51
|
Iddir M, Vahid F, Merten D, Larondelle Y, Bohn T. Influence of Proteins on the Absorption of Lipophilic Vitamins, Carotenoids and Curcumin - A Review. Mol Nutr Food Res 2022; 66:e2200076. [PMID: 35506751 DOI: 10.1002/mnfr.202200076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/26/2022] [Indexed: 12/13/2022]
Abstract
While proteins have been widely used to encapsulate, protect, and regulate the release of bioactive food compounds, little is known about the influence of co-consumed proteins on the absorption of lipophilic constituents following digestion, such as vitamins (A, D, E, K), carotenoids, and curcumin. Their bioavailability is often low and very variable, depending on the food matrix and host factors. Some proteins can act as emulsifiers during digestion. Their liberated peptides have amphiphilic properties that can facilitate the absorption of microconstituents, by improving their transition from lipid droplets into mixed micelles. Contrarily, the less well digested proteins could negatively impinge on enzymatic accessibility to the lipid droplets, slowing down their processing into mixed micelles and entrapping apolar food compounds. Interactions with mixed micelles and proteins are also plausible, as shown earlier for drugs. This review focuses on the ability of proteins to act as effective emulsifiers of lipophilic vitamins, carotenoids, and curcumin during digestion. The functional properties of proteins, their chemical interactions with enzymes and food constituents during gastro-intestinal digestion, potentials and limitations for their use as emulsifiers are emphasized and data from human, animal, and in vitro trials are summarized.
Collapse
Affiliation(s)
- Mohammed Iddir
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Science and Technology, 1 A-B, rue Thomas Edison, Strassen, L-1445, Luxembourg.,Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, 1348, Belgium
| | - Farhad Vahid
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Science and Technology, 1 A-B, rue Thomas Edison, Strassen, L-1445, Luxembourg
| | - Diane Merten
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Science and Technology, 1 A-B, rue Thomas Edison, Strassen, L-1445, Luxembourg
| | - Yvan Larondelle
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, 1348, Belgium
| | - Torsten Bohn
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Science and Technology, 1 A-B, rue Thomas Edison, Strassen, L-1445, Luxembourg
| |
Collapse
|
52
|
Al Mamun A, Sufian MA, Uddin MS, Sumsuzzman DM, Jeandet P, Islam MS, Zhang HJ, Kong AN, Sarwar MS. Exploring the role of senescence inducers and senotherapeutics as targets for anticancer natural products. Eur J Pharmacol 2022; 928:174991. [PMID: 35513016 DOI: 10.1016/j.ejphar.2022.174991] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/18/2022] [Accepted: 04/28/2022] [Indexed: 01/10/2023]
Abstract
During the last few decades, cancer has remained one of the deadliest diseases that endanger human health, emphasizing urgent drug discovery. Cellular senescence has gained a great deal of attention in recent years because of its link to the development of cancer therapy. Senescent cells are incapable of proliferating due to irreversibly inhibited the initiation of the cell cycle pathways. However, senescent cells aggregate in tissues and produce a pro-inflammatory secretome called senescence-associated secretory phenotype (SASP) that can cause serious harmful effects if not managed properly. There is mounting evidence that senescent cells lead to various phases of tumorigenesis in various anatomical sites, owing mostly to the paracrine activities of the SASP. Therefore, a new treatment field called senotherapeutics has been established. Senotherapeutics are newly developed anticancer agents that have been demonstrated to inhibit cancer effectively. In light of recent findings, several promising natural products have been identified as senescence inducers and senotherapeutics, including, miliusanes, epigallocatechin gallate, phloretin, silybin, resveratrol, genistein, sulforaphane, quercetin, allicin, fisetin, piperlongumine, berberine, triptolide, tocotrienols and curcumin analogs. Several of them have already been validated through preclinical trials and exert an enormous potential for clinical trials. This review article focuses on and summarises the latest advances on cellular senescence and its potential as a target for cancer treatment and highlights the well-known natural products as senotherapeutics for cancer treatment.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong
| | | | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | | | - Philippe Jeandet
- University of Reims Champagne-Ardenne, Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, PO Box 1039, 51687, Reims, Cedex 2, France
| | - Mohammad Safiqul Islam
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Hong-Jie Zhang
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Md Shahid Sarwar
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh; Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
53
|
|
54
|
Othman N, Hean CG, Azman EM, Suleiman N. Effect of Process Variables in Supercritical Carbon Dioxide Extraction of Tocotrienols from Hydrolysed Palm Fatty Acid Distillate (
PFAD
). J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- N. Othman
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia 43400 UPM Serdang Selangor Malaysia
| | - C. G. Hean
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia 43400 UPM Serdang Selangor Malaysia
| | - E. M. Azman
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia 43400 UPM Serdang Selangor Malaysia
| | - N Suleiman
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia 43400 UPM Serdang Selangor Malaysia
| |
Collapse
|
55
|
Polmann G, Badia V, Danielski R, Ferreira SRS, Block JM. Nuts and Nut-Based Products: A Meta-Analysis from Intake Health Benefits and Functional Characteristics from Recovered Constituents. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2045495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Gabriela Polmann
- Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - Vinicius Badia
- Department of Food Engineering and Chemical Engineering, Santa Catarina State University (UDESC), Pinhalzinho, Brazil
| | - Renan Danielski
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL, Canada
| | | | - Jane Mara Block
- Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| |
Collapse
|
56
|
Mingrou L, Guo S, Ho C, Bai N. Review on chemical compositions and biological activities of peanut (
Arachis hypogeae
L.). J Food Biochem 2022; 46:e14119. [DOI: 10.1111/jfbc.14119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/04/2022] [Accepted: 01/29/2022] [Indexed: 12/27/2022]
Affiliation(s)
- Li Mingrou
- College of Food Science and Technology Northwest University Xi’an China
| | - Sen Guo
- College of Food Science and Technology Northwest University Xi’an China
| | - Chi‐Tang Ho
- Department of Food Science Rutgers University New Brunswick New Jersey USA
| | - Naisheng Bai
- College of Food Science and Technology Northwest University Xi’an China
| |
Collapse
|
57
|
|
58
|
Unraveling the beneficial effects of herbal Lebanese mixture “Za’atar”. History, studies, and properties of a potential healthy food ingredient. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104993] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
59
|
Porro C, La Torre ME, Tartaglia N, Benameur T, Santini M, Ambrosi A, Messina G, Cibelli G, Fiorelli A, Polito R, Messina G. The Potential Role of Nutrition in Lung Cancer Establishment and Progression. Life (Basel) 2022; 12:270. [PMID: 35207557 PMCID: PMC8877211 DOI: 10.3390/life12020270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 11/16/2022] Open
Abstract
Lung cancer is a devastating disease with a high incidence and low survival rates, so recent studies have focused on analyzing the risk factors that might prevent this disease from developing or have protective/therapeutic effects. Nutrition is an important key factor in the prevention and treatment of lung cancer. Various factors appear to be involved in the development of the latter, such as cigarette smoking or certain external environmental factors. The increase in oxidative stress is therefore an integral part of the carcinogenesis process. The biological role of bioactive factors derived from adipose tissue, mainly adipokines, is implicated in various cancers, and an increasing body of evidence has shown that certain adipocytokines contribute to the development, progression and prognosis of lung cancer. Not all adipokines stimulate tumor growth; in fact, adiponectin inhibits carcinogenesis by regulating both cell growth and the levels of inflammatory cytokines. Adiponectin expression is deregulated in several cancer types. Many nutritional factors have been shown to increase adiponectin levels and therefore could be used as a new therapeutic strategy for combating lung cancer. In addition, foods with antioxidant and anti-inflammatory properties play a key role in the prevention of many human diseases, including lung cancer. The purpose of this review is to analyze the role of diet in lung cancer in order to recommend dietary habit and lifestyle changes to prevent or treat this pathology.
Collapse
Affiliation(s)
- Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (C.P.); (M.E.L.T.); (G.M.); (G.C.)
| | - Maria Ester La Torre
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (C.P.); (M.E.L.T.); (G.M.); (G.C.)
| | - Nicola Tartaglia
- Department of Medical Additionally, Surgical Sciences, University of Foggia, 71100 Foggia, Italy; (N.T.); (A.A.)
| | - Tarek Benameur
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Mario Santini
- Department of Translational Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.S.); (G.M.)
| | - Antonio Ambrosi
- Department of Medical Additionally, Surgical Sciences, University of Foggia, 71100 Foggia, Italy; (N.T.); (A.A.)
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (C.P.); (M.E.L.T.); (G.M.); (G.C.)
| | - Giuseppe Cibelli
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (C.P.); (M.E.L.T.); (G.M.); (G.C.)
| | - Alfonso Fiorelli
- Department of Translational Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.S.); (G.M.)
| | - Rita Polito
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (C.P.); (M.E.L.T.); (G.M.); (G.C.)
| | - Gaetana Messina
- Department of Translational Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.S.); (G.M.)
| |
Collapse
|
60
|
Wang H, Yan W, Sun Y, Yang CS. δ-Tocotrienol is the most potent vitamin E form in inhibiting prostate cancer cell growth and inhibits prostate carcinogenesis in Ptenp-/- mice. Cancer Prev Res (Phila) 2022; 15:233-245. [PMID: 35144931 DOI: 10.1158/1940-6207.capr-21-0508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/12/2022] [Accepted: 02/04/2022] [Indexed: 11/16/2022]
Abstract
Vitamin E compounds, consisting of α, β, γ, and δ forms of tocopherols and tocotrienols, display different cancer preventive activities in experimental models. Tocotrienols may have higher potential for clinical use due to their lower effective doses in laboratory studies. However, most studies on tocotrienols have been carried out using cancer cell lines. Strong data from animal studies may encourage the use of tocotrienols for human cancer prevention research. To examine the cancer inhibitory activity of different vitamin E forms, we first investigated their inhibitory activities of different vitamin E forms in prostate cancer cell lines. We found that δ-tocotrienol (δT3) was the most effective form in inhibiting cell growth at equivalent doses. Because of this in vitro potency, δT3 was further studied using prostate specific Pten-/- (Ptenp-/-) mice. We found that 0.05% δT3 in diet reduced prostate adenocarcinoma multiplicity by 32.7%, featuring increased apoptosis and reduced cell proliferation. The inhibitory effect of 0.05% δT3 in diet was similar to that of 0.2% δ-tocopherol (δT) in diet reported previously. Our further study on the δT3-induced transcriptome changes indicated that δT3 inhibited genes in blood vessel development in the prostate of Ptenp-/- mice, which was confirmed by immunohistochemistry. Together, our results demonstrate that δT3 effectively inhibits the development of prostate adenocarcinoma in Ptenp-/- mice, which involves inhibition of proliferation and angiogenesis and promotion of apoptosis.
