51
|
Wei BR, Hoover SB, Peer CJ, Dwyer JE, Adissu HA, Shankarappa P, Yang H, Lee M, Peat TJ, Figg WD, Simpson RM. Efficacy, Tolerability, and Pharmacokinetics of Combined Targeted MEK and Dual mTORC1/2 Inhibition in a Preclinical Model of Mucosal Melanoma. Mol Cancer Ther 2020; 19:2308-2318. [PMID: 32943547 DOI: 10.1158/1535-7163.mct-19-0858] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/26/2020] [Accepted: 08/26/2020] [Indexed: 11/16/2022]
Abstract
Melanomas arising in the mucous membranes are a rare and aggressive subtype. New treatment approaches are needed, yet accumulating sufficient evidence to improve patient outcomes is difficult. Clinical and pathological correlates between human and canine mucosal melanomas are substantial, and the relatively greater incidence of spontaneous naturally occurring mucosal melanoma in dogs represents a promising opportunity for predictive modeling. The genomic landscapes of human and canine mucosal melanoma appear highly diverse and generally lack recurring hotspot mutations associated with cutaneous melanomas. Although much remains to be determined, evidence indicates that Ras/MAPK and/or PI3K/AKT/mTOR signaling pathway activations are common in both species and may represent targets for therapeutic intervention. Sapanisertib, an mTORC1/2 inhibitor, was selected from a PI3K/mTOR inhibitor library to collaborate with MEK inhibition; the latter preclinical efficacy was demonstrated previously for canine mucosal melanoma. Combined inhibition of MEK and mTORC1/2, using trametinib and sapanisertib, produced apoptosis and cell-cycle alteration, synergistically reducing cell survival in canine mucosal melanoma cell lines with varying basal signaling activation levels. Compared with individual inhibitors, a staggered sapanisertib dose, coupled with daily trametinib, was optimal for limiting primary mucosal melanoma xenograft growth in mice, and tumor dissemination in a metastasis model, while minimizing hematologic and renal side effects. Inhibitors downmodulated respective signaling targets and the combination additionally suppressed pathway reciprocal crosstalk. The combination did not significantly change plasma sapanisertib pharmacokinetics; however, trametinib area under the curve was increased in the presence of sapanisertib. Targeting Ras/MAPK and PI3K/AKT/mTOR signal transduction pathways appear rational therapies for canine and human mucosal melanoma.
Collapse
Affiliation(s)
- Bih-Rong Wei
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.,Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Shelley B Hoover
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Cody J Peer
- Clinical Pharmacology Program and the Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Jennifer E Dwyer
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Hibret A Adissu
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Priya Shankarappa
- Clinical Pharmacology Program and the Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Howard Yang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Maxwell Lee
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Tyler J Peat
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - William D Figg
- Clinical Pharmacology Program and the Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - R Mark Simpson
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|
52
|
Onaciu A, Munteanu R, Munteanu VC, Gulei D, Raduly L, Feder RI, Pirlog R, Atanasov AG, Korban SS, Irimie A, Berindan-Neagoe I. Spontaneous and Induced Animal Models for Cancer Research. Diagnostics (Basel) 2020; 10:E660. [PMID: 32878340 PMCID: PMC7555044 DOI: 10.3390/diagnostics10090660] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Considering the complexity of the current framework in oncology, the relevance of animal models in biomedical research is critical in light of the capacity to produce valuable data with clinical translation. The laboratory mouse is the most common animal model used in cancer research due to its high adaptation to different environments, genetic variability, and physiological similarities with humans. Beginning with spontaneous mutations arising in mice colonies that allow for pursuing studies of specific pathological conditions, this area of in vivo research has significantly evolved, now capable of generating humanized mice models encompassing the human immune system in biological correlation with human tumor xenografts. Moreover, the era of genetic engineering, especially of the hijacking CRISPR/Cas9 technique, offers powerful tools in designing and developing various mouse strains. Within this article, we will cover the principal mouse models used in oncology research, beginning with behavioral science of animals vs. humans, and continuing on with genetically engineered mice, microsurgical-induced cancer models, and avatar mouse models for personalized cancer therapy. Moreover, the area of spontaneous large animal models for cancer research will be briefly presented.
Collapse
Affiliation(s)
- Anca Onaciu
- Research Center for Advanced Medicine - Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.O.); (R.M.); (R.-I.F.)
| | - Raluca Munteanu
- Research Center for Advanced Medicine - Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.O.); (R.M.); (R.-I.F.)
| | - Vlad Cristian Munteanu
- Department of Urology, The Oncology Institute “Prof Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania;
- Department of Anatomy and Embryology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Diana Gulei
- Research Center for Advanced Medicine - Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.O.); (R.M.); (R.-I.F.)
| | - Lajos Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (L.R.); (R.P.)
| | - Richard-Ionut Feder
- Research Center for Advanced Medicine - Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.O.); (R.M.); (R.-I.F.)
| | - Radu Pirlog
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (L.R.); (R.P.)
- Department of Morphological Sciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Atanas G. Atanasov
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria;
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland
- Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev str., 1113 Sofia, Bulgaria
- Department of Pharmacognosy, University of Vienna, 1090 Vienna, Austria
| | - Schuyler S. Korban
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| | - Alexandru Irimie
- 11th Department of Surgical Oncology and Gynaecological Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania;
- Department of Surgery, The Oncology Institute Prof. Dr. Ion Chiricuta, 34–36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (L.R.); (R.P.)
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| |
Collapse
|
53
|
van der Weyden L, Brenn T, Patton EE, Wood GA, Adams DJ. Spontaneously occurring melanoma in animals and their relevance to human melanoma. J Pathol 2020; 252:4-21. [PMID: 32652526 PMCID: PMC7497193 DOI: 10.1002/path.5505] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/20/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
In contrast to other cancer types, melanoma incidence has been increasing over the last 50 years, and while it still represents less than 5% of all cutaneous malignancies, melanoma accounts for the majority of skin cancer deaths, due to its propensity to metastasise. Whilst melanoma most commonly affects the skin, it can also arise in mucosal surfaces, the eye, and the brain. For new therapies to be developed, a better understanding of the genetic landscape, signalling pathways, and tumour–microenvironmental interactions is needed. This is where animal models are of critical importance. The mouse is the foremost used model of human melanoma. Arguably this is due to its plethora of benefits as a laboratory animal; however, it is important to note that unlike humans, melanocytes are not present at the dermal–epidermal junction in mice and mice do not develop melanoma without genetic manipulation. In contrast, there are numerous reports of animals that spontaneously develop melanoma, ranging from sharks and parrots to hippos and monkeys. In addition, several domesticated and laboratory‐bred animals spontaneously develop melanoma or UV‐induced melanoma, specifically, fish, opossums, pigs, horses, cats, and dogs. In this review, we look at spontaneously occurring animal ‘models’ of melanoma and discuss their relevance to the different types of melanoma found in humans. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland..
Collapse
Affiliation(s)
| | - Thomas Brenn
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AL, Canada
| | - E Elizabeth Patton
- MRC Human Genetics Unit, The MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Geoffrey A Wood
- Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - David J Adams
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| |
Collapse
|
54
|
Inhibitory Effects of Euphorbia tirucalli Lineu (Euphorbiaceae) Diluted Latex on Human and Canine Melanoma Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4093206. [PMID: 32733581 PMCID: PMC7376397 DOI: 10.1155/2020/4093206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 11/17/2022]
Abstract
Euphorbia tirucalli Lineu (Euphorbiaceae) is a tropical and subtropical ornamental and toxic plant. E. tirucalli produces a latex that is commonly used to treat neoplasms. This study aimed to evaluate the effects of diluted E. tirucalli latex (DETL) on human (SK-MEL-28) and canine (CBMY) melanoma cells. SK-MEL-28 (3 × 103 cells/well) and CBMY (6 × 103 cells/well) were cultivated in 96-well plates. The cells were treated with 50 μl/well of dilutions (1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256, and 1/512) of a standard solution containing 1 mg/mL of the E. tirucalli latex (ETL) in DMEM. Control group cells received 50 μl/well of DMEM. After 24, 48, and 72 h of treatment, cell viability was assessed by the MTT assay. There was a significant decrease in viability at 48 and 72 hours after treatment for human melanoma cells and at 24, 48, and 72 hours for canine cells, mainly in higher dilutions of ETL. Human melanoma cells presented a typical U shape curve, characteristic of hormesis. To our knowledge, this is the first study showing inhibitory effects of DETL on canine melanoma cells. Therefore, DETL is a potentially new antineoplastic drug.
Collapse
|
55
|
Capriotti E, Montanucci L, Profiti G, Rossi I, Giannuzzi D, Aresu L, Fariselli P. Fido-SNP: the first webserver for scoring the impact of single nucleotide variants in the dog genome. Nucleic Acids Res 2020; 47:W136-W141. [PMID: 31114899 PMCID: PMC6602425 DOI: 10.1093/nar/gkz420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/19/2019] [Accepted: 05/06/2019] [Indexed: 12/22/2022] Open
Abstract
As the amount of genomic variation data increases, tools that are able to score the functional impact of single nucleotide variants become more and more necessary. While there are several prediction servers available for interpreting the effects of variants in the human genome, only few have been developed for other species, and none were specifically designed for species of veterinary interest such as the dog. Here, we present Fido-SNP the first predictor able to discriminate between Pathogenic and Benign single-nucleotide variants in the dog genome. Fido-SNP is a binary classifier based on the Gradient Boosting algorithm. It is able to classify and score the impact of variants in both coding and non-coding regions based on sequence features within seconds. When validated on a previously unseen set of annotated variants from the OMIA database, Fido-SNP reaches 88% overall accuracy, 0.77 Matthews correlation coefficient and 0.91 Area Under the ROC Curve.
