51
|
Wang J, Qi F, Wang Z, Zhang Z, Pan N, Huai L, Qu S, Zhao L. A review of traditional Chinese medicine for treatment of glioblastoma. Biosci Trends 2019; 13:476-487. [PMID: 31866614 DOI: 10.5582/bst.2019.01323] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glioblastoma (GBM) is the most common primary malignant intracranial tumor. Due to its high morbidity, high mortality, high recurrence rate, and low cure rate, it has brought great difficulty for treatment. Although the current treatment is multimodal, including surgical resection, radiotherapy, and chemotherapy, it does not significantly improve survival time. The dismal prognosis and inevitable recurrence as well as resistance to chemoradiotherapy may be related to its highly cellular heterogeneity and multiple subclonal populations. Traditional Chinese medicine has its own unique advantages in the prevention and treatment of it. A comprehensive literature search of anti-glioblastoma active ingredients and derivatives from traditional Chinese medicine was carried out in literature published in PubMed, Scopus, Web of Science Cochrane library, CNKI, Wanfang, and VIP database. Hence, this article systematically reviews experimental research progress of some traditional Chinese medicine in treatment of glioblastoma from two aspects: strengthening vital qi and eliminating pathogenic qi. Among, strengthening vital qi medicine includes panax ginseng, licorice, lycium barbarum, angelica sinensis; eliminating pathogenic medicine includes salvia miltiorrhiza bunge, scutellaria baicalensis, coptis rhizoma, thunder god vine, and sophora flavescens. We found that the same active ingredient can act on different signaling pathways, such as ginsenoside Rg3 inhibited proliferation and induced apoptosis via the AKT, MEK signal pathway. Hence, this multi-target, multi-level pathway may bring on a new dawn for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Jinjing Wang
- Shandong University of Traditional Chinese Medicine, Ji'nan, China
| | - Fanghua Qi
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital affili-ated to Shandong University, Ji'nan, China
| | - Zhixue Wang
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital affili-ated to Shandong University, Ji'nan, China
| | - Zhikun Zhang
- Shandong University of Traditional Chinese Medicine, Ji'nan, China
| | - Ni Pan
- Shandong University of Traditional Chinese Medicine, Ji'nan, China
| | - Lei Huai
- Shandong University of Traditional Chinese Medicine, Ji'nan, China
| | - Shuyu Qu
- Shandong University of Traditional Chinese Medicine, Ji'nan, China
| | - Lin Zhao
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital affili-ated to Shandong University, Ji'nan, China
| |
Collapse
|
52
|
Berberine Ameliorates Doxorubicin-Induced Cardiotoxicity via a SIRT1/p66Shc-Mediated Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2150394. [PMID: 31885776 PMCID: PMC6918936 DOI: 10.1155/2019/2150394] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/19/2019] [Accepted: 10/18/2019] [Indexed: 12/24/2022]
Abstract
Doxorubicin- (DOX-) induced cardiotoxicity is associated with oxidative stress and cardiomyocyte apoptosis. The adaptor protein p66Shc regulates the cellular redox status and determines cell susceptibility to apoptosis. This study is aimed at investigating the involvement of sirtuin 1- (SIRT1-) mediated p66Shc inhibition in DOX-induced redox signalling and exploring the possible protective mechanisms of berberine (Ber) against DOX-triggered cardiac injury in rats and a cultured H9c2 cell line. Our results showed that the Ber pretreatment markedly increased CAT, SOD, and GSH-PX activities, decreased the levels of MDA, and improved the electrocardiogram and histopathological changes in the myocardium in DOX-treated rats (in vivo). Furthermore, Ber significantly ameliorated the DOX-induced oxidative insult and mitochondrial damage by adjusting the levels of intracellular ROS, ΔΨm, and [Ca2+]m in H9c2 cells (in vitro). Importantly, the Ber pretreatment increased SIRT1 expression following DOX exposure but downregulated p66Shc. Consistent with the results demonstrating the SIRT1-mediated inhibition of p66Shc expression, the Ber pretreatment inhibited DOX-triggered cardiomyocyte apoptosis and mitochondrial dysfunction. After exposing H9c2 cells to DOX, the increased SIRT1 expression induced by Ber was abrogated by a SIRT1-specific inhibitor (EX527) or the use of siRNA against SIRT1. Accordingly, SIRT1 inhibition significantly abrogated the suppression of p66Shc expression and protection of Ber against DOX-induced oxidative stress and apoptosis. These results suggest that Ber protects the heart from DOX injury through SIRT1-mediated p66Shc suppression, offering a novel mechanism responsible for the protection of Ber against DOX-induced cardiomyopathy.
Collapse
|
53
|
Ngo T, Kim K, Bian Y, Noh H, Lim KM, Chung JH, Bae ON. Antithrombotic Effects of Paeoniflorin from Paeonia suffruticosa by Selective Inhibition on Shear Stress-Induced Platelet Aggregation. Int J Mol Sci 2019; 20:ijms20205040. [PMID: 31614534 PMCID: PMC6834133 DOI: 10.3390/ijms20205040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/30/2019] [Accepted: 10/09/2019] [Indexed: 12/16/2022] Open
Abstract
Antiplatelet agents are important in the pharmacotherapeutic regime for many cardiovascular diseases, including thrombotic disorders. However, bleeding, the most serious adverse effect associated with current antiplatelet therapy, has led to many efforts to discover novel anti-platelet drugs without bleeding issues. Of note, shear stress-induced platelet aggregation (SIPA) is a promising target to overcome bleeding since SIPA happens only in pathological conditions. Accordingly, this study was carried out to discover antiplatelet agents selectively targeting SIPA. By screening various herbal extracts, Paeonia suffruticosa and its major bioactive constituent, paeoniflorin, were identified to have significant inhibitory effects against shear-induced aggregation in human platelets. The effects of paeoniflorin on intraplatelet calcium levels, platelet degranulation, and integrin activation in high shear stress conditions were evaluated by a range of in vitro experiments using human platelets. The inhibitory effect of paeoniflorin was determined to be highly selective against SIPA, through modulating von Willebrand Factor (vWF)-platelet glycoprotein Ib (GP Ib) interaction. The effects of paeoniflorin on platelet functions under high shear stress were confirmed in the ex vivo SIPA models in rats, showing the good accordance with the anti-SIPA effects on human platelets. Treatment with paeoniflorin significantly prevented arterial thrombosis in vivo from the dose of 10 mg/kg without prolonging bleeding time or blood clotting time in rats. Collectively, our results demonstrated that paeoniflorin can be a novel anti-platelet agent selectively targeting SIPA with an improved safety profile.
Collapse
Affiliation(s)
- Thien Ngo
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
- Faculty of Pharmacy, Thai Binh University of Medicine and Pharmacy, Thai Binh city 410000, Vietnam.
| | - Keunyoung Kim
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Yiying Bian
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
- School of Public Health, China Medical University, Shenyang 110122, China.
| | - Hakjun Noh
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seoul 03760, Korea.
| | - Jin-Ho Chung
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Ok-Nam Bae
- College of Pharmacy, Hanyang University, Ansan 15588, Korea.
| |
Collapse
|
54
|
Palmatine inhibits Zika virus infection by disrupting virus binding, entry, and stability. Biochem Biophys Res Commun 2019; 518:732-738. [PMID: 31472967 DOI: 10.1016/j.bbrc.2019.08.120] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 08/23/2019] [Indexed: 12/15/2022]
Abstract
Zika virus (ZIKV) is an emerging vector-borne virus that is associated with severe congenital cerebral anomalies in fetuses and paralytic Guillain-Barré syndrome in adults. In the current global health crisis, there are no vaccines or therapeutics available for the treatment of ZIKV infection. In the present study, we evaluated the efficacy of the protoberberine alkaloid, palmatine, in inhibiting ZIKV and Japanese encephalitis virus (JEV). Palmatine was shown to bind to restricted viruses, inhibit ZIKV infection, and resist ZIKV-induced cytopathic effects. Palmatine was also shown to inhibit JEV infection in multiple cell lines. Overall, the effects of palmatine in disrupting ZIKV binding, entry, and stability indicate that this small molecule would be a good starting point for the development of treatments aimed at inhibiting ZIKV infection.
Collapse
|
55
|
Ran Q, Wang J, Wang L, Zeng HR, Yang XB, Huang QW. Rhizoma coptidis as a Potential Treatment Agent for Type 2 Diabetes Mellitus and the Underlying Mechanisms: A Review. Front Pharmacol 2019; 10:805. [PMID: 31396083 PMCID: PMC6661542 DOI: 10.3389/fphar.2019.00805] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 06/21/2019] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus, especially type 2 diabetes mellitus (T2DM), has become a significant public health burden. Rhizoma coptidis (RC), known as Huang Lian, is widely used for treating diabetes in China. The bioactive compounds of RC, especially alkaloids, have the potential to suppress T2DM-induced lesions, including diabetic vascular dysfunction, diabetic heart disease, diabetic hyperlipidemia, diabetic nephropathy, diabetic encephalopathy, diabetic osteopathy, diabetic enteropathy, and diabetic retinopathy. This review summarizes the effects of RC and its bioactive compounds on T2DM and T2DM complications. Less research has been conducted on non-alkaloid fractions of RC, which may exert synergistic action with alkaloids. Moreover, we summarized the pharmacokinetic properties and structure-activity relationships of RC on T2DM with reference to extant literature and showed clearly that RC has potential therapeutic effect on T2DM.