Collapse
Affiliation(s)
- Hong Wang
- Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey
| | - William Yan
- Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey
| | - Yuhai Sun
- Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey
| | - Chung S Yang
- Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey
| |
Collapse
|
61
|
Alternative Methods of Bioactive Compounds and Oils Extraction from Berry Fruit By-Products—A Review. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031734] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Berry fruit by-products are a source of polyphenol compounds and highly nutritious oils and can be reused to fulfill the requirements of the circular economy model. One of the methods of obtaining polyphenol-rich extracts or oils is extraction. Applying conventional solvent extraction techniques may be insufficient to reach high polyphenol or lipid fraction yields and selectivity of specific compounds. Alternative extraction methods, mainly ultrasound-assisted extraction, pulsed electric field-assisted extraction, microwave-assisted extraction and supercritical fluid extraction, are ways to improve the efficiency of the isolation of bioactive compounds or oils from berry fruit by-products. Additionally, non-conventional techniques are considered as green extraction methods, as they consume less energy, solvent volume and time. The aim of this review is to summarize the studies on alternative extraction methods and their relationship to the composition of extracts or oils obtained from berry waste products.
Collapse
|
62
|
Magalingam KB, Somanath SD, Md S, Haleagrahara N, Fu JY, Selvaduray KR, Radhakrishnan AK. Tocotrienols protect differentiated SH-SY5Y human neuroblastoma cells against 6-hydroxydopamine-induced cytotoxicity by ameliorating dopamine biosynthesis and dopamine receptor D2 gene expression. Nutr Res 2022; 98:27-40. [DOI: 10.1016/j.nutres.2021.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 11/15/2022]
|
63
|
Siddiqui S, Ahmad R, Alaidarous M, Zia Q, Ahmad Mir S, Alshehri B, Srivastava A, Trivedi A. Phytoconstituents from Moringa oleifera fruits target ACE2 and open spike glycoprotein to combat SARS-CoV-2: An integrative phytochemical and computational approach. J Food Biochem 2022; 46:e14062. [PMID: 35043973 DOI: 10.1111/jfbc.14062] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 01/04/2023]
Abstract
Therapeutic drugs based on natural products for the treatment of SARS-CoV-2 are currently unavailable. This study was conducted to develop an anti-SARS-CoV-2 herbal medicine to face the urgent need for COVID-19 treatment. The bioactive components from ethanolic extract of Moringa oleifera fruits (MOFs) were determined by gas chromatography-mass spectroscopy (GC-MS). Molecular-docking analyses elucidated the binding effects of identified phytocomponents against SARS-CoV-2 spike glycoprotein (PDB ID: 6VYB) and human ACE2 receptor (PDB ID: 1R42) through the Glide module of Maestro software. GC-MS analysis unveiled the presence of 33 phytocomponents. Eighteen phytocomponents exhibited good binding affinity toward ACE2 receptor, and thirteen phytocomponents had a high affinity with spike glycoprotein. This finding suggests that the top 11 hits (Docking score ≥ -3.0 kcal/mol) could inhibit SARS-CoV-2 propagation. Intriguingly, most of the phytoconstituents displayed drug-likeness with no predicted toxicity. However, further studies are needed to validate their effects and mechanisms of action. PRACTICAL APPLICATIONS: Moringa oleifera (MO) also called "drumstick tree" has been used as an alternative food source to combat malnutrition and may act as an immune booster. GC-MS analysis unveiled that ethanolic extract of Moringa oleifera fruits (MOFs) possessed 33 active components of pyridine, aromatic fatty acid, oleic acid, tocopherol, methyl ester, diterpene alcohol, triterpene and fatty acid ester and their derivatives, which have various pharmacological and medicinal values. Virtual screening study of phytocomponents of MOF with human ACE2 receptor and SARS-CoV-2 spike glycoprotein exhibited good binding affinity. Based on molecular docking, the top 11 hits (Docking score ≥-3.0 kcal/mol) might serve as potential lead molecules in antiviral drug development. Intriguingly, most of the phytoconstituents displayed drug-likeness with no predicted toxicity. Thus, MOF might be used as a valuable source for antiviral drug development to combat COVID-19, an ongoing pandemic.
Collapse
Affiliation(s)
- Sahabjada Siddiqui
- Department of Biotechnology, Era's Lucknow Medical College & Hospital, Era University, Lucknow, India
| | - Rumana Ahmad
- Department of Biochemistry, Era's Lucknow Medical College & Hospital, Era University, Lucknow, India
| | - Mohammed Alaidarous
- Health and Basic Science Research Centre, Majmaah University, Majmaah, Saudi Arabia.,Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Qamar Zia
- Health and Basic Science Research Centre, Majmaah University, Majmaah, Saudi Arabia.,Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Shabir Ahmad Mir
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Bader Alshehri
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Aditi Srivastava
- Department of Biochemistry, Era's Lucknow Medical College & Hospital, Era University, Lucknow, India
| | - Anchal Trivedi
- Department of Biochemistry, Era's Lucknow Medical College & Hospital, Era University, Lucknow, India
| |
Collapse
|
64
|
Saminathan M, Mohamed WNW, Noh 'AM, Ibrahim NA, Fuat MA, Ramiah SK. Effects of dietary palm oil on broiler chicken productive performance and carcass characteristics: a comprehensive review. Trop Anim Health Prod 2022; 54:64. [PMID: 35038035 DOI: 10.1007/s11250-022-03046-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 01/04/2022] [Indexed: 11/27/2022]
Abstract
Palm oil is a natural energy source ingredient in poultry diets that offers a broad range of beneficial effects on the performance of broiler chickens. This review was conducted to highlight the impact of palm oil as a feed ingredient on growth performance and carcass quality, as well as the biochemical, antioxidant activity and tissue fatty acids (FA) composition of broiler chickens. Palm oil inclusion in broiler chickens' rations contributes significantly to the high metabolisable energy (ME) of feed formulation, increases feed palatability and decreases digesta passage rate in the intestine. The reviewed literature indicated that dietary palm oil has a beneficial effect on broiler chickens' overall growth performance traits. The addition of palm oil can also improve the heat tolerance of chickens reared in high ambient temperature conditions. Regardless of breed and breeding conditions, palm oil exhibits good oxidative stability in broiler chickens due to the presence of prevalent phytonutrient elements in this oil. The inclusion of palm oil increased palmitic (C16:0) and oleic (C18:1) acids in tissue deposits, which improves meat stability and quality. Moreover, molecular studies have revealed that higher mRNA expression of several lipid-related hepatic genes in broiler chickens fed palm oil. Nonetheless, dietary palm oil can influence FA deposition in tissues, modulate lipoprotein and triglycerides (TG) levels, and cytokine contents in the blood serum of broiler chickens.
Collapse
Affiliation(s)
- Mookiah Saminathan
- Food and Feed Technology Unit, Product Development and Advisory Services Division, Malaysian Palm Oil Board, No. 6 Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia.
| | - Wan Nooraida Wan Mohamed
- Food and Feed Technology Unit, Product Development and Advisory Services Division, Malaysian Palm Oil Board, No. 6 Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - 'Abidah Md Noh
- Food and Feed Technology Unit, Product Development and Advisory Services Division, Malaysian Palm Oil Board, No. 6 Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Nur Atikah Ibrahim
- Food and Feed Technology Unit, Product Development and Advisory Services Division, Malaysian Palm Oil Board, No. 6 Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Muhammad Amirul Fuat
- Food and Feed Technology Unit, Product Development and Advisory Services Division, Malaysian Palm Oil Board, No. 6 Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Suriya Kumari Ramiah
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
65
|
Ghosh S, Zhang S, Azam M, Gebregziabher BS, Abdelghany AM, Shaibu AS, Qi J, Feng Y, Agyenim-Boateng KG, Liu Y, Feng H, Li Y, Li J, Li B, Sun J. Natural Variation of Seed Tocopherol Composition in Diverse World Soybean Accessions from Maturity Group 0 to VI Grown in China. PLANTS (BASEL, SWITZERLAND) 2022; 11:206. [PMID: 35050094 PMCID: PMC8779575 DOI: 10.3390/plants11020206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Tocopherols are natural antioxidants that increase the stability of fat-containing foods and are well known for their health benefits. To investigate the variation in seed tocopherol composition of soybeans from different origins, 493 soybean accessions from different countries (China, USA, Japan, and Russia) belonging to 7 maturity groups (MG 0-VI) were grown in 2 locations (Beijing and Hainan Provinces of China) for 2 years (2017 and 2018). The results showed that significant differences (p < 0.001) were observed among the accessions and origins for individual and total tocopherol contents. The total tocopherol content ranged from 118.92 μg g-1 to 344.02 μg g-1. Accessions from the USA had the highest average concentration of γ- and total tocopherols (152.92 and 238.21 μg g-1, respectively), whereas a higher level of α-tocopherol (12.82 μg g-1) was observed in the Russian accessions. The maturity group of the accession significantly (p < 0.001) influenced all tocopherol components, and higher levels of α-, γ-, and total tocopherols were observed in early maturing accessions, while late-maturing accessions exhibited higher levels of δ-tocopherol. The inclination of tocopherol concentrations with various MGs provided further evidence of the significance of MG in soybean breeding for seed tocopherol components. Furthermore, the correlation between the seed tocopherol components and geographical factors revealed that α-, γ-, and total tocopherols had significant positive correlations with latitude, while δ-tocopherol showed an opposite trend. The elite accessions with high and stable tocopherol concentrations determined could be used to develop functional foods, industrial materials, and breeding lines to improve tocopherol composition in soybean seeds.
