51
|
Jiang F, Xu C, Fan X, Yang S, Fan W, Li M, Song J, Wei W, Chen H, Zhong D, Li G. MyD88 Inhibition Attenuates Cerebral Ischemia-reperfusion Injury by Regulating the Inflammatory Response and Reducing Blood-brain Barrier Damage. Neuroscience 2024; 549:121-137. [PMID: 38754722 DOI: 10.1016/j.neuroscience.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/01/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024]
Abstract
Myeloid differentiation primary response gene 88 (MyD88), a downstream molecule directly linked to Toll-like receptor (TLRs) and IL1 receptor, has been implicated in ischemia-reperfusion injury across various organs. However, its role in cerebral ischemia-reperfusion injury (CIRI) remains unclear. Five transient middle cerebral artery occlusion (tMCAO) microarray datasets were obtained from the Gene Expression Omnibus (GEO) database. We screened these datasets for differentially expressed genes (DEGs) using the GSE35338 and GSE58720 datasets and performed weighted gene co-expression network analysis (WGCNA) using the GSE30655, GSE28731, and GSE32529 datasets to identify the core module related to tMCAO. A protein-protein interaction (PPI) network was constructed using the intersecting DEGs and genes in the core module. Finally, we identified Myd88 was the core gene. In addition, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Set Enrichment Analysis (GSEA) validated that TNFα, IL17, and MyD88 signaling pathways were significantly enriched in tMCAO. Subsequently, we investigated the mechanistic role of MyD88 in the tMCAO model using male C57BL/6 mice. MyD88 expression increased significantly 24 h after reperfusion. After intraperitoneal administration of TJ-M2010-5, a MyD88-specific inhibitor, during reperfusion, the infarction volumes in the mice were ameliorated. TJ-M2010-5 inhibits the activation of microglia and astrocytes. Moreover, it attenuates the upregulation of inflammatory cytokines TNFα, IL17, and MMP9 while preserving the expression level of ZO1 after tMCAO, thereby safeguarding against blood-brain barrier (BBB) disruption. Finally, our findings suggest that MyD88 regulates the IRAK4/IRF5 signaling pathway associated with microglial activation. MyD88 participates in CIRI by regulating the inflammatory response and BBB damage following tMCAO.
Collapse
Affiliation(s)
- Fangchao Jiang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chen Xu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuehui Fan
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuai Yang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Fan
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Meng Li
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jihe Song
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wan Wei
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongping Chen
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Di Zhong
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Guozhong Li
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Department of Neurology, Heilongjiang Provincial Hospital, Harbin, China.
| |
Collapse
|
52
|
Liu T, Zhang M, Zhang J, Kang N, Zheng L, Ding Z. Targeted Delivery of Macrophage Membrane Biomimetic Liposomes Through Intranasal Administration for Treatment of Ischemic Stroke. Int J Nanomedicine 2024; 19:6177-6199. [PMID: 38911498 PMCID: PMC11194020 DOI: 10.2147/ijn.s458656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/10/2024] [Indexed: 06/25/2024] Open
Abstract
Purpose Ginsenoside Rg3 (Rg3) and Panax notoginseng saponins (PNS) can be used for ischemic stroke treatment, however, the lack of targeting to the ischemic region limits the therapeutic effect. To address this, we leveraged the affinity of macrophage membrane proteins for inflamed brain microvascular endothelial cells to develop a macrophage membrane-cloaked liposome loaded with Rg3 and PNS (MM-Lip-Rg3/PNS), which can precisely target brain lesion region through intranasal administration. Methods MM-Lip-Rg3/PNS was prepared by co-extrusion method and was performed by characterization, stability, surface protein, and morphology. The cellular uptake, immune escape ability, and blood-brain barrier crossing ability of MM-Lip-Rg3/PNS were studied in vitro. The in vivo brain targeting, biodistribution and anti-ischemic efficacy of MM-Lip-Rg3/PNS were evaluated in MACO rats, and we determined the diversity of the nasal brain pathway through the olfactory nerve blockade model in rats. Finally, the pharmacokinetics and brain targeting index of MM-Lip-Rg3/PNS were investigated. Results Our results indicated that MM-Lip-Rg3/PNS was spherical with a shell-core structure. MM-Lip-Rg3/PNS can avoid mononuclear phagocytosis, actively bind to inflammatory endothelial cells, and have the ability to cross the blood-brain barrier. Moreover, MM-Lip-Rg3/PNS could specifically target ischemic sites, even microglia, increase the cumulative number of drugs in the brain, improve the inflammatory environment of the brain, and reduce the infarct size. By comparing olfactory nerve-blocking rats with normal rats, it was found that there are direct and indirect pathways for nasal entry into the brain. Pharmacokinetics demonstrated that MM-Lip-Rg3/PNS exhibited stronger brain targeting and prolonged drug half-life. Conclusion MM-Lip-Rg3/PNS might contribute to the accumulation of Rg3 and PNS in the ischemic brain area to improve treatment efficacy. This biomimetic nano-drug delivery system provides a new and promising strategy for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Tianshu Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, People’s Republic of China
| | - Mengfan Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, People’s Republic of China
| | - Jin Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, People’s Republic of China
| | - Naijin Kang
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, People’s Republic of China
| | - Linlin Zheng
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, People’s Republic of China
| | - Zhiying Ding
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, People’s Republic of China
| |
Collapse
|
53
|
Mu Q, Yao K, Syeda MZ, Wan J, Cheng Q, You Z, Sun R, Zhang Y, Zhang H, Lu Y, Luo Z, Li Y, Liu F, Liu H, Zou X, Zhu Y, Peng K, Huang C, Chen X, Tang L. Neutrophil Targeting Platform Reduces Neutrophil Extracellular Traps for Improved Traumatic Brain Injury and Stroke Theranostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308719. [PMID: 38520727 DOI: 10.1002/advs.202308719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/22/2024] [Indexed: 03/25/2024]
Abstract
Traumatic brain injuries (TBI) and stroke are major causes of morbidity and mortality in both developing and developed countries. The complex and heterogeneous pathophysiology of TBI and cerebral ischemia-reperfusion injury (CIRI), in addition to the blood-brain barrier (BBB) resistance, is a major barrier to the advancement of diagnostics and therapeutics. Clinical data showed that the severity of TBI and stroke is positively correlated with the number of neutrophils in peripheral blood and brain injury sites. Furthermore, neutrophil extracellular traps (NETs) released by neutrophils correlate with worse TBI and stroke outcomes by impairing revascularization and vascular remodeling. Therefore, targeting neutrophils to deliver NETs inhibitors to brain injury sites and reduce the formation of NETs can be an optimal strategy for TBI and stroke therapy. Herein, the study designs and synthesizes a reactive oxygen species (ROS)-responsive neutrophil-targeting delivery system loaded with peptidyl arginine deiminase 4 (PAD4) inhibitor, GSK484, to prevent the formation of NETs in brain injury sites, which significantly inhibited neuroinflammation and improved neurological deficits, and improved the survival rate of TBI and CIRI. This strategy may provide a groundwork for the development of targeted theranostics of TBI and stroke.
Collapse
Affiliation(s)
- Qingchun Mu
- Gaozhou People's Hospital, Maoming, 525200, China
| | - Kai Yao
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Madiha Zahra Syeda
- Gaozhou People's Hospital, Maoming, 525200, China
- St. Michael's Hospital, Fully Affiliated Hospital of University of Toronto, Toronto, Ontario, M5B 1W8, Canada
| | - Jinlong Wan
- Gaozhou People's Hospital, Maoming, 525200, China
| | - Qian Cheng
- Basic Medical College, Guilin Medical University, Guilin, 541199, China
| | - Zhen You
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
| | - Rui Sun
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Yufei Zhang
- Basic Medical College, Guilin Medical University, Guilin, 541199, China
| | - Huamiao Zhang
- Department of Pharmacy, Center for Regeneration and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Yuting Lu
- Department of Pharmacy, Center for Regeneration and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Zhicheng Luo
- Gaozhou People's Hospital, Maoming, 525200, China
| | - Yang Li
- Department of Pharmacy, Center for Regeneration and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Fuyao Liu
- Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Huiping Liu
- Department of Pharmacy, Center for Regeneration and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Xinyu Zou
- Gaozhou People's Hospital, Maoming, 525200, China
| | - Yanfen Zhu
- Department of Pharmacy, Center for Regeneration and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Kesong Peng
- Department of Pharmacy, Center for Regeneration and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | | | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Longguang Tang
- Department of Pharmacy, Center for Regeneration and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| |
Collapse
|
54
|
He Z, Yin BK, Wang K, Zhao B, Chen Y, Li ZC, Chen J. The alpha2-adrenergic receptor agonist clonidine protects against cerebral ischemia/reperfusion induced neuronal apoptosis in rats. Metab Brain Dis 2024; 39:741-752. [PMID: 38833094 DOI: 10.1007/s11011-024-01354-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 05/06/2024] [Indexed: 06/06/2024]
Abstract
Apoptosis is the crucial pathological mechanism following cerebral ischemic injury. Our previous studies demonstrated that clonidine, one agonist of alpha2-adrenergic receptor (α2-AR), could attenuate cerebral ischemic injury in a rat model of middle cerebral artery occlusion/reperfusion (MCAO/R). However, it's unclear whether clonidine exerts neuroprotective effects by regulating neuronal apoptosis. In this study, we elucidated whether clonidine can exert anti-apoptotic effects in cerebral ischemic injury, and further explored the possible mechanisms. Neurological deficit score was measured to evaluate the neurological function. TTC staining was used for the measurement of brain infarct size. Hematoxylin-Eosin (HE) staining was applied to examine the cell morphology. TUNEL and DAPI fluorescent staining methods were used to analyze the cell apoptosis in brain tissue. Fluorescence quantitative real-time PCR was performed to assess the gene expression of Caspase-3 and P53. Western blotting assay was applied to detect the protein expression of Caspase-3 and P53. The results showed that clonidine improved neurological function, reduced brain infarct size, alleviated neuronal damage, and reduced the ratio of cell apoptosis in the brain with MCAO/R injury. moreover, clonidine down-regulated the gene and protein expression of Caspase-3 and P53 which were over-expressed after MCAO/R injury. Whereas, yohimbine (one selective α2-AR antagonist) mitigated the anti-apoptosis effects of clonidine, accompanied by reversed gene and protein expression changes. The results indicated that clonidine attenuated cerebral MCAO/R injury via suppressing neuronal apoptosis, which may be mediated, at least in part, by activating α2-AR.
Collapse
Affiliation(s)
- Zhi He
- Department of Pharmacology, College of Medicine, Jiaxing University, 314001, Jiaxing, People's Republic of China.
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, 443002, Yichang, People's Republic of China.
- College of Basic Medical Sciences, China Three Gorges University, 443002, Yichang, People's Republic of China.
| | - Bo-Kai Yin
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, 443002, Yichang, People's Republic of China
- Yichang Yiling Hospital, 443000, Yichang, People's Republic of China
- Zhongnan Hospital of Wuhan University, 430071, Wuhan, People's Republic of China
| | - Ke Wang
- Department of Pharmacology, College of Medicine, Jiaxing University, 314001, Jiaxing, People's Republic of China
| | - Bo Zhao
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, 443002, Yichang, People's Republic of China
- College of Basic Medical Sciences, China Three Gorges University, 443002, Yichang, People's Republic of China
| | - Yue Chen
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, 443002, Yichang, People's Republic of China
- College of Basic Medical Sciences, China Three Gorges University, 443002, Yichang, People's Republic of China
| | - Zi-Cheng Li
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, 443002, Yichang, People's Republic of China.
- College of Basic Medical Sciences, China Three Gorges University, 443002, Yichang, People's Republic of China.
| | - Jing Chen
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, 443002, Yichang, People's Republic of China.
- College of Medicine and Health Sciences, China Three Gorges University, No.8 Daxue Road, 443002, Yichang, People's Republic of China.
| |
Collapse
|
55
|
Hervella P, Sampedro-Viana A, Rodríguez-Yáñez M, López-Dequidt I, Pumar JM, Mosqueira AJ, Fernández-Rodicio S, Bazarra-Barreiros M, Serena J, Silva-Blas Y, Gubern-Merida C, Rey-Aldana D, Cinza S, Campos F, Sobrino T, Castillo J, Alonso-Alonso ML, Iglesias-Rey R. Systemic biomarker associated with poor outcome after futile reperfusion. Eur J Clin Invest 2024; 54:e14181. [PMID: 38361320 DOI: 10.1111/eci.14181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND Successful recanalization does not lead to complete tissue reperfusion in a considerable percentage of ischemic stroke patients. This study aimed to identify biomarkers associated with futile recanalization. Leukoaraiosis predicts poor outcomes of this phenomenon. Soluble tumour necrosis factor-like weak inducer of apoptosis (sTWEAK), which is associated with leukoaraiosis degrees, could be a potential biomarker. METHODS This study includes two cohorts of ischemic stroke patients in a multicentre retrospective observational study. Effective reperfusion, defined as a reduction of ≥8 points in the National Institutes of Health Stroke Scale (NIHSS) within the first 24 h, was used as a clinical marker of effective reperfusion. RESULTS In the first cohort study, female sex, age, and high NIHSS at admission (44.7% vs. 81.1%, 71.3 ± 13.7 vs. 81.1 ± 6.7; 16 [13, 21] vs. 23 [17, 28] respectively; p < .0001) were confirmed as predictors of futile recanalization. ROC curve analysis showed that leukocyte levels (sensitivity of 99%, specificity of 55%) and sTWEAK level (sensitivity of 92%, specificity of 88%) can discriminate between poor and good outcomes. Both biomarkers simultaneously are higher associated with outcome after effective reperfusion (OR: 2.17; CI 95% 1.63-4.19; p < .0001) than individually (leukocytes OR: 1.38; CI 95% 1.00-1.64, p = .042; sTWEAK OR: 1.00; C I95% 1.00-1.01, p = .019). These results were validated using a second cohort, where leukocytes and sTWEAK showed a sensitivity of 100% and specificity of 66.7% and 75% respectively. CONCLUSIONS Leukocyte and sTWEAK could be biomarkers of reperfusion failure and subsequent poor outcomes. Further studies will be necessary to explore its role in reperfusion processes.