Collapse
Affiliation(s)
- Emidio Capriotti
- BioFolD Unit, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via F. Selmi 3, 40126 Bologna, Italy
| | - Ludovica Montanucci
- Department of Comparative Biomedicine and Food Science. University of Padova, Viale dell'Università, 16, 35020 Legnaro (Padova), Italy
| | - Giuseppe Profiti
- BioDec srl. Via Calzavecchio 20, 40033 Casalecchio di Reno (Bologna), Italy
| | - Ivan Rossi
- BioDec srl. Via Calzavecchio 20, 40033 Casalecchio di Reno (Bologna), Italy
| | - Diana Giannuzzi
- Department of Comparative Biomedicine and Food Science. University of Padova, Viale dell'Università, 16, 35020 Legnaro (Padova), Italy
| | - Luca Aresu
- Department of Veterinary Sciences, University of Torino, Largo P. Braccini 2, 10095 Grugliasco, (Torino), Italy
| | - Piero Fariselli
- Department of Comparative Biomedicine and Food Science. University of Padova, Viale dell'Università, 16, 35020 Legnaro (Padova), Italy.,Department of Medical Sciences, University of Torino, Via Santena 19, 10126 Torino, Italy
| |
Collapse
|
56
|
PDPN Is Expressed in Various Types of Canine Tumors and Its Silencing Induces Apoptosis and Cell Cycle Arrest in Canine Malignant Melanoma. Cells 2020; 9:cells9051136. [PMID: 32380790 PMCID: PMC7290317 DOI: 10.3390/cells9051136] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023] Open
Abstract
Podoplanin (PDPN), a small transmembrane mucin-like glycoprotein, is ectopically expressed. It is also known to be linked with several aspects of tumor malignancy in some types of human tumors, including invasion, metastasis, and cancer stemness. However, there are few reports on the expression of dog PDPN (dPDPN) in canine tumors, and the association between dPDPN and tumor malignancy has not been elucidated. We identified that 11 out of 18 types of canine tumors expressed dPDPN. Furthermore, 80% of canine malignant melanoma (MM), squamous cell carcinoma, and meningioma expressed dPDPN. Moreover, the expression density of dPDPN was positively associated with the expression of the Ki67 proliferation marker. The silencing of dPDPN by siRNAs resulted in the suppression of cell migration, invasion, stem cell-like characteristics, and cell viability in canine MM cell lines. The suppression of cell viability was caused by the induction of apoptosis and G2/M phase cell cycle arrest. Overall, this study demonstrates that dPDPN is expressed in various types of canine tumors and that dPDPN silencing suppresses cell viability through apoptosis and cell cycle arrest, thus providing a novel biological role for PDPN in tumor progression.
Collapse
|
57
|
Lucroy MD, Suckow MA. Predictive modeling for cancer drug discovery using canine models. Expert Opin Drug Discov 2020; 15:731-738. [PMID: 32176534 DOI: 10.1080/17460441.2020.1739644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Rodent models of cancer lack many features associated with the disease in humans. Because dogs closely share an environment with humans, as well as comparable pathophysiology of cancer, they represent a powerful model with which to study novel approaches to cancer treatment. AREAS COVERED The authors summarize the weaknesses of rodent models of cancer and the ongoing need for better animal models with which to study potential therapeutic approaches. The homology of cancer in dogs and humans is described, along with examples specific to several common cancer types. EXPERT OPINION Laboratory mice and rats will continue to play a central role in cancer research; however, because of a variety of limitations, pet dogs with spontaneous cancer offer unique opportunities for research and should be included in the preclinical development of therapeutic compounds. Environmental homology between dogs and humans, along with biological and molecular similarities present circumstances that strengthen the translational rigor of studies conducted using canine patients. Progress will depend on a sufficient number of dogs to be diagnosed with cancer and available for use in studies; and essential to this will be the availability of enhanced resources for diagnosis of cancer in canine patients and reliable coordination between research scientists, veterinarians, and physicians.
Collapse
Affiliation(s)
- Michael D Lucroy
- Vice President, Oncology, Torigen Pharmaceuticals, Inc , Farmington, CT, USA
| | - Mark A Suckow
- Department of Biomedical Engineering, University of Kentucky , Lexington, KY, USA
| |
Collapse
|
58
|
Igase M, Shibutani S, Kurogouchi Y, Fujiki N, Hwang CC, Coffey M, Noguchi S, Nemoto Y, Mizuno T. Combination Therapy with Reovirus and ATM Inhibitor Enhances Cell Death and Virus Replication in Canine Melanoma. Mol Ther Oncolytics 2019; 15:49-59. [PMID: 31650025 PMCID: PMC6804779 DOI: 10.1016/j.omto.2019.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 08/16/2019] [Indexed: 12/13/2022] Open
Abstract
Oncolytic virotherapy using reovirus is a promising new anti-cancer treatment with potential for use in humans and dogs. Because reovirus monotherapy shows limited efficacy in human and canine cancer patients, the clinical development of a combination therapy is necessary. To identify candidate components of such a combination, we screened a 285-compound drug library for those that enhanced reovirus cytotoxicity in a canine melanoma cell line. Here, we show that exposure to an inhibitor of the ataxia telangiectasia mutated protein (ATM) enhances the oncolytic potential of reovirus in five of six tested canine melanoma cell lines. Specifically, the ATM inhibitor potentiated reovirus replication in cancer cells along with promoting the lysosomal activity, resulting in an increased proportion of caspase-dependent apoptosis and cell cycle arrest at G2/M compared to those observed with reovirus alone. Overall, our study suggests that the combination of reovirus and the ATM inhibitor may be an attractive option in cancer therapy.
Collapse
Affiliation(s)
- Masaya Igase
- Laboratory of Molecular Diagnostics and Therapeutics, The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - Shusaku Shibutani
- Laboratory of Veterinary Hygiene, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Yosuke Kurogouchi
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Noriyuki Fujiki
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Chung Chew Hwang
- Laboratory of Molecular Diagnostics and Therapeutics, The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - Matt Coffey
- Oncolytics Biotech Inc., Calgary, AB, Canada
| | - Shunsuke Noguchi
- Laboratory of Veterinary Radiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Yuki Nemoto
- Laboratory of Molecular Diagnostics and Therapeutics, The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Takuya Mizuno
- Laboratory of Molecular Diagnostics and Therapeutics, The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
59
|
Porcellato I, Silvestri S, Menchetti L, Recupero F, Mechelli L, Sforna M, Iussich S, Bongiovanni L, Lepri E, Brachelente C. Tumour-infiltrating lymphocytes in canine melanocytic tumours: An investigation on the prognostic role of CD3 + and CD20 + lymphocytic populations. Vet Comp Oncol 2019; 18:370-380. [PMID: 31750993 DOI: 10.1111/vco.12556] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 12/16/2022]
Abstract
The study of the immune response in several types of tumours has been rapidly increasing in recent years with the dual aim of understanding the interactions between neoplastic and immune cells and their importance in cancer pathogenesis and progression, as well as identifying targets for cancer immunotherapy. Despite being considered one of the most immunogenic tumour types, melanoma can progress in the presence of abundant lymphocytic infiltration, therefore suggesting that the immune response is not able to efficiently control tumour growth. The purpose of this study was to investigate whether the density, distribution and grade of tumour-infiltrating lymphocytes (TILs) in 97 canine melanocytic tumours is associated with histologic indicators of malignancy and can be considered a prognostic factor in the dog. As a further step in the characterization of the immune response in melanocytic tumours, an immunohistochemical investigation was performed to evaluate the two main populations of TILs, T-lymphocytes (CD3+ ) and B-lymphocytes (CD20+ ). The results of our study show that TILs are present in a large proportion of canine melanocytic tumours, especially in oral melanomas, and that the infiltrate is usually mild. The quantity of CD20+ TILs was significantly associated with some histologic prognostic factors, such as the mitotic count, the cellular pleomorphism and the percentage of pigmented cells. Remarkably, a high infiltration of CD20+ TILs was associated with tumour-related death, presence of metastasis/recurrence, shorter overall and disease-free survival, increased hazard of death and of developing recurrence/metastasis, hence representing a potential new negative prognostic factor in canine melanocytic tumours.
