51
|
Subcortical control of the default mode network: Role of the basal forebrain and implications for neuropsychiatric disorders. Brain Res Bull 2022; 185:129-139. [PMID: 35562013 PMCID: PMC9290753 DOI: 10.1016/j.brainresbull.2022.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 01/03/2023]
Abstract
The precise interplay between large-scale functional neural systems throughout the brain is essential for performance of cognitive processes. In this review we focus on the default mode network (DMN), one such functional network that is active during periods of quiet wakefulness and believed to be involved in introspection and planning. Abnormalities in DMN functional connectivity and activation appear across many neuropsychiatric disorders, including schizophrenia. Recent evidence suggests subcortical regions including the basal forebrain are functionally and structurally important for regulation of DMN activity. Within the basal forebrain, subregions like the ventral pallidum may influence DMN activity and the nucleus basalis of Meynert can inhibit switching between brain networks. Interactions between DMN and other functional networks including the medial frontoparietal network (default), lateral frontoparietal network (control), midcingulo-insular network (salience), and dorsal frontoparietal network (attention) are also discussed in the context of neuropsychiatric disorders. Several subtypes of basal forebrain neurons have been identified including basal forebrain parvalbumin-containing or somatostatin-containing neurons which can regulate cortical gamma band oscillations and DMN-like behaviors, and basal forebrain cholinergic neurons which might gate access to sensory information during reinforcement learning. In this review, we explore this evidence, discuss the clinical implications on neuropsychiatric disorders, and compare neuroanatomy in the human vs rodent DMN. Finally, we address technological advancements which could help provide a more complete understanding of modulation of DMN function and describe newly identified BF therapeutic targets that could potentially help restore DMN-associated functional deficits in patients with a variety of neuropsychiatric disorders.
Collapse
|
52
|
Canseco-Alba A, Sanabria B, Hammouda M, Bernadin R, Mina M, Liu QR, Onaivi ES. Cell-Type Specific Deletion of CB2 Cannabinoid Receptors in Dopamine Neurons Induced Hyperactivity Phenotype: Possible Relevance to Attention-Deficit Hyperactivity Disorder. Front Psychiatry 2022; 12:803394. [PMID: 35211038 PMCID: PMC8860836 DOI: 10.3389/fpsyt.2021.803394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/31/2021] [Indexed: 12/23/2022] Open
Abstract
DAT-Cnr2 mice are conditional knockout (cKO) animals that do not express cannabinoid CB2 receptors (CB2R), in midbrain dopamine neurons. The hyperactivity phenotype of DAT-Cnr2 cKO mice were paradoxically reduced by low dose of amphetamine. Here, we report on the locomotor activity analysis in male and female adolescent (PND 30 ± 2) mice in basal conditions and in response to different doses of amphetamine, using the Open Field (OF), Elevated Plus-Maze (EPM) tests and the Novel Object Recognition (NOR) task as a putative model of attention deficit hyperactivity disorder (ADHD). Results showed that both male and female adolescent DAT-Cnr2 mice displayed significant increases in distance traveled in the OF test compared with WT mice. However, 2 mg/kg dose of amphetamine reduced the distance traveled by the DAT-Cnr2 but was increased in the WT mice. In the EPM test of anxiety-like behavioral responses, DAT-Cnr2 spent more time in the open arms of the maze than the WT mice, suggesting a reduction in anxiety-like response. DAT-Cnr2 mice showed significant increase in the number of unprotected head dips in the maze test and in the cliff avoidance reaction (CAR) test demonstrating impulsivity and risky behavior. DAT-Cnr2 mice also exhibited deficient response in the delay decision making (DDM), with impulsive choice. Both DAT-Cnr2 and WT were able to recognize the new object in the NOR task, but the exploration by the DAT-Cnr2 was less than that of the WT mice. Following the administration of 2 mg/kg of amphetamine, the similarities and differential performances of the DAT-Cnr2 and WT mice in the EPM test and NOR task was probably due to increase in attention. Microglia activation detected by Cd11b immunolabelling was enhanced in the hippocampus in DAT-Cnr2 cKO than in WT mice, implicating neuro-immune modulatory effects of CB2R. The results demonstrates that DAT-Cnr2 cKO mice with cell-type specific deletion of CB2R in midbrain dopaminergic neurons may represent a possible model for studying the neurobiological basis of ADHD.
Collapse
Affiliation(s)
- Ana Canseco-Alba
- Dirección de Investigación, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City, Mexico
| | - Branden Sanabria
- Department of Biology, William Paterson University, Wayne, NJ, United States
| | - Mariam Hammouda
- Department of Biology, William Paterson University, Wayne, NJ, United States
| | - Rollanda Bernadin
- Department of Biology, William Paterson University, Wayne, NJ, United States
| | - Marizel Mina
- Department of Biology, William Paterson University, Wayne, NJ, United States
| | - Qing-Rong Liu
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Emmanuel S. Onaivi
- Department of Biology, William Paterson University, Wayne, NJ, United States
| |
Collapse
|
53
|
Santoni M, Frau R, Pistis M. Transgenerational Sex-dependent Disruption of Dopamine Function Induced by Maternal Immune Activation. Front Pharmacol 2022; 13:821498. [PMID: 35211019 PMCID: PMC8861303 DOI: 10.3389/fphar.2022.821498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/17/2022] [Indexed: 11/28/2022] Open
Abstract
Several epidemiological studies suggest an association between maternal infections during pregnancy and the emergence of neurodevelopmental disorders in the offspring, such as autism and schizophrenia. Animal models broadened the knowledge about the pathophysiological mechanisms that develop from prenatal infection to the onset of psychopathological phenotype. Mounting evidence supports the hypothesis that detrimental effects of maternal immune activation might be transmitted across generations. Here, we explored the transgenerational effects on the dopamine system of a maternal immune activation model based on the viral mimetic polyriboinosinic-polyribocytidilic acid. We assessed dopamine neurons activity in the ventral tegmental area by in vivo electrophysiology. Furthermore, we studied two behavioral tests strictly modulated by the mesolimbic dopamine system, i.e., the open field in response to amphetamine and the prepulse inhibition of the startle reflex in response to the D2 agonist apomorphine. Second-generation adult male rats did not display any deficit in sensorimotor gating; however, they displayed an altered activity of ventral tegmental area dopamine neurons, indexed by a reduced spontaneous firing rate and a heightened motor activation in response to amphetamine administration in the open field. On the other hand, second-generation female rats were protected from ancestors' polyriboinosinic-polyribocytidilic acid treatment, as they did not show any alteration in dopamine cell activity or in behavioral tests. These results confirm that maternal immune activation negatively influences, in a sex-dependent manner, neurodevelopmental trajectories of the dopamine system across generations.