Collapse
Affiliation(s)
- Pablo Hervella
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), A Coruña, Spain
| | - Ana Sampedro-Viana
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), A Coruña, Spain
| | | | - Iria López-Dequidt
- Stroke Unit, Department of Neurology, Hospital Clínico Universitario, A Coruña, Spain
| | - José M Pumar
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), A Coruña, Spain
- Department of Neuroradiology, Hospital Clínico Universitario, Health Research Institute of Santiago de Compostela (IDIS), A Coruña, Spain
| | - Antonio J Mosqueira
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), A Coruña, Spain
- Department of Neuroradiology, Hospital Clínico Universitario, Health Research Institute of Santiago de Compostela (IDIS), A Coruña, Spain
| | - Sabela Fernández-Rodicio
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), A Coruña, Spain
| | - Marcos Bazarra-Barreiros
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), A Coruña, Spain
| | - Joaquín Serena
- Cerebrovascular Pathology Research Group, Stroke Unit, Department of Neurology, Hospital Universitari Dr. Josep Trueta de Girona, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Yolanda Silva-Blas
- Cerebrovascular Pathology Research Group, Stroke Unit, Department of Neurology, Hospital Universitari Dr. Josep Trueta de Girona, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Carme Gubern-Merida
- Cerebrovascular Pathology Research Group, Girona Biomedical Research Institute (IDIBGI), Parc Hospitalari Martí I Julià, Salt, Spain
| | - Daniel Rey-Aldana
- Centro de Salud de A Estrada, Area Sanitaria de Santiago de Compostela, A Estrada, Spain
| | - Sergio Cinza
- Centro de Saúde O Milladoiro, Santiago de Compostela, Spain
| | - Francisco Campos
- Translational Stroke Laboratory (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), A Coruña, Spain
| | - Tomás Sobrino
- NeuroAging Laboratory Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), A Coruña, Spain
| | - José Castillo
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), A Coruña, Spain
| | - Maria Luz Alonso-Alonso
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), A Coruña, Spain
| | - Ramón Iglesias-Rey
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), A Coruña, Spain
| |
Collapse
|
56
|
Dai M, Yang J, Wang Z, Xue F, Wang Y, Hu E, Gong Y, Routledge MN, Qiao B. Aquaporins alteration revealed kidney damages in cerebral ischemia/reperfusion rats. Heliyon 2024; 10:e31532. [PMID: 38807874 PMCID: PMC11130722 DOI: 10.1016/j.heliyon.2024.e31532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024] Open
Abstract
Background Restoration of blood supply is a desired goal for the treatment of acute ischemic stroke. However, the restoration often leads to cerebral ischemia-reperfusion injury (CIR/I), which greatly increases the risk of non-neural organ damage. In particular, the acute kidney injury might be one of the most common complications. Aims The study aimed to understand the damage occurred and the potential molecular mechanisms. Methods The study was explored on the CIR/I rats generated by performing middle cerebral artery occlusion/reperfusion (MCAO/Reperfusion). The rats were evaluated with injury on the brains, followed by the non-neural organs including kidneys, livers, colons and stomachs. They were examined further with histopathological changes, and gene expression alterations by using RT-qPCR of ten aquaporins (Aqps) subtypes including Aqp1~Aqp9 and Aqp11. Furthermore, the Aqps expression profiles were constructed for each organ and analyzed by performing Principle Component Analysis. In addition, immunohistochemistry was explored to look at the protein expression of Aqp1, Aqp2, Aqp3 and Aqp4 in the rat kidneys. Results There was a prominent down-regulation profile in the MCAO/Reperfusion rat kidneys. The protein expression of Aqp1, Aqp2, Aqp3 and Aqp4 was decreased in the kidneys of the MCAO/Reperfusion rats. We suggested that the kidney was in the highest risk to be damaged following the CIR/I. Down-regulation of Aqp2, Aqp3 and Aqp4 was involved in the acute kidney injury induced by the CIR/I.
Collapse
Affiliation(s)
- Meng Dai
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, PR China
- Shaanxi Traditional Chinese Medicine Innovation Engineering Technology Research Center, No. 229 Taibai North Road, Xi'an, Shaanxi Province, 710069, PR China
| | - Jinglei Yang
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, PR China
- Shaanxi Traditional Chinese Medicine Innovation Engineering Technology Research Center, No. 229 Taibai North Road, Xi'an, Shaanxi Province, 710069, PR China
| | - Zhaoyang Wang
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, PR China
- Shaanxi Traditional Chinese Medicine Innovation Engineering Technology Research Center, No. 229 Taibai North Road, Xi'an, Shaanxi Province, 710069, PR China
| | - Fangli Xue
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, PR China
- Shaanxi Traditional Chinese Medicine Innovation Engineering Technology Research Center, No. 229 Taibai North Road, Xi'an, Shaanxi Province, 710069, PR China
| | - Yourui Wang
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, PR China
- Shaanxi Traditional Chinese Medicine Innovation Engineering Technology Research Center, No. 229 Taibai North Road, Xi'an, Shaanxi Province, 710069, PR China
| | - Enjie Hu
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, PR China
- Shaanxi Traditional Chinese Medicine Innovation Engineering Technology Research Center, No. 229 Taibai North Road, Xi'an, Shaanxi Province, 710069, PR China
| | - Yunyun Gong
- School of Medicine, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Michael N. Routledge
- School of Medicine, University of Leicester, Leicester, LE1 7RH, United Kingdom
- Jiangsu University, Sch Food & Biol Engn, Zhenjiang, 212013, PR China
| | - Boling Qiao
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, No. 229 TaiBai North Road, Xi'an, Shaanxi Province, 710069, PR China
- Shaanxi Traditional Chinese Medicine Innovation Engineering Technology Research Center, No. 229 Taibai North Road, Xi'an, Shaanxi Province, 710069, PR China
| |
Collapse
|
57
|
Zhao M, Xian W, Liu W, Chen D, Wang S, Cao J. Maresin1 alleviates neuroinflammation by inhibiting caspase-3/ GSDME-mediated pyroptosis in mice cerebral ischemia-reperfusion model. J Stroke Cerebrovasc Dis 2024; 33:107789. [PMID: 38782167 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
OBJECTIVE To explore the mechanism of Maresin1 in reducing cerebral ischemia-reperfusion injury. MATERIALS AND METHODS Male C57BL/6 mice were randomly divided (n = 5 in each group), and focal middle cerebral artery occlusion (MCAO) model was used to simulate cerebral ischemia/reperfusion injury. TTC and the Longa score were used to detect the degree of neurological deficits. Western blot was used to detect the expression levels of GSDME, GSDME-N, caspase-3 and cleaved caspase-3 in cerebral ischemic penumbra tissue, and immunofluorescence was used to detect the expression levels of GSDME-N. The mRNA expression levels of GSDME and pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α) were detected by RT-PCR. RESULTS Compared with sham group, GSDME mRNA levels in MCAO group were significantly increased at 12 h and 24 h after reperfusion, and GSDME and GSDME-N significantly increased at 6-48 h after reperfusion. Compared with sham group, the percentage of infarct size, the Longa score, the mRNA expression levels of IL-1β, IL-6 and TNF-α, and GSDME, GSDME-N, caspase-3 and cleaved caspase-3 in MCAO group was significantly increased. Then, the percentage of infarct size and the Longa score significantly decreased after MaR1 administration, the mRNA expression levels of IL-1β and IL-6 downregulated, and GSDME, GSDME-N, caspase-3 and cleaved caspase-3 were also reduced. After administration of Z-DEVD-FMK(ZDF), the expression of caspase-3, cleaved caspase-3 and GSDME-N was decreased, which in MCAO+MaR1+ZDF group was not statistically significant compared with MCAO+ ZDF group. CONCLUSION Maresin1 alleviates cerebral ischemia/reperfusion injury by inhibiting pyroptosis mediated by caspase-3/GSDME pathway and alleviating neuroinflammation.
Collapse
Affiliation(s)
- Maoji Zhao
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing 400016, PR China
| | - Wenjing Xian
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing 400016, PR China
| | - Wenyi Liu
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing 400016, PR China
| | - Daiyu Chen
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing 400016, PR China
| | - Siqi Wang
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing 400016, PR China
| | - Jun Cao
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Rd, Chongqing 400016, PR China.
| |
Collapse
|
58
|
Li Z, Zhang M, Yang L, Fan D, Zhang P, Zhang L, Zhang J, Lu Z. Sophoricoside ameliorates cerebral ischemia-reperfusion injury dependent on activating AMPK. Eur J Pharmacol 2024; 971:176439. [PMID: 38401605 DOI: 10.1016/j.ejphar.2024.176439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
AIMS Ischemic stroke accounts for 87% of all strokes, and its death and disability bring a huge burden to society. Brain injury caused by ischemia-reperfusion (I/R) is also a major difficulty in clinical treatment and prognosis. Sophoricoside (SOP) is an isoflavone glycoside isolated from the seed of medical herb Sophora japonica L. Previously, SOP was found to be effective in anti-inflammation and glucose-lipid metabolism-related diseases. In order to investigate whether SOP has a regulatory effect on cerebral I/R injury, we conducted this study. METHODS Here, by application of SOP into MCAO (transient middle cerebral artery occlusion)-induced mice and OGD/R (oxygen glucose deprivation/reperfusion)-induced primary neurons, the regulation effects of SOP was analyzed by detecting neurological score of post-stroke mice, phenotypes of brains and brain sections, cell viabilities, and apoptosis- and inflammation-regulation. RNA sequencing and molecular biology experiments were performed to explore the mechanism of SOP regulating cerebral I/R injury. RESULTS SOP administration decreased the infarct size, neurological deficit score, neuronal cell injury, inflammation and apoptosis. Mechanistically, SOP exerted its protective effect by activating the AMP-activated protein kinase (AMPK) signaling pathway. CONCLUSION SOP inhibits cerebral I/R injury by promoting the phosphorylation of AMPK.
Collapse
Affiliation(s)
- Zhaoshuo Li
- Department of Cerebrovascular Disease, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, Henan, 450003, China
| | - Mi Zhang
- Department of Neurology, The Central Hospital of Jingmen, Jingmen, Hubei, 448000, China
| | - Lixia Yang
- Department of Neurology, The Central Hospital of Jingmen, Jingmen, Hubei, 448000, China; Jingmen Clinical Medical College Affiliated to Hubei Minzhu University, Jingmen, Hubei, 448000, China
| | - Ding Fan
- Department of Neurology, The Central Hospital of Jingmen, Jingmen, Hubei, 448000, China; Jingmen Clinical Medical College Affiliated to Hubei Minzhu University, Jingmen, Hubei, 448000, China
| | - Peng Zhang
- School of Basic Medical Science, Wuhan University, Wuhan, Hubei, 430071, China
| | - Li Zhang
- Institute of Model Animal of Wuhan University, Wuhan, Hubei, 430071, China
| | - Jianqing Zhang
- Department of Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, 445000, China
| | - Zhigang Lu
- Department of Neurology, The Central Hospital of Jingmen, Jingmen, Hubei, 448000, China; Jingmen Clinical Medical College Affiliated to Hubei Minzhu University, Jingmen, Hubei, 448000, China; Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Enshi, Hubei, 445000, China.
| |
Collapse
|
59
|
Li J, Wang Z, Li J, Zhao H, Ma Q. HMGB1: A New Target for Ischemic Stroke and Hemorrhagic Transformation. Transl Stroke Res 2024:10.1007/s12975-024-01258-5. [PMID: 38740617 DOI: 10.1007/s12975-024-01258-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024]
Abstract
Stroke in China is distinguished by its high rates of morbidity, recurrence, disability, and mortality. The ultra-early administration of rtPA is essential for restoring perfusion in acute ischemic stroke, though it concurrently elevates the risk of hemorrhagic transformation. High-mobility group box 1 (HMGB1) emerges as a pivotal player in neuroinflammation after brain ischemia and ischemia-reperfusion. Released passively by necrotic cells and actively secreted, including direct secretion of HMGB1 into the extracellular space and packaging of HMGB1 into intracellular vesicles by immune cells, glial cells, platelets, and endothelial cells, HMGB1 represents a prototypical damage-associated molecular pattern (DAMP). It is intricately involved in the pathogenesis of atherosclerosis, thromboembolism, and detrimental inflammation during the early phases of ischemic stroke. Moreover, HMGB1 significantly contributes to neurovascular remodeling and functional recovery in later stages. Significantly, HMGB1 mediates hemorrhagic transformation by facilitating neuroinflammation, directly compromising the integrity of the blood-brain barrier, and enhancing MMP9 secretion through its interaction with rtPA. As a systemic inflammatory factor, HMGB1 is also implicated in post-stroke depression and an elevated risk of stroke-associated pneumonia. The role of HMGB1 extends to influencing the pathogenesis of ischemia by polarizing various subtypes of immune and glial cells. This includes mediating excitotoxicity due to excitatory amino acids, autophagy, MMP9 release, NET formation, and autocrine trophic pathways. Given its multifaceted role, HMGB1 is recognized as a crucial therapeutic target and prognostic marker for ischemic stroke and hemorrhagic transformation. In this review, we summarize the structure and redox properties, secretion and pathways, regulation of immune cell activity, the role of pathophysiological mechanisms in stroke, and hemorrhage transformation for HMGB1, which will pave the way for developing new neuroprotective drugs, reduction of post-stroke neuroinflammation, and expansion of thrombolysis time window.
Collapse
Affiliation(s)
- Jiamin Li
- Department of Neurology and Cerebrovascular Diseases Research Institute, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China
| | - Zixin Wang
- Department of Neurology and Cerebrovascular Diseases Research Institute, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China
| | - Jiameng Li
- Department of Neurology and Cerebrovascular Diseases Research Institute, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China
| | - Haiping Zhao
- Department of Neurology and Cerebrovascular Diseases Research Institute, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China.
| | - Qingfeng Ma
- Department of Neurology and Cerebrovascular Diseases Research Institute, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, China.
| |
Collapse
|
60
|
Kang C, Sang Q, Liu D, Wang L, Li J, Liu X. Polyphyllin I alleviates neuroinflammation after cerebral ischemia-reperfusion injury via facilitating autophagy-mediated M2 microglial polarization. Mol Med 2024; 30:59. [PMID: 38745316 PMCID: PMC11094947 DOI: 10.1186/s10020-024-00828-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
Microglial activation and polarization play a central role in poststroke inflammation and neuronal damage. Modulating microglial polarization from pro-inflammatory to anti-inflammatory phenotype is a promising therapeutic strategy for the treatment of cerebral ischemia. Polyphyllin I (PPI), a steroidal saponin, shows multiple bioactivities in various diseases, but the potential function of PPI in cerebral ischemia is not elucidated yet. In our study, the influence of PPI on cerebral ischemia-reperfusion injury was evaluated. Mouse middle cerebral artery occlusion (MCAO) model and oxygen-glucose deprivation and reoxygenation (OGD/R) model were constructed to mimic cerebral ischemia-reperfusion injury in vivo and in vitro. TTC staining, TUNEL staining, RT-qPCR, ELISA, flow cytometry, western blot, immunofluorescence, hanging wire test, rotarod test and foot-fault test, open-field test and Morris water maze test were performed in our study. We found that PPI alleviated cerebral ischemia-reperfusion injury and neuroinflammation, and improved functional recovery of mice after MCAO. PPI modulated microglial polarization towards anti-inflammatory M2 phenotype in MCAO mice in vivo and post OGD/R in vitro. Besides, PPI promoted autophagy via suppressing Akt/mTOR signaling in microglia, while inhibition of autophagy abrogated the effect of PPI on M2 microglial polarization after OGD/R. Furthermore, PPI facilitated autophagy-mediated ROS clearance to inhibit NLRP3 inflammasome activation in microglia, and NLRP3 inflammasome reactivation by nigericin abolished the effect of PPI on M2 microglia polarization. In conclusion, PPI alleviated post-stroke neuroinflammation and tissue damage via increasing autophagy-mediated M2 microglial polarization. Our data suggested that PPI had potential for ischemic stroke treatment.
Collapse
Affiliation(s)
- Chunyang Kang
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130000, China
| | - Qiuling Sang
- Department of Neuroelectrophysiology, China-Japan Union Hospital of Jilin University, Changchun, 130000, China
| | - Dingxi Liu
- Department of Clinical Medicine, Zunyi Medical University, Zhuhai, 519041, China
| | - Libo Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130000, China
| | - Jia Li
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130000, China.
| | - Xiaoyang Liu
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130000, China.
| |
Collapse
|
61
|
Wang LL, Kang ML, Liu CW, Liu L, Tang B. Panax notoginseng Saponins Activate Nuclear Factor Erythroid 2-Related Factor 2 to Inhibit Ferroptosis and Attenuate Inflammatory Injury in Cerebral Ischemia-Reperfusion. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:821-839. [PMID: 38699996 DOI: 10.1142/s0192415x24500332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Panax notoginseng saponins (PNS), the primary medicinal ingredient of Panax notoginseng, mitigates cerebral ischemia-reperfusion injury (CIRI) by inhibiting inflammation, regulating oxidative stress, promoting angiogenesis, and improving microcirculation. Moreover, PNS activates nuclear factor erythroid 2-related factor 2 (Nrf2), which is known to inhibit ferroptosis and reduce inflammation in the rat brain. However, the molecular regulatory roles of PNS in CIRI-induced ferroptosis remain unclear. In this study, we aimed to investigate the effects of PNS on ferroptosis and inflammation in CIRI. We induced ferroptosis in SH-SY5Y cells via erastin stimulation and oxygen glucose deprivation/re-oxygenation (OGD/R) in vitro. Furthermore, we determined the effect of PNS treatment in a rat model of middle cerebral artery occlusion/reperfusion and assessed the underlying mechanism. We also analyzed the changes in the expression of ferroptosis-related proteins and inflammatory factors in the established rat model. OGD/R led to an increase in the levels of ferroptosis markers in SH-SY5Y cells, which were reduced by PNS treatment. In the rat model, combined treatment with an Nrf2 agonist, Nrf2 inhibitor, and PNS-Nrf2 inhibitor confirmed that PNS promotes Nrf2 nuclear localization and reduces ferroptosis and inflammatory responses, thereby mitigating brain injury. Mechanistically, PNS treatment facilitated Nrf2 activation, thereby regulating the expression of iron overload and lipid peroxidation-related proteins and the activities of anti-oxidant enzymes. This cascade inhibited ferroptosis and mitigated CIRI. Altogether, these results suggest that the ferroptosis-mediated activation of Nrf2 by PNS reduces inflammation and is a promising therapeutic approach for CIRI.