Collapse
Affiliation(s)
- Ilaria Porcellato
- Department of Veterinary Medicine, Università degli Studi di Perugia, Perugia, Italy
| | - Serenella Silvestri
- Department of Veterinary Medicine, Università degli Studi di Perugia, Perugia, Italy
| | - Laura Menchetti
- Department of Veterinary Medicine, Università degli Studi di Perugia, Perugia, Italy
| | - Francesca Recupero
- Department of Veterinary Medicine, Università degli Studi di Perugia, Perugia, Italy
| | - Luca Mechelli
- Department of Veterinary Medicine, Università degli Studi di Perugia, Perugia, Italy
| | - Monica Sforna
- Department of Veterinary Medicine, Università degli Studi di Perugia, Perugia, Italy
| | - Selina Iussich
- Department of Veterinary Science, Università degli Studi di Torino, Turin, Italy
| | - Laura Bongiovanni
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Teramo, Italy
| | - Elvio Lepri
- Department of Veterinary Medicine, Università degli Studi di Perugia, Perugia, Italy
| | - Chiara Brachelente
- Department of Veterinary Medicine, Università degli Studi di Perugia, Perugia, Italy
| |
Collapse
|
60
|
Zamarian V, Catozzi C, Ressel L, Finotello R, Ceciliani F, Vilafranca M, Altimira J, Lecchi C. MicroRNA Expression in Formalin-Fixed, Paraffin-Embedded Samples of Canine Cutaneous and Oral Melanoma by RT-qPCR. Vet Pathol 2019; 56:848-855. [PMID: 31526125 DOI: 10.1177/0300985819868646] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are a class of small, noncoding RNA that post-transcriptionally regulate protein expression. miRNAs are emerging as clinical biomarkers of many diseases, including tumors. The aim of this study was to investigate whether miRNA expression could vary in melanoma samples derived from formalin-fixed, paraffin-embedded (FFPE) tissues. The study included 4 groups: (1) 9 samples of oral canine malignant melanoma, (2) 10 samples of cutaneous malignant melanoma, (3) 5 samples of healthy oral mucosa, and (4) 7 samples of healthy skin. The expression levels of 6 miRNAs-miR-145, miR-146a, miR-425-5p, miR-223, miR-365, and miR-134-were detected and assessed by quantitative reverse transcription polymerase chain reaction (RT-qPCR) using TaqMan probes. Cutaneous canine malignant melanoma showed a decrease of the expression level of miR-145 and miR-365 and an increase of miR-146a and miR-425-5p compared to control samples. MiR-145 was also downregulated in oral canine malignant melanoma. The miRNAs with decreased expression may regulate genes involved in RAS, Rap1, and transforming growth factor β (TGF-β) signaling pathways, as well as upregulated genes associated with phosphatidylinositol signaling system, adherens junction, and RAS signaling pathways. In conclusion, miR-145, miR-365, miR-146a, and miR-425-5p were differentially expressed in canine malignant melanoma and healthy FFPE samples, suggesting that they may play a role in canine malignant melanoma pathogenesis.
Collapse
Affiliation(s)
- Valentina Zamarian
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milano, Italy
| | - Carlotta Catozzi
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milano, Italy
| | - Lorenzo Ressel
- Department of Veterinary Pathology, Public Health Institute of Veterinary Science, University of Liverpool, Neston, UK
| | - Riccardo Finotello
- Department of Small Animal Clinical Science, Institute of Veterinary Science, University of Liverpool, Neston, UK
| | - Fabrizio Ceciliani
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milano, Italy
| | | | - Jaume Altimira
- HISTOVET Veterinary Diagnostic Service, Barcelona, Spain
| | - Cristina Lecchi
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
61
|
Rahman MM, Lai YC, Husna AA, Chen HW, Tanaka Y, Kawaguchi H, Hatai H, Miyoshi N, Nakagawa T, Fukushima R, Miura N. Transcriptome analysis of dog oral melanoma and its oncogenic analogy with human melanoma. Oncol Rep 2019; 43:16-30. [PMID: 31661138 PMCID: PMC6908934 DOI: 10.3892/or.2019.7391] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 09/30/2019] [Indexed: 12/18/2022] Open
Abstract
Dogs have been considered as an excellent immunocompetent model for human melanoma due to the same tumor location and the common clinical and pathological features with human melanoma. However, the differences in the melanoma transcriptome between the two species have not been yet fully determined. Considering the role of oncogenes in melanoma development, in this study, we first characterized the transcriptome in canine oral melanoma and then compared the transcriptome with that of human melanoma. The global transcriptome from 8 canine oral melanoma samples and 3 healthy oral tissues were compared by RNA-Seq followed by RT-qPCR validation. The results revealed 2,555 annotated differentially expressed genes, as well as 364 novel differentially expressed genes. Dog chromosomes 1 and 9 were enriched with downregulated and upregulated genes, respectively. Along with 10 significant transcription site binding motifs; the NF-κB and ATF1 binding motifs were the most significant and 4 significant unknown motifs were indentified among the upregulated differentially expressed genes. Moreover, it was found that canine oral melanoma shared >80% significant oncogenes (upregulated genes) with human melanoma, and JAK-STAT was the most common significant pathway between the species. The results identified a 429 gene signature in melanoma, which was up-regulated in both species; these genes may be good candidates for therapeutic development. Furthermore, this study demonstrates that as regards oncogene expression, human melanoma contains an oncogene group that bears similarities with dog oral melanoma, which supports the use of dogs as a model for the development of novel therapeutics and experimental trials before human application.
Collapse
Affiliation(s)
- Md Mahfuzur Rahman
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890‑0065, Japan
| | - Yu-Chang Lai
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890‑0065, Japan
| | - Al Asmaul Husna
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890‑0065, Japan
| | - Hui-Wen Chen
- Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima 890‑0065, Japan
| | - Yuiko Tanaka
- Department of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113‑8657, Japan
| | - Hiroaki Kawaguchi
- Hygiene and Health Promotion Medicine, Kagoshima University Graduate School of Medicine and Dental Science, Kagoshima University, Kagoshima 890‑0065, Japan
| | - Hitoshi Hatai
- Department of Veterinary Histopathology, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890‑0065, Japan
| | - Noriaki Miyoshi
- Department of Veterinary Histopathology, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890‑0065, Japan
| | - Takayuki Nakagawa
- Department of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113‑8657, Japan
| | - Ryuji Fukushima
- Animal Medical Center, Tokyo University of Agriculture and Technology, Tokyo 183‑8538, Japan
| | - Naoki Miura
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890‑0065, Japan
| |
Collapse
|
62
|
Rahman MM, Lai YC, Husna AA, Chen HW, Tanaka Y, Kawaguchi H, Miyoshi N, Nakagawa T, Fukushima R, Miura N. Micro RNA Transcriptome Profile in Canine Oral Melanoma. Int J Mol Sci 2019; 20:E4832. [PMID: 31569419 PMCID: PMC6801976 DOI: 10.3390/ijms20194832] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/13/2019] [Accepted: 09/27/2019] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) dysregulation contribute the cancer pathogenesis. However, the miRNA profile of canine oral melanoma (COM), one of the frequent malignant melanoma in dogs is still unrevealed. The aim of this study is to reveal the miRNA profile in canine oral melanoma. MiRNAs profile of oral tissues from normal healthy dogs and COM patients were compared by next-generation sequencing. Along with tumour suppressor miRNAs, we report 30 oncogenic miRNAs in COM. The expressions of miRNAs were further confirmed by quantitative real-time PCR (qPCR). Pathway analysis showed that deregulated miRNAs impact on cancer and signalling pathways. Three oncogenic miRNAs targets (miR-450b, 301a, and 223) from human study also were down-regulated in COM and had a significant negative correlation with their respective miRNA. Furthermore, we found that miR-450b expression is higher in metastatic cells and regulated MMP9 expression through a PAX9-BMP4-MMP9 axis. In silico analysis indicated that miR-126, miR-20b, and miR-106a regulated the highest numbers of differentially expressed transcription factors with respect to human melanoma. Chromosomal enrichment analysis revealed the X chromosome was enriched with oncogenic miRNAs. We comprehensively analyzed the miRNA's profile in COM which will be a useful resource for developing therapeutic interventions in both species.
Collapse
Affiliation(s)
- Md Mahfuzur Rahman
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Kagoshima 890-0065, Japan.
- The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Yamaguchi 753-8515, Japan.
| | - Yu-Chang Lai
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Kagoshima 890-0065, Japan.
| | - Al Asmaul Husna
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Kagoshima 890-0065, Japan.
- The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Yamaguchi 753-8515, Japan.
| | - Hui-Wen Chen
- Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima, Kagoshima 890-0065, Japan.
| | - Yuiko Tanaka
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo City, Tokyo 113-8654, Japan.
| | - Hiroaki Kawaguchi
- Hygiene and Health Promotion Medicine, Kagoshima University Graduate School of Medicine and Dental Science, Kagoshima, Kagoshima 890-8544, Japan.
| | - Noriaki Miyoshi
- Department of Veterinary Histopathology, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Kagoshima 890-0065, Japan.
| | - Takayuki Nakagawa
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo City, Tokyo 113-8654, Japan.
| | - Ryuji Fukushima
- Animal Medical Centre, Tokyo University of Agriculture and Technology, Tokyo, Tokyo 183-8538, Japan.
| | - Naoki Miura
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Kagoshima 890-0065, Japan.
- The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Yamaguchi 753-8515, Japan.
- Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima, Kagoshima 890-0065, Japan.
| |
Collapse
|
63
|
Genome-wide screening identifies novel genes implicated in cellular sensitivity to BRAF V600E expression. Oncogene 2019; 39:723-738. [PMID: 31548614 DOI: 10.1038/s41388-019-1022-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 01/10/2023]
Abstract
The V600E mutation of BRAF (BRAFV600E), which constitutively activates the ERK/MAPK signaling pathway, is frequently found in melanoma and other cancers. Like most other oncogenes, BRAFV600E causes oncogenic stress to normal cells, leading to growth arrest (senescence) or apoptosis. Through genome-wide screening, we identified genes implicated in sensitivity of human skin melanocytes and fibroblasts to BRAFV600E overexpression. Among the identified genes shared by the two cell types are proto-oncogenes ERK2, a component of the ERK/MAPK pathway, and VAV1, a guanine nucleotide exchange factor for Rho family GTPases that also activates the ERK/MAPK pathway. CDKN1A, which has been known to promote senescence of fibroblasts but not melanocytes, is implicated in sensitivity of the fibroblasts but not the melanocytes to BRAFV600E overexpression. Disruptions of GPR4, a pH-sensing G-protein coupled receptor, and DBT, a subunit of the branched chain α-keto acid dehydrogenase that is required for the second and rate-limiting step of branched amino acid catabolism and implicated in maple syrup urine disease, are the most highly selected in the melanocytes upon BRAFV600E overexpression. Disruption of DBT severely attenuates ERK/MAPK signaling, p53 activation, and apoptosis in melanocytes, at least in part due to accumulation of branched chain α-keto acids. The expression level of BRAF positively correlates with that of DBT in all cancer types and with that of GPR4 in most cancer types. Overexpression of DBT kills all four melanoma cell lines tested regardless of the presence of BRAFV600E mutation. Our findings shed new lights on regulations of oncogenic stress signaling and may be informative for development of novel cancer treatment strategies.
Collapse
|
64
|
Noguchi S, Ogusu R, Wada Y, Matsuyama S, Mori T. PTEN, A Target of Microrna-374b, Contributes to the Radiosensitivity of Canine Oral Melanoma Cells. Int J Mol Sci 2019; 20:E4631. [PMID: 31540513 PMCID: PMC6770036 DOI: 10.3390/ijms20184631] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/15/2019] [Accepted: 09/16/2019] [Indexed: 01/11/2023] Open
Abstract
Canine oral malignant melanoma (CoMM) is often treated by radiation therapy in veterinary medicine. However, not all cases are successfully managed by this treatment. For improved efficacy of radiation therapy, biomarkers predicting the radiosensitivity of melanoma cells need to be explored. Here, we, first, developed the radioresistant CoMM cell line, KMeC/R. We found that the expression level of phosphatase and tensin homolog (PTEN) of KMeC/R cells was significantly downregulated compared with KMeC cells. Overexpression of PTEN successfully restored the radiosensitivity of KMeC/R cells, and silencing of PTEN significantly increased the radioresistance of the CoMM cells tested. Next, we focused on microRNAs (miRNAs) to explore the mechanisms of downregulation of PTEN in KMeC/R cells. miR-374b was upregulated in KMeC/R cells compared with that in KMeC cells and in the irradiated CoMM cells tested. Furthermore, miR-374b directly targeted PTEN based on the luciferase activity assay. Moreover, the extrinsic miR-374b significantly increased the radioresistance of KMeC cells. In addition, the expression level of PTEN was significantly downregulated and that of miR-374b tended to be upregulated in recurrent CoMM tissues after radiation therapy compared with the pre-treatment tissues. Thus, the current study suggested that the miR-374b/PTEN signaling pathway possibly plays an important role in CoMM radiosensitivity.
Collapse
Affiliation(s)
- Shunsuke Noguchi
- Laboratory of Veterinary Radiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano-shi, Osaka 598-8531, Japan.
| | - Ryo Ogusu
- Laboratory of Veterinary Radiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano-shi, Osaka 598-8531, Japan.
| | - Yusuke Wada
- Veterinary Medical Center, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano-shi, Osaka 598-8531, Japan.
| | - Satoshi Matsuyama
- Laboratory of Veterinary Radiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano-shi, Osaka 598-8531, Japan.
| | - Takashi Mori
- Laboratory of Veterinary Clinical Oncology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1112, Japan.
| |
Collapse
|
65
|
Prouteau A, Chocteau F, de Brito C, Cadieu E, Primot A, Botherel N, Degorce F, Cornevin L, Lagadic MA, Cabillic F, de Fornel-Thibaud P, Devauchelle P, Derrien T, Abadie J, André C, Hédan B. Prognostic value of somatic focal amplifications on chromosome 30 in canine oral melanoma. Vet Comp Oncol 2019; 18:214-223. [PMID: 31461207 DOI: 10.1111/vco.12536] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/02/2019] [Accepted: 08/20/2019] [Indexed: 12/16/2022]
Abstract
Canine oral melanoma is the first malignancy of the oral cavity in dogs and is characterized by a local invasiveness and a high metastatic propensity. A better knowledge of genetic alterations is expected to improve management of this tumour. Copy number alterations are known characteristics of mucosal melanomas both in dogs and humans. The goal of this study was to explore the prognostic value of somatic focal amplifications on chromosomes (Canis Familiaris [CFA]) 10 and 30 in canine oral melanoma. The cohort included 73 dogs with oral melanoma confirmed by histology, removed surgically without adjuvant therapy and with a minimal follow-up of 6 months. Epidemiological, clinical and histological data were collected and quantitative-PCR were performed on formalin-fixed paraffin-embedded (FFPE) samples to identify specific focal amplifications. The 73 dogs included in the study had a median survival time of 220 days. Focal amplifications on CFA 10 and 30 were recurrent (49.3% and 50.7% of cases, respectively) and CFA 30 amplification was significantly associated with the amelanotic phenotype (P = .046) and high mitotic index (MI; P = .0039). CFA 30 amplification was also linked to poor prognosis (P = .0005). Other negative prognostic factors included gingiva location (P = .003), lymphadenomegaly (P = .026), tumour ulceration at diagnosis (P = .003), MI superior to 6 mitoses over 10 fields (P = .001) and amelanotic tumour (P = .029). In multivariate analyses using Cox proportional hazards regression, CFA 30 amplification (Hazard ratio [HR] = 2.08; P = .011), tumour location (HR = 2.20; P = .005) and histological pigmentation (HR = 1.87; P = .036) were significantly associated with shorter survival time. Focal amplification of CFA 30 is linked to an aggressive subset and constitutes a new prognostic factor.
Collapse
Affiliation(s)
- Anais Prouteau
- CNRS-University of Rennes 1, UMR6290, Institute of Genetics and Development of Rennes, Faculty of Medicine, Rennes, France
| | - Florian Chocteau
- Oniris, Laboniris - Department of Biology, Pathology and Food Sciences, Nantes, France
| | - Clotilde de Brito
- CNRS-University of Rennes 1, UMR6290, Institute of Genetics and Development of Rennes, Faculty of Medicine, Rennes, France
| | - Edouard Cadieu
- CNRS-University of Rennes 1, UMR6290, Institute of Genetics and Development of Rennes, Faculty of Medicine, Rennes, France
| | - Aline Primot
- CNRS-University of Rennes 1, UMR6290, Institute of Genetics and Development of Rennes, Faculty of Medicine, Rennes, France
| | - Nadine Botherel
- CNRS-University of Rennes 1, UMR6290, Institute of Genetics and Development of Rennes, Faculty of Medicine, Rennes, France
| | | | - Laurence Cornevin
- Department of Cytogenetics and Cell Biology, Hospital of Rennes, INSERM, University of Rennes, INRA, Institut NuMeCan (Nutrition, Metabolisms and Cancer), Rennes, France
| | | | - Florian Cabillic
- Department of Cytogenetics and Cell Biology, Hospital of Rennes, INSERM, University of Rennes, INRA, Institut NuMeCan (Nutrition, Metabolisms and Cancer), Rennes, France
| | | | | | - Thomas Derrien
- CNRS-University of Rennes 1, UMR6290, Institute of Genetics and Development of Rennes, Faculty of Medicine, Rennes, France
| | - Jerome Abadie
- Oniris, Laboniris - Department of Biology, Pathology and Food Sciences, Nantes, France
| | - Catherine André
- CNRS-University of Rennes 1, UMR6290, Institute of Genetics and Development of Rennes, Faculty of Medicine, Rennes, France
| | - Benoît Hédan
- CNRS-University of Rennes 1, UMR6290, Institute of Genetics and Development of Rennes, Faculty of Medicine, Rennes, France
| |
Collapse
|
66
|
Wei BR, Halsey CH, Hoover SB, Puri M, Yang HH, Gallas BD, Lee MP, Chen W, Durham AC, Dwyer JE, Sánchez MD, Traslavina RP, Frank C, Bradley C, McGill LD, Esplin DG, Schaffer PA, Cramer SD, Lyle LT, Beck J, Buza E, Gong Q, Hewitt SM, Simpson RM. Agreement in Histological Assessment of Mitotic Activity Between Microscopy and Digital Whole Slide Images Informs Conversion for Clinical Diagnosis. Acad Pathol 2019; 6:2374289519859841. [PMID: 31321298 PMCID: PMC6628521 DOI: 10.1177/2374289519859841] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/15/2019] [Accepted: 05/19/2019] [Indexed: 01/27/2023] Open
Abstract
Validating digital pathology as substitute for conventional microscopy in diagnosis
remains a priority to assure effectiveness. Intermodality concordance studies typically
focus on achieving the same diagnosis by digital display of whole slide images and
conventional microscopy. Assessment of discrete histological features in whole slide
images, such as mitotic figures, has not been thoroughly evaluated in diagnostic practice.