Collapse
Affiliation(s)
- Suprio Ghosh
- The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China; (S.G.); (S.Z.); (M.A.); (B.S.G.); (A.M.A.); (A.S.S.); (J.Q.); (Y.F.); (K.G.A.-B.); (Y.L.); (H.F.); (Y.L.); (J.L.)
- Bangladesh Agricultural Research Institute, Gazipur 1701, Bangladesh
| | - Shengrui Zhang
- The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China; (S.G.); (S.Z.); (M.A.); (B.S.G.); (A.M.A.); (A.S.S.); (J.Q.); (Y.F.); (K.G.A.-B.); (Y.L.); (H.F.); (Y.L.); (J.L.)
| | - Muhammad Azam
- The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China; (S.G.); (S.Z.); (M.A.); (B.S.G.); (A.M.A.); (A.S.S.); (J.Q.); (Y.F.); (K.G.A.-B.); (Y.L.); (H.F.); (Y.L.); (J.L.)
| | - Berhane S. Gebregziabher
- The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China; (S.G.); (S.Z.); (M.A.); (B.S.G.); (A.M.A.); (A.S.S.); (J.Q.); (Y.F.); (K.G.A.-B.); (Y.L.); (H.F.); (Y.L.); (J.L.)
- Crop Sciences Research Department, Mehoni Agricultural Research Center, Maichew 7020, Ethiopia
| | - Ahmed M. Abdelghany
- The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China; (S.G.); (S.Z.); (M.A.); (B.S.G.); (A.M.A.); (A.S.S.); (J.Q.); (Y.F.); (K.G.A.-B.); (Y.L.); (H.F.); (Y.L.); (J.L.)
- Crop Science Department, Faculty of Agriculture, Damanhour University, Damanhour 22516, Egypt
| | - Abdulwahab S. Shaibu
- The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China; (S.G.); (S.Z.); (M.A.); (B.S.G.); (A.M.A.); (A.S.S.); (J.Q.); (Y.F.); (K.G.A.-B.); (Y.L.); (H.F.); (Y.L.); (J.L.)
- Department of Agronomy, Bayero University, Kano 700001, Nigeria
| | - Jie Qi
- The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China; (S.G.); (S.Z.); (M.A.); (B.S.G.); (A.M.A.); (A.S.S.); (J.Q.); (Y.F.); (K.G.A.-B.); (Y.L.); (H.F.); (Y.L.); (J.L.)
| | - Yue Feng
- The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China; (S.G.); (S.Z.); (M.A.); (B.S.G.); (A.M.A.); (A.S.S.); (J.Q.); (Y.F.); (K.G.A.-B.); (Y.L.); (H.F.); (Y.L.); (J.L.)
| | - Kwadwo Gyapong Agyenim-Boateng
- The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China; (S.G.); (S.Z.); (M.A.); (B.S.G.); (A.M.A.); (A.S.S.); (J.Q.); (Y.F.); (K.G.A.-B.); (Y.L.); (H.F.); (Y.L.); (J.L.)
| | - Yitian Liu
- The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China; (S.G.); (S.Z.); (M.A.); (B.S.G.); (A.M.A.); (A.S.S.); (J.Q.); (Y.F.); (K.G.A.-B.); (Y.L.); (H.F.); (Y.L.); (J.L.)
| | - Huoyi Feng
- The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China; (S.G.); (S.Z.); (M.A.); (B.S.G.); (A.M.A.); (A.S.S.); (J.Q.); (Y.F.); (K.G.A.-B.); (Y.L.); (H.F.); (Y.L.); (J.L.)
| | - Yecheng Li
- The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China; (S.G.); (S.Z.); (M.A.); (B.S.G.); (A.M.A.); (A.S.S.); (J.Q.); (Y.F.); (K.G.A.-B.); (Y.L.); (H.F.); (Y.L.); (J.L.)
| | - Jing Li
- The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China; (S.G.); (S.Z.); (M.A.); (B.S.G.); (A.M.A.); (A.S.S.); (J.Q.); (Y.F.); (K.G.A.-B.); (Y.L.); (H.F.); (Y.L.); (J.L.)
| | - Bin Li
- The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China; (S.G.); (S.Z.); (M.A.); (B.S.G.); (A.M.A.); (A.S.S.); (J.Q.); (Y.F.); (K.G.A.-B.); (Y.L.); (H.F.); (Y.L.); (J.L.)
| | - Junming Sun
- The National Engineering Laboratory for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China; (S.G.); (S.Z.); (M.A.); (B.S.G.); (A.M.A.); (A.S.S.); (J.Q.); (Y.F.); (K.G.A.-B.); (Y.L.); (H.F.); (Y.L.); (J.L.)
| |
Collapse
|
66
|
Michalak M. Plant-Derived Antioxidants: Significance in Skin Health and the Ageing Process. Int J Mol Sci 2022; 23:585. [PMID: 35054770 PMCID: PMC8776015 DOI: 10.3390/ijms23020585] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 12/21/2022] Open
Abstract
Natural substances have traditionally been used in skin care for centuries. There is now an ongoing search for new natural bioactives that not only promote skin health but also protect the skin against various harmful factors, including ultraviolet radiation and free radicals. Free radicals, by disrupting defence and restoration mechanisms, significantly contribute to skin damage and accelerate ageing. Natural compounds present in plants exhibit antioxidant properties and the ability to scavenge free radicals. The increased interest in plant chemistry is linked to the growing interest in plant materials as natural antioxidants. This review focuses on aromatic and medicinal plants as a source of antioxidant substances, such as polyphenols, tocopherols, carotenoids, ascorbic acid, and macromolecules (including polysaccharides and peptides) as well as components of essential oils, and their role in skin health and the ageing process.
Collapse
Affiliation(s)
- Monika Michalak
- Department of Dermatology, Cosmetology and Aesthetic Surgery, Collegium Medicum, Jan Kochanowski University, IX Wieków Kielc 19, 35-317 Kielce, Poland
| |
Collapse
|
67
|
Pemmaraju DB, Ghosh A, Gangasani JK, Murthy U, Naidu V, Rengan AK. Herbal biomolecules as nutraceuticals. HERBAL BIOMOLECULES IN HEALTHCARE APPLICATIONS 2022:525-549. [DOI: 10.1016/b978-0-323-85852-6.00025-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
68
|
Yassin NYS, AbouZid SF, El-Kalaawy AM, Ali TM, Almehmadi MM, Ahmed OM. Silybum marianum total extract, silymarin and silibinin abate hepatocarcinogenesis and hepatocellular carcinoma growth via modulation of the HGF/c-Met, Wnt/β-catenin, and PI3K/Akt/mTOR signaling pathways. Biomed Pharmacother 2022; 145:112409. [PMID: 34781148 DOI: 10.1016/j.biopha.2021.112409] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has been identified as one of the most deadly malignancies with limited therapeutic efficacy worldwide. However, understanding the molecular mechanisms of crosstalk between signaling pathways in HCC and predicting cancer cell responses to targeted therapeutic interventions remain to be challenge. Thus, in this study, we aimed to evaluate the anticancerous efficacy of Silybum marianum total extract (STE), silymarin (Sm), and silibinin (Sb) against experimentally-induced HCC in rats. In vitro investigations were also performed and the anticancer effects against HCC cell lines (HepG2 and Huh7) were confirmed. Wistar rats were given diethylnitrosamine (DEN)/2-acetylaminofluorene (AAF)/carbon tetrachloride (CCl4) and were orally treated with STE (200 mg/kg body weight (bw)), Sm (150 mg/kg bw), and Sb (5 mg/kg bw) every other day from the 1st or 16th week to the 25th week of DEN/AAF/CCl4 injection. Treatment with STE, Sm, and Sb inhibited the growth of cancerous lesions in DEN/AAF/CCl4-treated rats. This inhibition was associated with inhibition of Ki-67 expression and repression of HGF/cMet, Wnt/β-catenin, and PI3K/Akt/mTOR signaling pathways. STE, Sm, and Sb improved liver function biomarkers and tumor markers (AFP, CEA, and CA19.9) and increased total protein and albumin levels in serum. STE, Sm, and Sb treatment was also noted to reduce the hepatic production of lipid peroxides, increase hepatic glutathione content, and induce the activities of hepatic antioxidant enzymes in DEN/AAF/CCl4-treated rats. These results indicate that STE, Sm, and Sb exert anti-HCC effects through multiple pathways, including suppression of Ki-67 expression and HGF/cMet, Wnt/β-catenin, and PI3K/Akt/mTOR pathways and enhancement of antioxidant defense mechanisms.
Collapse
Affiliation(s)
- Nour Y S Yassin
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Sameh F AbouZid
- Department of Pharmacognosy, Faculty of Pharmacy, Heliopolis University for Sustainable Development, 3 Cairo-Belbeis Desert Road, P.O. Box 3020 El Salam, 11785 Cairo, Egypt
| | - Asmaa M El-Kalaawy
- Department of Pharmacology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Tarek M Ali
- Department of Physiology, College of Medicine, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia
| | - Mazen M Almehmadi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia
| | - Osama M Ahmed
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt.