Collapse
Affiliation(s)
- Lin-Lin Wang
- Key Laboratory of Vascular Biology and Translational Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P. R. China
| | - Man-Lin Kang
- Key Laboratory of Vascular Biology and Translational Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P. R. China
| | - Can-Wen Liu
- Key Laboratory of Vascular Biology and Translational Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P. R. China
| | - Liang Liu
- People's Hospital of Ningxiang City, Hunan University of Chinese Medicine, Changsha, Hunan 410600, P. R. China
| | - Biao Tang
- Key Laboratory of Vascular Biology and Translational Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P. R. China
- National Key Laboratory Cultivation Base of Chinese Medicinal Powder & Innovative Medicinal Jointly Established by Province and Ministry, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P. R. China
- People's Hospital of Ningxiang City, Hunan University of Chinese Medicine, Changsha, Hunan 410600, P. R. China
| |
Collapse
|
62
|
Hong Z, Xu H, Ni K, Yang Y, Deng S. Effect of Cyclosporin H on ischemic injury and neutrophil infiltration in cerebral infarct model of rats via PET imaging. Ann Nucl Med 2024; 38:337-349. [PMID: 38360964 DOI: 10.1007/s12149-024-01900-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/03/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND Brain ischemia-reperfusion injury is a complex process, and neuroinflammation is an important secondary contributing pathological event. Neutrophils play major roles in ischemic neuroinflammation. Once activated, neutrophils express formyl peptide receptors (FPRs), which are special receptors of a class of chemoattractants and may be potential targets to regulate the activity of neutrophils and control cerebral ischemic injury. This study was aimed to explore the ameliorating effect of Cyclosporin H (CsH), a potent FPR antagonist, on brain ischemic injury by inhibiting the activation and migration of neutrophils, and improving cerebral blood flow. METHODS We employed a middle cerebral artery occlusion (MCAO) Model on rats and performed behavioral, morphological, and microPET imaging assays to investigate the potential restoring efficacy of CsH on cerebral ischemic damages. Peptide N-cinnamoyl-F-(D)L-F-(D)L-F (cFLFLF), an antagonist to the neutrophil FPR with a high binding affinity, was used for imaging neutrophil distribution. RESULTS We found that CsH had similar effect with edaravone on improving the neurobehavioral deficient symptoms after cerebral ischemia-reperfusion, and treatment with CsH also alleviated ischemic cerebral infarction. Compared with the MCAO Model group, [18F]FDG uptake ratios of the CsH and edaravone treatment groups were significantly higher. The CsH-treated groups also showed significant increases in [18F]FDG uptake at 144 h when compared with that of 24 h. This result indicates that like edaravone, treatment with both doses of CsH promoted the recovery of blood supply after cerebral ischemic event. Moreover, MCAO-induced cerebral ischemia significantly increased the radiouptake of [68Ga]Ga-cFLFLF at 72 h after ischemia-reperfusion operation. Compared with MCAO Model group, radiouptake values of [68Ga]-cFLFLF in both doses of CsH and edaravone groups were all decreased significantly. These results showed that both doses of CsH resulted in a similar therapeutic effect with edaravone on inhibiting neutrophil infiltration in cerebral infarction. CONCLUSION Potent FPR antagonist CsH is promisingly beneficial in attenuating neuroinflammation and improving neurobehavioral function against cerebral infarction. Therefore, FPR may become a novel target for regulating neuroinflammation and improving prognosis for ischemic cerebrovascular disorders.
Collapse
Affiliation(s)
- Zhihui Hong
- Department of Nuclear Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, 215002, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
- NHC Key Laboratory of Nuclear Medicine and Jiangsu Key Laboratory of Molecular Nuclear Medicine, Wuxi, 214063, China
| | - Hong Xu
- Department of Oncology, Changshu Hospital Affiliated to Soochow University, Changzhou No. 1 People's Hospital, Suzhou, 215006, China
| | - Kairu Ni
- Department of Nuclear Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, 215002, China
| | - Yi Yang
- Department of Nuclear Medicine, Suzhou Science and Technology Town Hospital, Suzhou, 215153, China.
| | - Shengming Deng
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
63
|
He J, Li S, Teng Y, Xiong H, Wang Z, Han X, Gong W, Gao Y. Increasing expression of dual-specificity phosphatase 12 mitigates oxygen-glucose deprivation/reoxygenation-induced neuronal apoptosis and inflammation through inactivation of the ASK1-JNK/p38 MAPK pathway. Autoimmunity 2024; 57:2345919. [PMID: 38721693 DOI: 10.1080/08916934.2024.2345919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 04/17/2024] [Indexed: 05/15/2024]
Abstract
Dual-specificity phosphatase 12 (DUSP12) is abnormally expressed under various pathological conditions and plays a crucial role in the pathological progression of disorders. However, the role of DUSP12 in cerebral ischaemia/reperfusion injury has not yet been investigated. This study explored the possible link between DUSP12 and cerebral ischaemia/reperfusion injury using an oxygen-glucose deprivation/reoxygenation (OGD/R) model. Marked decreases in DUSP12 levels have been observed in cultured neurons exposed to OGD/R. DUSP12-overexpressed neurons were resistant to OGD/R-induced apoptosis and inflammation, whereas DUSP12-deficient neurons were vulnerable to OGD/R-evoked injuries. Further investigation revealed that DUSP12 overexpression or deficiency affects the phosphorylation of apoptosis signal-regulating kinase 1 (ASK1), c-Jun NH2-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) in neurons under OGD/R conditions. Moreover, blockade of ASK1 diminished the regulatory effect of DUSP12 deficiency on JNK and p38 MAPK activation. In addition, DUSP12-deficiency-elicited effects exacerbating neuronal OGD/R injury were reversed by ASK1 blockade. In summary, DUSP12 protects against neuronal OGD/R injury by reducing apoptosis and inflammation through inactivation of the ASK1-JNK/p38 MAPK pathway. These findings imply a neuroprotective function for DUSP12 in cerebral ischaemia/reperfusion injury.
Collapse
Affiliation(s)
- Jiaxuan He
- Anesthesia & Comfort Medical Center, Xi'an International Medical Center Hospital, Xi'an, Shaanxi Province, China
- Department of Pediatric Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Siyuan Li
- Anesthesia & Comfort Medical Center, Xi'an International Medical Center Hospital, Xi'an, Shaanxi Province, China
| | - Yunpeng Teng
- Anesthesia & Comfort Medical Center, Xi'an International Medical Center Hospital, Xi'an, Shaanxi Province, China
| | - Hongfei Xiong
- Anesthesia & Comfort Medical Center, Xi'an International Medical Center Hospital, Xi'an, Shaanxi Province, China
| | - Zhuang Wang
- Anesthesia & Comfort Medical Center, Xi'an International Medical Center Hospital, Xi'an, Shaanxi Province, China
| | - Xiaoyao Han
- Anesthesia & Comfort Medical Center, Xi'an International Medical Center Hospital, Xi'an, Shaanxi Province, China
| | - Wei Gong
- Department of Pediatric Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Ya Gao
- Department of Pediatric Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|
64
|
Lewitt MS, Boyd GW. Role of the Insulin-like Growth Factor System in Neurodegenerative Disease. Int J Mol Sci 2024; 25:4512. [PMID: 38674097 PMCID: PMC11049992 DOI: 10.3390/ijms25084512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
The insulin-like growth factor (IGF) system has paracrine and endocrine roles in the central nervous system. There is evidence that IGF signalling pathways have roles in the pathophysiology of neurodegenerative disease. This review focusses on Alzheimer's disease and Parkinson's disease, the two most common neurodegenerative disorders that are increasing in prevalence globally in relation to the aging population and the increasing prevalence of obesity and type 2 diabetes. Rodent models used in the study of the molecular pathways involved in neurodegeneration are described. However, currently, no animal model fully replicates these diseases. Mice with triple mutations in APP, PSEN and MAPT show promise as models for the testing of novel Alzheimer's therapies. While a causal relationship is not proven, the fact that age, obesity and T2D are risk factors in both strengthens the case for the involvement of the IGF system in these disorders. The IGF system is an attractive target for new approaches to management; however, there are gaps in our understanding that first need to be addressed. These include a focus beyond IGF-I on other members of the IGF system, including IGF-II, IGF-binding proteins and the type 2 IGF receptor.
Collapse
Affiliation(s)
- Moira S. Lewitt
- School of Health and Life Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Gary W. Boyd
- School of Health and Life Sciences, University of the West of Scotland, Hamilton G72 0LH, UK;
| |
Collapse
|
65
|
Zhang J, Chen Z, Chen Q. Advanced Nano-Drug Delivery Systems in the Treatment of Ischemic Stroke. Molecules 2024; 29:1848. [PMID: 38675668 PMCID: PMC11054753 DOI: 10.3390/molecules29081848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
In recent years, the frequency of strokes has been on the rise year by year and has become the second leading cause of death around the world, which is characterized by a high mortality rate, high recurrence rate, and high disability rate. Ischemic strokes account for a large percentage of strokes. A reperfusion injury in ischemic strokes is a complex cascade of oxidative stress, neuroinflammation, immune infiltration, and mitochondrial damage. Conventional treatments are ineffective, and the presence of the blood-brain barrier (BBB) leads to inefficient drug delivery utilization, so researchers are turning their attention to nano-drug delivery systems. Functionalized nano-drug delivery systems have been widely studied and applied to the study of cerebral ischemic diseases due to their favorable biocompatibility, high efficiency, strong specificity, and specific targeting ability. In this paper, we briefly describe the pathological process of reperfusion injuries in strokes and focus on the therapeutic research progress of nano-drug delivery systems in ischemic strokes, aiming to provide certain references to understand the progress of research on nano-drug delivery systems (NDDSs).
Collapse
Affiliation(s)
- Jiajie Zhang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (J.Z.); (Z.C.)
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (J.Z.); (Z.C.)
| | - Qi Chen
- Interdisciplinary Institute for Medical Engineering, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
66
|
Tang L, Xie D, Wang S, Gao C, Pan S. Piezo1 Knockout Improves Post-Stroke Cognitive Dysfunction by Inhibiting the Interleukin-6 (IL-6)/Glutathione Peroxidase 4 (GPX4) Pathway. J Inflamm Res 2024; 17:2257-2270. [PMID: 38633449 PMCID: PMC11022880 DOI: 10.2147/jir.s448903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Background Cerebral infarction often results in post-stroke cognitive impairment, which impairs the quality of life and causes long-term disability. Astrocytes, the most abundant glial cells in the central nervous system, have a crucial role in cerebral ischemia and neuroinflammation. We explored the possible advantages of interleukin-6 (IL-6), a powerful pro-inflammatory cytokine produced by astrocytes, for post-stroke cognitive function. Methods Mendelian randomization was applied to analyze the GWAS database of stroke patients, obtaining a causal relationship between IL-6 and stroke. Further validation of this relationship and its mechanisms was conducted. Using a mouse model of cerebral infarction, we demonstrated a significant increase in IL-6 expression in astrocytes surrounding the ischemic lesion. This protective effect of Piezo1 knockout was attributed to the downregulation of matrix metalloproteinases and upregulation of tight junction proteins, such as occludin and zonula occludens-1 (ZO-1). Results Two-step Mendelian randomization revealed that IL-6 exposure is a risk factor for stroke. Moreover, we conducted behavioral assessments and observed that Piezo1 knockout mice that received intranasal administration of astrocyte-derived IL-6 showed notable improvement in cognitive function compared to control mice. This enhancement was associated with reduced neuronal cell death and suppressed astrocyte activation, preserving ZO-1. Conclusion Our study shows that astrocyte-derived IL-6 causes cognitive decline after stroke by protecting the blood-brain barrier. This suggests that piezo1 knockout may reduce cognitive impairment after brain ischemia. Further research on the mechanisms and IL-6 delivery methods may lead to new therapies for post-stroke cognition.
Collapse
Affiliation(s)
- Lujia Tang
- Department of Emergency, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People’s Republic of China
| | - Di Xie
- Department of Emergency, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People’s Republic of China
| | - Shangyuan Wang
- Department of Emergency, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People’s Republic of China
| | - Chengjin Gao
- Department of Emergency, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People’s Republic of China
| | - Shuming Pan
- Department of Emergency, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People’s Republic of China
| |
Collapse
|
67
|
Villa-González M, Rubio M, Martín-López G, Mallavibarrena PR, Vallés-Saiz L, Vivien D, Wandosell F, Pérez-Álvarez MJ. Pharmacological inhibition of mTORC1 reduces neural death and damage volume after MCAO by modulating microglial reactivity. Biol Direct 2024; 19:26. [PMID: 38582839 PMCID: PMC10999095 DOI: 10.1186/s13062-024-00470-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/25/2024] [Indexed: 04/08/2024] Open
Abstract
Ischemic stroke is a sudden and acute disease characterized by neuronal death, increment of reactive gliosis (reactive microglia and astrocytes), and a severe inflammatory process. Neuroinflammation is an early event after cerebral ischemia, with microglia playing a leading role. Reactive microglia involve functional and morphological changes that drive a wide variety of phenotypes. In this context, deciphering the molecular mechanisms underlying such reactive microglial is essential to devise strategies to protect neurons and maintain certain brain functions affected by early neuroinflammation after ischemia. Here, we studied the role of mammalian target of rapamycin (mTOR) activity in the microglial response using a murine model of cerebral ischemia in the acute phase. We also determined the therapeutic relevance of the pharmacological administration of rapamycin, a mTOR inhibitor, before and after ischemic injury. Our data show that rapamycin, administered before or after brain ischemia induction, reduced the volume of brain damage and neuronal loss by attenuating the microglial response. Therefore, our findings indicate that the pharmacological inhibition of mTORC1 in the acute phase of ischemia may provide an alternative strategy to reduce neuronal damage through attenuation of the associated neuroinflammation.
Collapse
Affiliation(s)
- Mario Villa-González
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marina Rubio
- Physiopathology and Imaging of Neurological Disorders, Normandie University, UNICAEN, UMR-S U1237, INSERM, Institut Blood and Brain @ CaenNormandie, GIP Cyceron, Caen, France
| | - Gerardo Martín-López
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Paula R Mallavibarrena
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Denis Vivien
- Physiopathology and Imaging of Neurological Disorders, Normandie University, UNICAEN, UMR-S U1237, INSERM, Institut Blood and Brain @ CaenNormandie, GIP Cyceron, Caen, France
- Department of Clinical Research, Caen-Normandie Hospital (CHU), Caen, France
| | - Francisco Wandosell
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.
- Centro de Investigaciones Biológicas en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| | - Maria José Pérez-Álvarez
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain.