Collapse
Affiliation(s)
- Michele Santoni
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Roberto Frau
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
- “Guy Everett” Laboratory, University of Cagliari, Cagliari, Italy
| | - Marco Pistis
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy (CNR), Cagliari, Italy
- Unit of Clinical Pharmacology, University Hospital, Cagliari, Italy
| |
Collapse
|
54
|
Drug Design Targeting the Muscarinic Receptors and the Implications in Central Nervous System Disorders. Biomedicines 2022; 10:biomedicines10020398. [PMID: 35203607 PMCID: PMC8962391 DOI: 10.3390/biomedicines10020398] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/16/2022] Open
Abstract
There is substantial evidence that cholinergic system function impairment plays a significant role in many central nervous system (CNS) disorders. During the past three decades, muscarinic receptors (mAChRs) have been implicated in various pathologies and have been prominent targets of drug-design efforts. However, due to the high sequence homology of the orthosteric binding site, many drug candidates resulted in limited clinical success. Although several advances in treating peripheral pathologies have been achieved, targeting CNS pathologies remains challenging for researchers. Nevertheless, significant progress has been made in recent years to develop functionally selective orthosteric and allosteric ligands targeting the mAChRs with limited side effect profiles. This review highlights past efforts and focuses on recent advances in drug design targeting these receptors for Alzheimer’s disease (AD), schizophrenia (SZ), and depression.
Collapse
|
55
|
Kiemes A, Gomes FV, Cash D, Uliana DL, Simmons C, Singh N, Vernon AC, Turkheimer F, Davies C, Stone JM, Grace AA, Modinos G. GABA A and NMDA receptor density alterations and their behavioral correlates in the gestational methylazoxymethanol acetate model for schizophrenia. Neuropsychopharmacology 2022; 47:687-695. [PMID: 34743200 PMCID: PMC8782908 DOI: 10.1038/s41386-021-01213-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/09/2021] [Accepted: 10/13/2021] [Indexed: 01/19/2023]
Abstract
Hippocampal hyperactivity driven by GABAergic interneuron deficits and NMDA receptor hypofunction is associated with the hyperdopaminergic state often observed in schizophrenia. Furthermore, previous research in the methylazoxymethanol acetate (MAM) rat model has demonstrated that repeated peripubertal diazepam administration can prevent the emergence of adult hippocampal hyperactivity, dopamine-system hyperactivity, and associated psychosis-relevant behaviors. Here, we sought to characterize hippocampal GABAA and NMDA receptors in MAM-treated rats and to elucidate the receptor mechanisms underlying the promising effects of peripubertal diazepam exposure. Quantitative receptor autoradiography was used to measure receptor density in the dorsal hippocampus CA1, ventral hippocampus CA1, and ventral subiculum. Specifically, [3H]-Ro15-4513 was used to quantify the density of α5GABAA receptors (α5GABAAR), [3H]-flumazenil to quantify α1-3;5GABAAR, and [3H]-MK801 to quantify NMDA receptors. MAM rats exhibited anxiety and schizophrenia-relevant behaviors as measured by elevated plus maze and amphetamine-induced hyperlocomotion (AIH), although diazepam only partially rescued these behaviors. α5GABAAR density was reduced in MAM-treated rats in all hippocampal sub-regions, and negatively correlated with AIH. Ventral hippocampus CA1 α5GABAAR density was positively correlated with anxiety-like behavior. Dorsal hippocampus CA1 NMDA receptor density was increased in MAM-treated rats, and positively correlated with AIH. [3H]-flumazenil revealed no significant effects. Finally, we found no significant effect of diazepam treatment on receptor densities, potentially related to the only partial rescue of schizophrenia-relevant phenotypes. Overall, our findings provide first evidence of α5GABAAR and NMDA receptor abnormalities in the MAM model, suggesting that more selective pharmacological agents may become a novel therapeutic mechanism in schizophrenia.
Collapse
Affiliation(s)
- Amanda Kiemes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Felipe V Gomes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Diana Cash
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Daniela L Uliana
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Camilla Simmons
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Nisha Singh
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Cathy Davies
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - James M Stone
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gemma Modinos
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| |
Collapse
|
56
|
Sabaroedin K, Razi A, Chopra S, Tran N, Pozaruk A, Chen Z, Finlay A, Nelson B, Allott K, Alvarez-Jimenez M, Graham J, Yuen HP, Harrigan S, Cropley V, Sharma S, Saluja B, Williams R, Pantelis C, Wood SJ, O’Donoghue B, Francey S, McGorry P, Aquino K, Fornito A. Frontostriatothalamic effective connectivity and dopaminergic function in the psychosis continuum. Brain 2022; 146:372-386. [PMID: 35094052 PMCID: PMC9825436 DOI: 10.1093/brain/awac018] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 01/12/2023] Open
Abstract
Dysfunction of fronto-striato-thalamic (FST) circuits is thought to contribute to dopaminergic dysfunction and symptom onset in psychosis, but it remains unclear whether this dysfunction is driven by aberrant bottom-up subcortical signalling or impaired top-down cortical regulation. We used spectral dynamic causal modelling of resting-state functional MRI to characterize the effective connectivity of dorsal and ventral FST circuits in a sample of 46 antipsychotic-naïve first-episode psychosis patients and 23 controls and an independent sample of 36 patients with established schizophrenia and 100 controls. We also investigated the association between FST effective connectivity and striatal 18F-DOPA uptake in an independent healthy cohort of 33 individuals who underwent concurrent functional MRI and PET. Using a posterior probability threshold of 0.95, we found that midbrain and thalamic connectivity were implicated as dysfunctional across both patient groups. Dysconnectivity in first-episode psychosis patients was mainly restricted to the subcortex, with positive symptom severity being associated with midbrain connectivity. Dysconnectivity between the cortex and subcortical systems was only apparent in established schizophrenia patients. In the healthy 18F-DOPA cohort, we found that striatal dopamine synthesis capacity was associated with the effective connectivity of nigrostriatal and striatothalamic pathways, implicating similar circuits to those associated with psychotic symptom severity in patients. Overall, our findings indicate that subcortical dysconnectivity is evident in the early stages of psychosis, that cortical dysfunction may emerge later in the illness, and that nigrostriatal and striatothalamic signalling are closely related to striatal dopamine synthesis capacity, which is a robust marker for psychosis.
