51
|
Imran M, Khan AL, Mun BG, Bilal S, Shaffique S, Kwon EH, Kang SM, Yun BW, Lee IJ. Melatonin and nitric oxide: Dual players inhibiting hazardous metal toxicity in soybean plants via molecular and antioxidant signaling cascades. CHEMOSPHERE 2022; 308:136575. [PMID: 36155020 DOI: 10.1016/j.chemosphere.2022.136575] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Melatonin (MT), a ubiquitous signaling molecule, is known to improve plant growth. Its regulatory function alongside nitric oxide (NO) is known to induce heavy metal (Cd and Pb) stress tolerance, although the underlying mechanisms remain unknown. Here, we observed that the combined application of MT and NO remarkably enhanced plant biomass by reducing oxidative stress. Both MT and NO minimized metal toxicity by significantly lowering the levels of endogenous abscisic acid and jasmonic acid via downregulating NCED3 and upregulating catabolic genes (CYP707A1 and CYP707A2). MT/NO-induced mitigation of Cd and Pb stress was associated with increased endo-melatonin and variable endo-S-nitrosothiol levels caused by enhanced expression of gmNR and gmGSNOR mRNAs. Remarkably, the combined application of MT/NO reduced soil Cd and Pb mobilization by increasing the uptake of Ca2+ and K+ and increasing the exudation of organic acids into the rhizosphere. These results correlated with the upregulation of MTF-1 and WARKY27 during metal translocation. MT/NO regulates the MAPK and CDPK cascades to promote plant cell survival and Ca2+ signaling, thereby imparting resistance to heavy metal toxicity. In conclusion, MT/NO modulates the stress-resistance machinery to mitigate Cd and Pb toxicity by regulating the activation of antioxidant and molecular transcription factors.
Collapse
Affiliation(s)
- Muhammad Imran
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Abdul Latif Khan
- Department of Engineering Technology, College of Technology, University of Houston, Sugar Land, TX 77479, USA
| | - Bong-Gyu Mun
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Saqib Bilal
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Shifa Shaffique
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Eun-Hae Kwon
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Byung-Wook Yun
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
52
|
Differential photosynthetic responses in Riccia gangetica under heat, cold, salinity, submergence, and UV-B stresses. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2022. [DOI: 10.1016/j.jpap.2022.100146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
53
|
Huang X, Tanveer M, Min Y, Shabala S. Melatonin as a regulator of plant ionic homeostasis: implications for abiotic stress tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5886-5902. [PMID: 35640481 DOI: 10.1093/jxb/erac224] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Melatonin is a highly conserved and ubiquitous molecule that operates upstream of a broad array of receptors in animal systems. Since melatonin was discovered in plants in 1995, hundreds of papers have been published revealing its role in plant growth, development, and adaptive responses to the environment. This paper summarizes the current state of knowledge of melatonin's involvement in regulating plant ion homeostasis and abiotic stress tolerance. The major topics covered here are: (i) melatonin's control of H+-ATPase activity and its implication for plant adaptive responses to various abiotic stresses; (ii) regulation of the reactive oxygen species (ROS)-Ca2+ hub by melatonin and its role in stress signaling; and (iii) melatonin's regulation of ionic homeostasis via hormonal cross-talk. We also show that the properties of the melatonin molecule allow its direct scavenging of ROS, thus preventing negative effects of ROS-induced activation of ion channels. The above 'desensitization' may play a critical role in preventing stress-induced K+ loss from the cytosol as well as maintaining basic levels of cytosolic Ca2+ required for optimal cell operation. Future studies should focus on revealing the molecular identity of transporters that could be directly regulated by melatonin and providing a bioinformatic analysis of evolutionary aspects of melatonin sensing and signaling.
Collapse
Affiliation(s)
- Xin Huang
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, Guangdong, China
| | - Mohsin Tanveer
- Tasmanian Institute of Agriculture, University of Tasmania, Tas, Hobart, Australia
| | - Yu Min
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, Guangdong, China
| | - Sergey Shabala
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, Guangdong, China
- Tasmanian Institute of Agriculture, University of Tasmania, Tas, Hobart, Australia
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
54
|
Melatonin Function and Crosstalk with Other Phytohormones under Normal and Stressful Conditions. Genes (Basel) 2022; 13:genes13101699. [PMID: 36292584 PMCID: PMC9602040 DOI: 10.3390/genes13101699] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 11/23/2022] Open
Abstract
Melatonin was discovered in plants in the late nineties, but its role, signaling, and crosstalk with other phytohormones remain unknown. Research on melatonin in plants has risen dramatically in recent years and the role of this putative plant hormone under biotic and abiotic stress conditions has been reported. In the present review, we discuss the main functions of melatonin in the growth and development of plants, its role under abiotic stresses, such as water stress (waterlogging and drought), extreme temperature (low and high), salinity, heavy metal, and light-induced stress. Similarly, we also discuss the role of melatonin under biotic stresses (antiviral, antibacterial, and antifungal effects). Moreover, the present review meticulously discusses the crosstalk of melatonin with other phytohormones such as auxins, gibberellic acids, cytokinins, ethylene, and salicylic acid under normal and stressful conditions and reports melatonin receptors and signaling in plants. All these aspects of melatonin suggest that phytomelatonin is a key player in crop improvement and biotic and abiotic stress regulation.
Collapse
|
55
|
Ebinezer LB, Battisti I, Sharma N, Ravazzolo L, Ravi L, Trentin AR, Barion G, Panozzo A, Dall'Acqua S, Vamerali T, Quaggiotti S, Arrigoni G, Masi A. Perfluorinated alkyl substances affect the growth, physiology and root proteome of hydroponically grown maize plants. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129512. [PMID: 35999737 DOI: 10.1016/j.jhazmat.2022.129512] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 06/14/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Poly- and perfluorinated alkyl substances (PFAS) are a group of persistent organic pollutants causing serious global concern. Plants can accumulate PFAS but their effect on plant physiology, especially at the molecular level is not very well understood. Hence, we used hydroponically-grown maize plants treated with a combination of eleven different PFAS (each at 100 μg L-1) to investigate their bioaccumulation and effects on the growth, physiology and their impact on the root proteome. A dose-dependent decrease in root growth parameters was evidenced with a significant reduction in the relative growth rate, fresh weight of leaves and roots and altered photosynthetic parameters in PFAS-treated plants. Higher concentration of shorter PFAS (C < 8) was detected in the leaves, while long-chain PFAS (C ≥ 8) were more retained in roots. From the root proteome analysis, we identified 75 differentially abundant proteins, mostly involved in cellular metabolic and biosynthetic processes, translation and cytoskeletal reorganization. Validating the altered protein abundance using quantitative real-time PCR, the results were further substantiated using amino acid and fatty acid profiling, thus, providing first insight into the altered metabolic state of plants exposed to PFAS from a proteomics perspective.
Collapse
Affiliation(s)
- Leonard Barnabas Ebinezer
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, Padua, Italy
| | - Ilaria Battisti
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, Padua, Italy; Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, via G. Orus 2/B, 35129 Padova, Italy
| | - Nisha Sharma
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, Padua, Italy
| | - Laura Ravazzolo
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, Padua, Italy
| | - Lokesh Ravi
- Department of Botany, St. Joseph's College (Autonomous), Bengaluru, India
| | - Anna Rita Trentin
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, Padua, Italy
| | - Giuseppe Barion
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, Padua, Italy
| | - Anna Panozzo
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, Padua, Italy
| | - Stefano Dall'Acqua
- Department of Pharmaceutical Sciences, University of Padova, Via Marzolo 5, 35131 PD, Italy
| | - Teofilo Vamerali
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, Padua, Italy
| | - Silvia Quaggiotti
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, Padua, Italy
| | - Giorgio Arrigoni
- Proteomics Center, University of Padova and Azienda Ospedaliera di Padova, via G. Orus 2/B, 35129 Padova, Italy; Department of Biomedical Sciences, University of Padova, via U. Bassi 58/B, 35131 Padova, Italy; CRIBI Biotechnology Center, University of Padova, via U. Bassi 58/B, 35131 Padova, Italy.
| | - Antonio Masi
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, Padua, Italy
| |
Collapse
|
56
|
Menhas S, Yang X, Hayat K, Ali A, Ali EF, Shahid M, Shaheen SM, Rinklebe J, Hayat S, Zhou P. Melatonin enhanced oilseed rape growth and mitigated Cd stress risk: A novel trial for reducing Cd accumulation by bioenergy crops. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119642. [PMID: 35716896 DOI: 10.1016/j.envpol.2022.119642] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Melatonin (M) is a pleiotropic molecule that improves plant growth and increases heavy metal tolerance. The role of M for improving plant growth and tolerance under cadmium (Cd) stress, and mitigation of Cd-induced toxicity has not yet been sufficiently examined. Therefore, here we conducted a glasshouse experiment to explore the influence of various M dosages on Cd detoxification and stress-tolerance responses of Brassica napus under high Cd content (30 mg kg-1). The effects of M on the modulation of Cd tolerance in B. napus plants have been investigated using various growth attributes, Cd accumulation and tolerance indices, and secondary metabolic parameters. We found that Cd stress inhibited root growth (by 11.9%) as well as triggered reactive oxygen species accumulation (by 31.2%) and MDA levels (by 18.7%); however, exogenous M substantially alleviated the adverse effect of oxidative stress by decreasing levels of H2O2 (by 38.7%), MDA (by 13.8%) and EL (by 1.8%) in the Cd-stressed plants, as compared to the M-untreated plants (control). Interestingly, exogenous M reduced Cd accumulation in roots (∼48.2-58.3-fold), stem (∼2.9-5.0-fold) and leaves (∼4.7-6.6-fold) compared to control plants, which might be due to an M-induced defense and/or detoxification response involving a battery of antioxidants. Overall, addition of the exogenous M to the Cd-stressed plants profoundly enhanced Cd tolerance in B. napus relative to control plants. These results suggested the biostimulatory role (at the physiological and molecular level) of M in improving growth, Cd tolerance, and Cd detoxification in B. napus, which indicate the potentiality of M for green remediation of Cd contaminated soils. This green trial would provide a reference for producing renewable bioenergy crops under Cd stress in contaminated soils. However, these recommendations should be verified under field conditions and the potential mechanisms for the interaction between Cd and M should be explicitly explored.
Collapse
Affiliation(s)
- Saiqa Menhas
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Xijia Yang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Kashif Hayat
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Esmat F Ali
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, Jeddah, 21589, Saudi Arabia; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany
| | - Sikandar Hayat
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, PR China
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai, 200240, China.
| |
Collapse
|
57
|
Wang K, He J, Zhao N, Zhao Y, Qi F, Fan F, Wang Y. Effects of melatonin on growth and antioxidant capacity of naked oat ( Avena nuda L) seedlings under lead stress. PeerJ 2022. [DOI: 10.7717/peerj.13978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Melatonin (MT) plays an important role in plant response to abiotic stress. In recent years, lead (Pb) pollution has seriously affected the living environment of plants. In this study, we applied two different concentrations of MT to naked oat seedlings under Pb stress to explore the effect of MT on naked oat seedlings under Pb pollution. The results showed that Pb stress seriously inhibited the growth and development of naked oat seedlings, which was alleviated by MT. MT could increase the soluble protein content and decrease the proline content of naked oat seedlings to maintain the osmotic balance of naked oat seedlings. The application of MT could accelerate the removal of reactive oxygen species (ROS) and improve the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), so as to maintain the redox balance in naked oat seedlings. Exogenous melatonin could significantly increase the chlorophyll content of naked oat seedlings under Pb treatment, so as to improve the photosynthesis efficiency of naked oat seedlings. MT could also remarkably up regulate the expression of the genes of LOX, POX and Asmap1, and affect the expression of transcription factors NAC and WRKY1. It might regulate the expression of downstream genes through MAPKs pathways and TFs to improve the Pb tolerance of naked oat seedlings. These results proved that MT could significantly promote the growth and development of naked oats seedlings under Pb stress, which is expected to be applied in agricultural production practice.
Collapse
Affiliation(s)
- Kai Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xian, China
| | - Jinjin He
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xian, China
| | - Ningbo Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xian, China
| | - Yajing Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xian, China
| | - Fangbing Qi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xian, China
| | - Fenggui Fan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xian, China
| | - Yingjuan Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xian, China
| |
Collapse
|
58
|
Altaf MA, Shahid R, Altaf MM, Kumar R, Naz S, Kumar A, Alam P, Tiwari RK, Lal MK, Ahmad P. Melatonin: First-line soldier in tomato under abiotic stress current and future perspective. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 185:188-197. [PMID: 35700585 DOI: 10.1016/j.plaphy.2022.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 05/13/2022] [Accepted: 06/02/2022] [Indexed: 05/26/2023]
Abstract
Melatonin is a natural, multifunctional, nontoxic, regulatory, and ubiquitous biomolecule, having low molecular weight and pleiotropic effects in the plant kingdom. It is a recently discovered plant master regulator which has a crucial role under abiotic stress conditions (salinity, drought, heat, cold, alkalinity, acid rain, ozone, and metals stress). In the solanaceous family, the tomato is highly sensitive to abiotic stresses that affect its growth and development, ultimately hampering production and productivity. Melatonin acts as a strong antioxidant, bio-stimulator, and growth regulator, facilitating photosynthesis, delaying leaf senescence, and increasing the antioxidant enzymes system through direct scavenging of reactive oxygen species (ROS) under abiotic stresses. In addition, melatonin also boosts morphological traits such as vegetative growth, leaf photosynthesis, root architecture system, mineral nutrient elements, and antioxidant activities in tomato plants, confirming their tolerances against salinity, drought, heat, cold, alkalinity, acid rain, chemical, pathogen, and metals stress. In this review, an attempt has been made to summarize the potential role of melatonin for tomato plant endurance towards abiotic stresses, along with the known relationship between the two.
