51
|
Rice Intake Is Associated with Longer Reaction Time and Interacts with Blood Lipids and Hypertension among Qatari Adults. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010251. [PMID: 36676200 PMCID: PMC9866759 DOI: 10.3390/life13010251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/18/2023]
Abstract
We aimed to assess the association between rice intake and cognitive function among Qatari adults and test the interactions with health conditions. Data from 1000 adults aged ≥18 years old who attended the Qatar Biobank (QBB) study were used. Rice dietary intake was measured by a food frequency questionnaire (FFQ), and mean reaction time (MRT) was used as an indicator of cognitive function. Linear regression and structure equation models were used. The mean rice consumption was 7.6 times/week (SD 2.0). The sample had a mean MRT of 717 milliseconds (SD 205). Rice consumption was positively associated with MRT. Across the quartiles of rice intake, the regression coefficients (95% CI) for MRT were 0.0 (reference), 22.4 (-7.8, 52.6), 36.3 (5.1, 67.5), and 34.5 (2.6, 66.4). There was a significant interaction between rice intake and hypertension, BMI, and blood lipids in relation to MRT. The association between rice intake and MRT was only observed among those with hypertension, overweight/obesity, low LDL, and low total cholesterol levels. Serum magnesium did not mediate the association. High rice consumption was associated with a higher MRT, especially among those with hypertension, overweight/obesity, low LDL, and or low total cholesterol levels. Further longitudinal studies are needed to confirm the findings.
Collapse
|
52
|
Adedara AO, Otenaike TA, Olabiyi AA, Adedara IA, Abolaji AO. Neurotoxic and behavioral deficit in Drosophila melanogaster co-exposed to rotenone and iron. Metab Brain Dis 2023; 38:349-360. [PMID: 36308588 DOI: 10.1007/s11011-022-01104-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/10/2022] [Indexed: 02/03/2023]
Abstract
Exposure to environmental toxicants has been linked with the onset of different neurodegenerative diseases in animals and humans. Here, we evaluated the toxic effects of co-exposure to iron and rotenone at low concentrations in Drosophila melanogaster. Adult wild-type flies were orally exposed to rotenone (50.0 µM) and ferrous sulfate (FeSO4; 1.0 and 10.0 µM) through the diet for 10 days. Thereafter, we evaluated markers of oxidative damage (Hydrogen Peroxide (H2O2), Nitric Oxide (NO), Protein Carbonyl, and malondialdehyde (MDA)), antioxidant status (catalase, Glutathione S-Transferase (GST), Total Thiol (T-SH) and Non-protein Thiol (NPSH), neurotransmission (monoamine oxidase; MAO and acetylcholinesterase, AChE) and mitochondrial respiration. The results indicated that flies fed rotenone and FeSO4 had impaired locomotion, reduced survival rate, and AChE activity with a corresponding increase in MAO activity when compared with the control (p < 0.05). Furthermore, rotenone and FeSO4 significantly decreased the antioxidant status with a concurrent accumulation of NO, MDA, and H2O2. Additionally, the activity of complex 1 and mitochondria bioenergetic capacity was compromised in the flies. These findings suggest that the combination of rotenone and FeSO4 elicited a possible synergistic toxic response in the flies and therefore provided further insights on the use of D. melanogaster in toxicological studies.
Collapse
Affiliation(s)
- Adeola O Adedara
- Drosophila Research and Training Centre, A2 Ajao Dental Street, Salami Somade Estate, Basorun, Ibadan, Nigeria
- Molecular Drug Metabolism and Toxicology Unit, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Programa de Pos-Graduaçao em Bioquímica Toxicologica, Centro de Ciencias Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Titilayomi A Otenaike
- Drosophila Research and Training Centre, A2 Ajao Dental Street, Salami Somade Estate, Basorun, Ibadan, Nigeria
| | - Ayodeji A Olabiyi
- Programa de Pos-Graduaçao em Bioquímica Toxicologica, Centro de Ciencias Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
- Department of Medical Biochemistry, Afe Babalola University, Ado Ekiti, Nigeria
| | - Isaac A Adedara
- Molecular Drug Metabolism and Toxicology Unit, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Amos O Abolaji
- Drosophila Research and Training Centre, A2 Ajao Dental Street, Salami Somade Estate, Basorun, Ibadan, Nigeria.
- Molecular Drug Metabolism and Toxicology Unit, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| |
Collapse
|
53
|
Ebrahimnezhad N, Nayebifar S, Soltani Z, Khoramipour K. High-intensity interval training reduced oxidative stress and apoptosis in the hippocampus of male rats with type 2 diabetes: The role of the PGC1α-Keap1-Nrf2 signaling pathway. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:1313-1319. [PMID: 37885999 PMCID: PMC10598812 DOI: 10.22038/ijbms.2023.70833.15387] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/05/2023] [Indexed: 10/28/2023]
Abstract
Objectives This study aimed to determine the effect of 8-week high-intensity interval training (HIIT) on oxidative stress and apoptosis in the hippocampus of male rats with type 2 diabetes (T2D). The study focused on examining the role of proliferator-activated receptor gamma co-activator 1α (PGC1α)/Kelch-like ECH-associated protein Keap1/nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. Materials and Methods Twenty-eight 8-week-old Wistar rats were randomly assigned to one of four groups (n=7): control (Con), type 2 diabetes (T2D), exercise (Ex), and exercise + type 2 diabetes (Ex+T2D). The Ex and Ex+T2D groups completed an 8-week exercise program consisting of 80-100% Vmax and 4-10 intervals. The homeostasis model assessment of insulin resistance (HOMA-IR) index was used to assess insulin resistance. The levels of Bcl2, BAX, musculoaponeurotic fibrosarcoma (Maf), Nrf2, Keap1, and PGC1α in the hippocampus were assessed using the western blot method. Additionally, the levels of antioxidant enzymes in the hippocampus were measured using ELISA. Results The findings indicated that the T2D group had lower levels of antioxidant enzymes, Maf, Bcl2, PGC1α, and Nrf2, and higher levels of BAX and Keap1 in the hippocampus. Conversely, the HIIT group exhibited increased levels of antioxidant enzymes, Maf, Bcl2, Nrf2, and PGC1α, along with decreased levels of BAX and Keap1 in the hippocampus. Conclusion The study demonstrated that 8-week HIIT was effective in reducing hippocampal apoptosis and oxidative stress induced by T2D by activating the PGC1α-Keap1-Nrf2 signaling pathway. The metabolic changes induced by exercise may lead to an increase in PGC1 expression, which is the primary stimulator of the Keap1-Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Narjes Ebrahimnezhad
- Department of Sports Science, Faculty of Educational Sciences and Psychology, Sistan and Baluchestan University, Zahedan, Iran
| | - Shila Nayebifar
- Department of Sports Science, Faculty of Educational Sciences and Psychology, Sistan and Baluchestan University, Zahedan, Iran
| | - Zahra Soltani
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Kayvan Khoramipour
- Student Research Committee, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
54
|
Ralston NVC. Concomitant selenoenzyme inhibitor exposures as etiologic contributors to disease: Implications for preventative medicine. Arch Biochem Biophys 2023; 733:109469. [PMID: 36423662 DOI: 10.1016/j.abb.2022.109469] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
The physiological activities of selenium (Se) occur through enzymes that incorporate selenocysteine (Sec), a rare but important amino acid. The human genome includes 25 genes coding for Sec that employ it to catalyze challenging reactions. Selenoenzymes control thyroid hormones, calcium activities, immune responses, and perform other vital roles, but most are devoted to preventing and reversing oxidative damage. As the most potent intracellular nucleophile (pKa 5.2), Sec is vulnerable to binding by metallic and organic soft electrophiles (E*). These electron poor reactants initially form covalent bonds with nucleophiles such as cysteine (Cys) whose thiol (pKa 8.3) forms adducts which function as suicide substrates for selenoenzymes. These adducts orient E* to interact with Sec and since Se has a higher affinity for E* than sulfur, the E* transfers to Sec and irreversibly inhibits the enzyme's activity. Organic electrophiles have lower Se-binding affinities than metallic E*, but exposure sources are more abundant. Individuals with poor Se status are more vulnerable to the toxic effects of high E* exposures. The relative E*:Se stoichiometries remain undefined, but the aggregate effects of multiple E* exposures are predicted to be additive and possibly synergistic under certain conditions. The potential for the combined Se-binding effects of common pharmaceutical, dietary, or environmental E* require study, but even temporary loss of selenoenzyme activities would accentuate oxidative damage to tissues. As various degenerative diseases are associated with accumulating DNA damage, defining the effects of complementary E* exposures on selenoenzyme activities may enhance the ability of preventative medicine to support healthy aging.
Collapse
Affiliation(s)
- Nicholas V C Ralston
- Earth System Science and Policy, University of North Dakota, Grand Forks, ND, USA.
| |
Collapse
|
55
|
Wang Y, Wang Y, Yue G, Zhao Y. Energy metabolism disturbance in migraine: From a mitochondrial point of view. Front Physiol 2023; 14:1133528. [PMID: 37123270 PMCID: PMC10133718 DOI: 10.3389/fphys.2023.1133528] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/20/2023] [Indexed: 05/02/2023] Open
Abstract
Migraine is a serious central nervous system disease with a high incidence rate. Its pathogenesis is very complex, which brings great difficulties for clinical treatment. Recently, many studies have revealed that mitochondrial dysfunction may play a key role in migraine, which affects the hyperosmotic of Ca2+, the excessive production of free radicals, the decrease of mitochondrial membrane potential, the imbalance of mPTP opening and closing, and the decrease of oxidative phosphorylation level, which leads to neuronal energy exhaustion and apoptosis, and finally lessens the pain threshold and migraine attack. This article mainly introduces cortical spreading depression, a pathogenesis of migraine, and then damages the related function of mitochondria, which leads to migraine. Oxidative phosphorylation and the tricarboxylic acid cycle are the main ways to provide energy for the body. 95 percent of the energy needed for cell survival is provided by the mitochondrial respiratory chain. At the same time, hypoxia can lead to cell death and migraine. The pathological opening of the mitochondrial permeability transition pore can promote the interaction between pro-apoptotic protein and mitochondrial, destroy the structure of mPTP, and further lead to cell death. The increase of mPTP permeability can promote the accumulation of reactive oxygen species, which leads to a series of changes in the expression of proteins related to energy metabolism. Both Nitric oxide and Calcitonin gene-related peptide are closely related to the attack of migraine. Recent studies have shown that changes in their contents can also affect the energy metabolism of the body, so this paper reviews the above mechanisms and discusses the mechanism of brain energy metabolism of migraine, to provide new strategies for the prevention and treatment of migraine and promote the development of individualized and accurate treatment of migraine.
Collapse
Affiliation(s)
- Yicheng Wang
- Department of Neurology, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Yongli Wang
- Department of Neurology, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, China
| | - Guangxin Yue
- Institute of Basic Theory for Chinese Medicine, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Yonglie Zhao
- Department of Neurology, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Yonglie Zhao,
| |
Collapse
|
56
|
Agunloye OM, Oboh G. Fermented seeds of Pentaclethra macrophylla mitigate against memory deficit and restored altered enzymatic activity in the brain of streptozotocin-diabetic rats. Metab Brain Dis 2022; 38:973-981. [PMID: 36585563 DOI: 10.1007/s11011-022-01141-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 12/03/2022] [Indexed: 01/01/2023]
Abstract
Memory deficit has been reported as one of the complications of diabetes. Fermented seeds of Pentaclethra Macrophylla (P. macrophylla) have been used in folklore for the management of metabolic diseases. The research aims to evaluate the impact of diets with the inclusion of the fermented seed of P. macrophylla on memory deficit in diabetic rats and its underlying mechanisms. Before the induction, the rats were subjected to training sessions. Thereafter, streptozotocin (50 mg/kg body weight) was administered to the trained rats via intraperitoneal (i.p). 72 hours after, the rats blood glucose level was checked, rats with blood glucose level greater than 250 mg/dl were selected for the memory index evaluation study. The induced rats were randomly distributed into groups: Normal rats (group 1), untreated diabetic rat (Group 2), acarbose treated diabetic rats (group 3); diabetic rats placed on diet supplemented with fermented seed of P. macrophylla (10 & 20% inclusion) were allotted to group 4 & 5. Then, evaluation of memory retention capacity was performed on the day 14 of the experiment. Thereafter, experimental rats were sacrificed, tissue of interest (brain) was excised, homogenized and homogenates were used for biochemical analysis. The cholinergic, angiotensin-1-converting enzyme (ACE), arginase activity and biomarkers for oxidative stress were significantly altered in untreated diabetic rats when compared with non-diabetes rats. Also, the memory capacity of the diabetic rats was significantly reduced when compared with the non-diabetes rats. Meanwhile, diabetic rats placed on diet with fermented seeds of P. macrophylla (10 & 20% inclusion) exhibited significantly higher memory capacity, lower activity of cholinergic, ACE, arginase activity in relation to untreated diabetic rats while the antioxidant status of the brain was enhanced. Nevertheless, fermented seeds of P. macrophylla ameliorated memory deficit in STZ induced diabetes rats. This gave credence to P. macrophylla nutraceutical potential as claimed in folk medicine.