| |
Collapse
|
69
|
An J, Adelina NM, Zhang L, Zhao Y. Effect of roasting pre‐treatment of two grafted pine nuts (
Pinus koraiensis
) on yield, color, chemical compositions, antioxidant activity, and oxidative stability of the oil. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Jiayi An
- Department of Food Science School of Forestry Northeast Forestry University Harbin People’s Republic of China
| | - Nadya Mara Adelina
- Department of Food Science School of Forestry Northeast Forestry University Harbin People’s Republic of China
| | - Ligang Zhang
- College of Food Science Northeast Agricultural University Harbin People’s Republic of China
| | - Yuhong Zhao
- Department of Food Science School of Forestry Northeast Forestry University Harbin People’s Republic of China
- Key Laboratory of Forest Food Resources Utilization of Heilongjiang Province Harbin People’s Republic of China
| |
Collapse
|
70
|
Rosado MJ, Marques G, Rencoret J, Gutiérrez A, del Río JC. Chemical Composition of Lipophilic Compounds From Rice ( Oryza sativa) Straw: An Attractive Feedstock for Obtaining Valuable Phytochemicals. FRONTIERS IN PLANT SCIENCE 2022; 13:868319. [PMID: 35392522 PMCID: PMC8981202 DOI: 10.3389/fpls.2022.868319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/04/2022] [Indexed: 05/17/2023]
Abstract
Rice (Oryza sativa L.) straw is a highly abundant, widely available, and low cost agricultural waste that can be used as a source to extract valuable phytochemicals of industrial interest. Hence, in the present work, the chemical composition of the lipophilic compounds present in rice straw was thoroughly characterized by gas chromatography and mass spectrometry using medium-length high-temperature capillary columns, which allowed the identification of a wide range of lipophilic compounds, from low molecular weight fatty acids to high molecular weight sterols esters, sterol glucosides, or triglycerides in the same chromatogram. The most abundant lipophilic compounds in rice straw were fatty acids, which accounted for up to 6,400 mg/kg (41.0% of all identified compounds), followed by free sterols (1,600 mg/kg; 10.2%), sterol glucosides (1,380 mg/kg; 8.8%), fatty alcohols (1,150 mg/kg; 7.4%), and triglycerides (1,140 mg/kg; 7.3%), along with lower amounts of high molecular weight wax esters (900 mg/kg; 5.8%), steroid ketones (900 mg/kg; 5.8%), monoglycerides (600 mg/kg; 3.8%), alkanes (400 mg/kg; 2.6%), diglycerides (380 mg/kg; 2.4%), sterol esters (380 mg/kg; 2.4%), tocopherols (340 mg/kg; 2.2%), and steroid hydrocarbons (60 mg/kg; 0.4%). This information is of great use for the valorization of rice straw to obtain valuable lipophilic compounds of interest for the nutraceutical, pharmaceutical, cosmetic, and chemical industries. Moreover, this knowledge is also useful for other industrial uses of rice straw, as in pulp and papermaking, since some lipophilic compounds are at the origin of the so-called pitch deposits during pulping.
Collapse
|
71
|
Uaciquete A, Ferreira NA, Lehnert K, Vetter W, Sus N, Stuetz W. Effect of two postharvest technologies on the micronutrient profile of cashew kernels from Mozambique. Food Sci Nutr 2022; 10:179-190. [PMID: 35035920 PMCID: PMC8751438 DOI: 10.1002/fsn3.2658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/24/2021] [Accepted: 07/25/2021] [Indexed: 11/22/2022] Open
Abstract
The economics involved in processing cashew nuts (Anacardium occidentale) might alter micronutrient profiles and concentrations. We analyzed and evaluated carotenoids, tocopherols, tocotrienols, minerals, fatty acids, and amino acids in (1) cashew kernels with testa recovered from nuts dried with and without the apple, and (2) testa-free industrial grade baby butts, splits, and white whole kernels using HPLC, ICP-OES, and GC-MS techniques. The results indicated that drying cashews with the respective apple slightly decreased the concentration of some carotenoids and total fatty and amino acids, but increased the concentration of iron, magnesium, and total tocotrienols compared with the conventionally (sun-) dried kernels. We also found high concentrations of carotenoids in the testa-containing kernels. Among the industrially processed kernel, baby butt grade was associated with lower content of β-carotene, total tocopherols, and tocotrienols, but with significantly higher concentrations in minerals, fatty acids, and amino acids than in white wholes and split grades. Conventional sun drying of cashew nuts revealed results similar to drying with apples regarding micronutrient concentrations. The high micronutrient content of industrial grade BB is reflected in widespread human consumption and better market value.
Collapse
Affiliation(s)
- Americo Uaciquete
- Instituto de Investigação Agraria de Mozambique IIAMCentro Zonal NordestePosto Agronómico de NampulaNampulaMozambique
| | - Neid Ali Ferreira
- Instituto de Investigação Agraria de Mozambique IIAMCentro Zonal NordestePosto Agronómico de NampulaNampulaMozambique
| | - Katja Lehnert
- Institute of Food ChemistryUniversity of HohenheimStuttgartGermany
| | - Walter Vetter
- Institute of Food ChemistryUniversity of HohenheimStuttgartGermany
| | - Nadine Sus
- Institute of Nutritional SciencesUniversity of HohenheimStuttgartGermany
| | - Wolfgang Stuetz
- Institute of Nutritional SciencesUniversity of HohenheimStuttgartGermany
| |
Collapse
|
72
|
Phytonutrients and Metabolism Changes in Topped Radish Root and Its Detached Leaves during 1 °C Cold Postharvest Storage. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae8010042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Glucosinolates, lipid-soluble vitamins E and K contents, primary metabolites and plant hormones were analyzed from topped radish root and detached leaf during storage at 1 °C. The topped root was analyzed at 0, 5, 15, 30, and 90 days after storage while the detached leaf was analyzed at 0, 5, 15, 30, and 45 days in an airtight storage atmosphere environment. The results showed that aliphatic glucosinolates were gradually decreased in leaf but not in root. There was a highly significant correlation between tryptophan and 4-methoxyindoleglucobrassicin in both tissues (r = 0.922, n = 10). There was no significant difference in vitamins E and K in leaf and root during storage. Plant hormones partially explained the significantly changed metabolites by tissue and time, which were identified during cold storage. Phenylalanine, lysine, tryptophan, and myo-inositol were the most important biomarkers that explained the difference in leaf and root tissue during cold storage. The most different metabolism between leaf and root tissue was starch and sucrose metabolism. Therefore, different postharvest technology or regimes should be applied to these tissues.
Collapse
|
73
|
Vasquez-Rojas WV, Martín D, Miralles B, Recio I, Fornari T, Cano MP. Composition of Brazil Nut ( Bertholletia excels HBK), Its Beverage and By-Products: A Healthy Food and Potential Source of Ingredients. Foods 2021; 10:foods10123007. [PMID: 34945560 PMCID: PMC8700994 DOI: 10.3390/foods10123007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
The consumption of plant-based beverages is a growing trend and, consequently, the search for alternative plant sources, the improvement of beverage quality and the use of their by-products, acquire great interest. Thus, the purpose of this work was to characterize the composition (nutrients, phytochemicals and antioxidant activity) of the Brazil nut (BN), its whole beverage (WBM), water-soluble beverage (BM-S), and its by-products of the beverage production: cake, sediment fraction (BM-D), and fat fraction (BM-F). In this study, advanced methodologies for the analysis of the components were employed to assess HPLC-ESI-QTOF (phenolic compounds), GC (fatty acids), and MALDI-TOF/TOF (proteins and peptides). The production of WBM was based on a hot water extraction process, and the production of BM-S includes an additional centrifugation step. The BN showed an interesting nutritional quality and outstanding content of unsaturated fatty acids. The investigation found the following in the composition of the BN: phenolic compounds (mainly flavan-3-ols as Catechin (and glycosides or derivatives), Epicatechin (and glycosides or derivatives), Quercetin and Myricetin-3-O-rhamnoside, hydroxybenzoic acids as Gallic acid (and derivatives), 4-hydroxybenzoic acid, ellagic acid, Vanillic acid, p-Coumaric acid and Ferulic acid, bioactive minor lipid components (β-Sitosterol, γ-Tocopherol, α-Tocopherol and squalene), and a high level of selenium. In beverages, WBM had a higher lipid content than BM-S, a factor that influenced the energy characteristics and the content of bioactive minor lipid components. The level of phenolic compounds and selenium were outstanding in both beverages. Hydrothermal processing can promote some lipolysis, with an increase in free fatty acids and monoglycerides content. In by-products, the BM-F stood out due to its bioactive minor lipid components, the BM-D showed a highlight in protein and mineral contents, and the cake retained important nutrients and phytochemicals from the BN. In general, the BN and its beverages are healthy foods, and its by-products could be used to obtain healthy ingredients with appreciable biological activities (such as antioxidant activity).
Collapse
Affiliation(s)
- Wilson V. Vasquez-Rojas
- Department of Biotechnology and Microbiology of Foods, Institute of Food Science Research, 28049 Madrid, Spain;
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research, 28049 Madrid, Spain; (D.M.); (T.F.)
| | - Diana Martín
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research, 28049 Madrid, Spain; (D.M.); (T.F.)
| | - Beatriz Miralles
- Department of Bioactivity and Food Analysis, Institute of Food Science Research, 28049 Madrid, Spain; (B.M.); (I.R.)
| | - Isidra Recio
- Department of Bioactivity and Food Analysis, Institute of Food Science Research, 28049 Madrid, Spain; (B.M.); (I.R.)
| | - Tiziana Fornari
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research, 28049 Madrid, Spain; (D.M.); (T.F.)
| | - M. Pilar Cano
- Department of Biotechnology and Microbiology of Foods, Institute of Food Science Research, 28049 Madrid, Spain;
- Correspondence: ; Tel.: +34-910017937
| |
Collapse
|
74
|
Sumida Y, Yoneda M, Seko Y, Takahashi H, Hara N, Fujii H, Itoh Y, Yoneda M, Nakajima A, Okanoue T. Role of vitamin E in the treatment of non-alcoholic steatohepatitis. Free Radic Biol Med 2021; 177:391-403. [PMID: 34715296 DOI: 10.1016/j.freeradbiomed.2021.10.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
Non-alcoholic steatohepatitis (NASH), a severe form of non-alcoholic fatty liver disease (NAFLD), can progress to cirrhosis, hepatocellular carcinoma (HCC), and hepatic failure/liver transplantation. Indeed, NASH will soon be the leading cause of HCC and liver transplantation. Lifestyle intervention represents the cornerstone of NASH treatment, but it is difficult to sustain. However, no pharmacotherapies for NASH have been approved. Oxidative stress has been implicated as one of the key factors in the pathogenesis of NASH. Systematic reviews with meta-analyses have confirmed that vitamin E reduces transaminase activities and may resolve NASH histopathology without improving hepatic fibrosis. However, vitamin E is not recommended for the treatment of NASH in diabetes, NAFLD without liver biopsy, NASH cirrhosis, or cryptogenic cirrhosis. Nevertheless, vitamin E supplementation may improve clinical outcomes in patients with NASH and bridging fibrosis or cirrhosis. Further studies are warranted to confirm such effects of vitamin E and that it would reduce overall mortality/morbidity without increasing the incidence of cardiovascular events. Future clinical trials of the use of vitamin E in combination with other anti-fibrotic agents may demonstrate an additive or synergistic therapeutic effect. Vitamin E is the first-line pharmacotherapy for NASH, according to the consensus of global academic societies.