Collapse
Affiliation(s)
| | - Rabia Shahid
- School of Management, Hainan University, Haikou, 570228, China
| | | | - Ravinder Kumar
- ICAR-Central Potato Research Institute, Shimla, 171001, HP, India
| | - Safina Naz
- Department of Horticulture, Bahauddin Zakariya University, Multan, Pakistan
| | - Awadhesh Kumar
- ICAR-National Rice Research Institute, Cuttack, 753006, Odisha, India
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Alkharj, 11942, Saudi Arabia
| | - Rahul Kumar Tiwari
- ICAR-Central Potato Research Institute, Shimla, 171001, HP, India; ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Milan Kumar Lal
- ICAR-Central Potato Research Institute, Shimla, 171001, HP, India; ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Parvaiz Ahmad
- Department of Botany, GDC, Pulwama, 192301, Jammu and Kashmir, India.
| |
Collapse
|
59
|
Umapathi M, Kalarani MK, Srinivasan S, Kalaiselvi P. Alleviation of cadmium phytotoxicity through melatonin modulated physiological functions, antioxidants, and metabolites in tomato (Solanum lycopersicum L.). Biometals 2022; 35:1113-1132. [PMID: 35951199 DOI: 10.1007/s10534-022-00428-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/25/2022] [Indexed: 11/26/2022]
Abstract
The rising concentration of cadmium (Cd) builds a harmful effect on human and plant health associated with food chain contagion. Melatonin (MT) is an indole compound. Hence, the experiment was conducted to understand the physiological and biochemical mechanism of Cd detoxification by exogenous MT in tomato. Pots were filled with 30 ppm of Cd spiked soil and different concentration of exogenous MT was given to the plants through seed treatment (250 ppm), foliar spray viz., 25, 50, and 100 ppm, and both, whereas the foliar spray was given at 30 days after transplanting (DAT) and 46 DAT. When the plants are exposed to Cd stress, it reduces the gas exchange characters. The results revealed that foliar spray of 25 ppm of exogenous MT recorded the highest photosynthetic rate, stomatal conductance, and osmotic potential. MT had a direct interaction with reactive oxygen species scavenging by elevating endogenous antioxidant enzymes as well as the metabolites in plants. The contribution of MT foliar spray of 25 ppm at 30 and 46 DAT can mitigate Cd stress and it has potential implications for ensuring food safety and food security in marginal agriculture.
Collapse
Affiliation(s)
- M Umapathi
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, India.
| | - M K Kalarani
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, India
| | - S Srinivasan
- Regional Research Station, Tamil Nadu Agricultural University, Aruppukottai, India
| | - P Kalaiselvi
- Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore, India
| |
Collapse
|
60
|
Xie Q, Zhang Y, Cheng Y, Tian Y, Luo J, Hu Z, Chen G. The role of melatonin in tomato stress response, growth and development. PLANT CELL REPORTS 2022; 41:1631-1650. [PMID: 35575808 DOI: 10.1007/s00299-022-02876-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/19/2022] [Accepted: 04/20/2022] [Indexed: 05/27/2023]
Abstract
Melatonin has attracted widespread attention after its discovery in higher plants. Tomato is a key model economic crop for studying fleshy fruits. Many studies have shown that melatonin plays important role in plant stress resistance, growth, and development. However, the research progress on the role of melatonin and related mechanisms in tomatoes have not been systematically summarized. This paper summarizes the detection methods and anabolism of melatonin in tomatoes, including (1) the role of melatonin in combating abiotic stresses, e.g., drought, heavy metals, pH, temperature, salt, salt and heat, cold and drought, peroxidation hydrogen and carbendazim, etc., (2) the role of melatonin in combating biotic stresses, such as tobacco mosaic virus and foodborne bacillus, and (3) the role of melatonin in tomato growth and development, such as fruit ripening, postharvest shelf life, leaf senescence and root development. In addition, the future research directions of melatonin in tomatoes are explored in combination with the role of melatonin in other plants. This review can provide a theoretical basis for enhancing the scientific understanding of the role of melatonin in tomatoes and the improved breeding of fruit crops.
Collapse
Affiliation(s)
| | - Yu Zhang
- Chongqing University, Chongqing, China
| | | | | | | | - Zongli Hu
- Chongqing University, Chongqing, China
| | | |
Collapse
|
61
|
Altaf MA, Hao Y, He C, Mumtaz MA, Shu H, Fu H, Wang Z. Physiological and Biochemical Responses of Pepper ( Capsicum annuum L.) Seedlings to Nickel Toxicity. FRONTIERS IN PLANT SCIENCE 2022; 13:950392. [PMID: 35923881 PMCID: PMC9340659 DOI: 10.3389/fpls.2022.950392] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 06/20/2022] [Indexed: 05/23/2023]
Abstract
Globally, heavy metal pollution of soil has remained a problem for food security and human health, having a significant impact on crop productivity. In agricultural environments, nickel (Ni) is becoming a hazardous element. The present study was performed to characterize the toxicity symptoms of Ni in pepper seedlings exposed to different concentrations of Ni. Four-week-old pepper seedlings were grown under hydroponic conditions using seven Ni concentrations (0, 10, 20, 30, 50, 75, and 100 mg L-1 NiCl2. 6H2O). The Ni toxicity showed symptoms, such as chlorosis of young leaves. Excess Ni reduced growth and biomass production, root morphology, gas exchange elements, pigment molecules, and photosystem function. The growth tolerance index (GTI) was reduced by 88-, 75-, 60-, 45-, 30-, and 19% in plants against 10, 20, 30, 50, 75, and 100 mg L-1 Ni, respectively. Higher Ni concentrations enhanced antioxidant enzyme activity, ROS accumulation, membrane integrity [malondialdehyde (MDA) and electrolyte leakage (EL)], and metabolites (proline, soluble sugars, total phenols, and flavonoids) in pepper leaves. Furthermore, increased Ni supply enhanced the Ni content in pepper's leaves and roots, but declined nitrogen (N), potassium (K), and phosphorus (P) levels dramatically. The translocation of Ni from root to shoot increased from 0.339 to 0.715 after being treated with 10-100 mg L-1 Ni. The uptake of Ni in roots was reported to be higher than that in shoots. Generally, all Ni levels had a detrimental impact on enzyme activity and led to cell death in pepper seedlings. However, the present investigation revealed that Ni ≥ 30 mg L-1 lead to a deleterious impact on pepper seedlings. In the future, research is needed to further explore the mechanism and gene expression involved in cell death caused by Ni toxicity in pepper plants.
Collapse
Affiliation(s)
- Muhammad Ahsan Altaf
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Yuanyuan Hao
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Chengyao He
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Muhammad Ali Mumtaz
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Huangying Shu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Huizhen Fu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Zhiwei Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| |
Collapse
|
62
|
Hassan MU, Mahmood A, Awan MI, Maqbool R, Aamer M, Alhaithloul HAS, Huang G, Skalicky M, Brestic M, Pandey S, El Sabagh A, Qari SH. Melatonin-Induced Protection Against Plant Abiotic Stress: Mechanisms and Prospects. FRONTIERS IN PLANT SCIENCE 2022; 13:902694. [PMID: 35755707 PMCID: PMC9218792 DOI: 10.3389/fpls.2022.902694] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/25/2022] [Indexed: 05/23/2023]
Abstract
Global warming in this century increases incidences of various abiotic stresses restricting plant growth and productivity and posing a severe threat to global food production and security. The plant produces different osmolytes and hormones to combat the harmful effects of these abiotic stresses. Melatonin (MT) is a plant hormone that possesses excellent properties to improve plant performance under different abiotic stresses. It is associated with improved physiological and molecular processes linked with seed germination, growth and development, photosynthesis, carbon fixation, and plant defence against other abiotic stresses. In parallel, MT also increased the accumulation of multiple osmolytes, sugars and endogenous hormones (auxin, gibberellic acid, and cytokinins) to mediate resistance to stress. Stress condition in plants often produces reactive oxygen species. MT has excellent antioxidant properties and substantially scavenges reactive oxygen species by increasing the activity of enzymatic and non-enzymatic antioxidants under stress conditions. Moreover, the upregulation of stress-responsive and antioxidant enzyme genes makes it an excellent stress-inducing molecule. However, MT produced in plants is not sufficient to induce stress tolerance. Therefore, the development of transgenic plants with improved MT biosynthesis could be a promising approach to enhancing stress tolerance. This review, therefore, focuses on the possible role of MT in the induction of various abiotic stresses in plants. We further discussed MT biosynthesis and the critical role of MT as a potential antioxidant for improving abiotic stress tolerance. In addition, we also addressed MT biosynthesis and shed light on future research directions. Therefore, this review would help readers learn more about MT in a changing environment and provide new suggestions on how this knowledge could be used to develop stress tolerance.
Collapse
Affiliation(s)
- Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | - Athar Mahmood
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Masood Iqbal Awan
- Department of Agronomy, Sub-Campus Depalpur, Okara, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Rizwan Maqbool
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Aamer
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
- Department of Agronomy, Sub-Campus Depalpur, Okara, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | | | - Guoqin Huang
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Marian Brestic
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovakia
| | - Saurabh Pandey
- Department of Agriculture, Guru Nanak Dev University, Amritsar, India
| | - Ayman El Sabagh
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt, Turkey
| | - Sameer H. Qari
- Department of Biology, Al-Jumum University College, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
63
|
Yu X, Liang L, Xie Y, Tang Y, Tan H, Zhang J, Lin L, Sun B, Huang Z, Liu J, Li X, Tu L, Li H. Comparative Analysis of Italian Lettuce ( Lactuca sativa L. var. ramose) Transcriptome Profiles Reveals the Molecular Mechanism on Exogenous Melatonin Preventing Cadmium Toxicity. Genes (Basel) 2022; 13:955. [PMID: 35741717 PMCID: PMC9223142 DOI: 10.3390/genes13060955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 01/09/2023] Open
Abstract
Cadmium (Cd) accumulation in lettuce causes a large amount of yield loss during industry. Although many studies report that exogenous melatonin helps to alleviate the Cd stress of lettuce, the molecular mechanism for how plant tissue responds to Cd treatment is unclear. Herein, we applied both PacBio and Illumina techniques for Italian lettuce under different designed treatments of Cd and melatonin, aiming to reveal the potential molecular pathway of the response to Cd stress as well as the how the pre-application of exogenous melatonin affect this process. This result reveals that the root has the biggest expression pattern shift and is a more essential tissue to respond to both Cd and melatonin treatments than leaves. We reveal the molecular background of the Cd stress response in prospects of antioxidant and hormone signal transduction pathways, and we found that their functions are diverged and specifically expressed in tissues. We also found that candidate genes related to melatonin detoxify during Cd stress. Our study sheds new light for future research on how melatonin improves the cadmium resistance of lettuce and also provide valuable data for lettuce breeding.
Collapse
Affiliation(s)
- Xuena Yu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (X.Y.); (L.L.); (J.Z.); (B.S.); (Z.H.); (X.L.)
- College of Horticulture, Northwest A & F University, Xianyang 712100, China
| | - Le Liang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (X.Y.); (L.L.); (J.Z.); (B.S.); (Z.H.); (X.L.)
| | - Yongdong Xie
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu 611130, China; (Y.X.); (H.T.); (J.L.)
| | - Yi Tang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (L.L.)
| | - Huaqiang Tan
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu 611130, China; (Y.X.); (H.T.); (J.L.)
| | - Jianwei Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (X.Y.); (L.L.); (J.Z.); (B.S.); (Z.H.); (X.L.)
| | - Lijin Lin
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (L.L.)
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (X.Y.); (L.L.); (J.Z.); (B.S.); (Z.H.); (X.L.)
| | - Zhi Huang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (X.Y.); (L.L.); (J.Z.); (B.S.); (Z.H.); (X.L.)
| | - Ji Liu
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu 611130, China; (Y.X.); (H.T.); (J.L.)
| | - Xiaomei Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (X.Y.); (L.L.); (J.Z.); (B.S.); (Z.H.); (X.L.)
