51
|
Ahmad H, Li J. Impact of water deficit on the development and senescence of tomato roots grown under various soil textures of Shaanxi, China. BMC PLANT BIOLOGY 2021; 21:241. [PMID: 34049491 PMCID: PMC8162013 DOI: 10.1186/s12870-021-03018-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/30/2021] [Indexed: 05/26/2023]
Abstract
PURPOSE Water scarcity is expected to extend to more regions of the world and represents an alarming threat to food security worldwide. Under such circumstances, water holding capacity is an important agronomic trait, which is primarily controlled by soil texture. METHODS Our work examined three different soil textures from three cities of Shaanxi Province in China, i.e., silt-sandy loam from Yulin (north of Shaanxi), loam-clay loam from Yangling (middle and western part of Shaanxi), and clay loam-clay from Hanzhong soil (south of Shaanxi), at two moisture levels, i.e., field capacity of 70-75% (well-watered) and 50-55% (water deficit). RESULTS The differences in soil particle sizes altered the soil physiochemical properties and soil enzymatic activities. Soil urease and ß-glucosidase activities were significantly higher in the Yangling soil under the well-watered treatment, while the differences were nonsignificant under the water deficit conditions. The leaf photosynthesis rate and total chlorophyll content were significantly higher in Hanzhong soil after 15 days of treatment; however, the overall highest plant length, root cortex diameter, and xylem element abundance were significantly higher in Yangling soil under the water deficit conditions. Furthermore, comparable differences were observed in antioxidant defence enzymes and endogenous hormones after every 15 days of treatments. The auxin, gibberellic acid and cytokinin concentrations in leaves and roots were comparably high in Yangling soil, while the abscisic acid concentrations were higher in Hanzhong soil under the water deficit conditions. CONCLUSIONS Our findings concluded that soil compaction has a significant role not only in root morphology, growth, and development but also in the soil physicochemical properties and nutrient cycle, which are useful for the growth and development of tomato plants.
Collapse
Affiliation(s)
- Husain Ahmad
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jianming Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
52
|
Native Amazonian Canga Grasses Show Distinct Nitrogen Growth Responses in Iron Mining Substrates. PLANTS 2021; 10:plants10050849. [PMID: 33922282 PMCID: PMC8146357 DOI: 10.3390/plants10050849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 11/17/2022]
Abstract
Native species may have adaptive traits that are advantageous for overcoming the adverse environmental conditions faced during the early stages of mine land rehabilitation. Here, we examined the nitrogen (N) growth responses of two native perennial grasses (Axonopus longispicus and Paspalum cinerascens) from canga in nutrient-poor iron mining substrates. We carried out vegetative propagation and recovered substantial healthy tillers from field-collected tussocks of both species. These tillers were cultivated in mining substrates at increasing N levels. The tillering rates of both species increased with the N application. Nonetheless, only in P. cinerascens did the N application result in significant biomass increase. Such growth gain was a result of changes in leaf pigment, stomatal morphology, gas exchanges, and nutrients absorption that occurred mainly under the low N additions. Reaching optimum growth at 80 mg N dm−3, these plants showed no differences from those in the field. Our study demonstrates that an input of N as fertilizer can differentially improve the growth of native grasses and that P. cinerascens plants are able to deposit high quantities of carbon and protect soil over the seasons, thus, making them promising candidates for restoring nutrient cycling, accelerating the return of other species and ecosystem services.
Collapse
|
53
|
Jeon BW, Kim MJ, Pandey SK, Oh E, Seo PJ, Kim J. Recent advances in peptide signaling during Arabidopsis root development. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2889-2902. [PMID: 33595615 DOI: 10.1093/jxb/erab050] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Roots provide the plant with water and nutrients and anchor it in a substrate. Root development is controlled by plant hormones and various sets of transcription factors. Recently, various small peptides and their cognate receptors have been identified as controlling root development. Small peptides bind to membrane-localized receptor-like kinases, inducing their dimerization with co-receptor proteins for signaling activation and giving rise to cellular signaling outputs. Small peptides function as local and long-distance signaling molecules involved in cell-to-cell communication networks, coordinating root development. In this review, we survey recent advances in the peptide ligand-mediated signaling pathways involved in the control of root development in Arabidopsis. We describe the interconnection between peptide signaling and conventional phytohormone signaling. Additionally, we discuss the diversity of identified peptide-receptor interactions during plant root development.
Collapse
Affiliation(s)
- Byeong Wook Jeon
- Kumho Life Science Laboratory, Chonnam National University, Buk-Gu, Gwangju 61186, Korea
| | - Min-Jung Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186, Korea
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea
| | - Shashank K Pandey
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Eunkyoo Oh
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jungmook Kim
- Kumho Life Science Laboratory, Chonnam National University, Buk-Gu, Gwangju 61186, Korea
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186, Korea
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
54
|
Konstantinova N, Korbei B, Luschnig C. Auxin and Root Gravitropism: Addressing Basic Cellular Processes by Exploiting a Defined Growth Response. Int J Mol Sci 2021; 22:2749. [PMID: 33803128 PMCID: PMC7963156 DOI: 10.3390/ijms22052749] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 12/14/2022] Open
Abstract
Root architecture and growth are decisive for crop performance and yield, and thus a highly topical research field in plant sciences. The root system of the model plant Arabidopsis thaliana is the ideal system to obtain insights into fundamental key parameters and molecular players involved in underlying regulatory circuits of root growth, particularly in responses to environmental stimuli. Root gravitropism, directional growth along the gravity, in particular represents a highly sensitive readout, suitable to study adjustments in polar auxin transport and to identify molecular determinants involved. This review strives to summarize and give an overview into the function of PIN-FORMED auxin transport proteins, emphasizing on their sorting and polarity control. As there already is an abundance of information, the focus lies in integrating this wealth of information on mechanisms and pathways. This overview of a highly dynamic and complex field highlights recent developments in understanding the role of auxin in higher plants. Specifically, it exemplifies, how analysis of a single, defined growth response contributes to our understanding of basic cellular processes in general.
Collapse
Affiliation(s)
| | | | - Christian Luschnig
- Department of Applied Genetics and Cell Biology, Institute of Molecular Plant Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190 Wien, Austria; (N.K.); (B.K.)
| |
Collapse
|
55
|
Vinarao R, Proud C, Zhang X, Snell P, Fukai S, Mitchell J. Stable and Novel Quantitative Trait Loci (QTL) Confer Narrow Root Cone Angle in an Aerobic Rice (Oryza sativa L.) Production System. RICE (NEW YORK, N.Y.) 2021; 14:28. [PMID: 33677700 PMCID: PMC7937586 DOI: 10.1186/s12284-021-00471-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/01/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND Aerobic rice production (AP) may be a solution to the looming water crisis by utilising less water compared to traditional flooded culture. As such, development of genotypes with narrow root cone angle (RCA) is considered a key AP adaptation trait as it could lead to deeper rooting and ensure water uptake at depth. Quantitative trait loci (QTL) and genes associated with rooting angle have been identified in rice, but usually in conventional transplanted systems or in upland and drought conditions. This study aimed to identify QTL associated with RCA in AP systems using a recombinant inbred line population derived from IRAT109. RESULTS Four experiments conducted in glasshouse and aerobic field conditions revealed significant genotypic variation existed for RCA in the population. Single and multiple QTL models identified the presence of eight QTL distributed in chromosomes 1, 2, 3, 4, and 11. Combined, these QTL explained 36.7-51.2% of the genotypic variance in RCA present in the population. Two QTL, qRCA1.1 and qRCA1.3, were novel and may be new targets for improvement of RCA. Genotypes with higher number of favourable QTL alleles tended to have narrower RCA. qRCA4 was shown to be a major and stable QTL explaining up to 24.3% of the genotypic variation, and the presence of the target allele resulted in as much as 8.6° narrower RCA. Several genes related to abiotic stress stimulus response were found in the qRCA4 region. CONCLUSION Stable and novel genomic regions associated with RCA have been identified. Genotypes which had combinations of these QTL, resulted in a narrower RCA phenotype. Allele mining, gene cloning, and physiological dissection should aid in understanding the molecular function and mechanisms underlying RCA and these QTL. Ultimately, our work provides an opportunity for breeding programs to develop genotypes with narrow RCA and deep roots for improved adaptation in an AP system for sustainable rice production.
Collapse
Affiliation(s)
- Ricky Vinarao
- The University of Queensland, School of Agriculture and Food Sciences, Brisbane, QLD, 4072, Australia
| | - Christopher Proud
- The University of Queensland, School of Agriculture and Food Sciences, Brisbane, QLD, 4072, Australia
| | - Xiaolu Zhang
- The University of Queensland, School of Agriculture and Food Sciences, Brisbane, QLD, 4072, Australia
| | - Peter Snell
- Department of Primary Industries, Yanco Agricultural Institute, Yanco, NSW, 2703, Australia
| | - Shu Fukai
- The University of Queensland, School of Agriculture and Food Sciences, Brisbane, QLD, 4072, Australia
| | - Jaquie Mitchell
- The University of Queensland, School of Agriculture and Food Sciences, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
56
|
Colom SM, Baucom RS. Below-ground competition favors character convergence but not character displacement in root traits. THE NEW PHYTOLOGIST 2021; 229:3195-3207. [PMID: 33220075 DOI: 10.1111/nph.17100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/17/2020] [Indexed: 06/11/2023]
Abstract
Character displacement can play a major role in species ecology and evolution; however, research testing whether character displacement can influence the evolution of root traits in plant systems remains scarce in the literature. Here we investigated the potential that character displacement may influence the evolution of root traits using two closely related morning glory species, Ipomoea purpurea and Ipomoea hederacea. We performed a field experiment where we grew the common morning glory, I. purpurea, in the presence and absence of competition from I. hederacea and examined the potential that the process of character displacement could influence the evolution of root traits. We found maternal line variation in root phenotypes and evidence that below-ground competition acts as an agent of selection on these traits. Our test of character displacement, however, showed evidence of character convergence on our measure of root architecture rather than displacement. These results suggest that plants may be constrained by their local environments to express a phenotype that enhances fitness. Therefore, the conditions of the competitive environment experienced by a plant may influence the potential for character convergence or displacement to influence the evolution of root traits.
Collapse
Affiliation(s)
- Sara M Colom
- University of Michigan, 4034 Biological Sciences Building, Ann Arbor, MI, 48109, USA
| | - Regina S Baucom
- University of Michigan, 4034 Biological Sciences Building, Ann Arbor, MI, 48109, USA
| |
Collapse
|
57
|
Kulkarni V, Sawbridge T, Kaur S, Hayden M, Slater AT, Norton SL. New sources of lentil germplasm for aluminium toxicity tolerance identified by high throughput hydroponic screening. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:563-576. [PMID: 33854284 PMCID: PMC7981344 DOI: 10.1007/s12298-021-00954-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/13/2021] [Accepted: 02/10/2021] [Indexed: 05/11/2023]
Abstract
Aluminium (Al) toxicity in acid soils inhibits root elongation and development causing reduced water and nutrient uptake by the root system, which ultimately reduces the crop yield. This study established a high throughput hydroponics screening method and identified Al toxicity tolerant accessions from a set of putative acid tolerant lentil accessions. Four-day old lentil seedlings were screened at 5 µM Al (pH 4.5) for three days in hydroponics. Measured pre and post treatment root length was used to calculate the change in root length (ΔRL) and relative root growth (RRG%). A subset of 15 selected accessions were used for acid soil Al screening, and histochemical and biochemical analyses. Al treatment significantly reduced the ΔRL with an average of 32.3% reduction observed compared to the control. Approximately 1/4 of the focused identification of germplasm strategy accessions showed higher RRG% than the known tolerant line ILL6002 which has the RRG% of 37.9. Very tolerant accessions with RRG% of > 52% were observed in 5.4% of the total accessions. A selection index calculated based on all root traits in acid soil screening was highest in AGG70137 (636.7) whereas it was lowest in Precoz (76.3). All histochemical and biochemical analyses supported the hydroponic results as Northfield, AGG70137, AGG70561 and AGG70281 showed consistent good performance. The identified new sources of Al tolerant lentil germplasm can be used to breed new Al toxicity tolerant lentil varieties. The established high throughput hydroponic method can be routinely used for screening lentil breeding populations for Al toxicity tolerance. Future recommendations could include evaluation of the yield potential of the selected subset of accessions under acid soil field conditions, and the screening of a wider range of landrace accessions originating from areas with Al toxic acid soils.