Collapse
Affiliation(s)
- Yoshio Sumida
- Division of Hepatology and Pancreatology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi, Japan.
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Yuya Seko
- Department of Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | | | - Nagisa Hara
- Liver Center, Saga University Hospital, Saga, Japan
| | - Hideki Fujii
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan.
| | - Yoshito Itoh
- Department of Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Masashi Yoneda
- Division of Hepatology and Pancreatology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi, Japan.
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | | | | |
Collapse
|
75
|
Changes in oxidative stability and phytochemical contents of microencapsulated wheat germ oil during accelerated storage. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
76
|
Fontana F, Limonta P. The multifaceted roles of mitochondria at the crossroads of cell life and death in cancer. Free Radic Biol Med 2021; 176:203-221. [PMID: 34597798 DOI: 10.1016/j.freeradbiomed.2021.09.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 12/15/2022]
Abstract
Mitochondria are the cytoplasmic organelles mostly known as the "electric engine" of the cells; however, they also play pivotal roles in different biological processes, such as cell growth/apoptosis, Ca2+ and redox homeostasis, and cell stemness. In cancer cells, mitochondria undergo peculiar functional and structural dynamics involved in the survival/death fate of the cell. Cancer cells use glycolysis to support macromolecular biosynthesis and energy production ("Warburg effect"); however, mitochondrial OXPHOS has been shown to be still active during carcinogenesis and even exacerbated in drug-resistant and stem cancer cells. This metabolic rewiring is associated with mutations in genes encoding mitochondrial metabolic enzymes ("oncometabolites"), alterations of ROS production and redox biology, and a fine-tuned balance between anti-/proapoptotic proteins. In cancer cells, mitochondria also experience dynamic alterations from the structural point of view undergoing coordinated cycles of biogenesis, fusion/fission and mitophagy, and physically communicating with the endoplasmic reticulum (ER), through the Ca2+ flux, at the MAM (mitochondria-associated membranes) levels. This review addresses the peculiar mitochondrial metabolic and structural dynamics occurring in cancer cells and their role in coordinating the balance between cell survival and death. The role of mitochondrial dynamics as effective biomarkers of tumor progression and promising targets for anticancer strategies is also discussed.
Collapse
Affiliation(s)
- Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milano, Italy.
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milano, Italy.
| |
Collapse
|
77
|
Shahidi F, Pinaffi-Langley ACC, Fuentes J, Speisky H, de Camargo AC. Vitamin E as an essential micronutrient for human health: Common, novel, and unexplored dietary sources. Free Radic Biol Med 2021; 176:312-321. [PMID: 34610363 DOI: 10.1016/j.freeradbiomed.2021.09.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 01/18/2023]
Abstract
Vitamin E comprises a group of vitamers that includes tocopherols and tocotrienols. They occur in four homologues according to the number and position of methyl groups attached to the chromanol ring. Vitamin E, a liposoluble antioxidant, may participate as an adjuvant in the prevention and treatment of cardiovascular, neurological, and aging-related diseases. Furthermore, vitamin E has applications in the food industry as a natural additive. In this contribution, the most recent information on the dietary sources of vitamin E, including common, novel, and unexplored sources, is presented. Common edible oils, such as those of corn, olive, palm, rice bran, and peanut, represent the most prominent sources of vitamin E. However, specialty and underutilized oils such as those obtained from tree nuts, fruit seeds, and by-products, emerge as novel sources of this important micronutrient. Complementary studies should examine the tocotrienol content of vitamin E dietary sources to better understand the different biological functions of these vitamers.
Collapse
Affiliation(s)
- Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B3X9 Canada.
| | | | - Jocelyn Fuentes
- Laboratory of Antioxidants, Nutrition and Food Technology Institute, University of Chile, Santiago, Chile; School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| | - Hernán Speisky
- Laboratory of Antioxidants, Nutrition and Food Technology Institute, University of Chile, Santiago, Chile
| | - Adriano Costa de Camargo
- Laboratory of Antioxidants, Nutrition and Food Technology Institute, University of Chile, Santiago, Chile.
| |
Collapse
|
78
|
Mitochondrial Management of Reactive Oxygen Species. Antioxidants (Basel) 2021; 10:antiox10111824. [PMID: 34829696 PMCID: PMC8614740 DOI: 10.3390/antiox10111824] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/10/2023] Open
Abstract
Mitochondria in aerobic eukaryotic cells are both the site of energy production and the formation of harmful species, such as radicals and other reactive oxygen species, known as ROS. They contain an efficient antioxidant system, including low-molecular-mass molecules and enzymes that specialize in removing various types of ROS or repairing the oxidative damage of biological molecules. Under normal conditions, ROS production is low, and mitochondria, which are their primary target, are slightly damaged in a similar way to other cellular compartments, since the ROS released by the mitochondria into the cytosol are negligible. As the mitochondrial generation of ROS increases, they can deactivate components of the respiratory chain and enzymes of the Krebs cycle, and mitochondria release a high amount of ROS that damage cellular structures. More recently, the feature of the mitochondrial antioxidant system, which does not specifically deal with intramitochondrial ROS, was discovered. Indeed, the mitochondrial antioxidant system detoxifies exogenous ROS species at the expense of reducing the equivalents generated in mitochondria. Thus, mitochondria are also a sink of ROS. These observations highlight the importance of the mitochondrial antioxidant system, which should be considered in our understanding of ROS-regulated processes. These processes include cell signaling and the progression of metabolic and neurodegenerative disease.
Collapse
|
79
|
Naomi R, Shafie NH, Kaniappan P, Bahari H. An Interactive Review on the Role of Tocotrienols in the Neurodegenerative Disorders. Front Nutr 2021; 8:754086. [PMID: 34765631 PMCID: PMC8576197 DOI: 10.3389/fnut.2021.754086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative disorders, such as Parkinson's and Alzheimer's disease, are claimed to be of major concern causing a significant disease burden worldwide. Oxidative stress, mitochondrial dysfunction and nerve damage are the main reasons for the emergence of these diseases. The formation of reactive oxygen species (ROS) is the common chemical molecule that is formed from all these three interdependent mechanisms which is highly reactive toward the neuronal cells. For these reasons, the administration of tocotrienols (T3s), which is a potent antioxidant, is proven to cater to this problem, through in vitro and in vivo investigations. Interestingly, their therapeutic potentials are not only limited to antioxidant property but also to being able to reverse the neuronal damage and act as a shield for mitochondria dysfunction. Thereby, T3s prevents the damage to the neurons. In regards to this statement, in this review, we focused on summarizing and discussing the potential therapeutic role of T3s on Alzheimer's and Parkinson's diseases, and their protective mechanisms based on evidence from the in vitro and in vivo studies. However, there is no clinical trial conducted to prove the efficacy of T3s for Alzheimer's and Parkinson's subjects. As such, the therapeutic role of T3s for these neurodegenerative disorders is still under debate.
Collapse
Affiliation(s)
- Ruth Naomi
- Department of Human Anatomy, Universiti Putra Malaysia, Serdang, Malaysia
| | - Nurul Husna Shafie
- Department of Nutrition, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia.,UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Priyatharisni Kaniappan
- Department of Medical Microbiology & Parasitology, Faculty of Medicine & Health Science, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hasnah Bahari
- Department of Human Anatomy, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
80
|
Sultana A, Zinnah MA, Shozib HB, Howlader ZH, Alauddin M. Functional Profiling and Future Research Direction of Rice Bran Oil in Bangladesh. J Oleo Sci 2021; 70:1551-1563. [PMID: 34732634 DOI: 10.5650/jos.ess21212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Rice bran oil (RBO) has been demonstrated to affect complex malfunctioned conditions such as oxidative stress, hyperlipidemia, hyperglycemia, hypertension, inflammation, abnormal cell growth (cancer), ulceration, immune and cognitive modulation. This unique effect of RBO is due to the presence of well-balanced fatty acid composition and several bioactive compounds, γ- oryzanol (cycloartenyl ferulate, 24-methylenecycloartanyl ferulate, campesterol ferulate, and β-sitosteryl ferulate), vitamin E (tocopherol and tocotrienol), phytosterols (β-sitosterol, campesterol and stigmasterol) and other nutrients. The RBO composition of bioactive compounds varied geographically, thus the clear-cut mechanisms of action on complex disease cascades are still required. This review article summarized the RBO compositional profiling and compared it with other edible oils. This article also summarized Bangladesh RBO profiling and their proposed mechanism of action as well as the first line of defense in the prevention, management, and control of complex disease conditions. This review indicates how Bangladesh RBO increase their opportunity to be functional food for 21st century's ailment.
Collapse
Affiliation(s)
- Afroza Sultana
- Department of Nutrition and Food Technology, Jashore University of Science and Technology
| | | | | | | | - Md Alauddin
- Department of Nutrition and Food Technology, Jashore University of Science and Technology
| |
Collapse
|
81
|
Recent progress in the thermal treatment of oilseeds and oil oxidative stability: A review. FUNDAMENTAL RESEARCH 2021. [DOI: 10.1016/j.fmre.2021.06.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
82
|
The Role of Nutritional Habits and Moderate Red Wine Consumption in PON1 Status in Healthy Population. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11209503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Paraoxonase 1 (PON1) plays a role as antioxidant on HDL. Including in diet additionally ingest of polyphenolic compounds can stimulate PON1 transcription and increase its activity. The aim of this study was to evaluate the effect of dietary intake, red wine consumption, and PON1 genotypes (Q192R, L55M and C-108T) on the specific activity of PON1 in a healthy population. A descriptive and analytical pilot study was conducted in Mexican volunteers clinically healthy (n = 45) aged from 21–59 years. Over 6 weeks, the study participants ingested 120 mL of red wine per day. PON1 concentration, PON1 activities, genetic polymorphisms and dietary intake were evaluated. The preliminary fingerprinting of the wine was determined to corroborate the presence of phenolic compounds such as tannins and gallotannins. Neither dietary intake nor PON1 genotypes showed an effect on the specific activity of PON1. However, a significant increase in specific AREase activity after red wine consumption period was observed in the study participants. Our data suggest that the moderate consumption of red wine has a beneficial effect on PON1 specific AREase activity in this healthy Mexican population.