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan, Chengdu 610300, China
| | - Lihua Tu
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China;
| | - Huanxiu Li
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (L.L.)
| |
Collapse
|
64
|
Yaashikaa PR, Kumar PS, Jeevanantham S, Saravanan R. A review on bioremediation approach for heavy metal detoxification and accumulation in plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 301:119035. [PMID: 35196562 DOI: 10.1016/j.envpol.2022.119035] [Citation(s) in RCA: 114] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/30/2022] [Accepted: 02/17/2022] [Indexed: 05/21/2023]
Abstract
Nowadays, the accumulation of toxic heavy metals in soil and water streams is considered a serious environmental problem that causes various harmful effects on plants and animals. Phytoremediation is an effective, green, and economical bioremediation approach by which the harmful heavy metals in the contaminated ecosystem can be detoxified and accumulated in the plant. Hyperaccumulators exude molecules called transporters that carry and translocate the heavy metals present in the soil to different plant parts. The hyperaccumulator plant genes can confine higher concentrations of toxic heavy metals in their tissues. The efficiency of phytoremediation relies on various parameters such as soil properties (pH and soil type), organic matters in soil, heavy metal type, nature of rhizosphere, characteristics of rhizosphere microflora, etc. The present review comprehensively discusses the toxicity effect of heavy metals on the environment and different phytoremediation mechanisms for the transport and accumulation of heavy metals from polluted soil. This review gave comprehensive insights into plants tolerance for the higher heavy metal concentration their responses for heavy metal accumulation and the different mechanisms involved for heavy metal tolerance. The current status and the characteristic features that need to be improved in the phytoremediation process are also reviewed in detail.
Collapse
Affiliation(s)
- P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - S Jeevanantham
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - R Saravanan
- Department of Mechanical Engineering, Universidad de Tarapacá, Arica, Chile
| |
Collapse
|
65
|
Li R, Wu L, Shao Y, Hu Q, Zhang H. Melatonin alleviates copper stress to promote rice seed germination and seedling growth via crosstalk among various defensive response pathways. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 179:65-77. [PMID: 35316694 DOI: 10.1016/j.plaphy.2022.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/24/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Copper (Cu) contamination dramatically affects crop growth and thus threatens crop production; while applications of melatonin (MT) serve as an effective way to tolerate Cu stress for plant development, the underlying mechanism remains largely unknown in rice. Here, we found that Cu toxicity remarkably decreased germination rates and seedling growth compared to the untreated control (CK), while seed priming with a solution of 100 μM MT significantly alleviated the adverse effects on Cu-stressed seeds. In addition, the MT treatment decreased the accumulation of Cu in seedlings at 7 days after imbibition (DAI), possibly through enhanced Cu sequestration, and improved reserve mobilization through the promoted activity of α-amylase and protease in seeds under Cu stress. Interestingly, gibberellin (GA) synthesis was restored to or even exceeded the CK levels in the MT presoaking treatment, while the abscisic acid (ABA) content decreased compared to those of the Cu-stressed seeds, suggesting crosstalk between MT and other phytohormones, e.g., GA and ABA. More importantly, MT pretreatment also significantly promoted the growth of postgermination seedlings. This was largely ascribed to the MT-ameliorated antioxidant system, which consequently reduced the accumulation of Cu stress-induced oxidative products, e.g., hydrogen peroxide (H2O2), malondialdehyde (MDA), and superoxide (O2·_). Collectively, these results demonstrate that seed priming with MT could greatly mitigate the adverse effects of Cu stress on seed germination and subsequent postgermination growth through crosstalk among various defensive response pathways. This study provides vital guidance for applications of MT in agronomic production.
Collapse
Affiliation(s)
- Ruiqing Li
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, PR China
| | - Liquan Wu
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, PR China
| | - Yafang Shao
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311400, PR China
| | - Qunwen Hu
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, PR China
| | - Huali Zhang
- State Key Laboratory of Rice Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311400, PR China.
| |
Collapse
|
66
|
Menhas S, Yang X, Hayat K, Aftab T, Bundschuh J, Arnao MB, Zhou Y, Zhou P. Exogenous Melatonin Enhances Cd Tolerance and Phytoremediation Efficiency by Ameliorating Cd-Induced Stress in Oilseed Crops: A Review. JOURNAL OF PLANT GROWTH REGULATION 2022; 41:922-935. [PMID: 0 DOI: 10.1007/s00344-021-10349-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/17/2021] [Indexed: 05/20/2023]
|
67
|
Malik Z, Afzal S, Dawood M, Abbasi GH, Khan MI, Kamran M, Zhran M, Hayat MT, Aslam MN, Rafay M. Exogenous melatonin mitigates chromium toxicity in maize seedlings by modulating antioxidant system and suppresses chromium uptake and oxidative stress. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:1451-1469. [PMID: 33797671 DOI: 10.1007/s10653-021-00908-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/19/2021] [Indexed: 05/25/2023]
Abstract
Melatonin, being an endogenous signaling molecule plays important role in plant growth and stress alleviation. The present study was conducted to evaluate the ameliorative role of melatonin against Cr toxicity in maize seedlings. The Cr toxicity (50, 100 and 200 µM) severely affected hydroponically grown seedlings growth in a dose-dependent manner; however, the melatonin (0.5 and 1.0 µM) application markedly restored toxicity-induced growth retardation. Higher dose of melatonin (1.0 µM) was more effective in case of lower Cr toxicity (50 and 100 µM). Exposure of 200 µM Cr caused 45% and 43% reduction in shoot and root lengths and more than 80% reduction in biomass. In case of 200 µM Cr toxicity, application of 1.0 µM MT effectively restored shoot and root lengths reduction (from 45 to 30%) and biomass decline (from 80 to around 60%). Biomass restoration by 1.0 µM melatonin under 50 and 100 µM Cr was even more pronounced bringing it near to control plants having no Cr exposure. Further, both melatonin levels also improved root tips, root diameter, root volume and root surface area that had been damaged by Cr exposure. The melatonin also alleviated Cr-induced chlorophyll and carotenoids inhibition, improved relative water content, and markedly lowered proline and MDA content in shoots. Lower accumulation of MDA and proline, and greater membrane stability indices indicate that the melatonin conferred better plant growth by playing the role of antioxidant and detoxifying oxidative stress creating substances. Although antioxidant enzymes viz. SOD, POD, CAT and APX activities were also elevated by MT, this increase was not significantly different in the most of cases. No significant difference in NPK contents of shoot was observed by Cr and melatonin application indicating the growth retardation being caused directly by Cr intrinsic toxicity and not by nutrients deficiency. The melatonin-based amelioration of Cr toxicity in maize seedlings seems as the result of its nature as antioxidant, and not by activation/elevation of antioxidative enzymatic system.
Collapse
Affiliation(s)
- Zaffar Malik
- Department of Soil Science, University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Sobia Afzal
- Department of Soil Science, University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Dawood
- Department of Environmental Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan.
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, People's Republic of China.
| | - Ghulam Hassan Abbasi
- Department of Soil Science, University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Imran Khan
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Muhammad Kamran
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, 430070, Wuhan, People's Republic of China
| | - Mostafa Zhran
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, People's Republic of China
- Soil and Water Research Department, Nuclear Research Center, Atomic Energy Authority, Abou-Zaabl, 13759, Egypt
| | - Malik Tahir Hayat
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Muhammad Naveed Aslam
- Department of Plant Pathology, University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Rafay
- Department of Forestry and Wildlife, University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| |
Collapse
|
68
|
Jiang Y, Huang S, Ma L, Kong L, Pan S, Tang X, Tian H, Duan M, Mo Z. Effect of Exogenous Melatonin Application on the Grain Yield and Antioxidant Capacity in Aromatic Rice under Combined Lead–Cadmium Stress. Antioxidants (Basel) 2022; 11:antiox11040776. [PMID: 35453461 PMCID: PMC9028010 DOI: 10.3390/antiox11040776] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 01/01/2023] Open
Abstract
This study aimed to determine the mechanism of exogenous melatonin application in alleviating the combined Pb and Cd (Pb-Cd) toxicity on aromatic rice (Oryza sativa L.). In this study, a pot experiment was conducted; two aromatic rice varieties, Yuxiangyouzhan and Xiangyaxiangzhan, were selected, and sprays using 50, 100, 200, and 400 μmol L−1 melatonin (denoted as S50, S100, S200, and S400) and irrigation using 100, 300, and 500 μmol L−1 melatonin (denoted as R100, R300, and R500) were also selected. The results showed that, under the S50, S100, and S200 treatments, the Pb content of aromatic rice grain decreased, and the grain yield increased significantly. Moreover, the application of exogenous melatonin significantly reduced the accumulation of H2O2 in rice leaves at maturity under Cd–Pb stress and reduced the MDA content in Xiangyaxiangzhan leaves. In addition, the microbial community structure changed significantly under S50 and R300 treatments. Some pathways, such as the synthesis of various amino acids and alanine, aspartate, and glutamate metabolism, were regulated by S50 treatment. Overall, melatonin application improved aromatic rice grain yield while reducing heavy metal accumulation by regulating the antioxidant capacity and metabolites in aromatic rice plants and altering the physicochemical properties and microbial community structures of the soil.
Collapse
Affiliation(s)
- Ye Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (Y.J.); (S.H.); (L.M.); (S.P.); (X.T.); (H.T.); (M.D.)
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Suihua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (Y.J.); (S.H.); (L.M.); (S.P.); (X.T.); (H.T.); (M.D.)
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
| | - Lin Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (Y.J.); (S.H.); (L.M.); (S.P.); (X.T.); (H.T.); (M.D.)
| | - Leilei Kong
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Shenggang Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (Y.J.); (S.H.); (L.M.); (S.P.); (X.T.); (H.T.); (M.D.)
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Xiangru Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (Y.J.); (S.H.); (L.M.); (S.P.); (X.T.); (H.T.); (M.D.)
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Hua Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (Y.J.); (S.H.); (L.M.); (S.P.); (X.T.); (H.T.); (M.D.)
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Meiyang Duan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (Y.J.); (S.H.); (L.M.); (S.P.); (X.T.); (H.T.); (M.D.)
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Zhaowen Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (Y.J.); (S.H.); (L.M.); (S.P.); (X.T.); (H.T.); (M.D.)
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
- Correspondence: or
| |
Collapse
|
69
|
Melatonin Alleviates Copper Toxicity via Improving ROS Metabolism and Antioxidant Defense Response in Tomato Seedlings. Antioxidants (Basel) 2022; 11:antiox11040758. [PMID: 35453443 PMCID: PMC9025625 DOI: 10.3390/antiox11040758] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 12/21/2022] Open
Abstract
The excessive accumulation of copper (Cu2+) has become a threat to worldwide crop production. Recently, it was revealed that melatonin (MT) could play a crucial role against heavy metal (HM) stresses in plants. However, the underlying mechanism of MT function acted upon by Cu2+ stress (CS) has not been substantiated in tomatoes. In the present work, we produced MT-rich tomato plants by foliar usage of MT, and MT-deficient tomato plants by employing a virus-induced gene silencing methodology and exogenous foliar application of MT synthesis inhibitor para-chlorophenylalanine (pCPA). The obtained results indicate that exogenous MT meaningfully alleviated the dwarf phenotype and impeded the reduction in plant growth caused by excess Cu2+. Furthermore, MT effectively restricted the generation of reactive oxygen species (ROS) and habilitated cellular integrity by triggering antioxidant enzyme activities, especially via CAT and APX, but not SOD and POD. In addition, MT increased nonenzymatic antioxidant activity, including FRAP and the GSH/GSSG and ASA/DHA ratios. MT usage improved the expression of several defense genes (CAT, APX, GR and MDHAR) and MT biosynthesis-related genes (TDC, SNAT and COMT). Taken together, our results preliminarily reveal that MT alleviates Cu2+ toxicity via ROS scavenging, enhancing antioxidant capacity when subjected to excessive Cu2+. These results build a solid foundation for developing new insights to solve problems related to CS.
Collapse
|
70
|
Nykiel M, Gietler M, Fidler J, Prabucka B, Rybarczyk-Płońska A, Graska J, Boguszewska-Mańkowska D, Muszyńska E, Morkunas I, Labudda M. Signal Transduction in Cereal Plants Struggling with Environmental Stresses: From Perception to Response. PLANTS (BASEL, SWITZERLAND) 2022; 11:1009. [PMID: 35448737 PMCID: PMC9026486 DOI: 10.3390/plants11081009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 05/13/2023]
Abstract
Cereal plants under abiotic or biotic stressors to survive unfavourable conditions and continue growth and development, rapidly and precisely identify external stimuli and activate complex molecular, biochemical, and physiological responses. To elicit a response to the stress factors, interactions between reactive oxygen and nitrogen species, calcium ions, mitogen-activated protein kinases, calcium-dependent protein kinases, calcineurin B-like interacting protein kinase, phytohormones and transcription factors occur. The integration of all these elements enables the change of gene expression, and the release of the antioxidant defence and protein repair systems. There are still numerous gaps in knowledge on these subjects in the literature caused by the multitude of signalling cascade components, simultaneous activation of multiple pathways and the intersection of their individual elements in response to both single and multiple stresses. Here, signal transduction pathways in cereal plants under drought, salinity, heavy metal stress, pathogen, and pest attack, as well as the crosstalk between the reactions during double stress responses are discussed. This article is a summary of the latest discoveries on signal transduction pathways and it integrates the available information to better outline the whole research problem for future research challenges as well as for the creative breeding of stress-tolerant cultivars of cereals.