Collapse
Affiliation(s)
- Odunayo Michael Agunloye
- Functional Foods and Nutraceuticals Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria.
| | - Ganiyu Oboh
- Functional Foods and Nutraceuticals Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| |
Collapse
|
57
|
Induction of Oxidative Stress in SH-SY5Y Cells by Overexpression of hTau40 and Its Mitigation by Redox-Active Nanoparticles. Int J Mol Sci 2022; 24:ijms24010359. [PMID: 36613801 PMCID: PMC9820486 DOI: 10.3390/ijms24010359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Abnormally phosphorylated tau protein is the principal component of neurofibrillary tangles, accumulating in the brain in many neurodegenerative diseases, including Alzheimer's disease. The aim of this study was to examine whether overexpression of tau protein leads to changes in the redox status of human neuroblastoma SH-SY5Y cells. The level of reactive oxygen species (ROS) was elevated in tau-overexpressing cells (TAU cells) as compared with cells transfected with the empty vector (EP cells). The level of glutathione was increased in TAU cells, apparently due to overproduction as an adaptation to oxidative stress. The TAU cells had elevated mitochondrial mass. They were more sensitive to 6-hydroxydopamine, delphinidin, 4-amino-TEMPO, and nitroxide-containing nanoparticles (NPs) compared to EP controls. These results indicate that overexpression of the tau protein imposes oxidative stress on the cells. The nitroxide 4-amino-TEMPO and nitroxide-containing nanoparticles (NPs) mitigated oxidative stress in TAU cells, decreasing the level of ROS. Nitroxide-containing nanoparticles lowered the level of lipid peroxidation in both TAU and EP cells, suggesting that nitroxides and NPs may mitigate tau-protein-induced oxidative stress.
Collapse
|
58
|
Abozaid OAR, Sallam MW, El-Sonbaty S, Aziza S, Emad B, Ahmed ESA. Resveratrol-Selenium Nanoparticles Alleviate Neuroinflammation and Neurotoxicity in a Rat Model of Alzheimer's Disease by Regulating Sirt1/miRNA-134/GSK3β Expression. Biol Trace Elem Res 2022; 200:5104-5114. [PMID: 35059981 DOI: 10.1007/s12011-021-03073-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/16/2021] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is a brain disorder associated with a gradual weakening in neurocognitive functions, neuroinflammation, and impaired signaling pathways. Resveratrol (RSV) has neuroprotective properties, but with low bioavailability, and low solubility in vivo. Selenium (Se) is an essential micronutrient for brain function. Thus, this study aimed to evaluate the role of formulated RSV-Se nanoparticles (RSV-SeNPs) on neurochemical and histopathological approaches associated with the AD model in rats induced by Aluminum chloride (AlCl3) at a dose of 100 mg/kg/day for 60 days. RSV-SeNPs supplementation attenuates the impaired oxidative markers and mitochondrial dysfunction. The ameliorative effect of RSV-SeNPs on cholinergic deficits was associated with clearance of amyloid β (Aβ). Furthermore, activation of phosphatidylinositol 3 kinase (PI3K) deactivates glycogen synthase kinase 3 beta (GSK-3β)-mediated tau hyperphosphorylation. Additionally, RSV-SeNPs downregulate signal transducer and activator of transcription (STAT3) expression as well as interleukin-1β (IL-1β) levels, therefore alleviating neuroinflammation in AD. Moreover, RSV-SeNPs upregulate the expression of Sirtuin-1 (SIRT1) and lower that of microRNA-134, consequently increasing neurite outgrowth. Eventually, the obtained results showed that nano-formulation of resveratrol with selenium maximized the therapeutic potential of RSV against Alzheimer's disease not only by their antioxidant but also by anti-inflammatory effect improving the neurocognitive function and modulating the signaling pathways.
Collapse
Affiliation(s)
- Omayma A R Abozaid
- Biochemistry Department, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Mohsen W Sallam
- Biochemistry Department, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Sawsan El-Sonbaty
- National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Samy Aziza
- Biochemistry Department, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Basma Emad
- Anatomy and Embryology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Esraa S A Ahmed
- Radiation Biology, National Center for Radiation Research and Technology, Atomic Energy Authority, Nasr City, Cairo, 11787, Egypt.
| |
Collapse
|
59
|
Latif K, Saneela S, Khan AU. Ameliorative effect of carveol on scopolamine-induced memory impairment in rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:1504-1512. [PMID: 36544525 PMCID: PMC9742562 DOI: 10.22038/ijbms.2022.66797.14647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 10/09/2022] [Indexed: 12/24/2022]
Abstract
Objectives Carveol is a naturally occurring terpenoid with antispasmodic, carminative, astringent, indigestion, and dyspepsia properties, as well as anti-diabetic, anti-oxidant, anti-hyperlipidemia, and anti-inflammatory properties in the liver. Research also suggests that it has memory-enhancing and anti-oxidant properties. The purpose of this research was to see whether carveol could protect rats against scopolamine-induced memory loss in a rat model. Materials and Methods Thirty male Sprague-Dawley rats (200-250 g) were grouped as the saline group receiving saline, disease group receiving scopolamine, and four treatment groups among which three groups received scopalamine+carveol and one group received scopalamine+donepezil for 28 days. Followed by in vitro, behavioral, anti-oxidant, and molecular studies were done. P<0.005 was considered statistically significant. Results The in vitro assay showed that carveol caused diphenyl-1-picrylhydrazyl inhibition. In-vivo findings revealed that carveol (50, 100, and 200 mg/kg) significantly improved dementia by reducing escape latency and spending more time in the targeted quadrant in the Morris water maze test. Increased number of entries and percent spontaneous alterations were observed in rats' Y-maze test. In animal brain tissues, i.e., cortex and hippocampus, carveol enhanced glutathione, glutathione-s-transferase, catalase, and reduced lipid peroxide levels. Carveol also improved cellular architecture in histopathological examinations and decreased expression of inflammatory markers such as amyloid-beta, nuclear factor kappa light chain activated B cells, tumor necrosis factor-alpha, cyclooxygenase 2, prostaglandin E2, and interleukin-18, as evidenced by immunohistochemistry and enzyme-linked immunosorbent assays, as well as molecular investigations. Conclusion This study suggests that the compound could be potent against amnesia mediated through anti-oxidant, amyloid-beta inhibition, and anti-inflammatory pathways.
Collapse
Affiliation(s)
- Komal Latif
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad,Corresponding author: Komal Latif. Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan.
| | - Saneela Saneela
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad
| | - Arif-ullah Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad
| |
Collapse
|
60
|
Sienes Bailo P, Llorente Martín E, Calmarza P, Montolio Breva S, Bravo Gómez A, Pozo Giráldez A, Sánchez-Pascuala Callau JJ, Vaquer Santamaría JM, Dayaldasani Khialani A, Cerdá Micó C, Camps Andreu J, Sáez Tormo G, Fort Gallifa I. The role of oxidative stress in neurodegenerative diseases and potential antioxidant therapies. ADVANCES IN LABORATORY MEDICINE 2022; 3:342-360. [PMID: 37363428 PMCID: PMC10197325 DOI: 10.1515/almed-2022-0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 10/23/2022] [Indexed: 06/28/2023]
Abstract
Objectives The central nervous system (CNS) is essential for homeostasis and controls the physiological functions of the body. However, the biochemical characteristics of the CNS make it especially vulnerable to oxidative damage (OS). This phenomenon compromises correct CNS functioning, leading to neurodegeneration and neuronal death. Contents OS plays a crucial role in the physiopathology of neurodegenerative diseases. It is involved in multiple mechanisms of nucleic acid, protein, and lipid oxidation, thereby contributing to progressive brain damage. These mechanisms include mitochondrial dysfunction; excessive production of reactive oxygen and nitrogen species; deficiency of antioxidant defenses; protein oligomerization; cytokine production and inflammatory response; blood-brain barrier abnormalities; and proteasome dysfunction. All these dysfunctions are involved in the pathogenesis of neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease, Huntington's disease, or amyotrophic lateral sclerosis. Summary and outlook A curative treatment is currently not available. Research is focused on the search for therapies that reduce oxidative damage and delay disease progression. In the recent years, researchers have focused their attention on the effects of antioxidant therapies.
Collapse
Affiliation(s)
- Paula Sienes Bailo
- Servicio de Bioquímica Clínica, Hospital Universitario Miguel Servet, Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
- Sociedad Española de Medicina de Laboratorio (SEQC-ML), Comisión de Estrés Oxidativo, Barcelona, Spain
| | - Elena Llorente Martín
- Sociedad Española de Medicina de Laboratorio (SEQC-ML), Comisión de Estrés Oxidativo, Barcelona, Spain
- Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Pilar Calmarza
- Servicio de Bioquímica Clínica, Hospital Universitario Miguel Servet, Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
- Sociedad Española de Medicina de Laboratorio (SEQC-ML), Comisión de Estrés Oxidativo, Barcelona, Spain
- Centro de Investigación en Red en Enfermedades Cardiovasculares (CIBERCV), Quebec, Spain
- Universidad de Zaragoza, Zaragoza, Spain
- Comisión de Lipoproteínas y Enfermedades Cardiovasculares, SEQC-ML, Barcelona, Spain
| | - Silvia Montolio Breva
- Sociedad Española de Medicina de Laboratorio (SEQC-ML), Comisión de Estrés Oxidativo, Barcelona, Spain
- Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain
| | - Adrián Bravo Gómez
- Sociedad Española de Medicina de Laboratorio (SEQC-ML), Comisión de Estrés Oxidativo, Barcelona, Spain
- Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Comisión de Elementos traza, SEQC-ML, Barcelona, Spain
| | - Adela Pozo Giráldez
- Sociedad Española de Medicina de Laboratorio (SEQC-ML), Comisión de Estrés Oxidativo, Barcelona, Spain
- Servicio de Bioquímica Clínica y Patología Molecular, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Joan J. Sánchez-Pascuala Callau
- Sociedad Española de Medicina de Laboratorio (SEQC-ML), Comisión de Estrés Oxidativo, Barcelona, Spain
- Hospital Verge de la Cinta, Tortosa, Spain
| | - Juana M. Vaquer Santamaría
- Sociedad Española de Medicina de Laboratorio (SEQC-ML), Comisión de Estrés Oxidativo, Barcelona, Spain
- Servicio de Bioquímica Clínica y Patología Molecular, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Anita Dayaldasani Khialani
- Sociedad Española de Medicina de Laboratorio (SEQC-ML), Comisión de Estrés Oxidativo, Barcelona, Spain
- UGD de Laboratorio, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Concepción Cerdá Micó
- Sociedad Española de Medicina de Laboratorio (SEQC-ML), Comisión de Estrés Oxidativo, Barcelona, Spain
- Dirección Médica Asistencial, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| | - Jordi Camps Andreu
- Sociedad Española de Medicina de Laboratorio (SEQC-ML), Comisión de Estrés Oxidativo, Barcelona, Spain
- Universitat Rovira i Virgili, Tarragona, Spain
- Hospital Universitari Sant Joan de Reus, Tarragona, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Centre Recerca Biomèdica, Tarragona, Spain
| | - Guillermo Sáez Tormo
- Sociedad Española de Medicina de Laboratorio (SEQC-ML), Comisión de Estrés Oxidativo, Barcelona, Spain
- Unidad de Patología Oxidativa-UPOX-UV, Universidad de Valencia, Valencia, Spain
- Servicio de Análisis Clínicos, Hospital Universitario Doctor Peset, Valencia, Spain
| | - Isabel Fort Gallifa
- Sociedad Española de Medicina de Laboratorio (SEQC-ML), Comisión de Estrés Oxidativo, Barcelona, Spain
- Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain
- Universitat Rovira i Virgili, Tarragona, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Centre Recerca Biomèdica, Tarragona, Spain
- Laboratori ICS de Tarragona i Terres de l’Ebre, Tarragona, Spain
| |
Collapse
|
61
|
Said DE, Amer EI, Sheta E, Makled S, Diab HE, Arafa FM. Nano-Encapsulated Melatonin: A Promising Mucosal Adjuvant in Intranasal Immunization against Chronic Experimental T. gondii Infection. Trop Med Infect Dis 2022; 7:tropicalmed7120401. [PMID: 36548656 PMCID: PMC9785012 DOI: 10.3390/tropicalmed7120401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/17/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Melatonin (MLT) is now emerging as one of the universally accepted immunostimulators with broad applications in medicine. It is a biological manipulator of the immune system, including mucosal ones. MLT was encapsulated in solid lipid nanoparticles (SLNs), then 100 mg/kg/dose of MLT-SLNs was used as an adjuvant of Toxoplasma lysate antigen (TLA). Experimental mice were intra-nasally inoculated with three doses of different regimens every two weeks, then challenged with 20 cysts of T. gondii Me49 strain, where they were sacrificed four weeks post-infection. Protective vaccine efficacy was evident via the significant brain cyst count reduction of 58.6%, together with remarkably high levels of humoral systemic and mucosal anti-Toxoplasma antibodies (Ig G, Ig A), supported by a reduced tachyzoites invasion of Vero cells in vitro upon incubation with sera obtained from these vaccinated mice. A cellular immune response was evident through the induction of significant levels of interferon-gamma (IFN γ), associated with morphological deteriorations of cysts harvested from the brains of vaccinated mice. Furthermore, the amelioration of infection-induced oxidative stress (OS) and histopathological changes were evident in mice immunized with TLA/MLT-SLNs. In conclusion, the present study highlighted the promising role of intranasal MLT-SLNs as a novel mucosal adjuvant candidate against chronic toxoplasmosis.