Collapse
|
83
|
Moe Htet TT, Cruz J, Khongkaew P, Suwanvecho C, Suntornsuk L, Nuchtavorn N, Limwikrant W, Phechkrajang C. PLS-regression-model-assisted raman spectroscopy for vegetable oil classification and non-destructive analysis of alpha-tocopherol contents of vegetable oils. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
84
|
Yassin NYS, AbouZid SF, El-Kalaawy AM, Ali TM, Elesawy BH, Ahmed OM. Tackling of Renal Carcinogenesis in Wistar Rats by Silybum marianum Total Extract, Silymarin, and Silibinin via Modulation of Oxidative Stress, Apoptosis, Nrf2, PPAR γ, NF- κB, and PI3K/Akt Signaling Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7665169. [PMID: 34630852 PMCID: PMC8497111 DOI: 10.1155/2021/7665169] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/18/2021] [Accepted: 08/27/2021] [Indexed: 12/20/2022]
Abstract
The present work was designed to assess the efficacy of Silybum marianum total extract (STE), silymarin (Sm), and silibinin (Sb) against experimentally induced renal carcinogenesis in male Wistar rats and their roles in regulating oxidative stress, inflammation, apoptosis, and carcinogenesis. The diethylnitrosamine (DEN)/2-acetylaminofluorene (AAF)/carbon tetrachloride (CCl4)-administered rats were orally treated with STE (200 mg/kg b.w.), Sm (150 mg/kg b.w.), and Sb (5 mg/kg b.w.) every other day either from the 1st week or from the 16th week of carcinogen administration to the end of 25th week. The treatments with STE, Sm, and Sb attenuated markers of toxicity in serum, decreased kidney lipid peroxidation (LPO), and significantly reinforced the renal antioxidant armory. The biochemical results were further confirmed by the histopathological alterations. The treatments also led to suppression of proinflammatory mediators such as NF-κβ, p65, Iκβα, and IL-6 in association with inhibition of the PI3K/Akt pathway. Furthermore, they activated the expressions of PPARs, Nrf2, and IL-4 in addition to downregulation of apoptotic proteins p53 and caspase-3 and upregulation of antiapoptotic mediator Bcl-2. The obtained data supply potent proof for the efficacy of STE, Sm, and Sb to counteract renal carcinogenesis via alteration of varied molecular pathways.
Collapse
Affiliation(s)
- Nour Y. S. Yassin
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Sameh F. AbouZid
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Asmaa M. El-Kalaawy
- Department of Pharmacology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Tarek M. Ali
- Department of Physiology, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Basem H. Elesawy
- Department of Pathology, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Osama M. Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| |
Collapse
|
85
|
Hou J, Zhou X, Yu T, Sop RT, Ma J, Wang M, Wu Q, Zheng X, Jiang Z. Ziziphi s
pinosae
Semen Oil Enhance the Oxidative Stability of Soybean Oil under Frying Conditions. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202100060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Juncai Hou
- College of Food Science Northeast Agricultural University Harbin 150030 China
| | - Xuan Zhou
- College of Food Science Northeast Agricultural University Harbin 150030 China
| | - Tong Yu
- College of Food Science Northeast Agricultural University Harbin 150030 China
| | - Ri Tong Sop
- Institute of Food Science HAN DOK SU Pyongyang University of Light Industry Pyongyang 95003 Democratic People's Republic of Korea
| | - Jiage Ma
- College of Food Science Northeast Agricultural University Harbin 150030 China
| | - Mingli Wang
- College of Food Science Northeast Agricultural University Harbin 150030 China
| | - Qinrou Wu
- College of Food Science Northeast Agricultural University Harbin 150030 China
| | - Xiaoyu Zheng
- College of Food Science Northeast Agricultural University Harbin 150030 China
| | - Zhanmei Jiang
- College of Food Science Northeast Agricultural University Harbin 150030 China
| |
Collapse
|
86
|
Mondor M, Hernández‐Álvarez AJ. Camelina sativa
Composition, Attributes, and Applications: A Review. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202100035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Martin Mondor
- St‐Hyacinthe Research and Development Centre Agriculture and Agri‐Food Canada 3600 Casavant Blvd. West, St‐Hyacinthe Quebec J2S 8E3 Canada
- Institute of Nutrition and Functional Foods (INAF) Université Laval Quebec QC G1V 0A6 Canada
| | | |
Collapse
|
87
|
Melhaoui R, Kodad S, Houmy N, Belhaj K, Mansouri F, Abid M, Addi M, Mihamou A, Sindic M, Serghini-Caid H, Elamrani A. Characterization of Sweet Almond Oil Content of Four European Cultivars ( Ferragnes, Ferraduel, Fournat, and Marcona) Recently Introduced in Morocco. SCIENTIFICA 2021; 2021:9141695. [PMID: 34497732 PMCID: PMC8421184 DOI: 10.1155/2021/9141695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/07/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
This study concerns the characterization of oil content and quality indices for almond cultivars (Marcona (Mr), Fournat (Fn), Ferragnes (Fg), and Ferraduel (Fd)) recently introduced into marginal agricultural areas in eastern Morocco. These verities are known for their rusticity and late flowering stage. The analyzed almond oils showed low acidity and peroxide values ranging, respectively, from 0.32 to 0.36% and 1.88 to 3.18 meq O2/kg. Fatty acid (FA) profile revealed a predominance of the unsaturated FA represented essentially by the oleic (56.64-64.03%) and linoleic FA (24.57-29.80%). Triacylglycerol (TAG) analysis allowed the determination of eleven species with a remarkable dominance of trioleylglycerol (OOO: 30%) and dioleyllinoleoylglcerol (OOL: 27.25%). Regarding the minor compounds, the results showed that the total phenol content ranges between 85.33 and 141.66 mg/kg. Concerning the tocopherol content, the studied oils showed richness in these secondary metabolites (408.99-491.77 mg/kg) with a dominance of α-tocopherol. In comparison to their homologues in the Mediterranean area, the evaluated almond oils demonstrated a slight superiority in terms of quality, in particular, to those produced in Spain.
Collapse
Affiliation(s)
- Reda Melhaoui
- Laboratory for Agricultural Productions Improvement, Biotechnology and Environment (LAPABE), Faculty of Sciences, University Mohammed First, BP-717, 60000 Oujda, Morocco
| | - Souhayla Kodad
- Laboratory for Agricultural Productions Improvement, Biotechnology and Environment (LAPABE), Faculty of Sciences, University Mohammed First, BP-717, 60000 Oujda, Morocco
| | - Nadia Houmy
- Laboratory for Agricultural Productions Improvement, Biotechnology and Environment (LAPABE), Faculty of Sciences, University Mohammed First, BP-717, 60000 Oujda, Morocco
| | - Kamal Belhaj
- Laboratory for Agricultural Productions Improvement, Biotechnology and Environment (LAPABE), Faculty of Sciences, University Mohammed First, BP-717, 60000 Oujda, Morocco
| | - Farid Mansouri
- Laboratory for Agricultural Productions Improvement, Biotechnology and Environment (LAPABE), Faculty of Sciences, University Mohammed First, BP-717, 60000 Oujda, Morocco
| | - Malika Abid
- Laboratory for Agricultural Productions Improvement, Biotechnology and Environment (LAPABE), Faculty of Sciences, University Mohammed First, BP-717, 60000 Oujda, Morocco
| | - Mohamed Addi
- Laboratory for Agricultural Productions Improvement, Biotechnology and Environment (LAPABE), Faculty of Sciences, University Mohammed First, BP-717, 60000 Oujda, Morocco
| | - Aatika Mihamou
- Laboratory for Agricultural Productions Improvement, Biotechnology and Environment (LAPABE), Faculty of Sciences, University Mohammed First, BP-717, 60000 Oujda, Morocco
| | - Marianne Sindic
- Analysis Quality and Risk Unit, Laboratory of Food Quality and Safety (QSPA), Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - Hana Serghini-Caid
- Laboratory for Agricultural Productions Improvement, Biotechnology and Environment (LAPABE), Faculty of Sciences, University Mohammed First, BP-717, 60000 Oujda, Morocco
| | - Ahmed Elamrani
- Laboratory for Agricultural Productions Improvement, Biotechnology and Environment (LAPABE), Faculty of Sciences, University Mohammed First, BP-717, 60000 Oujda, Morocco
| |
Collapse
|
88
|
Trujillo M, Kharbanda A, Corley C, Simmons P, Allen AR. Tocotrienols as an Anti-Breast Cancer Agent. Antioxidants (Basel) 2021; 10:1383. [PMID: 34573015 PMCID: PMC8472290 DOI: 10.3390/antiox10091383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 12/09/2022] Open
Abstract
In the past few years, breast cancer has become the most prevalent type of cancer. The majority of patients receive combinatorial chemotherapy treatments, which may result in increased risk of developing drug resistance, a reduced quality of life, and substantial side effects. Treatment modalities that could lessen the physical toll of standard treatments or act in synergy with chemotherapeutic treatments would benefit women worldwide. Research into tocotrienols has thus far demonstrated their potential to be such an agent, with tocotrienols surpassing the pharmacological potential of tocopherols. Further research using in vitro and preclinical breast cancer models to support clinical trials is needed. This review uses bibliometric analysis to highlight this gap in research and summarizes the current and future landscape of tocotrienols as an anti-breast cancer agent.
