51
|
Gupta M, Kaur G. Aqueous extract from the Withania somnifera leaves as a potential anti-neuroinflammatory agent: a mechanistic study. J Neuroinflammation 2016; 13:193. [PMID: 27550017 PMCID: PMC4994385 DOI: 10.1186/s12974-016-0650-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/03/2016] [Indexed: 12/11/2022] Open
Abstract
Background Microglial-mediated neuroinflammation is a key factor underlying the pathogenesis of various neurodegenerative diseases and also an important target for the development of the neuroinflammation-targeted therapeutics. Conventionally, the nonsteroidal anti-inflammatory drugs (NSAIDs) are prescribed, but they are associated with long-term potential risks. Natural products are the cornerstone of modern therapeutics, and Ashwagandha is one such plant which is well known for its immunomodulatory properties in Ayurveda. Methods The current study was aimed to investigate the anti-neuroinflammatory potential of Ashwagandha (Withania somnifera) leaf water extract (ASH-WEX) and one of its active chloroform fraction (fraction IV (FIV)) using β-amyloid and lipopolysaccharide (LPS)-stimulated primary microglial cells and BV-2 microglial cell line. Iba-1 and α-tubulin immunocytochemistry was done to study the LPS- and β-amyloid-induced morphological changes in microglial cells. Inflammatory molecules (NFkB, AP1), oxidative stress proteins (HSP 70, mortalin), apoptotic markers (Bcl-xl, PARP), cell cycle regulatory proteins (PCNA, Cyclin D1), and MHC II expression were analyzed by Western blotting. Mitotracker and CellRox Staining, Sandwich ELISA, and Gelatin Zymography were done to investigate ROS, pro-inflammatory cytokines, and matrix metalloproteinase production, respectively. Ashwagandha effect on microglial proliferation, migration, and its apoptosis-inducing potential was studied by cell cycle analysis, migration assay, and Annexin-V FITC assay, respectively. Results ASH-WEX and FIV pretreatment was seen to suppress the proliferation of activated microglia by causing cell cycle arrest at Go/G1 and G2/M phase along with decrease in cell cycle regulatory protein expression such as PCNA and Cyclin D1. Inhibition of microglial activation was revealed by their morphology and downregulated expression of microglial activation markers like MHC II and Iba-1. Both the extracts attenuated the TNF-α, IL-1β, IL-6, RNS, and ROS production via downregulating the expression of inflammatory proteins like NFkB and AP1. ASH-WEX and FIV also restricted the migration of activated microglia by downregulating metalloproteinase expression. Controlled proliferation rate was also accompanied by apoptosis of activated microglia. ASH-WEX and FIV were screened and found to possess Withaferin A and Withanone as active phytochemicals. Conclusions The current data suggests that ASH-WEX and FIV inhibit microglial activation and migration and may prove to be a potential therapeutic candidate for the suppression of neuroinflammation in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Muskan Gupta
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Gurcharan Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| |
Collapse
|
52
|
Kim H, Shin EA, Kim CG, Lee DY, Kim B, Baek NI, Kim SH. Obovatol Induces Apoptosis in Non-small Cell Lung Cancer Cells via C/EBP Homologous Protein Activation. Phytother Res 2016; 30:1841-1847. [PMID: 27489231 DOI: 10.1002/ptr.5690] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/03/2016] [Accepted: 07/11/2016] [Indexed: 12/27/2022]
Abstract
Although obovatol, a phenolic compound from the bark of Magnolia obovata, was known to have antioxidant, neuroprotective, antiinflammatory, antithrombotic and antitumour effects, its underlying antitumour mechanism is poorly understood so far. Thus, in the present study, the antitumour molecular mechanism of obovatol was investigated in non-small cell lung cancer cells (NSCLCs). Obovatol exerted cytotoxicity in A549 and H460 NSCLCs, but not in BEAS-2B cells. Also, obovatol increased sub-G1 accumulation and early and late apoptotic portion in A549 and H460 NSCLCs. Consistently, obovatol cleaved PARP, activated caspase 9/3 and Bax and attenuated the expression of cyclin D1 in A549 and H460 NSCLCs. Interestingly, obovatol upregulated the expression of endoplasmic reticulum stress proteins such as C/EBP homologous protein (CHOP), IRE1α, ATF4 and p-elF2 in A549 and H460 NSCLCs. Conversely, depletion of CHOP blocked the apoptotic activity of obovatol to increase sub-G1 accumulation in A549 and H460 NSCLCs. Overall, our findings support scientific evidences that obovatol induces apoptosis via CHOP activation in A549 and H460 NSCLCs. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Heejeong Kim
- Department of East West Medical Science, Graduate School of East West Medical Science, Kyung Hee University, Yongin, 446-701, Korea
| | - Eun Ah Shin
- College of Korean Medicine, Kyung Hee University, Seoul, 131-701, Korea
| | - Chang Geun Kim
- College of Korean Medicine, Kyung Hee University, Seoul, 131-701, Korea
| | - Dae Young Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Eumseong, 27709, Korea
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Seoul, 131-701, Korea
| | - Nam-In Baek
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Yongin, 446-701, Korea
| | - Sung-Hoon Kim
- College of Korean Medicine, Kyung Hee University, Seoul, 131-701, Korea.