Collapse
Affiliation(s)
- Kristina Sabaroedin
- Correspondence to: Kristina Sabaroedin Turner Institute for Brain and Mental Health 770 Blackburn Road, Clayton, Victoria 3168, Australia E-mail:
| | - Adeel Razi
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria 3800, Australia,Monash Biomedical Imaging, Monash University, Clayton, Victoria 3800, Australia,Wellcome Centre for Human Neuroimaging, University College, London WC1N 3AR, UK
| | - Sidhant Chopra
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Nancy Tran
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Andrii Pozaruk
- Monash Biomedical Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Zhaolin Chen
- Monash Biomedical Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Amy Finlay
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Barnaby Nelson
- Orygen, Parkville, Victoria 3052, Australia,Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Kelly Allott
- Orygen, Parkville, Victoria 3052, Australia,Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Mario Alvarez-Jimenez
- Orygen, Parkville, Victoria 3052, Australia,Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Jessica Graham
- Orygen, Parkville, Victoria 3052, Australia,Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Hok P Yuen
- Orygen, Parkville, Victoria 3052, Australia,Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Susy Harrigan
- Department of Social Work, Monash University, Victoria 3800, Australia,Melbourne School of Population and Global Health, The University of Melbourne, Parkville. Victoria 3010, Australia
| | - Vanessa Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Parkville, Victoria 3010, Australia
| | - Sujit Sharma
- Monash Health, Dandenong, Victoria 3175, Australia
| | | | - Rob Williams
- The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Parkville, Victoria 3010, Australia,The Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Stephen J Wood
- Orygen, Parkville, Victoria 3052, Australia,Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia,School of Psychology, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Brian O’Donoghue
- Orygen, Parkville, Victoria 3052, Australia,Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Shona Francey
- Orygen, Parkville, Victoria 3052, Australia,Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Patrick McGorry
- Orygen, Parkville, Victoria 3052, Australia,Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Kevin Aquino
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria 3800, Australia,Monash Biomedical Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria 3800, Australia,Monash Biomedical Imaging, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
57
|
Davies C, Appiah-Kusi E, Wilson R, Blest-Hopley G, Bossong MG, Valmaggia L, Brammer M, Perez J, Allen P, Murray RM, McGuire P, Bhattacharyya S. Altered relationship between cortisol response to social stress and mediotemporal function during fear processing in people at clinical high risk for psychosis: a preliminary report. Eur Arch Psychiatry Clin Neurosci 2022; 272:461-475. [PMID: 34480630 PMCID: PMC8938358 DOI: 10.1007/s00406-021-01318-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 08/11/2021] [Indexed: 12/11/2022]
Abstract
Evidence suggests that people at Clinical High Risk for Psychosis (CHR) have a blunted cortisol response to stress and altered mediotemporal activation during fear processing, which may be neuroendocrine-neuronal signatures of maladaptive threat responses. However, whether these facets are associated with each other and how this relationship is affected by cannabidiol treatment is unknown. We examined the relationship between cortisol response to social stress and mediotemporal function during fear processing in healthy people and in CHR patients. In exploratory analyses, we investigated whether treatment with cannabidiol in CHR individuals could normalise any putative alterations in cortisol-mediotemporal coupling. 33 CHR patients were randomised to 600 mg cannabidiol or placebo treatment. Healthy controls (n = 19) did not receive any drug. Mediotemporal function was assessed using a fearful face-processing functional magnetic resonance imaging paradigm. Serum cortisol and anxiety were measured immediately following the Trier Social Stress Test. The relationship between cortisol and mediotemporal blood-oxygen-level-dependent haemodynamic response was investigated using linear regression. In healthy controls, there was a significant negative relationship between cortisol and parahippocampal activation (p = 0.023), such that the higher the cortisol levels induced by social stress, the lower the parahippocampal activation (greater deactivation) during fear processing. This relationship differed significantly between the control and placebo groups (p = 0.033), but not between the placebo and cannabidiol groups (p = 0.67). Our preliminary findings suggest that the parahippocampal response to fear processing may be associated with the neuroendocrine (cortisol) response to experimentally induced social stress, and that this relationship may be altered in patients at clinical high risk for psychosis.
Collapse
Affiliation(s)
- Cathy Davies
- grid.13097.3c0000 0001 2322 6764Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, London, SE5 8AF UK
| | - Elizabeth Appiah-Kusi
- grid.13097.3c0000 0001 2322 6764Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, London, SE5 8AF UK
| | - Robin Wilson
- grid.13097.3c0000 0001 2322 6764Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, London, SE5 8AF UK
| | - Grace Blest-Hopley
- grid.13097.3c0000 0001 2322 6764Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, London, SE5 8AF UK
| | - Matthijs G. Bossong
- grid.5477.10000000120346234Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Lucia Valmaggia
- grid.13097.3c0000 0001 2322 6764Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK ,grid.37640.360000 0000 9439 0839National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre (BRC), South London and Maudsley NHS Foundation Trust, London, UK
| | - Michael Brammer
- grid.13097.3c0000 0001 2322 6764Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Jesus Perez
- grid.450563.10000 0004 0412 9303CAMEO Early Intervention Service, Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Paul Allen
- grid.13097.3c0000 0001 2322 6764Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, London, SE5 8AF UK ,grid.35349.380000 0001 0468 7274Department of Psychology, University of Roehampton, London, UK ,grid.416167.30000 0004 0442 1996Icahn School of Medicine, Mount Sinai Hospital, New York, USA
| | - Robin M. Murray
- grid.13097.3c0000 0001 2322 6764Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, London, SE5 8AF UK
| | - Philip McGuire
- grid.13097.3c0000 0001 2322 6764Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, London, SE5 8AF UK ,grid.37640.360000 0000 9439 0839National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre (BRC), South London and Maudsley NHS Foundation Trust, London, UK ,grid.37640.360000 0000 9439 0839Outreach and Support in South London (OASIS) Service, South London and Maudsley NHS Foundation Trust, London, UK
| | - Sagnik Bhattacharyya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK.