Collapse
Affiliation(s)
- Madison Trujillo
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Anupreet Kharbanda
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Christa Corley
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Pilar Simmons
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Antiño R Allen
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
89
|
Soni A, Samuelsson LM, Loveday SM, Gupta TB. Applications of novel processing technologies to enhance the safety and bioactivity of milk. Compr Rev Food Sci Food Saf 2021; 20:4652-4677. [PMID: 34427048 DOI: 10.1111/1541-4337.12819] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/16/2021] [Accepted: 07/07/2021] [Indexed: 01/20/2023]
Abstract
Bioactive compounds in food can have high impacts on human health, such as antioxidant, antithrombotic, antitumor, and anti-inflammatory activities. However, many of them are sensitive to thermal treatments incurred during processing, which can reduce their availability and activity. Milk, including ovine, caprine, bovine, and human is a rich source of bioactive compounds, including immunoglobulins, vitamins, and amino acids. However, processing by various novel thermal and non-thermal technologies has different levels of impacts on these compounds, according to the studies reported in the literature, predominantly in the last 10 years. The reported effect of these technologies either covers microbial inactivation or the bioactive composition; however, there is a lack of comprehensive compilation of studies that compare the effect of these technologies on bioactive compounds in milk (especially, caprine and ovine) to microbial inactivation at similar settings. This research gap makes it challenging to conclude on the specific processing parameters that could be optimized to achieve targets of microbial safety and nutritional quality at the same time. This review covers the effect of a wide range of thermal and non-thermal processing technologies including high-pressure processing, pressure-assisted thermal sterilization, pulsed-electric field treatment, cold plasma, microwave-assisted thermal sterilization, ultra-high-pressure homogenization, ultrasonication, irradiation on the bioactive compounds as well as on microbial inactivation in milk. Although a combination of more than one technology could improve the reduction of bacterial contaminants to meet the required food safety standards and retain bioactive compounds, there is still scope for research on these hurdle approaches to simultaneously achieve food safety and bioactivity targets.
Collapse
Affiliation(s)
- Aswathi Soni
- Food System Integrity, Consumer Food Interface, AgResearch Ltd, Palmerston North, New Zealand
| | - Linda M Samuelsson
- Smart Foods Innovation Centre of Excellence, AgResearch Ltd, Palmerston North, New Zealand
| | - Simon M Loveday
- Smart Foods Innovation Centre of Excellence, AgResearch Ltd, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Tanushree B Gupta
- Food System Integrity, Consumer Food Interface, AgResearch Ltd, Palmerston North, New Zealand
| |
Collapse
|
90
|
Al-Naqeb G, Fiori L, Ciolli M, Aprea E. Prickly Pear Seed Oil Extraction, Chemical Characterization and Potential Health Benefits. Molecules 2021; 26:5018. [PMID: 34443606 PMCID: PMC8401162 DOI: 10.3390/molecules26165018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/07/2021] [Accepted: 08/12/2021] [Indexed: 12/25/2022] Open
Abstract
Prickly pear (Opuntia ficus-indica L.) is a member of the Cactaceae family originally grown in South America, and the plant is now distributed to many parts of the world, including the Middle East. The chemical composition and biological activities of different parts of prickly pear, including cladodes, flowers, fruit, seeds and seed oil, were previously investigated. Oil from the seeds has been known for its nutritive value and can be potentially used for health promotion. This review is an effort to cover what is actually known to date about the prickly pear seeds oil extraction, characteristics, chemical composition and potential health benefits to provide inspiration for the need of further investigation and future research. Prickly pear seeds oil has been extracted using different extraction techniques from conventional to advanced. Chemical characterization of the oil has been sufficiently studied, and it is sufficiently understood that the oil is a high linoleic oil. Its composition is influenced by the variety and environment and also by the method of extraction. The health benefits of the prickly pear seed oil were reported by many researchers. For future research, additional studies are warranted on mechanisms of action of the reported biological activities to develop nutraceutical products for the prevention of various chronic human diseases.
Collapse
Affiliation(s)
- Ghanya Al-Naqeb
- Center Agriculture Food Environment, University of Trento, Via E. Mach, 1, 38010 San Michele all’Adige, TN, Italy; (L.F.); (M.C.); (E.A.)
- Department of Food Sciences and Human Nutrition, Faculty of Agriculture Foods and Environment, University of Sana’a, Sana’a 009671, Yemen
| | - Luca Fiori
- Center Agriculture Food Environment, University of Trento, Via E. Mach, 1, 38010 San Michele all’Adige, TN, Italy; (L.F.); (M.C.); (E.A.)
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento, TN, Italy
| | - Marco Ciolli
- Center Agriculture Food Environment, University of Trento, Via E. Mach, 1, 38010 San Michele all’Adige, TN, Italy; (L.F.); (M.C.); (E.A.)
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento, TN, Italy
| | - Eugenio Aprea
- Center Agriculture Food Environment, University of Trento, Via E. Mach, 1, 38010 San Michele all’Adige, TN, Italy; (L.F.); (M.C.); (E.A.)
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach, 1, 38010 San Michele all’Adige, TN, Italy
| |
Collapse
|
91
|
Santin M, Ranieri A, Castagna A. Anything New under the Sun? An Update on Modulation of Bioactive Compounds by Different Wavelengths in Agricultural Plants. PLANTS (BASEL, SWITZERLAND) 2021; 10:1485. [PMID: 34371687 PMCID: PMC8309429 DOI: 10.3390/plants10071485] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/17/2021] [Accepted: 07/18/2021] [Indexed: 12/15/2022]
Abstract
Plants continuously rely on light as an energy source and as the driver of many processes in their lifetimes. The ability to perceive different light radiations involves several photoreceptors, which in turn activate complex signalling cascades that ultimately lead to a rearrangement in plant metabolism as an adaptation strategy towards specific light conditions. This review, after a brief summary of the structure and mode of action of the different photoreceptors, introduces the main classes of secondary metabolites and specifically focuses on the influence played by the different wavelengths on the content of these compounds in agricultural plants, because of their recognised roles as nutraceuticals.
Collapse
Affiliation(s)
- Marco Santin
- Department of Agriculture, Food and Environment, University of Pisa, I-56124 Pisa, Italy; (M.S.); (A.R.)
| | - Annamaria Ranieri
- Department of Agriculture, Food and Environment, University of Pisa, I-56124 Pisa, Italy; (M.S.); (A.R.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy
| | - Antonella Castagna
- Department of Agriculture, Food and Environment, University of Pisa, I-56124 Pisa, Italy; (M.S.); (A.R.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy
| |
Collapse
|
92
|
Oxidative Stress Markers among Obstructive Sleep Apnea Patients. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9681595. [PMID: 34336121 PMCID: PMC8321764 DOI: 10.1155/2021/9681595] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/30/2021] [Accepted: 07/07/2021] [Indexed: 12/24/2022]
Abstract
Obstructive sleep apnea (OSA) is a chronic respiratory disorder, which can be present in up to 50% of the population, depending on the country. OSA is characterized by recurrent episodes of partial or complete obstruction of the upper airways with consistent movement of the respiratory musculature during sleep. Apneas and hypopneas can lead to a decrease in oxygen saturation, an increase in carbon dioxide in the blood, and subsequent arousals and sleep fragmentation caused by repetitive activation of the central nervous system. As a consequence, intermittent hypoxemia and consequent reoxygenation result in the production of reactive oxygen species, leading to systematic oxidative stress, which is postulated to be a key mechanism of endothelial dysfunction and increased risk for cardiovascular disorders in patients with OSA. In this review, various biomarkers of oxidative stress, including high-sensitivity C-reactive protein, pregnancy-associated plasma protein-A, superoxide dismutase, cell-free DNA, 8-hydroxy-2-deoxyguanosine, advanced oxidation protein products, lipid peroxidation products, receptor for advanced glycation end-products, and thioredoxin are discussed. Biomarkers of oxidative stress have the potential to be used to assess disease severity and treatment response. Continuous positive airway pressure (CPAP) is one of the most common noninvasive treatments for OSA; it keeps the upper airways open during sleep. This reduces episodes of intermittent hypoxia, reoxygenation, and arousal at night. CPAP has been shown to have anti-inflammatory properties and decrease oxidative stress. The administration of certain compounds, like vitamins A, C, and E as well as N-acetylcysteine and allopurinol, can decrease oxidative stress markers. However, their role in the treatment of OSA remains unclear.
Collapse
|
93
|
Characterization of Nutritional Quality Traits of a Common Bean Germplasm Collection. Foods 2021; 10:foods10071572. [PMID: 34359442 PMCID: PMC8306501 DOI: 10.3390/foods10071572] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/01/2021] [Accepted: 07/04/2021] [Indexed: 12/30/2022] Open
Abstract
Food legumes are at the crossroads of many societal challenges that involve agriculture, such as climate change and food sustainability and security. In this context, pulses have a crucial role in the development of plant-based diets, as they represent a very good source of nutritional components and improve soil fertility, such as by nitrogen fixation through symbiosis with rhizobia. The main contribution to promotion of food legumes in agroecosystems will come from plant breeding, which is guaranteed by the availability of well-characterized genetic resources. Here, we analyze seeds of 25 American and European common bean purified accessions (i.e., lines of single seed descent) for different morphological and compositional quality traits. Significant differences among the accessions and superior genotypes for important nutritional traits are identified, with some lines showing extreme values for more than one trait. Heritability estimates indicate the importance of considering the effects of environmental growth conditions on seed compositional traits. They suggest the need for more phenotypic characterization in different environments over different years to better characterize combined effects of environment and genotype on nutritional trait variations. Finally, adaptation following the introduction and spread of common bean in Europe seems to have affected its nutritional profile. This finding further suggests the relevance of evolutionary studies to guide breeders in the choice of plant genetic resources.
Collapse
|
94
|
Green Tea Extract Enhances the Oxidative Stability of DHA-Rich Oil. Antioxidants (Basel) 2021; 10:antiox10060982. [PMID: 34205438 PMCID: PMC8235633 DOI: 10.3390/antiox10060982] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 01/06/2023] Open
Abstract
Docosahexaenoic acid (DHA) is one of the most important omega-3 polyunsaturated fatty acids, with proven health-promoting properties. However, oils with a very high content in DHA (DHAO) are extremely susceptible to oxidation, which affects shelf stability and limits incorporation in food products. Green tea extracts (GTE) are potential candidates for the protection of these oils, but their use in such oils has not been previously reported. This study investigated the effect of GTE (160 ppm, 400 ppm, 1000 ppm) and α-tocopherol (80 ppm, 200 ppm, 500 ppm) on the oxidative stability of a DHAO over a 9-week storage at 30 °C. The oxidative status was monitored during storage by the measurement of peroxide value (PV) and p-anisidine value (p-AV). Changes in eicosapentaenoic acid (EPA) and DHA content, as well as in catechins and tocopherol contents, were also evaluated. The addition of GTE enhanced the oxidative stability of DHAO by reducing the formation of peroxides and secondary oxidation products, whereas α-tocopherol had no significant effect on the PV of oil during storage but led to a significantly higher p-AV. The EPA and DHA content of DHAO was stable in GTE-supplemented samples whereas a decrease was observed in the control and α-tocopherol-supplemented samples. GTE also delayed the degradation of tocopherols initially present in the oil, while catechins resulting from the addition of GTE decreased progressively during the storage period.