Collapse
Affiliation(s)
- Małgorzata Nykiel
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (M.G.); (J.F.); (B.P.); (A.R.-P.); (J.G.); (M.L.)
| | - Marta Gietler
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (M.G.); (J.F.); (B.P.); (A.R.-P.); (J.G.); (M.L.)
| | - Justyna Fidler
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (M.G.); (J.F.); (B.P.); (A.R.-P.); (J.G.); (M.L.)
| | - Beata Prabucka
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (M.G.); (J.F.); (B.P.); (A.R.-P.); (J.G.); (M.L.)
| | - Anna Rybarczyk-Płońska
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (M.G.); (J.F.); (B.P.); (A.R.-P.); (J.G.); (M.L.)
| | - Jakub Graska
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (M.G.); (J.F.); (B.P.); (A.R.-P.); (J.G.); (M.L.)
| | | | - Ewa Muszyńska
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland;
| | - Iwona Morkunas
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland;
| | - Mateusz Labudda
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (M.G.); (J.F.); (B.P.); (A.R.-P.); (J.G.); (M.L.)
| |
Collapse
|
71
|
Function, Mechanism, and Application of Plant Melatonin: An Update with a Focus on the Cereal Crop, Barley (Hordeum vulgare L.). Antioxidants (Basel) 2022; 11:antiox11040634. [PMID: 35453319 PMCID: PMC9028855 DOI: 10.3390/antiox11040634] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 01/27/2023] Open
Abstract
Melatonin is a multiple-function molecule that was first identified in animals and later in plants. Plant melatonin regulates versatile processes involved in plant growth and development, including seed germination, root architecture, flowering time, leaf senescence, fruit ripening, and biomass production. Published reviews on plant melatonin have been focused on two model plants: (1) Arabidopsis and (2) rice, in which the natural melatonin contents are quite low. Efforts to integrate the function and the mechanism of plant melatonin and to determine how plant melatonin benefits human health are also lacking. Barley is a unique cereal crop used for food, feed, and malt. In this study, a bioinformatics analysis to identify the genes required for barley melatonin biosynthesis was first performed, after which the effects of exogenous melatonin on barley growth and development were reviewed. Three integrated mechanisms of melatonin on plant cells were found: (1) serving as an antioxidant, (2) modulating plant hormone crosstalk, and (3) signaling through a putative plant melatonin receptor. Reliable approaches for characterizing the function of barley melatonin biosynthetic genes and to modulate the melatonin contents in barley grains are discussed. The present paper should be helpful for the improvement of barley production under hostile environments and for the reduction of pesticide and fungicide usage in barley cultivation. This study is also beneficial for the enhancement of the nutritional values and healthcare functions of barley in the food industry.
Collapse
|
72
|
Ren J, Yang X, Zhang N, Feng L, Ma C, Wang Y, Yang Z, Zhao J. Melatonin alleviates aluminum-induced growth inhibition by modulating carbon and nitrogen metabolism, and reestablishing redox homeostasis in Zea mays L. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127159. [PMID: 34537633 DOI: 10.1016/j.jhazmat.2021.127159] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/30/2021] [Accepted: 09/04/2021] [Indexed: 05/11/2023]
Abstract
Melatonin, a regulatory molecule, performs pleiotropic functions in plants, including aluminum (Al) stress mitigation. Here, we conducted transcriptomic and physiological analyses to identify metabolic processes associated with the alleviated Al-induced growth inhibition of the melatonin-treated (MT) maize (Zea mays L.) seedlings. Melatonin decreased Al concentration in maize roots and leaves under Al stress. Al stress reduced the total dry weight (DW) by 41.2% after 7 days of treatment. By contrast, the total DW was decreased by only 19.4% in MT plants. According to RNA-Seq, enzyme activity, and metabolite content data, MT plants exhibited a higher level of relatively stable carbon and nitrogen metabolism than non-treated (NT) plants. Under Al stress, MT plants showed higher photosynthetic rate and sucrose content by 29.9% and 20.5% than NT plants, respectively. Similarly, the nitrate reductase activity and protein content of MT plants were 34.0% and 15.0% higher than those of NT plants, respectively. Furthermore, exogenous supply of melatonin mitigated Al-induced oxidative stress. Overall, our results suggest that melatonin alleviates aluminum-induced growth inhibition through modulating carbon and nitrogen metabolism, and reestablishing redox homeostasis in maize. Graphical Abstarct.
Collapse
Affiliation(s)
- Jianhong Ren
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030800, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoxiao Yang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030800, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ning Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lu Feng
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Chunying Ma
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030800, China
| | - Yuling Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030800, China
| | - Zhenping Yang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030800, China.
| | - Juan Zhao
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi 030800, China.
| |
Collapse
|
73
|
Bhat JA, Faizan M, Bhat MA, Huang F, Yu D, Ahmad A, Bajguz A, Ahmad P. Defense interplay of the zinc-oxide nanoparticles and melatonin in alleviating the arsenic stress in soybean (Glycine max L.). CHEMOSPHERE 2022; 288:132471. [PMID: 34626653 DOI: 10.1016/j.chemosphere.2021.132471] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/26/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
Present study showed the successful application of the modified hydrothermal method for synthesizing the zinc oxide nanoparticles (ZnO-NPs) efficiently. Well as-synthesized ZnO-NPs are analyzed for various techniques viz., X-ray diffraction (XRD), SEM micrographs, EDAX/Mapping pattern, Raman Spectroscopy Pattern, UV, Photoluminescence (PL) and X-ray photoemission spectroscopy (XPS) analysis. All these measurements showed that ZnO-NPs are highly pure with no internal defects, and can be potentially used in the plant applications. Hence, we further determined the effect of these nanoparticles and melatonin for the modulation of the As tolerance in soybean plants by examining the various growth attributes and metabolic parameters. Our results demonstrated that As-stress inhibited growth (∼34%), photosynthesis-related parameters (∼18-28%) and induced ROS accumulation; however, all these attributes are substantially reversed by the ZnO-NPs and melatonin treatments. Moreover, the As stress induced malondialdehyde (MDA; 71%) and hydrogen peroxide (H2O2; 82%) are partially reversed by the ZnO-NPs and melatonin in the As-stressed plants. This might have resulted due to the ZnO-NPs and melatonin induced activities of the antioxidants plant defense. Overall, the ZnO-NPs and melatonin supplementation separately and in combination positively regulated the As tolerance in soybean; however, the effect of their combined application on the As tolerance was more profound relative to the individual application. These results suggested the synergetic effect of the ZnO-NPs and melatonin on the As tolerance in soybean. However, the in-depth mechanism underlying the defense crosstalk between the ZnO-NPs and melatonin needs to be further explored.
Collapse
Affiliation(s)
- Javaid Akhter Bhat
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Mohammad Faizan
- Collaborative Innovation Centre of Sustainable Forestry in Southern China, College of Forest Science, Nanjing Forestry University, Nanjing, 210037, China
| | | | - Fang Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Deyue Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Andrzej Bajguz
- Department of Biology and Ecology of Plants, Faculty of Biology, University of Bialystok, 15-245, Bialystok, Poland
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia; Department of Botany, GDC Pulwama, Jammu and Kashmir, India.
| |
Collapse
|
74
|
Siddiqui MH, Mukherjee S, Kumar R, Alansi S, Shah AA, Kalaji HM, Javed T, Raza A. Potassium and melatonin-mediated regulation of fructose-1,6-bisphosphatase (FBPase) and sedoheptulose-1,7- bisphosphatase (SBPase) activity improve photosynthetic efficiency, carbon assimilation and modulate glyoxalase system accompanying tolerance to cadmium stress in tomato seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 171:49-65. [PMID: 34971955 DOI: 10.1016/j.plaphy.2021.12.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/07/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
The mechanism of the combined action of potassium (K) and melatonin (Mel) in modulating tolerance to cadmium (Cd) stress in plants is not well understood. The present study reveals the synergistic role of K and Mel in enhancing physiological and biochemical mechanisms of Cd stress tolerance in tomato seedlings. The present findings reveal that seedlings subjected to Cd toxicity exhibited disturbed nutrients balance [nitrogen (N) and potassium (K)], chlorophyll (Chl) biosynthesis [reduced δ-aminolevulinic acid (δ-ALA) content and δ-aminolevulinic acid dehydratase (δ-ALAD) activity], pathway of carbon fixation [reduced fructose-1,6-bisphosphatase (FBPase) and sedoheptulose-1,7- bisphosphatase (SBPase) activity] and photosynthesis process in tomato seedlings. However, exogenous application of K and Mel alone as well as together improved physiological and biochemical mechanisms in tomato seedlings, but their combined application proved best by efficiently improving nutrient uptake, photosynthetic pigments biosynthesis (increased Chl a and b, and Total Chl), carbon flow in Calvin cycle, activity of Rubisco, carbonic anhydrase activity, and accumulation of total soluble carbohydrates content in seedlings under Cd toxicity. Furthermore, the combined treatment of K and Mel suppressed overproduction of reactive oxygen species (hydrogen peroxide and superoxide), Chl degradation [reduced chlorophyllase (Chlase) activity] and methylglyoxal content in Cd-stressed tomato seedlings by upregulating glyoxalase (increased glyoxalase I and glyoxalase II activity) and antioxidant systems (increased ascorbate-glutathione metabolism). Thus, the present study provides stronger evidence that the co-application of K and Mel exhibited synergistic roles in mitigating the toxic effect of Cd stress by increasing glyoxalase and antioxidant systems and also by improving photosynthetic efficiency in tomato seedlings.
Collapse
Affiliation(s)
- Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Soumya Mukherjee
- Department of Botany, Jangipur College, University of Kalyani, West Bengal, 742213, India
| | - Ritesh Kumar
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Saleh Alansi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Anis Ali Shah
- Department of Botany, Division of Science and Technology University of Education, Lahore
| | - Hazem M Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences SGGW, 159 Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Talha Javed
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Departemnet of Agronomy, University of Agriculture Faisalabad, Faisalabad-38040, Pakistan
| | - Ali Raza
- Fujian Provincial Key Laboratory of Crop Molecular and Cell Biology, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002, China
| |
Collapse
|
75
|
Zeng W, Mostafa S, Lu Z, Jin B. Melatonin-Mediated Abiotic Stress Tolerance in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:847175. [PMID: 35615125 PMCID: PMC9125191 DOI: 10.3389/fpls.2022.847175] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 04/19/2022] [Indexed: 05/07/2023]
Abstract
Melatonin is a multi-functional molecule that is ubiquitous in all living organisms. Melatonin performs essential roles in plant stress tolerance; its application can reduce the harmful effects of abiotic stresses. Plant melatonin biosynthesis, which usually occurs within chloroplasts, and its related metabolic pathways have been extensively characterized. Melatonin regulates plant stress responses by directly inhibiting the accumulation of reactive oxygen and nitrogen species, and by indirectly affecting stress response pathways. In this review, we summarize recent research concerning melatonin biosynthesis, metabolism, and antioxidation; we focus on melatonin-mediated tolerance to abiotic stresses including drought, waterlogging, salt, heat, cold, heavy metal toxicity, light and others. We also examine exogenous melatonin treatment in plants under abiotic stress. Finally, we discuss future perspectives in melatonin research and its applications in plants.
Collapse
Affiliation(s)
- Wen Zeng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Salma Mostafa
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- Department of Floriculture, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Zhaogeng Lu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- *Correspondence: Zhaogeng Lu,
| | - Biao Jin
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- Biao Jin,
| |
Collapse
|
76
|
Vanadium Toxicity Induced Changes in Growth, Antioxidant Profiling, and Vanadium Uptake in Pepper (Capsicum annum L.) Seedlings. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae8010028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Heavy metal contamination is one of the current serious environmental and agricultural soil issues, and it is mainly due to anthropogenic activities. Vanadium (V) is found in low concentrations in a wide range of plants and is widely distributed in soils. The current study aimed to determine how pepper seedlings responded to various V concentrations, as well as the detrimental effects of V on growth, root morphological traits, photosynthetic performance, reactive oxygen species (ROS), osmolytes production, antioxidant enzyme activities, and V uptake. Pepper seedlings (5 weeks old) were grown in hydroponic culture with six V levels (0, 10, 20, 30, 40, and 50 mg L−1 NH4VO3). After two weeks of V treatment, low level of V (10, 20 mg L−1) enhanced the growth status, conversely higher V (30, 40, and 50 mg L−1) level reduced the growth. The leaf gas exchange elements, pigments molecules, and root growth characteristics are also affected by higher V concentrations. Moreover, V uptake was higher in roots than in the shoot of pepper seedlings. Similarly, osmolytes content, ROS production, and antioxidant enzymes activities were significantly improved under V stress. Concluding, lower V (10, 20 mg L−1) concentration positively affected pepper growth, and higher V (30, 40, and 50 mg L−1) concentration had a detrimental effect on pepper physiological and biochemical mechanisms.