Collapse
Affiliation(s)
- Doaa E. Said
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria 5424041, Egypt
| | - Eglal I. Amer
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria 5424041, Egypt
| | - Eman Sheta
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria 5424041, Egypt
| | - Shaimaa Makled
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Hala E. Diab
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria 5424041, Egypt
- Correspondence:
| | - Fadwa M. Arafa
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria 5424041, Egypt
| |
Collapse
|
62
|
Ji Y, Zheng K, Li S, Ren C, Shen Y, Tian L, Zhu H, Zhou Z, Jiang Y. Insight into the potential role of ferroptosis in neurodegenerative diseases. Front Cell Neurosci 2022; 16:1005182. [PMID: 36385946 PMCID: PMC9647641 DOI: 10.3389/fncel.2022.1005182] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/14/2022] [Indexed: 11/30/2022] Open
Abstract
Ferroptosis is a newly discovered way of programmed cell death, mainly caused by the accumulation of iron-dependent lipid peroxides in cells, which is morphologically, biochemically and genetically different from the previously reported apoptosis, necrosis and autophagy. Studies have found that ferroptosis plays a key role in the occurrence and development of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease and vascular dementia, which suggest that ferroptosis may be involved in regulating the progression of neurodegenerative diseases. At present, on the underlying mechanism of ferroptosis in neurodegenerative diseases is still unclear, and relevant research is urgently needed to clarify the regulatory mechanism and provide the possibility for the development of agents targeting ferroptosis. This review focused on the regulatory mechanism of ferroptosis and its various effects in neurodegenerative diseases, in order to provide reference for the research on ferroptosis in neurodegenerative diseases.
Collapse
Affiliation(s)
- Yingying Ji
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, China
| | - Kai Zheng
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, China
| | - Shiming Li
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, China
| | - Caili Ren
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, China
| | - Ying Shen
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lin Tian
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, China
| | - Haohao Zhu
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, China
- *Correspondence: Haohao Zhu
| | - Zhenhe Zhou
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, China
- Zhenhe Zhou
| | - Ying Jiang
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, China
- Ying Jiang
| |
Collapse
|
63
|
Wang SW, Chang CC, Hsuan CF, Chang TH, Chen YL, Wang YY, Yu TH, Wu CC, Houng JY. Neuroprotective Effect of Abelmoschus manihot Flower Extracts against the H 2O 2-Induced Cytotoxicity, Oxidative Stress and Inflammation in PC12 Cells. Bioengineering (Basel) 2022; 9:bioengineering9100596. [PMID: 36290563 PMCID: PMC9598102 DOI: 10.3390/bioengineering9100596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 12/05/2022] Open
Abstract
The progression of neurodegenerative diseases is associated with oxidative stress and inflammatory responses. Abelmoschus manihot L. flower (AMf) has been shown to possess excellent antioxidant and anti-inflammatory activities. This study investigated the protective effect of ethanolic extract (AME), water extract (AMW) and supercritical extract (AMS) of AMf on PC12 neuronal cells under hydrogen peroxide (H2O2) stimulation. This study also explored the molecular mechanism underlying the protective effect of AME, which was the best among the three extracts. The experimental results showed that even at a concentration of 500 μg/mL, neither AME nor AMW showed toxic effects on PC12 cells, while AMS caused about 10% cell death. AME has the most protective effect on apoptosis of PC12 cells stimulated with 0.5 mM H2O2. This is evident by the finding when PC12 cells were treated with 500 μg/mL AME; the viability was restored from 58.7% to 80.6% in the Treatment mode (p < 0.001) and from 59.1% to 98.1% in the Prevention mode (p < 0.001). Under the stimulation of H2O2, AME significantly up-regulated the expression of antioxidant enzymes, such as catalase, glutathione peroxidase and superoxide dismutase; promoted the production of the intracellular antioxidant; reduced glutathione; and reduced ROS generation in PC12 cells. When the acute inflammation was induced under the H2O2 stimulation, AME significantly down-regulated the pro-inflammatory cytokines and mediators (e.g., TNF-α, IL-1β, IL-6, COX-2 and iNOS). AME pretreatment could also greatly promote the production of nucleotide excision repair (NER)-related proteins, which were down-regulated by H2O2. This finding indicates that AME could repair DNA damage caused by oxidative stress. Results from this study demonstrate that AME has the potential to delay the onset and progression of oxidative stress-induced neurodegenerative diseases.
Collapse
Affiliation(s)
- Shih-Wei Wang
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, E-Da Hospital, Kaohsiung 82445, Taiwan
| | - Chi-Chang Chang
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
- Department of Obstetrics & Gynecology, E-Da Hospital/E-Da Dachang Hospital, Kaohsiung 82445, Taiwan
| | - Chin-Feng Hsuan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital/E-Da Dachang Hospital/E-Da Cancer Hospital, Kaohsiung 82445, Taiwan
| | - Tzu-Hsien Chang
- Department of Obstetrics & Gynecology, E-Da Hospital/E-Da Dachang Hospital, Kaohsiung 82445, Taiwan
| | - Ya-Ling Chen
- Department of Obstetrics & Gynecology, E-Da Hospital/E-Da Dachang Hospital, Kaohsiung 82445, Taiwan
| | - Yun-Ya Wang
- School of Chinese Medicine for Post-Baccalaureate, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
| | - Teng-Hung Yu
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital/E-Da Dachang Hospital/E-Da Cancer Hospital, Kaohsiung 82445, Taiwan
| | - Cheng-Ching Wu
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital/E-Da Dachang Hospital/E-Da Cancer Hospital, Kaohsiung 82445, Taiwan
| | - Jer-Yiing Houng
- Department of Nutrition, I-Shou University, Kaohsiung 82445, Taiwan
- Department of Chemical Engineering, I-Shou University, Kaohsiung 82445, Taiwan
- Correspondence: ; Tel.: +886-7-6151100 (ext. 7915)
| |
Collapse
|
64
|
Wang Y, Song J, Wang X, Qian Q, Wang H. Study on the toxic-mechanism of triclosan chronic exposure to zebrafish (Danio rerio) based on gut-brain axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:156936. [PMID: 35772538 DOI: 10.1016/j.scitotenv.2022.156936] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Triclosan (TCS), as a broad-spectrum bactericide, is extensively used in the fine chemical and textile industries. It is recognized as a new type of environmental endocrine disruptor with frequent detection and environmental pollution. However, the toxicity mechanism regarding neurodevelopment and neurobehavior remains unclear. This study is intended to explore the underlying toxic mechanism of TCS based on gut-brain axis. TCS-chronic exposure affected the development of zebrafish, induced feminization, obesity physical signs and abnormal organ index and caused neurobehavioral abnormalities by inhibiting both neurotransmitter acetylcholinesterase and dopamine activity, promoting brain neuron apoptosis and accelerating diencephalic lesions. Meanwhile, TCS-chronic exposure led to gut microbiota dysbiosis and decreased diversity, such as increased pathogenic bacteria and decreased probiotics in adult zebrafish gut, which caused many pathological damages, including partial shedding and ablation of intestinal villi, inflammatory infiltration, thinning of intestinal wall, and increased goblet cell in villus. Based on the communication between intestinal peripheral nerves and CNS, the above histopathological injuries and disorders were well underpinned and illustrated by the changes of biomarkers and the expression of related marker genes in the gut-brain axis. Additionally, short-chain fatty acids (SCFA), as the regulators of intestinal sympathetic nerve activation, are also secreting products of intestinal microflora and play a crucial role in regulating the balance of intestinal flora and protecting intestinal homeostasis. SCFA in low doses can effectively alleviate and rescue the toxic effects under TCS exposure, which evidenced that TCS exerted systemic toxic effects on the gut-brain axis by influencing the composition and diversity of gut flora in zebrafish, and fully demonstrated the interaction effect between intestine and brain. Hence, these findings contribute to the understanding, prevention, and diagnosis of endocrine disrupting diseases caused by environmental pollutants from the perspective of the gut-brain axis, and strengthening the early warning, management and control of TCS pollution.
Collapse
Affiliation(s)
- Yang Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jie Song
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xuedong Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Qiuhui Qian
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Huili Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
65
|
Elbakry MMM, Mansour SZ, Helal H, Ahmed ESA. Nattokinase attenuates bisphenol A or gamma irradiation-mediated hepatic and neural toxicity by activation of Nrf2 and suppression of inflammatory mediators in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:75086-75100. [PMID: 35648353 PMCID: PMC9550699 DOI: 10.1007/s11356-022-21126-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/23/2022] [Indexed: 05/05/2023]
Abstract
Nattokinase (NK), a protease enzyme produced by Bacillus subtilis, has various biological effects such as lipid-lowering activity, antihypertensive, antiplatelet/anticoagulant, and neuroprotective effects. Exposure to environmental toxicants such as bisphenol A (BPA) or γ-radiation (IR) causes multi-organ toxicity through several mechanisms such as impairment of oxidative status, signaling pathways, and hepatic and neuronal functions as well as disruption of the inflammatory responses. Therefore, this study is designed to evaluate the ameliorative effect of NK against BPA- or IR-induced liver and brain damage in rats. Serum ammonia level and liver function tests were measured in addition to brain oxidative stress markers, amyloid-beta, tau protein, and neuroinflammatory mediators. Moreover, relative quantification of brain nuclear factor-erythroid 2-related factor-2 (Nrf2)/heme oxygenase-1 (HO-1) genes, as well as apoptotic markers in brain tissue, was carried out in addition to histopathological examination. The results showed that NK improved liver functions, impaired oxidative status, the cholinergic deficits, and minified the misfolded proteins aggregates. Furthermore, NK alleviated the neuroinflammation via modulating NF-κB/Nrf2/HO-1 pathway and glial cell activation in addition to their antiapoptotic effect. Collectively, the current results revealed the protective effect of NK against hepatic and neurotoxicity derived from BPA or IR.
Collapse
Affiliation(s)
- Mustafa M M Elbakry
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Somaya Z Mansour
- Radiation Biology Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Nasr City, Cairo, 11787, Egypt
| | - Hamed Helal
- Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Esraa S A Ahmed
- Radiation Biology Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Nasr City, Cairo, 11787, Egypt.
| |
Collapse
|
66
|
Ponath AS, Volz DR, Suyenaga ES, Ziulkoski AL, Perassolo MS. Assessment of potential in vitro toxicity of Cissus sicyoides L. and Wedelia paludosa DC. leaves water extracts. Toxicol Res (Camb) 2022; 11:881-890. [PMID: 36337247 PMCID: PMC9623571 DOI: 10.1093/toxres/tfac066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/11/2022] [Accepted: 09/01/2022] [Indexed: 10/05/2023] Open
Abstract
Medicinal plants have been employed as an alternative method to treat diabetes. One is Cissus sicyoides, a plant from the Amazon region (Northern Brazil), which is morphologically similar to Wedelia paludosa, a plant easily found in Southern Brazil. Thus, this study aimed to assess the potential toxicity of C. sicyoides and W. paludosa's leaves water extracts. Through phytochemical screening, phenolic compounds and alkaloids were observed in both species and coumarins only W. paludosa's aqueous extract. Phenolic compounds were quantified in both extracts and C. sicyoides presented 1.36 ± 0.04 mg/pyrogalic acid equivalent (PAE), whereas W. paludosa presented 3.27 ± 0.07 mg/PAE. Total antioxidant power was measured by the ferric reduction assay. Cissus sicyoides exhibited total antioxidant activity of 748.0 ± 104.5 μM and W. paludosa, 1971.5 ± 141.0 μM. Cissus sicyoides showed an inhibition rate for the alpha-glucosidases enzyme assay of 55.2 ± 1.7% and W. paludosa, 85.8 ± 9.7%. The formation of reactive oxygen species was evaluated by the DCFH-DA method, its formation being higher in W. paludosa's water extracts than in C. sicyoides. Cell viability was evaluated by the Sulforhodamine B and MTT assays. Wedelia paludosa's extracts' exposure presented a cell viability close to positive control starting from 2 mg/mL to 30 mg/mL, whereas C. sicyoides demonstrated statistical significant low viability at the highest concentration when compared with the negative control. Moreover, cell death mechanism was investigated, having W. paludosa's extract indicated death by necrosis. The results suggest low toxicity for C. sicyoides' extract and high toxicity for W. paludosa's extract.
Collapse
Affiliation(s)
- Amanda Schu Ponath
- Master degree in Toxicology and Toxicological Analysis, Institute of Health Sciences, Feevale University, Novo Hamburgo, Brazil
| | - Débora Rech Volz
- Cytotoxicity Laboratory, Institute of Helth Sciences, Feevale University, Novo Hamburgo, Brazil
| | - Edna Sayuri Suyenaga
- Master degree in Toxicology and Toxicological Analysis, Institute of Health Sciences, Feevale University, Novo Hamburgo, Brazil
- Department of Pharmacy, Institute of Health Sciences, Feevale University, Novo Hamburgo, Brazil
| | - Ana Luíza Ziulkoski
- Master degree in Toxicology and Toxicological Analysis, Institute of Health Sciences, Feevale University, Novo Hamburgo, Brazil
- Cytotoxicity Laboratory, Institute of Helth Sciences, Feevale University, Novo Hamburgo, Brazil
- Department of Pharmacy, Institute of Health Sciences, Feevale University, Novo Hamburgo, Brazil
| | - Magda Susana Perassolo
- Master degree in Toxicology and Toxicological Analysis, Institute of Health Sciences, Feevale University, Novo Hamburgo, Brazil
- Department of Pharmacy, Institute of Health Sciences, Feevale University, Novo Hamburgo, Brazil
| |
Collapse
|
67
|
Mlakić M, Fodor L, Odak I, Horváth O, Lovrić MJ, Barić D, Milašinović V, Molčanov K, Marinić Ž, Lasić Z, Škorić I. Resveratrol–Maltol and Resveratrol–Thiophene Hybrids as Cholinesterase Inhibitors and Antioxidants: Synthesis, Biometal Chelating Capability and Crystal Structure. Molecules 2022; 27:molecules27196379. [PMID: 36234916 PMCID: PMC9573353 DOI: 10.3390/molecules27196379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 12/02/2022] Open
Abstract
New resveratrol–thiophene and resveratrol–maltol hybrids were synthesized as cholinesterase inhibitors and antioxidants. As with photostability experiments, biological tests also found remarkable differences in the properties and behavior of thiophene and maltol hybrids. While resveratrol–thiophene hybrids have excellent inhibitory and antioxidant properties (similar to the activity of reference drug galantamine), maltols have been proven to be weaker inhibitors and antioxidants. The molecular docking of selected active ligands gave insight into the structures of docked enzymes. It enabled the identification of interactions between the ligand and the active site of both cholinesterases. The maltols that proved to be active cholinesterase inhibitors were able to coordinate Fe3+ ion, forming complexes of 1:1 composition. Their formation constants, determined by spectrophotometry, are very similar, lgK = 11.6–12.6, suggesting that Fe3+ binds to the common hydroxy-pyranone moiety and is hardly affected by the other aromatic part of the ligand. Accordingly, the characteristic bands in their individual absorption spectra are uniformly red-shifted relative to those of the free ligands. The crystal structures of two new resveratrol–maltol hybrids were recorded, giving additional information on the molecules’ intermolecular hydrogen bonds and packing. In this way, several functionalities of these new resveratrol hybrids were examined as a necessary approach to finding more effective drugs for complicated neurodegenerative diseases.