Collapse
Affiliation(s)
- Vani Kulkarni
- Australian Grains Genebank, Agriculture Victoria, 110 Natimuk Road, Horsham, VIC 3400 Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3086 Australia
| | - Tim Sawbridge
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3086 Australia
- AgriBio, Agriculture Victoria, 5 Ring Road, Bundoora, VIC 3083 Australia
| | - Sukhjiwan Kaur
- AgriBio, Agriculture Victoria, 5 Ring Road, Bundoora, VIC 3083 Australia
| | - Matthew Hayden
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3086 Australia
- AgriBio, Agriculture Victoria, 5 Ring Road, Bundoora, VIC 3083 Australia
| | - Anthony T. Slater
- AgriBio, Agriculture Victoria, 5 Ring Road, Bundoora, VIC 3083 Australia
| | - Sally L. Norton
- Australian Grains Genebank, Agriculture Victoria, 110 Natimuk Road, Horsham, VIC 3400 Australia
| |
Collapse
|
58
|
Effect of Bacillus spp. and Brevibacillus sp. on the Photosynthesis and Redox Status of Solanum lycopersicum. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7020024] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Plant-growth-promoting bacteria (PGPB) are gaining attention as a sustainable alternative to current agrochemicals. This study evaluated the impact of three Bacillus spp. (5PB1, 1PB1, FV46) and one Brevibacillus sp. (C9F) on the important crop tomato (Solanum lycopersicum) using the model cv. ‘MicroTom’. The effects of these isolates were assessed on (a) seedlings’ growth and vigor, and (b) adult potted plants. In potted plants, several photosynthetic parameters (chlorophylls (a and b), carotenoids and anthocyanins contents, transpiration rate, stomatal conductance, net CO2 photosynthetic rate, and intercellular CO2 concentration, and on chlorophyll fluorescence yields of light- and dark-adapted leaves)), as well as soluble sugars and starch contents, were quantified. Additionally, the effects on redox status were evaluated. While the growth of seedlings was, overall, not influenced by the strains, some effects were observed on adult plants. The Bacillus safensis FV46 stimulated the content of pigments, compared to C9F. Bacillus zhangzhouensis 5PB1 increased starch levels and was positively correlated with some parameters of the photophosphorylation and the gas exchange phases. Interestingly, Bacillus megaterium 1PB1 decreased superoxide (O2−) content, and B. safensis FV46 promoted non-enzymatic antioxidant defenses, increasing total phenol content levels. These results, conducted on a model cultivar, support the theory that these isolates differently act on tomato plant physiology, and that their activity depends on the age of the plant, and may differently influence photosynthesis. It would now be interesting to analyze the influence of these bacteria using commercial cultivars.
Collapse
|
59
|
Zhou H, Whalley WR, Hawkesford MJ, Ashton RW, Atkinson B, Atkinson JA, Sturrock CJ, Bennett MJ, Mooney SJ. The interaction between wheat roots and soil pores in structured field soil. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:747-756. [PMID: 33064808 PMCID: PMC7853603 DOI: 10.1093/jxb/eraa475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 10/16/2020] [Indexed: 05/11/2023]
Abstract
Wheat (Triticum aestivum L.) root growth in the subsoil is usually constrained by soil strength, although roots can use macropores to elongate to deeper layers. The quantitative relationship between the elongation of wheat roots and the soil pore system, however, is still to be determined. We studied the depth distribution of roots of six wheat varieties and explored their relationship with soil macroporosity from samples with the field structure preserved. Undisturbed soil cores (to a depth of 100 cm) were collected from the field and then non-destructively imaged using X-ray computed tomography (at a spatial resolution of 90 µm) to quantify soil macropore structure and root number density (the number of roots cm-2 within a horizontal cross-section of a soil core). Soil macroporosity changed significantly with depth but not between the different wheat lines. There was no significant difference in root number density between wheat varieties. In the subsoil, wheat roots used macropores, especially biopores (i.e. former root or earthworm channels) to grow into deeper layers. Soil macroporosity explained 59% of the variance in root number density. Our data suggested that the development of the wheat root system in the field was more affected by the soil macropore system than by genotype. On this basis, management practices which enhance the porosity of the subsoil may therefore be an effective strategy to improve deep rooting of wheat.
Collapse
Affiliation(s)
- Hu Zhou
- School of Biosciences, University of Nottingham, Loughborough, Leicestershire, UK
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, Nanjing, PR China
- Correspondence:
| | | | | | | | - Brian Atkinson
- School of Biosciences, University of Nottingham, Loughborough, Leicestershire, UK
| | - Jonathan A Atkinson
- School of Biosciences, University of Nottingham, Loughborough, Leicestershire, UK
| | - Craig J Sturrock
- School of Biosciences, University of Nottingham, Loughborough, Leicestershire, UK
| | - Malcolm J Bennett
- School of Biosciences, University of Nottingham, Loughborough, Leicestershire, UK
| | - Sacha J Mooney
- School of Biosciences, University of Nottingham, Loughborough, Leicestershire, UK
| |
Collapse
|
60
|
Fu J, Zhu C, Wang C, Liu L, Shen Q, Xu D, Wang Q. Maize transcription factor ZmEREB20 enhanced salt tolerance in transgenic Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 159:257-267. [PMID: 33395583 DOI: 10.1016/j.plaphy.2020.12.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 12/23/2020] [Indexed: 05/22/2023]
Abstract
Soil salinity severely limits agricultural crop production worldwide. As one of the biggest plant specific transcription factor families, AP2/ERF members have been extensively studied to regulate plant growth, development and stress responses. However, the role of AP2/ERF family in maize salt tolerance remains largely unknown. In this study, we identified a maize AP2-ERF family member ZmEREB20 as a positive salinity responsive gene. Overexpression of ZmEREB20in Arabidopsis enhanced ABA sensitivity and resulted in delayed seed germination under salt stress through regulating ABA and GA related genes. ZmEREB20 overexpression lines also showed higher survival rates with elevated ROS scavenging toward high salinity. Furthermore, root hair growth inhibition by salt stress was markedly rescued in ZmEREB20 overexpression lines. Auxin transport inhibitor TIBA drastically enhanced root hair growth in ZmEREB20 overexpression Arabidopsis under salt stress, together with the increased expression of auxin-related genes, ion transporter genes and root hair growth genes by RNA-seq analysis. ZmEREB20 positively regulated salt tolerance through the molecular mechanism associated with hormone signaling, ROS scavenging and root hair plasticity, proving the potential target for crop breeding to improve salt resistance.
Collapse
Affiliation(s)
- Jingye Fu
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chenying Zhu
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chang Wang
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lijun Liu
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qinqin Shen
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Dongbei Xu
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiang Wang
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130, China.
| |
Collapse
|
61
|
Cui C, Wang Z, Su Y, Wang T. New insight into the rapid growth of the Mikania micrantha stem based on DIA proteomic and RNA-Seq analysis. J Proteomics 2021; 236:104126. [PMID: 33540067 DOI: 10.1016/j.jprot.2021.104126] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/09/2021] [Accepted: 01/15/2021] [Indexed: 01/29/2023]
Abstract
Mikania micrantha is one of the world's most invasive plants, which causes severe damage to natural ecosystems and agroforestry systems due to its rapid stem growth. This work investigated the proteomic and transcriptomic profiles of M. micrantha in different stem tissues (pre-internode, post-internode, and internode), as well as in adventitious roots and primary roots with the final goal of elucidating differentially expressed genes and proteins responsible for the rapid growth of stem. The objective was approached by using DIA-based proteomic and RNA-Seq technologies. More than seven giga-transcriptome clean reads were sequenced, and 5196 protein species were identified. Differentially expressed genes identified in all stem tissues were significantly enriched in photosynthesis and carbon fixation, suggesting that the stem possesses a strong photosynthetic capacity in order to maintain the energy supply for this species. Analysis of differentially expressed proteins showed that proteins related to photosystem I/II and the cytochrome b6/f complex, such as D1, D2, and cp43, were also highly accumulated in the adventitious roots, corroborating the transcriptome analysis results. These results provided basic proteomic and transcriptional expression information about the M. micrantha stem and adventitious root, thereby improving our understanding of the molecular mechanism underlying rapid growth in this species. SIGNIFICANCE: This is the first study to investigate the proteomic and transcriptomic profiles of Mikania micrantha, a highly invasive plant, in different stem tissues (pre-internode, post-internode, and internode), as well as in adventitious and primary roots, using the latest DIA-based (data-independent acquisition mode) proteomic and RNA-Seq technologies. A comprehensive study was carried out, and differentially expressed genes and differentially expressed proteins identified in the pre-internode, post-internode, and internode tissues were significantly enriched during photosynthesis and carbon fixation, suggesting that the M. micrantha stem possesses a strong photosynthetic capacity that allows the plant to maintain a high energy supply. Enriched plant hormone signal transduction pathway analysis revealed an interaction between auxin and other phytohormones involved in adventitious root development. The study provided basic data on the molecular mechanism of M. micrantha vegetative propagation and the rapid growth of its stem. The novel scientific content of this study successfully builds upon the limited information currently available on the subject, therefore warranting publication.
Collapse
Affiliation(s)
- Can Cui
- School of Life Sciences, Sun Yat-sen University, Xingang Xi Lu 135, Guangzhou 510275, China
| | - Zhen Wang
- School of Life Sciences, Sun Yat-sen University, Xingang Xi Lu 135, Guangzhou 510275, China
| | - Yingjuan Su
- School of Life Sciences, Sun Yat-sen University, Xingang Xi Lu 135, Guangzhou 510275, China; Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen 518057, Shenzhen 518057, China.
| | - Ting Wang
- College of Life Sciences, South China Agricultural University, Wushan 483, Guangzhou 510642, China.
| |
Collapse
|
62
|
Arabidopsis REI-LIKE proteins activate ribosome biogenesis during cold acclimation. Sci Rep 2021; 11:2410. [PMID: 33510206 PMCID: PMC7844247 DOI: 10.1038/s41598-021-81610-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/06/2021] [Indexed: 12/11/2022] Open
Abstract
Arabidopsis REIL proteins are cytosolic ribosomal 60S-biogenesis factors. After shift to 10 °C, reil mutants deplete and slowly replenish non-translating eukaryotic ribosome complexes of root tissue, while controlling the balance of non-translating 40S- and 60S-subunits. Reil mutations respond by hyper-accumulation of non-translating subunits at steady-state temperature; after cold-shift, a KCl-sensitive 80S sub-fraction remains depleted. We infer that Arabidopsis may buffer fluctuating translation by pre-existing non-translating ribosomes before de novo synthesis meets temperature-induced demands. Reil1 reil2 double mutants accumulate 43S-preinitiation and pre-60S-maturation complexes and alter paralog composition of ribosomal proteins in non-translating complexes. With few exceptions, e.g. RPL3B and RPL24C, these changes are not under transcriptional control. Our study suggests requirement of de novo synthesis of eukaryotic ribosomes for long-term cold acclimation, feedback control of NUC2 and eIF3C2 transcription and links new proteins, AT1G03250, AT5G60530, to plant ribosome biogenesis. We propose that Arabidopsis requires biosynthesis of specialized ribosomes for cold acclimation.
Collapse
|
63
|
Grover M, Bodhankar S, Sharma A, Sharma P, Singh J, Nain L. PGPR Mediated Alterations in Root Traits: Way Toward Sustainable Crop Production. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2020.618230] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The above ground growth of the plant is highly dependent on the belowground root system. Rhizosphere is the zone of continuous interplay between plant roots and soil microbial communities. Plants, through root exudates, attract rhizosphere microorganisms to colonize the root surface and internal tissues. Many of these microorganisms known as plant growth promoting rhizobacteria (PGPR) improve plant growth through several direct and indirect mechanisms including biological nitrogen fixation, nutrient solubilization, and disease-control. Many PGPR, by producing phytohormones, volatile organic compounds, and secondary metabolites play important role in influencing the root architecture and growth, resulting in increased surface area for nutrient exchange and other rhizosphere effects. PGPR also improve resource use efficiency of the root system by improving the root system functioning at physiological levels. PGPR mediated root trait alterations can contribute to agroecosystem through improving crop stand, resource use efficiency, stress tolerance, soil structure etc. Thus, PGPR capable of modulating root traits can play important role in agricultural sustainability and root traits can be used as a primary criterion for the selection of potential PGPR strains. Available PGPR studies emphasize root morphological and physiological traits to assess the effect of PGPR. However, these traits can be influenced by various external factors and may give varying results. Therefore, it is important to understand the pathways and genes involved in plant root traits and the microbial signals/metabolites that can intercept and/or intersect these pathways for modulating root traits. The use of advanced tools and technologies can help to decipher the mechanisms involved in PGPR mediated determinants affecting the root traits. Further identification of PGPR based determinants/signaling molecules capable of regulating root trait genes and pathways can open up new avenues in PGPR research. The present review updates recent knowledge on the PGPR influence on root architecture and root functional traits and its benefits to the agro-ecosystem. Efforts have been made to understand the bacterial signals/determinants that can play regulatory role in the expression of root traits and their prospects in sustainable agriculture. The review will be helpful in providing future directions to the researchers working on PGPR and root system functioning.