| |
Collapse
|
58
|
Walther S, Lefebvre S, Conring F, Gangl N, Nadesalingam N, Alexaki D, Wüthrich F, Rüter M, Viher PV, Federspiel A, Wiest R, Stegmayer K. Limbic links to paranoia: increased resting-state functional connectivity between amygdala, hippocampus and orbitofrontal cortex in schizophrenia patients with paranoia. Eur Arch Psychiatry Clin Neurosci 2022; 272:1021-1032. [PMID: 34636951 PMCID: PMC9388427 DOI: 10.1007/s00406-021-01337-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/22/2021] [Indexed: 11/24/2022]
Abstract
Paranoia is a frequent and highly distressing experience in psychosis. Models of paranoia suggest limbic circuit pathology. Here, we tested whether resting-state functional connectivity (rs-fc) in the limbic circuit was altered in schizophrenia patients with current paranoia. We collected MRI scans in 165 subjects including 89 patients with schizophrenia spectrum disorders (schizophrenia, schizoaffective disorder, brief psychotic disorder, schizophreniform disorder) and 76 healthy controls. Paranoia was assessed using a Positive And Negative Syndrome Scale composite score. We tested rs-fc between bilateral nucleus accumbens, hippocampus, amygdala and orbitofrontal cortex between groups and as a function of paranoia severity. Patients with paranoia had increased connectivity between hippocampus and amygdala compared to patients without paranoia. Likewise, paranoia severity was linked to increased connectivity between hippocampus and amygdala. Furthermore, paranoia was associated with increased connectivity between orbitofrontal and medial prefrontal cortex. In addition, patients with paranoia had increased functional connectivity within the frontal hubs of the default mode network compared to healthy controls. These results demonstrate that current paranoia is linked to aberrant connectivity within the core limbic circuit and prefrontal cortex reflecting amplified threat processing and impaired emotion regulation. Future studies will need to explore the association between limbic hyperactivity, paranoid ideation and perceived stress.
Collapse
Affiliation(s)
- Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Stephanie Lefebvre
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.
| | - Frauke Conring
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Nicole Gangl
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Niluja Nadesalingam
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Danai Alexaki
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Florian Wüthrich
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Maximilian Rüter
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Petra V. Viher
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Andrea Federspiel
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Roland Wiest
- Institute of Diagnostic and Interventional Neuroradiology, Inselspital, University of Bern, Bern, Switzerland
| | - Katharina Stegmayer
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| |
Collapse
|
59
|
Etgen T. First manifestation of Fabry's disease by psychotic episode associated with thalamic ischemic stroke - case report and review of literature. Neurocase 2021; 27:462-466. [PMID: 34806551 DOI: 10.1080/13554794.2021.2005805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Fabry's disease is a X-linked inherited multisystem disorder with deficient activity of the lysosomal enzyme α-galactosidase which neuropsychiatric manifestations comprise mainly small fiber neuropathy, cerebral microangiopathy, and depression. This report describes a patient in who psychotic symptoms were associated with a thalamic ischemic stroke and the first manifestation of Fabry's disease. Reviewing the current literature and the hitherto reported cases of psychosis in Fabry's disease, the inclusion of psychiatric exploration and screening in the routine examination of patients with Fabry's disease as well as a brain MRI on initial diagnosis of Fabry's disease should be considered.
Collapse
Affiliation(s)
- Thorleif Etgen
- Klinik für Neurologie, Klinikum Traunstein, Traunstein, Germany.,Klinik und Poliklinik für Psychiatrie und Psychotherapie, Technische Universität München, München, Germany
| |
Collapse
|
60
|
Oh H, Goehring J, Rajkumar R, Besecker M, Zhou S, DeVylder JE. COVID-19 dimensions and psychotic experiences among US college students: Findings from the Healthy Mind Study 2020. Schizophr Res 2021; 237:148-152. [PMID: 34534946 PMCID: PMC8438539 DOI: 10.1016/j.schres.2021.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 08/29/2021] [Accepted: 09/05/2021] [Indexed: 01/27/2023]
Abstract
BACKGROUND The COVID-19 pandemic has caused tremendous changes in daily living, which may be related to mental health problems, including psychotic experiences, though research has only begun to assess these associations. METHODS We analyzed data from the Healthy Minds Survey (Fall Semester Cohort 2020), which is a non-probability sample of students attending one of 36 universities in the United States, who completed an online survey during the COVID-19 pandemic (September-December 2020). We used multivariable logistic regression to examine the associations between several COVID-19 dimensions (anxiety, discrimination, financial distress, infection, illness of loved one, death of loved one, caregiving) and 12-month psychotic experiences, adjusting for age, gender, race/ethnicity, and international student status. RESULTS Each individual COVID-19 dimension was significantly associated with greater odds of having 12-month psychotic experiences, with the exception of being a caregiver. When accounting for all COVID-19 dimensions simultaneously in the same model, only COVID-19 related anxiety, financial distress, and infection were associated with psychotic experiences. CONCLUSION COVID-19 dimensions were linked to psychotic experiences among university students, which may also apply to the larger population. This can potentially inform assessment and treatment during the pandemic.
Collapse
Affiliation(s)
- Hans Oh
- Suzanne Dworak Peck School of Social Work, University of Southern California, 1149 Hill St Suite 1422, Los Angeles, CA 90015, United States of America.
| | - Jessica Goehring
- Suzanne Dworak Peck School of Social Work, University of Southern California, 1149 Hill St Suite 1422, Los Angeles, CA 90015, United States of America
| | - Ravi Rajkumar
- Jawaharlal Institute of Postgraduate Medical Education and Research, India
| | - Megan Besecker
- Suzanne Dworak Peck School of Social Work, University of Southern California, 1149 Hill St Suite 1422, Los Angeles, CA 90015, United States of America
| | - Sasha Zhou
- Department of Public Health, Wayne State University, United States of America
| | - Jordan E. DeVylder
- Fordham University, Graduate School of Social Service, United States of America
| |
Collapse
|
61
|
Islam KUS, Meli N, Blaess S. The Development of the Mesoprefrontal Dopaminergic System in Health and Disease. Front Neural Circuits 2021; 15:746582. [PMID: 34712123 PMCID: PMC8546303 DOI: 10.3389/fncir.2021.746582] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/10/2021] [Indexed: 12/18/2022] Open
Abstract
Midbrain dopaminergic neurons located in the substantia nigra and the ventral tegmental area are the main source of dopamine in the brain. They send out projections to a variety of forebrain structures, including dorsal striatum, nucleus accumbens, and prefrontal cortex (PFC), establishing the nigrostriatal, mesolimbic, and mesoprefrontal pathways, respectively. The dopaminergic input to the PFC is essential for the performance of higher cognitive functions such as working memory, attention, planning, and decision making. The gradual maturation of these cognitive skills during postnatal development correlates with the maturation of PFC local circuits, which undergo a lengthy functional remodeling process during the neonatal and adolescence stage. During this period, the mesoprefrontal dopaminergic innervation also matures: the fibers are rather sparse at prenatal stages and slowly increase in density during postnatal development to finally reach a stable pattern in early adulthood. Despite the prominent role of dopamine in the regulation of PFC function, relatively little is known about how the dopaminergic innervation is established in the PFC, whether and how it influences the maturation of local circuits and how exactly it facilitates cognitive functions in the PFC. In this review, we provide an overview of the development of the mesoprefrontal dopaminergic system in rodents and primates and discuss the role of altered dopaminergic signaling in neuropsychiatric and neurodevelopmental disorders.