| |
Collapse
|
53
|
Rangarajan P, Karthikeyan A, Dheen ST. Role of dietary phenols in mitigating microglia-mediated neuroinflammation. Neuromolecular Med 2016; 18:453-64. [PMID: 27465151 DOI: 10.1007/s12017-016-8430-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/21/2016] [Indexed: 12/30/2022]
|
54
|
Ghura S, Tai L, Zhao M, Collins N, Che CT, Warpeha KM, LaDu MJ. Arabidopsis thaliana extracts optimized for polyphenols production as potential therapeutics for the APOE-modulated neuroinflammation characteristic of Alzheimer's disease in vitro. Sci Rep 2016; 6:29364. [PMID: 27383500 PMCID: PMC4935988 DOI: 10.1038/srep29364] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/17/2016] [Indexed: 01/14/2023] Open
Abstract
Although the cause of Alzheimer's disease (AD) is unknown, glial-induced neuroinflammation is an early symptom. Familial AD is caused by increases in amyloid-beta (Aβ) peptide, particularly soluble oligomeric (oAβ), considered a proximal neurotoxin and neuroinflammatory stimuli. APOE4, a naturally occurring genotype of APOE, is the greatest genetic risk factor for AD; increasing risk up to 12-fold compared to APOE3 and APOE2. oAβ-induced neuroinflammation is greater with APOE4 compared to APOE3 and APOE2. As sinapates and flavonoids have anti-inflammatory properties, a protocol was developed for optimizing polyphenol production in seedlings of Arabidopsis thaliana (A. thaliana). Three mutants (cop1, prn1, xpf3) were identified, and the extracts treated with liver microsomes to mimic physiological metabolism, with HPLC and MS performed on the resulting metabolites for peak identification. These extracts were used to treat primary glial cells isolated from human APOE-targeted-replacement (APOE-TR) and APOE-knock-out (KO) mice, with neuroinflammation induced by lipopolysaccharide (LPS) or oAβ. The dose-response data for TNFα secretion demonstrate the followed the order: APOE-KO > APOE4 > APOE3 > APOE2, with xpf3 the most effective anti-neuroinflammatory across APOE genotypes. Thus, the plant-based approach described herein may be particularly valuable in treating the APOE4-induced neuroinflammatory component of AD risk.