Collapse
|
64
|
Zluhan-Martínez E, López-Ruíz BA, García-Gómez ML, García-Ponce B, de la Paz Sánchez M, Álvarez-Buylla ER, Garay-Arroyo A. Integrative Roles of Phytohormones on Cell Proliferation, Elongation and Differentiation in the Arabidopsis thaliana Primary Root. FRONTIERS IN PLANT SCIENCE 2021; 12:659155. [PMID: 33981325 PMCID: PMC8107238 DOI: 10.3389/fpls.2021.659155] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/24/2021] [Indexed: 05/17/2023]
Abstract
The growth of multicellular organisms relies on cell proliferation, elongation and differentiation that are tightly regulated throughout development by internal and external stimuli. The plasticity of a growth response largely depends on the capacity of the organism to adjust the ratio between cell proliferation and cell differentiation. The primary root of Arabidopsis thaliana offers many advantages toward understanding growth homeostasis as root cells are continuously produced and move from cell proliferation to elongation and differentiation that are processes spatially separated and could be studied along the longitudinal axis. Hormones fine tune plant growth responses and a huge amount of information has been recently generated on the role of these compounds in Arabidopsis primary root development. In this review, we summarized the participation of nine hormones in the regulation of the different zones and domains of the Arabidopsis primary root. In some cases, we found synergism between hormones that function either positively or negatively in proliferation, elongation or differentiation. Intriguingly, there are other cases where the interaction between hormones exhibits unexpected results. Future analysis on the molecular mechanisms underlying crosstalk hormone action in specific zones and domains will unravel their coordination over PR development.
Collapse
Affiliation(s)
- Estephania Zluhan-Martínez
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Brenda Anabel López-Ruíz
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Mónica L. García-Gómez
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - María de la Paz Sánchez
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Elena R. Álvarez-Buylla
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- *Correspondence: Adriana Garay-Arroyo,
| |
Collapse
|
65
|
Yu SM, Lee HT, Lo SF, Ho THD. How does rice cope with too little oxygen during its early life? THE NEW PHYTOLOGIST 2021; 229:36-41. [PMID: 31880324 DOI: 10.1111/nph.16395] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/28/2019] [Indexed: 05/25/2023]
Abstract
Most crops cannot germinate underwater. Rice exhibits certain degrees of tolerance to oxygen deficiency for anaerobic germination (AG) and anaerobic seedling development (ASD). Direct rice seeding, whereby seeds are sown into soil rather than transplanting seedlings from the nursery, becomes an increasingly popular cultivation method due to labor shortages and opportunities for sustainable cultivation. Flooding is common under direct seeding, but most rice varieties have poor capability of AG/ASD, which is a major obstacle to broad adoption of direct seeding. A better understanding of the physiological basis and molecular mechanisms regulating AG/ASD should facilitate rice breeding for enhanced seedling vigor under flooding. This review highlights recent advances on molecular and physiological mechanisms and future breeding strategies of rice AG/ASD.
Collapse
Affiliation(s)
- Su-May Yu
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, 115, Taiwan
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and National Defense Medical Center, Taipei, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan
- Department of Plant Pathology, National Chung Hsing University, Taichung, 402, Taiwan
| | - Hsiang-Ting Lee
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, 115, Taiwan
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and National Defense Medical Center, Taipei, Taiwan
| | - Shuen-Fang Lo
- Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan
| | - Tuan-Hua David Ho
- Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei, 115, Taiwan
| |
Collapse
|
66
|
Abstract
In this paper, a novel heuristic search algorithm called Smart Root Search (SRS) is proposed. SRS employs intelligent foraging behavior of immature, mature and hair roots of plants to explore and exploit the problem search space simultaneously. SRS divides the search space into several subspaces. It thereupon utilizes the branching and drought operations to focus on richer areas of promising subspaces while extraneous ones are not thoroughly ignored. To achieve this, the smart reactions of the SRS model are designed to act based on analyzing the heterogeneous conditions of various sections of different search spaces. In order to evaluate the performance of the SRS, it was tested on a set of known unimodal and multimodal test functions. The results were then compared with those obtained using genetic algorithms, particle swarm optimization, differential evolution and imperialist competitive algorithms and then analyzed statistically. The results demonstrated that the SRS outperformed comparative algorithms for 92% and 82% of the investigated unimodal and multimodal test functions, respectively. Therefore, the SRS is a promising nature-inspired optimization algorithm.
Collapse
|
67
|
Barros VA, Chandnani R, de Sousa SM, Maciel LS, Tokizawa M, Guimaraes CT, Magalhaes JV, Kochian LV. Root Adaptation via Common Genetic Factors Conditioning Tolerance to Multiple Stresses for Crops Cultivated on Acidic Tropical Soils. FRONTIERS IN PLANT SCIENCE 2020; 11:565339. [PMID: 33281841 PMCID: PMC7688899 DOI: 10.3389/fpls.2020.565339] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 10/20/2020] [Indexed: 06/01/2023]
Abstract
Crop tolerance to multiple abiotic stresses has long been pursued as a Holy Grail in plant breeding efforts that target crop adaptation to tropical soils. On tropical, acidic soils, aluminum (Al) toxicity, low phosphorus (P) availability and drought stress are the major limitations to yield stability. Molecular breeding based on a small suite of pleiotropic genes, particularly those with moderate to major phenotypic effects, could help circumvent the need for complex breeding designs and large population sizes aimed at selecting transgressive progeny accumulating favorable alleles controlling polygenic traits. The underlying question is twofold: do common tolerance mechanisms to Al toxicity, P deficiency and drought exist? And if they do, will they be useful in a plant breeding program that targets stress-prone environments. The selective environments in tropical regions are such that multiple, co-existing regulatory networks may drive the fixation of either distinctly different or a smaller number of pleiotropic abiotic stress tolerance genes. Recent studies suggest that genes contributing to crop adaptation to acidic soils, such as the major Arabidopsis Al tolerance protein, AtALMT1, which encodes an aluminum-activated root malate transporter, may influence both Al tolerance and P acquisition via changes in root system morphology and architecture. However, trans-acting elements such as transcription factors (TFs) may be the best option for pleiotropic control of multiple abiotic stress genes, due to their small and often multiple binding sequences in the genome. One such example is the C2H2-type zinc finger, AtSTOP1, which is a transcriptional regulator of a number of Arabidopsis Al tolerance genes, including AtMATE and AtALMT1, and has been shown to activate AtALMT1, not only in response to Al but also low soil P. The large WRKY family of transcription factors are also known to affect a broad spectrum of phenotypes, some of which are related to acidic soil abiotic stress responses. Hence, we focus here on signaling proteins such as TFs and protein kinases to identify, from the literature, evidence for unifying regulatory networks controlling Al tolerance, P efficiency and, also possibly drought tolerance. Particular emphasis will be given to modification of root system morphology and architecture, which could be an important physiological "hub" leading to crop adaptation to multiple soil-based abiotic stress factors.
Collapse
Affiliation(s)
- Vanessa A. Barros
- Embrapa Maize and Sorghum, Sete Lagoas, Brazil
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rahul Chandnani
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Laiane S. Maciel
- Embrapa Maize and Sorghum, Sete Lagoas, Brazil
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Mutsutomo Tokizawa
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Jurandir V. Magalhaes
- Embrapa Maize and Sorghum, Sete Lagoas, Brazil
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Leon V. Kochian
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
68
|
Current Advances in Plant Growth Promoting Bacteria Alleviating Salt Stress for Sustainable Agriculture. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10207025] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Humanity in the modern world is confronted with diverse problems at several levels. The environmental concern is probably the most important as it threatens different ecosystems, food, and farming as well as humans, animals, and plants. More specifically, salinization of agricultural soils is a global concern because of on one side, the permanent increase of the areas affected, and on the other side, the disastrous damage caused to various plants affecting hugely crop productivity and yields. Currently, great attention is directed towards the use of Plant Growth Promoting Bacteria (PGPB). This alternative method, which is healthy, safe, and ecological, seems to be very promising in terms of simultaneous salinity alleviation and improving crop productivity. This review attempts to deal with different aspects of the current advances concerning the use of PGPBs for saline stress alleviation. The objective is to explain, discuss, and present the current progress in this area of research. We firstly discuss the implication of PGPB on soil desalinization. We present the impacts of salinity on crops. We look for the different salinity origin and its impacts on plants. We discuss the impacts of salinity on soil. Then, we review various recent progress of hemophilic PGPB for sustainable agriculture. We categorize the mechanisms of PGPB toward salinity tolerance. We discuss the use of PGPB inoculants under salinity that can reduce chemical fertilization. Finally, we present some possible directions for future investigation. It seems that PGPBs use for saline stress alleviation gain more importance, investigations, and applications. Regarding the complexity of the mechanisms implicated in this domain, various aspects remain to be elucidated.
Collapse
|
69
|
Yoon J, Cho LH, Yang W, Pasriga R, Wu Y, Hong WJ, Bureau C, Wi SJ, Zhang T, Wang R, Zhang D, Jung KH, Park KY, Périn C, Zhao Y, An G. Homeobox transcription factor OsZHD2 promotes root meristem activity in rice by inducing ethylene biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5348-5364. [PMID: 32449922 PMCID: PMC7501826 DOI: 10.1093/jxb/eraa209] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 04/27/2020] [Indexed: 05/11/2023]
Abstract
Root meristem activity is the most critical process influencing root development. Although several factors that regulate meristem activity have been identified in rice, studies on the enhancement of meristem activity in roots are limited. We identified a T-DNA activation tagging line of a zinc-finger homeobox gene, OsZHD2, which has longer seminal and lateral roots due to increased meristem activity. The phenotypes were confirmed in transgenic plants overexpressing OsZHD2. In addition, the overexpressing plants showed enhanced grain yield under low nutrient and paddy field conditions. OsZHD2 was preferentially expressed in the shoot apical meristem and root tips. Transcriptome analyses and quantitative real-time PCR experiments on roots from the activation tagging line and the wild type showed that genes for ethylene biosynthesis were up-regulated in the activation line. Ethylene levels were higher in the activation lines compared with the wild type. ChIP assay results suggested that OsZHD2 induces ethylene biosynthesis by controlling ACS5 directly. Treatment with ACC (1-aminocyclopropane-1-carboxylic acid), an ethylene precursor, induced the expression of the DR5 reporter at the root tip and stele, whereas treatment with an ethylene biosynthesis inhibitor, AVG (aminoethoxyvinylglycine), decreased that expression in both the wild type and the OsZHD2 overexpression line. These observations suggest that OsZHD2 enhances root meristem activity by influencing ethylene biosynthesis and, in turn, auxin.
Collapse
Affiliation(s)
- Jinmi Yoon
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin, Korea
| | - Lae-Hyeon Cho
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin, Korea
- Department of Plant Bioscience, Pusan National University, Miryang, Korea
| | - Wenzhu Yang
- Department of Crop Genomics and Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Richa Pasriga
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin, Korea
| | - Yunfei Wu
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin, Korea
| | - Woo-Jong Hong
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin, Korea
| | - Charlotte Bureau
- Agricultural Research Centre For International Development, Paris, France
| | - Soo Jin Wi
- Department of Biology, Sunchon National University, Sunchon, Chonnam, Korea
| | - Tao Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Rongchen Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai, China
- School of Agriculture, Food and Wine, University of Adelaide Urrbrae, SA, Australia
| | - Ki-Hong Jung
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin, Korea
| | - Ky Young Park
- Department of Biology, Sunchon National University, Sunchon, Chonnam, Korea
| | - Christophe Périn
- Agricultural Research Centre For International Development, Paris, France
| | - Yunde Zhao
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Gynheung An
- Crop Biotech Institute and Graduate School of Biotechnology, Kyung Hee University, Yongin, Korea
- Correspondence:
| |
Collapse
|
70
|
Zhang Z, Zhang Z, Han X, Wu J, Zhang L, Wang J, Wang-Pruski G. Specific response mechanism to autotoxicity in melon (Cucumis melo L.) root revealed by physiological analyses combined with transcriptome profiling. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 200:110779. [PMID: 32460045 DOI: 10.1016/j.ecoenv.2020.110779] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/13/2020] [Accepted: 05/17/2020] [Indexed: 05/13/2023]
Abstract
Melon is of great value in food, medicine and industry. In recent years, the continuous cropping obstacles of melon is increasingly prominent, which seriously affects the cultivation. Autotoxicity is the key factor for the obstacles. Root is the first line against autotoxicity and main organs for autotoxins secretion. Some physiological responses and differentially expressed genes (DEGs) related to autotoxicity are only limited to root system. Considering the lack of relevant research, physiological researches combined with transcriptome sequencing of melon seedling after autotoxicity stress mediated by root exudates (RE) was performed to help characterize the response mechanism to autotoxicity in melon roots. The results showed that autotoxicity inhibited root morphogenesis of melon seedlings, induced the excessive accumulation of reactive oxygen species (ROS) and lipid peroxidation in roots, and activated most antioxidant enzymes. Compared with the control group, the osmoregulation substance content was always at a high level. DEGs response to autotoxicity in roots were distinguished from that in leaves. Functional annotation of these DEGs suggested that autotoxicity affected biological regulation in a negative manner. DEGs were mainly involved in the synthesis of antioxidants, DNA damage and metabolism, and stress response. These setbacks were associated with the deterioration of root morphogenesis, generation of dwarf and slender roots, and ultimately leading to plant death. The results may provide important information for revealing the response mechanism of root to autotoxicity, and provide theoretical basis for solving the continuous cropping obstacles in melon.