Collapse
|
95
|
Campa Negrillo A, Rodríguez Madrera R, Suárez Valles B, Ferreira JJ. Variation of Morphological, Agronomic and Chemical Composition Traits of Local Hazelnuts Collected in Northern Spain. FRONTIERS IN PLANT SCIENCE 2021; 12:659510. [PMID: 34211485 PMCID: PMC8239416 DOI: 10.3389/fpls.2021.659510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/16/2021] [Indexed: 06/13/2023]
Abstract
Hazelnut is a traditional crop in northern Spain, where it grows wild as well as being cultivated. A field collection of 41 local and 17 non-local accessions, including 15 well-known cultivars, was established at SERIDA in Villaviciosa, Spain. Here, phenotypic variation was documented for phenological and morphological traits and chemical composition. A large degree of variation for most morphological and phenological traits, except nut maturity date, was revealed. Estimates of broad-sense heritability were high (>0.75) for most of the assessed characters, except for the first male bloom date (0.65), male and female flowering periods (0.40, 0.31), kernel weight (0.69), and kernel percentage (0.33). Local accessions produced smaller nuts and kernels than well-known cultivars but with higher kernel percentage. Limited overlapping between the male and female flowering periods (dychogamy) was observed, except for 'Forcinas 1', 'Forcinas 2', and 'Morell'. The local accessions generally exhibited significantly later male and female flowering compared with the reference cultivars. The local materials showed similar nutritional values to those reported previously for hazelnut. Moreover, the local accessions presented average values similar to the non-local accessions for total fat, ash and carbohydrate contents, as well as energy value, but their protein contents were lower. Their oils were rich in functional compounds, such as unsaturated fatty acids (average: 90.1%), tocopherols (514 mg/kg) and squalene (294.3 mg/kg). A hierarchical clustering on principal components analysis grouped the accessions and differentiated eight local accessions from the rest, including the landrace 'Casina'. This finding provides potential new cultivars, as well as sources of desirable traits, for European hazelnut breeding programs.
Collapse
Affiliation(s)
- Ana Campa Negrillo
- Plant Genetic Group, Regional Service for Agrofood Research and Development (SERIDA), Villaviciosa, Spain
| | - Roberto Rodríguez Madrera
- Roberto Rodríguez Madrera, Food Technology Area, Regional Service for Agrofood Research and Development (SERIDA), Villaviciosa, Spain
| | - Belén Suárez Valles
- Roberto Rodríguez Madrera, Food Technology Area, Regional Service for Agrofood Research and Development (SERIDA), Villaviciosa, Spain
| | - Juan Jose Ferreira
- Plant Genetic Group, Regional Service for Agrofood Research and Development (SERIDA), Villaviciosa, Spain
| |
Collapse
|
96
|
Szewczyk K, Chojnacka A, Górnicka M. Tocopherols and Tocotrienols-Bioactive Dietary Compounds; What Is Certain, What Is Doubt? Int J Mol Sci 2021; 22:6222. [PMID: 34207571 PMCID: PMC8227182 DOI: 10.3390/ijms22126222] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 12/13/2022] Open
Abstract
Tocopherols and tocotrienols are natural compounds of plant origin, available in the nature. They are supplied in various amounts in a diet, mainly from vegetable oils, some oilseeds, and nuts. The main forms in the diet are α- and γ-tocopherol, due to the highest content in food products. Nevertheless, α-tocopherol is the main form of vitamin E with the highest tissue concentration. The α- forms of both tocopherols and tocotrienols are considered as the most metabolically active. Currently, research results indicate also a greater antioxidant potential of tocotrienols than tocopherols. Moreover, the biological role of vitamin E metabolites have received increasing interest. The aim of this review is to update the knowledge of tocopherol and tocotrienol bioactivity, with a particular focus on their bioavailability, distribution, and metabolism determinants in humans. Almost one hundred years after the start of research on α-tocopherol, its biological properties are still under investigation. For several decades, researchers' interest in the biological importance of other forms of vitamin E has also been growing. Some of the functions, for instance the antioxidant functions of α- and γ-tocopherols, have been confirmed in humans, while others, such as the relationship with metabolic disorders, are still under investigation. Some studies, which analyzed the biological role and mechanisms of tocopherols and tocotrienols over the past few years described new and even unexpected cellular and molecular properties that will be the subject of future research.
Collapse
Affiliation(s)
- Kacper Szewczyk
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW-WULS), 159C Nowoursynowska Street, 02-787 Warsaw, Poland
| | - Aleksandra Chojnacka
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW-WULS), 159C Nowoursynowska Street, 02-787 Warsaw, Poland
| | - Magdalena Górnicka
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (SGGW-WULS), 159C Nowoursynowska Street, 02-787 Warsaw, Poland
| |
Collapse
|
97
|
Sun Q, Shi J, Scanlon M, Xue SJ, Lu J. Optimization of supercritical-CO2 process for extraction of tocopherol-rich oil from canola seeds. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111435] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
98
|
Salimath SS, Romsdahl TB, Konda AR, Zhang W, Cahoon EB, Dowd MK, Wedegaertner TC, Hake KD, Chapman KD. Production of tocotrienols in seeds of cotton (Gossypium hirsutum L.) enhances oxidative stability and offers nutraceutical potential. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1268-1282. [PMID: 33492748 PMCID: PMC8196643 DOI: 10.1111/pbi.13557] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/09/2020] [Accepted: 01/15/2021] [Indexed: 05/04/2023]
Abstract
Upland cotton (Gossypium hirsutum L.) is an economically important multi-purpose crop cultivated globally for fibre, seed oil and protein. Cottonseed oil also is naturally rich in vitamin E components (collectively known as tocochromanols), with α- and γ-tocopherols comprising nearly all of the vitamin E components. By contrast, cottonseeds have little or no tocotrienols, tocochromanols with a wide range of health benefits. Here, we generated transgenic cotton lines expressing the barley (Hordeum vulgare) homogentisate geranylgeranyl transferase coding sequence under the control of the Brassica napus seed-specific promoter, napin. Transgenic cottonseeds had ~twofold to threefold increases in the accumulation of total vitamin E (tocopherols + tocotrienols), with more than 60% γ-tocotrienol. Matrix assisted laser desorption ionization-mass spectrometry imaging showed that γ-tocotrienol was localized throughout the transgenic embryos. In contrast, the native tocopherols were distributed unequally in both transgenic and non-transgenic embryos. α- Tocopherol was restricted mostly to cotyledon tissues and γ-tocopherol was more enriched in the embryonic axis tissues. Production of tocotrienols in cotton embryos had no negative impact on plant performance or yield of other important seed constituents including fibre, oil and protein. Advanced generations of two transgenic events were field grown, and extracts of transgenic seeds showed increased antioxidant activity relative to extracts from non-transgenic seeds. Furthermore, refined cottonseed oil from the two transgenic events showed 30% improvement in oxidative stability relative to the non-transgenic cottonseed oil. Taken together, these materials may provide new opportunities for cottonseed co-products with enhanced vitamin E profile for improved shelf life and nutrition.
Collapse
Affiliation(s)
- Shanmukh S. Salimath
- Department of Biological SciencesBioDiscovery InstituteUniversity of North TexasDentonTXUSA
| | - Trevor B. Romsdahl
- Department of Biological SciencesBioDiscovery InstituteUniversity of North TexasDentonTXUSA
| | - Anji Reddy Konda
- Center for Plant Science Innovation and Department of BiochemistryUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Wei Zhang
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Edgar B. Cahoon
- Center for Plant Science Innovation and Department of BiochemistryUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Michael K. Dowd
- Commodity Utilization Research UnitUSDA‐ARS‐SRRCNew OrleansLAUSA
| | | | | | - Kent D. Chapman
- Department of Biological SciencesBioDiscovery InstituteUniversity of North TexasDentonTXUSA
| |
Collapse
|
99
|
Herbal Additives Substantially Modify Antioxidant Properties and Tocopherol Content of Cold-Pressed Oils. Antioxidants (Basel) 2021; 10:antiox10050781. [PMID: 34069017 PMCID: PMC8157206 DOI: 10.3390/antiox10050781] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/03/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
The aim of the study was to examine combinations of base oils and herbal additives with a view to obtaining macerates with improved health benefits. Base oils were cold-pressed from the seeds of black cumin, borage, evening primrose, safflower, walnut, common hazel, and oilseed rape, as well as the flesh of sea-buckthorn fruits. They were then supplemented with herbs, including basil, thyme, and sage, in order to create macerates. Total antioxidant activity and tocopherol level were analyzed in oils, macerates, and oil cakes. Additionally, chemical properties of oil cakes—such as the level of fibre, vitamin C, β-carotene, and lutein—were also examined. Supplementation with herbs caused diversified effects on antioxidant activity and tocopherol level in macerates depending on the base oil, herb, and supplementation method. The obtained results indicate that tocopherol level does not play a decisive role in determining the antioxidant properties of oils, macerates, and oil cakes, suggesting significant involvement of other antioxidants. Among the tested macerates, the most promising one seems to be oilseed rape oil enriched with sage or basil to maximize its health benefits. The study can serve as a starting point for the development and implementation of functional macerates and oil cakes in healthy nutrition.
Collapse
|
100
|
Mota MFS, Waktola HD, Nolvachai Y, Marriott PJ. Gas chromatography ‒ mass spectrometry for characterisation, assessment of quality and authentication of seed and vegetable oils. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|