- Instituto Universitario de Biología Molecular (IUBM-UAM), Madrid, Spain.
| |
Collapse
|
68
|
Chen F, Wu L, Zhang M, Kan M, Chen H, Wang X, Qu J. Autophagy-related 5 in acute ischemic stroke: Variation and linkage with neurofunction, and survival. Ann Clin Transl Neurol 2024; 11:856-865. [PMID: 38530706 PMCID: PMC11021666 DOI: 10.1002/acn3.51992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/04/2023] [Accepted: 07/22/2023] [Indexed: 03/28/2024] Open
Abstract
OBJECTIVE Autophagy-related 5 (ATG5) facilitates the pathologic process of acute ischemic stroke (AIS) via multiple ways. This study aimed to identify the association of serum ATG5 with clinical outcomes in AIS patients. METHODS Serum ATG5 from 280 AIS patients were detected at admission, Day (D)1, D3, D7, D30, and D90 after admission by enzyme-linked immunosorbent assay. The median (interquartile range) follow-up was 21.1 (5.9-43.9) months. Another 50 healthy controls (HCs) were also enrolled for serum ATG5 determination. RESULTS ATG5 was elevated (p < 0.001) (vs. HCs), and positively correlated with hyperlipidemia (p = 0.016), and the national institutes of health stroke scale score (p = 0.001) in AIS patients. Interestingly, ATG5 was increased from admission to D1, but gradually decreased until D90 (p < 0.001). Besides, 85 (30.4%) and 195 (69.6%) AIS patients were assessed as modified Rankin Scale (mRS) >2 and mRS ≤2 at D90, respectively. ATG5 at admission, D1, D3, D30, and D90 was elevated in AIS patients with mRS >2 versus those with mRS ≤2 (all p < 0.050). ATG5 at admission, D1, D3, D7, D30, or D90 was elevated in relapsed (vs. non-relapsed) or died (vs. survived) AIS patients (all p < 0.050). Recurrence-free survival was shortened in AIS patients with high (≥52.0 ng/mL) ATG5 versus those with low (<52.0 ng/mL) ATG5 at admission, D3, D7, and D30 (all p < 0.050); overall survival was shorter in AIS patients with high (vs. low) ATG5 at D7 and D30 (both p < 0.050). INTERPRETATION Serum ATG5 elevates at first, thereafter gradually declines, whose elevation associates with neurological dysfunction, recurrence, and death risk in AIS patients.
Collapse
Affiliation(s)
- Fan Chen
- Department II of EmergencyHandan Central HospitalHandan056008China
| | - Linxia Wu
- Department II of EmergencyHandan Central HospitalHandan056008China
| | - Meng Zhang
- Department II of EmergencyHandan Central HospitalHandan056008China
| | - Minchen Kan
- Department II of EmergencyHandan Central HospitalHandan056008China
| | - Huimin Chen
- Department II of EmergencyHandan Central HospitalHandan056008China
| | - Xiaohua Wang
- Department I of Neonatal WardHandan Central HospitalHandan056008China
| | - Juanjuan Qu
- Department II of EmergencyHandan Central HospitalHandan056008China
| |
Collapse
|
69
|
Liang S, Cao W, Zhuang Y, Zhang D, Du S, Shi H. Suppression of microRNA-320 Induces Cerebral Protection Against Ischemia/Reperfusion Injury by Targeting HMGB1/NF-kappaB Axis. Physiol Res 2024; 73:127-138. [PMID: 38466011 PMCID: PMC11019618 DOI: 10.33549/physiolres.935081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 09/15/2023] [Indexed: 04/26/2024] Open
Abstract
MicroRNAs have been shown to potentially function in cerebral ischemia/reperfusion (IR) injury. This study aimed to examine the expression of microRNA-320 (miR-320) in cerebral IR injury and its involvement in cerebral mitochondrial function, oxidative stress, and inflammatory responses by targeting the HMGB1/NF-kappaB axis. Sprague-Dawley rats were subjected to middle cerebral artery occlusion to simulate cerebral IR injury. The cerebral expression of miR-320 was assessed using qRT-PCR. Neurological function, cerebral infarct volume, mitochondrial function, oxidative stress, and inflammatory cytokines were evaluated using relevant methods, including staining, fluorometry, and ELISA. HMGB1 expression was analyzed through Western blotting. The levels of miR-320, HMGB1, neurological deficits, and cerebral infarction were significantly higher after IR induction. Intracerebral overexpression of miR-320 resulted in substantial neurological deficits, increased infarct volume, elevated levels of 8-isoprostane, NF-kappaBp65, TNF-alpha, IL-1beta, ICAM-1, VCAM-1, and HMGB1 expression. It also promoted the loss of mitochondrial membrane potential and ROS levels while reducing MnSOD and GSH levels. Downregulation of miR-320 and inhibition of HMGB1 activity significantly reversed the outcomes of cerebral IR injury. MiR-320 plays a negative role in regulating cerebral inflammatory/oxidative reactions induced by IR injury by enhancing HMGB1 activity and modulating mitochondrial function.
Collapse
Affiliation(s)
- S Liang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Nangang District, Harbin, Heilongjiang Province, China.
| | | | | | | | | | | |
Collapse
|
70
|
Qian J, Liang T, Xu Y, Liu ZP, Jing LL, Luo HB. Effect of the Novel Free Radical Scavenger 4'-Hydroxyl-2-Substituted Phenylnitronyl Nitroxide on Oxidative Stress, Mitochondrial Dysfunction and Apoptosis Induced by Cerebral Ischemia-Reperfusion in Rats. Neuroscience 2024; 540:1-11. [PMID: 38242279 DOI: 10.1016/j.neuroscience.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/21/2024]
Abstract
Mitochondrial dysfunction, which results in the overproduction of oxygen free radicals, is a crucial mechanism underlying cerebral ischemia-reperfusion injury. 4'-Hydroxyl-2-substituted phenylnitronyl nitroxide (HPN), which is an antioxidant and free radical scavenger, can effectively scavenge oxygen free radicals, suggesting its potential as a protective agent against cerebral ischemia-reperfusion injury. In this study, we investigated the effects of HPN on mitochondrial function and apoptosis following cerebral ischemia/reperfusion injury in rats. Healthy adult SD rats were chosen as the experimental subjects, and the rat ischemia/reperfusion injury model was generated using the modified Zea Longa method. The administration of HPN significantly enhanced the activity of endogenous antioxidant enzymes, such as superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT). Additionally, HPN effectively preserved the morphology and function of mitochondria, reduced the protein and gene expression of Caspase-3 and Bax, increased the protein and gene expression of Bcl-2, mitigated neuronal apoptosis, improved neurological deficits, and decreased the volume of cerebral infarction. Of interest, the protective effect on brain tissue was more evident with increasing doses of HPN. These findings indicate that HPN can serve as an effective protective agent against cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Jun Qian
- Department of Neurology, Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, PR China
| | - Tao Liang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, PR China
| | - Yu Xu
- Department of Respiratory Medicine, Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, PR China
| | - Zhi-Peng Liu
- Department of Neurology, Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, PR China
| | - Lin-Lin Jing
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China
| | - Hong-Bo Luo
- Department of Neurology, Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, PR China.
| |
Collapse
|
71
|
Qian H, Zhang HN, Gao T, Wang XS, Wang X, Yu MY, Li MK, Huang J. Upregulation of TRPC1 in microglia promotes neutrophil infiltration after ischemic stroke. Brain Res Bull 2024; 208:110894. [PMID: 38325758 DOI: 10.1016/j.brainresbull.2024.110894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/22/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Neutrophil infiltration has been linked to worse clinical outcomes after ischemic stroke. Microglia, a key type of immune-competent cell, engage in cross-talk with the infiltrating immune cells in the inflamed brain area, yet the molecular mechanisms involved remain largely unexplored. In this study, we investigated the mechanisms of how canonical transient receptor potential 1 (TRPC1) modulated neutrophil infiltration in male mouse cerebral ischemia and reperfusion injury (CIRI) models. Our findings revealed a notable upregulation of TRPC1 in microglia within both middle cerebral artery occlusion reperfusion (MCAO/R) and in vitro oxygen-glucose deprivation/regeneration (OGD/R) model. Conditional Trpc1 knockdown in microglia markedly reduced infarct volumes and alleviated neurological deficits. Microglia conditional Trpc1 knockdown mice displayed less neutrophil infiltration in peri-infarct area. Trpc1 knockdown microglia exhibited a reduced primed proinflammatory phenotype with less secretion of CC-Chemokines ligand (CCL) 5 and CCL2 after MCAO/R. Blocking CCL5/2 significantly mitigated neutrophil infiltration in microglia/neutrophil transwell co-culture system upon OGD/R condition. Trpc1 knockdown markedly reduced store-operated calcium entry and nuclear factor of activated T-cells c1 (NFATc1) level in OGD/R treated microglia. Overexpression of Nfatc1 reversed the CCL5/2 reducing effect of Trpc1 knockdown, which is mediated by small interfering RNA in BV2 cells upon OGD/R. Our data indicate that upregulation of TRPC1 in microglia stimulates the production of CCL5/2 through the Ca2+/NFATc1 pathway. Upregulated CCL5/2 leads to an increase in neutrophil infiltration into the brain, thereby aggravating reperfusion injury. Our results demonstrate the importance of TRPC1 in microglia-mediated neuroinflammation and suggest a potential means for reducing CIRI induced neurological injury.
Collapse
Affiliation(s)
- Hao Qian
- Health Management Center, Second Affiliated Hospital, Fourth Military Medical University, Xi'an 710038, China; Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Hui-Nan Zhang
- Health Management Center, Second Affiliated Hospital, Fourth Military Medical University, Xi'an 710038, China; Department of Neurology, Second Affiliated Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Tian Gao
- Health Management Center, Second Affiliated Hospital, Fourth Military Medical University, Xi'an 710038, China; Department of Neurology, Second Affiliated Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Xin-Shang Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Xing Wang
- Health Management Center, Second Affiliated Hospital, Fourth Military Medical University, Xi'an 710038, China; Department of Neurology, Second Affiliated Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Man-Yang Yu
- Health Management Center, Second Affiliated Hospital, Fourth Military Medical University, Xi'an 710038, China; Department of Neurology, Second Affiliated Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Ming-Kai Li
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.
| | - Jing Huang
- Health Management Center, Second Affiliated Hospital, Fourth Military Medical University, Xi'an 710038, China; Department of Neurology, Second Affiliated Hospital, Fourth Military Medical University, Xi'an 710038, China.
| |
Collapse
|
72
|
Duan WL, Wang XJ, Ma YP, Sheng ZM, Dong H, Zhang LY, Zhang BG, He MT. Therapeutic strategies targeting the NLRP3‑mediated inflammatory response and pyroptosis in cerebral ischemia/reperfusion injury (Review). Mol Med Rep 2024; 29:46. [PMID: 38275110 PMCID: PMC10835666 DOI: 10.3892/mmr.2024.13170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
Ischemic stroke poses a major threat to human health. Therefore, the molecular mechanisms of cerebral ischemia/reperfusion injury (CIRI) need to be further clarified, and the associated treatment approaches require exploration. The NOD‑like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome serves an important role in causing CIRI, and its activation exacerbates the underlying injury. Activation of the NLRP3 inflammasome triggers the maturation and production of the inflammatory molecules IL‑1β and IL‑18, as well as gasdermin‑D‑mediated pyroptosis and CIRI damage. Thus, the NLRP3 inflammasome may be a viable target for the treatment of CIRI. In the present review, the mechanisms of the NLRP3 inflammasome in the intense inflammatory response and pyroptosis induced by CIRI are discussed, and the therapeutic strategies that target the NLRP3‑mediated inflammatory response and pyroptosis in CIRI are summarized. At present, certain drugs have already been studied, highlighting future therapeutic perspectives.
Collapse
Affiliation(s)
- Wan-Li Duan
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261041, P.R. China
| | - Xue-Jie Wang
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261041, P.R. China
| | - Ya-Ping Ma
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261041, P.R. China
| | - Zhi-Mei Sheng
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261041, P.R. China
| | - Hao Dong
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261041, P.R. China
| | - Li-Ying Zhang
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261041, P.R. China
| | - Bao-Gang Zhang
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261041, P.R. China
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261041, P.R. China
| | - Mao-Tao He
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261041, P.R. China
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
73
|
Li J, Dong S, Quan S, Ding S, Zhou X, Yu Y, Wu Y, Huang W, Shi Q, Li Q. Nuciferine reduces inflammation induced by cerebral ischemia-reperfusion injury through the PI3K/Akt/NF-κB pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 125:155312. [PMID: 38232541 DOI: 10.1016/j.phymed.2023.155312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/03/2023] [Accepted: 12/23/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND Cerebral ischemia has the characteristics of high incidence, mortality, and disability, which seriously damages people's health. Cerebral ischemia-reperfusion injury is the key pathological injury of this disease. However, there is a lack of drugs that can reduce cerebral ischemia-reperfusion injury in clinical practice. At present, a few studies have provided some evidence that nuciferine can reduce cerebral ischemia-reperfusion injury, but its specific mechanism of action is still unclear, and further research is still needed. OBJECTIVE In this study, PC12 cells and SD rats were used to construct OGD/R and MCAO/R models, respectively. Combined with bioinformatics methods and experimental verification methods, the purpose of this study was to conduct a systematic and comprehensive study on the effect and mechanism of nuciferine on reducing inflammation induced by cerebral ischemia-reperfusion injury. RESULTS Nuciferine can improve the cell viability of PC12 cells induced by OGD/R, reduce apoptosis, and reduce the expression of inflammation-related proteins; it can also improve the cognitive and motor dysfunction of MCAO/R-induced rats by behavioral tests, reduce the area of cerebral infarction, reduce the release of inflammatory factors TNF-α and IL-6 in serum and the expression of inflammation-related proteins in brain tissue. CONCLUSION Nuciferine can reduce the inflammatory level of cerebral ischemia-reperfusion injury in vivo and in vitro models by acting on the PI3K/Akt/NF-κB signaling pathway, and has the potential to be developed as a drug for the treatment of cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Jinhua Li
- School of Pharmacy, Hangzhou Medical College, No. 182 of Tian mu shan Road, XiHU District, Hangzhou, Zhejiang 310013, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Shuze Dong
- School of Pharmacy, Hangzhou Medical College, No. 182 of Tian mu shan Road, XiHU District, Hangzhou, Zhejiang 310013, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Shengli Quan
- School of Pharmacy, Hangzhou Medical College, No. 182 of Tian mu shan Road, XiHU District, Hangzhou, Zhejiang 310013, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Shuxian Ding
- School of Pharmacy, Hangzhou Medical College, No. 182 of Tian mu shan Road, XiHU District, Hangzhou, Zhejiang 310013, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xuebin Zhou
- School of Pharmacy, Hangzhou Medical College, No. 182 of Tian mu shan Road, XiHU District, Hangzhou, Zhejiang 310013, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Ye Yu
- School of Pharmacy, Hangzhou Medical College, No. 182 of Tian mu shan Road, XiHU District, Hangzhou, Zhejiang 310013, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yarong Wu
- School of Pharmacy, Hangzhou Medical College, No. 182 of Tian mu shan Road, XiHU District, Hangzhou, Zhejiang 310013, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Wenhai Huang
- School of Pharmacy, Hangzhou Medical College, No. 182 of Tian mu shan Road, XiHU District, Hangzhou, Zhejiang 310013, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Qiyuan Shi
- School of Pharmacy, Hangzhou Medical College, No. 182 of Tian mu shan Road, XiHU District, Hangzhou, Zhejiang 310013, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Qin Li
- School of Pharmacy, Hangzhou Medical College, No. 182 of Tian mu shan Road, XiHU District, Hangzhou, Zhejiang 310013, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
74
|
Li Y, Zhang Q, Wang X, Xu F, Niu J, Zhao J, Wang Q. IL-17A deficiency alleviates cerebral ischemia-reperfusion injury via activating ERK/MAPK pathway in hippocampal CA1 region. Brain Res Bull 2024; 208:110890. [PMID: 38302069 DOI: 10.1016/j.brainresbull.2024.110890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
Cognitive impairment is a major complication of cerebral ischemia-reperfusion (CIR) injury and has an important impact on the quality of life of patients. However, the precise mechanisms underlying cognitive impairment after CIR injury remain elusive. In the current study, we investigated the role of interleukin 17 A (IL-17A) on CIR injury-induced cognitive impairment in wild-type and IL-17A knockout mice using RNA sequencing analysis, neurological assessments, Golgi-Cox staining, dendritic spine analysis, immunofluorescence assay, and western blot analysis. RNA sequencing identified 195 CIR-induced differentially expressed genes (83 upregulated and 112 downregulated), highlighting several enriched biological processes (negative regulation of phosphorylation, transcription regulator complex, and receptor ligand activity) and signaling pathways (mitogen-activated protein kinase [MAPK], tumor necrosis factor, and IL-17 signaling pathways). We also injected adeno-associated virus into the bilateral hippocampal CA1 regions of CIR mice to upregulate or downregulate cyclic AMP response element-binding protein. IL-17A knockout activated the extracellular signal-regulated kinase (ERK)/MAPK signaling pathway and further improved synaptic plasticity, structure, and function in CIR mice. Together, our findings suggest that IL-17A deficiency alleviates CIR injury by activating the ERK/MAPK signaling pathway and enhancing hippocampal synaptic plasticity.