Collapse
Affiliation(s)
- Zhizhong Zhang
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Zhengda Zhang
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, 712100, China; Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaoyun Han
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jinghua Wu
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lizhen Zhang
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jingrong Wang
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Gefu Wang-Pruski
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada; Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
71
|
Kim SH, Bahk S, An J, Hussain S, Nguyen NT, Do HL, Kim JY, Hong JC, Chung WS. A Gain-of-Function Mutant of IAA15 Inhibits Lateral Root Development by Transcriptional Repression of LBD Genes in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 11:1239. [PMID: 32903377 PMCID: PMC7434933 DOI: 10.3389/fpls.2020.01239] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Lateral root development is known to be regulated by Aux/IAA-ARF modules in Arabidopsis thaliana. As components, several Aux/IAAs have participated in these Aux/IAA-ARF modules. In this study, to identify the biological function of IAA15 in plant developments, transgenic plant overexpressing the gain-of-function mutant of IAA15 (IAA15P75S OX) under the control of dexamethasone (DEX) inducible promoter, in which IAA15 protein was mutated by changing Pro-75 residue to Ser at the degron motif in conserved domain II, was constructed. As a result, we found that IAA15P75S OX plants show a decreased number of lateral roots. Coincidently, IAA15 promoter-GUS reporter analysis revealed that IAA15 transcripts were highly detected in all stages of developing lateral root tissues. It was also verified that the IAA15P75S protein is strongly stabilized against proteasome-mediated protein degradation by inhibiting its poly-ubiquitination, resulting in the transcriptional repression of auxin-responsive genes. In particular, transcript levels of LBD16 and LBD29, which are positive regulators of lateral root formation, dramatically repressed in IAA15P75S OX plants. Furthermore, it was elucidated that IAA15 interacts with ARF7 and ARF19 and binds to the promoters of LBD16 and LBD29, strongly suggesting that IAA15 represses lateral root formation through the transcriptional suppression of LBD16 and LBD29 by inhibiting ARF7 and ARF19 activity. Taken together, this study suggests that IAA15 also plays a key negative role in lateral root formation as a component of Aux/IAA-ARF modules.
Collapse
|
72
|
Nam BE, Park YJ, Gil KE, Kim JH, Kim JG, Park CM. Auxin mediates the touch-induced mechanical stimulation of adventitious root formation under windy conditions in Brachypodium distachyon. BMC PLANT BIOLOGY 2020; 20:335. [PMID: 32678030 PMCID: PMC7364541 DOI: 10.1186/s12870-020-02544-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 07/07/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND It is widely perceived that mechanical or thigmomorphogenic stimuli, such as rubbing and bending by passing animals, wind, raindrop, and flooding, broadly influence plant growth and developmental patterning. In particular, wind-driven mechanical stimulation is known to induce the incidence of radial expansion and shorter and stockier statue. Wind stimulation also affects the adaptive propagation of the root system in various plant species. However, it is unknown how plants sense and transmit the wind-derived mechanical signals to launch appropriate responses, leading to the wind-adaptive root growth. RESULTS Here, we found that Brachypodium distachyon, a model grass widely used for studies on bioenergy crops and cereals, efficiently adapts to wind-mediated lodging stress by forming adventitious roots (ARs) from nonroot tissues. Experimental dissection of wind stimuli revealed that not bending of the mesocotyls but physical contact of the leaf nodes with soil particles triggers the transcriptional induction of a group of potential auxin-responsive genes encoding WUSCHEL RELATED HOMEOBOX and LATERAL ORGAN BOUNDARIES DOMAIN transcription factors, which are likely to be involved in the induction of AR formation. CONCLUSIONS Our findings would contribute to further understanding molecular mechanisms governing the initiation and development of ARs, which will be applicable to crop agriculture in extreme wind climates.
Collapse
Affiliation(s)
- Bo Eun Nam
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
- Department of Biology Education, Seoul National University, Seoul, 08826, South Korea
| | - Young-Joon Park
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Kyung-Eun Gil
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Ju-Heon Kim
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Jae Geun Kim
- Department of Biology Education, Seoul National University, Seoul, 08826, South Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea.
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
73
|
Reorganization of Protein Tyrosine Nitration Pattern Indicates the Relative Tolerance of Brassica napus (L.) over Helianthus annuus (L.) to Combined Heavy Metal Treatment. PLANTS 2020; 9:plants9070902. [PMID: 32708788 PMCID: PMC7411833 DOI: 10.3390/plants9070902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/25/2022]
Abstract
Metal-polluted areas, especially where municipal sewage is used as fertilizer, often have high concentrations of more than one metal. The development of the root system is regulated by a complex signaling network, which includes reactive oxygen and nitrogen species. The delicate balance of the endogenous signal system can be affected by various environmental stimuli including heavy metals (HMs) in excess. Our goal was to analyze the microelement homeostasis, root architecture, and to determine the underlying changes in the nitro-oxidative status in the root system of rapeseed (Brassica napus L.) and sunflower (Helianthus annuus L.) subjected to combined HM treatments. The effect of model-sewage in two different layouts was simulated in rhizotron system by only supplementing the highest HM concentrations (Cd, Cr, Cu, Hg, Ni, Pb, and Zn) legally allowed. The two species reacted differently to combined HM treatment; compared to the relatively sensitive sunflower, rapeseed showed better metal translocation capability and root growth even at the more severe treatment, where the pattern of protein tyrosine nitration was reorganized. The obtained results, especially the increased nitric oxide content and changed pattern of tyrosine nitration in rapeseed, can indicate acclimation and species-specific nitro-oxidative responses to combined HM stress.
Collapse
|
74
|
Maurel C, Nacry P. Root architecture and hydraulics converge for acclimation to changing water availability. NATURE PLANTS 2020; 6:744-749. [PMID: 32601421 DOI: 10.1038/s41477-020-0684-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/29/2020] [Indexed: 05/16/2023]
Abstract
Because of intense transpiration and growth, the needs of plants for water can be immense. Yet water in the soil is most often heterogeneous if not scarce due to more and more frequent and intense drought episodes. The converse context, flooding, is often associated with marked oxygen deficiency and can also challenge the plant water status. Under our feet, roots achieve an incredible challenge to meet the water demand of the plant's aerial parts under such dramatically different environmental conditions. For this, they continuously explore the soil, building a highly complex, branched architecture. On shorter time scales, roots keep adjusting their water transport capacity (their so-called hydraulics) locally or globally. While the mechanisms that directly underlie root growth and development as well as tissue hydraulics are being uncovered, the signalling mechanisms that govern their local and systemic adjustments as a function of water availability remain largely unknown. A comprehensive understanding of root architecture and hydraulics as a whole (in other terms, root hydraulic architecture) is needed to apprehend the strategies used by plants to optimize water uptake and possibly improve crops regarding this crucial trait.
Collapse
Affiliation(s)
- Christophe Maurel
- Biochimie et Physiologie Moléculaire des Plantes (BPMP), Université de Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France.
| | - Philippe Nacry
- Biochimie et Physiologie Moléculaire des Plantes (BPMP), Université de Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
75
|
Henderson AN, Crim PM, Cumming JR, Hawkins JS. Phenotypic and physiological responses to salt exposure in Sorghum reveal diversity among domesticated landraces. AMERICAN JOURNAL OF BOTANY 2020; 107:983-992. [PMID: 32648285 DOI: 10.1002/ajb2.1506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/19/2019] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
PREMISE Soil salinity negatively impacts plant function, development, and yield. To overcome this impediment to agricultural productivity, variation in morphological and physiological response to salinity among genotypes of important crops should be explored. Sorghum bicolor is a staple crop that has adapted to a variety of environmental conditions and contains a significant amount of standing genetic diversity, making it an exemplary species to study variation in salinity tolerance. METHODS Twenty-one diverse Sorghum accessions were treated with nonsaline water or 75 mM sodium chloride. Salinity tolerance was assessed via changes in biomass between control and salt-treated individuals. Accessions were first rank-ordered for salinity tolerance, and then individuals spanning a wide range of responses were analyzed for foliar proline and ion accumulation. Tolerance rankings were then overlaid on a neighbor-joining tree. RESULTS We found that, while proline is often a good indicator of osmotic adjustment and is historically associated with increased salt tolerance in many species, proline accumulation in sorghum reflects a stress response injury rather than acclimation. When combining ion profiles with stress tolerance indices, the variation observed in tolerance was not a sole result of Na+ accumulation, but rather reflected accession-specific mechanisms. CONCLUSIONS We identified significant variation in salinity tolerance among Sorghum accessions that may be a result of the domestication history of Sorghum. When we compared our results with known phylogenetic relationships within sorghum, the most parsimonious explanation for our findings is that salinity tolerance was acquired early during domestication and subsequently lost in accessions growing in areas varying in soil salinity.
Collapse
Affiliation(s)
- Ashley N Henderson
- Department of Biology, West Virginia University, Morgantown, WV, 265052, USA
| | - Philip M Crim
- Department of Biology, West Virginia University, Morgantown, WV, 265052, USA
- Department of Biology, The College of Saint Rose, Albany, NY, 12203, USA
| | - Jonathan R Cumming
- Department of Biology, West Virginia University, Morgantown, WV, 265052, USA
| | - Jennifer S Hawkins
- Department of Biology, West Virginia University, Morgantown, WV, 265052, USA
| |
Collapse
|
76
|
Pandey A, Devi LL, Singh AP. Review: Emerging roles of brassinosteroid in nutrient foraging. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 296:110474. [PMID: 32540004 DOI: 10.1016/j.plantsci.2020.110474] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/04/2020] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
Brassinosteroids (BRs) are well-characterized growth hormones that are critical for plant growth, development, and productivity. Genetic and molecular studies have revealed the key components of BR biosynthesis and signaling pathways. The membrane-localized BR signaling receptor, BRASSINOSTEROID INSENSITIVE1 (BRI1) binds directly to its ligand and initiates series of signaling events that led to the activation of BR transcriptional regulators, BRASSINAZOLE RESISTANT1 (BZR1) and BRI1-ETHYL METHANESULFONATE-SUPPRESSOR1 (BES1/BZR2) to regulate the cellular processes. Insights from Arabidopsis research revealed tissue and cell type-specific roles of BR in controlling cell elongation and maintenance of stem cell niche in roots. More recently, BRs have gained much attention in regulating the root growth during nutrient deficiency such as nitrogen, phosphorus, and boron. Differential distribution of nutrients in the rhizosphere alters BR hormone levels and signaling to reprogram spatial distribution of root system architecture (RSA) such as a change in primary root growth, lateral root numbers, length, and angle, root hair formation and elongation. These morpho-physiological changes in RSA are also known as an adaptive root trait or foraging response of the plant. In this review, we highlight the role of BRs in regulating RSA to increase root foraging response during fluctuating nutrient availability.
Collapse
Affiliation(s)
- Anshika Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | | | - Amar Pal Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
77
|
Sun Y, Jain A, Xue Y, Wang X, Zhao G, Liu L, Hu Z, Hu S, Shen X, Liu X, Ai H, Xu G, Sun S. OsSQD1 at the crossroads of phosphate and sulfur metabolism affects plant morphology and lipid composition in response to phosphate deprivation. PLANT, CELL & ENVIRONMENT 2020; 43:1669-1690. [PMID: 32266981 DOI: 10.1111/pce.13764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 06/11/2023]
Abstract
In phosphate (Pi)-deprived Arabidopsis (Arabidopsis thaliana), phosphatidylglycerol (PG) is substituted by sulfolipid for maintaining Pi homeostasis. Sulfoquinovosyl diacylglycerol1 (AtSQD1) encodes a protein, which catalyzes uridine diphosphate glucose (UDPG) and sulfite (SO32- ) to UDP-sulfoquinovose, which is a key component in the sulfolipid biosynthetic pathway. In this study, a reverse genetics approach was employed to decipher the function of the AtSQD1 homolog OsSQD1 in rice. Differential expressions of OsSQD1 in different tissue and response to -P and -S also detected, respectively. The in vitro protein assay and analysis suggests that OsSQD1 is a UDP-sulfoquinovose synthase. Transient expression analysis showed that OsSQD1 is located in the chloroplast. The analyses of the knockout (ossqd1) and knockdown (Ri1 and Ri2) mutants demonstrated reductions in Pi and total P concentrations, 32 Pi uptake rate, expression levels of Pi transporters and altered developmental responses of root traits, which were accentuated during Pi deficiency. The inhibitory effects of the OsSQD1 mutation were also evident in the development of reproductive tissue. Furthermore, OsSQD1 differently affects lipid composition under different Pi regime affects sulfur (S) homeostasis. Together, the study revealed that OsSQD1 affects Pi and S homeostasis, and lipid composition in response to Pi deprivation.