Collapse
Affiliation(s)
- Shivesh Ghura
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Leon Tai
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ming Zhao
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Nicole Collins
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Chun-Tao Che
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Katherine M Warpeha
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Mary Jo LaDu
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
55
|
|
56
|
Song GJ, Jung M, Kim JH, Park H, Rahman MH, Zhang S, Zhang ZY, Park DH, Kook H, Lee IK, Suk K. A novel role for protein tyrosine phosphatase 1B as a positive regulator of neuroinflammation. J Neuroinflammation 2016; 13:86. [PMID: 27095436 PMCID: PMC4837589 DOI: 10.1186/s12974-016-0545-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/11/2016] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Protein tyrosine phosphatase 1B (PTP1B) is a member of the non-transmembrane phosphotyrosine phosphatase family. Recently, PTP1B has been proposed to be a novel target of anti-cancer and anti-diabetic drugs. However, the role of PTP1B in the central nervous system is not clearly understood. Therefore, in this study, we sought to define PTP1B's role in brain inflammation. METHODS PTP1B messenger RNA (mRNA) and protein expression levels were examined in mouse brain and microglial cells after LPS treatment using RT-PCR and western blotting. Pharmacological inhibitors of PTP1B, NF-κB, and Src kinase were used to analyze these signal transduction pathways in microglia. A Griess reaction protocol was used to determine nitric oxide (NO) concentrations in primary microglia cultures and microglial cell lines. Proinflammatory cytokine production was measured by RT-PCR. Western blotting was used to assess Src phosphorylation levels. Immunostaining for Iba-1 was used to determine microglial activation in the mouse brain. RESULTS PTP1B expression levels were significantly increased in the brain 24 h after LPS injection, suggesting a functional role for PTP1B in brain inflammation. Microglial cells overexpressing PTP1B exhibited an enhanced production of NO and gene expression levels of TNF-α, iNOS, and IL-6 following LPS exposure, suggesting that PTP1B potentiates the microglial proinflammatory response. To confirm the role of PTP1B in neuroinflammation, we employed a highly potent and selective inhibitor of PTP1B (PTP1Bi). In LPS- or TNF-α-stimulated microglial cells, in vitro blockade of PTP1B activity using PTP1Bi markedly attenuated NO production. PTP1Bi also suppressed the expression levels of iNOS, COX-2, TNF-α, and IL-1β. PTP1B activated Src by dephosphorylating the Src protein at a negative regulatory site. PTP1B-mediated Src activation led to an enhanced proinflammatory response in the microglial cells. An intracerebroventricular injection of PTP1Bi significantly attenuated microglial activation in the hippocampus and cortex of LPS-injected mice compared to vehicle-injected mice. The gene expression levels of proinflammatory cytokines were also significantly suppressed in the brain by a PTP1Bi injection. Together, these data suggest that PTP1Bi has an anti-inflammatory effect in a mouse model of neuroinflammation. CONCLUSIONS This study demonstrates that PTP1B is an important positive regulator of neuroinflammation and is a promising therapeutic target for neuroinflammatory and neurodegenerative diseases.
Collapse
Affiliation(s)
- Gyun Jee Song
- />Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Myungsu Jung
- />Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Jong-Heon Kim
- />Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Hana Park
- />Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Md Habibur Rahman
- />Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Sheng Zhang
- />Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907 USA
| | - Zhong-Yin Zhang
- />Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907 USA
| | - Dong Ho Park
- />Department of Ophthalmology, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Hyun Kook
- />Department of Pharmacology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - In-Kyu Lee
- />Department of Internal Medicine, Division of Endocrinology and Metabolism, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Kyoungho Suk
- />Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| |
Collapse
|
57
|
Catorce MN, Gevorkian G. LPS-induced Murine Neuroinflammation Model: Main Features and Suitability for Pre-clinical Assessment of Nutraceuticals. Curr Neuropharmacol 2016; 14:155-64. [PMID: 26639457 PMCID: PMC4825946 DOI: 10.2174/1570159x14666151204122017] [Citation(s) in RCA: 275] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 11/02/2015] [Accepted: 12/04/2015] [Indexed: 12/14/2022] Open
Abstract
Neuroinflammation is an important feature in the pathogenesis and progression of neurodegenerative diseases such as Alzheimer´s disease (AD), Parkinson´s disease (PD), frontotemporal dementia and amyotrophic lateral sclerosis. Based on current knowledge in the field, suggesting that targeting peripheral inflammation could be a promising additional treatment/prevention approach for neurodegenerative diseases, drugs and natural products with anti-inflammatory properties have been evaluated in animal models of neuroinflammation and neurodegeneration. In this review, we provide an extensive analysis of one of the most important and widely-used animal models of peripherally induced neuroinflammation and neurodegeneration - lipopolysaccharide (LPS)-treated mice, and address the data reproducibility in published research. We also summarize briefly basic features of various natural products, nutraceuticals, with known anti-inflammatory effects and present an overview of data on their therapeutic potential for reducing neuroinflammation in LPS-treated mice.
Collapse
Affiliation(s)
| | - Goar Gevorkian
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Apartado Postal 70228, Cuidad Universitaria, Mexico DF, CP 04510, Mexico.