To further gauge the interchangeability of conventional microscopy with digital display
for primary diagnosis, 12 pathologists examined 113 canine naturally occurring mucosal
melanomas exhibiting a wide range of mitotic activity. Design reflected diverse diagnostic
settings and investigated independent location, interpretation, and enumeration of mitotic
figures. Intermodality agreement was assessed employing conventional microscopy (CM40×),
and whole slide image specimens scanned at 20× (WSI20×) and at 40× (WSI40×) objective
magnifications. An aggregate 1647 mitotic figure count observations were available from
conventional microscopy and whole slide images for comparison. The intraobserver
concordance rate of paired observations was 0.785 to 0.801; interobserver rate was 0.784
to 0.794. Correlation coefficients between the 2 digital modes, and as compared to
conventional microscopy, were similar and suggest noninferiority among modalities,
including whole slide image acquired at lower 20× resolution. As mitotic figure counts
serve for prognostic grading of several tumor types, including melanoma, 6 of 8
pathologists retrospectively predicted survival prognosis using whole slide images,
compared to 9 of 10 by conventional microscopy, a first evaluation of whole slide image
for mitotic figure prognostic grading. This study demonstrated agreement of replicate
reads obtained across conventional microscopy and whole slide images. Hence, quantifying
mitotic figures served as surrogate histological feature with which to further credential
the interchangeability of whole slide images for primary diagnosis.
Collapse
Affiliation(s)
- Bih-Rong Wei
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Charles H Halsey
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shelley B Hoover
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Munish Puri
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Howard H Yang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Brandon D Gallas
- Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, USA
| | - Maxwell P Lee
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Weijie Chen
- Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, USA
| | - Amy C Durham
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer E Dwyer
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Melissa D Sánchez
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryan P Traslavina
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Chad Frank
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Charles Bradley
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Paula A Schaffer
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Sarah D Cramer
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - L Tiffany Lyle
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jessica Beck
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth Buza
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Qi Gong
- Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, USA
| | - Stephen M Hewitt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - R Mark Simpson
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
67
|
Canine Melanomas as Models for Human Melanomas: Clinical, Histological, and Genetic Comparison. Genes (Basel) 2019; 10:genes10070501. [PMID: 31262050 PMCID: PMC6678806 DOI: 10.3390/genes10070501] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/16/2019] [Accepted: 06/22/2019] [Indexed: 12/18/2022] Open
Abstract
Despite recent genetic advances and numerous ongoing therapeutic trials, malignant melanoma remains fatal, and prognostic factors as well as more efficient treatments are needed. The development of such research strongly depends on the availability of appropriate models recapitulating all the features of human melanoma. The concept of comparative oncology, with the use of spontaneous canine models has recently acquired a unique value as a translational model. Canine malignant melanomas are naturally occurring cancers presenting striking homologies with human melanomas. As for many other cancers, dogs present surprising breed predispositions and higher frequency of certain subtypes per breed. Oral melanomas, which are much more frequent and highly severe in dogs and cutaneous melanomas with severe digital forms or uveal subtypes are subtypes presenting relevant homologies with their human counterparts, thus constituting close models for these human melanoma subtypes. This review addresses how canine and human melanoma subtypes compare based on their epidemiological, clinical, histological, and genetic characteristics, and how comparative oncology approaches can provide insights into rare and poorly characterized melanoma subtypes in humans that are frequent and breed-specific in dogs. We propose canine malignant melanomas as models for rare non-UV-induced human melanomas, especially mucosal melanomas. Naturally affected dogs offer the opportunity to decipher the genetics at both germline and somatic levels and to explore therapeutic options, with the dog entering preclinical trials as human patients, benefiting both dogs and humans.
Collapse
|
68
|
Hitte C, Le Béguec C, Cadieu E, Wucher V, Primot A, Prouteau A, Botherel N, Hédan B, Lindblad-Toh K, André C, Derrien T. Genome-Wide Analysis of Long Non-Coding RNA Profiles in Canine Oral Melanomas. Genes (Basel) 2019; 10:genes10060477. [PMID: 31234577 PMCID: PMC6628375 DOI: 10.3390/genes10060477] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 12/25/2022] Open
Abstract
Mucosal melanomas (MM) are rare aggressive cancers in humans, and one of the most common forms of oral cancers in dogs. Similar biological and histological features are shared between MM in both species, making dogs a powerful model for comparative oncology studies of melanomas. Although exome sequencing recently identified recurrent coding mutations in canine MM, little is known about changes in non-coding gene expression, and more particularly, in canine long non-coding RNAs (lncRNAs), which are commonly dysregulated in human cancers. Here, we sampled a large cohort (n = 52) of canine normal/tumor oral MM from three predisposed breeds (poodles, Labrador retrievers, and golden retrievers), and used deep transcriptome sequencing to identify more than 400 differentially expressed (DE) lncRNAs. We further prioritized candidate lncRNAs by comparative genomic analysis to pinpoint 26 dog–human conserved DE lncRNAs, including SOX21-AS, ZEB2-AS, and CASC15 lncRNAs. Using unsupervised co-expression network analysis with coding genes, we inferred the potential functions of the DE lncRNAs, suggesting associations with cancer-related genes, cell cycle, and carbohydrate metabolism Gene Ontology (GO) terms. Finally, we exploited our multi-breed design to identify DE lncRNAs within breeds. This study provides a unique transcriptomic resource for studying oral melanoma in dogs, and highlights lncRNAs that may potentially be diagnostic or therapeutic targets for human and veterinary medicine.
Collapse
Affiliation(s)
- Christophe Hitte
- University of Rennes, CNRS, IGDR-UMR 6290, F-35000 Rennes, France.
| | - Céline Le Béguec
- University of Rennes, CNRS, IGDR-UMR 6290, F-35000 Rennes, France.
| | - Edouard Cadieu
- University of Rennes, CNRS, IGDR-UMR 6290, F-35000 Rennes, France.
| | - Valentin Wucher
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain.
| | - Aline Primot
- University of Rennes, CNRS, IGDR-UMR 6290, F-35000 Rennes, France.
| | - Anaïs Prouteau
- University of Rennes, CNRS, IGDR-UMR 6290, F-35000 Rennes, France.
| | - Nadine Botherel
- University of Rennes, CNRS, IGDR-UMR 6290, F-35000 Rennes, France.
| | - Benoît Hédan
- University of Rennes, CNRS, IGDR-UMR 6290, F-35000 Rennes, France.
| | - Kerstin Lindblad-Toh
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, SE-751 24 Uppsala, Sweden.
| | - Catherine André
- University of Rennes, CNRS, IGDR-UMR 6290, F-35000 Rennes, France.
| | - Thomas Derrien
- University of Rennes, CNRS, IGDR-UMR 6290, F-35000 Rennes, France.
| |
Collapse
|
69
|
Huang L, Chen J, Zhao Y, Gu L, Shao X, Li J, Xu Y, Liu Z, Xu Q. Key candidate genes of STAT1 and CXCL10 in melanoma identified by integrated bioinformatical analysis. IUBMB Life 2019; 71:1634-1644. [PMID: 31216116 DOI: 10.1002/iub.2103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/03/2019] [Indexed: 01/01/2023]
Abstract
The underlying mechanisms and gene signatures of melanoma are unknown. In this study, three expression profile data sets (GSE65568, GSE100050, GSE114445) were integrated to identify candidate genes explaining the pathways and functions of melanoma. Expression data sets including 24 melanoma tumours and 13 normal skin samples were merged and analysed in detail. The three GSE profiles shared 431 differentially expressed genes (DEGs), including 227 upregulated genes, 200 downregulated genes and 4 differentially regulated genes. Moreover, the functions and signalling pathways of the shared DEGs with significant p-values were identified. The two most significant modules were filtered from the DEGs protein-protein interaction (PPI) network, which consisted of 284 nodes. We also plotted the prognostic value of hub genes from an online database. In summary, using integrated bioinformatic analysis, we have identified candidate DEGs and pathways in melanoma that could improve our understanding of the causes and underlying molecular events of melanoma, and these candidate genes and pathways could be therapeutic targets for melanoma.
Collapse
Affiliation(s)
- Lili Huang
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji University Cancer Center, Shanghai, China.,Department of Oncology, Dermatology Hospital, Tongji University, Shanghai, China
| | - Jianhua Chen
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji University Cancer Center, Shanghai, China.,Department of Oncology, Dermatology Hospital, Tongji University, Shanghai, China
| | - Yu Zhao
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji University Cancer Center, Shanghai, China.,Department of Oncology, Dermatology Hospital, Tongji University, Shanghai, China
| | - Linaer Gu
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji University Cancer Center, Shanghai, China.,Department of Oncology, Dermatology Hospital, Tongji University, Shanghai, China
| | - Xiaoyan Shao
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji University Cancer Center, Shanghai, China.,Department of Oncology, Dermatology Hospital, Tongji University, Shanghai, China
| | - Jiyu Li
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu Xu
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhuqing Liu
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji University Cancer Center, Shanghai, China.,Department of Oncology, Dermatology Hospital, Tongji University, Shanghai, China
| | - Qing Xu
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji University Cancer Center, Shanghai, China.,Department of Oncology, Dermatology Hospital, Tongji University, Shanghai, China
| |
Collapse
|
70
|
DeLong RK, Cheng YH, Pearson P, Lin Z, Coffee C, Mathew EN, Hoffman A, Wouda RM, Higginbotham ML. Translating Nanomedicine to Comparative Oncology-the Case for Combining Zinc Oxide Nanomaterials with Nucleic Acid Therapeutic and Protein Delivery for Treating Metastatic Cancer. J Pharmacol Exp Ther 2019; 370:671-681. [PMID: 31040175 DOI: 10.1124/jpet.118.256230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/04/2019] [Indexed: 01/16/2023] Open
Abstract
The unique anticancer, biochemical, and immunologic properties of nanomaterials are becoming a new tool in biomedical research. Their translation into the clinic promises a new wave of targeted therapies. One nanomaterial of particular interest are zinc oxide (ZnO) nanoparticles (NPs), which has distinct mechanisms of anticancer activity including unique surface, induction of reactive oxygen species, lipid oxidation, pH, and also ionic gradients within cancer cells and the tumor microenvironment. It is recognized that ZnO NPs can serve as a direct enzyme inhibitor. Significantly, ZnO NPs inhibit extracellular signal-regulated kinase (ERK) and protein kinase B (AKT) associated with melanoma progression, drug resistance, and metastasis. Indeed, direct intratumoral injection of ZnO NPs or a complex of ZnO with RNA significantly suppresses ERK and AKT phosphorylation. These data suggest ZnO NPs and their complexes or conjugates with nucleic acid therapeutic or anticancer protein may represent a potential new strategy for the treatment of metastatic melanoma, and potentially other cancers. This review focuses on the anticancer mechanisms of ZnO NPs and what is currently known about its biochemical effects on melanoma, biologic activity, and pharmacokinetics in rodents and its potential for translation into large animal, spontaneously developing models of melanoma and other cancers, which represent models of comparative oncology.