Collapse
Affiliation(s)
- Milena Mlakić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10000 Zagreb, Croatia
| | - Lajos Fodor
- Department of General and Inorganic Chemistry, Institute of Chemistry, Faculty of Engineering, University of Pannonia, P.O. Box 158, H-8201 Veszprém, Hungary
| | - Ilijana Odak
- Department of Chemistry, Faculty of Science and Education, University of Mostar, Matice hrvatske bb, 88000 Mostar, Bosnia and Herzegovina
- Correspondence: (I.O.); (I.Š.)
| | - Ottó Horváth
- Department of General and Inorganic Chemistry, Institute of Chemistry, Faculty of Engineering, University of Pannonia, P.O. Box 158, H-8201 Veszprém, Hungary
| | - Marija Jelena Lovrić
- Group for Computational Life Sciences, Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - Danijela Barić
- Group for Computational Life Sciences, Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - Valentina Milašinović
- Division of Physical Chemistry, Rudjer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - Krešimir Molčanov
- Division of Physical Chemistry, Rudjer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - Željko Marinić
- NMR Center, Rudjer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - Zlata Lasić
- Teva api Analytical R&D, Pliva, Prilaz Baruna Filipovića 25, HR-10000 Zagreb, Croatia
| | - Irena Škorić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10000 Zagreb, Croatia
- Correspondence: (I.O.); (I.Š.)
| |
Collapse
|
68
|
Elyasi L, Rosenholm JM, Jesmi F, Jahanshahi M. The Antioxidative Effects of Picein and Its Neuroprotective Potential: A Review of the Literature. Molecules 2022; 27:molecules27196189. [PMID: 36234724 PMCID: PMC9571929 DOI: 10.3390/molecules27196189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Neurodegenerative diseases (NDDs) are the main cause of dementia in the elderly, having no cure to date, as the currently available therapies focus on symptom remission. Most NDDs will progress despite treatment and eventually result in the death of the patient after several years of a burden on both the patient and the caregivers. Therefore, it is necessary to investigate agents that tackle the disease pathogenesis and can efficiently slow down or halt disease progression, with the hope of curing the patients and preventing further burden and mortality. Accordingly, recent research has focused on disease-modifying treatments with neuroregenerative or neuroprotective effects. For this purpose, it is necessary to understand the pathogenesis of NDDs. It has been shown that oxidative stress plays an important role in the damage to the central nervous system and the progression of neurodegenerative disorders. Furthermore, mitochondrial dysfunction and the accumulation of unfolded proteins, including beta-amyloid (Aβ), tau proteins, and α-synuclein, have been suggested. Accordingly, cellular and molecular studies have investigated the efficacy of several natural compounds (herbs and nutritional agents) for their neuroprotective and antioxidative properties. The most popular herbs suggested for the treatment and/or prevention of NDDs include Withania somnifera (ashwagandha), ginseng, curcumin, resveratrol, Baccopa monnieri, and Ginkgo biloba. In some herbs, such as ginseng, preclinical and clinical evidence are available for supporting its effectiveness; however, in some others, only cellular and animal studies are available. In line with the scant literature in terms of the effectiveness of herbal compounds on NDDs, there are also other herbal agents that have been disregarded. Picein is one of the herbal agents that has been investigated in only a few studies. Picein is the active ingredient of several herbs and can be thus extracted from different types of herbs, which makes it more available. It has shown to have anti-inflammatory properties in cellular and plant studies; however, to date, only one study has suggested its neuroprotective properties. Furthermore, some cellular studies have shown no anti-inflammatory effect of picein. Therefore, a review of the available literature is required to summarize the results of studies on picein. To date, no review study seems to have addressed this issue. Thus, in the present study, we gather the available information about the antioxidative and potential neuroprotective properties of picein and its possible effectiveness in treating NDDs. We also summarize the plants from which picein can be extracted in order to guide researchers for future investigations.
Collapse
Affiliation(s)
- Leila Elyasi
- Neuroscience Research Center, Department of Anatomy, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan 4917955315, Iran
- Correspondence: ; Tel./Fax: +98-17-32453515
| | - Jessica M. Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20500 Turku, Finland
| | - Fatemeh Jesmi
- Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, Iran University of Medical Sciences, Tehran 1415944911, Iran
| | - Mehrdad Jahanshahi
- Neuroscience Research Center, Department of Anatomy, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan 4917955315, Iran
| |
Collapse
|
69
|
Zhu L, Tong G, Yang F, Zhao Y, Chen G. The role of neuroimmune and inflammation in pediatric uremia-induced neuropathy. Front Immunol 2022; 13:1013562. [PMID: 36189322 PMCID: PMC9520989 DOI: 10.3389/fimmu.2022.1013562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Uremic neuropathy in children encompasses a wide range of central nervous system (CNS), peripheral nervous system (PNS), autonomic nervous system (ANS), and psychological abnormalities, which is associated with progressive renal dysfunction. Clinically, the diagnosis of uremic neuropathy in children is often made retrospectively when symptoms improve after dialysis or transplantation, due to there is no defining signs or laboratory and imaging findings. These neurological disorders consequently result in increased morbidity and mortality among children population, making uremia an urgent public health problem worldwide. In this review, we discuss the epidemiology, potential mechanisms, possible treatments, and the shortcomings of current research of uremic neuropathy in children. Mechanistically, the uremic neuropathy may be caused by retention of uremic solutes, increased oxidative stress, neurotransmitter imbalance, and disturbance of the blood-brain barrier (BBB). Neuroimmune, including the change of inflammatory factors and immune cells, may also play a crucial role in the progression of uremic neuropathy. Different from the invasive treatment of dialysis and kidney transplantation, intervention in neuroimmune and targeted anti-inflammatory therapy may provide a new insight for the treatment of uremia.
Collapse
Affiliation(s)
- Linfeng Zhu
- Department of Urology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Guoqin Tong
- Department of Neurology, The First People’s Hospital of XiaoShan District, Hangzhou, China
| | - Fan Yang
- Department of Urology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yijun Zhao
- Department of Urology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Guangjie Chen
- Department of Urology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- *Correspondence: Guangjie Chen,
| |
Collapse
|
70
|
Chen M, Liang Z, Fan X, Qu R, Wang H, Chen T. A ratiometric ESIPT fluorescent probe for detection of anticancer-associated H 2O 2 level in vitro and in vivo. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 276:121163. [PMID: 35378493 DOI: 10.1016/j.saa.2022.121163] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
ROS is a significant factor in the cancer treatment mechanism. The monitoring anticancer-associated H2O2 level plays a vital role in the anticancer mechanistic exploration in pathology and physiology. Herein we synthesized a ratiometric fluorescent probe (HBQ-L) to detect and image H2O2 based on excited-state intramolecular proton transfer. HBQ-L had a high sensitivity (231-fold) with a low detection limit (28.5 nM) for monitoring H2O2 in solution. HBQ-L showed good mitochondrial-targeting and successfully detected both exo-/endogenous H2O2 in A549 cells. Furthermore, HBQ-L was used to ratiometric monitor H2O2 level in anticancer reagent DOX-treated cells or zebrafish. Importantly, it was employed to access the monitoring H2O2 in the A549 tumor-bearing mice.
Collapse
Affiliation(s)
- Miao Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Zhenhao Liang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| | - Xuhong Fan
- Department of Pain Management, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Rumeng Qu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Huanhuan Wang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Tongsheng Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
71
|
Melatonin Attenuates Methotrexate-Induced Reduction of Antioxidant Activity Related to Decreases of Neurogenesis in Adult Rat Hippocampus and Prefrontal Cortex. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1596362. [PMID: 35873801 PMCID: PMC9307408 DOI: 10.1155/2022/1596362] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/01/2022] [Indexed: 01/19/2023]
Abstract
Previous studies have revealed that the side effects of anticancer drugs induce a decrease of neurogenesis. Methotrexate (MTX), one of anticancer drugs, can induce lipid peroxidation as an indicator of oxidative stress in the brain. Melatonin has been presented as an antioxidant that can prevent oxidative stress-induced neuronal damage via the activation of antioxidant enzymes associated with the increase of neurogenesis. The aims of the present study are to examine the neuroprotective effect of melatonin on the neurotoxicity of MTX on neurogenesis and the changes of protein expression and antioxidant enzyme levels in adult rat hippocampus and prefrontal cortex (PFC). Male Sprague-Dawley rats were assigned into four groups: vehicle, MTX, melatonin, and melatonin+MTX groups. The vehicle group received saline solution and 10% ethanol solution, whereas the experimental groups received MTX (75 mg/kg, i.v.) and melatonin (8 mg/kg, i.p.) treatments. After the animal examination, the brains were removed for p21 immunofluorescence staining. The hippocampus and PFC were harvested for Western blot analysis and biochemical assessments of malondialdehyde (MDA), catalase (CAT), glutathione peroxidase (GPX), and superoxide dismutase (SOD). The immunofluorescence result showed that coadministration with melatonin diminished p21-positive cells in the hippocampal dentate gyrus, indicating a decrease of cell cycle arrest. Melatonin reduced the levels of MDA and prevented the decline of antioxidant enzyme activities in rats receiving MTX. In the melatonin+MTX group, the protein expression results showed that melatonin treatment significantly upregulated synaptic plasticity and an immature neuron marker through enhancing brain derived neurotrophic factor (BDNF) and doublecortin (DCX), respectively. Moreover, melatonin ameliorated the antioxidant defense system by improving the nuclear factor erythroid 2-related factor 2 (Nrf2) in rats receiving MTX. These findings suggested that the effects of melatonin can ameliorate MTX toxicity by several mechanisms, including an increase of endogenous antioxidants and neurogenesis in adult rat hippocampus and PFC.
Collapse
|
72
|
Oxidative Stress in Ageing and Chronic Degenerative Pathologies: Molecular Mechanisms Involved in Counteracting Oxidative Stress and Chronic Inflammation. Int J Mol Sci 2022; 23:ijms23137273. [PMID: 35806275 PMCID: PMC9266760 DOI: 10.3390/ijms23137273] [Citation(s) in RCA: 108] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 12/17/2022] Open
Abstract
Ageing and chronic degenerative pathologies demonstrate the shared characteristics of high bioavailability of reactive oxygen species (ROS) and oxidative stress, chronic/persistent inflammation, glycation, and mitochondrial abnormalities. Excessive ROS production results in nucleic acid and protein destruction, thereby altering the cellular structure and functional outcome. To stabilise increased ROS production and modulate oxidative stress, the human body produces antioxidants, “free radical scavengers”, that inhibit or delay cell damage. Reinforcing the antioxidant defence system and/or counteracting the deleterious repercussions of immoderate reactive oxygen and nitrogen species (RONS) is critical and may curb the progression of ageing and chronic degenerative syndromes. Various therapeutic methods for ROS and oxidative stress reduction have been developed. However, scientific investigations are required to assess their efficacy. In this review, we summarise the interconnected mechanism of oxidative stress and chronic inflammation that contributes to ageing and chronic degenerative pathologies, including neurodegenerative diseases, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD), cardiovascular diseases CVD, diabetes mellitus (DM), and chronic kidney disease (CKD). We also highlight potential counteractive measures to combat ageing and chronic degenerative diseases.
Collapse
|
73
|
Design, Synthesis and Evaluation of Alpha Lipoic Acid Derivatives to Treat Multiple Sclerosis-Associated Central Neuropathic Pain. Bioorg Med Chem 2022; 69:116889. [DOI: 10.1016/j.bmc.2022.116889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 11/22/2022]
|
74
|
Cattane N, Vernon AC, Borsini A, Scassellati C, Endres D, Capuron L, Tamouza R, Benros ME, Leza JC, Pariante CM, Riva MA, Cattaneo A. Preclinical animal models of mental illnesses to translate findings from the bench to the bedside: Molecular brain mechanisms and peripheral biomarkers associated to early life stress or immune challenges. Eur Neuropsychopharmacol 2022; 58:55-79. [PMID: 35235897 DOI: 10.1016/j.euroneuro.2022.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
Abstract
Animal models are useful preclinical tools for studying the pathogenesis of mental disorders and the effectiveness of their treatment. While it is not possible to mimic all symptoms occurring in humans, it is however possible to investigate the behavioral, physiological and neuroanatomical alterations relevant for these complex disorders in controlled conditions and in genetically homogeneous populations. Stressful and infection-related exposures represent the most employed environmental risk factors able to trigger or to unmask a psychopathological phenotype in animals. Indeed, when occurring during sensitive periods of brain maturation, including pre, postnatal life and adolescence, they can affect the offspring's neurodevelopmental trajectories, increasing the risk for mental disorders. Not all stressed or immune challenged animals, however, develop behavioral alterations and preclinical animal models can explain differences between vulnerable or resilient phenotypes. Our review focuses on different paradigms of stress (prenatal stress, maternal separation, social isolation and social defeat stress) and immune challenges (immune activation in pregnancy) and investigates the subsequent alterations in several biological and behavioral domains at different time points of animals' life. It also discusses the "double-hit" hypothesis where an initial early adverse event can prime the response to a second negative challenge. Interestingly, stress and infections early in life induce the activation of the hypothalamic-pituitary-adrenal (HPA) axis, alter the levels of neurotransmitters, neurotrophins and pro-inflammatory cytokines and affect the functions of microglia and oxidative stress. In conclusion, animal models allow shedding light on the pathophysiology of human mental illnesses and discovering novel molecular drug targets for personalized treatments.