Collapse
|
77
|
Kobylińska A, Posmyk MM. Melatonin Protects Tobacco Suspension Cells against Pb-Induced Mitochondrial Dysfunction. Int J Mol Sci 2021; 22:13368. [PMID: 34948164 PMCID: PMC8703733 DOI: 10.3390/ijms222413368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
Recent studies have shown that melatonin is an important molecule in plant physiology. It seems that the most important is that melatonin effectively eliminates oxidative stress (direct and indirect antioxidant) and switches on different defence strategies (preventive and interventive actions) during environmental stresses. In the presented report, exogenous melatonin potential to protect Nicotiana tabacum L. line Bright Yellow 2 (BY-2) exposed to lead against death was examined. Analyses of cell proliferation and viability, the level of intracellular calcium, changes in mitochondrial membrane potential (ΔΨm) as well as possible translocation of cytochrome c from mitochondria to cytosol and subsequent caspase-like proteolytic activity were conducted. Our results indicate that pretreatment BY-2 with melatonin protected tobacco cells against mitochondrial dysfunction and caspase-like activation caused by lead. The findings suggest the possible role of this indoleamine in the molecular mechanism of mitochondria, safeguarding against potential collapse and cytochrome c release. Thus, it seems that applied melatonin acted as an effective factor, promoting survival and increasing plant tolerance to lead.
Collapse
Affiliation(s)
| | - Małgorzata Maria Posmyk
- Department of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Łódź, Poland;
| |
Collapse
|
78
|
Ayyaz A, Farooq MA, Dawood M, Majid A, Javed M, Athar HUR, Bano H, Zafar ZU. Exogenous melatonin regulates chromium stress-induced feedback inhibition of photosynthesis and antioxidative protection in Brassica napus cultivars. PLANT CELL REPORTS 2021; 40:2063-2080. [PMID: 34417832 DOI: 10.1007/s00299-021-02769-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 08/09/2021] [Indexed: 05/06/2023]
Abstract
Melatonin is an early player in chromium stress response in canola plants; it promotes ROS scavenging and chlorophyll stability, modulates PSII stability and regulates feedback inhibition of photosynthesis conferring chromium tolerance. The development of heavy metals, especially chromium (Cr)-tolerant cultivars is mainly constrained due to poor knowledge of the mechanism behind Cr stress tolerance. In the present study, two Brassica napus contrasting cultivars Ac-Excel and DGL were studied for Cr stress tolerance by using chlorophyll a fluorescence technique and biochemical attributes with and without melatonin (MT) treatments. Cr stress significantly reduced the PSII and PSI efficiency, biomass accumulation, proline content and antioxidant enzymes in both the cultivars. The application of MT minimized the oxidative stress, as revealed via a lower level of reactive oxygen species (ROS) synthesis (H2O2 and OH-). Enhanced enzymatic activities of important antioxidants (SOD, APX, CAT, POD), proline and total soluble protein contents under MT application play an effective role in the regulation of multiple transcriptional pathways involved in oxidative stress responses. Higher NPQ and Y(NPQ) observed in Cr stress tolerant cv Ac-Excel, indicating that the MT-treated tolerant cultivar had better ability to protect PSII under Cr stress by increasing heat dissipation as photo-protective component of NPQ. Reduced PSI efficiency along with increased donor end limitation of PSI in both canola cultivars further confirmed the lower PSII activity and electron transport from PSII. The Cr content was higher in cv. DGL as compared to (that in Ac-Excel). The application of MT significantly decreased the Cr content in leaves of both cultivars. Overall, MT-induced Cr stress tolerance in canola cultivars can be related to improved PSII activity, Y(NPQ), and antioxidant potential and these physiological attributes can effectively be used to select cultivars for Cr stress tolerance.
Collapse
Affiliation(s)
- Ahsan Ayyaz
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Ahsan Farooq
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China.
| | - Muhammad Dawood
- Department of Environmental Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Abdul Majid
- Department of Biological Sciences, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Javed
- Department of Botany, University of Education, Lahore, Sub-Campus Dera Ghazi Khan, Lahore, Pakistan
| | - Habib-Ur-Rehman Athar
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
| | - Hussan Bano
- Department of Botany, The Women University, Multan, 60000, Pakistan
| | - Zafar Ullah Zafar
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan.
| |
Collapse
|
79
|
Melatonin Confers Plant Cadmium Tolerance: An Update. Int J Mol Sci 2021; 22:ijms222111704. [PMID: 34769134 PMCID: PMC8583868 DOI: 10.3390/ijms222111704] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023] Open
Abstract
Cadmium (Cd) is one of the most injurious heavy metals, affecting plant growth and development. Melatonin (N-acetyl-5-methoxytryptamine) was discovered in plants in 1995, and it is since known to act as a multifunctional molecule to alleviate abiotic and biotic stresses, especially Cd stress. Endogenously triggered or exogenously applied melatonin re-establishes the redox homeostasis by the improvement of the antioxidant defense system. It can also affect the Cd transportation and sequestration by regulating the transcripts of genes related to the major metal transport system, as well as the increase in glutathione (GSH) and phytochelatins (PCs). Melatonin activates several downstream signals, such as nitric oxide (NO), hydrogen peroxide (H2O2), and salicylic acid (SA), which are required for plant Cd tolerance. Similar to the physiological functions of NO, hydrogen sulfide (H2S) is also involved in the abiotic stress-related processes in plants. Moreover, exogenous melatonin induces H2S generation in plants under salinity or heat stress. However, the involvement of H2S action in melatonin-induced Cd tolerance is still largely unknown. In this review, we summarize the progresses in various physiological and molecular mechanisms regulated by melatonin in plants under Cd stress. The complex interactions between melatonin and H2S in acquisition of Cd stress tolerance are also discussed.
Collapse
|
80
|
Abstract
Abiotic stress adversely affects plant growth and metabolism and as such reduces plant productivity. Recognized as a major contributor in the production of reactive oxygen species (ROS), it hinders the growth of plants through induction of oxidative stress. Biostimulants such as melatonin have a multifunctional role, acting as a defense strategy in minimizing the effects of oxidative stress. Melatonin plays important role in plant processes ranging from seed germination to senescence, besides performing the function of a biostimulant in improving the plant’s productivity. In addition to its important role in the signaling cascade, melatonin acts as an antioxidant that helps in scavenging ROS, generated as part of different stresses among plants. The current study was undertaken to elaborate the synthesis and regulation of melatonin in plants, besides emphasizing its function under various abiotic stress namely, salt, temperature, herbicides, heavy metals, and drought. Additionally, a special consideration was put on the crosstalk of melatonin with phytohormones to overcome plant abiotic stress.
Collapse
|
81
|
Ghorbani A, Pishkar L, Roodbari N, Pehlivan N, Wu C. Nitric oxide could allay arsenic phytotoxicity in tomato (Solanum lycopersicum L.) by modulating photosynthetic pigments, phytochelatin metabolism, molecular redox status and arsenic sequestration. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:337-348. [PMID: 34392046 DOI: 10.1016/j.plaphy.2021.08.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 05/21/2023]
Abstract
Plants do not always have the genetic capacity to tolerate high levels of arsenic (As), which may not only arrest their growth but pose potential health risks through dietary bioaccumulation. Meanwhile, the interplay between the tomato plants and As-NO-driven molecular cell dynamics is obscure. Accordingly, seedlings were treated with As (10 mg/L) alone or in combination with 100 μM sodium nitroprusside (SNP, NO donor) and 200 μM 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO, NO scavenger). Sodium nitroprusside immobilized As in the roots and reduced the shoot translocation by up-regulating the transcriptional expression of the PCS, GSH1, MT2, and ABC1. SNP further restored the growth retardation through modulating the chlorophyll and proline metabolism, increasing NO accumulation and stomatal conductance along with clear crosstalk between the antioxidant activity as well as glyoxalase I and II leading to endogenous H2O2 and MG reduction. Higher PCs and glutathione accumulation helped protect photosynthetic apparatus; however, cPTIO reversed the protective effects of SNP, confirming the role of NO in the As toxicity alleviation.
Collapse
Affiliation(s)
- Abazar Ghorbani
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Islamic Republic of Iran; College of Horticulture and Gardening, Yangtze University, Jingzhou, China.
| | - Leila Pishkar
- Department of Biology, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran.
| | - Nasim Roodbari
- Department of Biology, Kahnooj Branch, Islamic Azad University, Kahnooj, Iran
| | - Necla Pehlivan
- Department of Biology, Faculty of Arts and Sciences, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| | - Chu Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| |
Collapse
|
82
|
Shah FA, Ni J, Tang C, Chen X, Kan W, Wu L. Karrikinolide alleviates salt stress in wheat by regulating the redox and K +/Na + homeostasis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:921-933. [PMID: 34555666 DOI: 10.1016/j.plaphy.2021.09.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/04/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Karrikinolide (KAR1), identified in biochars, has gained research attention because of its significant role in seed germination, seedling development, root development, and abiotic stresses. However, KAR1 regulation of salt stress in wheat is elusive. This study investigated the physiological mechanism involved in KAR1 alleviation of salt stress in wheat. The results showed KAR1 boosted seed germination percentage under salinity stress via stimulating the relative expression of genes regulating gibberellins biosynthesis and decreasing the expression levels of abscisic acid biosynthesis and signaling genes. As seen in seed germination, exogenous supplementation of KAR1 dramatically mitigated the salt stress also in wheat seedling, resulting in increased root and shoot growth as measured in biomass as compared to salt stress alone. Salt stress significantly induced the endogenous hydrogen peroxide and malondialdehyde levels, whereas KAR1 strictly counterbalanced them. Under salt stress, KAR1 supplementation showed significant induction in reduced glutathione (GSH) and reduction in oxidized glutathione (GSSG) content, which improved GSH/GSSG ratio in wheat seedlings. Exogenous supplementation of KAR1 significantly promoted the activities of enzymatic antioxidants in wheat seedlings exposed to salt stress. KAR1 induced the relative expression of genes regulating the biosynthesis of antioxidants in wheat seedlings under salinity. Moreover, KAR1 induced the expression level of K+/Na+ homeostasis genes, reduced Na+ concentration, and induced K+ concentration in wheat seedling under salt stress. The results suggest that KAR1 supplementation maintained the redox and K+/Na+ homeostasis in wheat seedling under salinity, which might be a crucial part of physiological mechanisms in KAR1 induced tolerance to salt stress. In conclusion, we exposed the protective role of KAR1 against salt stress in wheat.
Collapse
Affiliation(s)
- Faheem Afzal Shah
- Key Laboratory of the High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, PR China
| | - Jun Ni
- Key Laboratory of the High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, PR China
| | - Caiguo Tang
- Key Laboratory of the High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, PR China
| | - Xue Chen
- Key Laboratory of the High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, PR China
| | - Wenjie Kan
- Key Laboratory of the High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, PR China
| | - Lifang Wu
- Key Laboratory of the High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, PR China; Zhongke Hefei Intelligent Agricultural Valley Co., Ltd, Hefei, PR China.
| |
Collapse
|
83
|
Qasim M, Xiao H, He K, Omar MAA, Hussain D, Noman A, Rizwan M, Khan KA, Al-Zoubi OM, Alharbi SA, Wang L, Li F. Host-pathogen interaction between Asian citrus psyllid and entomopathogenic fungus (Cordyceps fumosorosea) is regulated by modulations in gene expression, enzymatic activity and HLB-bacterial population of the host. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109112. [PMID: 34153507 DOI: 10.1016/j.cbpc.2021.109112] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/09/2021] [Accepted: 06/13/2021] [Indexed: 12/15/2022]
Abstract
The host-pathogen interaction has been explored by several investigations, but the impact of fungal pathogens against insect resistance is still ambiguous. Therefore, we assessed the enzymatic activity and defense-related gene expression of Asian citrus psyllid (ACP) nymphal and adult populations on Huanglongbing-diseased citrus plants under the attack of Cordyceps fumosorosea. Overall, five enzymes viz. superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), glutathione S-transferase (GST), carboxylesterase (CarE), and four genes, namely SOD, 16S, CYP4C68, CYP4BD1, were selected for respective observations from ACP populations. Enzymatic activity of four enzymes (SOD, POD, GST, CarE) was significantly decreased after 5-days post-treatment (dpt) and 3-dpt fungal exposure in fungal treated ACP adult and nymphal populations, respectively, whereas the activity of CAT was boosted substantially post-treatment time schedule. Besides, we recorded drastic fluctuations in the expression of CYP4 genes among fungal treated ACP populations. After 24 hours post-treatment (hpt), expression of both CYP4 genes was boosted in fungal treated populations than controlled populations (adult and nymph). After 3-dpt, however, the expression of CYP4 genes was declined in the given populations. Likewise, fungal attack deteriorated the resistance of adult and nymphal of ACP population, as SOD expression was down-regulated in fungal-treated adult and nymphs after 5-dpt and 3-dpt exposure, respectively. Moreover, bacterial expression via the 16S gene was significantly increased in fungal-treated adult and nymphal ACP populations with increasing post-treatment time. Overall, our data illustrate that the fungal application disrupted the insect defense system. The expression of these genes and enzymes suppress the immune function of adult and nymphal ACP populations. As it is reported first time that the applications of C. fumosorosea against ACP reduce insect resistance by interfering with the CYP4 and SOD system. Therefore, we propose new strategies to discover the role of certain toxic compounds from fungus, which can reduce insect resistance, focusing on resistance-related genes and enzymes.