Collapse
Affiliation(s)
- Yanan Li
- Department of Anesthesiology, the Third Hospital of Hebei Medical University, Hebei 050051, China
| | - Qi Zhang
- Department of Anesthesiology, Children's Hospital of Hebei Province Affiliated to Hebei Medical University, Hebei 050031, China
| | - Xupeng Wang
- Department of Anesthesiology, the Third Hospital of Hebei Medical University, Hebei 050051, China
| | - Fang Xu
- Department of Anesthesiology, the Third Hospital of Hebei Medical University, Hebei 050051, China
| | - Junfang Niu
- Department of Anesthesiology, the Third Hospital of Hebei Medical University, Hebei 050051, China
| | - Juan Zhao
- Experimental Teaching Center, Hebei Medical University, Hebei 050001, China
| | - Qiujun Wang
- Department of Anesthesiology, the Third Hospital of Hebei Medical University, Hebei 050051, China.
| |
Collapse
|
75
|
Zhao B, Zhang S, Amin N, Pan J, Wu F, Shen G, Tan M, Shi Z, Geng Y. Thymoquinone regulates microglial M1/M2 polarization after cerebral ischemia-reperfusion injury via the TLR4 signaling pathway. Neurotoxicology 2024; 101:54-67. [PMID: 38325603 DOI: 10.1016/j.neuro.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/18/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Acute ischemic stroke followed by microglia activation, and the regulation of neuroinflammatory responses after ischemic injury involves microglia polarization. microglia polarization is involved in the regulation of neuroinflammatory responses and ischemic stroke-related brain damage. Thymoquinone (TQ) is an anti-inflammatory agent following ischemic stroke onset. However, the significance of TQ in microglia polarization following acute ischemic stroke is still unclear. We predicted that TQ might have neuroprotective properties by modulating microglia polarization. In this work, we mimicked the clinical signs of acute ischemic stroke using a mouse middle cerebral artery ischemia-reperfusion (I/R) model. It was discovered that TQ treatment decreased I/R-induced infarct volume, cerebral oedema, and promoted neuronal survival, as well as improved the histopathological changes of brain tissue. The sensorimotor function was assessed by the Garica score, foot fault test, and corner test, and it was found that TQ could improve the motor deficits caused by I/R. Secondly, real-time fluorescence quantitative PCR, immuno-fluorescence, ELISA, and western blot were used to detect the expression of M1/M2-specific markers in microglia to explore the role of TQ in the modulation of microglial cell polarization after cerebral ischemia-reperfusion. We found that TQ was able to promote the polarization of microglia with extremely secreted inflammatory factors from M1 type to M2 type. Furthermore, TQ could block the TLR4/NF-κB signaling pathway via Hif-1α activation which subsequently may attenuate microglia differentiation following the cerebral ischemia, establishing a mechanism for the TQ's beneficial effects in the cerebral ischemia-reperfusion model.
Collapse
Affiliation(s)
- Bingxin Zhao
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Sheng Zhang
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Nashwa Amin
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China; Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China; Department of Zoology, Faculty of Science, Aswan University, Egypt
| | - Jie Pan
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Fei Wu
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Guanghong Shen
- Jinhua Maternal and Child Health Hospital, Jinhua, 321000, China
| | - Mingming Tan
- Department of Quality Management, Zhejiang Provincial People's Hospital, 158 Shangtang Road, Hangzhou, Zhejiang 310014, P.R. China
| | - Zongjie Shi
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Yu Geng
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
76
|
Zhou J, Sun F, Zhang W, Feng Z, Yang Y, Mei Z. Novel insight into the therapeutical potential of flavonoids from traditional Chinese medicine against cerebral ischemia/reperfusion injury. Front Pharmacol 2024; 15:1352760. [PMID: 38487170 PMCID: PMC10937431 DOI: 10.3389/fphar.2024.1352760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/14/2024] [Indexed: 03/17/2024] Open
Abstract
Cerebral ischemia/reperfusion injury (CIRI) is a major contributor to poor prognosis of ischemic stroke. Flavonoids are a broad family of plant polyphenols which are abundant in traditional Chinese medicine (TCM) and have beneficial effects on several diseases including ischemic stroke. Accumulating studies have indicated that flavonoids derived from herbal TCM are effective in alleviating CIRI after ischemic stroke in vitro or in vivo, and exhibit favourable therapeutical potential. Herein, we systematically review the classification, metabolic absorption, neuroprotective efficacy, and mechanisms of TCM flavonoids against CIRI. The literature suggest that flavonoids exert potential medicinal functions including suppressing excitotoxicity, Ca2+ overloading, oxidative stress, inflammation, thrombin's cellular toxicity, different types of programmed cell deaths, and protecting the blood-brain barrier, as well as promoting neurogenesis in the recovery stage following ischemic stroke. Furthermore, we identified certain matters that should be taken into account in future research, as well as proposed difficulties and opportunities in transforming TCM-derived flavonoids into medications or functional foods for the treatment or prevention of CIRI. Overall, in this review we aim to provide novel ideas for the identification of new prospective medication candidates for the therapeutic strategy against ischemic stroke.
Collapse
Affiliation(s)
- Jing Zhou
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Feiyue Sun
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Wenli Zhang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhitao Feng
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Yi Yang
- The First Affiliated Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, Hubei, China
| |
Collapse
|
77
|
Wang N, Li F, Du J, Hao J, Wang X, Hou Y, Luo Z. Quercetin Protects Against Global Cerebral ischemia‒reperfusion Injury by Inhibiting Microglial Activation and Polarization. J Inflamm Res 2024; 17:1281-1293. [PMID: 38434580 PMCID: PMC10906675 DOI: 10.2147/jir.s448620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024] Open
Abstract
Background This study aims to investigate the protective effect of quercetin against global cerebral ischemia‒reperfusion (GCI/R) injury in rats and elucidate the underlying mechanism. Methods A GCI/R injury rat model was established using a four-vessel occlusion (4-VO) method. An oxygen-glucose deprivation/reoxygenation (OGD/R) injury model was induced in BV2 cells. The extent of injury was assessed by evaluating neurological deficit scores (NDS) and brain water content and conducting behavioral tests. Pathomorphological changes in the prefrontal cortex were examined. Additionally, the study measured the levels of inflammatory cytokines, the degree of microglial activation and polarization, and the protein expression of Toll-like receptor 4 (TLR4) and TIR-domain-containing adaptor inducing interferon-β (TRIF). Results Quercetin pretreatment significantly ameliorated neurological impairment, improved learning and memory abilities, and reduced anxiety in rats subjected to GCI/R injury. Furthermore, quercetin administration effectively mitigated neuronal injury and brain edema. Notably, it suppressed microglial activation and hindered polarization toward the M1 phenotype. Simultaneously, quercetin downregulated the expression of TLR4 and TRIF proteins and attenuated the release of IL-1β and TNF-α. Conclusion This study highlights the novel therapeutic potential of quercetin in alleviating GCI/R injury. Quercetin demonstrates its neuroprotective effects by inhibiting neuroinflammation and microglial activation while impeding their transformation into the M1 phenotype through modulation of the TLR4/TRIF pathway.
Collapse
Affiliation(s)
- Naigeng Wang
- Department of Anesthesiology, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Fei Li
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, People’s Republic of China
| | - Jing Du
- Second Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People’s Republic of China
| | - Jianhong Hao
- Department of Anesthesiology, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Xin Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, People’s Republic of China
| | - Yueru Hou
- Second Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People’s Republic of China
| | - Zhenguo Luo
- Department of Anesthesiology, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| |
Collapse
|
78
|
Dong X, Li C, Yao Y, Liu F, Jiang P, Gao Y. Xingnaojing injection alleviates cerebral ischemia/reperfusion injury through regulating endoplasmic reticulum stress in Vivo and in Vitro. Heliyon 2024; 10:e25267. [PMID: 38327400 PMCID: PMC10847655 DOI: 10.1016/j.heliyon.2024.e25267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024] Open
Abstract
Background Xingnaojing (XNJ) injection, an extract derived from traditional Chinese medicine, is commonly used to treat ischemic stroke (IS). Previous studies have shown that XNJ has the ability to alleviate apoptosis in cerebral ischemia-reperfusion injury. However, the potential mechanisms have not been clarified. Objective To identify the neuroprotective effect of XNJ and explore whether XNJ inhibits cell apoptosis associated with endoplasmic reticulum stress (ERS) after IS. Methods In this study, cultured hippocampal neurons from mouse embryos and Sprague-Dawley rats were assigned randomly to four groups: sham, model, XNJ, and edaravone. The treatment groups were administered 2 h after modelling. Neurological deficit scores and motor performance tests were performed after 24 h of modelling. Additionally, pathomorphology, cell apoptosis and calcium content were evaluated. To ascertain the expression of ERS proteins, western blotting and polymerase chain reaction were employed. Results The results indicated that XNJ treatment resulted in a notable decrease in infarct volume, apoptosis and missteps compared with the model group. XNJ also exhibited improvements in neurological function, grip strength and motor time. The calcium content significantly reduced in XNJ group. The XNJ administration resulted in a reduction in the levels of proteins associated with ERS including CHOP, GRP78, Bax, caspase-12, caspase-9, and cleaved-caspase-3, but an increase of the Bcl-2/Bax ratio. Furthermore, the downregulation of mRNA expression of CHOP, GRP78, caspase-12, caspase-9, and caspase-3 was confirmed in both cultured neurons and rat model. Conclusion These findings suggest that XNJ may alleviate apoptosis by modulating the ERS-induced apoptosis pathway, making it a potential novel therapeutic approach for ischemic stroke.
Collapse
Affiliation(s)
- Xinglu Dong
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Chuanpeng Li
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
- Chinese Medicine Key Research Room of Brain Disorders Syndrome and Treatment of the National Administration of Traditional Chinese Medicine, Beijing, China
| | - Yaoyao Yao
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
- Chinese Medicine Key Research Room of Brain Disorders Syndrome and Treatment of the National Administration of Traditional Chinese Medicine, Beijing, China
| | - Fengzhi Liu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
- Chinese Medicine Key Research Room of Brain Disorders Syndrome and Treatment of the National Administration of Traditional Chinese Medicine, Beijing, China
| | - Ping Jiang
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Ying Gao
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
- Chinese Medicine Key Research Room of Brain Disorders Syndrome and Treatment of the National Administration of Traditional Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
79
|
Chen Y, Zhang C, Zhao L, Chen R, Zhang P, Li J, Zhang X, Zhang X. Eriocalyxin B alleviated ischemic cerebral injury by limiting microglia-mediated excessive neuroinflammation in mice. Exp Anim 2024; 73:124-135. [PMID: 37839867 PMCID: PMC10877152 DOI: 10.1538/expanim.23-0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/26/2023] [Indexed: 10/17/2023] Open
Abstract
Excessive neuroinflammation mediated by microglia has a detrimental effect on the progression of ischemic stroke. Eriocalyxin B (EriB) was found with a neuroprotective effect in mice with Parkinson's disease via the suppression of microglial overactivation. This study aimed to investigate the roles of EriB in permanent middle cerebral artery occlusion (pMCAO) mice. The pMCAO was induced in the internal carotid artery of the mice by the intraluminal filament method, and EriB (10 mg/kg) was administered immediately after surgery by intraperitoneal injection. The behavior score, 2,3,5-triphenyltetrazole chloride staining, Nissl staining, TUNEL, immunohistochemistry, immunofluorescence, PCR, ELISA, and immunoblotting revealed that EriB administration reduced brain infarct and neuron death and ameliorated neuroinflammation and microglia overactivation in pMCAO mice, manifested by alterations of TUNEL-positive cell numbers, ionized calcium binding adaptor molecule 1 (Iba-1)-positive cell numbers, and expression of tumor necrosis factor-α, interleukin 6, IL-1β, inducible nitric oxide synthase, and arginase 1. In addition, EriB suppressed ischemia-induced activation of nuclear factor kappa B (NF-κB) signaling in the brain penumbra, suggesting the involvement of NF-κB in EriB function. In conclusion, EriB exerted anti-inflammatory effects in ischemia stroke by regulating the NF-κB signaling pathway, and this may provide insights into the neuroprotective effect of EriB in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yanqiang Chen
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Heping Road, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
- Department of Neurology, Hebei Chest Hospital, 372 Shengli North Street, Shijiazhuang, 050000, Hebei, P.R. China
| | - Cong Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Heping Road, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, 309 Zhonghua North Street, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, 215 Heping Road, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
| | - Liming Zhao
- Department of Neurology, Hebei Chest Hospital, 372 Shengli North Street, Shijiazhuang, 050000, Hebei, P.R. China
| | - Rong Chen
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Heping Road, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, 309 Zhonghua North Street, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, 215 Heping Road, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
| | - Peipei Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Heping Road, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, 309 Zhonghua North Street, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, 215 Heping Road, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
| | - Junxia Li
- Department of Neurology, Hebei Chest Hospital, 372 Shengli North Street, Shijiazhuang, 050000, Hebei, P.R. China
| | - Xueping Zhang
- Department of Neurology, Hebei Chest Hospital, 372 Shengli North Street, Shijiazhuang, 050000, Hebei, P.R. China
| | - Xiangjian Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Heping Road, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, 309 Zhonghua North Street, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, 215 Heping Road, Xinhua District, Shijiazhuang, 050000, Hebei, P.R. China
| |
Collapse
|
80
|
Tian X, Yang W, Jiang W, Zhang Z, Liu J, Tu H. Multi-Omics Profiling Identifies Microglial Annexin A2 as a Key Mediator of NF-κB Pro-inflammatory Signaling in Ischemic Reperfusion Injury. Mol Cell Proteomics 2024; 23:100723. [PMID: 38253182 PMCID: PMC10879806 DOI: 10.1016/j.mcpro.2024.100723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 01/24/2024] Open
Abstract
Cerebral stroke is one of the leading causes of mortality and disability worldwide. Restoring the cerebral circulation following a period of occlusion and subsequent tissue oxygenation leads to reperfusion injury. Cerebral ischemic reperfusion (I/R) injury triggers immune and inflammatory responses, apoptosis, neuronal damage, and even death. However, the cellular function and molecular mechanisms underlying cerebral I/R-induced neuronal injury are incompletely understood. By integrating proteomic, phosphoproteomic, and transcriptomic profiling in mouse hippocampi after cerebral I/R, we revealed that the differentially expressed genes and proteins mainly fall into several immune inflammatory response-related pathways. We identified that Annexin 2 (Anxa2) was exclusively upregulated in microglial cells in response to cerebral I/R in vivo and oxygen-glucose deprivation and reoxygenation (OGD/R) in vitro. RNA-seq analysis revealed a critical role of Anxa2 in the expression of inflammation-related genes in microglia via the NF-κB signaling. Mechanistically, microglial Anxa2 is required for nuclear translocation of the p65 subunit of NF-κB and its transcriptional activity upon OGD/R in BV2 microglial cells. Anxa2 knockdown inhibited the OGD/R-induced microglia activation and markedly reduced the expression of pro-inflammatory factors, including TNF-α, IL-1β, and IL-6. Interestingly, conditional medium derived from Anxa2-depleted BV2 cell cultures with OGD/R treatment alleviated neuronal death in vitro. Altogether, our findings revealed that microglia Anxa2 plays a critical role in I/R injury by regulating NF-κB inflammatory responses in a non-cell-autonomous manner, which might be a potential target for the neuroprotection against cerebral I/R injury.