| |
Collapse
|
58
|
Wang XS, Tian Z, Zhang N, Han J, Guo HL, Zhao MG, Liu SB. Protective Effects of Gastrodin Against Autophagy-Mediated Astrocyte Death. Phytother Res 2015; 30:386-96. [PMID: 26643508 DOI: 10.1002/ptr.5538] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/11/2015] [Accepted: 11/11/2015] [Indexed: 12/14/2022]
Abstract
Gastrodin is an active ingredient derived from the rhizome of Gastrodia elata. This compound is usually used to treat convulsive illness, dizziness, vertigo, and headache. This study aimed to investigate the effect of gastrodin on the autophagy of glial cells exposed to lipopolysaccharides (LPS, 1 µg/mL). Autophagy is a form of programmed cell death, although it also promotes cell survival. In cultured astrocytes, LPS exposure induced excessive autophagy and apoptosis, which were significantly prevented by the pretreatment cells with gastrodin (10 μM). The protective effects of gastrodin via autophagy inhibition were verified by the decreased levels of LC3-II, P62, and Beclin-1, which are classical markers for autophagy. Furthermore, gastrodin protected astrocytes from apoptosis through Bcl-2 and Bax signaling pathway. The treatment of astrocytes with rapamycin (500 nM), wortmannin (100 nM), and LY294002 (10 μM), which are inhibitors of mTOR and PI3K, respectively, eliminated the known effects of gastrodin on the inhibited Beclin-1 expression. Furthermore, gastrodin blocked the down-regulation of glutamine synthetase induced by LPS exposure in astrocytes. Our results suggest that gastrodin can be used as a preventive agent for the excessive autophagy induced by LPS.
Collapse
Affiliation(s)
- Xin-shang Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhen Tian
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Nan Zhang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Jing Han
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Hong-liang Guo
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Ming-gao Zhao
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Shui-bing Liu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
59
|
Yang F, Wang D, Wu L, Li Y. Protective effects of triptolide on retinal ganglion cells in a rat model of chronic glaucoma. Drug Des Devel Ther 2015; 9:6095-107. [PMID: 26604697 PMCID: PMC4655911 DOI: 10.2147/dddt.s92022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
PURPOSE To study the effects of triptolide, a Chinese herb extract, on retinal ganglion cells (RGCs) in a rat model of chronic glaucoma. METHODS Eighty Wistar rats were randomly divided into triptolide group (n=40) and normal saline (NS) group (n=40). Angle photocoagulation was used to establish the model of glaucoma, with right eye as laser treated eye and left eye as control eye. Triptolide group received triptolide intraperitoneally daily, while NS group received NS. Intraocular pressure (IOP), anti-CD11b immunofluorescent stain in retina and optic nerve, RGCs count with Nissel stain and microglia count with anti-CD11b immunofluorescence stain in retina flat mounts, retinal tumor necrosis factor (TNF)-α mRNA detection by reverse transcription-polymerase chain reaction, and double immunofluorescent labeling with anti-TNF-α and anti-CD11b in retinal frozen section were performed. RESULTS Mean IOP of the laser treated eyes significantly increased 3 weeks after photocoagulation (P<0.05), with no statistical difference between the two groups (P>0.05). RGCs survival in the laser treated eyes was significantly improved in the triptolide group than the NS group (P<0.05). Microglia count in superficial retina of the laser treated eyes was significantly less in the triptolide group (30.40±4.90) than the NS group (35.06±7.59) (P<0.05). TNF-α mRNA expression in the retina of the laser treated eyes in the triptolide group decreased by 60% compared with that in the NS group (P<0.01). The double immunofluorescent labeling showed that TNF-α was mainly distributed around the microglia. CONCLUSION Triptolide improved RGCs survival in this rat model of chronic glaucoma, which did not depend on IOP decrease but might be exerted by inhibiting microglia activities and reducing TNF-α secretion.