Collapse
Affiliation(s)
- Qian Ran
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hai-rong Zeng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang-bo Yang
- Ya’an Xun Kang Pharmaceutical Co., Ltd, Ya’an, China
| | - Qin-wan Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
56
|
Palmatine: A review of its pharmacology, toxicity and pharmacokinetics. Biochimie 2019; 162:176-184. [DOI: 10.1016/j.biochi.2019.04.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 04/07/2019] [Indexed: 12/22/2022]
|
57
|
Gao Y, Hu Z, Wu J, Ning Z, Jian J, Zhao T, Liang X, Yang X, Yang Z, Zhao Q, Wang J, Wang Z, Dina NE, Gherman AMR, Jiang Z, Zhou H. Size-tunable Au@Ag nanoparticles for colorimetric and SERS dual-mode sensing of palmatine in traditional Chinese medicine. J Pharm Biomed Anal 2019; 174:123-133. [PMID: 31163346 DOI: 10.1016/j.jpba.2019.05.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/30/2019] [Accepted: 05/21/2019] [Indexed: 01/22/2023]
Abstract
Palmatine is a protoberberine alkaloid separated from several plants and application as an anti-inflammatory and antibacterial agent in the therapy of gastrointestinal and genitourinary disorder. Thus, the fast quantification of palmatine is important in clinic medical assays. Herein, we report simple, fast and sensitive colorimetric visualization and surface-enhanced Raman spectroscopy (SERS) dual-mode detection of palmatine basing on bimetallic size tunable silver shell capped gold nanoparticles (Au@Ag NPs). Interesting, the best signals output for dual-mode sensing of palmatine were both 5 nm Ag shell thickness of Au@Ag NPs. Meanwhile, we found that the addition of NaHSO4 significantly improves the aggregating sensitivity of Au@Ag NPs to trace palmatine. Upon exposure to 0.1 μM level palmatine, NaHSO4-optimized Au@Ag NPs solution exhibits a highly sensitive color change from orange to green and rapid aggregation kinetics within the initial 5 min, which can directly be seen with the naked eye and monitored by UV-vis absorbance spectra. In addition, we measured palmatine by SERS with the excellent enhancement effect of Au@Ag NPs for further increase the sensitivity and selectivity. More importantly, other protoberberine alkaloids do not interfere with this dual-mode sensor due to the different interaction force between Au@Ag NPs and these alkaloids, and the applicability of the sensor is well demonstrated in real samples with satisfactory results. This provide a fast and simple assay for the rapid detection of palmatine in traditional Chinese medicine, the limit of detection (LOD) is 0.13 μM by the naked eye and 0.10 μM by UV-vis spectroscopy. Therefore, the size-tunable of NaHSO4-optimized Au@Ag NPs can be used not only as a naked-eye sensor of palmatine, but also as a highly selective SERS probe.
Collapse
Affiliation(s)
- Yaohui Gao
- Institute of Pharmaceutical Analysis and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Ziwei Hu
- Institute of Pharmaceutical Analysis and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jiamin Wu
- Institute of Pharmaceutical Analysis and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zan Ning
- Nanjing Jinling Petrochemical Engineering Co. Ltd., Nanjing, Jiangsu 210042, China
| | - Jingyi Jian
- Institute of Pharmaceutical Analysis and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Ting Zhao
- Institute of Pharmaceutical Analysis and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xiaochen Liang
- Institute of Pharmaceutical Analysis and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xingjie Yang
- Institute of Pharmaceutical Analysis and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zi Yang
- Institute of Pharmaceutical Analysis and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Qinyu Zhao
- Institute of Pharmaceutical Analysis and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jianping Wang
- Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Zhigang Wang
- Department of Critical Care Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510632, China.
| | - Nicoleta Elena Dina
- Department of Molecular and Biomolecular Physics, National Institute of R&D of Isotopic and Molecular Technologies, Donat 67-103, 400293 Cluj-Napoca, Romania
| | - Ana Maria Raluca Gherman
- Department of Molecular and Biomolecular Physics, National Institute of R&D of Isotopic and Molecular Technologies, Donat 67-103, 400293 Cluj-Napoca, Romania
| | - Zhengjin Jiang
- Institute of Pharmaceutical Analysis and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Haibo Zhou
- Institute of Pharmaceutical Analysis and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
58
|
Discrimination of the species and authenticity of Rhizoma Coptidis based on stable isotope and multielement fingerprinting and multivariate statistical analysis. Anal Bioanal Chem 2019; 411:2827-2837. [PMID: 30982927 DOI: 10.1007/s00216-019-01723-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/21/2019] [Accepted: 02/26/2019] [Indexed: 10/27/2022]
Abstract
It is essential to be able to identify the source species and to determine the authenticity of traditional Chinese medicines (TCM) in order to prevent the use of false or inferior medicines. In this work, a stable and reliable method of discriminating among the three source species of Rhizoma Coptidis and checking the authenticity of Rhizoma Coptidis samples was established. The technique involved evaluating stable isotope ratios and the contents of multiple elements in samples along with the use of multivariate statistical techniques. The stable isotope ratios δ13C, δ15N, δ2H, and δ18O and the concentrations of various inorganic elements (Li, B, Na, Mg, Al, P, Si, K, Ca, Ti, Mn, Fe, Cu, Zn, Sr, and Ba) in authentic Rhizoma Coptidis samples from three source species (n = 56) and in counterfeit Rhizoma Coptidis samples (n = 39) were determined. The results showed that there were significant differences between the samples from different source species according to multivariate statistical analysis. The three species were clearly distinguished using hierarchical cluster analysis (HCA). Employing stepwise linear discriminant analysis (SLDA), a classification model for differentiating the three species was developed, and this model achieved 100% classification accuracy when applied to samples. In addition, authentic samples and counterfeit samples were successfully discriminated using stable isotope and multielement fingerprint analysis and orthogonal projections to latent structures discriminant analysis (OPLS-DA), and OPLS-DA models for checking the authenticity of Rhizoma Coptidis were established and verified. Therefore, stable isotope and multielement analysis combined with multivariate statistical analysis was shown to be a promising method of discriminating among the three source species of Rhizoma Coptidis and of establishing the authenticity of Rhizoma Coptidis samples. Graphical abstract.
Collapse
|
59
|
Yang SS, Yu CB, Luo Z, Luo WL, Zhang J, Xu JX, Xu WN. Berberine attenuates sodium palmitate-induced lipid accumulation, oxidative stress and apoptosis in grass carp(Ctenopharyngodon idella)hepatocyte in vitro. FISH & SHELLFISH IMMUNOLOGY 2019; 88:518-527. [PMID: 30880233 DOI: 10.1016/j.fsi.2019.02.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
The objective of this work was to investigate the effect of berberine (BBR) on the Cell viability, lipid accumulation, apoptosis, cytochrome c, caspase-9 and caspase-3 in lipid accumulation-hepatocytes induced by sodium palmitate in vitro. The lipid accumulation-hepatocytes (induced by 0.5 mM sodium palmitate for 24 h) were treated with 5 μM berberine for 12 h. Then, the Cell viability, intracellular triglyceride (TG) content, lipid peroxide (LPO), malonaldehyde (MDA) content, cytochrome c, caspase-9, caspase-3 and apoptosis were detected. Sodium palmitate decreased Cell viability and increased intracellular TG content, lipid droplet accumulation, LPO and MDA concentrations, caused caspase-3 and caspase-9 activation, then led to apoptosis accompanied by cytochrome c release from mitochondria into the cytoplasm. Beberine could improve intracellular lipid droplet accumulation and oxidative stress, while reduce apoptosis induced by sodium palmitate.
Collapse
Affiliation(s)
- Shuo-Shuo Yang
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Cheng-Bing Yu
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Zhen Luo
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Wen-Li Luo
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Jing Zhang
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Jian-Xiong Xu
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Wei-Na Xu
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
60
|
Wang J, Jiang Y, Wang B, Zhang N. A review on analytical methods for natural berberine alkaloids. J Sep Sci 2019; 42:1794-1815. [DOI: 10.1002/jssc.201800952] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/20/2019] [Accepted: 02/17/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Jiahui Wang
- Experiment Center for Science and TechnologyShanghai University of Traditional Chinese Medicine Shanghai P. R. China
| | - Yanyan Jiang
- Key Laboratory of Smart Drug DeliveryMinistry of Education and PLADepartment of PharmaceuticsSchool of PharmacyFudan University Shanghai P. R. China
| | - Bing Wang
- School of PharmacyShanghai University of Traditional Chinese Medicine Shanghai P. R. China
- Shanghai Institute of Materia MedicaChinese Academy of Sciences Shanghai P. R. China
| | - Ning Zhang
- Experiment Center for Science and TechnologyShanghai University of Traditional Chinese Medicine Shanghai P. R. China
| |
Collapse
|
61
|
Feng X, Sureda A, Jafari S, Memariani Z, Tewari D, Annunziata G, Barrea L, Hassan ST, Šmejkal K, Malaník M, Sychrová A, Barreca D, Ziberna L, Mahomoodally MF, Zengin G, Xu S, Nabavi SM, Shen AZ. Berberine in Cardiovascular and Metabolic Diseases: From Mechanisms to Therapeutics. Theranostics 2019; 9:1923-1951. [PMID: 31037148 PMCID: PMC6485276 DOI: 10.7150/thno.30787] [Citation(s) in RCA: 236] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/05/2019] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular and metabolic diseases (CVMD) are the leading causes of death worldwide, underscoring the urgent necessity to develop new pharmacotherapies. Berberine (BBR) is an eminent component of traditional Chinese and Ayurvedic medicine for more than 2000 years. Recently, BBR has attracted much interest for its pharmacological actions in treating and/or managing CVMD. Recent discoveries of basic, translational and clinical studies have identified many novel molecular targets of BBR (such as AMPK, SIRT1, LDLR, PCSK9, and PTP1B) and provided novel evidences supporting the promising therapeutic potential of BBR to combat CVMD. Thus, this review provides a timely overview of the pharmacological properties and therapeutic application of BBR in CVMD, and underlines recent pharmacological advances which validate BBR as a promising lead drug against CVMD.