Collapse
Affiliation(s)
- Muhammad Qasim
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, PR China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| | - Huamei Xiao
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Crop Growth and Development Regulation of Jiangxi Province, College of Life Sciences and Resource Environment, Yichun University, Yichun 336000, PR China
| | - Kang He
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, PR China
| | - Mohamed A A Omar
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, PR China
| | - Dilbar Hussain
- Entomological Research Institute, Ayub Agricultural Research Institute, Faisalabad 38850, Pakistan
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad 38040, Pakistan
| | - Muhammad Rizwan
- Department of Entomology, University of Agriculture, Faisalabad 38040, Pakistan
| | - Khalid Ali Khan
- Research Center for Advanced Materials Science (RCAMS), Unit of Bee Research and Honey Production, Biology Department, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | | | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O Box 2455, Riyadh 11451, Saudi Arabia
| | - Liande Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| | - Fei Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
84
|
Xie C, Pu S, Xiong X, Chen S, Peng L, Fu J, Sun L, Guo B, Jiang M, Li X. Melatonin-assisted phytoremediation of Pb-contaminated soil using bermudagrass. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:44374-44388. [PMID: 33846924 DOI: 10.1007/s11356-021-13790-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Exogenous application of melatonin to plants is a promising approach for assisted phytoremediation of soil lead (Pb). In this study, we investigated the effects of foliar applications of melatonin to mature bermudagrass (Cynodon dactylon (L.) Pers.), a fast-growing perennial with potential as a non-hyperaccumulator plant for Pb phytoremediation. Following exposure to Pb (3000 mg kg-1) for 30 days, decreases in biomass and chlorophyll production, degradation of thylakoid membranes, reduced photosynthesis and PSII (reaction center of photosystem II) efficiency, and elevated oxidative stress were found. Foliar applications of melatonin to Pb-stressed bermudagrass mitigated these negative effects, restoring photosynthetic pigments and chloroplast ultrastructure, subsequently improving photosynthesis and photochemistry efficiency of PSII. Exogenous melatonin also eliminated the excessive accumulations of reactive oxygen species (ROS) and methylglyoxal (MG) which associated with cellular redox homeostasis by improving ascorbic acid (AsA) and reduced glutathione (GSH) contents, redox status of GSH/GSSG (oxidative glutathione), and key enzymes activities in both AsA-GSH and glyoxalase systems. Ultimately, treating bermudagrass plants with exogenous melatonin elevated biomass production and disproportionally greater Pb translocation to roots and senescent leaves. This collectively resulted in 21% greater recovery of Pb compared to Pb-stressed bermudagrass lacking melatonin application. Overall, results from this study demonstrated the beneficial roles of melatonin for improving the effectiveness of bermudagrass as a non-hyperaccumulator plant for soil Pb phytoremediation.
Collapse
Affiliation(s)
- Chengcheng Xie
- College of Landscape Architecture, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, 611130, Sichuan, People's Republic of China
| | - Siyi Pu
- College of Landscape Architecture, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, 611130, Sichuan, People's Republic of China
| | - Xi Xiong
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Shuyu Chen
- College of Landscape Architecture, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, 611130, Sichuan, People's Republic of China
| | - Lingli Peng
- Department of Leisure and Tourism, Chengdu Agricultural College, Wenjiang, Sichuan, 611130, People's Republic of China
| | - Jingyi Fu
- College of Landscape Architecture, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, 611130, Sichuan, People's Republic of China
| | - Lingxia Sun
- College of Landscape Architecture, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, 611130, Sichuan, People's Republic of China
| | - Baimeng Guo
- College of Landscape Architecture, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, 611130, Sichuan, People's Republic of China
| | - Mingyan Jiang
- College of Landscape Architecture, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, 611130, Sichuan, People's Republic of China
| | - Xi Li
- College of Landscape Architecture, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, 611130, Sichuan, People's Republic of China.
| |
Collapse
|
85
|
Yan F, Wei H, Ding Y, Li W, Liu Z, Chen L, Tang S, Ding C, Jiang Y, Li G. Melatonin regulates antioxidant strategy in response to continuous salt stress in rice seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 165:239-250. [PMID: 34082330 DOI: 10.1016/j.plaphy.2021.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/04/2021] [Indexed: 05/22/2023]
Abstract
Melatonin mediates multiple physiological processes in plants and is involved in many reactions related to the protection of plants from abiotic stress. In this paper, the effect of melatonin on the antioxidant capacity of rice under salt stress was studied. Melatonin alleviated the inhibition of salt stress on the growth of rice seedlings, mainly by increasing the dry weight and fresh weight of shoots and roots. Melatonin alleviated the membrane damage caused by salt stress, which was mainly manifested by the decrease of TBARS content and the decrease of leaf and root damage. During the whole salt stress period, rice after melatonin pretreatment showed lower ROS (H2O2, O2•-,OH-) accumulation. In the early stage (1-3 d) of stress, the rice after melatonin pretreatment showed a strong increase in antioxidant enzyme activity, while in the later stage (5,7 d), it showed a strong increase in antioxidant content. During the whole period of salt stress, melatonin had a weak regulatory effect on AsA-GSH cycle. Through the above regulation process, the decreasing effect of melatonin on ROS content of rice under salt stress did not decrease with prolonged stress time in a short time (1-7 d). In conclusion, melatonin improved the antioxidant capacity of rice under continuous salt stress, and rice showed variable antioxidant strategies after melatonin pretreatment.
Collapse
Affiliation(s)
- Feiyu Yan
- College of Agriculture, Nanjing Agricultural University, Nanjing, China; Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China; Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Haimin Wei
- College of Agriculture, Nanjing Agricultural University, Nanjing, China; Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China; Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Yanfeng Ding
- College of Agriculture, Nanjing Agricultural University, Nanjing, China; Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China; Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China; National Engineering and Technology Center for Information Agriculture, Nanjing, China
| | - Weiwei Li
- College of Agriculture, Nanjing Agricultural University, Nanjing, China; Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China; Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Zhenghui Liu
- College of Agriculture, Nanjing Agricultural University, Nanjing, China; Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China; Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China; National Engineering and Technology Center for Information Agriculture, Nanjing, China
| | - Lin Chen
- College of Agriculture, Nanjing Agricultural University, Nanjing, China; Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China; Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China; National Engineering and Technology Center for Information Agriculture, Nanjing, China
| | - She Tang
- College of Agriculture, Nanjing Agricultural University, Nanjing, China; Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China; Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China; National Engineering and Technology Center for Information Agriculture, Nanjing, China
| | - Chengqiang Ding
- College of Agriculture, Nanjing Agricultural University, Nanjing, China; Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China; Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China; National Engineering and Technology Center for Information Agriculture, Nanjing, China
| | - Yu Jiang
- College of Agriculture, Nanjing Agricultural University, Nanjing, China; Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China; Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China; National Engineering and Technology Center for Information Agriculture, Nanjing, China
| | - Ganghua Li
- College of Agriculture, Nanjing Agricultural University, Nanjing, China; Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China; Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China; National Engineering and Technology Center for Information Agriculture, Nanjing, China.
| |
Collapse
|
86
|
Samanta S, Banerjee A, Roychoudhury A. Exogenous melatonin regulates endogenous phytohormone homeostasis and thiol-mediated detoxification in two indica rice cultivars under arsenic stress. PLANT CELL REPORTS 2021; 40:1585-1602. [PMID: 34003317 DOI: 10.1007/s00299-021-02711-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/30/2021] [Indexed: 05/02/2023]
Abstract
Melatonin enhanced arsenic (As) tolerance by inhibiting As bioaccumulation, modulating the expression of As transporters and phytohormone homeostasis, leading to efficient utilization of thiol machinery for sequestration and detoxification of this toxic metalloid. The present study was aimed at investigating the influence of exogenous melatonin on the regulation of endogenous plant growth regulators and their cumulative effects on metal(loid)-binding ligands in two contrasting indica rice cultivars, viz., Khitish (arsenic sensitive) and Muktashri (arsenic tolerant) under arsenic stress. Melatonin supplementation ameliorated arsenic-induced perturbations by triggering endogenous levels of gibberellic acid and melatonin, via up-regulating the expression of key biosynthetic genes like GA3ox, TDC, SNAT and ASMT. The endogenous abscisic acid content was also enhanced upon melatonin treatment by induced expression of the key anabolic gene, NCED3 and concomitant suppression of ABA8ox1. Enhanced melatonin content induced accumulation of higher polyamines (spermidine and spermine), together with up-regulation of SPDS and SPMS in Khitish, thereby modulating stress condition. On the contrary, melatonin escalated putrescine and spermidine levels in Muktashri, via enhanced expression of ADC and SAMDC. The role of melatonin appeared to be more prominent in Khitish, as evident from better utilization of thiol components like cysteine, GSH, non-protein thiols and phytochelatins, with higher GSH/GSSG ratio, despite down-regulated expression of corresponding thiol-metabolic genes (OsMT2 and OsPCS1) to deal with arsenic toxicity. The extent of arsenic bioaccumulation, which was magnified several folds, particularly in Khitish, was decreased upon melatonin application. Overall, our observation highlighted the fact that melatonin enhanced arsenic tolerance by inhibiting arsenic bioaccumulation, via modulating the expression levels of selected arsenic transporters (OsNramp1, OsPT2, OsPT8, OsLsi1) and controlling endogenous phytohormone homeostasis, leading to efficient utilization of thiol machinery for sequestration and detoxification of this toxic metalloid.
Collapse
Affiliation(s)
- Santanu Samanta
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, West Bengal, 700016, India
| | - Aditya Banerjee
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, West Bengal, 700016, India
| | - Aryadeep Roychoudhury
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, West Bengal, 700016, India.
| |
Collapse
|
87
|
Khan MIR, Chopra P, Chhillar H, Ahanger MA, Hussain SJ, Maheshwari C. Regulatory hubs and strategies for improving heavy metal tolerance in plants: Chemical messengers, omics and genetic engineering. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 164:260-278. [PMID: 34020167 DOI: 10.1016/j.plaphy.2021.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/03/2021] [Indexed: 05/28/2023]
Abstract
Heavy metal (HM) accumulation in the agricultural soil and its toxicity is a major threat for plant growth and development. HMs disrupt functional integrity of the plants, induces altered phenological and physiological responses and slashes down qualitative crop yield. Chemical messengers such as phytohormones, plant growth regulators and gasotransmitters play a crucial role in regulating plant growth and development under metal toxicity in plants. Understanding the intricate network of these chemical messengers as well as interactions of genes/metabolites/proteins associated with HM toxicity in plants is necessary for deciphering insights into the regulatory circuit involved in HM tolerance. The present review describes (a) the role of chemical messengers in HM-induced toxicity mitigation, (b) possible crosstalk between phytohormones and other signaling cascades involved in plants HM tolerance and (c) the recent advancements in biotechnological interventions including genetic engineering, genome editing and omics approaches to provide a step ahead in making of improved plant against HM toxicities.
Collapse
Affiliation(s)
| | | | | | | | - Sofi Javed Hussain
- Department of Botany, Government Degree College, Kokernag, Jammu & Kashmir, India
| | - Chirag Maheshwari
- Agricultural Energy and Power Division, ICAR-Central Institute of Agricultural Engineering, Bhopal, India
| |
Collapse
|
88
|
HODŽIĆ E, GALIJAŠEVIĆ S, BALABAN M, REKANOVIĆ S, MAKIĆ H, KUKAVICA B, MIHAJLOVIĆ D. The protective role of melatonin under heavy metal-induced stress in Melissa Officinalis L. Turk J Chem 2021; 45:737-748. [PMID: 34385864 PMCID: PMC8326487 DOI: 10.3906/kim-2012-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/16/2021] [Indexed: 12/03/2022] Open
Abstract
Heavy metals, due to their inability to degrade, pose a serious environmental and nutritional problem. The accumulation of essential and non-essential heavy metals in living organisms reduces normal growth and development, resulting in acute poisoning, disease and even death of organisms. Melatonin is a very important multifunctional molecule in protecting plants from oxidative stress due to its ability to directly neutralize reactive oxygen species (ROS). Also, melatonin has a chelating property, which may contribute in reducing metal-induced toxicity. In this paper, the protective role of melatonin in counteracting metal-induced free radical generation was highlighted. Using the HPLC-FLD technique melatonin was identified and quantified in the roots and leaves of lemon balm ( Melissa officinalis L.), grown under photoperiod conditions. Furthermore, the response of plants pre-treated with exogenous 0.1 mM melatonin to the increased zinc (Zn) and cadmium (Cd) concentrations was observed, with changes in mineral (Ca, Mg), physiological and antioxidant status of the plant during heavy metals stress. The obtained melatonin concentrations were the highest published for dry plants so far. Elevated Cd and Zn levels in soil caused alternation in biochemical and physiological parameters of lemon balm leaves and roots. However, melatonin pre-treatment increased plant tolerance to heavy metals stress. Increased Cd and Zn uptake and their translocation into the leaves were also improved, indicating the possible use of melatonin in phytoremediation.