Collapse
Affiliation(s)
- Nadia Cattane
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, United Kingdom
| | - Alessandra Borsini
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King's College London, United Kingdom
| | - Catia Scassellati
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Dominique Endres
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lucile Capuron
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - Ryad Tamouza
- Département Medico-Universitaire de Psychiatrie et d'Addictologie (DMU ADAPT), Laboratoire Neuro-psychiatrie translationnelle, AP-HP, UniversitéParis Est Créteil, INSERM U955, IMRB, Hôpital Henri Mondor, Fondation FondaMental, F-94010 Créteil, France
| | - Michael Eriksen Benros
- Biological and Precision Psychiatry, Copenhagen Research Centre for Mental Health, Copenhagen University Hospital, Gentofte Hospitalsvej 15, 4th floor, 2900 Hellerup, Denmark; Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Juan C Leza
- Department of Pharmacology & Toxicology, Faculty of Medicine, Universidad Complutense de Madrid (UCM), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Hospital 12 de Octubre (i+12), IUIN-UCM. Spain
| | - Carmine M Pariante
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King's College London, United Kingdom
| | - Marco A Riva
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy.
| |
Collapse
|
75
|
Cen Y, Zou X, Zhong Q, Chen Y, Lin Y, Feng Q, Wang X, Zheng S. The TIAR-mediated Nrf2 response to oxidative stress is mediated through the Nrf2 noncoding 3'untranslated region in Spodoptera litura. Free Radic Biol Med 2022; 184:17-29. [PMID: 35367339 DOI: 10.1016/j.freeradbiomed.2022.03.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 01/06/2023]
Abstract
Nrf2 is a key regulator in the maintenance of cellular redox balance by regulating the expression of genes related to antioxidative responses and detoxification. Nrf2 protein levels are increased in response to oxidative stress. However, the regulation of the Nrf2 3'UTR on Nrf2 translation is unclear. Here, we report that the translational activity of the 3'UTR is required for Spodoptera litura Nrf2 protein expression. Experiments showed that the 3'UTR translation activity of S. litura Nrf2 was much higher than that of the 5'UTR. RNA interference (RNAi) of the expression of T cell internal antigen-related protein (TIAR), an RNA-binding protein that interacts with the 3'UTR of S. litura Nrf2, resulted in Nrf2 mRNA movement out of translationally active polysomes and a decrease in cellular Nrf2 protein levels. TIAR interacted with poly(A)-binding protein (PABP) and translation initiation factors eIF2-2 and eIF2-3 to enhance Nrf2 translation, indicating that the 3'UTR regulates Nrf2 translation. Diethyl maleate (DEM) treatment increased reactive oxygen species (ROS) in cells and enhanced Nrf2 levels, which had been reduced by cycloheximide (CHX), an inhibitor of de novo protein synthesis; Tiar RNAi increased ROS levels in DEM-treated cells, suggesting TIAR-mediated 3'UTR involvement in Nrf2 translation in response to DEM treatment. Thus, we reveal a posttranscriptional regulation mechanism of Nrf2, in which TIAR binds with the Nrf2 mRNA 3'UTR to enhance Nrf2 translation, facilitating the increase in Nrf2 protein levels in response to oxidative stress.
Collapse
Affiliation(s)
- Yongjie Cen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Xiaopeng Zou
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Qien Zhong
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yumei Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yiguang Lin
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Qili Feng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Xiaoyun Wang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Sichun Zheng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
76
|
Generation of Human iPSC-Derived Astrocytes with a mature star-shaped phenotype for CNS modeling. Stem Cell Rev Rep 2022; 18:2494-2512. [PMID: 35488987 PMCID: PMC9489586 DOI: 10.1007/s12015-022-10376-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2022] [Indexed: 11/23/2022]
Abstract
The generation of astrocytes from human induced pluripotent stem cells has been hampered by either prolonged differentiation—spanning over two months—or by shorter protocols that generate immature astrocytes, devoid of salient mature astrocytic traits pivotal for central nervous system (CNS) modeling. We directed stable hiPSC-derived neuroepithelial stem cells to human iPSC-derived Astrocytes (hiAstrocytes) with a high percentage of star-shaped cells by orchestrating an astrocytic-tuned culturing environment in 28 days. We employed RT-qPCR and ICC to validate the astrocytic commitment of the neuroepithelial stem cells. To evaluate the inflammatory phenotype, we challenged the hiAstrocytes with the pro-inflammatory cytokine IL-1β (interleukin 1 beta) and quantitatively assessed the secretion profile of astrocyte-associated cytokines and the expression of intercellular adhesion molecule 1 (ICAM-1). Finally, we quantitatively assessed the capacity of hiAstrocytes to synthesize and export the antioxidant glutathione. In under 28 days, the generated cells express canonical and mature astrocytic markers, denoted by the expression of GFAP, AQP4 and ALDH1L1. In addition, the notion of a mature phenotype is reinforced by the expression of both astrocytic glutamate transporters EAAT1 and EAAT2. Thus, hiAstrocytes have a mature phenotype that encompasses traits critical in CNS modeling, including glutathione synthesis and secretion, upregulation of ICAM-1 and a cytokine secretion profile on a par with human fetal astrocytes. This protocol generates a multifaceted astrocytic model suitable for in vitro CNS disease modeling and personalized medicine.
Collapse
|
77
|
Kiousi DE, Kouroutzidou AZ, Neanidis K, Matthaios D, Pappa A, Galanis A. Evaluating the Role of Probiotics in the Prevention and Management of Age-Related Diseases. Int J Mol Sci 2022; 23:3628. [PMID: 35408987 PMCID: PMC8999082 DOI: 10.3390/ijms23073628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/20/2022] [Accepted: 03/25/2022] [Indexed: 02/01/2023] Open
Abstract
The human lifespan has been significantly increased due to scientific advancements in the management of disease; however, the health span of the aging population does not follow the same trend. Aging is the major risk factor for multimorbidity that is derived from the progressive loss of homeostasis, immunological and stem cell exhaustion, as well as exacerbated inflammation responses. Age-related diseases presenting with high frequencies include neurodegenerative, musculoskeletal, cardiovascular, metabolic diseases and cancer. These diseases can be co-morbid and are usually managed using a disease-specific approach that can eventually lead to polypharmacy, low medication adherence rates and undesired drug-drug interactions. Novel studies suggest targeting the shared biological basis of age-related diseases to retard the onset and manage their manifestations. Harvesting the anti-inflammatory and immunomodulatory capacity of probiotics to tackle the root cause of these diseases, could pose a viable alternative. In this article, a comprehensive review of the effects of probiotic supplementation on the molecular pathogenesis of age-related diseases, and the potential of probiotic treatments as preventative or alleviatory means is attempted. Furthermore, issues on the safety and efficiency of probiotic supplementation, as well as the pitfalls of current clinical studies are discussed, while new perspectives for systematic characterization of probiotic benefits on aged hosts are outlined.
Collapse
Affiliation(s)
- Despoina E. Kiousi
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (D.E.K.); (A.Z.K.)
| | - Antonia Z. Kouroutzidou
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (D.E.K.); (A.Z.K.)
| | - Konstantinos Neanidis
- Oncology Department, 424 General Military Training Hospital, 56429 Thessaloniki, Greece;
| | | | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (D.E.K.); (A.Z.K.)
| | - Alex Galanis
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (D.E.K.); (A.Z.K.)
| |
Collapse
|
78
|
Wang F, Wang J, Shen Y, Li H, Rausch WD, Huang X. Iron Dyshomeostasis and Ferroptosis: A New Alzheimer’s Disease Hypothesis? Front Aging Neurosci 2022; 14:830569. [PMID: 35391749 PMCID: PMC8981915 DOI: 10.3389/fnagi.2022.830569] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/25/2022] [Indexed: 12/12/2022] Open
Abstract
Iron plays a crucial role in many physiological processes of the human body, but iron is continuously deposited in the brain as we age. Early studies found iron overload is directly proportional to cognitive decline in Alzheimer’s disease (AD). Amyloid precursor protein (APP) and tau protein, both of which are related to the AD pathogenesis, are associated with brain iron metabolism. A variety of iron metabolism-related proteins have been found to be abnormally expressed in the brains of AD patients and mouse models, resulting in iron deposition and promoting AD progression. Amyloid β (Aβ) and hyperphosphorylated tau, two pathological hallmarks of AD, can also promote iron deposition in the brain, forming a vicious cycle of AD development-iron deposition. Iron deposition and the subsequent ferroptosis has been found to be a potential mechanism underlying neuronal loss in many neurodegenerative diseases. Iron chelators, antioxidants and hepcidin were found useful for treating AD, which represents an important direction for AD treatment research and drug development in the future. The review explored the deep connection between iron dysregulation and AD pathogenesis, discussed the potential of new hypothesis related to iron dyshomeostasis and ferroptosis, and summarized the therapeutics capable of targeting iron, with the expectation to draw more attention of iron dysregulation and corresponding drug development.
Collapse
Affiliation(s)
- Feixue Wang
- Department of Traditional Chinese Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Geriatric Institute of Integrated Traditional and Western Medicine, Beijing, China
| | - Jiandong Wang
- Department of Traditional Chinese Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Geriatric Institute of Integrated Traditional and Western Medicine, Beijing, China
| | - Ying Shen
- Department of Traditional Chinese Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Geriatric Institute of Integrated Traditional and Western Medicine, Beijing, China
| | - Hao Li
- Department of General Diseases, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wolf-Dieter Rausch
- Department of Biomedical Sciences, Institute of Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Xiaobo Huang
- Department of Traditional Chinese Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Geriatric Institute of Integrated Traditional and Western Medicine, Beijing, China
- *Correspondence: Xiaobo Huang,
| |
Collapse
|
79
|
Oxidative Stress Derived from COVID-19 and Its Possible Association with the Development of Neurodegenerative Diseases. ARCHIVES OF NEUROSCIENCE 2022. [DOI: 10.5812/ans.123302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
80
|
Kocaefe-Özşen N, Yilmaz B, Alkım C, Arslan M, Topaloğlu A, Kısakesen HLB, Gülsev E, Çakar ZP. Physiological and Molecular Characterization of an Oxidative Stress-Resistant Saccharomyces cerevisiae Strain Obtained by Evolutionary Engineering. Front Microbiol 2022; 13:822864. [PMID: 35283819 PMCID: PMC8911705 DOI: 10.3389/fmicb.2022.822864] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/02/2022] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress is a major stress type observed in yeast bioprocesses, resulting in a decrease in yeast growth, viability, and productivity. Thus, robust yeast strains with increased resistance to oxidative stress are in highly demand by the industry. In addition, oxidative stress is also associated with aging and age-related complex conditions such as cancer and neurodegenerative diseases. Saccharomyces cerevisiae, as a model eukaryote, has been used to study these complex eukaryotic processes. However, the molecular mechanisms underlying oxidative stress responses and resistance are unclear. In this study, we have employed evolutionary engineering (also known as adaptive laboratory evolution – ALE) strategies to obtain an oxidative stress-resistant and genetically stable S. cerevisiae strain. Comparative physiological, transcriptomic, and genomic analyses of the evolved strain were then performed with respect to the reference strain. The results show that the oxidative stress-resistant evolved strain was also cross-resistant against other types of stressors, including heat, freeze-thaw, ethanol, cobalt, iron, and salt. It was also found to have higher levels of trehalose and glycogen production. Further, comparative transcriptomic analysis showed an upregulation of many genes associated with the stress response, transport, carbohydrate, lipid and cofactor metabolic processes, protein phosphorylation, cell wall organization, and biogenesis. Genes that were downregulated included those related to ribosome and RNA processing, nuclear transport, tRNA, and cell cycle. Whole genome re-sequencing analysis of the evolved strain identified mutations in genes related to the stress response, cell wall organization, carbohydrate metabolism/transport, which are in line with the physiological and transcriptomic results, and may give insight toward the complex molecular mechanisms of oxidative stress resistance.