Collapse
Affiliation(s)
- R K DeLong
- Department of Anatomy and Physiology, Nanotechnology Innovation Center (R.K.D., P.P., E.N.M., A.H.), Department of Anatomy and Physiology, Institute for Computational Comparative Medicine (Y.-H.C., Z.L.), and Department of Clinical Sciences (C.C., R.M.W., M.L.H.), College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Yi-Hsien Cheng
- Department of Anatomy and Physiology, Nanotechnology Innovation Center (R.K.D., P.P., E.N.M., A.H.), Department of Anatomy and Physiology, Institute for Computational Comparative Medicine (Y.-H.C., Z.L.), and Department of Clinical Sciences (C.C., R.M.W., M.L.H.), College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Paige Pearson
- Department of Anatomy and Physiology, Nanotechnology Innovation Center (R.K.D., P.P., E.N.M., A.H.), Department of Anatomy and Physiology, Institute for Computational Comparative Medicine (Y.-H.C., Z.L.), and Department of Clinical Sciences (C.C., R.M.W., M.L.H.), College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Zhoumeng Lin
- Department of Anatomy and Physiology, Nanotechnology Innovation Center (R.K.D., P.P., E.N.M., A.H.), Department of Anatomy and Physiology, Institute for Computational Comparative Medicine (Y.-H.C., Z.L.), and Department of Clinical Sciences (C.C., R.M.W., M.L.H.), College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Calli Coffee
- Department of Anatomy and Physiology, Nanotechnology Innovation Center (R.K.D., P.P., E.N.M., A.H.), Department of Anatomy and Physiology, Institute for Computational Comparative Medicine (Y.-H.C., Z.L.), and Department of Clinical Sciences (C.C., R.M.W., M.L.H.), College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Elza Neelima Mathew
- Department of Anatomy and Physiology, Nanotechnology Innovation Center (R.K.D., P.P., E.N.M., A.H.), Department of Anatomy and Physiology, Institute for Computational Comparative Medicine (Y.-H.C., Z.L.), and Department of Clinical Sciences (C.C., R.M.W., M.L.H.), College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Amanda Hoffman
- Department of Anatomy and Physiology, Nanotechnology Innovation Center (R.K.D., P.P., E.N.M., A.H.), Department of Anatomy and Physiology, Institute for Computational Comparative Medicine (Y.-H.C., Z.L.), and Department of Clinical Sciences (C.C., R.M.W., M.L.H.), College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Raelene M Wouda
- Department of Anatomy and Physiology, Nanotechnology Innovation Center (R.K.D., P.P., E.N.M., A.H.), Department of Anatomy and Physiology, Institute for Computational Comparative Medicine (Y.-H.C., Z.L.), and Department of Clinical Sciences (C.C., R.M.W., M.L.H.), College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Mary Lynn Higginbotham
- Department of Anatomy and Physiology, Nanotechnology Innovation Center (R.K.D., P.P., E.N.M., A.H.), Department of Anatomy and Physiology, Institute for Computational Comparative Medicine (Y.-H.C., Z.L.), and Department of Clinical Sciences (C.C., R.M.W., M.L.H.), College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| |
Collapse
|
71
|
Mealey KL, Martinez SE, Villarino NF, Court MH. Personalized medicine: going to the dogs? Hum Genet 2019; 138:467-481. [PMID: 31032534 DOI: 10.1007/s00439-019-02020-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/19/2019] [Indexed: 12/13/2022]
Abstract
Interindividual variation in drug response occurs in canine patients just as it does in human patients. Although canine pharmacogenetics still lags behind human pharmacogenetics, significant life-saving discoveries in the field have been made over the last 20 years, but much remains to be done. This article summarizes the available published data about the presence and impact of genetic polymorphisms on canine drug transporters, drug-metabolizing enzymes, drug receptors/targets, and plasma protein binding while comparing them to their human counterparts when applicable. In addition, precision medicine in cancer treatment as an application of canine pharmacogenetics and pertinent considerations for canine pharmacogenetics testing is reviewed. The field is poised to transition from single pharmacogene-based studies, pharmacogenetics, to pharmacogenomic-based studies to enhance our understanding of interindividual variation of drug response in dogs. Advances made in the field of canine pharmacogenetics will not only improve the health and well-being of dogs and dog breeds, but may provide insight into individual drug efficacy and toxicity in human patients as well.
Collapse
Affiliation(s)
- Katrina L Mealey
- Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99163, USA.
| | - Stephanie E Martinez
- Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99163, USA
| | - Nicolas F Villarino
- Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99163, USA
| | - Michael H Court
- Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99163, USA
| |
Collapse
|
72
|
Irac SE, Oksa A, Jackson K, Herndon A, Allavena R, Palmieri C. Cytokine Expression in Canine Lymphoma, Osteosarcoma, Mammary Gland Tumour and Melanoma: Comparative Aspects. Vet Sci 2019; 6:vetsci6020037. [PMID: 30987001 PMCID: PMC6631657 DOI: 10.3390/vetsci6020037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 12/31/2022] Open
Abstract
Cytokines released in the tumour microenvironment play a major role in cancer pathogenesis. In human cancers and corresponding animal models, cytokine expression contributes to tumour growth and progression, as well as regulation of the host anti-tumour response. The elucidation of the function and importance of cytokines in canine cancers is still in an early stage, although relevant data have been obtained in classical examples of comparative models of human cancers, such as osteosarcoma, melanoma, mammary tumour and lymphoma. A deeper understanding of the cytokine signature may advance diagnosis, prevention and treatment of canine cancers.
Collapse
Affiliation(s)
- Sergio Erdal Irac
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia.
| | - Annika Oksa
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia.
| | - Karen Jackson
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia.
| | - Aaron Herndon
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia.
| | - Rachel Allavena
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia.
| | - Chiara Palmieri
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia.
| |
Collapse
|
73
|
Comprehensive Genomic Profiling of Androgen-Receptor-Negative Canine Prostate Cancer. Int J Mol Sci 2019; 20:ijms20071555. [PMID: 30925701 PMCID: PMC6480132 DOI: 10.3390/ijms20071555] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/10/2019] [Accepted: 03/11/2019] [Indexed: 12/16/2022] Open
Abstract
Canine carcinomas have been considered natural models for human diseases; however, the genomic profile of canine prostate cancers (PCs) has not been explored. In this study, 14 PC androgen-receptor-negative cases, 4 proliferative inflammatory atrophies (PIA), and 5 normal prostate tissues were investigated by array-based comparative genomic hybridization (aCGH). Copy number alterations (CNAs) were assessed using the Canine Genome CGH Microarray 4 × 44K (Agilent Technologies). Genes covered by recurrent CNAs were submitted to enrichment and cross-validation analysis. In addition, the expression levels of TP53, MDM2 and ZBTB4 were evaluated in an independent set of cases by qPCR. PC cases presented genomic complexity, while PIA samples had a small number of CNAs. Recurrent losses covering well-known tumor suppressor genes, such as ATM, BRCA1, CDH1, MEN1 and TP53, were found in PC. The in silico functional analysis showed several cancer-related genes associated with canonical pathways and interaction networks previously described in human PC. The MDM2, TP53, and ZBTB4 copy number alterations were translated into altered expression levels. A cross-validation analysis using The Cancer Genome Atlas (TCGA) database for human PC uncovered similarities between canine and human PCs. Androgen-receptor-negative canine PC is a complex disease characterized by high genomic instability, showing a set of genes with similar alterations to human cancer.