Collapse
Affiliation(s)
- Yafei Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
- Institute of ECO-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Ajay Jain
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Yong Xue
- Institute of ECO-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xiaowen Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Gengmao Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Lu Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Zhi Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Siwen Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Xing Shen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Xiuli Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Hao Ai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Shubin Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
78
|
Martínez-Andújar C, Martínez-Pérez A, Ferrández-Ayela A, Albacete A, Martínez-Melgarejo PA, Dodd IC, Thompson AJ, Pérez-Pérez JM, Pérez-Alfocea F. Impact of overexpression of 9-cis-epoxycarotenoid dioxygenase on growth and gene expression under salinity stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 295:110268. [PMID: 32534608 DOI: 10.1016/j.plantsci.2019.110268] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/03/2019] [Accepted: 09/10/2019] [Indexed: 06/11/2023]
Abstract
To better understand abscisic acid (ABA)'s role in the salinity response of tomato (Solanum lycopersicum L.), two independent transgenic lines, sp5 and sp12, constitutively overexpressing the LeNCED1 gene (encoding 9-cis-epoxycarotenoid dioxygenase, a key enzyme in ABA biosynthesis) and the wild type (WT) cv. Ailsa Craig, were cultivated hydroponically with or without the addition of 100 mM NaCl. Independent of salinity, LeNCED1 overexpression (OE) increased ABA concentration in leaves and xylem sap, and salinity interacted with the LeNCED1 transgene to enhance ABA accumulation in xylem sap and roots. Under control conditions, LeNCED1 OE limited root and shoot biomass accumulation, which was correlated with decreased leaf gas exchange. In salinized plants, LeNCED1 OE reduced the percentage loss in shoot and root biomass accumulation, leading to a greater total root length than WT. Root qPCR analysis of the sp12 line under control conditions revealed upregulated genes related to ABA, jasmonic acid and ethylene synthesis and signalling, gibberellin and auxin homeostasis and osmoregulation processes. Under salinity, LeNCED1 OE prevented the induction of genes involved in ABA metabolism and GA and auxin deactivation that occurred in WT, but the induction of ABA signalling and stress-adaptive genes was maintained. Thus, complex changes in phytohormone and stress-related gene expression are associated with constitutive upregulation of a single ABA biosynthesis gene, alleviating salinity-dependent growth limitation.
Collapse
Affiliation(s)
| | | | | | | | | | - Ian C Dodd
- The Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Andrew J Thompson
- Cranfield Soil and AgriFood Institute, Cranfield University, Bedfordshire, UK
| | | | | |
Collapse
|
79
|
Ogura T, Goeschl C, Filiault D, Mirea M, Slovak R, Wolhrab B, Satbhai SB, Busch W. Root System Depth in Arabidopsis Is Shaped by EXOCYST70A3 via the Dynamic Modulation of Auxin Transport. Cell 2020; 178:400-412.e16. [PMID: 31299202 DOI: 10.1016/j.cell.2019.06.021] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/12/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022]
Abstract
Root system architecture (RSA), the distribution of roots in soil, plays a major role in plant survival. RSA is shaped by multiple developmental processes that are largely governed by the phytohormone auxin, suggesting that auxin regulates responses of roots that are important for local adaptation. However, auxin has a central role in numerous processes, and it is unclear which molecular mechanisms contribute to the variation in RSA for environmental adaptation. Using natural variation in Arabidopsis, we identify EXOCYST70A3 as a modulator of the auxin system that causes variation in RSA by acting on PIN4 protein distribution. Allelic variation and genetic perturbation of EXOCYST70A3 lead to alteration of root gravitropic responses, resulting in a different RSA depth profile and drought resistance. Overall our findings suggest that the local modulation of the pleiotropic auxin pathway can gives rise to distinct RSAs that can be adaptive in specific environments.
Collapse
Affiliation(s)
- Takehiko Ogura
- Plant Molecular and Cellular Biology Laboratory, and Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA; Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Christian Goeschl
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Daniele Filiault
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Madalina Mirea
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Radka Slovak
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Bonnie Wolhrab
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Santosh B Satbhai
- Plant Molecular and Cellular Biology Laboratory, and Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA; Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Wolfgang Busch
- Plant Molecular and Cellular Biology Laboratory, and Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA; Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria.
| |
Collapse
|
80
|
Kim S, Nie H, Jun B, Kim J, Lee J, Kim S, Kim E, Kim S. Functional genomics by integrated analysis of transcriptome of sweet potato (Ipomoea batatas (L.) Lam.) during root formation. Genes Genomics 2020; 42:581-596. [PMID: 32240514 DOI: 10.1007/s13258-020-00927-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 03/26/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Sweet potato is easily propagated by cuttings. But the molecular biological mechanism of adventitious root formation are not yet clear. OBJECTIVE To understand the molecular mechanisms of adventitious root formation from stem cuttings in sweet potato. METHODS RNA-seq analysis was performed using un-rooted stem (0 day) and rooted stem (3 days). Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, comparison with Arabidopsis transcription factors (TFs) of DEGs were conducted to investigate the characteristics of genes and TFs involved in root formation. In addition, qRT-PCR analysis using roots at 0, 3, 6, 9, and 12 days after planting was performed to confirm RNA-seq reliability and related genes expression. RESULTS 42,459 representative transcripts and 2092 DEGs were obtained through the RNA-seq analysis. The DEGs indicated the GO terms related to the single-organism metabolic process and cell periphery, and involved in the biosynthesis of secondary metabolites, and phenylpropanoid biosynthesis in KEGG pathways. The comparison with Arabidopsis thaliana TF database showed that 3 TFs (WRKY, NAC, bHLH) involved in root formation of sweet potato. qRT-PCR analysis, which was conducted to confirm the reliability of RNA-seq analysis, indicated that some metabolisms including oxidative stress and wounding, transport, hormone may be involved in adventitious root formation. CONCLUSIONS The detected genes related to secondary metabolism, some hormone (auxin, gibberellin), transports, etc. and 3 TFs (WRKY, NAC, bHLH) may have functions in adventitious roots formation. This results provide valuable resources for future research on the adventitious root formation of sweet potato.
Collapse
Affiliation(s)
- Sujung Kim
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Korea
| | - Hualin Nie
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Korea
| | - Byungki Jun
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Korea.,NH Seed Research Development Center, Nonghyup Agribusiness Group Incorporation, Anseong, 17558, Korea
| | - Jiseong Kim
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Korea
| | - Jeongeun Lee
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Korea
| | - Seungill Kim
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Korea
| | - Ekyune Kim
- College of Pharmacy, Catholic University of Daegu, Gyeongsan, Gyeongbuk, 38430, Korea
| | - Sunhyung Kim
- Department of Environmental Horticulture, University of Seoul, Seoul, 02504, Korea.
| |
Collapse
|
81
|
Ten Tusscher K. Of mice and plants: Comparative developmental systems biology. Dev Biol 2020; 460:32-39. [PMID: 30395805 DOI: 10.1016/j.ydbio.2018.10.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/31/2018] [Accepted: 10/31/2018] [Indexed: 02/02/2023]
Abstract
Multicellular animals and plants represent independent evolutionary experiments with complex multicellular bodyplans. Differences in their life history, a mobile versus sessile lifestyle, and predominant embryonic versus postembryonic development, have led to the evolution of highly different body plans. However, also many intriguing parallels exist. Extension of the vertebrate body axis and its segmentation into somites bears striking resemblance to plant root growth and the concomittant prepatterning of lateral root competent sites. Likewise, plant shoot phyllotaxis displays similarities with vertebrate limb and digit patterning. Additionally, both plants and animals use complex signalling systems combining systemic and local signals to fine tune and coordinate organ growth across their body. Identification of these striking examples of convergent evolution provides support for the existence of general design principles: the idea that for particular patterning demands, evolution is likely to arrive at highly similar developmental patterning mechanisms. Furthermore, focussing on these parallels may aid in identifying core mechanistic principles, often obscured by the highly complex nature of multiscale patterning processes.
Collapse
Affiliation(s)
- Kirsten Ten Tusscher
- Computational Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, the Netherlands.
| |
Collapse
|
82
|
Kolbert Z, Oláh D, Molnár Á, Szőllősi R, Erdei L, Ördög A. Distinct redox signalling and nickel tolerance in Brassica juncea and Arabidopsis thaliana. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:109989. [PMID: 31784105 DOI: 10.1016/j.ecoenv.2019.109989] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/14/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
Despite of its essentiality, nickel (Ni) in excess is toxic for plants partly due to the overproduction of reactive oxygen species (ROS) and the consequent increase in oxidative stress signalling. However, in Ni-stressed plants little is known about the signal transduction of reactive nitrogen species (RNS) and protein tyrosine nitration as the protein-level consequence of increased RNS formation. Our experiments compared the nickel accumulation and tolerance, the redox signalling and the protein nitration in the agar-grown Arabidopsis thaliana and Brassica juncea exposed to Ni (50 μM nickel chloride). Studying GUS-tagged Arabidopsis lines (ARR5::GUS, ACS8::GUS and DR5::GUS) revealed that Ni-increased lateral root (LR) emergence, and concomitantly reduced LR initiation were accompanied by elevated levels of auxin, cytokinin, and ethylene in the LRs or in upper root parts, whereas Ni-induced primary root shortening is related to decreased auxin, and increased cytokinin and ethylene levels. These suggest the Ni-induced disturbance of hormonal balance in the root system. Results of the comparative study showed that weaker Ni tolerance of A. thaliana was coupled with a Ni-induced increase in RNS, ROS, and hydrogen sulfide levels, as well as with an increase in redox signalling and consequent increment of protein nitration. However, in relative Ni tolerant B. juncea, redox signalling (except for peroxynitrite) was not modified, and Ni-induced intensification of protein tyrosine nitration was less pronounced. Data collectively show that the better Ni tolerance of Brassica juncea may be related to the capability of preventing the induction of redox signalling and consequently to the slighter increase in protein nitration.
Collapse
Affiliation(s)
- Zsuzsanna Kolbert
- Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary.
| | - Dóra Oláh
- Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary; Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary.
| | - Árpád Molnár
- Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary.
| | - Réka Szőllősi
- Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary.
| | - László Erdei
- Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary.
| | - Attila Ördög
- Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary.
| |
Collapse
|
83
|
Chen X, Yin Z, Yin Y, Xu C, Wang W, Liu Y, Li T. Effects of Elevated Root-Zone CO 2 on Root Morphology and Nitrogen Metabolism Revealed by Physiological and Transcriptome Analysis in Oriental Melon Seedling Roots. Int J Mol Sci 2020; 21:E803. [PMID: 31991847 PMCID: PMC7037942 DOI: 10.3390/ijms21030803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/19/2020] [Accepted: 01/22/2020] [Indexed: 11/16/2022] Open
Abstract
Rhizosphere CO2 is vital for crop growth, development, and productivity. However, the mechanisms of plants' responses to root-zone CO2 are unclear. Oriental melons are sensitive to root-zone gas, often encountering high root-zone CO2 during cultivation. We investigated root growth and nitrogen metabolism in oriental melons under T1 (0.5%) and T2 (1.0%) root-zone CO2 concentrations using physiology and comparative transcriptome analysis. T1 and T2 increased root vigor and the nitrogen content in the short term. With increased treatment time and CO2 concentration, root inhibition increased, characterized by decreased root absorption, incomplete root cell structure, accelerated starch accumulation and hydrolysis, and cell aging. We identified 1280 and 1042 differentially expressed genes from T1 and T2, respectively, compared with 0.037% CO2-grown plants. Among them, 683 co-expressed genes are involved in stress resistance and nitrogen metabolism (enhanced phenylpropanoid biosynthesis, hormone signal transduction, glutathione metabolism, and starch and sucrose metabolism). Nitrogen metabolism gene expression, enzyme activity, and nitrogen content analyses showed that short-term elevated root-zone CO2 mainly regulated plant nitrogen metabolism post-transcriptionally, and directly inhibited it transcriptionally in the long term. These findings provided a basis for further investigation of nitrogen regulation by candidate genes in oriental melons under elevated root-zone CO2.
Collapse
Affiliation(s)
- Xinyu Chen
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (X.C.); (Z.Y.); (Y.Y.); (C.X.); (W.W.)
- Key Laboratory of Protected Horticulture Ministry of Education, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Zepeng Yin
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (X.C.); (Z.Y.); (Y.Y.); (C.X.); (W.W.)
- Key Laboratory of Protected Horticulture Ministry of Education, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Yang Yin
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (X.C.); (Z.Y.); (Y.Y.); (C.X.); (W.W.)
- Key Laboratory of Protected Horticulture Ministry of Education, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Chuanqiang Xu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (X.C.); (Z.Y.); (Y.Y.); (C.X.); (W.W.)
- Key Laboratory of Protected Horticulture Ministry of Education, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Wanxin Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (X.C.); (Z.Y.); (Y.Y.); (C.X.); (W.W.)
- Key Laboratory of Protected Horticulture Ministry of Education, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Yiling Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (X.C.); (Z.Y.); (Y.Y.); (C.X.); (W.W.)
- Key Laboratory of Protected Horticulture Ministry of Education, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (X.C.); (Z.Y.); (Y.Y.); (C.X.); (W.W.)