Collapse
Affiliation(s)
- K Ushna S Islam
- Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Norisa Meli
- Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Medical Faculty, University of Bonn, Bonn, Germany.,Institute of Neuropathology, Section for Translational Epilepsy Research, Medical Faculty, University of Bonn, Bonn, Germany
| | - Sandra Blaess
- Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
62
|
Speers LJ, Bilkey DK. Disorganization of Oscillatory Activity in Animal Models of Schizophrenia. Front Neural Circuits 2021; 15:741767. [PMID: 34675780 PMCID: PMC8523827 DOI: 10.3389/fncir.2021.741767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/16/2021] [Indexed: 01/02/2023] Open
Abstract
Schizophrenia is a chronic, debilitating disorder with diverse symptomatology, including disorganized cognition and behavior. Despite considerable research effort, we have only a limited understanding of the underlying brain dysfunction. In this article, we review the potential role of oscillatory circuits in the disorder with a particular focus on the hippocampus, a region that encodes sequential information across time and space, as well as the frontal cortex. Several mechanistic explanations of schizophrenia propose that a loss of oscillatory synchrony between and within these brain regions may underlie some of the symptoms of the disorder. We describe how these oscillations are affected in several animal models of schizophrenia, including models of genetic risk, maternal immune activation (MIA) models, and models of NMDA receptor hypofunction. We then critically discuss the evidence for disorganized oscillatory activity in these models, with a focus on gamma, sharp wave ripple, and theta activity, including the role of cross-frequency coupling as a synchronizing mechanism. Finally, we focus on phase precession, which is an oscillatory phenomenon whereby individual hippocampal place cells systematically advance their firing phase against the background theta oscillation. Phase precession is important because it allows sequential experience to be compressed into a single 120 ms theta cycle (known as a 'theta sequence'). This time window is appropriate for the induction of synaptic plasticity. We describe how disruption of phase precession could disorganize sequential processing, and thereby disrupt the ordered storage of information. A similar dysfunction in schizophrenia may contribute to cognitive symptoms, including deficits in episodic memory, working memory, and future planning.
Collapse
Affiliation(s)
| | - David K. Bilkey
- Department of Psychology, Otago University, Dunedin, New Zealand
| |
Collapse
|
63
|
Neural Correlates of Aberrant Salience and Source Monitoring in Schizophrenia and At-Risk Mental States-A Systematic Review of fMRI Studies. J Clin Med 2021; 10:jcm10184126. [PMID: 34575237 PMCID: PMC8468329 DOI: 10.3390/jcm10184126] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/22/2021] [Accepted: 09/07/2021] [Indexed: 01/03/2023] Open
Abstract
Cognitive biases are an important factor contributing to the development and symptom severity of psychosis. Despite the fact that various cognitive biases are contributing to psychosis, they are rarely investigated together. In the current systematic review, we aimed at investigating specific and shared functional neural correlates of two important cognitive biases: aberrant salience and source monitoring. We conducted a systematic search of fMRI studies of said cognitive biases. Eight studies on aberrant salience and eleven studies on source monitoring were included in the review. We critically discussed behavioural and neuroimaging findings concerning cognitive biases. Various brain regions are associated with aberrant salience and source monitoring in individuals with schizophrenia and the risk of psychosis. The ventral striatum and insula contribute to aberrant salience. The medial prefrontal cortex, superior and middle temporal gyrus contribute to source monitoring. The anterior cingulate cortex and hippocampus contribute to both cognitive biases, constituting a neural overlap. Our review indicates that aberrant salience and source monitoring may share neural mechanisms, suggesting their joint role in producing disrupted external attributions of perceptual and cognitive experiences, thus elucidating their role in positive symptoms of psychosis. Account bridging mechanisms of these two biases is discussed. Further studies are warranted.
Collapse
|
64
|
Varga TG, de Toledo Simões JG, Siena A, Henrique E, da Silva RCB, Dos Santos Bioni V, Ramos AC, Rosenstock TR. Haloperidol rescues the schizophrenia-like phenotype in adulthood after rotenone administration in neonatal rats. Psychopharmacology (Berl) 2021; 238:2569-2585. [PMID: 34089344 DOI: 10.1007/s00213-021-05880-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 05/20/2021] [Indexed: 10/21/2022]
Abstract
Neuropsychiatric disorders are multifactorial disturbances that encompass several hypotheses, including changes in neurodevelopment. It is known that brain development disturbances during early life can predict psychosis in adulthood. As we have previously demonstrated, rotenone, a mitochondrial complex I inhibitor, could induce psychiatric-like behavior in 60-day-old rats after intraperitoneal injections from the 5th to the 11th postnatal day. Because mitochondrial deregulation is related to psychiatric disorders and the establishment of animal models is a high-value preclinical tool, we investigated the responsiveness of the rotenone (Rot)-treated newborn rats to pharmacological agents used in clinical practice, haloperidol (Hal), and methylphenidate (MPD). Taken together, our data show that Rot-treated animals exhibit hyperlocomotion, decreased social interaction, and diminished contextual fear conditioning response at P60, consistent with positive, negative, and cognitive deficits of schizophrenia (SZ), respectively, that were reverted by Hal, but not MPD. Rot-treated rodents also display a prodromal-related phenotype at P35. Overall, our results seem to present a new SZ animal model as a consequence of mitochondrial inhibition during a critical neurodevelopmental period. Therefore, our study is crucial not only to elucidate the relevance of mitochondrial function in the etiology of SZ but also to fulfill the need for new and trustworthy experimentation models and, likewise, provide possibilities to new therapeutic avenues for this burdensome disorder.