Collapse
|
62
|
Yang M, Lao L. Emerging Applications of Metabolomics in Traditional Chinese Medicine Treating Hypertension: Biomarkers, Pathways and More. Front Pharmacol 2019; 10:158. [PMID: 30906260 PMCID: PMC6418033 DOI: 10.3389/fphar.2019.00158] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 02/11/2019] [Indexed: 12/18/2022] Open
Abstract
Hypertension is a prevalent, complex, and polygenic cardiovascular disease, which is associated with increased mortality and morbidity. Across the world, traditional Chinese medicine (TCM) constituted by herbal medicine and non-pharmacological therapies is used to assist blood pressure management. Though widely accepted in daily practice, its mechanism remains largely unknown. Recent years saw a number of studies utilizing metabolomics technologies to elucidate the biological foundation of the antihypertensive effect of TCM. Metabolomics is a relatively "young" omics approach that has gained enormous attention recently in cardiovascular drug discovery and pharmacology studies of natural products. In this review, we described the use of metabolomics in deciphering TCM diagnostic codes for hypertension and in revealing molecular events that drive the antihypertensive effect. By corroborating the diagnostic rules, there's accumulating evidence showing that metabolic profile could be the signature of different syndromes/patterns of hypertension, which offers new perspectives for disease diagnosis and efficacy optimization. Moreover, TCM treatment significantly altered the metabolic perturbations associated with hypertension, which could be a crucial mechanism of the therapeutic effect of TCM. Not only significantly rebalances the dynamics of metabolic flux, TCM but also elicits metabolic network reorganization through restoring the functions of key metabolites, and metabolic pathways. The role of TCM in regulating metabolic perturbations will be informative to researchers seeking new leads for drug discovery. This review further envisioned the promises of employing metabolomics to explore network pharmacology, host-gut microbiota interactions and metabolic reprogramming in TCM, and possible herb-drug interactions in this field in future.
Collapse
Affiliation(s)
- Mingxiao Yang
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Lixing Lao
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
63
|
Affiliation(s)
- Teresa L. Mako
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Joan M. Racicot
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Mindy Levine
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| |
Collapse
|
64
|
Liang Y, Fan C, Yan X, Lu X, Jiang H, Di S, Ma Z, Feng Y, Zhang Z, Feng P, Feng X, Feng J, Jin F. Berberine ameliorates lipopolysaccharide‐induced acute lung injury via the
PERK
‐mediated
Nrf2/HO‐1
signaling axis. Phytother Res 2018; 33:130-148. [PMID: 30346043 DOI: 10.1002/ptr.6206] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 08/17/2018] [Accepted: 09/08/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Yuan Liang
- Department of Respiration, Tangdu Hospital The Fourth Military Medical University Xi'an China
- Department of Respiration Kunming General Hospital of the People's Liberation Army Kunming China
| | - Chongxi Fan
- Department of Biomedical Engineering The Fourth Military Medical University Xi'an China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital The Fourth Military Medical University Xi'an China
| | - Xi Lu
- Department of Respiration, Tangdu Hospital The Fourth Military Medical University Xi'an China
| | - Hua Jiang
- Department of Respiration, Tangdu Hospital The Fourth Military Medical University Xi'an China
| | - Shouyin Di
- Department of Thoracic Surgery, Tangdu Hospital The Fourth Military Medical University Xi'an China
| | - Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital The Fourth Military Medical University Xi'an China
| | - Yingtong Feng
- Department of Thoracic Surgery, Tangdu Hospital The Fourth Military Medical University Xi'an China
- Department of Cardiothoracic Surgery The 97th Hospital of PLA Xuzhou China
| | - Zhengbin Zhang
- Department of Cardiovascular Surgery, Xijing Hospital The Fourth Military Medical University Xi'an China
| | - Pan Feng
- Department of Cardiovascular Surgery, Xijing Hospital The Fourth Military Medical University Xi'an China
| | - Xiao Feng
- Department of Cardiovascular Surgery, Xijing Hospital The Fourth Military Medical University Xi'an China
| | - Jianyu Feng
- Department of Cardiovascular Surgery, Xijing Hospital The Fourth Military Medical University Xi'an China
| | - Faguang Jin
- Department of Respiration, Tangdu Hospital The Fourth Military Medical University Xi'an China
| |
Collapse
|
65
|
Ren Y, Wang D, Lu F, Zou X, Xu L, Wang K, Huang W, Su H, Zhang C, Gao Y, Dong H. Coptidis Rhizoma inhibits NLRP3 inflammasome activation and alleviates renal damage in early obesity-related glomerulopathy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 49:52-65. [PMID: 30217262 DOI: 10.1016/j.phymed.2018.05.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/05/2018] [Accepted: 05/28/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Obese subjects have been considered to be in a state of chronic, low-grade systemic inflammation. Excess fat accumulation and persistent inflammation may promote renal dysfunction, to cause chronic kidney disease (CKD) and even end-stage kidney failure. Coptidis Rhizoma is a classical traditional Chinese herb well known for its hypoglycemic and hypolipidemic properties. The mechanism is partially associated with its anti-inflammatory effect. However, this effect is rarely investigated in obesity and obesity-related glomerulopathy (ORG). PURPOSE The current study was designed to evaluate the effect of Coptidis Rhizoma on ORG. It also aimed to determine whether this renal protection effect of Coptidis Rhizoma was related to the inhibition of NLRP3 inflammasome in ORG. METHODS Coptidis Rhizoma concentrated granules were prepared and the main components were identified by 3D-High Performance Liquid Chromatography (3D-HPLC) assay. The animal model of early stage ORG was established in obesity-prone (OP) rats by high protein and high fat diet feeding for 12 weeks. The treatment with Coptidis Rhizoma at different dosages was administered by intragastric infusion simultaneously. Then body weight, kidney weight, plasma lipid profiles, 24 h urine protein/albumin content and kidney histology were measured. Inflammatory biomarkers were examined both in the rat plasma and renal cortex. The gene expressions of NLRP3 inflammasome complex and NF-κB in renal tissues were also measured. RESULTS Coptidis Rhizoma alleviated dyslipidemia and reduced the renal weight of the rats with ORG. Meanwhile, urinary albumin to creatinine ratio and creatinine clearance rate were significantly improved. Coptidis Rhizoma also attenuated glomerular hypertrophy, mesangial hyperplasia, and effacement of podocyte foot in renal tissues of ORG rats. In addition, Coptidis Rhizoma intervention decreased the levels of proinflammatory cytokines (TNF-α, IL-1β, IL-6, and IL-18) both in plasma and renal tissue. The gene expression of NLRP3 inflammasome was down-regulated and NF-κB activity was also inhibited by Coptidis Rhizoma in renal tissues of ORG rats. CONCLUSION Coptidis Rhizoma can ameliorate early renal damage in ORG rats and the mechanisms appear to be related to the inhibition of NLRP3 inflammasome complex.
Collapse
Affiliation(s)
- Yanlin Ren
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Dingkun Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Fuer Lu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Xin Zou
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Lijun Xu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Kaifu Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Wenya Huang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Hao Su
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Chu Zhang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yang Gao
- Beijing Tcmages Pharmaceutical Co., LTD, Beijing, PR China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| |
Collapse
|
66
|
Shi Y, Hu J, Geng J, Hu T, Wang B, Yan W, Jiang Y, Li J, Liu S. Berberine treatment reduces atherosclerosis by mediating gut microbiota in apoE-/- mice. Biomed Pharmacother 2018; 107:1556-1563. [PMID: 30257374 DOI: 10.1016/j.biopha.2018.08.148] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/28/2018] [Accepted: 08/28/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Berberine (BBR) has long been used for treating bacterial diarrhea due to its antimicrobial effect and is currently used to treat obesity, diabetes, hyperlipemia and atherosclerosis. Given the poor oral bioavailability of BBR, the mechanisms through which BBR mediates metabolic disorders are not well understood. The present study was designed to explore the role of BBR-induced gut microbiota modulation in the development of atherosclerosis. METHODS Male apoE-/- mice were fed a high-fat diet (HFD) with or without the intragastric administration of BBR. Because mice are coprophagic and can transfer their gut microbiota to each other, we cohoused BBR-treated HFD-mice with non-BBR-treated HFD-fed mice. RESULTS After 12 weeks of HFD feeding, compared with non-BBR-treated HFD-fed mice, BBR-treated HFD-fed mice exhibited a significant reduction in both atherosclerosis development and inflammatory cytokine expression. In addition, cohousing BBR-treated HFD-fed mice with non-BBR-treated HFD-fed mice decreased atherosclerosis development and inflammatory cytokine expression. The denaturing gradient gel electrophoresis and principal component analyses showed that the gut microbial profiles of BBR-treated HFD-fed mice were significantly different from those of HFD-fed mice but were similar to those of cohoused mice. The abundances ofFirmicutes and Verrucomicrobia in cohoused and BBR-treated mice were different from those in HFD-fed and normal chow-fed mice. Moreover, BBR reduced hepatic FMO3 expression and serum trimethylamine N-oxide levels. CONCLUSION The antiatherosclerotic effect of BBR is related to alterations in gut microbiota compositions, indicating the potential therapeutic value of pharmacological approaches that may modulate the gut microbiota in treating atherosclerosis.