Collapse
Affiliation(s)
- Fan Yang
- Ophthalmology Department, Peking University Third Hospital, Beijing, People’s Republic of China
| | - Dongmei Wang
- Ophthalmology Department, Peking University Third Hospital, Beijing, People’s Republic of China
| | - Lingling Wu
- Ophthalmology Department, Peking University Third Hospital, Beijing, People’s Republic of China
| | - Ying Li
- Ophthalmology Department, Peking University Third Hospital, Beijing, People’s Republic of China
| |
Collapse
|
60
|
Xu P, Xu Y, Hu B, Wang J, Pan R, Murugan M, Wu LJ, Tang Y. Extracellular ATP enhances radiation-induced brain injury through microglial activation and paracrine signaling via P2X7 receptor. Brain Behav Immun 2015; 50:87-100. [PMID: 26122280 DOI: 10.1016/j.bbi.2015.06.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/24/2015] [Accepted: 06/24/2015] [Indexed: 12/14/2022] Open
Abstract
Activation of purinergic receptors by extracellular ATP (eATP) released from injured cells has been implicated in the pathogenesis of many neuronal disorders. The P2X7 receptor (P2X7R), an ion-selective purinergic receptor, is associated with microglial activation and paracrine signaling. However, whether ATP and P2X7R are involved in radiation-induced brain injury (RBI) remains to be determined. Here, we found that the eATP level was elevated in the cerebrospinal fluid (CSF) of RBI patients and was associated with the clinical severity of the disorder. In our experimental model, radiation treatment increased the level of eATP in the supernatant of primary cultures of neurons and glial cells and in the CSF of irradiated mice. In addition, ATP administration activated microglia, induced the release of the inflammatory mediators such as cyclooxygenase-2, tumor necrosis factor α and interleukin 6, and promoted neuronal apoptosis. Furthermore, blockade of ATP-P2X7R interaction using P2X7 antagonist Brilliant Blue G or P2X7 knockdown suppressed radiation-induced microglial activation and proliferation in the hippocampus, and restored the spatial memory of irradiated mice. Finally, we found that the PI3K/AKT and nuclear factor κB mediated pathways were downstream of ATP-P2X7R signaling in RBI. Taken together, our results unveiled the critical role of ATP-P2X7R in brain damage in RBI, suggesting that inhibition of ATP-P2X7R axis might be a potential strategy for the treatment of patients with RBI.
Collapse
Affiliation(s)
- Pengfei Xu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yongteng Xu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Bin Hu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jue Wang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Rui Pan
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Madhuvika Murugan
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, United States
| | - Long-Jun Wu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, United States
| | - Yamei Tang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| |
Collapse
|
61
|
Mrvová N, Škandík M, Kuniaková M, Račková L. Modulation of BV-2 microglia functions by novel quercetin pivaloyl ester. Neurochem Int 2015; 90:246-54. [PMID: 26386394 DOI: 10.1016/j.neuint.2015.09.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 08/28/2015] [Accepted: 09/14/2015] [Indexed: 01/16/2023]
Abstract
Chronic inflammation in brain plays a critical role in major neurodegenerative diseases such as Alzheimer's, Parkinson's disease, stroke or multiple sclerosis. Microglia, resident macrophages and intristinc components of CNS, appear to be main effectors in this pathological process. Quercetin, a naturally occurring flavonoid, was proven to downregulate inflammatory genes in microglia. Synthetically modified quercetin, 3'-O-(3-chloropivaloyl) quercetin (CPQ), is assumed to possess better biological availability and enhanced antioxidant properties. In the present study, antineuroinflammatory capability of the novel compound CPQ was assessed in BV-2 microglial cells. Our data show that treatment with CPQ attenuated the production of the inflammatory mediators, nitric oxide (NO) and tumour necrosis factor-α (TNF-α), in LPS-stimulated microglia somewhat more efficiently than did quercetin (p > 0.05 for CPQ vs. quercetin-treated group). Also, protein level of inducible NO synthase (iNOS) in LPS-activated BV-2 microglia was to some extent more effectively supressed by CPQ than by unmodified flavonoid. In consistence with the extent of their effects on pro-inflammatory markers, CPQ and quercetin showed down-regulation of NFκB activation. This quercetin analogue caused also a decline in BV-2 microglia proliferation with interfering with cell cycle progression (p < 0.001 for CPQ vs. quercetin-treated group). However, CPQ did not remarkably affect cell viability. In addition, CPQ showed a minor better suppression of PMA-induced generation of superoxide than did quercetin. Neither CPQ nor quercetin influenced phagocytosis of BV-2 cells. These results point to the therapeutic potential of 3'-O-(3-chloropivaloyl)quercetin (CPQ) as a novel antiinflammatory drug in neurodegenerative diseases, mediating favourable modulation of pro-inflammatory functions of microglia.
Collapse
Affiliation(s)
- Nataša Mrvová
- Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava, Slovak Republic
| | - Martin Škandík
- Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava, Slovak Republic
| | - Marcela Kuniaková
- Faculty of Medicine Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovak Republic
| | - Lucia Račková
- Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava, Slovak Republic.