Collapse
Affiliation(s)
- Xibin Tian
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China
| | - Wuyan Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China
| | - Wei Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China
| | - Zhen Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China
| | - Junqiang Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China
| | - Haijun Tu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, Hunan, China; Shenzhen Research Institute, Hunan University, Shenzhen, Guangdong, China.
| |
Collapse
|
81
|
Zhao X, Wang Z, Wang J, Xu F, Zhang Y, Han D, Fang W. Mesencephalic astrocyte-derived neurotrophic factor (MANF) alleviates cerebral ischemia/reperfusion injury in mice by regulating microglia polarization via A20/NF-κB pathway. Int Immunopharmacol 2024; 127:111396. [PMID: 38134597 DOI: 10.1016/j.intimp.2023.111396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/31/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023]
Abstract
Microglia, resident brain immune cells, is critical in inflammation, apoptosis, neurogenesis and neurological recovery during cerebral ischemia/reperfusion (I/R) injury. Mesencephalic astrocyte-derived neurotrophic factor (MANF), a novel identified endoplasmic reticulum stress-inducible neurotrophic factor, can alleviate I/R injury by reducing the inflammatory reaction, but its specific regulatory mechanism on microglia after ischemic stroke has not been fully clarified. To mimic the process of ischemia/reperfusion in vivo and in vitro, middle cerebral artery occlusion/reperfusion (MCAO/R) was induced in C57BL/6J mice and oxygen glucose deprivation/reoxygenation (OGD/R) model was established in BV-2 cells. Moreover, MANF small interfering RNA (siRNA) was used to silence the expression of endogenous MANF, while recombination human MANF protein (rhMANF) acted as an exogenous supplement. Seventy-two hours after MCAO/R, 2,3,5-triphenyltetrazolium staining, neurological scores, brain water content, immunohistochemical staining, immunofluorescent staining, flow cytometry, hematoxylin and eosin staining, quantitative real-time PCR and western blot are applied to evaluate the protective effect and possible mechanism of MANF on cerebral I/R injury. In vitro, cell viability, inflammatory cytokines and the expression of MANF, A20, NF-κB and the markers of microglia were analyzed. The results showed that MANF decreased brain infarct volume, neurological scores, and brain water content. In addition, MANF promoted the polarization of microglia to an anti-inflammatory phenotype both in vivo and in vitro, which are related to A20/NF-κB pathway. In summary, MANF may offer novel therapeutic approaches for ischemic stroke in the process of microglia polarization.
Collapse
Affiliation(s)
- Xueyan Zhao
- Department of Pharmacy, Nanjing Drum Tower Hospital, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China; Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Ziyu Wang
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Jiang Wang
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Fenglian Xu
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Yi Zhang
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Dan Han
- Department of Pharmacy, Nanjing Drum Tower Hospital, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China; Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China.
| | - Weirong Fang
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China.
| |
Collapse
|
82
|
Morsy SAA, Fathelbab MH, El-Sayed NS, El-Habashy SE, Aly RG, Harby SA. Doxycycline-Loaded Calcium Phosphate Nanoparticles with a Pectin Coat Can Ameliorate Lipopolysaccharide-Induced Neuroinflammation Via Enhancing AMPK. J Neuroimmune Pharmacol 2024; 19:2. [PMID: 38236457 PMCID: PMC10796490 DOI: 10.1007/s11481-024-10099-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/06/2023] [Indexed: 01/19/2024]
Abstract
Neuroinflammation occurs in response to different injurious triggers to limit their hazardous effects. However, failure to stop this process can end in multiple neurological diseases. Doxycycline (DX) is a tetracycline, with potential antioxidant and anti-inflammatory properties. The current study tested the effects of free DX, DX-loaded calcium phosphate (DX@CaP), and pectin-coated DX@CaP (Pec/DX@CaP) nanoparticles on the lipopolysaccharide (LPS)-induced neuroinflammation in mice and to identify the role of adenosine monophosphate-activated protein kinase (AMPK) in this effect. The present study was conducted on 48 mice, divided into 6 groups, eight mice each. Group 1 (normal control), Group 2 (blank nanoparticles-treated), Group 3 (LPS (untreated)), Groups 4, 5, and 6 received LPS, then Group 4 received free DX, Group 5 received DX-loaded calcium phosphate nanoparticles (DX@CaP), and Group 6 received DX-loaded calcium phosphate nanoparticles with a pectin coat (Pec/DX@CaP). At the end of the experimentation period, behavioral tests were carried out. Then, mice were sacrificed, and brain tissue was extracted and used for histological examination, and assessment of interleukin-6 positive cells in different brain areas, in addition to biochemical measurement of SOD activity, TLR-4, AMPK and Nrf2. LPS can induce prominent neuroinflammation. Treatment with (Pec/DX@CaP) can reverse most behavioral, histopathological, and biochemical changes caused by LPS. The findings of the current study suggest that (Pec/DX@CaP) exerts a significant reverse of LPS-induced neuroinflammation by enhancing SOD activity, AMPK, and Nrf2 expression, in addition to suppression of TLR-4.
Collapse
Affiliation(s)
| | - Mona Hassan Fathelbab
- Medical Biochemistry Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Norhan S El-Sayed
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Salma E El-Habashy
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Rania G Aly
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Sahar A Harby
- Clinical Pharmacology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
83
|
Cruz-Martínez Y, Aguilar-Ponce L, Romo-Araiza A, Chávez-Guerra A, Martiñón S, Ibarra-García AP, Arias-Santiago S, Gálvez-Susano V, Ibarra A. Supplementation with a Symbiotic Induced Neuroprotection and Improved Memory in Rats with Ischemic Stroke. Biomedicines 2024; 12:209. [PMID: 38255316 PMCID: PMC11326124 DOI: 10.3390/biomedicines12010209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/14/2023] [Accepted: 12/17/2023] [Indexed: 01/24/2024] Open
Abstract
After an ischemic stroke, various harmful mechanisms contribute to tissue damage, including the inflammatory response. The increase in pro-inflammatory cytokines has been related to greater damage to the neural tissue and the promotion of neurological alterations, including cognitive impairment. Recent research has shown that the use of prebiotics and/or probiotics counteracts inflammation and improves cognitive function through the production of growth factors, such as brain-derived neurotrophic factor (BDNF), by reducing inflammatory molecules. Therefore, in this study, the effect of the symbiotic inulin and Enterococcus faecium on neuroprotection and memory improvement was evaluated in a rat model of transient middle cerebral artery occlusion (tMCAO). In order to accomplish this, the animals were subjected to ischemia; the experimental group was supplemented with the symbiotic and the control group with the vehicle. The neurological deficit as well as spatial and working memory were evaluated using the Zea Longa scale, Morris water maze, and the eight-arm maze tests, respectively. Infarct size, the levels of BDNF, and tumor necrosis factor-alpha (TNF-α) were also assessed. The results show that supplementation with the symbiotic significantly diminished the neurological deficit and infarct size, improved memory and learning, increased BDNF expression, and reduced TNF-α production. These findings provide new evidence about the therapeutic use of symbiotics for ischemic stroke and open up the possibilities for the design of further studies.
Collapse
Affiliation(s)
- Yolanda Cruz-Martínez
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan CP 52786, Edo. de México, Mexico
| | - Leslie Aguilar-Ponce
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan CP 52786, Edo. de México, Mexico
| | - Alejandra Romo-Araiza
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan CP 52786, Edo. de México, Mexico
| | - Almudena Chávez-Guerra
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan CP 52786, Edo. de México, Mexico
| | - Susana Martiñón
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan CP 52786, Edo. de México, Mexico
- Laboratorio de Inmunología en Adicciones, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Tlalpan CP 14050, Ciudad de México, Mexico
| | - Andrea P Ibarra-García
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan CP 52786, Edo. de México, Mexico
| | - Stella Arias-Santiago
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan CP 52786, Edo. de México, Mexico
| | - Vanessa Gálvez-Susano
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan CP 52786, Edo. de México, Mexico
| | - Antonio Ibarra
- Centro de Investigación en Ciencias de la Salud (CICSA), Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan CP 52786, Edo. de México, Mexico
| |
Collapse
|
84
|
Han Y, Wang L, Ye X, Gong X, Shao X. FcγRIIb Exacerbates LPS-Induced Neuroinflammation by Binding with the Bridging Protein DAP12 and Promoting the Activation of PI3K/AKT Signaling Pathway in Microglia. J Inflamm Res 2024; 17:41-57. [PMID: 38193040 PMCID: PMC10773454 DOI: 10.2147/jir.s428093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/19/2023] [Indexed: 01/10/2024] Open
Abstract
Introduction This paper focuses on the expression and role of FcγRIIb in neuroinflammation, exploring the molecular mechanisms by which FcγRIIb interacts with the bridging protein DAP12 to regulate the PI3K-AKT signaling pathway that promote neuroinflammation and aggravate neuronal injury. Methods LPS-induced neuroinflammation models in vivo and in vitro were constructed to explore the role and mechanism of FcγRIIb in CNS inflammation. Subsequently, FcγRIIb was knocked down or overexpressed to observe the activation of BV2 cell and the effect on PI3K-AKT pathway. Then the PI3K-AKT pathway was blocked to observe its effect on cell activation and FcγRIIb expression. We analyzed the interaction between FcγRIIb and DAP12 by Immunoprecipitation technique. Then FcγRIIb was overexpressed while knocking down DAP12 to observe its effect on PI3K-AKT pathway. Finally, BV2 cell culture supernatant was co-cultured with neuronal cell HT22 to observe its effect on neuronal apoptosis and cell activity. Results In vivo and in vitro, we found that FcγRIIb expression was significantly increased and activated the PI3K-AKT pathway. Contrary to the results of overexpression of FcγRIIb, knockdown of FcγRIIb resulted in a significant low level of relevant inflammatory factors and suppressed the PI3K-AKT pathway. Furthermore, LPS stimulation induced an interaction between FcγRIIb and DAP12. Knockdown of DAP12 suppressed inflammation and activation of the PI3K-AKT pathway in BV2 cells, and meantime overexpression of FcγRIIb suppressed the level of FcγRIIb-induced AKT phosphorylation. Additionally, knockdown of FcγRIIb inhibited microglia activation, which induced neuronal apoptosis. Discussion Altogether, our experiments indicate that FcγRIIb interacts with DAP12 to promote microglia activation by activating the PI3K-AKT pathway while leading to neuronal apoptosis and exacerbating brain tissue injury, which may provide a new target for the treatment of inflammatory diseases in the central nervous system.
Collapse
Affiliation(s)
- YingWen Han
- Department of Immunology, Medical School, Nantong University, Nantong, Jiangsu, People’s Republic of China
| | - Luyao Wang
- Department of Immunology, Medical School, Nantong University, Nantong, Jiangsu, People’s Republic of China
| | - Xiaokun Ye
- Department of Immunology, Medical School, Nantong University, Nantong, Jiangsu, People’s Republic of China
| | - Xue Gong
- Department of Immunology, Medical School, Nantong University, Nantong, Jiangsu, People’s Republic of China
| | - Xiaoyi Shao
- Department of Immunology, Medical School, Nantong University, Nantong, Jiangsu, People’s Republic of China
| |
Collapse
|
85
|
Li LD, Zhou Y, Shi SF. Identification and characterization of biomarkers associated with endoplasmic reticulum protein processing in cerebral ischemia-reperfusion injury. PeerJ 2024; 12:e16707. [PMID: 38188159 PMCID: PMC10768662 DOI: 10.7717/peerj.16707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/30/2023] [Indexed: 01/09/2024] Open
Abstract
Background Cerebral ischemia (CI), ranking as the second leading global cause of death, is frequently treated by reestablishing blood flow and oxygenation. Paradoxically, this reperfusion can intensify tissue damage, leading to CI-reperfusion injury. This research sought to uncover biomarkers pertaining to protein processing in the endoplasmic reticulum (PER) during CI-reperfusion injury. Methods We utilized the Gene Expression Omnibus (GEO) dataset GSE163614 to discern differentially expressed genes (DEGs) and single out PER-related DEGs. The functions and pathways of these PER-related DEGs were identified via Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Core genes were pinpointed through protein-protein interaction (PPI) networks. Subsequent to this, genes with diagnostic relevance were distinguished using external validation datasets. A single-sample gene-set enrichment analysis (ssGSEA) was undertaken to pinpoint genes with strong associations to hypoxia and apoptosis, suggesting their potential roles as primary inducers of apoptosis in hypoxic conditions during ischemia-reperfusion injuries. Results Our study demonstrated that PER-related genes, specifically ADCY5, CAMK2A, PLCB1, NTRK2, and DLG4, were markedly down-regulated in models, exhibiting a robust association with hypoxia and apoptosis. Conclusion The data indicates that ADCY5, CAMK2A, PLCB1, NTRK2, and DLG4 could be pivotal genes responsible for triggering apoptosis in hypoxic environments during CI-reperfusion injury.
Collapse
Affiliation(s)
- Liang-da Li
- Department of Neurology, The People’s Hospital Affiliated to Ningbo University, Ningbo, Zhejiang, China
| | - Yue Zhou
- Department of Neurology, The People’s Hospital Affiliated to Ningbo University, Ningbo, Zhejiang, China
| | - Shan-fen Shi
- Department of Rheumatology, The People’s Hospital Affiliated to Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
86
|
Wei X, Wen Y, Hu Y, Guo X. Total Saponins of Panax Notoginseng Modulate the Astrocyte Inflammatory Signaling Pathway and Attenuate Inflammatory Injury Induced by Oxygen- Glucose Deprivation/Reperfusion Injury in Rat Brain Microvascular Endothelial Cells. Curr Stem Cell Res Ther 2024; 19:267-276. [PMID: 37218204 DOI: 10.2174/1574888x18666230509113912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/08/2023] [Accepted: 03/20/2023] [Indexed: 05/24/2023]
Abstract
OBJECTIVE Reperfusion after cerebral ischemia causes brain injury. Total saponins of Panax notoginseng (PNS) have potential roles in protecting against cerebral ischemia-reperfusion injury. However, whether PNS regulates astrocytes on oxygen-glucose deprivation/reperfusion (OGD/R) injury in rat brain microvascular endothelial cells (BMECs) and its mechanism still need further clarification. METHODS Rat C6 glial cells were treated with PNS at different doses. Cell models were established by exposing C6 glial cells and BMECs to OGD/R. Cell viability was assessed, and levels of nitrite concentration, inflammatory factors (iNOS, IL-1β, IL-6, IL-8, TNF-α), and oxidative stress-related factors (MDA, SOD, GSH-Px, T-AOC) were subsequently measured through CCK8, Grice analysis, Western blot, and ELISA, respectively. The co-cultured C6 and endothelial cells were treated with PNS for 24 hours before model establishment. Then transendothelial electrical resistance (TEER), lactate dehydrogenase (LDH) activity, brain-derived neurotrophic factor (BDNF) content, and mRNA and protein levels and positive rates of tight junction proteins [Claudin-5, Occludin, ZO-1] were measured by a cell resistance meter, corresponding kits, ELISA, RT-qPCR, Western blot, and immunohistochemistry, respectively. RESULTS PNS had no cytotoxicity. PNS reduced iNOS, IL-1β, IL-6, IL-8, and TNF-α levels in astrocytes, promoted T-AOC level and SOD and GSH-Px activities, and inhibited MDA levels, thus inhibiting oxidative stress in astrocytes. In addition, PNS alleviated OGD/R injury, reduced Na-Flu permeability, and enhanced TEER, LDH activity, BDNF content, and levels of tight junction proteins Claudin-5, Occludin, ZO-1 in the culture system of astrocytes and rat BMECs after OGD/R. CONCLUSION PNS repressed astrocyte inflammation and attenuated OGD/R injury in rat BMECs.