Collapse
Affiliation(s)
- Yafei Shi
- Department of Cardiology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China; Department of Cardiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China
| | - Jiaxin Hu
- Department of Cardiology, Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Jin Geng
- Department of Cardiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China
| | - Tingting Hu
- Department of Cardiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China
| | - Bingjian Wang
- Department of Cardiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China
| | - Wenting Yan
- Department of Cardiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China
| | - Yicheng Jiang
- Department of Cardiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China
| | - Jiangjin Li
- Department of Cardiology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China
| | - Shaowen Liu
- Department of Cardiology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China.
| |
Collapse
|
67
|
Chu M, Chen X, Wang J, Guo L, Wang Q, Gao Z, Kang J, Zhang M, Feng J, Guo Q, Li B, Zhang C, Guo X, Chu Z, Wang Y. Polypharmacology of Berberine Based on Multi-Target Binding Motifs. Front Pharmacol 2018; 9:801. [PMID: 30087614 PMCID: PMC6066535 DOI: 10.3389/fphar.2018.00801] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 07/03/2018] [Indexed: 12/13/2022] Open
Abstract
Background: Polypharmacology is emerging as the next paradigm in drug discovery. However, considerable challenges still exist for polypharmacology modeling. In this study, we developed a rational design to identify highly potential targets (HPTs) for polypharmacological drugs, such as berberine. Methods and Results: All the proven co-crystal structures locate berberine in the active cavities of a redundancy of aromatic, aliphatic, and acidic residues. The side chains from residues provide hydrophobic and electronic interactions to aid in neutralization for the positive charge of berberine. Accordingly, we generated multi-target binding motifs (MBM) for berberine, and established a new mathematical model to identify HPTs based on MBM. Remarkably, the berberine MBM was embodied in 13 HPTs, including beta-secretase 1 (BACE1) and amyloid-β1-42 (Aβ1-42). Further study indicated that berberine acted as a high-affinity BACE1 inhibitor and prevented Aβ1-42 aggregation to delay the pathological process of Alzheimer's disease. Conclusion: Here, we proposed a MBM-based drug-target space model to analyze the underlying mechanism of multi-target drugs against polypharmacological profiles, and demonstrated the role of berberine in Alzheimer's disease. This approach can be useful in derivation of rules, which will illuminate our understanding of drug action in diseases.
Collapse
Affiliation(s)
- Ming Chu
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China
| | - Xi Chen
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Likai Guo
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China
| | - Qianqian Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China
| | - Zirui Gao
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jiarui Kang
- Department of Pathology, First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | - Mingbo Zhang
- Pharmacy Departments, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Jinqiu Feng
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China
| | - Qi Guo
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Binghua Li
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China
| | - Chengrui Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China
| | - Xueyuan Guo
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China
| | - Zhengyun Chu
- Pharmacy Departments, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Yuedan Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China
| |
Collapse
|
68
|
Wang J, Ran Q, Zeng HR, Wang L, Hu CJ, Huang QW. Cellular stress response mechanisms of Rhizoma coptidis: a systematic review. Chin Med 2018; 13:27. [PMID: 29930696 PMCID: PMC5992750 DOI: 10.1186/s13020-018-0184-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/27/2018] [Indexed: 12/29/2022] Open
Abstract
Rhizoma coptidis has been used in China for thousands of years with the functions of heating dampness and purging fire detoxification. But the underlying molecular mechanisms of Rhizoma coptidis are still far from being fully elucidated. Alkaloids, especially berberine, coptisine and palmatine, are responsible for multiple pharmacological effects of Rhizoma coptidis. In this review, we studied on the effects and molecular mechanisms of Rhizoma coptidis on NF-κB/MAPK/PI3K–Akt/AMPK/ERS and oxidative stress pathways. Then we summarized the mechanisms of these alkaloid components of Rhizoma coptidis on cardiovascular and cerebrovascular diseases, diabetes and diabetic complications. Evidence presented in this review implicated that Rhizoma coptidis exerted beneficial effects on various diseases by regulation of NF-κB/MAPK/PI3K–Akt/AMPK/ERS and oxidative stress pathways, which support the clinical application of Rhizoma coptidis and offer references for future researches.
Collapse
Affiliation(s)
- Jin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Road, Wenjiang District, Chengdu, 611137 China
| | - Qian Ran
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Road, Wenjiang District, Chengdu, 611137 China
| | - Hai-Rong Zeng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Road, Wenjiang District, Chengdu, 611137 China
| | - Lin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Road, Wenjiang District, Chengdu, 611137 China
| | - Chang-Jiang Hu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Road, Wenjiang District, Chengdu, 611137 China
| | - Qin-Wan Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No. 1166, Liutai Road, Wenjiang District, Chengdu, 611137 China
| |
Collapse
|
69
|
Xiong Y, Hu Y, Li F, Chen L, Dong Q, Wang J, Gullen EA, Cheng YC, Xiao X. Promotion of quality standard of Chinese herbal medicine by the integrated and efficacy-oriented quality marker of Effect-constituent Index. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 45:26-35. [PMID: 29551646 DOI: 10.1016/j.phymed.2018.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 01/10/2018] [Accepted: 03/07/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Multiple constituents have been applied currently as markers to control the quality of Chinese herbal medicine (CHM). However, those constituents are isolated from each other, failed to present their contribution differences to the bioeffect of CHM. Besides, a CHM for different clinic uses is often controlled by the same quality marker (Q-marker), which cannot correlate its efficacies differentially. PURPOSE The study aims to promote the quality standard of CHM by the integrated and efficacy-oriented Q-marker of Effect-constituent Index (ECI). METHODS With Coptidis Rhizoma (C. Rhizoma) as a case study, the Q-marker of ECI based on the integration of bioeffect and active constituents was developed. According to the efficacies of C. Rhizoma, we investigated its antibacterial and antineoplastic effects by microcalorimetry and MTT assay, respectively. High performance liquid chromatography was performed to determine the active constituents of C. Rhizoma extract simultaneously. ECIS of inhibition on Shigella dysenteriae (S. dysenteriae) and ECIH of inhibition on HepG2 cells were established by multi-indicator synthetic evaluation method. The organoleptic evaluation scores of C. Rhizoma samples were given by Delphi method. RESULTS The correlation analysis showed that ECIS and ECIH were significantly correlated with the inhibiting effects of C. Rhizoma extract on the growth of S. dysenteriae (P < 0.01) and proliferation of HepG2 cells (P < 0.01), respectively. Moreover, ECI showed a good ability to distinguish and predict the bioeffect-based quality grade, whereas the organoleptic evaluation and chemical analysis failed to achieve it. Plus, some samples with lower ECIS showed higher ECIH and vice versa. CONCLUSIONS The Q-marker of ECI is useful to associate different pharmacologic effects of C. Rhizoma containing multiple active constituents, which is beneficial for the improvement of quality standard of the CHM in an integrated, convenient, and differentiated way.
Collapse
Affiliation(s)
- Yin Xiong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650504, China; College of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Yupiao Hu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650504, China
| | - Fan Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650504, China
| | - Lijuan Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650504, China
| | - Qin Dong
- China Military Institute of Chinese Materia Medica, 302 Military Hospital, Beijing 100039, China
| | - Jiabo Wang
- China Military Institute of Chinese Materia Medica, 302 Military Hospital, Beijing 100039, China
| | - Elizabeth A Gullen
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Yung-Chi Cheng
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Xiaohe Xiao
- China Military Institute of Chinese Materia Medica, 302 Military Hospital, Beijing 100039, China.
| |
Collapse
|
70
|
Feng J, Li H, Zhao W, Dang H, Wang R, Luo K, Guo H, Xing W, Cheng J, Song W, Sun Y, Xie L. Biological-Profiling-Based Systematic Analysis of Rhizoma Coptidis from Different Growing Regions and Its Anticholesterol Biosynthesis Activity on HepG2 Cells. Mol Pharm 2018; 15:2234-2245. [PMID: 29747507 DOI: 10.1021/acs.molpharmaceut.8b00078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Rhizoma Coptidis is a widely cultivated traditional Chinese herb. Although the chemical profiles of Rhizoma Coptidis have been established previously, the biological profiling of Rhizoma Coptidis has not been conducted yet. In this study, we collected Rhizoma Coptidis varieties from four distinct growing regions and performed genome-wide biological response fingerprinting (BioReF) on HepG2 cells using a gene expression array. Similar biological pathways were affected by extracts of all four Rhizoma Coptidis varieties but not by their analogue, Mahoniae Caulis. Among these pathways, the terpenoid backbone biosynthesis pathway was highly enriched, and six genes in the mevalonate (MVA) pathway were all down-regulated. However, the expression, maturation, as well as the specific DNA binding capacity of their coordinate transcription factor, sterol response element binding protein 2 (SREBP2), was not affected by Rhizoma Coptidis extract (RCE) or its typical active alkaloid berberine. Cellular cholesterol content tests further verified the cholesterol-lowering function of RCE in vitro, which supplements evidence for the use of Rhizoma Coptidis in hyperlipidemia treatment. This is the first described example of evaluating the quality of Rhizoma Coptidis with BioReF and a good demonstration of using BioReF to uncover the mechanisms of herbs at a systematic level.