Collapse
Affiliation(s)
- Nazlı Kocaefe-Özşen
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey.,Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Istanbul, Turkey
| | - Bahtiyar Yilmaz
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey.,Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Istanbul, Turkey
| | - Ceren Alkım
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey.,Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Istanbul, Turkey
| | - Mevlüt Arslan
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey.,Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Istanbul, Turkey
| | - Alican Topaloğlu
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey.,Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Istanbul, Turkey
| | - Halil L Brahim Kısakesen
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey.,Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Istanbul, Turkey
| | - Erdinç Gülsev
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey.,Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Istanbul, Turkey
| | - Z Petek Çakar
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey.,Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
81
|
Sahu K, Singh S, Devi B, Singh C, Singh A. A review on the neuroprotective effect of berberine against chemotherapy-induced cognitive impairment. Curr Drug Targets 2022; 23:913-923. [PMID: 35240956 DOI: 10.2174/1389450123666220303094752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/02/2021] [Accepted: 01/06/2022] [Indexed: 11/22/2022]
Abstract
Chemobrain is one of the major side effects of chemotherapy, despite increased research, the mechanisms underlying chemotherapy-induced cognitive changes remain unknown. Though, several possibly important candidate mechanisms have been identified and will be studied further in the future. Chemobrain is characterized by memory loss, cognitive impairment, difficulty in language, concentration, acceleration, and learning. The major characteristic of chemobrain is oxidative stress, mitochondrial dysfunction, immune dysregulation, hormonal alteration, white matter abnormalities, and DNA damage. Berberine (BBR) is an isoquinoline alkaloid extracted from various berberine species. BBR is a small chemical that easily passes the blood-brain barrier (BBB), making it useful for treating neurodegenerative diseases. Many studies on the pharmacology of BBR have been reported in the past. Furthermore, several clinical and experimental research indicates that BBR has a variety of pharmacological effects. So, in this review, we explore the pathogenesis of chemobrain and the neuroprotective potential of BBR against chemobrain. We also introduced the therapeutic role of BBR in various neurodegenerative and neurological diseases such as Alzheimer's, Parkinson's disease, mental depression, schizophrenia, anxiety, and also some stroke.
Collapse
Affiliation(s)
- Kuleshwar Sahu
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab India
| | - Sukhdev Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab India
| | - Bhawna Devi
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab India
| | - Charan Singh
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab-144603, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab India
| |
Collapse
|
82
|
Kim UJ, Lee KH. Neuroprotective effects of N-acetylcysteine amide against oxidative injury in an aging model of organotypic hippocampal slice cultures. Neuroreport 2022; 33:173-179. [DOI: 10.1097/wnr.0000000000001767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
83
|
Stimuli-controllable iron oxide nanoparticle assemblies: Design, manipulation and bio-applications. J Control Release 2022; 345:231-274. [DOI: 10.1016/j.jconrel.2022.03.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 02/07/2023]
|
84
|
Chang KT, Jezek J, Campbell AN, Stieg DC, Kiss ZA, Kemper K, Jiang P, Lee HO, Kruger WD, van Hasselt PM, Strich R. Aberrant cyclin C nuclear release induces mitochondrial fragmentation and dysfunction in MED13L syndrome fibroblasts. iScience 2022; 25:103823. [PMID: 35198885 PMCID: PMC8844603 DOI: 10.1016/j.isci.2022.103823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/02/2021] [Accepted: 01/21/2022] [Indexed: 12/25/2022] Open
Abstract
MED13L syndrome is a haploinsufficiency developmental disorder characterized by intellectual disability, heart malformation, and hypotonia. MED13L controls transcription by tethering the cyclin C-Cdk8 kinase module (CKM) to the Mediator complex. In addition, cyclin C has CKM-independent roles in the cytoplasm directing stress-induced mitochondrial fragmentation and regulated cell death. Unstressed MED13L S1497 F/fs patient fibroblasts exhibited aberrant cytoplasmic cyclin C localization, mitochondrial fragmentation, and a 6-fold reduction in respiration. In addition, the fibroblasts exhibited reduced mtDNA copy number, reduction in mitochondrial membrane integrity, and hypersensitivity to oxidative stress. Finally, transcriptional analysis of MED13L mutant fibroblasts revealed reduced mRNA levels for several genes necessary for normal mitochondrial function. Pharmacological or genetic approaches preventing cyclin C-mitochondrial localization corrected the fragmented mitochondrial phenotype and partially restored organelle function. In conclusion, this study found that mitochondrial dysfunction is an underlying defect in cells harboring the MED13L S1497 F/fs allele and identified cyclin C mis-localization as the likely cause. These results provide a new avenue for understanding this disorder.
Collapse
Affiliation(s)
- Kai-Ti Chang
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Jan Jezek
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Alicia N Campbell
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - David C Stieg
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Zachary A Kiss
- Department of Medicine, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Kevin Kemper
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Ping Jiang
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Hyung-Ok Lee
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | - Peter M van Hasselt
- Department of Metabolic and Endocrine Disease, University of Utrecht Medical Center, Utrecht, 3584 CX, the Netherlands
| | - Randy Strich
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| |
Collapse
|
85
|
Kim CK, Sachdev PS, Braidy N. Recent Neurotherapeutic Strategies to Promote Healthy Brain Aging: Are we there yet? Aging Dis 2022; 13:175-214. [PMID: 35111369 PMCID: PMC8782556 DOI: 10.14336/ad.2021.0705] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/05/2021] [Indexed: 12/21/2022] Open
Abstract
Owing to the global exponential increase in population ageing, there is an urgent unmet need to develop reliable strategies to slow down and delay the ageing process. Age-related neurodegenerative diseases are among the main causes of morbidity and mortality in our contemporary society and represent a major socio-economic burden. There are several controversial factors that are thought to play a causal role in brain ageing which are continuously being examined in experimental models. Among them are oxidative stress and brain inflammation which are empirical to brain ageing. Although some candidate drugs have been developed which reduce the ageing phenotype, their clinical translation is limited. There are several strategies currently in development to improve brain ageing. These include strategies such as caloric restriction, ketogenic diet, promotion of cellular nicotinamide adenine dinucleotide (NAD+) levels, removal of senescent cells, 'young blood' transfusions, enhancement of adult neurogenesis, stem cell therapy, vascular risk reduction, and non-pharmacological lifestyle strategies. Several studies have shown that these strategies can not only improve brain ageing by attenuating age-related neurodegenerative disease mechanisms, but also maintain cognitive function in a variety of pre-clinical experimental murine models. However, clinical evidence is limited and many of these strategies are awaiting findings from large-scale clinical trials which are nascent in the current literature. Further studies are needed to determine their long-term efficacy and lack of adverse effects in various tissues and organs to gain a greater understanding of their potential beneficial effects on brain ageing and health span in humans.
Collapse
Affiliation(s)
- Chul-Kyu Kim
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Perminder S Sachdev
- Neuropsychiatric Institute, Euroa Centre, Prince of Wales Hospital, Sydney, Australia
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| |
Collapse
|
86
|
Salem A, Wilson CJ, Rutledge BS, Dilliott A, Farhan S, Choy WY, Duennwald ML. Matrin3: Disorder and ALS Pathogenesis. Front Mol Biosci 2022; 8:794646. [PMID: 35083279 PMCID: PMC8784776 DOI: 10.3389/fmolb.2021.794646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/30/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the degeneration of both upper and lower motor neurons in the brain and spinal cord. ALS is associated with protein misfolding and inclusion formation involving RNA-binding proteins, including TAR DNA-binding protein (TDP-43) and fused in sarcoma (FUS). The 125-kDa Matrin3 is a highly conserved nuclear DNA/RNA-binding protein that is implicated in many cellular processes, including binding and stabilizing mRNA, regulating mRNA nuclear export, modulating alternative splicing, and managing chromosomal distribution. Mutations in MATR3, the gene encoding Matrin3, have been identified as causal in familial ALS (fALS). Matrin3 lacks a prion-like domain that characterizes many other ALS-associated RNA-binding proteins, including TDP-43 and FUS, however, our bioinformatics analyses and preliminary studies document that Matrin3 contains long intrinsically disordered regions that may facilitate promiscuous interactions with many proteins and may contribute to its misfolding. In addition, these disordered regions in Matrin3 undergo numerous post-translational modifications, including phosphorylation, ubiquitination and acetylation that modulate the function and misfolding of the protein. Here we discuss the disordered nature of Matrin3 and review the factors that may promote its misfolding and aggregation, two elements that might explain its role in ALS pathogenesis.
Collapse
Affiliation(s)
- Ahmed Salem
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Carter J. Wilson
- Department of Applied Mathematics, Western University, London, ON, Canada
| | - Benjamin S. Rutledge
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Allison Dilliott
- Department of Neurology and Neurosurgery, McGill Universty, Montreal, QC, Canada
| | - Sali Farhan
- Department of Neurology and Neurosurgery, McGill Universty, Montreal, QC, Canada
- Department of Human Genetics, McGill Universty, Montreal, QC, Canada
| | - Wing-Yiu Choy
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Martin L. Duennwald
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
87
|
Sahu K, Langeh U, Singh C, Singh A. Crosstalk between anticancer drugs and mitochondrial functions. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100047. [PMID: 34909674 PMCID: PMC8663961 DOI: 10.1016/j.crphar.2021.100047] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 01/12/2023] Open
Abstract
Chemotherapy is an important component of cancer treatment, which has side effects like vomiting, peripheral neuropathy, and numerous organ toxicity but the most significant outcomes of chemotherapy are cognitive impairment, which is mainly referred to as chemobrain or CICI (chemotherapy-induced cognitive impairment). It is characterized by difficulty with language, concentrating, processing speed, learning, and memory, as it affects the hippocampus areas of the brain. Mitochondrial dysfunction and oxidative stress are one of the major mechanisms causing chemobrain. The generation of reactive oxygen species (byproducts of oxidative phosphorylation) mainly occurs in mitochondria that play a prominent role in the induction of oxidative stress. The homeostasis of ROS in the mitochondria is maintained by mitochondrial antioxidant mechanism via enzymes like catalase, glutathione, and superoxide dismutase. Lungs and breast cancer are the two most common types of cancer, which are the most leading cancers in the world with about 4.18 million cases. In this review we exposed the current knowledge regarding chemotherapy-induced oxidative stress and mitochondrial dysfunction to cause cognitive impairment.We especially focused on the antineoplastic agent (ADRIAMYCIN, CYCLOPHOSPHAMIDE), platinum group agent CISPLATIN, antimetabolite agents (METHOTREXATE), and nitrogen mustard agent (CARMUSTINE) which increase oxidative stress and inflammatory markers in the PNS (peripheral nervous system) as well as the central nervous system. We also highlight the behavioural and functional changes in the brain.
Collapse
Affiliation(s)
- Kuleshwar Sahu
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Urvashi Langeh
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Charan Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| |
Collapse
|
88
|
Crosstalk between Neuron and Glial Cells in Oxidative Injury and Neuroprotection. Int J Mol Sci 2021; 22:ijms222413315. [PMID: 34948108 PMCID: PMC8709409 DOI: 10.3390/ijms222413315] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 12/30/2022] Open
Abstract
To counteract oxidative stress and associated brain diseases, antioxidant systems rescue neuronal cells from oxidative stress by neutralizing reactive oxygen species and preserving gene regulation. It is necessary to understand the communication and interactions between brain cells, including neurons, astrocytes and microglia, to understand oxidative stress and antioxidant mechanisms. Here, the role of glia in the protection of neurons against oxidative injury and glia–neuron crosstalk to maintain antioxidant defense mechanisms and brain protection are reviewed. The first part of this review focuses on the role of glia in the morphological and physiological changes required for brain homeostasis under oxidative stress and antioxidant defense mechanisms. The second part focuses on the essential crosstalk between neurons and glia for redox balance in the brain for protection against oxidative stress.
Collapse
|
89
|
Shin Low S, Nong Lim C, Yew M, Siong Chai W, Low LE, Manickam S, Ti Tey B, Show PL. Recent ultrasound advancements for the manipulation of nanobiomaterials and nanoformulations for drug delivery. ULTRASONICS SONOCHEMISTRY 2021; 80:105805. [PMID: 34706321 PMCID: PMC8555278 DOI: 10.1016/j.ultsonch.2021.105805] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/08/2021] [Accepted: 10/20/2021] [Indexed: 05/04/2023]
Abstract
Recent advances in ultrasound (US) have shown its great potential in biomedical applications as diagnostic and therapeutic tools. The coupling of US-assisted drug delivery systems with nanobiomaterials possessing tailor-made functions has been shown to remove the limitations of conventional drug delivery systems. The low-frequency US has significantly enhanced the targeted drug delivery effect and efficacy, reducing limitations posed by conventional treatments such as a limited therapeutic window. The acoustic cavitation effect induced by the US-mediated microbubbles (MBs) has been reported to replace drugs in certain acute diseases such as ischemic stroke. This review briefly discusses the US principles, with particular attention to the recent advancements in drug delivery applications. Furthermore, US-assisted drug delivery coupled with nanobiomaterials to treat different diseases (cancer, neurodegenerative disease, diabetes, thrombosis, and COVID-19) are discussed in detail. Finally, this review covers the future perspectives and challenges on the applications of US-mediated nanobiomaterials.
Collapse
Affiliation(s)
- Sze Shin Low
- Continental-NTU Corporate Lab, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia
| | - Chang Nong Lim
- School of Engineering and Physical Sciences, Heriot-Watt University Malaysia, No. 1, Jalan Venna P5/2, Precinct 5, Putrajaya 62200, Malaysia
| | - Maxine Yew
- Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo 315100, Zhejiang, China
| | - Wai Siong Chai
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, Guangdong, China
| | - Liang Ee Low
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, China.