Collapse
Affiliation(s)
- Thiago Garcia Varga
- Department of Physiological Science, Santa Casa de São Paulo School of Medical Science, São Paulo, Brazil
| | | | - Amanda Siena
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes, 1524 - Ed. Biomédicas I, 2º andar, São Paulo, SP, 05508-900, Brazil
| | - Elisandra Henrique
- Department of Physiological Science, Santa Casa de São Paulo School of Medical Science, São Paulo, Brazil
| | | | | | - Aline Camargo Ramos
- Department of Psychiatry, Federal University of São Paulo, São Paulo, Brazil
| | - Tatiana Rosado Rosenstock
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, Av. Prof. Lineu Prestes, 1524 - Ed. Biomédicas I, 2º andar, São Paulo, SP, 05508-900, Brazil. .,Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
65
|
Takeuchi Y, Nagy AJ, Barcsai L, Li Q, Ohsawa M, Mizuseki K, Berényi A. The Medial Septum as a Potential Target for Treating Brain Disorders Associated With Oscillopathies. Front Neural Circuits 2021; 15:701080. [PMID: 34305537 PMCID: PMC8297467 DOI: 10.3389/fncir.2021.701080] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022] Open
Abstract
The medial septum (MS), as part of the basal forebrain, supports many physiological functions, from sensorimotor integration to cognition. With often reciprocal connections with a broad set of peers at all major divisions of the brain, the MS orchestrates oscillatory neuronal activities throughout the brain. These oscillations are critical in generating sensory and emotional salience, locomotion, maintaining mood, supporting innate anxiety, and governing learning and memory. Accumulating evidence points out that the physiological oscillations under septal influence are frequently disrupted or altered in pathological conditions. Therefore, the MS may be a potential target for treating neurological and psychiatric disorders with abnormal oscillations (oscillopathies) to restore healthy patterns or erase undesired ones. Recent studies have revealed that the patterned stimulation of the MS alleviates symptoms of epilepsy. We discuss here that stimulus timing is a critical determinant of treatment efficacy on multiple time scales. On-demand stimulation may dramatically reduce side effects by not interfering with normal physiological functions. A precise pattern-matched stimulation through adaptive timing governed by the ongoing oscillations is essential to effectively terminate pathological oscillations. The time-targeted strategy for the MS stimulation may provide an effective way of treating multiple disorders including Alzheimer's disease, anxiety/fear, schizophrenia, and depression, as well as pain.
Collapse
Affiliation(s)
- Yuichi Takeuchi
- Department of Physiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Anett J. Nagy
- MTA-SZTE ‘Momentum’ Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, Hungary
| | - Lívia Barcsai
- MTA-SZTE ‘Momentum’ Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, Hungary
| | - Qun Li
- MTA-SZTE ‘Momentum’ Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, Hungary
| | - Masahiro Ohsawa
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Kenji Mizuseki
- Department of Physiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Antal Berényi
- MTA-SZTE ‘Momentum’ Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, Hungary
- Neurocybernetics Excellence Center, University of Szeged, Szeged, Hungary
- HCEMM-USZ Magnetotherapeutics Research Group, University of Szeged, Szeged, Hungary
- Neuroscience Institute, New York University, New York, NY, United States
| |
Collapse
|
66
|
Lin R, Learman LN, Na CH, Renuse S, Chen KT, Chen PY, Lee GH, Xiao B, Resnick SM, Troncoso JC, Szumlinski KK, Linden DJ, Park JM, Savonenko A, Pandey A, Worley PF. Persistently Elevated mTOR Complex 1-S6 Kinase 1 Disrupts DARPP-32-Dependent D 1 Dopamine Receptor Signaling and Behaviors. Biol Psychiatry 2021; 89:1058-1072. [PMID: 33353667 PMCID: PMC8076344 DOI: 10.1016/j.biopsych.2020.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/17/2020] [Accepted: 10/22/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND The serine-threonine kinase mTORC1 (mechanistic target of rapamycin complex 1) is essential for normal cell function but is aberrantly activated in the brain in both genetic-developmental and sporadic diseases and is associated with a spectrum of neuropsychiatric symptoms. The underlying molecular mechanisms of cognitive and neuropsychiatric symptoms remain controversial. METHODS The present study examines behaviors in transgenic models that express Rheb, the most proximal known activator of mTORC1, and profiles striatal phosphoproteomics in a model with persistently elevated mTORC1 signaling. Biochemistry, immunohistochemistry, electrophysiology, and behavior approaches are used to examine the impact of persistently elevated mTORC1 on D1 dopamine receptor (D1R) signaling. The effect of persistently elevated mTORC1 was confirmed using D1-Cre to elevate mTORC1 activity in D1R neurons. RESULTS We report that persistently elevated mTORC1 signaling blocks canonical D1R signaling that is dependent on DARPP-32 (dopamine- and cAMP-regulated neuronal phosphoprotein). The immediate downstream effector of mTORC1, ribosomal S6 kinase 1 (S6K1), phosphorylates and activates DARPP-32. Persistent elevation of mTORC1-S6K1 occludes dynamic D1R signaling downstream of DARPP-32 and blocks multiple D1R responses, including dynamic gene expression, D1R-dependent corticostriatal plasticity, and D1R behavioral responses including sociability. Candidate biomarkers of mTORC1-DARPP-32 occlusion are increased in the brain of human disease subjects in association with elevated mTORC1-S6K1, supporting a role for this mechanism in cognitive disease. CONCLUSIONS The mTORC1-S6K1 intersection with D1R signaling provides a molecular framework to understand the effects of pathological mTORC1 activation on behavioral symptoms in neuropsychiatric disease.