- Key Laboratory of Protected Horticulture Ministry of Education, Shenyang 110866, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
| |
Collapse
|
84
|
Ramírez‐Flores MR, Bello‐Bello E, Rellán‐Álvarez R, Sawers RJH, Olalde‐Portugal V. Inoculation with the mycorrhizal fungus Rhizophagus irregularis modulates the relationship between root growth and nutrient content in maize ( Zea mays ssp. mays L.). PLANT DIRECT 2019; 3:e00192. [PMID: 31867562 PMCID: PMC6908788 DOI: 10.1002/pld3.192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/04/2019] [Accepted: 11/07/2019] [Indexed: 05/05/2023]
Abstract
Plant root systems play a fundamental role in nutrient and water acquisition. In resource-limited soils, modification of root system architecture is an important strategy to optimize plant performance. Most terrestrial plants also form symbiotic associations with arbuscular mycorrhizal fungi to maximize nutrient uptake. In addition to direct delivery of nutrients, arbuscular mycorrhizal fungi benefit the plant host by promoting root growth. Here, we aimed to quantify the impact of arbuscular mycorrhizal symbiosis on root growth and nutrient uptake in maize. Inoculated plants showed an increase in both biomass and the total content of twenty quantified elements. In addition, image analysis showed mycorrhizal plants to have denser, more branched root systems. For most of the quantified elements, the increase in content in mycorrhizal plants was proportional to root and overall plant growth. However, the increase in boron, calcium, magnesium, phosphorus, sulfur, and strontium was greater than predicted by root system size alone, indicating fungal delivery to be supplementing root uptake.
Collapse
Affiliation(s)
- M. Rosario Ramírez‐Flores
- Departamento de Biotecnología y BioquímicaCentro de Investigación y de Estudios Avanzados (CINVESTAV‐IPN)Irapuato, GuanajuatoMéxico
| | - Elohim Bello‐Bello
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica AvanzadaCentro de Investigación y de Estudios AvanzadosInstituto Politécnico Nacional (CINVESTAV‐IPN)Irapuato, GuanajuatoMéxico
| | - Rubén Rellán‐Álvarez
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica AvanzadaCentro de Investigación y de Estudios AvanzadosInstituto Politécnico Nacional (CINVESTAV‐IPN)Irapuato, GuanajuatoMéxico
- Department of Molecular and Structural BiochemistryNorth Carolina State UniversityRaleighNCUSA
| | - Ruairidh J. H. Sawers
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica AvanzadaCentro de Investigación y de Estudios AvanzadosInstituto Politécnico Nacional (CINVESTAV‐IPN)Irapuato, GuanajuatoMéxico
- Department of Plant ScienceThe Pennsylvania State UniversityState CollegePAUSA
| | - Víctor Olalde‐Portugal
- Departamento de Biotecnología y BioquímicaCentro de Investigación y de Estudios Avanzados (CINVESTAV‐IPN)Irapuato, GuanajuatoMéxico
| |
Collapse
|
85
|
Li XJ, Yang JL, Hao B, Lu YC, Qian ZL, Li Y, Ye S, Tang JR, Chen M, Long GQ, Zhao Y, Zhang GH, Chen JW, Fan W, Yang SC. Comparative transcriptome and metabolome analyses provide new insights into the molecular mechanisms underlying taproot thickening in Panax notoginseng. BMC PLANT BIOLOGY 2019; 19:451. [PMID: 31655543 PMCID: PMC6815444 DOI: 10.1186/s12870-019-2067-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/02/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Taproot thickening is a complex biological process that is dependent on the coordinated expression of genes controlled by both environmental and developmental factors. Panax notoginseng is an important Chinese medicinal herb that is characterized by an enlarged taproot as the main organ of saponin accumulation. However, the molecular mechanisms of taproot enlargement are poorly understood. RESULTS A total of 29,957 differentially expressed genes (DEGs) were identified during the thickening process in the taproots of P. notoginseng. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment revealed that DEGs associated with "plant hormone signal transduction," "starch and sucrose metabolism," and "phenylpropanoid biosynthesis" were predominantly enriched. Further analysis identified some critical genes (e.g., RNase-like major storage protein, DA1-related protein, and Starch branching enzyme I) and metabolites (e.g., sucrose, glucose, fructose, malate, and arginine) that potentially control taproot thickening. Several aspects including hormone crosstalk, transcriptional regulation, homeostatic regulation between sugar and starch, and cell wall metabolism, were identified as important for the thickening process in the taproot of P. notoginseng. CONCLUSION The results provide a molecular regulatory network of taproot thickening in P. notoginseng and facilitate the further characterization of the genes responsible for taproot formation in root medicinal plants or crops.
Collapse
Affiliation(s)
- Xue-Jiao Li
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National& Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201 China
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, 650201 China
| | - Jian-Li Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Bing Hao
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National& Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201 China
| | - Ying-Chun Lu
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National& Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201 China
| | - Zhi-Long Qian
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National& Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201 China
| | - Ying Li
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National& Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201 China
| | - Shuang Ye
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National& Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201 China
| | - Jun-Rong Tang
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National& Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201 China
| | - Mo Chen
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National& Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201 China
| | - Guang-Qiang Long
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National& Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201 China
| | - Yan Zhao
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National& Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201 China
| | - Guang-Hui Zhang
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National& Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201 China
| | - Jun-Wen Chen
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National& Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201 China
| | - Wei Fan
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National& Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201 China
| | - Sheng-Chao Yang
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National& Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201 China
| |
Collapse
|
86
|
Youngstrom CE, Geadelmann LF, Irish EE, Cheng CL. A fern WUSCHEL-RELATED HOMEOBOX gene functions in both gametophyte and sporophyte generations. BMC PLANT BIOLOGY 2019; 19:416. [PMID: 31601197 PMCID: PMC6788082 DOI: 10.1186/s12870-019-1991-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/27/2019] [Indexed: 05/02/2023]
Abstract
BACKGROUND Post-embryonic growth of land plants originates from meristems. Genetic networks in meristems maintain the stem cells and direct acquisition of cell fates. WUSCHEL-RELATED HOMEOBOX (WOX) transcription factors involved in meristem networks have only been functionally characterized in two evolutionarily distant taxa, mosses and seed plants. This report characterizes a WOX gene in a fern, which is located phylogenetically between the two taxa. RESULTS CrWOXB transcripts were detected in proliferating tissues, including gametophyte and sporophyte meristems of Ceratopteris richardii. In addition, CrWOXB is expressed in archegonia but not the antheridia of gametophytes. Suppression of CrWOXB expression in wild-type RN3 plants by RNAi produced abnormal morphologies of gametophytes and sporophytes. The gametophytes of RNAi lines produced fewer cells, and fewer female gametes compared to wild-type. In the sporophyte generation, RNAi lines produced fewer leaves, pinnae, roots and lateral roots compared to wild-type sporophytes. CONCLUSIONS Our results suggest that CrWOXB functions to promote cell divisions and organ development in the gametophyte and sporophyte generations, respectively. CrWOXB is the first intermediate-clade WOX gene shown to function in both generations in land plants.
Collapse
Affiliation(s)
| | - Lander F. Geadelmann
- Department of Biology, University of Iowa, 129 E. Jefferson St., Iowa City, Iowa 52242 USA
| | - Erin E. Irish
- Department of Biology, University of Iowa, 129 E. Jefferson St., Iowa City, Iowa 52242 USA
| | - Chi-Lien Cheng
- Department of Biology, University of Iowa, 129 E. Jefferson St., Iowa City, Iowa 52242 USA
| |
Collapse
|
87
|
Ben-Jabeur M, Vicente R, López-Cristoffanini C, Alesami N, Djébali N, Gracia-Romero A, Serret MD, López-Carbonell M, Araus JL, Hamada W. A Novel Aspect of Essential Oils: Coating Seeds with Thyme Essential Oil induces Drought Resistance in Wheat. PLANTS (BASEL, SWITZERLAND) 2019; 8:E371. [PMID: 31557906 PMCID: PMC6843264 DOI: 10.3390/plants8100371] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/08/2019] [Accepted: 08/20/2019] [Indexed: 01/03/2023]
Abstract
Coating seeds with biostimulants is among the promising approaches in crop production to increase crop tolerance to drought stress. In this study, we evaluated the potential of coating durum wheat seeds of the cultivar 'Karim' with thyme essential oil on enhancing seed germination and seedling growth, and on plant growth promotion and induction of drought resistance. Coated seeds were pre-germinated, grown in hydroponics, and grown in pots under controlled well-watered and progressive water/nutrient stress conditions. Seed coating with thyme oil increased germination rate and enhanced seedling growth development in hydroponics. In the pot experiment, thyme oil increased, when well watered, root and shoot development, chlorophyll, nitrogen balance index (NBI), abscisic acid (ABA), anthocyanins and flavonoids in leaves, decreased nitrogen isotope composition (δ15N) and increased carbon isotope composition (δ13C) of shoots. Increasing water/nutrient stress in control plants induced higher accumulation of ABA and anthocyanins coupled with a transient decrease in chlorophyll and NBI, a decrease in shoot and root development, the Normalized Difference Vegetation Index (NDVI), shoot C content, δ15N, and an increase in δ13C, revealing the avoidance strategy adopted by the cultivar. Thyme oil had the potential to enhance the avoidance strategy by inducing roots elongation, reducing the loss of shoot and roots dry matter and chlorophyll, maintaining balanced NBI, an decreasing anthocyanins, flavonoids, and δ13C via maintaining lower ABA-mediated-stomatal closure. Thyme oil increased shoot N content and δ15N indicating preferential uptake of the 15N enriched NH4+. Coating seeds with thyme oil is suggested as a promising alternative approach to improve plant's water and nutrient status and to enhance drought resistance.
Collapse
Affiliation(s)
- Maissa Ben-Jabeur
- Laboratory of Genetics and Plant Breeding, National Institute of Agronomy of Tunis, 43, Av Charles Nicolle, Tunis 1082, Tunisia.
| | - Rubén Vicente
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany.
| | - Camilo López-Cristoffanini
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Secció de Fisiologia Vegetal, Universitat de Barcelona, 08028 Barcelona, Spain.
| | - Noura Alesami
- Faculty of Agriculture, Damascus University, Damascus 306, Syria.
| | - Naceur Djébali
- Centre of Biotechnology of Borj Cedria, Laboratory of Bioactive Substances, BP 901, Hammam-Lif 2050, Tunisia.
| | - Adrian Gracia-Romero
- Section of Plant Physiology, University of Barcelona, 08028 Barcelona, Spain.
- AGROTECNIO (Center of Research in Agrotechnology), University of Lleida, 25198 Lleida, Spain.
| | - Maria Dolores Serret
- Section of Plant Physiology, University of Barcelona, 08028 Barcelona, Spain.
- AGROTECNIO (Center of Research in Agrotechnology), University of Lleida, 25198 Lleida, Spain.
| | - Marta López-Carbonell
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Secció de Fisiologia Vegetal, Universitat de Barcelona, 08028 Barcelona, Spain.
| | - Jose Luis Araus
- Section of Plant Physiology, University of Barcelona, 08028 Barcelona, Spain.
- AGROTECNIO (Center of Research in Agrotechnology), University of Lleida, 25198 Lleida, Spain.
| | - Walid Hamada
- Laboratory of Genetics and Plant Breeding, National Institute of Agronomy of Tunis, 43, Av Charles Nicolle, Tunis 1082, Tunisia.
| |
Collapse
|
88
|
Contrasting microbial community responses to salinization and straw amendment in a semiarid bare soil and its wheat rhizosphere. Sci Rep 2019; 9:9795. [PMID: 31278291 PMCID: PMC6611862 DOI: 10.1038/s41598-019-46070-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/17/2019] [Indexed: 12/14/2022] Open
Abstract
Soil salinization is a major constraint of agriculture in semiarid ecosystems. In this study soil microcosms were applied to evaluate the impact of a lower- and higher-level salinization treatment of a pristine scrubland soil on the abundance of Bacteria, Archaea, and Fungi, and on prokaryotic diversity in bare soil and the rhizosphere of wheat assessed by qPCR and high-throughput sequencing of 16S rRNA gene amplicons. Furthermore, the impact of soil straw amendment as a salt-stress alleviation strategy was studied. While the low-level salinity stimulated plant growth, the seedlings did not survive under the higher-level salinity unless the soil was amended with straw. Without the straw amendment, salinization had only minor effects on the microbial community in bare soil. On the other hand, it decreased prokaryotic diversity in the rhizosphere of wheat, but the straw amendment was effective in mitigating this effect. The straw however, was not a significant nutrient source for the rhizosphere microbiota but more likely acted indirectly by ameliorating the salinity stress on the plant. Members of Proteobacteria, Actinobacteria, and Firmicutes were abundant among the bacteria that reacted to soil salinization and the straw amendment but showed inconsistent responses indicating the large physiological diversity within these phyla.