Collapse
Affiliation(s)
- Juan Feng
- State Key Laboratory of Membrane Biology, School of Medicine , Tsinghua University , Beijing 100084 , China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Hangzhou 310003 , China.,Medical Systems Biology Research Center , Tsinghua University School of Medicine , Beijing 100084 , China.,National Engineering Research Center for Beijing Biochip Technology , Beijing 102206 , China
| | - Haoxun Li
- National Engineering Research Center for Beijing Biochip Technology , Beijing 102206 , China
| | - Wenlong Zhao
- National Engineering Research Center for Beijing Biochip Technology , Beijing 102206 , China
| | - Honglei Dang
- National Engineering Research Center for Beijing Biochip Technology , Beijing 102206 , China
| | - Ruijun Wang
- Department of Pathophysiology, Fenyang College , Shanxi Medical University , Fenyang 032200 , China
| | - Kun Luo
- State Key Laboratory of Membrane Biology, School of Medicine , Tsinghua University , Beijing 100084 , China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Hangzhou 310003 , China.,Medical Systems Biology Research Center , Tsinghua University School of Medicine , Beijing 100084 , China.,National Engineering Research Center for Beijing Biochip Technology , Beijing 102206 , China
| | - Hongyan Guo
- National Engineering Research Center for Beijing Biochip Technology , Beijing 102206 , China
| | - Wanli Xing
- State Key Laboratory of Membrane Biology, School of Medicine , Tsinghua University , Beijing 100084 , China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Hangzhou 310003 , China.,Medical Systems Biology Research Center , Tsinghua University School of Medicine , Beijing 100084 , China.,National Engineering Research Center for Beijing Biochip Technology , Beijing 102206 , China
| | - Jing Cheng
- State Key Laboratory of Membrane Biology, School of Medicine , Tsinghua University , Beijing 100084 , China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Hangzhou 310003 , China.,Medical Systems Biology Research Center , Tsinghua University School of Medicine , Beijing 100084 , China.,National Engineering Research Center for Beijing Biochip Technology , Beijing 102206 , China
| | - Weifang Song
- Department of Pathophysiology, Fenyang College , Shanxi Medical University , Fenyang 032200 , China
| | - Yimin Sun
- National Engineering Research Center for Beijing Biochip Technology , Beijing 102206 , China
| | - Lan Xie
- State Key Laboratory of Membrane Biology, School of Medicine , Tsinghua University , Beijing 100084 , China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Hangzhou 310003 , China.,Medical Systems Biology Research Center , Tsinghua University School of Medicine , Beijing 100084 , China.,National Engineering Research Center for Beijing Biochip Technology , Beijing 102206 , China
| |
Collapse
|
71
|
Zielińska S, Jezierska-Domaradzka A, Wójciak-Kosior M, Sowa I, Junka A, Matkowski AM. Greater Celandine's Ups and Downs-21 Centuries of Medicinal Uses of Chelidonium majus From the Viewpoint of Today's Pharmacology. Front Pharmacol 2018; 9:299. [PMID: 29713277 PMCID: PMC5912214 DOI: 10.3389/fphar.2018.00299] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/15/2018] [Indexed: 12/20/2022] Open
Abstract
As antique as Dioscorides era are the first records on using Chelidonium as a remedy to several sicknesses. Inspired by the "signatura rerum" principle and an apparent ancient folk tradition, various indications were given, such as anti-jaundice and cholagogue, pain-relieving, and quite often mentioned-ophthalmological problems. Central and Eastern European folk medicine has always been using this herb extensively. In this region, the plant is known under many unique vernacular names, especially in Slavonic languages, associated or not with old Greek relation to "chelidon"-the swallow. Typically for Papaveroidae subfamily, yellow-colored latex is produced in abundance and leaks intensely upon injury. Major pharmacologically relevant components, most of which were first isolated over a century ago, are isoquinoline alkaloids-berberine, chelerythrine, chelidonine, coptisine, sanguinarine. Modern pharmacology took interest in this herb but it has not ended up in gaining an officially approved and evidence-based herbal medicine status. On the contrary, the number of relevant studies and publications tended to drop. Recently, some controversial reports and sometimes insufficiently proven studies appeared, suggesting anticancer properties. Anticancer potential was in line with anecdotical knowledge spread in East European countries, however, in the absence of directly-acting cytostatic compounds, some other mechanisms might be involved. Other properties that could boost the interest in this herb are antimicrobial and antiviral activities. Being a common synanthropic weed or ruderal plant, C. majus spreads in all temperate Eurasia and acclimates well to North America. Little is known about the natural variation of bioactive metabolites, including several aforementioned isoquinoline alkaloids. In this review, we put together older and recent literature data on phytochemistry, pharmacology, and clinical studies on C. majus aiming at a critical evaluation of state-of-the-art from the viewpoint of historical and folk indications. The controversies around this herb, the safety and drug quality issues and a prospective role in phytotherapy are discussed as well.
Collapse
Affiliation(s)
- Sylwia Zielińska
- Pharmaceutical Biology and Botany, Wrocław Medical University, Wrocław, Poland
| | - Anna Jezierska-Domaradzka
- Pharmaceutical Biology and Botany, Wrocław Medical University, Wrocław, Poland
- Botanical Garden of Medicinal Plants, Wrocław Medical University, Wrocław, Poland
| | | | - Ireneusz Sowa
- Analytical Chemistry, Medical University of Lublin, Lublin, Poland
| | - Adam Junka
- Pharmaceutical Microbiology and Parasitology, Wrocław Medical University, Wrocław, Poland
| | - Adam M. Matkowski
- Pharmaceutical Biology and Botany, Wrocław Medical University, Wrocław, Poland
- Botanical Garden of Medicinal Plants, Wrocław Medical University, Wrocław, Poland
| |
Collapse
|
72
|
Development and Validation of a HPLC-ESI-MS/MS Method for Simultaneous Quantification of Fourteen Alkaloids in Mouse Plasma after Oral Administration of the Extract of Corydalis yanhusuo Tuber: Application to Pharmacokinetic Study. Molecules 2018; 23:molecules23040714. [PMID: 29561801 PMCID: PMC6017933 DOI: 10.3390/molecules23040714] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 12/14/2022] Open
Abstract
The tuber of Corydalis yanhusuo is a famous traditional Chinese medicine and found to have potent pharmacological effects, such as antinociceptive, antitumor, antibacterial, anti-inflammatory, and anti-depressive activities. Although there are several methods to be developed for the analysis and detection of the bioactive ingredients’ alkaloids, so far, only few prominent alkaloids could be quantified, and in vitro and in vivo changes of comprehensive alkaloids after oral administration are still little known. In this study, we first developed a simple and sensitive high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) method to quantify the comprehensive alkaloids of extracts of C. yanhusuo in mouse plasma, using nitidine chloride as an internal standard. As results, at least fourteen alkaloids, including an aporphine (oxoglaucine), a protopine (protopine), five tertiary alkaloids (corydaline, tetrahydroberberine, tetrahydropalmatine, tetrahydrocolumbamine, and tetrahydrocoptisine) and seven quaternary alkaloids (columbamine, palmatine, berberine, epiberberine, coptisine, jatrorrhizine, and dehydrocorydaline) could be well quantified simultaneously in mouse plasma. The lower limits of quantification were greater than, or equal to, 0.67 ng/mL, and the average matrix effects ranged from 96.4% to 114.3%. The mean extraction recoveries of quality control samples were over 71.40%, and the precision and accuracy were within the acceptable limits. All the analytes were shown to be stable under different storage conditions. Then the established method was successfully applied to investigate the pharmacokinetics of these alkaloids after oral administration of the extract of Corydalis yanhusuo in mice. To the best of our knowledge, this is the first document to report the comprehensive and simultaneous analyses of alkaloids of C. yanhusuo in mouse plasma. It was efficient and useful for comprehensive pharmacokinetic and metabolomic analyses of these complex alkaloids after drug administration.
Collapse
|
73
|
Wu TJ, Lu J, Ni H, Li P, Jiang Y, Li HJ. Construction of an optimized method for quality evaluation and species discrimination of Coptidis Rhizoma by ion-pair high performance liquid chromatography combined with response surface methodology. J Pharm Biomed Anal 2018; 153:152-157. [PMID: 29494887 DOI: 10.1016/j.jpba.2018.02.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 02/03/2018] [Accepted: 02/08/2018] [Indexed: 12/01/2022]
Abstract
Coptidis Rhizoma (CR), the dried rhizome of three perennial Coptis specices, was widely used as a famous herbal medicine in China. Although the quantification of main alkaloids in CR has been extensively conducted, the existing analytical methods suffer from some flaws that restrict the general applicability in the routine quality assessment. In this work, we constructed an optimized method for quality evaluation and species discrimination of CR by ion-pairing high performance liquid chromatography (IP-HPLC) combined with response surface methodology (RSM). By employing Box-Behnken designs (BBD), 30 sets of experimental runs were performed to build the response surface models, and Derringer's desirability was used to optimize the IP-HPLC separation conditions by simultaneously taking resolutions between two pairs of hardly - separated alkaloids and the retention time of the last eluted analyte as optimization criteria. Meanwhile, a single standard to determine multi-components (SSDMC) method based on the optimized IP-HPLC was set up and fully validated, to simultaneously determine six alkaloids including jatrorrhizine (JAT), columbamine (COL), epiberberine (EPI), coptisine (COP), palmatine (PAL) and berberine (BER), using BER as internal standard. Finally, the quantitative data from 33 batches of CR samples were comparatively analyzed, and the ratios of JAT/COL and EPI/JAT were discovered for species classification. Collectively, the established IP-HPLC method can be adopted for comprehensive quality evaluation and species discrimination of CR due to its general applicability.