Collapse
Affiliation(s)
- Elvisa HODŽIĆ
- University of Bihać, Biotechnical faculty, Luke MarjanovićaBosnia and Herzegovina
| | - Semira GALIJAŠEVIĆ
- Sarajevo School of Science and Technology, SarajevoBosnia and Herzegovina
| | - Milica BALABAN
- University of Banja Luka, Faculty of Natural Sciences and Mathematics, Banja LukaBosnia and Herzegovina
| | - Sebila REKANOVIĆ
- University of Bihać, Biotechnical faculty, Luke MarjanovićaBosnia and Herzegovina
| | - Halid MAKIĆ
- University of Bihać, Biotechnical faculty, Luke MarjanovićaBosnia and Herzegovina
| | - Biljana KUKAVICA
- University of Banja Luka, Faculty of Natural Sciences and Mathematics, Banja LukaBosnia and Herzegovina
| | - Dijana MIHAJLOVIĆ
- University of Banja Luka, Faculty of Agriculture, Banja LukaBosnia and Herzegovina
| |
Collapse
|
89
|
Pons ML, Collin B, Doelsch E, Chaurand P, Fehlauer T, Levard C, Keller C, Rose J. X-ray absorption spectroscopy evidence of sulfur-bound cadmium in the Cd-hyperaccumulator Solanum nigrum and the non-accumulator Solanum melongena. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 279:116897. [PMID: 33774364 DOI: 10.1016/j.envpol.2021.116897] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
It has been proposed that non-protein thiols and organic acids play a major role in cadmium phytoavailability and distribution in plants. In the Cd-hyperaccumulator Solanum nigrum and non-accumulator Solanum melongena, the role of these organic ligands in the accumulation and detoxification mechanisms of Cd are debated. In this study, we used X-ray absorption spectroscopy to investigate Cd speciation in these plants (roots, stem, leaves) and in the soils used for their culture to unravel the plants responses to Cd exposure. The results show that Cd in the 100 mg kg-1 Cd-doped clayey loam soil is sorbed onto iron oxyhydroxides. In both S. nigrum and S. melongena, Cd in roots and fresh leaves is mainly bound to thiol ligands, with a small contribution of inorganic S ligands in S. nigrum leaves. We interpret the Cd binding to sulfur ligands as detoxification mechanisms, possibly involving the sequestration of Cd complexed with glutathione or phytochelatins in the plant vacuoles. In the stems, results show an increase binding of Cd to -O ligands (>50% for S. nigrum). We suggest that Cd is partly complexed by organic acids for transportation in the sap.
Collapse
Affiliation(s)
- Marie-Laure Pons
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE UMR 7330, Aix en Provence, France.
| | - Blanche Collin
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE UMR 7330, Aix en Provence, France
| | - Emmanuel Doelsch
- CIRAD, UPR Recyclage et Risque, F-34398, Montpellier, France; Recyclage et Risque, Univ Montpellier, CIRAD, Montpellier, France
| | - Perrine Chaurand
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE UMR 7330, Aix en Provence, France
| | - Till Fehlauer
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE UMR 7330, Aix en Provence, France
| | - Clément Levard
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE UMR 7330, Aix en Provence, France
| | - Catherine Keller
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE UMR 7330, Aix en Provence, France
| | - Jérôme Rose
- Aix Marseille Univ, CNRS, IRD, INRAE, Coll France, CEREGE UMR 7330, Aix en Provence, France
| |
Collapse
|
90
|
Fan T, Liu R, Pan D, Liu Y, Ye W, Lu H, Kianpoor Kalkhajeh Y. Accumulation and subcellular distribution of cadmium in rygegrass induced by Aspergillus niger TL-F2 and Aspergillus flavus TL-F3. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:263-270. [PMID: 34101523 DOI: 10.1080/15226514.2021.1932734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although plant growth-promoting fungi can greatly accelerate the ryegrass bioaccumulation of cadmium (Cd), the underlying mechanisms are not yet well documented. Therefore, we performed a 20-days hydroponic experiment to investigate the effects of Aspergillus niger TL-F2 (A. niger TL-F2) and Aspergillus flavus TL-F3 (A. flavus TL-F3) on accumulation/subcellular distribution of Cd by annual ryegrass Dongmu 70 at different Cd concentrations (0, 2.5, and 5 mg L-1). Results indicated that both fungal strains promoted ryegrass biomass/growth by about 60%. Furthermore, we found that ryegrass roots (17.8-37.1 μg pot-1) had a significantly higher capability for Cd uptake than the shoots (1.66-5.45 μg pot-1) (p < 0.05). Of total Cd in ryegrass plants, 44-67% was in soluble form, 24-37% was in cell wall, and 8.5-25.5% was in organelles. Compared with non-fungus ryegrass, cell wall and soluble Cd fractions in fungus-inoculated roots increased and decreased by 13.5-44% and 21.5-26.4%, respectively. Besides, fungus inoculation generally increased the content of cell wall and soluble Cd fractions in ryegrass shoots. Altogether, the study concludes that inoculation of fungus in ryegrass is a promising approach to improve phytoremediation of Cd contaminated environments.Novelty statement Previous study by Han et al. (2018) examined the resistance of ryegrass plant to Cd stress after its inoculation with Aspergillus aculeatus. In this study, using a hydroponic experiment, we examined the effects of co-application of two species of Aspergillus fungi. i.e. A. niger TL-F2 and A. flavus TL-F3 on ryegrass growth/biomass, Cd absorption by ryegrass shoots and roots, and subcellular distribution of Cd in ryegrass roots and shoots.
Collapse
Affiliation(s)
- Ting Fan
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Ru Liu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Dandan Pan
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Yalou Liu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Wenling Ye
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Hongjuan Lu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Yusef Kianpoor Kalkhajeh
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| |
Collapse
|
91
|
Tang M, Xu L, Wang Y, Dong J, Zhang X, Wang K, Ying J, Li C, Liu L. Melatonin-induced DNA demethylation of metal transporters and antioxidant genes alleviates lead stress in radish plants. HORTICULTURE RESEARCH 2021; 8:124. [PMID: 34059663 PMCID: PMC8167184 DOI: 10.1038/s41438-021-00561-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/11/2021] [Accepted: 03/26/2021] [Indexed: 05/23/2023]
Abstract
Melatonin (MT) is a tryptophan-derived natural product that plays a vital role in plant response to abiotic stresses, including heavy metals (HMs). However, it remains elusive how exogenous MT mediates lead (Pb) accumulation and detoxification at the methylation and transcriptional levels in radish. In this study, decreased Pb accumulation and increased antioxidant enzyme activity were detected under MT treatment in radish. Single-base resolution maps of DNA methylation under Pb stress (Pb200) and Pb plus MT treatment (Pb_50MT) were first generated. The genome-wide methylation level was increased under Pb stress, while an overall loss of DNA methylation was observed under MT treatment. The differentially methylated region (DMR)-associated genes between Pb_50MT and Pb200 were uniquely enriched in ion binding terms, including cation binding, iron ion binding, and transition metal ion binding. Hyper-DMRs between Pb200 and Control exhibited a decreasing trend of methylation under Pb_50MT treatment. A few critical upregulated antioxidant genes (e.g., RsAPX2, RsPOD52 and RsGST) exhibited decreased methylation levels under MT treatment, which enabled the radish plants to scavenge lead-induced reactive oxygen species (ROS) and decrease oxidative stress. Notably, several MT-induced HM transporter genes with low methylation (e.g., RsABCF5, RsYSL7 and RsHMT) and transcription factors (e.g., RsWRKY41 and RsMYB2) were involved in reducing Pb accumulation in radish roots. These findings could facilitate comprehensive elucidation of the molecular mechanism underlying MT-mediated Pb accumulation and detoxification in radish and other root vegetable crops.
Collapse
Affiliation(s)
- Mingjia Tang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Liang Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Yan Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Junhui Dong
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Xiaoli Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Kai Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Jiali Ying
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Cui Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Liwang Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, P.R. China.
| |
Collapse
|
92
|
Bao Q, Bao W, Li Y, Zhang S, Lian F, Huang Y. Silicon combined with foliar melatonin for reducing the absorption and translocation of Cd and As by Oryza sativa L. in two contaminated soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 287:112343. [PMID: 33744819 DOI: 10.1016/j.jenvman.2021.112343] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/01/2021] [Accepted: 03/06/2021] [Indexed: 05/28/2023]
Abstract
Potentially toxic elements (PTE) toxicity has serious effects for human health. Si has been tested to investigate their ability to mitigate Cd and As contamination of rice. In this study, the combined effect of Si and melatonin (MT) on Cd and As uptake and transport in rice plants is tested in two contaminated soils via controlled pot experiments. Results showed that a combined Si and MT treatment (Si + MT) was more effective at reducing Cd and As uptake and transport than Si alone. The treatment had the strongest effect on Cd concentrations in rice grains from high-polluted soil (HP) when treated at the flowering stage (81.8% reduction) and from low-polluted soil (LP) at the tillering stage (TS, 64.9%). The greatest reduction of grain As was found when treated at TS in both soils, by 58.2% and 39.2% in HP and LP soil, respectively. The significant upregulation of CAT, SOD, and POD activities, and downregulation of MDA by Si + MT was more effective than that of Si alone; Si + MT significantly decreased expressions of Nramp1, HMA2, and IRT2 in roots in both soils, and also Nramp5, HMA3, and IRT1 in LP soil, which might result in Si+MT effect on Cd and As accumulation. However, Si + MT had little effect on the amino acid content of grains compared to Si alone. Overall, the combination of Si and MT was substantially more effective at reducing Cd and As uptake and transport than Si alone, especially in HP soil. This effect might result from the regulation of antioxidant potential and gene expression relating Cd uptake and transport.
Collapse
Affiliation(s)
- Qiongli Bao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjing, 300191, China.
| | - Wankui Bao
- Institute of Agricultural Resource and Regional Planning, China Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yan Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjing, 300191, China
| | - Shengnan Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjing, 300191, China
| | - Fei Lian
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yizong Huang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjing, 300191, China
| |
Collapse
|
93
|
Altaf MA, Shahid R, Ren MX, Mora-Poblete F, Arnao MB, Naz S, Anwar M, Altaf MM, Shahid S, Shakoor A, Sohail H, Ahmar S, Kamran M, Chen JT. Phytomelatonin: An overview of the importance and mediating functions of melatonin against environmental stresses. PHYSIOLOGIA PLANTARUM 2021; 172:820-846. [PMID: 33159319 DOI: 10.1111/ppl.13262] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/09/2020] [Accepted: 10/27/2020] [Indexed: 05/06/2023]
Abstract
Recently, melatonin has gained significant importance in plant research. The presence of melatonin in the plant kingdom has been known since 1995. It is a molecule that is conserved in a wide array of evolutionary distant organisms. Its functions and characteristics have been found to be similar in both plants and animals. The review focuses on the role of melatonin pertaining to physiological functions in higher plants. Melatonin regulates physiological functions regarding auxin activity, root, shoot, and explant growth, activates germination of seeds, promotes rhizogenesis (growth of adventitious and lateral roots), and holds up impelled leaf senescence. Melatonin is a natural bio-stimulant that creates resistance in field crops against various abiotic stress, including heat, chemical pollutants, cold, drought, salinity, and harmful ultra-violet radiation. The full potential of melatonin in regulating physiological functions in higher plants still needs to be explored by further research.
Collapse
Affiliation(s)
| | - Rabia Shahid
- School of Economics, Hainan University, Haikou, China
| | - Ming-Xun Ren
- Center for Terrestrial Biodiversity of the South China Sea, College of Ecology and Environment, Hainan University, Haikou, China
| | | | - Marino B Arnao
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, Murcia, Spain
| | - Safina Naz
- Department of Horticulture, Faculty of Agricultural Science and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Anwar
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | | | - Sidra Shahid
- Institute for Clinical Chemistry, University Medical Center Goettingen, Goettingen, Germany
| | - Awais Shakoor
- Department of Environment and Soil Sciences, University of Lleida, Lleida, Spain
| | - Hamza Sohail
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University/Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, China
| | - Sunny Ahmar
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Kamran
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Jen-Tsung Chen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, Taiwan
| |
Collapse
|
94
|
Pardo-Hernández M, López-Delacalle M, Martí-Guillen JM, Martínez-Lorente SE, Rivero RM. ROS and NO Phytomelatonin-Induced Signaling Mechanisms under Metal Toxicity in Plants: A Review. Antioxidants (Basel) 2021; 10. [PMID: 34068211 DOI: 10.20944/preprints202104.0637.v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 05/20/2023] Open
Abstract
Metal toxicity in soils, along with water runoff, are increasing environmental problems that affect agriculture directly and, in turn, human health. In light of finding a suitable and urgent solution, research on plant treatments with specific compounds that can help mitigate these effects has increased, and thus the exogenous application of melatonin (MET) and its role in alleviating the negative effects of metal toxicity in plants, have become more important in the last few years. MET is an important plant-related response molecule involved in growth, development, and reproduction, and in the induction of different stress-related key factors in plants. It has been shown that MET plays a protective role against the toxic effects induced by different metals (Pb, Cd, Cu, Zn, B, Al, V, Ni, La, As, and Cr) by regulating both the enzymatic and non-enzymatic antioxidant plant defense systems. In addition, MET interacts with many other signaling molecules, such as reactive oxygen species (ROS) and nitric oxide (NO) and participates in a wide variety of physiological reactions. Furthermore, MET treatment enhances osmoregulation and photosynthetic efficiency, and increases the concentration of other important antioxidants such as phenolic compounds, flavonoids, polyamines (PAs), and carotenoid compounds. Some recent studies have shown that MET appeared to be involved in the regulation of metal transport in plants, and lastly, various studies have confirmed that MET significantly upregulated stress tolerance-related genes. Despite all the knowledge acquired over the years, there is still more to know about how MET is involved in the metal toxicity tolerance of plants.