Collapse
|
89
|
Evelin H, Devi TS, Gupta S, Kapoor R. Mitigation of Salinity Stress in Plants by Arbuscular Mycorrhizal Symbiosis: Current Understanding and New Challenges. FRONTIERS IN PLANT SCIENCE 2019; 10:470. [PMID: 31031793 PMCID: PMC6473083 DOI: 10.3389/fpls.2019.00470] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/28/2019] [Indexed: 05/02/2023]
Abstract
Modern agriculture is facing twin challenge of ensuring global food security and executing it in a sustainable manner. However, the rapidly expanding salinity stress in cultivable areas poses a major peril to crop yield. Among various biotechnological techniques being used to reduce the negative effects of salinity, the use of arbuscular mycorrhizal fungi (AMF) is considered to be an efficient approach for bio-amelioration of salinity stress. AMF deploy an array of biochemical and physiological mechanisms that act in a concerted manner to provide more salinity tolerance to the host plant. Some of the well-known mechanisms include improved nutrient uptake and maintenance of ionic homeostasis, superior water use efficiency and osmoprotection, enhanced photosynthetic efficiency, preservation of cell ultrastructure, and reinforced antioxidant metabolism. Molecular studies in past one decade have further elucidated the processes involved in amelioration of salt stress in mycorrhizal plants. The participating AMF induce expression of genes involved in Na+ extrusion to the soil solution, K+ acquisition (by phloem loading and unloading) and release into the xylem, therefore maintaining favorable Na+:K+ ratio. Colonization by AMF differentially affects expression of plasma membrane and tonoplast aquaporins (PIPs and TIPs), which consequently improves water status of the plant. Formation of AM (arbuscular mycorrhiza) surges the capacity of plant to mend photosystem-II (PSII) and boosts quantum efficiency of PSII under salt stress conditions by mounting the transcript levels of chloroplast genes encoding antenna proteins involved in transfer of excitation energy. Furthermore, AM-induced interplay of phytohormones, including strigolactones, abscisic acid, gibberellic acid, salicylic acid, and jasmonic acid have also been associated with the salt tolerance mechanism. This review comprehensively covers major research advances on physiological, biochemical, and molecular mechanisms implicated in AM-induced salt stress tolerance in plants. The review identifies the challenges involved in the application of AM in alleviation of salt stress in plants in order to improve crop productivity.
Collapse
Affiliation(s)
- Heikham Evelin
- Department of Botany, Rajiv Gandhi University, Itanagar, India
| | | | - Samta Gupta
- Department of Botany, University of Delhi, New Delhi, India
| | - Rupam Kapoor
- Department of Botany, University of Delhi, New Delhi, India
| |
Collapse
|
90
|
Ajmera I, Hodgman TC, Lu C. An Integrative Systems Perspective on Plant Phosphate Research. Genes (Basel) 2019; 10:E139. [PMID: 30781872 PMCID: PMC6410211 DOI: 10.3390/genes10020139] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 01/30/2019] [Accepted: 02/07/2019] [Indexed: 12/31/2022] Open
Abstract
The case for improving crop phosphorus-use-efficiency is widely recognized. Although much is known about the molecular and regulatory mechanisms, improvements have been hampered by the extreme complexity of phosphorus (P) dynamics, which involves soil chemistry; plant-soil interactions; uptake, transport, utilization and remobilization within plants; and agricultural practices. The urgency and direction of phosphate research is also dependent upon the finite sources of P, availability of stocks to farmers and reducing environmental hazards. This work introduces integrative systems approaches as a way to represent and understand this complexity, so that meaningful links can be established between genotype, environment, crop traits and yield. It aims to provide a large set of pointers to potential genes and research practice, with a view to encouraging members of the plant-phosphate research community to adopt such approaches so that, together, we can aid efforts in global food security.
Collapse
Affiliation(s)
- Ishan Ajmera
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Loughborough LE12 5RD, UK.
| | - T Charlie Hodgman
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Loughborough LE12 5RD, UK.
| | - Chungui Lu
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Nottingham NG25 0 QF, UK.
| |
Collapse
|
91
|
Prince SJ, Valliyodan B, Ye H, Yang M, Tai S, Hu W, Murphy M, Durnell LA, Song L, Joshi T, Liu Y, Van de Velde J, Vandepoele K, Grover Shannon J, Nguyen HT. Understanding genetic control of root system architecture in soybean: Insights into the genetic basis of lateral root number. PLANT, CELL & ENVIRONMENT 2019; 42:212-229. [PMID: 29749073 DOI: 10.1111/pce.13333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 03/26/2018] [Indexed: 05/04/2023]
Abstract
Developing crops with better root systems is a promising strategy to ensure productivity in both optimum and stress environments. Root system architectural traits in 397 soybean accessions were characterized and a high-density single nucleotide polymorphisms (SNPs)-based genome-wide association study was performed to identify the underlying genes associated with root structure. SNPs associated with root architectural traits specific to landraces and elite germplasm pools were detected. Four loci were detected in landraces for lateral root number (LRN) and distribution of root thickness in diameter Class I with a major locus on chromosome 16. This major loci was detected in the coding region of unknown protein, and subsequent analyses demonstrated that root traits are affected with mutated haplotypes of the gene. In elite germplasm pool, 3 significant SNPs in alanine-glyoxalate aminotransferase, Leucine-Rich Repeat receptor/No apical meristem, and unknown functional genes were found to govern multiple traits including root surface area and volume. However, no major loci were detected for LRN in elite germplasm. Nucleotide diversity analysis found evidence of selective sweeps around the landraces LRN gene. Soybean accessions with minor and mutated allelic variants of LRN gene were found to perform better in both water-limited and optimal field conditions.
Collapse
Affiliation(s)
- Silvas J Prince
- Division of Plant Sciences, University of Missouri, Columbia, 65211, MO, USA
- Noble Research Institute, Ardmore, 73401, OK, USA
| | - Babu Valliyodan
- Division of Plant Sciences, University of Missouri, Columbia, 65211, MO, USA
| | - Heng Ye
- Division of Plant Sciences, University of Missouri, Columbia, 65211, MO, USA
| | - Ming Yang
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Wushu Hu
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Mackensie Murphy
- Division of Plant Sciences, University of Missouri, Columbia, 65211, MO, USA
| | - Lorellin A Durnell
- Division of Plant Sciences, University of Missouri, Columbia, 65211, MO, USA
| | - Li Song
- Division of Plant Sciences, University of Missouri, Columbia, 65211, MO, USA
- Institutes of Agricultural Science and Technology Development, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Trupti Joshi
- Department of Computer Science, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Department of Molecular Microbiology and Immunology and Office of Research, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Yang Liu
- Department of Computer Science, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Jan Van de Velde
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 927, 9052, Ghent, Belgium
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 927, 9052, Ghent, Belgium
| | - J Grover Shannon
- Division of Plant Sciences, University of Missouri, Columbia, 65211, MO, USA
| | - Henry T Nguyen
- Division of Plant Sciences, University of Missouri, Columbia, 65211, MO, USA
| |
Collapse
|
92
|
Evelin H, Devi TS, Gupta S, Kapoor R. Mitigation of Salinity Stress in Plants by Arbuscular Mycorrhizal Symbiosis: Current Understanding and New Challenges. FRONTIERS IN PLANT SCIENCE 2019; 10:470. [PMID: 31031793 DOI: 10.3389/fpls2019.00470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/28/2019] [Indexed: 05/21/2023]
Abstract
Modern agriculture is facing twin challenge of ensuring global food security and executing it in a sustainable manner. However, the rapidly expanding salinity stress in cultivable areas poses a major peril to crop yield. Among various biotechnological techniques being used to reduce the negative effects of salinity, the use of arbuscular mycorrhizal fungi (AMF) is considered to be an efficient approach for bio-amelioration of salinity stress. AMF deploy an array of biochemical and physiological mechanisms that act in a concerted manner to provide more salinity tolerance to the host plant. Some of the well-known mechanisms include improved nutrient uptake and maintenance of ionic homeostasis, superior water use efficiency and osmoprotection, enhanced photosynthetic efficiency, preservation of cell ultrastructure, and reinforced antioxidant metabolism. Molecular studies in past one decade have further elucidated the processes involved in amelioration of salt stress in mycorrhizal plants. The participating AMF induce expression of genes involved in Na+ extrusion to the soil solution, K+ acquisition (by phloem loading and unloading) and release into the xylem, therefore maintaining favorable Na+:K+ ratio. Colonization by AMF differentially affects expression of plasma membrane and tonoplast aquaporins (PIPs and TIPs), which consequently improves water status of the plant. Formation of AM (arbuscular mycorrhiza) surges the capacity of plant to mend photosystem-II (PSII) and boosts quantum efficiency of PSII under salt stress conditions by mounting the transcript levels of chloroplast genes encoding antenna proteins involved in transfer of excitation energy. Furthermore, AM-induced interplay of phytohormones, including strigolactones, abscisic acid, gibberellic acid, salicylic acid, and jasmonic acid have also been associated with the salt tolerance mechanism. This review comprehensively covers major research advances on physiological, biochemical, and molecular mechanisms implicated in AM-induced salt stress tolerance in plants. The review identifies the challenges involved in the application of AM in alleviation of salt stress in plants in order to improve crop productivity.
Collapse
Affiliation(s)
- Heikham Evelin
- Department of Botany, Rajiv Gandhi University, Itanagar, India
| | | | - Samta Gupta
- Department of Botany, University of Delhi, New Delhi, India
| | - Rupam Kapoor
- Department of Botany, University of Delhi, New Delhi, India
| |
Collapse
|
93
|
Gudiño ME, Blanco-Touriñán N, Arbona V, Gómez-Cadenas A, Blázquez MA, Navarro-García F. β-Lactam Antibiotics Modify Root Architecture and Indole Glucosinolate Metabolism in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2018; 59:2086-2098. [PMID: 29986082 DOI: 10.1093/pcp/pcy128] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/03/2018] [Indexed: 06/08/2023]
Abstract
The presence of antibiotics in soils could be due to natural production by soil microorganisms or to the effect of anthropogenic activities. However, the impact of these compounds on plant physiology has not been thoroughly investigated. To evaluate the effect of β-lactam antibiotics (carbenicillin and penicillin) on the growth and development of Arabidopsis thaliana roots, plants were grown in the presence of different amounts and we found a reduction in root size, an increase in the size of root hairs as well as an abnormal position closer to the tip of the roots. Those phenomena were dependent on the accumulation of both antibiotics inside root tissues and also correlated with a decrease in size of the root apical meristem not related to an alteration in cell division but to a decrease in cell expansion. Using an RNA sequencing analysis, we detected an increase in the expression of genes related to the response to oxidative stress, which would explain the increase in the levels of endogenous reactive oxygen species found in the presence of those antibiotics. Moreover, some auxin-responsive genes were misregulated, especially an induction of CYP79B3, possibly explaining the increase in auxin levels in the presence of carbenicillin and the decrease in the amount of indole glucosinolates, involved in the control of fungal infections. Accordingly, penicillin-treated plants were hypersensitive to the endophyte fungus Colletotrichum tofieldiae. These results underscore the risks for plant growth of β-lactam antibiotics in agricultural soils, and suggest a possible function for these compounds as fungus-produced signaling molecules to modify plant behavior.
Collapse
Affiliation(s)
- Marco E Gudiño
- Instituto de Biología Molecular y Celular de Plantas 'Primo Yúfera', CSIC-Universidad Politécnica de Valencia, Valencia, Spain
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Noel Blanco-Touriñán
- Instituto de Biología Molecular y Celular de Plantas 'Primo Yúfera', CSIC-Universidad Politécnica de Valencia, Valencia, Spain
| | - Vicent Arbona
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castelló, Spain
| | - Aurelio Gómez-Cadenas
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castelló, Spain
| | - Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas 'Primo Yúfera', CSIC-Universidad Politécnica de Valencia, Valencia, Spain
| | - Federico Navarro-García
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
94
|
Bajay SK, Cruz MV, da Silva CC, Murad NF, Brandão MM, de Souza AP. Extremophiles as a Model of a Natural Ecosystem: Transcriptional Coordination of Genes Reveals Distinct Selective Responses of Plants Under Climate Change Scenarios. FRONTIERS IN PLANT SCIENCE 2018; 9:1376. [PMID: 30283484 PMCID: PMC6156123 DOI: 10.3389/fpls.2018.01376] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/29/2018] [Indexed: 05/29/2023]
Abstract
The goal of this research was to generate networks of co-expressed genes to explore the genomic responses of Rhizophora mangle L. populations to contrasting environments and to use gene network analysis to investigate their capacity for adaptation in the face of historical and future perturbations and climatic changes. RNA sequencing data were generated for R. mangle samples collected under field conditions from contrasting climate zones in the equatorial and subtropical regions of Brazil. A gene co-expression network was constructed using Pearson's correlation coefficient, showing correlations among 78,364 transcriptionally coordinated genes. Each region exhibited two distinct network profiles; genes correlated with the oxidative stress response showed higher relative expression levels in subtropical samples than in equatorial samples, whereas genes correlated with the hyperosmotic salinity response, heat response and UV response had higher expression levels in the equatorial samples than in the subtropical samples. In total, 992 clusters had enriched ontology terms, which suggests that R. mangle is under higher stress in the equatorial region than in the subtropical region. Increased heat may thus pose a substantial risk to species diversity at the center of its distribution range in the Americas. This study, which was performed using trees in natural field conditions, allowed us to associate the specific responses of genes previously described in controlled environments with their responses to the local habitat where the species occurs. The study reveals the effects of contrasting environments on gene expression in R. mangle, shedding light on the different abiotic variables that may contribute to the genetic divergence previously described for the species through the use of simple sequence repeats (SSRs). These effects may result from two fundamental processes in evolution, namely, phenotypic plasticity and natural selection.