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Jalan Tungku Link Gadong, Bandar Seri Begawan, BE1410, Brunei Darussalam.
| | - Beng Ti Tey
- Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
90
|
Sango J, Kakihana T, Takahashi M, Katsuragi Y, Anisimov S, Komatsu M, Fujii M. USP10 inhibits the dopamine-induced reactive oxygen species-dependent apoptosis of neuronal cells by stimulating the antioxidant Nrf2 activity. J Biol Chem 2021; 298:101448. [PMID: 34838592 PMCID: PMC8689211 DOI: 10.1016/j.jbc.2021.101448] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 11/15/2021] [Accepted: 11/22/2021] [Indexed: 01/30/2023] Open
Abstract
Nrf2 is an antioxidant transcriptional activator in many types of cells, and its dysfunction plays key roles in a variety of human disorders, including Parkinson's disease (PD). PD is characterized by the selective loss of dopaminergic neurons in PD-affected brain regions. Dopamine treatment of neuronal cells stimulates the production of reactive oxygen species (ROS) and increases ROS-dependent neuronal apoptosis. In this study, we found that the ubiquitin-specific protease 10 (USP10) protein reduces dopamine-induced ROS production of neuronal cells and ROS-dependent apoptosis by stimulating the antioxidant activity of Nrf2. USP10 interacted with the Nrf2 activator p62, increased the phosphorylation of p62, increased the interaction of p62 with the Nrf2 inhibitor Keap1, and stimulated Nrf2 antioxidant transcriptional activity. In addition, USP10 augmented dopamine-induced Nrf2 translation. Taken together, these results indicate that USP10 is a key regulator of Nrf2 antioxidant activity in neuronal cells and suggest that USP10 activators are promising therapeutic agents for oxidative stress–related diseases, including PD.
Collapse
Affiliation(s)
- Junya Sango
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Taichi Kakihana
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masahiko Takahashi
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yoshinori Katsuragi
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Sergei Anisimov
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masaaki Komatsu
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Japan
| | - Masahiro Fujii
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| |
Collapse
|
91
|
Melatonin Ameliorates Valproic Acid-Induced Neurogenesis Impairment: The Role of Oxidative Stress in Adult Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9997582. [PMID: 34804374 PMCID: PMC8604576 DOI: 10.1155/2021/9997582] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 10/04/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022]
Abstract
Background Valproic acid (anticonvulsant medication) has been found to inhibit histone deacetylase activity and suppress hippocampal neurogenesis, which causes memory impairment in both humans and rodents. The neurohormone melatonin, which regulates mammalian seasonal and circadian physiology, has recently been shown to have neuroprotective properties, counteracting memory impairment associated with VPA-caused hippocampal neurogenesis reduction. This study is aimed at investigating the molecular mechanisms of melatonin associated with VPA-induced hippocampal neurogenesis and memory impairment. Methods Male Spraque-Dawley rats received VPA (300 mg/kg) twice daily or melatonin (8 mg/kg/day) or some rats were given melatonin for 14 days during VPA administration. Results The VPA-treated rats showed a significant increase in malondialdehyde (MDA) levels in the hippocampus and p21-positive cells in the subgranular zone (SGZ) of the dentate gyrus (DG) but decreased superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPx) activities. Moreover, VPA significantly decreased levels of nestin, Notchl, nuclear factor erythroid 2-related factor 2 (Nrf2), doublecortin (DCX), sex determining region Y-box 2 (SOX2), and brain-derived neurotrophic factor (BDNF). Conclusions We found that melatonin was able to counteract these neurotoxic effects, acting as a neuroprotectant in VPA-induced memory hippocampal neurogenesis impairment by preventing intracellular oxidative stress and increasing antioxidant activity.
Collapse
|
92
|
Vahdati SN, Lashkari A, Navasatli SA, Ardestani SK, Safavi M. Butylated hydroxyl-toluene, 2,4-Di-tert-butylphenol, and phytol of Chlorella sp. protect the PC12 cell line against H 2O 2-induced neurotoxicity. Biomed Pharmacother 2021; 145:112415. [PMID: 34775236 DOI: 10.1016/j.biopha.2021.112415] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/21/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress is considered the main cause of cellular damage in a number of neurodegenerative disorders. One suitable ways to prevent cell damage is the use of the exogenous antioxidant capacity of natural products, such as microalgae. In the present study, four microalgae extracts, isolated from the Persian Gulf, were screened to analyze their potential antioxidant activity and free radical scavenging using ABTS, DPPH, and FRAP methods. The methanolic extracts (D1M) of green microalgae derived from Chlorella sp. exhibited potent free radical scavenging activity. In order to characterize microalgae species, microscopic observations and analysis of the expression of 18S rRNA were performed. The antioxidant and neuroprotective effects of D1M on H2O2-induced toxicity in PC12 cells were investigated. The results demonstrated that D1M significantly decreased the release of nitric oxide (NO), formation of intracellular reactive oxygen species (ROS), and the level of malondialdehyde (MDA), whereas it enhanced the content of glutathione (GSH), and activity of heme oxygenase 1 (HO-1), NAD(P)H: quinone oxidoreductase 1 (NQO1), and catalase (CAT) in PC12 cells exposed to H2O2. The pretreatment of D1M improved cell viability as measured by the MTT assay and invert microscopy, reduced cell apoptosis as examined by flow cytometry analysis, increased mitochondrial membrane potential (MMP), and diminished caspase-3 activity. The GC/MS analysis revealed that D1M ingredients have powerful antioxidant and anti-inflammatory compounds, such as butylated hydroxytoluene (BHT), 2,4-di-tert-butyl-phenol (2,4-DTBP), and phytol. These results suggested that Chlorella sp. extracts have strong potential to be applied as neuroprotective agents, for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Saeed Niazi Vahdati
- Institute of Biochemistry and Biophysics, Department of Biochemistry, University of Tehran, Tehran, Iran
| | - Ali Lashkari
- Institute of Biochemistry and Biophysics, Department of Biochemistry, University of Tehran, Tehran, Iran
| | - Sepideh Aliniaye Navasatli
- Institute of Biochemistry and Biophysics, Department of Biochemistry, University of Tehran, Tehran, Iran
| | - Susan Kabudanian Ardestani
- Institute of Biochemistry and Biophysics, Department of Biochemistry, University of Tehran, Tehran, Iran
| | - Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran.
| |
Collapse
|
93
|
Velásquez-Jiménez D, Corella-Salazar DA, Zuñiga-Martínez BS, Domínguez-Avila JA, Montiel-Herrera M, Salazar-López NJ, Rodrigo-Garcia J, Villegas-Ochoa MA, González-Aguilar GA. Phenolic compounds that cross the blood-brain barrier exert positive health effects as central nervous system antioxidants. Food Funct 2021; 12:10356-10369. [PMID: 34608925 DOI: 10.1039/d1fo02017j] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The blood-brain barrier (BBB) is a physical structure whose main function is to strictly regulate access to circulating compounds into the central nervous system (CNS). Vegetable-derived phenolic compounds have been widely studied, with numerous epidemiologic and interventional studies confirming their health-related bioactivities across multiple cells, organs and models. Phenolics are non-essential xenobiotics, and should theoretically be unable to cross the BBB. The present work summarizes current experimental evidence that reveals that not only are phenolic compounds able to cross the BBB and bioaccumulate in the brain, but there is some stereoselectivity, which suggests the presence of specific transporters that allow them to reach the brain. Some molecules cross the BBB intact, while others do so only after being biotransformed or metabolized elsewhere. Once inside the CNS, they prevent or counter oxidative stress, which maintains the molecular, cellular, structural and functional integrity of the brain, and subsequently, overall human health.
Collapse
Affiliation(s)
- Dafne Velásquez-Jiménez
- Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, 83304 Hermosillo, Sonora, Mexico
| | - Diana A Corella-Salazar
- Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, 83304 Hermosillo, Sonora, Mexico
| | - B Shain Zuñiga-Martínez
- Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, 83304 Hermosillo, Sonora, Mexico
| | - J Abraham Domínguez-Avila
- Cátedras CONACYT-Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, 83304 Hermosillo, Sonora, Mexico.
| | - Marcelino Montiel-Herrera
- Departamento de Medicina y Ciencias de la Salud, Universidad de Sonora, 83000 Hermosillo, Sonora, Mexico
| | - Norma J Salazar-López
- Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, 83304 Hermosillo, Sonora, Mexico.,Universidad Autónoma de Baja California, Facultad de Medicina de Mexicali, Dr. Humberto Torres Sanginés S/N, Centro Cívico, Mexicali, Baja California 21000, Mexico
| | - Joaquín Rodrigo-Garcia
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo Envolvente del Pronaf y Estocolmo s/n, 32310 Ciudad Juárez, Chihuahua, Mexico
| | - Mónica A Villegas-Ochoa
- Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, 83304 Hermosillo, Sonora, Mexico
| | - Gustavo A González-Aguilar
- Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, 83304 Hermosillo, Sonora, Mexico
| |
Collapse
|
94
|
Semenovich DS, Plotnikov EY, Titko OV, Lukiyenko EP, Kanunnikova NP. Effects of Panthenol and N-Acetylcysteine on Changes in the Redox State of Brain Mitochondria under Oxidative Stress In Vitro. Antioxidants (Basel) 2021; 10:antiox10111699. [PMID: 34829571 PMCID: PMC8614675 DOI: 10.3390/antiox10111699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/16/2021] [Accepted: 10/24/2021] [Indexed: 11/16/2022] Open
Abstract
The glutathione system in the mitochondria of the brain plays an important role in maintaining the redox balance and thiol–disulfide homeostasis, whose violations are the important component of the biochemical shifts in neurodegenerative diseases. Mitochondrial dysfunction is known to be accompanied by the activation of free radical processes, changes in energy metabolism, and is involved in the induction of apoptotic signals. The formation of disulfide bonds is a leading factor in the folding and maintenance of the three-dimensional conformation of many specific proteins that selectively accumulate in brain structures during neurodegenerative pathology. In this study, we estimated brain mitochondria redox status and functioning during induction of oxidative damage in vitro. We have shown that the development of oxidative stress in vitro is accompanied by inhibition of energy metabolism in the brain mitochondria, a shift in the redox potential of the glutathione system to the oxidized side, and activation of S-glutathionylation of proteins. Moreover, we studied the effects of pantothenic acid derivatives—precursors of coenzyme A (CoA), primarily D-panthenol, that exhibit high neuroprotective activity in experimental models of neurodegeneration. Panthenol contributes to the significant restoration of the activity of enzymes of mitochondrial energy metabolism, normalization of the redox potential of the glutathione system, and a decrease in the level of S-glutathionylated proteins in brain mitochondria. The addition of succinate and glutathione precursor N-acetylcysteine enhances the protective effects of the drug.
Collapse
Affiliation(s)
- Dmitry S. Semenovich
- Institute of Biochemistry of Biologically Active Substances, NAS of Belarus, 230030 Grodno, Belarus; (O.V.T.); (E.P.L.); (N.P.K.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia;
- Correspondence: ; Tel.: +7-(925)-465-78-52
| | - Egor Yu. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia;
| | - Oksana V. Titko
- Institute of Biochemistry of Biologically Active Substances, NAS of Belarus, 230030 Grodno, Belarus; (O.V.T.); (E.P.L.); (N.P.K.)
| | - Elena P. Lukiyenko
- Institute of Biochemistry of Biologically Active Substances, NAS of Belarus, 230030 Grodno, Belarus; (O.V.T.); (E.P.L.); (N.P.K.)
| | - Nina P. Kanunnikova
- Institute of Biochemistry of Biologically Active Substances, NAS of Belarus, 230030 Grodno, Belarus; (O.V.T.); (E.P.L.); (N.P.K.)
- Department of Technology, Physiology and Food Hygiene, State University of Grodno, 230030 Grodno, Belarus
| |
Collapse
|
95
|
Vongthip W, Sillapachaiyaporn C, Kim KW, Sukprasansap M, Tencomnao T. Thunbergia laurifolia Leaf Extract Inhibits Glutamate-Induced Neurotoxicity and Cell Death through Mitophagy Signaling. Antioxidants (Basel) 2021; 10:antiox10111678. [PMID: 34829549 PMCID: PMC8614718 DOI: 10.3390/antiox10111678] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 11/25/2022] Open
Abstract
Oxidative stress plays a crucial role in neurodegeneration. Therefore, reducing oxidative stress in the brain is an important strategy to prevent neurodegenerative disorders. Thunbergia laurifolia (Rang-jued) is well known as an herbal tea in Thailand. Here, we aimed to determine the protective effects of T. laurifolia leaf extract (TLE) on glutamate-induced oxidative stress toxicity and mitophagy-mediated cell death in mouse hippocampal cells (HT-22). Our results reveal that TLE possesses a high level of bioactive antioxidants by LC–MS technique. We found that the pre-treatment of cells with TLE prevented glutamate-induced neuronal death in a concentration-dependent manner. TLE reduced the intracellular ROS and maintained the mitochondrial membrane potential caused by glutamate. Moreover, TLE upregulated the gene expression of antioxidant enzymes (SOD1, SOD2, CAT, and GPx). Interestingly, glutamate also induced the activation of the mitophagy process. However, TLE could reverse this activity by inhibiting autophagic protein (LC3B-II/LC3B-I) activation and increasing a specific mitochondrial protein (TOM20). Our results suggest that excessive glutamate can cause neuronal death through mitophagy-mediated cell death signaling in HT-22 cells. Our findings indicate that TLE protects cells from neuronal death by stimulating the endogenous antioxidant enzymes and inhibiting glutamate-induced oxidative toxicity via the mitophagy–autophagy pathway. TLE might have potential as an alternative or therapeutic approach in neurodegenerative diseases.
Collapse
Affiliation(s)
- Wudtipong Vongthip
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (W.V.); (C.S.)
| | - Chanin Sillapachaiyaporn
- Graduate Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (W.V.); (C.S.)
| | - Kyu-Won Kim
- Research Institute of Pharmaceutical Sciences and College of Pharmacy, Seoul National University, Seoul 151-742, Korea;
| | - Monruedee Sukprasansap
- Food Toxicology Unit, Institute of Nutrition, Mahidol University, Nakhon Pathom 73170, Thailand
- Correspondence: (M.S.); (T.T.); Tel.: +66-2-800-2380 (M.S.); +66-2-218-1533 (T.T.)