Collapse
Affiliation(s)
- Xiaobing Wei
- Department of Neurosurgery, Huizhou Third People's Hospital, Guangzhou Medical University, No. 1 Xuebei Street, Huicheng District, Huizhou, Guangdong, China
| | - Yiqi Wen
- Department of Neurosurgery, Huizhou Third People's Hospital, Guangzhou Medical University, No. 1 Xuebei Street, Huicheng District, Huizhou, Guangdong, China
| | - Yongzhen Hu
- Department of Neurosurgery, Huizhou Third People's Hospital, Guangzhou Medical University, No. 1 Xuebei Street, Huicheng District, Huizhou, Guangdong, China
| | - Xuli Guo
- Department of Internal Medicine-Oncology, Huizhou Municipal Central Hospital, No. 41 Eleng North Road, Huicheng District, Huizhou, Guangdong, China
| |
Collapse
|
87
|
Lu W, Chen Z, Wen J. Flavonoids and ischemic stroke-induced neuroinflammation: Focus on the glial cells. Biomed Pharmacother 2024; 170:115847. [PMID: 38016362 DOI: 10.1016/j.biopha.2023.115847] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/27/2023] [Accepted: 11/05/2023] [Indexed: 11/30/2023] Open
Abstract
Ischemic stroke is one of the most cases worldwide, with high rate of morbidity and mortality. In the pathological process of ischemic stroke, neuroinflammation is an essential process that defines the functional prognosis. After stroke onset, microglia, astrocytes and the infiltrating immune cells contribute to a complicated neuroinflammation cascade and play the complicated roles in the pathophysiological variations of ischemic stroke. Both microglia and astrocytes undergo both morphological and functional changes, thereby deeply participate in the neuronal inflammation via releasing pro-inflammatory or anti-inflammatory factors. Flavonoids are plant-specific secondary metabolites and can protect against cerebral ischemia injury via modulating the inflammatory responses. For instances, quercetin can inhibit the expression and release of pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, IL-6 and IL-1β, in the cerebral nervous system (CNS). Apigenin and rutin can promote the polarization of microglia to anti-inflammatory genotype and then inhibit neuroinflammation. In this review, we focused on the dual roles of activated microglia and reactive astrocyte in the neuroinflammation following ischemic stroke and discussed the anti-neuroinflammation of some flavonoids. Importantly, we aimed to reveal the new strategies for alleviating the cerebral ischemic stroke.
Collapse
Affiliation(s)
- Weizhuo Lu
- Medical Branch, Hefei Technology College, Hefei, China
| | - Zhiwu Chen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
88
|
Chen E, Zhou D, Deng R. Serum resolvin D1 potentially predicts neurofunctional recovery, the risk of recurrence and death in patients with acute ischemic stroke. Biomed Rep 2024; 20:10. [PMID: 38124765 PMCID: PMC10731167 DOI: 10.3892/br.2023.1698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/24/2023] [Indexed: 12/23/2023] Open
Abstract
Resolvin D1 (RvD1) represses inflammation, oxidative damage and neural injury related to acute ischemic stroke (AIS) progression. The present study aimed to explore the association of serum RvD1 with disease features, neurological recovery and prognosis in patients with AIS. A total of 212 patients with newly diagnosed AIS, whose serum RvD1 was quantified at admission and at discharge using an ELISA were enrolled in the current study. The modified Rankin scale (mRS) score was noted at 3 months after patient enrolment (M3), and patients were followed up for a median duration of 11.4 (range, 1.1-21.0) months. The median RvD1 in patients with AIS at admission was 1.07 (range, 0.11-9.29) ng/ml and it was negatively correlated with the neutrophil/lymphocyte ratio (r=-0.160; P=0.009) and C-reactive protein level (r=-0.272; P<0.001), but it was not correlated with comorbidities or other biochemical indexes. RvD1 at admission was lower in patients with mRS >2 at M3 (P=0.001), recurrence (P=0.001) or death (P=0.032) compared with that in patients without the aforementioned characteristics, which had a general ability to estimate mRS >2 at M3 [area under curve (AUC), 0.633], as well as lower risk of recurrence (AUC, 0.745) and death (AUC, 0.757) according to receiver operator characteristic (ROC) curve analyses. The median RvD1 was raised to 1.70 (range, 0.30-16.62) ng/ml at discharge. RvD1 at discharge was able to forecast mRS >2 at M3 (AUC, 0.678) and was able to predict the risk of recurrence (AUC, 0.796) and death (AUC, 0.826) in the ROC curve analyses. Increased serum RvD1 was associated with an attenuated inflammation status, and predicted improved neurological recovery, and lower risk of recurrence and death in patients with AIS. More specifically, its level at discharge exhibits a better prognostic utility than that at admission.
Collapse
Affiliation(s)
- Enzhuo Chen
- Department of Neurology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P.R. China
| | - Dong Zhou
- Department of Organic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P.R. China
| | - Ruoyu Deng
- Health Management, University of Montpellier, Montpellier 34090, France
| |
Collapse
|
89
|
Adeli OA, Heidari-Soureshjani S, Rostamian S, Azadegan-Dehkordi Z, Khaghani A. Effects and Mechanisms of Fisetin against Ischemia-reperfusion Injuries: A Systematic Review. Curr Pharm Biotechnol 2024; 25:2138-2153. [PMID: 38310454 DOI: 10.2174/0113892010281821240102105415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/13/2023] [Accepted: 12/22/2023] [Indexed: 02/05/2024]
Abstract
BACKGROUND Ischemia-reperfusion injury (IRI) is a well-known ailment that can disturb organ function. OBJECTIVES This systematic review study investigated fisetin's effects and possible mechanisms in attenuating myocardial, cerebral, renal, and hepatic IRIs. METHODS This systematic review included studies earlier than Sep 2023 by following the PRISMA statement 2020. After determining inclusion and exclusion criteria and related keywords, bibliographic databases, such as Cochrane Library, PubMed, Web of Science, Embase, and Scopus databases, were used to search the relevant studies. Studies were imported in End- Note X8, and the primary information was recorded in Excel. RESULTS Fisetin reduced reactive oxygen species (ROS) generation and upregulated antioxidant enzymes, such as superoxide dismutase (SOD), glutathione (GSH), catalase (CAT), and glutathione peroxidase (GPx), in ischemic tissues. Moreover, fisetin can attenuate oxidative stress by activating phosphoinositide-3-kinase-protein kinase B/Akt (PI3K/Akt) and nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathways. Fisetin has been indicated to prevent the activation of several pro-inflammatory signaling pathways, including NF-κB (Nuclear factor kappa-light-chain-enhancer of activated B cells) and MAPKs (Mitogen-activated protein kinases). It also inhibits the production of pro-inflammatory cytokines and enzymes like tumor necrosis factor-a (TNF-α), inducible-NO synthase (iNOS), cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), interleukin-1β (IL-1β), IL-1, and IL-6. Fisetin attenuates IRI by improving mitochondrial function, anti-apoptotic effects, promoting autophagy, and preserving tissues from histological changes induced by IRIs. CONCLUSION Fisetin, by antioxidant, anti-inflammatory, mitochondrial protection, promoting autophagy, and anti-apoptotic properties, can reduce cell injury due to myocardial, cerebral renal, and hepatic IRIs without any significant side effects.
Collapse
Affiliation(s)
- Omid-Ali Adeli
- Department of Pathology, Lorestan University of Medical Sciences, Khorramabad, Iran
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | | - Sahar Rostamian
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Zahra Azadegan-Dehkordi
- Oriented Nursing Midwifery Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Armin Khaghani
- Skin Diseases and Leishmaniasis Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
90
|
Alizadehasl A, Alavi MS, Alavi MS, Roohbakhsh A. TRPA1 as a promising target in ischemia/reperfusion: A comprehensive review. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:270-278. [PMID: 38333756 PMCID: PMC10849207 DOI: 10.22038/ijbms.2023.74590.16198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/25/2023] [Indexed: 02/10/2024]
Abstract
Ischemic disorders, including myocardial infarction, cerebral ischemia, and peripheral vascular impairment, are the main common reasons for debilitating diseases and death in Western cultures. Ischemia occurs when blood circulation is reduced in tissues. Reperfusion, although commanded to return oxygen to ischemic tissues, generates paradoxical tissue responses. The responses include generating reactive oxygen species (ROS), stimulating inflammatory responses in ischemic organs, endoplasmic reticulum stress, and the expansion of postischemic capillary no-reflow, which intensifies organ damage. Multiple pathologic processes contribute to ischemia/reperfusion; therefore, targeting different pathologic processes may yield an effective therapeutic approach. Transient Receptor Potential A1 (TRPA1) belongs to the TRP family of ion channels, detects a broad range of chemicals, and promotes the transduction of noxious stimuli, e.g., methylglyoxal, ROS, and acrolein effects are attributed to the channel's sensitivity to intracellular calcium elevation or phosphoinositol phosphate modulation. Hypoxia and ischemia are associated with oxidative stress, which activates the TRPA1 channel. This review describes the role of TRPA1 and its related mechanisms that contribute to ischemia/reperfusion. Relevant articles were searched from PubMed, Scopus, Web of Sciences, and Google Scholar electronic databases, up to the end of August 2023. Based on the evidence presented here, TRPA1 may have protective or deteriorative functions during the ischemia/reperfusion process. Its function depends on the activation level, the ischemic region, the extent of lesions, and the duration of ischemia.
Collapse
Affiliation(s)
- Azin Alizadehasl
- Cardio-Oncology Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Echocardiography, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Sadat Alavi
- Department of Echocardiography, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohaddeseh Sadat Alavi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
91
|
Zhang Y, Jiang M, Gao Y, Zhao W, Wu C, Li C, Li M, Wu D, Wang W, Ji X. "No-reflow" phenomenon in acute ischemic stroke. J Cereb Blood Flow Metab 2024; 44:19-37. [PMID: 37855115 PMCID: PMC10905637 DOI: 10.1177/0271678x231208476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/04/2023] [Accepted: 09/13/2023] [Indexed: 10/20/2023]
Abstract
Acute ischemic stroke (AIS) afflicts millions of individuals worldwide. Despite the advancements in thrombolysis and thrombectomy facilitating proximal large artery recanalization, the resultant distal hypoperfusion, referred to "no-reflow" phenomenon, often impedes the neurological function restoration in patients. Over half a century of scientific inquiry has validated the existence of cerebral "no-reflow" in both animal models and human subjects. Furthermore, the correlation between "no-reflow" and adverse clinical outcomes underscores the necessity to address this phenomenon as a pivotal strategy for enhancing AIS prognoses. The underlying mechanisms of "no-reflow" are multifaceted, encompassing the formation of microemboli, microvascular compression and contraction. Moreover, a myriad of complex mechanisms warrant further investigation. Insights gleaned from mechanistic exploration have prompted advancements in "no-reflow" treatment, including microthrombosis therapy, which has demonstrated clinical efficacy in improving patient prognoses. The stagnation in current "no-reflow" diagnostic methods imposes limitations on the timely application of combined therapy on "no-reflow" post-recanalization. This narrative review will traverse the historical journey of the "no-reflow" phenomenon, delve into its underpinnings in AIS, and elucidate potential therapeutic and diagnostic strategies. Our aim is to equip readers with a swift comprehension of the "no-reflow" phenomenon and highlight critical points for future research endeavors.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Miaowen Jiang
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yuan Gao
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China
| | - Wenbo Zhao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chuanjie Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chuanhui Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ming Li
- China-America Institute of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Di Wu
- China-America Institute of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wu Wang
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xunming Ji
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China-America Institute of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
92
|
Li Y, Liu C, Chen Z, Lin H, Li X. Netrin-1 protects blood-brain barrier (BBB) integrity after cerebral ischemia-reperfusion by activating the Kruppel-like factor 2 (KLF2)/occludin pathway. J Biochem Mol Toxicol 2024; 38:e23623. [PMID: 38229322 DOI: 10.1002/jbt.23623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/04/2023] [Accepted: 12/14/2023] [Indexed: 01/18/2024]
Abstract
Ischemia/reperfusion (I/R)-induced neural damage and neuroinflammation have been associated with pathological progression during stroke. Netrin-1 is an important member of the family of laminin-related secreted proteins, which plays an important role in governing axon elongation. However, it is unknown whether Netrin-1 possesses a beneficial role in stroke. Here, we employed the middle cerebral artery occlusion (MCAO) model to study the function of Netrin-1 in alleviating brain injuries. Our results demonstrate that Netrin-1 rescued poststroke neurological deficits and inhibited production of the inflammatory cytokines such as interleukin 6 (IL-6) and endothelial chemokine (C-X-C motif) ligand 1 (Cxcl1). Importantly, Netrin-1 protected against MCAO-induced dysfunction of the blood-brain barrier (BBB) in mice and a reduction in the expression of the tight junction (TJ) protein occludin. Additionally, we report that Netrin-1 could ameliorate oxygen-glucose deprivation/reoxygenation (OGD/R)-induced injury and prevent aggravation in endothelial monolayer permeability in bEnd.3 human brain microvascular endothelial cells (HBMVECs). Mechanistically, Netrin-1 ameliorated OGD/R-induced decrease in occludin and Kruppel-like factor 2 (KLF2) in HBMVECs. Notably, silencing of KLF2 abolished the beneficial effects of Netrin-1 in protecting endothelial permeability and occludin expression, suggesting that these effects are mediated by KLF2. In conclusion, our findings suggest that Netrin-1 could constitute a novel therapeutic strategy for ischemic stroke.
Collapse
Affiliation(s)
- Yuanxiao Li
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Changyun Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Zhiting Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Hanbin Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Xiaofeng Li
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| |
Collapse
|
93
|
Weaver DF. Thirty Risk Factors for Alzheimer's Disease Unified by a Common Neuroimmune-Neuroinflammation Mechanism. Brain Sci 2023; 14:41. [PMID: 38248256 PMCID: PMC10813027 DOI: 10.3390/brainsci14010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024] Open
Abstract
One of the major obstacles confronting the formulation of a mechanistic understanding for Alzheimer's disease (AD) is its immense complexity-a complexity that traverses the full structural and phenomenological spectrum, including molecular, macromolecular, cellular, neurological and behavioural processes. This complexity is reflected by the equally complex diversity of risk factors associated with AD. However, more than merely mirroring disease complexity, risk factors also provide fundamental insights into the aetiology and pathogenesis of AD as a neurodegenerative disorder since they are central to disease initiation and subsequent propagation. Based on a systematic literature assessment, this review identified 30 risk factors for AD and then extended the analysis to further identify neuroinflammation as a unifying mechanism present in all 30 risk factors. Although other mechanisms (e.g., vasculopathy, proteopathy) were present in multiple risk factors, dysfunction of the neuroimmune-neuroinflammation axis was uniquely central to all 30 identified risk factors. Though the nature of the neuroinflammatory involvement varied, the activation of microglia and the release of pro-inflammatory cytokines were a common pathway shared by all risk factors. This observation provides further evidence for the importance of immunopathic mechanisms in the aetiopathogenesis of AD.