Collapse
Affiliation(s)
- Miriam Pardo-Hernández
- Center of Edaphology and Applied Biology of Segura River-Spanish National Research Council (CEBAS-CSIC), Department of Plant Nutrition, Campus Universitario Espinardo, Ed. 25, 30100 Espinardo, Murcia, Spain
| | - María López-Delacalle
- Center of Edaphology and Applied Biology of Segura River-Spanish National Research Council (CEBAS-CSIC), Department of Plant Nutrition, Campus Universitario Espinardo, Ed. 25, 30100 Espinardo, Murcia, Spain
| | - José Manuel Martí-Guillen
- Center of Edaphology and Applied Biology of Segura River-Spanish National Research Council (CEBAS-CSIC), Department of Plant Nutrition, Campus Universitario Espinardo, Ed. 25, 30100 Espinardo, Murcia, Spain
| | - Sara E Martínez-Lorente
- Center of Edaphology and Applied Biology of Segura River-Spanish National Research Council (CEBAS-CSIC), Department of Plant Nutrition, Campus Universitario Espinardo, Ed. 25, 30100 Espinardo, Murcia, Spain
| | - Rosa M Rivero
- Center of Edaphology and Applied Biology of Segura River-Spanish National Research Council (CEBAS-CSIC), Department of Plant Nutrition, Campus Universitario Espinardo, Ed. 25, 30100 Espinardo, Murcia, Spain
| |
Collapse
|
95
|
Pardo-Hernández M, López-Delacalle M, Martí-Guillen JM, Martínez-Lorente SE, Rivero RM. ROS and NO Phytomelatonin-Induced Signaling Mechanisms under Metal Toxicity in Plants: A Review. Antioxidants (Basel) 2021; 10:antiox10050775. [PMID: 34068211 PMCID: PMC8153167 DOI: 10.3390/antiox10050775] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 01/01/2023] Open
Abstract
Metal toxicity in soils, along with water runoff, are increasing environmental problems that affect agriculture directly and, in turn, human health. In light of finding a suitable and urgent solution, research on plant treatments with specific compounds that can help mitigate these effects has increased, and thus the exogenous application of melatonin (MET) and its role in alleviating the negative effects of metal toxicity in plants, have become more important in the last few years. MET is an important plant-related response molecule involved in growth, development, and reproduction, and in the induction of different stress-related key factors in plants. It has been shown that MET plays a protective role against the toxic effects induced by different metals (Pb, Cd, Cu, Zn, B, Al, V, Ni, La, As, and Cr) by regulating both the enzymatic and non-enzymatic antioxidant plant defense systems. In addition, MET interacts with many other signaling molecules, such as reactive oxygen species (ROS) and nitric oxide (NO) and participates in a wide variety of physiological reactions. Furthermore, MET treatment enhances osmoregulation and photosynthetic efficiency, and increases the concentration of other important antioxidants such as phenolic compounds, flavonoids, polyamines (PAs), and carotenoid compounds. Some recent studies have shown that MET appeared to be involved in the regulation of metal transport in plants, and lastly, various studies have confirmed that MET significantly upregulated stress tolerance-related genes. Despite all the knowledge acquired over the years, there is still more to know about how MET is involved in the metal toxicity tolerance of plants.
Collapse
|
96
|
Mi Y, Tong K, Zhu G, Zhang X, Liu X, Si Y. Surface spraying of anthocyanin through antioxidant defense and subcellular sequestration to decrease Cd accumulation in rice (Oryza sativa L.) grains in a lead-zinc mine area. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:1855-1866. [PMID: 33159231 DOI: 10.1007/s10653-020-00763-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 10/25/2020] [Indexed: 06/11/2023]
Abstract
As an important class of flavonoids, anthocyanin has been used to enhance plant-defensive mechanisms against heavy metal stress. However, there are few available reports regarding surface spraying of anthocyanin for reduction of Cd poisoning in rice and its practical applications in paddy fields. After rice growing, measurements were taken of rice growth, pigments, the antioxidant system, thiol compounds, and distribution of Cd in rice tissues. The results showed that surface spraying anthocyanin could promote rice growth, and relative to the control, total chlorophyll significantly increased by 22.62% after surface spraying of 7.5 g L-1 anthocyanin. Simultaneously, Cd accumulation in rice grains was 0.17 ± 0.02 mg kg-1, which was significantly decreased by 46.88% relative to the control. In the pot experiment (40-day-old rice), treatment with 7.5 g L-1 anthocyanin resulted in decreases of ·O2-, H2O2, and malondialdehyde contents in rice leaves, while the activities of superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase were increased by 59.10, 23.81, 41.75, and 9.39%, respectively. Meanwhile, contents of glutathione, ascorbic acid, non-protein thiols, and phytochelatins showed respective increases of 7.24, 14.49, 42.81, and 41.13% compared with the control value. Subcellular analysis revealed that surface spraying of anthocyanin increased organelle and soluble fractions of Cd in leaf cells. In conclusion, surface spraying of 7.5 g L-1 anthocyanin was mainly attributed to increased antioxidant activities and subcellular sequestration of Cd in organelles and soluble fractions in rice leaves to reduce Cd accumulation in rice grains in the field.
Collapse
Affiliation(s)
- Yazhu Mi
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Kun Tong
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Guangsen Zhu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Xu Zhang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Xiaohong Liu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Youbin Si
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
97
|
Salavati J, Fallah H, Niknejad Y, Barari Tari D. Methyl jasmonate ameliorates lead toxicity in Oryza sativa by modulating chlorophyll metabolism, antioxidative capacity and metal translocation. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1089-1104. [PMID: 34092952 PMCID: PMC8140021 DOI: 10.1007/s12298-021-00993-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/15/2021] [Accepted: 04/07/2021] [Indexed: 05/21/2023]
Abstract
Lead (Pb) not only negatively alters plant growth and yield but may also have potentially toxic risks to human health. Nevertheless, the interaction between rice (Oryza sativa L.) plants and the molecular cell dynamics induced by lead-methyl jasmonate (MJ) remains unknown. Here, plants were hydroponically exposed to Pb (150 and 300 µM) alone or in combination with 0.5 and 1 µM MJ. The application of MJ modulated the expression of the HMAs, PCS1, PCS2 and ABCC1 genes, thereby immobilizing the Pb in the roots and lessening its translocation to the aerial parts of the rice plant. The supplementation of MJ improved the growth and yield of Pb-stressed rice by adjusting the proline and chlorophyll metabolism, increasing the phytochelatins (PCs) accumulation and diminishing the accumulation of Pb in the shoots. the application of MJ alleviated the oxidative stress of rice plants exposed to Pb toxicity by enhancing the activity of antioxidant enzymes and enzymes of the glyoxalase system (glyoxalase I and II) and decreasing the endogenous levels of malondialdehyde (MDA), hydrogen peroxide (H2O2) and methylglyoxal (MG). Therefore, the results of the present study could provide a molecular insight and cellular interplay scheme for the development of a promising strategy in Pb-contaminated areas to produce healthy food.
Collapse
Affiliation(s)
- Javad Salavati
- Department of Agronomy, Islamic Azad University of Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Hormoz Fallah
- Department of Agronomy, Islamic Azad University of Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Yosoof Niknejad
- Department of Agronomy, Islamic Azad University of Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Davood Barari Tari
- Department of Agronomy, Islamic Azad University of Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| |
Collapse
|
98
|
Effects of cadmium stress on physiological indexes and fruiting body nutritions of Agaricus brasiliensis. Sci Rep 2021; 11:8653. [PMID: 33883568 PMCID: PMC8060259 DOI: 10.1038/s41598-021-87349-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
In this study, 0, 0.5, 1, 1.5, 2, 4, 6 and 8 mg·kg-1 of cadmium were added to the cultivation materials. In order to study the effects of different concentrations of Cd stress on J1 and J77, the contents of antioxidant enzymes, proline and malondialdehyde, Cd content, agronomic traits and yield of fruiting bodies of Agaricus brasiliensis were determined, and the nutritional components such as polysaccharide, triterpene, protein, total sugar and total amino acid were determined. The results showed that the physiological indexes of strain J1 and J77 changed regularly under different concentrations of Cd stress. J1 was a high absorption and low tolerance variety, while J77 was a low absorption and high tolerance variety. Low concentration of Cd promoted the growth of strain J1, and higher concentration of Cd promoted the growth of strain J77. The contents of protein and total amino acids in the two strains changed greatly, followed by polysaccharides, which indicated that Cd stress had the greatest impact on the three nutrients, and other nutrients were not sensitive to Cd stress.
Collapse
|
99
|
Amjadi Z, Namdjoyan S, Abolhasani Soorki A. Exogenous melatonin and salicylic acid alleviates cadmium toxicity in safflower (Carthamus tinctorius L.) seedlings. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:387-401. [PMID: 33624206 DOI: 10.1007/s10646-021-02364-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
The co-application of exogenous 100 µM melatonin (MT) and 100 µM salicylic acid (SA) on 21-day-old safflower seedlings grown in the presence of cadmium (Cd, 100 µM) toxicity was investigated. The application of MT, SA, or MT + SA efficiently improved toxicity symptoms and declined Cd toxicity as shown by a considerable rise in plant biomass production and chlorophyll content accompanied by decreased level of oxidative stress markers. In Cd stressed plants, the simultaneous application of MT and SA led to sharp decreases in MDA and H2O2 amounts (61.04 and 49.11%, respectively), related to plants treated with Cd alone. With respect to the control, a 41 and 48% increment in reduced glutathione (GSH) and ascorbate (ASC) content was recorded in Cd-treated seedlings. Though, with the addition of MT, SA, or MT + SA, the content of GSH and ASC increased more. The application of MT, SA, or MT + SA caused a sharp induction in phytochelatin content of the leaves of Cd-treated seedlings, while in roots, the highest PC content was recorded only in the presence of MT, which was about 1.8-fold greater than in plant treated with Cd alone. The activity of enzymes responsible for the ascorbate-glutathione cycle and glyoxalase system considerably improved by using MT, SA, or the combination of MT and SA. Our findings suggest a possible synergic interaction between MT and SA in tolerating Cd toxicity by reducing Cd uptake, improving chlorophyll biosynthesis and accelerating ascorbate-glutathione cycle as well as the modulation of glyoxalase system.
Collapse
Affiliation(s)
- Zahra Amjadi
- Department of Biology and Biochemistry, Science Faculty, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Shahram Namdjoyan
- Department of Biology and Biochemistry, Science Faculty, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran.
| | - Ali Abolhasani Soorki
- ACECR-Research Institute of Applied Sciences, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
100
|
Dennis KK, Liu KH, Uppal K, Go YM, Jones DP. Distribution of phytochelatins, metal-binding compounds, in plant foods: A survey of commonly consumed fruits, vegetables, grains and legumes. Food Chem 2021; 339:128051. [PMID: 32950899 PMCID: PMC8434803 DOI: 10.1016/j.foodchem.2020.128051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/25/2020] [Accepted: 09/05/2020] [Indexed: 11/18/2022]
Abstract
Phytochelatins (PyCs) are metal-binding compounds produced by plants. PyCs may reduce bioavailability of dietary toxic metals such as cadmium. However, the PyC concentrations in foods are unknown. The objective of this study was to analyze PyC contents in a subset of commonly consumed plant foods. Foods (20) across five groups were analyzed and PyCs quantified using liquid chromatography-mass spectrometry (LC-MS/MS). The impact of factors such as food processing were also explored. PyCs were in all 20 foods. Five PyC types were detected with PyC2-Gly, PyC3-Gly and PyC2-Ala at quantifiable concentrations. PyC2-Gly was found at the highest concentrations and most widely distributed. PyC2-Gly concentrations were highest in fruits and root vegetables. Foods with increased processing tended to have reduced PyC concentrations. This survey of commonly consumed plant foods in the United States demonstrates PyCs are widely distributed and provides a foundation for understanding their concentrations and impact in the human diet.
Collapse
Affiliation(s)
- Kristine K Dennis
- Nutrition and Health Sciences, Laney Graduate School, Emory University, 615 Michael Street, 225 Whitehead Biomedical Research Building, Atlanta, GA 30322, USA
| | - Ken H Liu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Emory University, 615 Michael Street, 225 Whitehead Biomedical Research Building, Atlanta, GA 30322, USA
| | - Karan Uppal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Emory University, 615 Michael Street, 225 Whitehead Biomedical Research Building, Atlanta, GA 30322, USA
| | - Young-Mi Go
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Emory University, 615 Michael Street, 225 Whitehead Biomedical Research Building, Atlanta, GA 30322, USA
| | - Dean P Jones
- Nutrition and Health Sciences, Laney Graduate School, Emory University, 615 Michael Street, 225 Whitehead Biomedical Research Building, Atlanta, GA 30322, USA; Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Emory University, 615 Michael Street, 225 Whitehead Biomedical Research Building, Atlanta, GA 30322, USA.
| |
Collapse
|