Collapse
Affiliation(s)
- Raozhou Lin
- Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Lisa N. Learman
- Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Chan-Hyun Na
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Santosh Renuse
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First ST SW, Rochester, MN 55905, USA.,Center for Individualized Medicine, Mayo Clinic, 200 First ST SW, Rochester, MN 55905, USA
| | - Kevin T. Chen
- Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Po Yu Chen
- Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Gum-Hwa Lee
- Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Bo Xiao
- Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Susan M. Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD 21224, USA
| | - Juan C. Troncoso
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Karen K. Szumlinski
- Department of Psychological and Brain Sciences and the Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| | - David J. Linden
- Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Joo-Min Park
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Alena Savonenko
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First ST SW, Rochester, MN 55905, USA.,Center for Individualized Medicine, Mayo Clinic, 200 First ST SW, Rochester, MN 55905, USA
| | - Paul F. Worley
- Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Corresponding author. Phone: 410-502-5489
| |
Collapse
|
67
|
Gomes FV, Grace AA. Beyond Dopamine Receptor Antagonism: New Targets for Schizophrenia Treatment and Prevention. Int J Mol Sci 2021; 22:4467. [PMID: 33922888 PMCID: PMC8123139 DOI: 10.3390/ijms22094467] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
Treatment of schizophrenia (SCZ) historically relies on the use of antipsychotic drugs to treat psychosis, with all of the currently available antipsychotics acting through the antagonism of dopamine D2 receptors. Although antipsychotics reduce psychotic symptoms in many patients, they induce numerous undesirable effects and are not effective against negative and cognitive symptoms. These highlight the need to develop new drugs to treat SCZ. An advanced understanding of the circuitry of SCZ has pointed to pathological origins in the excitation/inhibition balance in regions such as the hippocampus, and restoring function in this region, particularly as a means to compensate for parvalbumin (PV) interneuron loss and resultant hippocampal hyperactivity, may be a more efficacious approach to relieve a broad range of SCZ symptoms. Other targets, such as cholinergic receptors and the trace amine-associated receptor 1 (TAAR1), have also shown some promise for the treatment of SCZ. Importantly, assessing efficacy of novel compounds must take into consideration treatment history of the patient, as preclinical studies suggest prior antipsychotic treatment may interfere with the efficacy of these novel agents. However, while novel therapeutic targets may be more effective in treating SCZ, a more effective approach would be to prevent the transition to SCZ in susceptible individuals. A focus on stress, which has been shown to be a predisposing factor in risk for SCZ, is a possible avenue that has shown promise in preclinical studies. Therefore, therapeutic approaches based on our current understanding of the circuitry of SCZ and its etiology are likely to enable development of more effective therapeutic interventions for this complex disorder.
Collapse
Affiliation(s)
- Felipe V. Gomes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 01000-000, Brazil;
| | - Anthony A. Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
68
|
Sotoyama H, Namba H, Kobayashi Y, Hasegawa T, Watanabe D, Nakatsukasa E, Sakimura K, Furuyashiki T, Nawa H. Resting-state dopaminergic cell firing in the ventral tegmental area negatively regulates affiliative social interactions in a developmental animal model of schizophrenia. Transl Psychiatry 2021; 11:236. [PMID: 33888687 PMCID: PMC8062445 DOI: 10.1038/s41398-021-01346-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/22/2021] [Accepted: 04/01/2021] [Indexed: 12/19/2022] Open
Abstract
Hyperdopaminergic activities are often linked to positive symptoms of schizophrenia, but their neuropathological implications on negative symptoms are rather controversial among reports. Here, we explored the regulatory role of the resting state-neural activity of dopaminergic neurons in the ventral tegmental area (VTA) on social interaction using a developmental rat model for schizophrenia. We prepared the model by administering an ammonitic cytokine, epidermal growth factor (EGF), to rat pups, which later exhibit the deficits of social interaction as monitored with same-gender affiliative sniffing. In vivo single-unit recording and microdialysis revealed that the baseline firing frequency of and dopamine release from VTA dopaminergic neurons were chronically increased in EGF model rats, and their social interaction was concomitantly reduced. Subchronic treatment with risperidone ameliorated both the social interaction deficits and higher frequency of dopaminergic cell firing in this model. Sustained suppression of hyperdopaminergic cell firing in EGF model rats by DREADD chemogenetic intervention restored the event-triggered dopamine release and their social behaviors. These observations suggest that the higher resting-state activity of VTA dopaminergic neurons is responsible for the reduced social interaction of this schizophrenia model.
Collapse
Affiliation(s)
- Hidekazu Sotoyama
- grid.260975.f0000 0001 0671 5144Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585 Japan
| | - Hisaaki Namba
- grid.260975.f0000 0001 0671 5144Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585 Japan ,grid.412857.d0000 0004 1763 1087Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, 640-8156 Japan
| | - Yutaro Kobayashi
- grid.260975.f0000 0001 0671 5144Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585 Japan
| | - Taku Hasegawa
- grid.258799.80000 0004 0372 2033Department of Biological Sciences, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501 Japan
| | - Dai Watanabe
- grid.258799.80000 0004 0372 2033Department of Biological Sciences, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501 Japan
| | - Ena Nakatsukasa
- grid.260975.f0000 0001 0671 5144Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, 951-8585 Japan
| | - Kenji Sakimura
- grid.260975.f0000 0001 0671 5144Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, 951-8585 Japan
| | - Tomoyuki Furuyashiki
- grid.31432.370000 0001 1092 3077Division of Pharmacology, Graduate School of Medicine, Kobe University, Hyogo, 650-0017 Japan
| | - Hiroyuki Nawa
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan. .,Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, 640-8156, Japan.
| |
Collapse
|
69
|
ADHD: Reviewing the Causes and Evaluating Solutions. J Pers Med 2021; 11:jpm11030166. [PMID: 33804365 PMCID: PMC7999417 DOI: 10.3390/jpm11030166] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/05/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder in which patients present inattention, hyperactivity, and impulsivity. The etiology of this condition is diverse, including environmental factors and the presence of variants of some genes. However, a great diversity exists among patients regarding the presence of these ADHD-associated factors. Moreover, there are variations in the reported neurophysiological correlates of ADHD. ADHD is often treated pharmacologically, producing an improvement in symptomatology, albeit there are patients who are refractory to the main pharmacological treatments or present side effects to these drugs, highlighting the importance of developing other therapeutic options. Different non-pharmacological treatments are in this review addressed, finding diverse results regarding efficacy. Altogether, ADHD is associated with different etiologies, all of them producing changes in brain development, leading to the characteristic symptomatology of this condition. Given the heterogeneous etiology of ADHD, discussion is presented about the convenience of personalizing ADHD treatment, whether pharmacological or non-pharmacological, to reach an optimum effect in the majority of patients. Approaches to personalizing both pharmacological therapy and neurofeedback are presented.