Collapse
Affiliation(s)
- Donald F Weaver
- Krembil Research Institute, University Health Network, Departments of Medicine, Chemistry, Pharmaceutical Sciences, University of Toronto, Toronto, ON M5T 0S8, Canada
| |
Collapse
|
94
|
Nie L, He J, Wang J, Wang R, Huang L, Jia L, Kim YT, Bhawal UK, Fan X, Zille M, Jiang C, Chen X, Wang J. Environmental Enrichment for Stroke and Traumatic Brain Injury: Mechanisms and Translational Implications. Compr Physiol 2023; 14:5291-5323. [PMID: 38158368 DOI: 10.1002/cphy.c230007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Acquired brain injuries, such as ischemic stroke, intracerebral hemorrhage (ICH), and traumatic brain injury (TBI), can cause severe neurologic damage and even death. Unfortunately, currently, there are no effective and safe treatments to reduce the high disability and mortality rates associated with these brain injuries. However, environmental enrichment (EE) is an emerging approach to treating and rehabilitating acquired brain injuries by promoting motor, sensory, and social stimulation. Multiple preclinical studies have shown that EE benefits functional recovery, including improved motor and cognitive function and psychological benefits mediated by complex protective signaling pathways. This article provides an overview of the enriched environment protocols used in animal models of ischemic stroke, ICH, and TBI, as well as relevant clinical studies, with a particular focus on ischemic stroke. Additionally, we explored studies of animals with stroke and TBI exposed to EE alone or in combination with multiple drugs and other rehabilitation modalities. Finally, we discuss the potential clinical applications of EE in future brain rehabilitation therapy and the molecular and cellular changes caused by EE in rodents with stroke or TBI. This article aims to advance preclinical and clinical research on EE rehabilitation therapy for acquired brain injury. © 2024 American Physiological Society. Compr Physiol 14:5291-5323, 2024.
Collapse
Affiliation(s)
- Luwei Nie
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinxin He
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
- Key Laboratory for Brain Science Research and Transformation in the Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Junmin Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Ruike Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Leo Huang
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Lin Jia
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yun Tai Kim
- Division of Functional Food Research, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
- Department of Food Biotechnology, Korea University of Science & Technology, Daejeon, Republic of Korea
| | - Ujjal K Bhawal
- Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba, Japan
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Xiaochong Fan
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Marietta Zille
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Chao Jiang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xuemei Chen
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jian Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
95
|
Lai S, Wang P, Gong J, Zhang S. New insights into the role of GSK-3β in the brain: from neurodegenerative disease to tumorigenesis. PeerJ 2023; 11:e16635. [PMID: 38107562 PMCID: PMC10722984 DOI: 10.7717/peerj.16635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/18/2023] [Indexed: 12/19/2023] Open
Abstract
Glycogen synthase kinase 3 (GSK-3) is a serine/threonine kinase widely expressed in various tissues and organs. Unlike other kinases, GSK-3 is active under resting conditions and is inactivated upon stimulation. In mammals, GSK-3 includes GSK-3 α and GSK-3β isoforms encoded by two homologous genes, namely, GSK3A and GSK3B. GSK-3β is essential for the control of glucose metabolism, signal transduction, and tissue homeostasis. As more than 100 known proteins have been identified as GSK-3β substrates, it is sometimes referred to as a moonlighting kinase. Previous studies have elucidated the regulation modes of GSK-3β. GSK-3β is involved in almost all aspects of brain functions, such as neuronal morphology, synapse formation, neuroinflammation, and neurological disorders. Recently, several comparatively specific small molecules have facilitated the chemical manipulation of this enzyme within cellular systems, leading to the discovery of novel inhibitors for GSK-3β. Despite these advancements, the therapeutic significance of GSK-3β as a drug target is still complicated by uncertainties surrounding the potential of inhibitors to stimulate tumorigenesis. This review provides a comprehensive overview of the intricate mechanisms of this enzyme and evaluates the existing evidence regarding the therapeutic potential of GSK-3β in brain diseases, including Alzheimer's disease, Parkinson's disease, mood disorders, and glioblastoma.
Collapse
Affiliation(s)
- Shenjin Lai
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Peng Wang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jingru Gong
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Shuaishuai Zhang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| |
Collapse
|
96
|
Zhang X, Shao C, Jin L, Wan H, He Y. Optimized Separation of Carthamin from Safflower by Macroporous Adsorption Resins and Its Protective Effects on PC12 Cells Injured by OGD/R via Nrf2 Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18986-18998. [PMID: 37997370 DOI: 10.1021/acs.jafc.3c05285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
The growing demand for safe natural products has reignited people's interest in natural food pigments. Here, we proposed the use of macroporous adsorption resins (MARs) to separate and purify carthamin from safflower. The optimal parameters for carthamin purification with HPD400 MAR were determined as follows: a mass ratio of crude carthamin in sample solution to wet resin of 0.3, a crude carthamin solution concentration of 0.125 g·mL-1, a pH of 6.00, a sample volume flow rate of 0.5 mL·min-1, an ethanol volume fraction of 58%, an elution volume of 4 BV, and an elution volume flow rate of 1.0 mL·min-1. Under the above purification conditions, the recovery rate of carthamin was above 96%. Carthamin dramatically improved the survival rate of PC12 cells damaged by oxygen-glucose deprivation/reoxygenation and protected them from oxidative stress by inhibiting the generation of reactive oxygen species and increasing the total antioxidant capacity and glutathione (GSH) levels. Carthamin promoted extracellularly regulated protein kinase phosphorylation into the nucleus, permitting Nrf2 nuclear translocation and upregulating the gene expression of the rate-limiting enzymes glutamate-cysteine ligase catalytic subunit and glutamate-cysteine ligase regulatory subunit of GSH synthesis to obliterate free radicals and exert antioxidant effects. This study revealed the purification method of carthamin and its antioxidant protective effects, providing important insights into the application of carthamin in functional foods.
Collapse
Affiliation(s)
- Xian Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P. R. China
| | - Chongyu Shao
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P. R. China
| | - Lei Jin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P. R. China
| | - Haitong Wan
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P. R. China
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P. R. China
| |
Collapse
|
97
|
Mohamed SK, Ahmed AAE, Elkhoely A. Sertraline Pre-Treatment Attenuates Hemorrhagic Transformation Induced in Rats after Cerebral Ischemia Reperfusion via Down Regulation of Neuronal CD163: Involvement of M1/M2 Polarization Interchange and Inhibiting Autophagy. J Neuroimmune Pharmacol 2023; 18:657-673. [PMID: 37955765 PMCID: PMC10770270 DOI: 10.1007/s11481-023-10093-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/17/2023] [Indexed: 11/14/2023]
Abstract
Cerebral ischemia reperfusion (I/R) is one of the neurovascular diseases which leads to severe brain deterioration. Haemorrhagic transformation (HT) is the main complication of ischemic stroke. It exacerbates by reperfusion, causing a more deleterious effect on the brain and death. The current study explored the protective effect of sertraline (Sert) against cerebral I/R in rats by inhibiting HT, together with the molecular pathways involved in this effect. Forty-eight wister male rats were divided into 4 groups: Sham, Sert + Sham, I/R, and Sert + I/R. The ischemic model was induced by bilateral occlusion of the common carotid artery for 20 min, then reperfusion for 24 h. Sertraline (20 mg/kg, p.o.) was administrated for 14 days before exposure to ischemia. Pre-treatment with Sert led to a significant attenuation of oxidative stress and inflammation. In addition, Sert attenuated phosphorylation of extracellular regulated kinases and nuclear factor kappa-p65 expression, consequently modulating microglial polarisation to M2 phenotype. Moreover, Sert prevented the hemorrhagic transformation of ischemic stroke as indicated by the notable decrease in neuronal expression of CD163, activity of Heme oxygenase-2 and matrix metalloproteinase-2 and 9 levels. In the same context, Sert decreased levels of autophagy and apoptotic markers. Furthermore, histological examination, Toluidine blue, and Prussian blue stain aligned with the results. In conclusion, Sert protected against cerebral I/R damage by attenuating oxidative stress, inflammation, autophagy, and apoptotic process. It is worth mentioning that our study was the first to show that Sert inhibited hemorrhagic transformation. The protective effect of sertraline against injury induced by cerebral ischemia reperfusion via inhibiting Hemorrhagic transformation.
Collapse
Affiliation(s)
- Shimaa K Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, 11795, Egypt.
| | - Amany A E Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, 11795, Egypt
| | - Abeer Elkhoely
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, 11795, Egypt
| |
Collapse
|
98
|
Li L, Jiang W, Yu B, Liang H, Mao S, Hu X, Feng Y, Xu J, Chu L. Quercetin improves cerebral ischemia/reperfusion injury by promoting microglia/macrophages M2 polarization via regulating PI3K/Akt/NF-κB signaling pathway. Biomed Pharmacother 2023; 168:115653. [PMID: 37812891 DOI: 10.1016/j.biopha.2023.115653] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023] Open
Abstract
The modulation of microglial polarization from the pro-inflammatory M1 to the anti-inflammatory M2 phenotype shows promise as a therapeutic strategy for ischemic stroke. Quercetin, a natural flavonoid abundant in various plants, possesses anti-inflammatory, anti-apoptotic, and antioxidant properties. Nevertheless, its effect and underlying mechanism on microglia/macrophages M1/M2 polarization in the treatment of cerebral ischemia/reperfusion injury (CI/RI) remain poorly explored. In the current study, we observed that quercetin ameliorated neurological deficits, reduced infarct volume, decreased the number of M1 microglia/macrophages (CD16/32+/Iba1+), and enhanced the number of M2 microglia/macrophages (CD206+/Iba1+) after establishing the CI/RI model in rats. Subsequent in vivo and in vitro experiments indicated that quercetin downregulated M1 markers (CD86, iNOS, TNF-α, IL-1β, and IL-6) and upregulated M2 markers (CD206, Arg-1, IL-10, and TGF-β). Network pharmacology analysis and molecular docking revealed that the PI3K/Akt/NF-κB signaling pathway emerged as the core pathway. Western blot confirmed that quercetin upregulated the phosphorylation of PI3K and Akt, while alleviating the phosphorylation of IκBα and NF-κB both in vivo and in vitro. However, the PI3K inhibitor LY294002 reversed the effects of quercetin on M2 polarization and the expression of key proteins in the PI3K/Akt/NF-κB pathway in primary microglia after oxygen-glucose deprivation/reoxygenation (OGD/R) in vitro. Collectively, our findings demonstrate that quercetin facilitates microglia/macrophages M2 polarization by modulating the PI3K/Akt/NF-κB signaling pathway in the treatment of CI/RI. These findings provide novel insights into the therapeutic mechanisms of quercetin in ischemic stroke.
Collapse
Affiliation(s)
- Lin Li
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Weifeng Jiang
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Baojian Yu
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Huiqi Liang
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shihui Mao
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaowei Hu
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yan Feng
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiadong Xu
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Lisheng Chu
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
99
|
Song T, Zhang Y, Zhu L, Zhang Y, Song J. The role of JAK/STAT signaling pathway in cerebral ischemia-reperfusion injury and the therapeutic effect of traditional Chinese medicine: A narrative review. Medicine (Baltimore) 2023; 102:e35890. [PMID: 37986307 PMCID: PMC10659620 DOI: 10.1097/md.0000000000035890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 11/22/2023] Open
Abstract
Cerebral ischemia is a cerebrovascular disease with symptoms caused by insufficient blood or oxygen supply to the brain. When blood supplied is restored after cerebral ischemia, secondary brain injury may occur, which is called cerebral ischemia-reperfusion injury (CIRI). In this process, the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway plays an important role. It mediates neuroinflammation and participates in the regulation of physiological activities, such as cell proliferation, differentiation, and apoptosis. After CIRI, M1 microglia is activated and recruited by the damaged tissue. The inflammatory factors are produced by M1 microglia through the JAK/STAT pathway, eventually leading to cell apoptosis. Meanwhile, the JAK2/STAT3 signaling pathway and the expression of lipocalin-2 and caspase-3 could increase. In the pathway, phosphorylated JAK2 and phosphorylated STAT3 function of 2 ways. They not only promote the proliferation of neurons, but also affect the differentiation direction of neural stem cells by further acting on the Notch signaling pathway. Recently, traditional Chinese medicine (TCM) is a key player in CIRI, through JAK2, STAT3, STAT1 and their phosphorylation. Therefore, the review focuses on the JAK/STAT signaling pathway and its relationship with CIRI as well as the influence of the TCM on this pathway. It is aimed at providing the basis for future clinical research on the molecular mechanism of TCM in the treatment of CIRI.
Collapse
Affiliation(s)
- Tianzhi Song
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yishu Zhang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liangrong Zhu
- Wenling Hospital of Traditional Chinese Medicine, Taizhou, China
| | - Yuyan Zhang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jingmei Song
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
100
|
Liu M, Kang W, Hu Z, Wang C, Zhang Y. Targeting MyD88: Therapeutic mechanisms and potential applications of the specific inhibitor ST2825. Inflamm Res 2023; 72:2023-2036. [PMID: 37814128 DOI: 10.1007/s00011-023-01801-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND Myeloid differentiation factor-88 (MyD88) is a crucial adapter protein that coordinates the innate immune response and establishes an adaptive immune response. The interaction of the Toll/Interleukin-1 receptor (IL-1R) superfamily with MyD88 triggers the activation of various signalling pathways such as nuclear factor-κB (NF-κB) and activator protein-1 (AP-1), promoting the production of a variety of immune and inflammatory mediators and potentially driving the development of a variety of diseases. OBJECTIVE This article will explore the therapeutic potential and mechanism of the MyD88-specific inhibitor ST2825 and describe its use in the treatment of several diseases. We envision future research and clinical applications of ST2825 to provide new ideas for the development of anti-inflammatory drugs and disease-specific drugs to open new horizons for the prevention and treatment of related inflammatory diseases. MATERIALS AND METHODS This review analysed relevant literature in PubMed and other databases. All relevant studies on MyD88 inhibitors and ST2825 that were published in the last 20 years were used as screening criteria. These studies looked at the development and improvement of MyD88 inhibitors and ST2825. RESULTS Recent evidence using the small-molecule inhibitor of ST2825 has suggested that blocking MyD88 activity can be used to treat diseases such as neuroinflammation, inflammatory diseases such as acute liver/kidney injury, or autoimmune diseases such as systemic lupus erythematosus and can affect transplantation immunity. In addition, ST2825 has potential therapeutic value in B-cell lymphoma with the MyD88 L265P mutation. CONCLUSION Targeting MyD88 is a novel therapeutic strategy, and scientific research is presently focused on the development of MyD88 inhibitors. The peptidomimetic compound ST2825 is a widely studied small-molecule inhibitor of MyD88. Thus, ST2825 may be a potential therapeutic small-molecule agent for modulating host immune regulation in inflammatory diseases and inflammatory therapy.
Collapse
Affiliation(s)
- Meiqi Liu
- Hengyang Medical School, Cancer Research Institute, University of South China, Chang Sheng Xi Avenue 28, Hengyang City, Hunan, 421001, People's Republic of China
| | - Wenyan Kang
- Hengyang Medical School, Cancer Research Institute, University of South China, Chang Sheng Xi Avenue 28, Hengyang City, Hunan, 421001, People's Republic of China
| | - Zhizhong Hu
- Hengyang Medical School, Cancer Research Institute, University of South China, Chang Sheng Xi Avenue 28, Hengyang City, Hunan, 421001, People's Republic of China
| | - Chengkun Wang
- Hengyang Medical School, Cancer Research Institute, University of South China, Chang Sheng Xi Avenue 28, Hengyang City, Hunan, 421001, People's Republic of China.
| | - Yang Zhang
- Hengyang Medical School, Cancer Research Institute, University of South China, Chang Sheng Xi Avenue 28, Hengyang City, Hunan, 421001, People's Republic of China.
| |
Collapse
|