in mammalian cochleae. We describe the composition and distribution of immune cells in the cochlea and suggest that phenotypic and functional characteristics of macrophages have site-specific diversity. We also highlight the response of immune cells to acute and chronic stresses and comment on the potential function of immune cells in cochlear homeostasis and disease development. Finally, we briefly review potential roles for cochlear resident cells in immune activities of the cochlea.
Collapse
Affiliation(s)
- Bo Hua Hu
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA.
| | - Celia Zhang
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA.
| | - Mitchell D Frye
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA.
| |
Collapse
|
87
|
Susceptibility of Diabetic Mice to Noise Trauma. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7601232. [PMID: 29619376 PMCID: PMC5830016 DOI: 10.1155/2018/7601232] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 12/26/2017] [Accepted: 01/17/2018] [Indexed: 02/07/2023]
Abstract
Diabetes can lead to many end-organ complications. However, the association between diabetes and hearing loss is not well understood. Here, we investigated the effect of noise exposure on diabetic mice compared with wild-type mice. Hearing threshold shifts, histopathologic changes in the cochlea, and inflammatory responses were evaluated over time. After noise exposure, more severe hearing threshold shifts, auditory hair cell loss, and synaptopathies were notable in diabetic mice compared with wild-type mice. Moreover, increased inflammatory responses and reactive oxygen species production were observed in the ears of diabetic mice. The results demonstrated that diabetic mice are more susceptible to noise trauma.
Collapse
|
88
|
Rodríguez-de la Rosa L, Lassaletta L, Calvino M, Murillo-Cuesta S, Varela-Nieto I. The Role of Insulin-Like Growth Factor 1 in the Progression of Age-Related Hearing Loss. Front Aging Neurosci 2017; 9:411. [PMID: 29311900 PMCID: PMC5733003 DOI: 10.3389/fnagi.2017.00411] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 11/27/2017] [Indexed: 12/21/2022] Open
Abstract
Aging is associated with impairment of sensorial functions and with the onset of neurodegenerative diseases. As pari passu circulating insulin-like growth factor 1 (IGF-1) bioavailability progressively decreases, we see a direct correlation with sensory impairment and cognitive performance in older humans. Age-related sensory loss is typically caused by the irreversible death of highly differentiated neurons and sensory receptor cells. Among sensory deficits, age-related hearing loss (ARHL), also named presbycusis, affects one third of the population over 65 years of age and is a major factor in the progression of cognitive problems in the elderly. The genetic and molecular bases of ARHL are largely unknown and only a few genes related to susceptibility to oxidative stress, excitotoxicity, and cell death have been identified. IGF-1 is known to be a neuroprotective agent that maintains cellular metabolism, activates growth, proliferation and differentiation, and limits cell death. Inborn IGF-1 deficiency leads to profound sensorineural hearing loss both in humans and mice. IGF-1 haploinsufficiency has also been shown to correlate with ARHL. There is not much information available on the effect of IGF-1 deficiency on other human sensory systems, but experimental models show a long-term impact on the retina. A secondary action of IGF-1 is the control of oxidative stress and inflammation, thus helping to resolve damage situations, acute or made chronic by aging. Here we will review the primary actions of IGF-1 in the auditory system and the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Lourdes Rodríguez-de la Rosa
- “Alberto Sols” Biomedical Research Institute CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Luis Lassaletta
- “Alberto Sols” Biomedical Research Institute CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
- Otorhinolaryngology Department, Hospital La Paz, Madrid, Spain
| | - Miryam Calvino
- Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
- Otorhinolaryngology Department, Hospital La Paz, Madrid, Spain
| | - Silvia Murillo-Cuesta
- “Alberto Sols” Biomedical Research Institute CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Isabel Varela-Nieto
- “Alberto Sols” Biomedical Research Institute CSIC-UAM, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| |
Collapse
|
89
|
Jiang M, Taghizadeh F, Steyger PS. Potential Mechanisms Underlying Inflammation-Enhanced Aminoglycoside-Induced Cochleotoxicity. Front Cell Neurosci 2017; 11:362. [PMID: 29209174 PMCID: PMC5702304 DOI: 10.3389/fncel.2017.00362] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/03/2017] [Indexed: 12/20/2022] Open
Abstract
Aminoglycoside antibiotics remain widely used for urgent clinical treatment of life-threatening infections, despite the well-recognized risk of permanent hearing loss, i.e., cochleotoxicity. Recent studies show that aminoglycoside-induced cochleotoxicity is exacerbated by bacteriogenic-induced inflammation. This implies that those with severe bacterial infections (that induce systemic inflammation), and are treated with bactericidal aminoglycosides are at greater risk of drug-induced hearing loss than previously recognized. Incorporating this novel comorbid factor into cochleotoxicity risk prediction models will better predict which individuals are more predisposed to drug-induced hearing loss. Here, we review the cellular and/or signaling mechanisms by which host-mediated inflammatory responses to infection could enhance the trafficking of systemically administered aminoglycosides into the cochlea to enhance the degree of cochleotoxicity over that in healthy preclinical models. Once verified, these mechanisms will be potential targets for novel pharmacotherapeutics that reduce the risk of drug-induced hearing loss (and acute kidney damage) without compromising the life-saving bactericidal efficacy of aminoglycosides.
Collapse
Affiliation(s)
- Meiyan Jiang
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Farshid Taghizadeh
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Peter S Steyger
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States.,National Center for Rehabilitative Auditory Research, VA Portland Health Care System, Portland, OR, United States
| |
Collapse
|
90
|
Endoplasmic Reticulum Stress in Hearing Loss. JOURNAL OF OTORHINOLARYNGOLOGY, HEARING AND BALANCE MEDICINE 2017. [DOI: 10.3390/ohbm1010003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
91
|
Jiang M, Karasawa T, Steyger PS. Aminoglycoside-Induced Cochleotoxicity: A Review. Front Cell Neurosci 2017; 11:308. [PMID: 29062271 PMCID: PMC5640705 DOI: 10.3389/fncel.2017.00308] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/15/2017] [Indexed: 12/20/2022] Open
Abstract
Aminoglycoside antibiotics are used as prophylaxis, or urgent treatment, for many life-threatening bacterial infections, including tuberculosis, sepsis, respiratory infections in cystic fibrosis, complex urinary tract infections and endocarditis. Although aminoglycosides are clinically-essential antibiotics, the mechanisms underlying their selective toxicity to the kidney and inner ear continue to be unraveled despite more than 70 years of investigation. The following mechanisms each contribute to aminoglycoside-induced toxicity after systemic administration: (1) drug trafficking across endothelial and epithelial barrier layers; (2) sensory cell uptake of these drugs; and (3) disruption of intracellular physiological pathways. Specific factors can increase the risk of drug-induced toxicity, including sustained exposure to higher levels of ambient sound, and selected therapeutic agents such as loop diuretics and glycopeptides. Serious bacterial infections (requiring life-saving aminoglycoside treatment) induce systemic inflammatory responses that also potentiate the degree of ototoxicity and permanent hearing loss. We discuss prospective clinical strategies to protect auditory and vestibular function from aminoglycoside ototoxicity, including reduced cochlear or sensory cell uptake of aminoglycosides, and otoprotection by ameliorating intracellular cytotoxicity.
Collapse
Affiliation(s)
- Meiyan Jiang
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Takatoshi Karasawa
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Peter S Steyger
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States.,National Center for Rehabilitative Auditory Research, Portland VA Medical Center (VHA), Portland, OR, United States
| |
Collapse
|