Collapse
|
70
|
Sonnenschein SF, Grace AA. Emerging therapeutic targets for schizophrenia: a framework for novel treatment strategies for psychosis. Expert Opin Ther Targets 2021; 25:15-26. [PMID: 33170748 PMCID: PMC7855878 DOI: 10.1080/14728222.2021.1849144] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/05/2020] [Indexed: 01/10/2023]
Abstract
Introduction: Antipsychotic drugs are central to the treatment of schizophrenia, but their limitations necessitate improved treatment strategies. Multiple lines of research have implicated glutamatergic dysfunction in the hippocampus as an early source of pathophysiology in schizophrenia. Novel compounds have been designed to treat glutamatergic dysfunction, but they have produced inconsistent results in clinical trials. Areas covered: This review discusses how the hippocampus is thought to drive psychotic symptoms through its influence on the dopamine system. It offers the reader an evaluation of proposed treatment strategies including direct modulation of GABA or glutamate neurotransmission or reducing the deleterious impact of stress on circuit development. Finally, we offer a perspective on aspects of future research that will advance our knowledge and may create new therapeutic opportunities. PubMed was searched for relevant literature between 2010 and 2020 and related studies. Expert opinion: Targeting aberrant excitatory-inhibitory neurotransmission in the hippocampus and its related circuits has the potential to alleviate symptoms and reduce the risk of transition to psychosis if implemented as an early intervention. Longitudinal multimodal brain imaging combined with mechanistic theories generated from animal models can be used to better understand the progression of hippocampal-dopamine circuit dysfunction and heterogeneity in treatment response.
Collapse
Affiliation(s)
| | - Anthony A. Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
71
|
Kehr J, Wang FH, Ichinose F, Yoshitake S, Farkas B, Kiss B, Adham N. Preferential Effects of Cariprazine on Counteracting the Disruption of Social Interaction and Decrease in Extracellular Dopamine Levels Induced by the Dopamine D 3 Receptor Agonist, PD-128907 in Rats: Implications for the Treatment of Negative and Depressive Symptoms of Psychiatric Disorders. Front Psychiatry 2021; 12:801641. [PMID: 35095615 PMCID: PMC8789685 DOI: 10.3389/fpsyt.2021.801641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/17/2021] [Indexed: 11/13/2022] Open
Abstract
The negative and cognitive symptoms of schizophrenia and related disorders may be due to reduced dopaminergic tone in cortical brain areas. Alteration in the function of dopamine (DA) D3 receptors may play a role in this cortical hypofunctionality and underlie the deficits in social behaviors and cognitive functions in schizophrenia. Cariprazine is a potent DA D3-preferring D3/D2 receptor partial agonist that is approved for the treatment of schizophrenia and bipolar disorder. The objective of the study was to compare the abilities of cariprazine, aripiprazole (another DA receptor partial agonist with more D2 receptor preference), and ABT-925 (a selective DA D3 antagonist) to counteract the social deficit and neurochemical alterations induced by the D3 receptor-preferring agonist (+)-PD 128907 (PD) in rats. Administration of PD (0.16 mg/kg; s.c.) induced a marked (-72%) but short-lasting disruption of the defensive social aggregation behavior (huddling) in the first 10-min period. Cariprazine at all doses (0.1, 0.3, 1 mg/kg; p.o.) almost completely abolished the PD-induced disruption of huddling. Likewise, ABT-925 (3 mg/kg; p.o.) and to a lesser extent aripiprazole (20 mg/kg; p.o.) were effective in blocking the PD-induced disruption of huddling. As measured by microdialysis, the highest dose of cariprazine prevented a PD-induced decrease in DA levels (40-80 min post PD dose) in the medial prefrontal cortex (mPFC), whereas aripiprazole did not have a significant effect. ABT-925 significantly counteracted the effect of PD at 80 min post-dose. In the nucleus accumbens (nAcc) shell, the highest dose of cariprazine, as well as ABT-925 and aripiprazole, significantly reversed the PD-induced decrease in DA levels. Taken together, these data provide behavioral and in vivo neurochemical evidence for the preferential DA D3 receptor action of cariprazine in the rat. This property of cariprazine may offer therapeutic benefits against the cognitive deficits and negative/depressive symptoms of schizophrenia and related disorders.
Collapse
Affiliation(s)
- Jan Kehr
- Pronexus Analytical AB, Bromma, Sweden.,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Shimako Yoshitake
- Pronexus Analytical AB, Bromma, Sweden.,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Bence Farkas
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Béla Kiss
- Pharmacological and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Nika Adham
- Allergan plc, Madison, NJ, United States
| |
Collapse
|
72
|
Wang QW, Lu SY, Liu YN, Chen Y, Wei H, Shen W, Chen YF, Fu CL, Wang YH, Dai A, Huang X, Gage FH, Xu Q, Yao J. Synaptotagmin-7 deficiency induces mania-like behavioral abnormalities through attenuating GluN2B activity. Proc Natl Acad Sci U S A 2020; 117:31438-31447. [PMID: 33229564 PMCID: PMC7733786 DOI: 10.1073/pnas.2016416117] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Synaptotagmin-7 (Syt7) probably plays an important role in bipolar-like behavioral abnormalities in mice; however, the underlying mechanisms for this have remained elusive. Unlike antidepressants that cause mood overcorrection in bipolar depression, N-methyl-d-aspartate receptor (NMDAR)-targeted drugs show moderate clinical efficacy, for unexplained reasons. Here we identified Syt7 single nucleotide polymorphisms (SNPs) in patients with bipolar disorder and demonstrated that mice lacking Syt7 or expressing the SNPs showed GluN2B-NMDAR dysfunction, leading to antidepressant behavioral consequences and avoidance of overcorrection by NMDAR antagonists. In human induced pluripotent stem cell (iPSC)-derived and mouse hippocampal neurons, Syt7 and GluN2B-NMDARs were localized to the peripheral synaptic region, and Syt7 triggered multiple forms of glutamate release to efficiently activate the juxtaposed GluN2B-NMDARs. Thus, while Syt7 deficiency and SNPs induced GluN2B-NMDAR dysfunction in mice, patient iPSC-derived neurons showed Syt7 deficit-induced GluN2B-NMDAR hypoactivity that was rescued by Syt7 overexpression. Therefore, Syt7 deficits induced mania-like behaviors in mice by attenuating GluN2B activity, which enabled NMDAR antagonists to avoid mood overcorrection.
Collapse
Affiliation(s)
- Qiu-Wen Wang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Si-Yao Lu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Yao-Nan Liu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Yun Chen
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Hui Wei
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences and Peking Union Medical College, Neuroscience Center, Chinese Academy of Medical Sciences, 100005 Beijing, China
| | - Wei Shen
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Yan-Fen Chen
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Chong-Lei Fu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Ying-Han Wang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Anbang Dai
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Xuan Huang
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, 100020 Beijing, China
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Qi Xu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences and Peking Union Medical College, Neuroscience Center, Chinese Academy of Medical Sciences, 100005 Beijing, China;
| | - Jun Yao
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, 100084 Beijing, China;
| |
Collapse
|