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (M.S.); (T.T.); Tel.: +66-2-800-2380 (M.S.); +66-2-218-1533 (T.T.)
| |
Collapse
|
96
|
Holton KF. Micronutrients May Be a Unique Weapon Against the Neurotoxic Triad of Excitotoxicity, Oxidative Stress and Neuroinflammation: A Perspective. Front Neurosci 2021; 15:726457. [PMID: 34630015 PMCID: PMC8492967 DOI: 10.3389/fnins.2021.726457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/31/2021] [Indexed: 12/21/2022] Open
Abstract
Excitotoxicity has been implicated in many neurological disorders and is a leading cause of oxidative stress and neuroinflammation in the nervous system. Most of the research to date has focused on each of these conditions individually; however, excitotoxicity, oxidative stress, and neuroinflammation have the ability to influence one another in a self-sustaining manner, thus functioning as a "neurotoxic triad." This perspective article re-introduces the concept of the neurotoxic triad and reviews how specific dietary micronutrients have been shown to protect against not only oxidative stress, but also excitotoxicity and neuroinflammation. Future dietary interventions for neurological disorders could focus on the effects on all three aspects of the neurotoxic triad.
Collapse
Affiliation(s)
- Kathleen F Holton
- Nutritional Neuroscience Lab, Department of Health Studies, Center for Neuroscience and Behavior, American University, Washington, DC, United States
| |
Collapse
|
97
|
Yow YY, Goh TK, Nyiew KY, Lim LW, Phang SM, Lim SH, Ratnayeke S, Wong KH. Therapeutic Potential of Complementary and Alternative Medicines in Peripheral Nerve Regeneration: A Systematic Review. Cells 2021; 10:cells10092194. [PMID: 34571842 PMCID: PMC8472132 DOI: 10.3390/cells10092194] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the progressive advances, current standards of treatments for peripheral nerve injury do not guarantee complete recovery. Thus, alternative therapeutic interventions should be considered. Complementary and alternative medicines (CAMs) are widely explored for their therapeutic value, but their potential use in peripheral nerve regeneration is underappreciated. The present systematic review, designed according to guidelines of Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols, aims to present and discuss the current literature on the neuroregenerative potential of CAMs, focusing on plants or herbs, mushrooms, decoctions, and their respective natural products. The available literature on CAMs associated with peripheral nerve regeneration published up to 2020 were retrieved from PubMed, Scopus, and Web of Science. According to current literature, the neuroregenerative potential of Achyranthes bidentata, Astragalus membranaceus, Curcuma longa, Panax ginseng, and Hericium erinaceus are the most widely studied. Various CAMs enhanced proliferation and migration of Schwann cells in vitro, primarily through activation of MAPK pathway and FGF-2 signaling, respectively. Animal studies demonstrated the ability of CAMs to promote peripheral nerve regeneration and functional recovery, which are partially associated with modulations of neurotrophic factors, pro-inflammatory cytokines, and anti-apoptotic signaling. This systematic review provides evidence for the potential use of CAMs in the management of peripheral nerve injury.
Collapse
Affiliation(s)
- Yoon-Yen Yow
- Department of Biological Sciences, School of Medicine and Life Sciences, Sunway University, Petaling Jaya 47500, Malaysia; (T.-K.G.); (K.-Y.N.); (S.R.)
- Correspondence: (Y.-Y.Y.); (L.-W.L.); (K.-H.W.); Tel.: +603-7491-8622 (Y.-Y.Y.); +852-3917-6830 (L.-W.L.); +603-7967-4729 (K.-H.W.)
| | - Tiong-Keat Goh
- Department of Biological Sciences, School of Medicine and Life Sciences, Sunway University, Petaling Jaya 47500, Malaysia; (T.-K.G.); (K.-Y.N.); (S.R.)
| | - Ke-Ying Nyiew
- Department of Biological Sciences, School of Medicine and Life Sciences, Sunway University, Petaling Jaya 47500, Malaysia; (T.-K.G.); (K.-Y.N.); (S.R.)
| | - Lee-Wei Lim
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, L4 Laboratory Block, Hong Kong
- Correspondence: (Y.-Y.Y.); (L.-W.L.); (K.-H.W.); Tel.: +603-7491-8622 (Y.-Y.Y.); +852-3917-6830 (L.-W.L.); +603-7967-4729 (K.-H.W.)
| | - Siew-Moi Phang
- Institute of Ocean and Earth Sciences, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
- Faculty of Applied Sciences, UCSI University, Cheras, Kuala Lumpur 56000, Malaysia
| | - Siew-Huah Lim
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Shyamala Ratnayeke
- Department of Biological Sciences, School of Medicine and Life Sciences, Sunway University, Petaling Jaya 47500, Malaysia; (T.-K.G.); (K.-Y.N.); (S.R.)
| | - Kah-Hui Wong
- Department of Anatomy, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: (Y.-Y.Y.); (L.-W.L.); (K.-H.W.); Tel.: +603-7491-8622 (Y.-Y.Y.); +852-3917-6830 (L.-W.L.); +603-7967-4729 (K.-H.W.)
| |
Collapse
|
98
|
Shal B, Khan A, Khan AU, Ullah R, Ali G, Islam SU, Haq IU, Ali H, Seo EK, Khan S. Alleviation of Memory Deficit by Bergenin via the Regulation of Reelin and Nrf-2/NF-κB Pathway in Transgenic Mouse Model. Int J Mol Sci 2021; 22:6603. [PMID: 34203049 PMCID: PMC8234641 DOI: 10.3390/ijms22126603] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 12/15/2022] Open
Abstract
The present study aims to determine the neuroprotective effect of Bergenin against spatial memory deficit associated with neurodegeneration. Preliminarily, the protective effect of Bergenin was observed against H2O2-induced oxidative stress in HT-22 and PC-12 cells. Further studies were performed in 5xFAD Tg mouse model by administering Bergenin (1, 30 and 60 mg/kg; orally), whereas Bergenin (60 mg/kg) significantly attenuated the memory deficit observed in the Y-maze and Morris water maze (MWM) test. Fourier transform-infrared (FT-IR) spectroscopy displayed restoration of lipids, proteins and their derivatives compared to the 5xFAD Tg mice group. The differential scanning calorimeter (DSC) suggested an absence of amyloid beta (Aβ) aggregation in Bergenin-treated mice. The immunohistochemistry (IHC) analysis suggested the neuroprotective effect of Bergenin by increasing Reelin signaling (Reelin/Dab-1) and attenuated Aβ (1-42) aggregation in hippocampal regions of mouse brains. Furthermore, IHC and western blot results suggested antioxidant (Keap-1/Nrf-2/HO-1), anti-inflammatory (TLR-4/NF-kB) and anti-apoptotic (Bcl-2/Bax/Caspase-3) effect of Bergenin. Moreover, a decrease in Annexin V/PI-stained hippocampal cells suggested its effect against neurodegeneration. The histopathological changes were reversed significantly by Bergenin. In addition, a remarkable increase in antioxidant level with suppression of pro-inflammatory cytokines, oxidative stress and nitric oxide production were observed in specific regions of the mouse brains.
Collapse
Affiliation(s)
- Bushra Shal
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (B.S.); (A.K.); (A.U.K.)
| | - Adnan Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (B.S.); (A.K.); (A.U.K.)
| | - Ashraf Ullah Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (B.S.); (A.K.); (A.U.K.)
| | - Rahim Ullah
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan; (R.U.); (G.A.)
| | - Gowhar Ali
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan; (R.U.); (G.A.)
| | - Salman Ul Islam
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea;
| | - Ihsan ul Haq
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (I.u.H.); (H.A.)
| | - Hussain Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (I.u.H.); (H.A.)
| | - Eun-Kyoung Seo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Salman Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (B.S.); (A.K.); (A.U.K.)
| |
Collapse
|
99
|
Low LE, Wang Q, Chen Y, Lin P, Yang S, Gong L, Lee J, Siva SP, Goh BH, Li F, Ling D. Microenvironment-tailored nanoassemblies for the diagnosis and therapy of neurodegenerative diseases. NANOSCALE 2021; 13:10197-10238. [PMID: 34027535 DOI: 10.1039/d1nr02127c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Neurodegenerative disorder is an illness involving neural dysfunction/death attributed to complex pathological processes, which eventually lead to the mortality of the host. It is generally recognized through features such as mitochondrial dysfunction, protein aggregation, oxidative stress, metal ions dyshomeostasis, membrane potential change, neuroinflammation and neurotransmitter impairment. The aforementioned neuronal dysregulations result in the formation of a complex neurodegenerative microenvironment (NME), and may interact with each other, hindering the performance of therapeutics for neurodegenerative disease (ND). Recently, smart nanoassemblies prepared from functional nanoparticles, which possess the ability to interfere with different NME factors, have shown great promise to enhance the diagnostic and therapeutic efficacy of NDs. Herein, this review highlights the recent advances of stimuli-responsive nanoassemblies that can effectively combat the NME for the management of ND. The first section outlined the NME properties and their interrelations that are exploitable for nanoscale targeting. The discussion is then extended to the controlled assembly of functional nanoparticles for the construction of stimuli-responsive nanoassemblies. Further, the applications of stimuli-responsive nanoassemblies for the enhanced diagnosis and therapy of ND are introduced. Finally, perspectives on the future development of NME-tailored nanomedicines are given.
Collapse
Affiliation(s)
- Liang Ee Low
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China. and Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Qiyue Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China. and Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Ying Chen
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China. and Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Peihua Lin
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China. and Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Shengfei Yang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China. and Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Linji Gong
- National Center for Translational Medicine, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jiyoung Lee
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China.
| | - Sangeetaprivya P Siva
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Bey-Hing Goh
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China. and Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Fangyuan Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China. and Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Daishun Ling
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China. and Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China and National Center for Translational Medicine, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China and Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
100
|
Carraro Junior LR, Alves AG, Rech TDST, Campos Júnior JC, Siqueira GM, Cunico W, Brüning CA, Bortolatto CF. Three -(pyridin-2-yl)-2-(pyridin-2-ylimino)thiazolidin-4-one as a novel inhibitor of cerebral MAO-B activity with antioxidant properties and low toxicity potential. J Biochem Mol Toxicol 2021; 35:e22833. [PMID: 34047428 DOI: 10.1002/jbt.22833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 01/21/2021] [Accepted: 05/18/2021] [Indexed: 11/12/2022]
Abstract
Some brain diseases are associated with oxidative stress and altered monoamine oxidase (MAO) activity. The objective of this study was to evaluate the antioxidant and neuroprotective actions through MAO inhibition of 3-(pyridin-2-yl)-2-(pyridine-2-ylimino) thiazolidin-4-one (PPIT, a synthetic molecule containing a thiazolidinone nucleus), as well as its effects on toxicity parameters in Swiss female mice. Five in vitro assays were carried out to verify the PPIT antioxidant capacity: protein carbonylation (PC), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 1,1-diphenyl-2-picryl-hydrazil (DPPH), ferric ion (Fe3+ ) reducing antioxidant power (FRAP), and superoxide dismutase (SOD)-like activity. The results showed that PPIT reduced the level of PC in the homogenate of the brain. This compound did not demonstrate SOD mimetic activity, but it acted as a free radical scavenger (ABTS and DPPH) and exhibited reducing activity in the FRAP assay. In addition, the effects of PPIT on cerebral MAO activity (MAO-A and B isoforms) were investigated in vitro. Our data revealed inhibition of the MAO-B activity by PPIT with no effects on MAO-A. Lastly, an acute oral toxicity test was conducted in mice. No changes in food intake, body weight, and biochemical markers of kidney and liver damage were detected in mice treated with a high dose of PPIT (300 mg/kg). In conclusion, the present study demonstrated that PPIT exhibits antioxidant activity and selectively inhibits the MAO-B isoform without causing apparent toxicity. These findings suggest PPIT as a potential therapeutic candidate to be tested in preclinical models of brain diseases involving perturbations of MAO-B activity and redox status.
Collapse
Affiliation(s)
- Luiz Roberto Carraro Junior
- Programa de Pós-graduação em Bioquímica e Bioprospecção (PPGBBio), Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brasil
| | - Amália Gonçalves Alves
- Programa de Pós-graduação em Bioquímica e Bioprospecção (PPGBBio), Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brasil
| | - Taís da Silva Teixeira Rech
- Programa de Pós-graduação em Bioquímica e Bioprospecção (PPGBBio), Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brasil
| | - José Coan Campos Júnior
- Programa de Pós-Graduação em Bioquímica e Bioprospecção (PPGBBio), Laboratório de Química Aplicada a Bioativos (LaQuiABio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, UFPel, Pelotas, RS, Brasil
| | - Geonir Machado Siqueira
- Programa de Pós-Graduação em Bioquímica e Bioprospecção (PPGBBio), Laboratório de Química Aplicada a Bioativos (LaQuiABio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, UFPel, Pelotas, RS, Brasil
| | - Wilson Cunico
- Programa de Pós-Graduação em Bioquímica e Bioprospecção (PPGBBio), Laboratório de Química Aplicada a Bioativos (LaQuiABio), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, UFPel, Pelotas, RS, Brasil
| | - César Augusto Brüning
- Programa de Pós-graduação em Bioquímica e Bioprospecção (PPGBBio), Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brasil
| | - Cristiani Folharini Bortolatto
- Programa de Pós-graduação em Bioquímica e Bioprospecção (PPGBBio), Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brasil
| |
Collapse
|