Collapse
|
74
|
Giannuzzi D, Marconato L, Elgendy R, Ferraresso S, Scarselli E, Fariselli P, Nicosia A, Pegolo S, Leoni G, Laganga P, Leone VF, Giantin M, Troise F, Dacasto M, Aresu L. Longitudinal transcriptomic and genetic landscape of radiotherapy response in canine melanoma. Vet Comp Oncol 2019; 17:308-316. [PMID: 30805995 DOI: 10.1111/vco.12473] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/20/2019] [Accepted: 02/25/2019] [Indexed: 12/22/2022]
Abstract
Canine malignant melanoma (MM) is a highly aggressive tumour with a low survival rate and represents an ideal spontaneous model for the human counterpart. Considerable progress has been recently obtained, but the therapeutic success for canine melanoma is still challenging. Little is known about the mechanisms beyond pathogenesis and melanoma development, and the molecular response to radiotherapy has never been explored before. A faster and deeper understanding of cancer mutational processes and developing mechanisms are now possible through next generation sequencing technologies. In this study, we matched whole exome and transcriptome sequencing in four dogs affected by MM at diagnosis and at disease progression to identify possible genetic mechanisms associated with therapy failure. According to previous studies, a genetic similarity between canine MM and its human counterpart was observed. Several somatic mutations were functionally related to MAPK, PI3K/AKT and p53 signalling pathways, but located in genes other than BRAF, RAS and KIT. At disease progression, several mutations were related to therapy effects. Natural killer cell-mediated cytotoxicity and several immune-system-related pathways resulted activated opening a new scenario on the microenvironment in this tumour. In conclusion, this study suggests a potential role of the immune system associated to radiotherapy in canine melanoma, but a larger sample size associated with functional studies are needed.
Collapse
Affiliation(s)
- Diana Giannuzzi
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Padua, Italy
| | - Laura Marconato
- Centro Oncologico Veterinario, Sasso Marconi, Bologna, Italy
| | - Ramy Elgendy
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Serena Ferraresso
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Padua, Italy
| | | | - Piero Fariselli
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Padua, Italy
| | - Alfredo Nicosia
- Nouscom AG, Basel, Switzerland.,Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy.,CEINGE-Biotecnologie Avanzate s.c. a.r.l., Naples, Italy
| | - Sara Pegolo
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padua, Legnaro, Padua, Italy
| | | | - Paola Laganga
- Centro Oncologico Veterinario, Sasso Marconi, Bologna, Italy
| | - Vito F Leone
- Centro Oncologico Veterinario, Sasso Marconi, Bologna, Italy
| | - Mery Giantin
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Padua, Italy
| | | | - Mauro Dacasto
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Padua, Italy
| | - Luca Aresu
- Department of Veterinary Science, University of Turin, Grugliasco, Turin, Italy
| |
Collapse
|
75
|
Radiobiological Characterization of Canine Malignant Melanoma Cell Lines with Different Types of Ionizing Radiation and Efficacy Evaluation with Cytotoxic Agents. Int J Mol Sci 2019; 20:ijms20040841. [PMID: 30781345 PMCID: PMC6413050 DOI: 10.3390/ijms20040841] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/12/2019] [Accepted: 02/12/2019] [Indexed: 01/19/2023] Open
Abstract
Canine malignant melanoma (CMM) is a locally and systemically aggressive cancer that shares many biological and clinical characteristics with human mucosal melanoma. Hypofractionated radiation protocols have been used to treat CMM but little is known about its radiation biology. This pilot study is designed to investigate response of CMM cell lines to various ionizing radiations and cytotoxic agents to better understand this canine cancer. Four CMM cell lines were evaluated by clonogenic survival assay under aerobic and hypoxic conditions and parameters such as alpha beta (α/β) ratio, oxygen enhancement ratio (OER), and relative biological effectiveness (RBE) were calculated after 137Cs, 6 megavoltage (MV) photon, or carbon ion irradiation. Six cytotoxic agents (cisplatin, camptothecin, mitomycin C, bleomycin, methtyl methanesulfonate and etoposide) were also assessed for their efficacy. Under aerobic condition with 6 MV photon, the α/β ratio of the four cell lines ranged from 0.3 to >100, indicating a wide variation of cellular sensitivity. The ratio increased under hypoxic condition compared to aerobic condition and this was more dramatic in 137Cs and 6 MV photon treatments. OER of carbon was lower than 137Cs at D10 in 3 of the 4 cell lines. The RBE values generally increased with the increase of LET. Different cell lines showed sensitivity/resistance to different cytotoxic agents. This study revealed that CMM has a wide range of radiosensitivity and that hypoxia can reduce it, indicating that widely used hypofractionated protocols may not be optimal for all CMM patients. Several cytotoxic agents that have never been clinically assessed can improve treatment outcome.
Collapse
|
76
|
Puri M, Hoover SB, Hewitt SM, Wei BR, Adissu HA, Halsey CHC, Beck J, Bradley C, Cramer SD, Durham AC, Esplin DG, Frank C, Lyle LT, McGill LD, Sánchez MD, Schaffer PA, Traslavina RP, Buza E, Yang HH, Lee MP, Dwyer JE, Simpson RM. Automated Computational Detection, Quantitation, and Mapping of Mitosis in Whole-Slide Images for Clinically Actionable Surgical Pathology Decision Support. J Pathol Inform 2019; 10:4. [PMID: 30915258 PMCID: PMC6396430 DOI: 10.4103/jpi.jpi_59_18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/27/2018] [Indexed: 12/25/2022] Open
Abstract
Background Determining mitotic index by counting mitotic figures (MFs) microscopically from tumor areas with most abundant MF (hotspots [HS]) produces a prognostically useful tumor grading biomarker. However, interobserver concordance identifying MF and HS can be poorly reproducible. Immunolabeling MF, coupled with computer-automated counting by image analysis, can improve reproducibility. A computational system for obtaining MF values across digitized whole-slide images (WSIs) was sought that would minimize impact of artifacts, generate values clinically relatable to counting ten high-power microscopic fields of view typical in conventional microscopy, and that would reproducibly map HS topography. Materials and Methods Relatively low-resolution WSI scans (0.50 μm/pixel) were imported in grid-tile format for feature-based MF segmentation, from naturally occurring canine melanomas providing a wide range of proliferative activity. MF feature extraction conformed to anti-phospho-histone H3-immunolabeled mitotic (M) phase cells. Computer vision image processing was established to subtract key artifacts, obtain MF counts, and employ rotationally invariant feature extraction to map MF topography. Results The automated topometric HS (TMHS) algorithm identified mitotic HS and mapped select tissue tiles with greatest MF counts back onto WSI thumbnail images to plot HS topographically. Influence of dye, pigment, and extraneous structure artifacts was minimized. TMHS diagnostic decision support included image overlay graphics of HS topography, as well as a spreadsheet and plot of tile-based MF count values. TMHS performance was validated examining both mitotic HS counting and mapping functions. Significantly correlated TMHS MF mapping and metrics were demonstrated using repeat analysis with WSI in different orientation (R 2 = 0.9916) and by agreement with a pathologist (R 2 = 0.8605) as well as through assessment of counting function using an independently tuned object counting algorithm (OCA) (R 2 = 0.9482). Limits of agreement analysis support method interchangeability. MF counts obtained led to accurate patient survival prediction in all (n = 30) except one case. By contrast, more variable performance was documented when several pathologists examined similar cases using microscopy (pair-wise correlations, rho range = 0.7597-0.9286). Conclusions Automated TMHS MF segmentation and feature engineering performance were interchangeable with both observer and OCA in digital mode. Moreover, enhanced HS location accuracy and superior method reproducibility were achieved using the automated TMHS algorithm compared to the current practice employing clinical microscopy.
Collapse
Affiliation(s)
- Munish Puri
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Shelley B Hoover
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Stephen M Hewitt
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Bih-Rong Wei
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.,Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Hibret Amare Adissu
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Charles H C Halsey
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jessica Beck
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Charles Bradley
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah D Cramer
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Amy C Durham
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Chad Frank
- Department of Microbiology, Immunology, and Pathology, Veterinary Diagnostic Laboratory, Colorado State University, Fort Collins, CO, USA
| | - L Tiffany Lyle
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | - Melissa D Sánchez
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Paula A Schaffer
- Department of Microbiology, Immunology, and Pathology, Veterinary Diagnostic Laboratory, Colorado State University, Fort Collins, CO, USA
| | - Ryan P Traslavina
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Elizabeth Buza
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Howard H Yang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Maxwell P Lee
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jennifer E Dwyer
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - R Mark Simpson
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
77
|
Abu-Helil B, van der Weyden L. Metastasis in the wild: investigating metastasis in non-laboratory animals. Clin Exp Metastasis 2019; 36:15-28. [PMID: 30739231 PMCID: PMC6394581 DOI: 10.1007/s10585-019-09956-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 01/29/2019] [Indexed: 01/13/2023]
Abstract
Humans are not the only species to spontaneously develop metastatic cancer as cases of metastasis have been reported in a wide range of animals, including dinosaurs. Mouse models have been an invaluable tool in experimental and clinical metastasis research, with the use of genetically-engineered mouse models that spontaneously develop metastasis or ectopic/orthotopic transplantation of tumour cells to wildtype or immunodeficient mice being responsible for many key advances in our understanding of metastasis. However, are there other species that can also be relevant models? Similarities to humans in terms of environmental exposures, life-span, genetics, histopathology and available therapeutics are all factors that can be considered when looking at species other than the laboratory mouse. This review will explore the occurrence of metastasis in multiple species from a variety of domestic, captive and free-living veterinary cases to assist in identifying potential alternative experimental and clinical research models relevant to humans.