Collapse
Affiliation(s)
- Tian-Jin Wu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Jun Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Hui Ni
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Yan Jiang
- Nanjing Forestry University, Nanjing 210037, China.
| | - Hui-Jun Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China.
| |
Collapse
|
74
|
Yang C, Guo F, Zang C, Li C, Cao H, Zhang B. The Effect of Ginger Juice Processing on the Chemical Profiles of Rhizoma coptidis. Molecules 2018; 23:E380. [PMID: 29439421 PMCID: PMC6017751 DOI: 10.3390/molecules23020380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 02/03/2018] [Accepted: 02/05/2018] [Indexed: 12/29/2022] Open
Abstract
Rhizoma coptidis (RC) has been used as an herbal medicine in China for over one thousand years, and it was subjected to specific processing before use as materia medica. Processing is a pharmaceutical technique that aims to enhance the efficacy and/or reduce the toxicity of crude drugs according to traditional Chinese medicine theory. In this study, the chemical profiles of RC, ginger juice processed RC (GRC), and water processed RC (WRC) was determined to reveal the mechanism of processing of RC. UPLC-QTOF-MS analysis of methanol extract of RC, GRC, and WRC has been conducted to investigate the effect of processing on the composition of RC. HPLC-PDA was used to determine the variance of total alkaloids and seven alkaloids of RC during the processing. The volatiles of RC, GRC and ginger juice were separated by distillation, the change of volatiles content was recorded and analyzed, and the qualitative analysis of the volatiles was carried out using GC-MS. The microstructures of RC, GRC and WRC were observed using a light microscope. Results showed that ginger juice/water processing had limited influence on the composition of RC's methanol extract, but significant influence on the content of some alkaloids in RC. Ginger juice processing significantly increased (p < 0.05) the volatiles content of RC and changed the volatiles composition obviously. Processing also had an influence on the microstructure of RC. This research comprehensively revealed the mechanism of ginger juice processing of RC.
Collapse
Affiliation(s)
- Chunyu Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Fengqian Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Chen Zang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Cui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Hui Cao
- School of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Baoxian Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
75
|
Xiong C, Wu YZ, Zhang Y, Wu ZX, Chen XY, Jiang P, Guo HC, Xie KR, Wang KX, Su SW. Protective effect of berberine on acute cardiomyopathy associated with doxorubicin treatment. Oncol Lett 2018; 15:5721-5729. [PMID: 29552206 PMCID: PMC5840547 DOI: 10.3892/ol.2018.8020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 12/22/2017] [Indexed: 12/27/2022] Open
Abstract
Doxorubicin (DOX) is a potent and broad-spectrum anthracycline chemotherapeutic agent, but dose-dependent cardiotoxic side effects limit its clinical application. This toxicity is closely associated with the generation of reactive oxygen species (ROS) radical during DOX metabolism. The present study investigated the effects of Berberine (Ber) on DOX-induced acute cardiac injury in a rat model and analysed its mechanism in cardiomyocytes in vitro. Serum creatine kinase (CK), creatine kinase isoenzyme (CK-MB) and malondialdehyde (MDA) levels were significantly increased in the DOX group compared with the control group. This increase was accompanied by cardiac histopathological injury and a decrease in cardiomyocyte superoxide dismutase (SOD) and catalase (CAT). CK, CK-MB and MDA levels decreased and SOD and CAT levels increased in the Ber-treated group compared to the DOX group. Ber ameliorated the DOX-induced increase in cytosolic calcium concentration ([Ca2+]i), attenuated mitochondrial Ca2+ overload and restored the DOX-induced loss of mitochondrial membrane potential in vitro. These results demonstrated that Ber exhibited protective effects against DOX-induced heart tissue free radical injury, potentially via the inhibition of intracellular Ca2+ elevation and attenuation of mitochondrial dysfunction.
Collapse
Affiliation(s)
- Chen Xiong
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China.,Key Laboratory of Pharmacology and Toxicology for New Drugs, Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Yan-Zhao Wu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Yu Zhang
- Center for Reproductive Medicine, Family Planning Scientific and Technical Institution of Hebei Province, Shijiazhuang, Hebei 050000, P.R. China
| | - Zi-Xiao Wu
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China.,Key Laboratory of Pharmacology and Toxicology for New Drugs, Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Xue-Yan Chen
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China.,Key Laboratory of Pharmacology and Toxicology for New Drugs, Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Ping Jiang
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China.,Key Laboratory of Pharmacology and Toxicology for New Drugs, Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Hui-Cai Guo
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China.,Key Laboratory of Pharmacology and Toxicology for New Drugs, Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Ke-Rang Xie
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China.,Key Laboratory of Pharmacology and Toxicology for New Drugs, Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Ke-Xin Wang
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China.,Key Laboratory of Pharmacology and Toxicology for New Drugs, Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Su-Wen Su
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China.,Key Laboratory of Pharmacology and Toxicology for New Drugs, Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| |
Collapse
|
76
|
Park SM, Min BG, Jung JY, Jegal KH, Lee CW, Kim KY, Kim YW, Choi YW, Cho IJ, Ku SK, Kim SC. Combination of Pelargonium sidoides and Coptis chinensis root inhibits nuclear factor kappa B-mediated inflammatory response in vitro and in vivo. Altern Ther Health Med 2018; 18:20. [PMID: 29351747 PMCID: PMC5775528 DOI: 10.1186/s12906-018-2088-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 01/14/2018] [Indexed: 01/01/2023]
Abstract
Background Pelargonium sidoides (PS) and Coptis chinensis root (CR) have traditionally been used to treat various diseases, including respiratory and gastrointestinal infections, dysmenorrhea, and hepatic disorders. The present study was conducted to evaluate the anti-inflammatory effects of a combination of PS and CR in vitro and in vivo. Methods The in vitro effects of PS + CR on the induction of inflammation-related proteins were evaluated in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. The levels of nitric oxide (NO) and of inflammatory cytokines and prostaglandin E2 (PGE2) were measured using the Griess reagent and enzyme-linked immunosorbent assay (ELISA) methods, respectively. The expression of inflammation-related proteins was confirmed by Western blot. Additionally, the effects of PS + CR on paw edema volume, skin thickness, and numbers of infiltrated inflammatory cells, mast cells, COX-2-, iNOS-, and TNF-α-immunoreactive cells in dorsum and ventrum pedis skin were evaluated in a rat model of carrageenan (CA)-induced paw edema. Results PS + CR significantly reduced production of NO, PGE2 and three pro-inflammatory cytokines (tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6) and also decreased levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Treatment with PS + CR significantly reduced the protein expression levels of LPS-stimulated nuclear factor kappa B (NF-κB) and phosphorylated inhibitor of NF-κB (p-I-κBα). Additionally, PS + CR significantly inhibited the increases in paw swelling, skin thickness, infiltrated inflammatory cells, mast cell degranulation, COX-2-, iNOS-, and TNF-α-immunoreactive cells in the rat model of CA-induced acute edematous paw. Conclusions These results demonstrate that PS + CR exhibits anti-inflammatory properties through decreasing the production of pro-inflammatory mediators (NO, PGE2, TNF-α, IL-1β, and IL-6), suppressing NF-κB signaling in LPS-induced RAW 264.7 cells. Additionally, the results of the CA-induced rat paw edema assay revealed an anti-edema effect of PS + CR. Furthermore, it is suggested that PS + CR also inhibits acute edematous inflammation by suppressing mast cell degranulation and inflammatory mediators (COX-2, iNOS, and TNF-α). Thus, PS + CR may be a potential candidate for the treatment of various inflammatory diseases, and it may also contribute to a better understanding of the molecular mechanisms underlying inflammatory response regulation.
Collapse
|
77
|
Seeing the unseen of Chinese herbal medicine processing ( Paozhi): advances in new perspectives. Chin Med 2018; 13:4. [PMID: 29375653 PMCID: PMC5773022 DOI: 10.1186/s13020-018-0163-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/08/2018] [Indexed: 01/13/2023] Open
Abstract
Processing (Paozhi) represents a unique Chinese pharmaceutic technique to facilitate the use of Chinese herbal medicines (CHMs) for a specific clinical need in the guidance of Traditional Chinese Medicine (TCM) theory. Traditionally, most CHMs require a proper processing to meet the needs of specific clinical syndromes before being prescribed by TCM practitioners. During processing, significant changes in chemical profiles occur, which inevitably influence the associated pharmacological properties of a CHM. However, although processing is formed in a long-term practice, the underlying mechanisms remain unclear for most CHMs. The deepening understanding of the mechanism of processing would provide scientific basis for standardization of processing. This review introduced the role of processing in TCM and several typical methods of processing. We also summarized the up-to-date efforts on the mechanistic study of CHM processing. The processing mechanisms mainly include the following aspects: (i) directly reducing contents of toxic constituents; (ii) structural transformation of constituents; (iii) improving solubility of constituents; (iv) physically changing the existing form of constituents; (v) and influence by excipients. These progress may give new insights into future researches.