Collapse
Affiliation(s)
- Stephanie K. Bajay
- Center of Molecular Biology and Genetic Engineering, University of Campinas, Campinas, Brazil
| | - Mariana V. Cruz
- Center of Molecular Biology and Genetic Engineering, University of Campinas, Campinas, Brazil
| | - Carla C. da Silva
- Center of Molecular Biology and Genetic Engineering, University of Campinas, Campinas, Brazil
| | - Natália F. Murad
- Center of Molecular Biology and Genetic Engineering, University of Campinas, Campinas, Brazil
| | - Marcelo M. Brandão
- Center of Molecular Biology and Genetic Engineering, University of Campinas, Campinas, Brazil
| | - Anete P. de Souza
- Center of Molecular Biology and Genetic Engineering, University of Campinas, Campinas, Brazil
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| |
Collapse
|
95
|
Yugandhar P, Sun Y, Liu L, Negi M, Nallamothu V, Sun S, Neelamraju S, Rai V, Jain A. Characterization of the loss-of-function mutant NH101 for yield under phosphate deficiency from EMS-induced mutants of rice variety Nagina22. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 130:1-13. [PMID: 29957570 DOI: 10.1016/j.plaphy.2018.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/28/2018] [Accepted: 06/14/2018] [Indexed: 05/09/2023]
Abstract
In earlier studies at IIRR, Hyderabad, screening of ∼2000 EMS mutants of the rice variety Nagina22 (N22) resulted in the identification of 11 loss-of-function mutants with zero grain yield in Pi-deprived soil under field condition. Among these mutants, NH101 was selected for comparative analyses with N22 for various morphophysiological and/or molecular traits during growth in a hydroponic system (7 d) and in a pot soil (50% flowering) under different Pi regime. The total length of the seminal and adventitious roots, agronomic traits (panicle length and unfilled spikelet/panicle), activities of the antioxidant enzymes (SOD, POD, and APX), and the relative expression levels of the genes involved in the maintenance of Pi homeostasis (MPH) i.e., OsPHR2, SPX1/2 OsPT4, 6, and 8 showed significant increase in the Pi-deprived mutant compared with N22. Whereas, some of the traits showed significant reduction in NH101 than N22 such as number of tillers and filled spikelets/panicle, yield, contents of Pi and externally secreted APase, activity of CAT, and the relative expression levels of MPH genes i.e., OsmiR399a, OsPHO1;2, OsIPS1, OsPAP10a, OsPT2, 9, and 10. The study highlighted wide spectrum differential effects of the mutation in NH101 on various traits that play important roles governing the maintenance of Pi homeostasis. This mutant thus provides a rich repository of genetic material amenable for the identification of the genes that are pivotal for Pi use efficiency.
Collapse
Affiliation(s)
- Poli Yugandhar
- ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India
| | - Yafei Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Lu Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Manisha Negi
- National Research Centre on Plant Biotechnology, Lal Bahadur Shastri Building, Pusa Campus, New Delhi, 110012, India
| | | | - Shubin Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Sarla Neelamraju
- ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India.
| | - Vandna Rai
- National Research Centre on Plant Biotechnology, Lal Bahadur Shastri Building, Pusa Campus, New Delhi, 110012, India
| | - Ajay Jain
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India.
| |
Collapse
|
96
|
Jeon BW, Kim J. Role of LBD14 during ABA-mediated control of root system architecture in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2018; 13:e1507405. [PMID: 30125143 PMCID: PMC6149438 DOI: 10.1080/15592324.2018.1507405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 07/23/2018] [Indexed: 05/31/2023]
Abstract
The LATERAL ORGAN BOUNDARIES DOMAIN/ASYMMETRIC LEAVES2-LIKE (LBD/ASL) gene family encode plant-specific transcription factors that regulate various aspects of plant growth and development. Arabidopsis genome has 42 LBD genes. Several LBD genes, such as LBD16, -18, -29, and -33, have been shown to function in lateral root (LR) development via auxin signaling. Although abscisic acid (ABA) is a well-known antistress plant hormone regulating various plant developmental processes, it also plays a role in LR growth regulation. Our recent study showed that LBD14 expression is downregulated by ABA during the entire steps of LR development. The RNAi-induced downregulation and overexpression of LBD14 indicated that LBD14 promotes LR formation. LBD14RNAi enhanced the ABA-induced suppression of LR density compared with the wild type, suggesting that LBD14 is involved in the ABA-mediated control of LR formation. Our study provides an insight into the signaling mechanism of developmental plasticity whereby ABA controls LR branching via LBD14 downregulation under abiotic stress conditions.
Collapse
Affiliation(s)
- Byeong Wook Jeon
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, Korea
| | - Jungmook Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, Korea
| |
Collapse
|
97
|
Dimitrov I, Tax FE. Lateral root growth in Arabidopsis is controlled by short and long distance signaling through the LRR RLKs XIP1/CEPR1 and CEPR2. PLANT SIGNALING & BEHAVIOR 2018; 13:e1489667. [PMID: 29993313 PMCID: PMC6110363 DOI: 10.1080/15592324.2018.1489667] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/01/2018] [Accepted: 06/08/2018] [Indexed: 05/23/2023]
Abstract
Plants rely on lateral roots to explore their soil environment and to maximize their uptake of essential minerals and water. Here we present evidence that the receptor kinases XIP1/CEPR1 and CEPR2 regulate both the initiation of lateral root primordia and emergence of lateral roots locally in the root, while also controlling lateral root extension in response to shoot-derived sucrose in Arabidopsis plants. In addition, mutation of both of these receptors prevents seedlings from responding to sucrose in the media, resulting in longer lateral roots. These results, combined with previous data, establish XIP1/CEPR1 and CEPR2-dependent roles in short- and long-distance pathways regulating different stages of lateral root growth.
Collapse
Affiliation(s)
- I. Dimitrov
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - F. E. Tax
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
- School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
98
|
Poza-Viejo L, Abreu I, González-García MP, Allauca P, Bonilla I, Bolaños L, Reguera M. Boron deficiency inhibits root growth by controlling meristem activity under cytokinin regulation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 270:176-189. [PMID: 29576071 DOI: 10.1016/j.plantsci.2018.02.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/19/2017] [Accepted: 02/06/2018] [Indexed: 05/29/2023]
Abstract
Significant advances have been made in the last years trying to identify regulatory pathways that control plant responses to boron (B) deficiency. Still, there is a lack of a deep understanding of how they act regulating growth and development under B limiting conditions. Here, we analyzed the impact of B deficit on cell division leading to root apical meristem (RAM) disorganization. Our results reveal that inhibition of cell proliferation under the regulatory control of cytokinins (CKs) is an early event contributing to root growth arrest under B deficiency. An early recovery of QC46:GUS expression after transferring B-deficient seedlings to control conditions revealed a role of B in the maintenance of QC identity whose loss under deficiency occurred at later stages of the stress. Additionally, the D-type cyclin CYCD3 overexpressor and triple mutant cycd3;1-3 were used to evaluate the effect on mitosis inhibition at the G1-S boundary. Overall, this study supports the hypothesis that meristem activity is inhibited by B deficiency at early stages of the stress as it does cell elongation. Likewise, distinct regulatory mechanisms seem to take place depending on the severity of the stress. The results presented here are key to better understand early signaling responses under B deficiency.
Collapse
Affiliation(s)
- Laura Poza-Viejo
- Departament of Biology, Universidad Autónoma de Madrid, c/Darwin 2, Campus de Cantoblanco, 28049 Madrid, Spain; Present address: Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Isidro Abreu
- Departament of Biology, Universidad Autónoma de Madrid, c/Darwin 2, Campus de Cantoblanco, 28049 Madrid, Spain; Present address: Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| | | | - Paúl Allauca
- Departament of Biology, Universidad Autónoma de Madrid, c/Darwin 2, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Ildefonso Bonilla
- Departament of Biology, Universidad Autónoma de Madrid, c/Darwin 2, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Luis Bolaños
- Departament of Biology, Universidad Autónoma de Madrid, c/Darwin 2, Campus de Cantoblanco, 28049 Madrid, Spain
| | - María Reguera
- Departament of Biology, Universidad Autónoma de Madrid, c/Darwin 2, Campus de Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
99
|
Lee K, Seo PJ. Dynamic Epigenetic Changes during Plant Regeneration. TRENDS IN PLANT SCIENCE 2018; 23:235-247. [PMID: 29338924 DOI: 10.1016/j.tplants.2017.11.009] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 05/18/2023]
Abstract
Plants have the remarkable ability to drive cellular dedifferentiation and regeneration. Changes in epigenetic landscapes accompany the cell fate transition. Notably, modifications of chromatin structure occur primarily during callus formation via an in vitro tissue culture process and, thus, pluripotent callus cells have unique epigenetic signatures. Here, we highlight the latest progress in epigenetic regulation of callus formation in plants, which addresses fundamental questions related to cell fate changes and pluripotency establishment. Global and local modifications of chromatin structure underlie callus formation, and the combination and sequence of epigenetic modifications further shape intricate cell fate changes. This review illustrates how a series of chromatin marks change dynamically during callus formation and their biological relevance in plant regeneration.
Collapse
Affiliation(s)
- Kyounghee Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Pil Joon Seo
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
100
|
Vacheron J, Desbrosses G, Renoud S, Padilla R, Walker V, Muller D, Prigent-Combaret C. Differential Contribution of Plant-Beneficial Functions from Pseudomonas kilonensis F113 to Root System Architecture Alterations in Arabidopsis thaliana and Zea mays. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:212-223. [PMID: 28971723 DOI: 10.1094/mpmi-07-17-0185-r] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Fluorescent pseudomonads are playing key roles in plant-bacteria symbiotic interactions due to the multiple plant-beneficial functions (PBFs) they are harboring. The relative contributions of PBFs to plant-stimulatory effects of the well-known plant growth-promoting rhizobacteria Pseudomonas kilonensis F113 (formerly P. fluorescens F113) were investigated using a genetic approach. To this end, several deletion mutants were constructed, simple mutants ΔphlD (impaired in the biosynthesis of 2,4-diacetylphloroglucinol [DAPG]), ΔacdS (deficient in 1-aminocyclopropane-1-carboxylate deaminase activity), Δgcd (glucose dehydrogenase deficient, impaired in phosphate solubilization), and ΔnirS (nitrite reductase deficient), and a quadruple mutant (deficient in the four PBFs mentioned above). Every PBF activity was quantified in the wild-type strain and the five deletion mutants. This approach revealed few functional interactions between PBFs in vitro. In particular, biosynthesis of glucose dehydrogenase severely reduced the production of DAPG. Contrariwise, the DAPG production impacted positively, but to a lesser extent, phosphate solubilization. Inoculation of the F113 wild-type strain on Arabidopsis thaliana Col-0 and maize seedlings modified the root architecture of both plants. Mutant strain inoculations revealed that the relative contribution of each PBF differed according to the measured plant traits and that F113 plant-stimulatory effects did not correspond to the sum of each PBF relative contribution. Indeed, two PBF genes (ΔacdS and ΔnirS) had a significant impact on root-system architecture from both model plants, in in vitro and in vivo conditions. The current work underscored that few F113 PBFs seem to interact between each other in the free-living bacterial cells, whereas they control in concert Arabidopsis thaliana and maize growth and development.
Collapse
Affiliation(s)
- Jordan Vacheron
- 1 UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, 43 bd du 11 Novembre, F-69622 Villeurbanne, France; and
| | - Guilhem Desbrosses
- 2 CNRS, INRA, UMR5004, Biochimie & Physiologie Moléculaire des Plantes, Montpellier, France
| | - Sébastien Renoud
- 1 UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, 43 bd du 11 Novembre, F-69622 Villeurbanne, France; and
| | - Rosa Padilla
- 1 UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, 43 bd du 11 Novembre, F-69622 Villeurbanne, France; and
| | - Vincent Walker
- 1 UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, 43 bd du 11 Novembre, F-69622 Villeurbanne, France; and
| | - Daniel Muller
- 1 UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, 43 bd du 11 Novembre, F-69622 Villeurbanne, France; and
| | - Claire Prigent-Combaret
- 1 UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, UCBL, Université de Lyon, 43 bd du 11 Novembre, F-69622 Villeurbanne, France; and
| |
Collapse
|