Collapse
Affiliation(s)
- Bushra Abu-Helil
- Experimental Cancer Genetics (T113), Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| | - Louise van der Weyden
- Experimental Cancer Genetics (T113), Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| |
Collapse
|
78
|
Wong K, van der Weyden L, Schott CR, Foote A, Constantino-Casas F, Smith S, Dobson JM, Murchison EP, Wu H, Yeh I, Fullen DR, Joseph N, Bastian BC, Patel RM, Martincorena I, Robles-Espinoza CD, Iyer V, Kuijjer ML, Arends MJ, Brenn T, Harms PW, Wood GA, Adams DJ. Cross-species genomic landscape comparison of human mucosal melanoma with canine oral and equine melanoma. Nat Commun 2019; 10:353. [PMID: 30664638 PMCID: PMC6341101 DOI: 10.1038/s41467-018-08081-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 12/07/2018] [Indexed: 02/08/2023] Open
Abstract
Mucosal melanoma is a rare and poorly characterized subtype of human melanoma. Here we perform a cross-species analysis by sequencing tumor-germline pairs from 46 primary human muscosal, 65 primary canine oral and 28 primary equine melanoma cases from mucosal sites. Analysis of these data reveals recurrently mutated driver genes shared between species such as NRAS, FAT4, PTPRJ, TP53 and PTEN, and pathogenic germline alleles of BRCA1, BRCA2 and TP53. We identify a UV mutation signature in a small number of samples, including human cases from the lip and nasal mucosa. A cross-species comparative analysis of recurrent copy number alterations identifies several candidate drivers including MDM2, B2M, KNSTRN and BUB1B. Comparison of somatic mutations in recurrences and metastases to those in the primary tumor suggests pervasive intra-tumor heterogeneity. Collectively, these studies suggest a convergence of some genetic changes in mucosal melanomas between species but also distinctly different paths to tumorigenesis.
Collapse
Affiliation(s)
- Kim Wong
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Louise van der Weyden
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Courtney R Schott
- Department of Pathobiology, University of Guelph, 50 Stone Road E., Guelph, ON, N1G 2W1, Canada
| | - Alastair Foote
- Rossdales Equine Hospital and Diagnostic Centre, High Street, Newmarket, Suffolk, CB8 8JS, UK
| | - Fernando Constantino-Casas
- Department of Veterinary Medicine, Cambridge Veterinary School, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Sionagh Smith
- The Royal (Dick) School of Veterinary Studies and The Roslin Institute, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - Jane M Dobson
- Department of Veterinary Medicine, Cambridge Veterinary School, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Elizabeth P Murchison
- Department of Veterinary Medicine, Cambridge Veterinary School, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Hong Wu
- Departments of Dermatology and Pathology, University of California, San Francisco, CA, 94143, USA
| | - Iwei Yeh
- Departments of Dermatology and Pathology, University of California, San Francisco, CA, 94143, USA
| | - Douglas R Fullen
- Departments of Pathology and Dermatology, University of Michigan Medical School, 3261 Medical Science I, 1301 Catherine, Ann Arbor, MI, 48109-5602, USA
| | - Nancy Joseph
- Departments of Dermatology and Pathology, University of California, San Francisco, CA, 94143, USA
| | - Boris C Bastian
- Departments of Dermatology and Pathology, University of California, San Francisco, CA, 94143, USA
| | - Rajiv M Patel
- Departments of Pathology and Dermatology, University of Michigan Medical School, 3261 Medical Science I, 1301 Catherine, Ann Arbor, MI, 48109-5602, USA
| | - Inigo Martincorena
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Carla Daniela Robles-Espinoza
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Campus Juriquilla, Blvd Juriquilla 3001, Santiago de Querétaro, 76230, Mexico
| | - Vivek Iyer
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Marieke L Kuijjer
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02215, USA
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, Faculty of Medicine, University of Oslo, 0349, Oslo, Norway
| | - Mark J Arends
- University of Edinburgh, Division of Pathology, Centre for Comparative Pathology, Cancer Research UK Edinburgh Centre, Institute of Genetics & Molecular Medicine, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XR, UK
| | - Thomas Brenn
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine and Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, T2L 2K8, Canada
| | - Paul W Harms
- Departments of Pathology and Dermatology, University of Michigan Medical School, 3261 Medical Science I, 1301 Catherine, Ann Arbor, MI, 48109-5602, USA
| | - Geoffrey A Wood
- Department of Pathobiology, University of Guelph, 50 Stone Road E., Guelph, ON, N1G 2W1, Canada
| | - David J Adams
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| |
Collapse
|
79
|
Abstract
Dogs are second only to humans in medical surveillance and preventative health care, leading to a recent perception of increased cancer incidence. Scientific priorities in veterinary oncology have thus shifted, with a demand for cancer genetic screens, better diagnostics, and more effective therapies. Most dog breeds came into existence within the last 300 years, and many are derived from small numbers of founders. Each has undergone strong artificial selection, in which dog fanciers selected for many traits, including body size, fur type, color, skull shape, and behavior, to create novel breeds. The adoption of the breed barrier rule-no dog may become a registered member of a breed unless both its dam and its sire are registered members-ensures a relatively closed genetic pool within each breed. As a result, there is strong phenotypic homogeneity within breeds but extraordinary phenotypic variation between breeds. One consequence of this is the high level of breed-associated genetic disease. We and others have taken advantage of this to identify genes for a large number of canine maladies for which mouse models do not exist, particularly with regard to cancer.
Collapse
Affiliation(s)
- Elaine A Ostrander
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Dayna L Dreger
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA; .,Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana 47907, USA
| | - Jacquelyn M Evans
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
80
|
Nie A, Zehnder A, Page RL, Zhang Y, Pineda AL, Rivas MA, Bustamante CD, Zou J. DeepTag: inferring diagnoses from veterinary clinical notes. NPJ Digit Med 2018; 1:60. [PMID: 31304339 PMCID: PMC6550285 DOI: 10.1038/s41746-018-0067-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 12/13/2022] Open
Abstract
Large scale veterinary clinical records can become a powerful resource for patient care and research. However, clinicians lack the time and resource to annotate patient records with standard medical diagnostic codes and most veterinary visits are captured in free-text notes. The lack of standard coding makes it challenging to use the clinical data to improve patient care. It is also a major impediment to cross-species translational research, which relies on the ability to accurately identify patient cohorts with specific diagnostic criteria in humans and animals. In order to reduce the coding burden for veterinary clinical practice and aid translational research, we have developed a deep learning algorithm, DeepTag, which automatically infers diagnostic codes from veterinary free-text notes. DeepTag is trained on a newly curated dataset of 112,558 veterinary notes manually annotated by experts. DeepTag extends multitask LSTM with an improved hierarchical objective that captures the semantic structures between diseases. To foster human-machine collaboration, DeepTag also learns to abstain in examples when it is uncertain and defers them to human experts, resulting in improved performance. DeepTag accurately infers disease codes from free-text even in challenging cross-hospital settings where the text comes from different clinical settings than the ones used for training. It enables automated disease annotation across a broad range of clinical diagnoses with minimal preprocessing. The technical framework in this work can be applied in other medical domains that currently lack medical coding resources.
Collapse
Affiliation(s)
- Allen Nie
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305 USA
| | - Ashley Zehnder
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305 USA
| | - Rodney L. Page
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523 USA
| | - Yuhui Zhang
- Department of Computer Science and Technology, Tsinghua University, Beijing, China
| | - Arturo Lopez Pineda
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305 USA
| | - Manuel A. Rivas
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305 USA
| | - Carlos D. Bustamante
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305 USA
- Chan-Zuckerberg Biohub, San Francisco, CA 94158 USA
| | - James Zou
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305 USA
- Chan-Zuckerberg Biohub, San Francisco, CA 94158 USA
| |
Collapse
|
81
|
Barutello G, Rolih V, Arigoni M, Tarone L, Conti L, Quaglino E, Buracco P, Cavallo F, Riccardo F. Strengths and Weaknesses of Pre-Clinical Models for Human Melanoma Treatment: Dawn of Dogs' Revolution for Immunotherapy. Int J Mol Sci 2018. [PMID: 29534457 PMCID: PMC5877660 DOI: 10.3390/ijms19030799] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Despite several therapeutic advances, malignant melanoma still remains a fatal disease for which novel and long-term curative treatments are needed. The successful development of innovative therapies strongly depends on the availability of appropriate pre-clinical models. For this purpose, several mouse models holding the promise to provide insight into molecular biology and clinical behavior of melanoma have been generated. The most relevant ones and their contribution for the advancement of therapeutic approaches for the treatment of human melanoma patients will be here summarized. However, as models, mice do not recapitulate all the features of human melanoma, thus their strengths and weaknesses need to be carefully identified and considered for the translation of the results into the human clinics. In this panorama, the concept of comparative oncology acquires a priceless value. The revolutionary importance of spontaneous canine melanoma as a translational model for the pre-clinical investigation of melanoma progression and treatment will be here discussed, with a special consideration to the development of innovative immunotherapeutic approaches.
Collapse
Affiliation(s)
- Giuseppina Barutello
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy.
| | - Valeria Rolih
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy.
| | - Maddalena Arigoni
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy.
| | - Lidia Tarone
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy.
| | - Laura Conti
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy.
| | - Elena Quaglino
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy.
| | - Paolo Buracco
- Department of Veterinary Science, University of Torino, 10095 Grugliasco, Italy.
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy.
| | - Federica Riccardo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy.
| |
Collapse
|