Collapse
|
78
|
Zhang QS, Wang GW, Han ZQ, Chen XM, Na R, Jin H, Li P, Bu R. Metabolic profile of Rhizoma coptidis in human plasma determined using ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:63-73. [PMID: 28926137 DOI: 10.1002/rcm.7990] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/29/2017] [Accepted: 09/04/2017] [Indexed: 06/07/2023]
Abstract
RATIONALE Rhizoma coptidis extract and its alkaloids show various pharmacological activities, but its metabolic profile in human plasma has not been thoroughly investigated. In the present research, the metabolism of Rhizoma coptidis at a clinical dose (5 g/60 kg/day) was systematically analyzed to determine its biotransformation processes in human plasma. METHODS In this research, the metabolites of Rhizoma coptidis in human plasma after oral administration of Rhizoma coptidis extract at a clinical dose were investigated using ultra-high-performance liquid chromatography (UHPLC) coupled with high-resolution LTQ-Orbitrap mass spectrometry. The structural elucidation of the constituents was confirmed by comparing their retention times (tR ) and MSn fragments with those of standards and literature reports. RESULTS In total, two prototypes and twelve metabolites were detected in human plasma. The two prototypes were confidently identified using reference standards. Of the compounds detected, M7 (berberrubinen-9-O-glucuronide) was the most abundant based on its peak area, which indicates that this compound might be a pharmacokinetic marker for Rhizoma coptidis alkaloids in humans. Based on the metabolites detected in human plasma, a possible metabolic pathway for Rhizoma coptidis in vivo was proposed. CONCLUSIONS The results indicated that the alkaloids in Rhizoma coptidis were extensively biotransformed in vivo mainly via conjugation with glucuronic acid (GluA) or sulfuric acid (SulA) to form phase II metabolites, and the GluA metabolites are likely the dominant form in human plasma. To the best of our knowledge, this is the first in vivo evaluation of the metabolic profile of the whole Rhizoma coptidis extract in human plasma, which is essential for determining the chemicals responsible for the pharmacological activities of Rhizoma coptidis in vivo. Moreover, it would be beneficial for us to further systematically study the pharmacokinetic behavior of Rhizoma coptidis in humans.
Collapse
Affiliation(s)
- Qing-Shan Zhang
- Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao, 028000, P.R. China
| | - Gao-Wa Wang
- Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao, 028000, P.R. China
| | - Zhi-Qiang Han
- Medical Institution Conducting Clinical Trials for Human Used Drug of Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao, 028000, PR China
| | - Xiang-Mei Chen
- Mongolian Medicine College of Pharmacy of Inner Mongolia University for the Nationalities, Tongliao, 028000, PR China
| | - Risu Na
- Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao, 028000, P.R. China
| | - Haburi Jin
- Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao, 028000, P.R. China
| | - Ping Li
- Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao, 028000, P.R. China
| | - Renbatu Bu
- Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao, 028000, P.R. China
| |
Collapse
|
79
|
Sun L, Ding F, You G, Liu H, Wang M, Ren X, Deng Y. Development and Validation of an UPLC-MS/MS Method for Pharmacokinetic Comparison of Five Alkaloids from JinQi Jiangtang Tablets and Its Monarch Drug Coptidis Rhizoma. Pharmaceutics 2017; 10:pharmaceutics10010004. [PMID: 29286316 PMCID: PMC5874817 DOI: 10.3390/pharmaceutics10010004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/18/2017] [Accepted: 12/21/2017] [Indexed: 11/16/2022] Open
Abstract
JinQi Jiangtang (JQJT) tablets, a Chinese patent medicine approved by the State Food and Drug Administration, are composed of Coptidis Rhizoma, Astragali Radix, and Lonicerae Japonicae Flos, and have a significant effect on diabetes. Coptidis Rhizoma is monarch drug in the prescription. The aim of the present study was to investigate and compare the pharmacokinetics of multiple ingredients from JQJT tablets and Coptidis Rhizoma extract (CRE) following oral administration in rats. Five alkaloids: coptisine chloride, epiberberine chloride, berberine chloride, jatrorrhizine chloride, and palmatine chloride, were simultaneously determined in rat plasma using established and validated ultra-high performance liquid chromatography mass spectrometry (UPLC-MS/MS). Significant pharmacokinetic differences were observed for the five alkaloids after a single administration of CRE and JQJT tablets. Compared with CRE, the Cmax values of palmatine chloride and jatrorrhizine chloride were decreased significantly, the AUC0-t values of four alkaloids (all except jatrorrhizine chloride) were notably decreased, and the mean residence times of all five alkaloids were significantly decreased after administration of JQJT tablets. The results indicated that the absorption characteristics of the five alkaloids from Coptidis Rhizoma would be influenced by the compatibility of Astragali Radix or Lonicerae Japonicae Flos from JQJT tablets, such that absorption was inhibited and elimination was accelerated. In conclusion, the developed strategy was suitable for the comparison of five alkaloids from JinQi Jiangtang tablets and its monarch drug, which could be valuable for compatibility studies of traditional Chinese medicines.
Collapse
Affiliation(s)
- Lili Sun
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Feifei Ding
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Guangjiao You
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Han Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Meng Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Xiaoliang Ren
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Yanru Deng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| |
Collapse
|
80
|
Zhou X, Ren F, Wei H, Liu L, Shen T, Xu S, Wei J, Ren J, Ni H. Combination of berberine and evodiamine inhibits intestinal cholesterol absorption in high fat diet induced hyperlipidemic rats. Lipids Health Dis 2017; 16:239. [PMID: 29228954 PMCID: PMC5725942 DOI: 10.1186/s12944-017-0628-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/28/2017] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Hyperlipidemia characterized of elevated serum lipid levels is a prevalent disease frequently resulting in cardiovascular disease (CVD). Berberine and evodiamine are herbal products of traditional Chinese herb Coptis chinensis and Evodia rutaecarpa, which are indicated to exert regulation of lipid metabolism. Therefore, the objective of this study was to investigate the lipid-lowering effect of berberine and evodiamine combination in hyperlipidemic rats. METHOD The rat model of hyperlipidemia was established by providing high-fat-diet (HFD) for 4 weeks. Berberine (BB), evodiamine (EV), and their combination (BB + EV) were orally administered to HFD induced rats for 4 weeks. Body weight, food utilization, histopathology of liver tissues, lipid profiles of serum and liver were measured. Gas chromatography (GC) analysis was applied to examine the level of plasma total cholesterol and ß- Sitosterol (BS) to estimate cholesterol absorption activity. Furthermore, intestinal NPC1L1, ACAT2, and ApoB48 protein expressions were evaluated by immunohistochemical assay. RESULT According to the results, decreased levels of serum cholesterol (TC), triglycerides (TG), low density lipoprotein-cholesterol (LDL-C), as well as hepatic TC were showed in hyperlipidemic rats treated by combination of berberine and evodiamine. GC analysis indicated that the elevated plasma BS was significantly ameliorated by BB, EV, and BB + EV. In addition, immunohistochemical analysis revealed that BB + EV treatment down-regulated the expressions of intestinal NPC1L1 and ACAT2, and ApoB48 in HFD induced rats. CONCLUSION Based on the above results, combination of berberine and evodiamine exerted a promising preventive effect on hyperlipidemia, partially through inhibiting intestinal absorption of cholesterol.
Collapse
Affiliation(s)
- Xin Zhou
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Fengying Ren
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610052, China
| | - Hong Wei
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Liyun Liu
- School of International Education, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tao Shen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Shijun Xu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jiangping Wei
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jiayue Ren
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hengfan Ni
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
81
|
Coptisine protects cardiomyocyte against hypoxia/reoxygenation-induced damage via inhibition of autophagy. Biochem Biophys Res Commun 2017; 490:231-238. [DOI: 10.1016/j.bbrc.2017.06.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 06/08/2017] [Indexed: 12/19/2022]
|
82
|
Li Y, Li C, Yu J, Gao Y, Zhao Y, Xue D, Zhang G, Chai Y, Ke Y, Zhang H. Rapid separation and characterization of comprehensive ingredients in Yangxinshi tablet and rat plasma by ultrahigh-performance liquid chromatography–quadrupole time-of-flight mass spectrometry. J LIQ CHROMATOGR R T 2017. [DOI: 10.1080/10826076.2017.1335213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yang Li
- Department of Pharmacy of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, P. R. China
| | - Chengjian Li
- Department of Pharmacy of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, P. R. China
| | - Jing Yu
- Department of Pharmacy of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, P. R. China
| | - Yue Gao
- School of Pharmacy, Second Military Medical University, Shanghai, P. R. China
| | - Yahong Zhao
- Department of Chinese Materia Medica, Central Research Institute, Shanghai Pharmaceuticals Holding Co. Ltd, Shanghai, China
| | - Dan Xue
- Department of Chinese Materia Medica, Central Research Institute, Shanghai Pharmaceuticals Holding Co. Ltd, Shanghai, China
| | - Guoqing Zhang
- Department of Pharmacy of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, P. R. China
| | - Yifeng Chai
- School of Pharmacy, Second Military Medical University, Shanghai, P. R. China
| | - Ying Ke
- Department of Chinese Materia Medica, Central Research Institute, Shanghai Pharmaceuticals Holding Co. Ltd, Shanghai, China
| | - Hai Zhang
- Department of Pharmacy, Shanghai First Maternity and Infant Hospital, Tong Ji University School of Medicine, Shanghai, China
| |
Collapse
|
83
|
Chan CK, Tan LTH, Andy SN, Kamarudin MNA, Goh BH, Kadir HA. Anti-neuroinflammatory Activity of Elephantopus scaber L. via Activation of Nrf2/HO-1 Signaling and Inhibition of p38 MAPK Pathway in LPS-Induced Microglia BV-2 Cells. Front Pharmacol 2017; 8:397. [PMID: 28680404 PMCID: PMC5478732 DOI: 10.3389/fphar.2017.00397] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 06/06/2017] [Indexed: 12/14/2022] Open
Abstract
Elephantopus scaber L. (family: Asteraceae) has been traditionally utilized as a folkloric medicine and scientifically shown to exhibit anti-inflammatory activities in various in vivo inflammatory models. Given the lack of study on the effect of E. scaber in neuroinflammation, this study aimed to investigate the anti-neuroinflammatory effect and the underlying mechanisms of ethyl acetate fraction from the leaves of E. scaber (ESEAF) on the release of pro-inflammatory mediators in lipopolysaccharide (LPS)-induced microglia cells (BV-2). Present findings showed that ESEAF markedly attenuated the translocation of NF-κB to nucleus concomitantly with the significant mitigation on the LPS-induced production of NO, iNOS, COX-2, PGE2, IL-1β, and TNF-α. These inflammatory responses were reduced via the inhibition of p38. Besides, ESEAF was shown to possess antioxidant activities evident by the DPPH and SOD scavenging activities. The intracellular catalase enzyme activity was enhanced by ESEAF in the LPS-stimulated BV-2 cells. Furthermore, the formation of ROS induced by LPS in BV-2 cells was reduced upon the exposure to ESEAF. Intriguingly, the reduction of ROS was found in concerted with the activation of Nrf2 and HO-1. It is conceivable that the activation promotes the scavenging power of antioxidant enzymes as well as to ameliorate the inflammatory response in LPS-stimulated BV-2 cells. Finally, the safety profile analysis through oral administration of ESEAF at 2000 mg/kg did not result in any mortalities, adverse effects nor histopathologic abnormalities of organs in mice. Taken altogether, the cumulative findings suggested that ESEAF holds the potential to develop as nutraceutical for the intervention of neuroinflammatory disorders.
Collapse
Affiliation(s)
- Chim-Kei Chan
- Biomolecular Research Group, Biochemistry Program, Institute of Biological Sciences, Faculty of Science, University of MalayaKuala Lumpur, Malaysia
| | - Loh Teng-Hern Tan
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaSubang Jaya, Malaysia
| | - Shathiswaran N Andy
- Biomolecular Research Group, Biochemistry Program, Institute of Biological Sciences, Faculty of Science, University of MalayaKuala Lumpur, Malaysia
| | - Muhamad Noor Alfarizal Kamarudin
- Biomolecular Research Group, Biochemistry Program, Institute of Biological Sciences, Faculty of Science, University of MalayaKuala Lumpur, Malaysia
| | - Bey-Hing Goh
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaSubang Jaya, Malaysia.,Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand
| | - Habsah Abdul Kadir
- Biomolecular Research Group, Biochemistry Program, Institute of Biological Sciences, Faculty of Science, University of MalayaKuala Lumpur, Malaysia
| |
Collapse
|
84
|
Zhang MY, Yu YY, Wang SF, Zhang Q, Wu HW, Wei JY, Yang W, Li SY, Yang HJ. Cardiotoxicity evaluation of nine alkaloids from Rhizoma Coptis. Hum Exp Toxicol 2017; 37:185-195. [PMID: 29233041 DOI: 10.1177/0960327117695633] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Alkaloids derived from Rhizoma Coptis (RC) has been widely applied to clinical treatments in China. However, the toxicity of RC and the alkaloids from RC remained controversial. The research is designed to clarify the cardiotoxic compounds found in RC. METHODS In this study, the real-time cellular analysis cardio system and the high-content analysis were applied to monitor the function of cardiomyocytes (CMs) in the treatment of nine alkaloids in RC. Luciferase-coupled adenosine triphosphate (ATP) assay was used to detect cell viability. RESULTS The results showed that berberine, palmatine, berbamine, and oxyberberine were cardiotoxic, which resulted in arrhythmia and cardiac arrest on CMs in a time- and dose-dependent manner. Meanwhile, berbamine and oxyberberine caused shrinkage and detachment on CMs at 10 μM. Cytotoxicity was induced by these two compounds with decline in cell index and ATP depletion. Cardiotoxicity or cytotoxicity was not observed in the other five alkaloids within 10 μM. CONCLUSION For the first time, the cardiotoxicity of the nine alkaloids was evaluated to clarify the cardiotoxic components in RC. Furthermore, the experimental evidences were provided to support the safety of drug application.
Collapse
Affiliation(s)
- M Y Zhang
- 1 Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.,2 Post-Doctoral Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Y Y Yu
- 3 School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - S F Wang
- 3 School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Q Zhang
- 3 School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - H W Wu
- 1 Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - J Y Wei
- 1 Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - W Yang
- 4 ACEA Biosciences incorporated, Hangzhou, Zhejiang, China
| | - S Y Li
- 5 Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - H J Yang
- 1 Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
85
|
Yong YL, Tan LTH, Ming LC, Chan KG, Lee LH, Goh BH, Khan TM. The Effectiveness and Safety of Topical Capsaicin in Postherpetic Neuralgia: A Systematic Review and Meta-analysis. Front Pharmacol 2017; 7:538. [PMID: 28119613 PMCID: PMC5222862 DOI: 10.3389/fphar.2016.00538] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 12/23/2016] [Indexed: 01/19/2023] Open
Abstract
In particular, neuropathic pain is a major form of chronic pain. This type of pain results from dysfunction or lesions in the central and peripheral nervous system. Capsaicin has been traditionally utilized as a medicine to remedy pain. However, the effectiveness and safety of this practice is still elusive. Therefore, this systematic review aimed to investigate the effect of topical capsaicin as a pain-relieving agent that is frequently used in pain management. In brief, all the double-blinded, randomized placebo- or vehicle-controlled trials that were published in English addressing postherpetic neuralgia were included. Meta-analysis was performed using Revman® version 5.3. Upon application of the inclusion and exclusion criteria, only six trials fulfilled all the criteria and were included in the review for qualitative analysis. The difference in mean percentage change in numeric pain rating scale score ranges from -31 to -4.3. This demonstrated high efficacy of topical capsaicin application and implies that capsaicin could result in pain reduction. Furthermore, meta-analysis was performed on five of the included studies. All the results of studies are in favor of the treatment using capsaicin. The incidence of side effects from using topical capsaicin is consistently higher in all included studies, but the significance of safety data cannot be quantified due to a lack of p-values in the original studies. Nevertheless, topical capsaicin is a promising treatment option for specific patient groups or certain neuropathic pain conditions such as postherpetic neuralgia.
Collapse
Affiliation(s)
- Yi Lai Yong
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia Selangor Darul Ehsan, Malaysia
| | - Loh Teng-Hern Tan
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia Selangor Darul Ehsan, Malaysia
| | - Long Chiau Ming
- Unit for Medication Outcomes Research and Education (UMORE), Pharmacy, School of Medicine, University of Tasmania (UTAS) Hobart, TAS, Australia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya Kuala Lumpur, Malaysia
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaSelangor Darul Ehsan, Malaysia; Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand
| | - Bey-Hing Goh
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaSelangor Darul Ehsan, Malaysia; Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand
| | - Tahir Mehmood Khan
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia Selangor Darul Ehsan, Malaysia
| |
Collapse
|
86
|
Tang C, Hoo PCX, Tan LTH, Pusparajah P, Khan TM, Lee LH, Goh BH, Chan KG. Golden Needle Mushroom: A Culinary Medicine with Evidenced-Based Biological Activities and Health Promoting Properties. Front Pharmacol 2016; 7:474. [PMID: 28003804 PMCID: PMC5141589 DOI: 10.3389/fphar.2016.00474] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/21/2016] [Indexed: 02/06/2023] Open
Abstract
Flammulina velutipes (enoki, velvet shank, golden needle mushroom or winter mushroom), one of the main edible mushrooms on the market, has long been recognized for its nutritional value and delicious taste. In recent decades, research has expanded beyond detailing its nutritional composition and delved into the biological activities and potential health benefits of its constituents. Many bioactive constituents from a range of families have been isolated from different parts of the mushroom, including carbohydrates, protein, lipids, glycoproteins, phenols, and sesquiterpenes. These compounds have been demonstrated to exhibit various biological activities, such as antitumour and anticancer activities, anti-atherosclerotic and thrombosis inhibition activity, antihypertensive and cholesterol lowering effects, anti-aging and antioxidant properties, ability to aid with restoring memory and overcoming learning deficits, anti-inflammatory, immunomodulatory, anti-bacterial, ribosome inactivation and melanosis inhibition. This review aims to consolidate the information concerning the phytochemistry and biological activities of various compounds isolated from F. velutipes to demonstrate that this mushroom is not only a great source of nutrients but also possesses tremendous potential in pharmaceutical drug development.
Collapse
Affiliation(s)
- Calyn Tang
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University MalaysiaBandar Sunway, Malaysia
| | - Pearl Ching-Xin Hoo
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University MalaysiaBandar Sunway, Malaysia
| | - Loh Teng-Hern Tan
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia
| | - Priyia Pusparajah
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University MalaysiaBandar Sunway, Malaysia
| | - Tahir Mehmood Khan
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia
- Department of Pharmacy, Abasyn University PeshawarPeshawar, Pakistan
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand
| | - Bey-Hing Goh
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of MalayaKuala Lumpur, Malaysia
| |
Collapse
|