| |
Collapse
|
62
|
Wu W, Shao J, Lu H, Xu J, Zhu A, Fang W, Hui G. Guard of delinquency? A role of microglia in inflammatory neurodegenerative diseases of the CNS. Cell Biochem Biophys 2015; 70:1-8. [PMID: 24633457 DOI: 10.1007/s12013-014-9872-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Activation of microglia and inflammation-mediated neurotoxicity are believed to play an important role in the pathogenesis of several neurodegenerative disorders, including multiple sclerosis. Studies demonstrate complex functions of activated microglia that can lead to either beneficial or detrimental outcomes, depending on the form and the timing of activation. Combined with genetic and environmental factors, overactivation and dysregulation of microglia cause progressive neurotoxic consequences which involve a vicious cycle of neuron injury and unregulated neuroinflammation. Thus, modulation of microglial activation appears to be a promising new therapeutic target. While current therapies do attempt to block activation of microglia, they indiscriminately inhibit inflammation thus also curbing beneficial effects of inflammation and delaying recovery. Multiple signaling cascades, often cross-talking, are involved in every step of microglial activation. One of the key challenges is to understand the molecular mechanisms controlling cytokine expression and phagocytic activity, as well as cell-specific consequences of dysregulated cytokine expression. Further, a better understanding of how the integration of multiple cytokine signals influences the function or activity of individual microglia remains an important research objective to identify potential therapeutic targets for clinical intervention to promote repair.
Collapse
Affiliation(s)
- Weijiang Wu
- Department of Neurosurgery, Wuxi Third People's Hospital, Wuxi, Jiangsu, China
| | | | | | | | | | | | | |
Collapse
|
63
|
Xu Y, Hu W, Liu Y, Xu P, Li Z, Wu R, Shi X, Tang Y. P2Y6 Receptor-Mediated Microglial Phagocytosis in Radiation-Induced Brain Injury. Mol Neurobiol 2015; 53:3552-3564. [PMID: 26099306 PMCID: PMC4937101 DOI: 10.1007/s12035-015-9282-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 06/02/2015] [Indexed: 11/06/2022]
Abstract
Microglia are the resident immune cells and the professional phagocytic cells of the CNS, showing a multitude of cellular responses after activation. However, how microglial phagocytosis changes and whether it is involved in radiation-induced brain injury remain unknown. In the current study, we found that microglia were activated and microglial phagocytosis was increased by radiation exposure both in cultured microglia in vitro and in mice in vivo. Radiation increased the protein expression of the purinergic receptor P2Y6 receptor (P2Y6R) located on microglia. The selective P2Y6 receptor antagonist MRS2578 suppressed microglial phagocytosis after radiation exposure. Inhibition of microglial phagocytosis increased inhibitory factor Nogo-A and exacerbated radiation-induced neuronal apoptosis and demyelination. We also found that the levels of protein expression for phosphorylated Ras-related C3 botulinum toxin substrate 1 (Rac1) and myosin light chain kinase (MLCK) were elevated, indicating that radiation exposure activated Rac1 and MLCK. The Rac1 inhibitor NSC23766 suppressed expression of MLCK, indicating that the Rac1-MLCK pathway was involved in microglial phagocytosis. Taken together, these findings suggest that the P2Y6 receptor plays a critical role in mediating microglial phagocytosis in radiation-induced brain injury, which might be a potential strategy for therapeutic intervention to alleviate radiation-induced brain injury.
Collapse
Affiliation(s)
- Yongteng Xu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Number 107, Yan Jiang Xi Road, Guangzhou, Guangdong Province, 510120, China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Weihan Hu
- Department of Radiation Oncology, Cancer Center of Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yimin Liu
- Department of Radiation Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Pengfei Xu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Number 107, Yan Jiang Xi Road, Guangzhou, Guangdong Province, 510120, China
| | - Zichen Li
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Number 107, Yan Jiang Xi Road, Guangzhou, Guangdong Province, 510120, China
| | - Rong Wu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Number 107, Yan Jiang Xi Road, Guangzhou, Guangdong Province, 510120, China
| | - Xiaolei Shi
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Number 107, Yan Jiang Xi Road, Guangzhou, Guangdong Province, 510120, China
| | - Yamei Tang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Number 107, Yan Jiang Xi Road, Guangzhou, Guangdong Province, 510120, China. .,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-Sen University, Guangzhou, 510120, China.
| |
Collapse
|
64
|
Cobb CA, Cole MP. Oxidative and nitrative stress in neurodegeneration. Neurobiol Dis 2015; 84:4-21. [PMID: 26024962 DOI: 10.1016/j.nbd.2015.04.020] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 04/20/2015] [Accepted: 04/21/2015] [Indexed: 12/19/2022] Open
Abstract
Aerobes require oxygen for metabolism and normal free radical formation. As a result, maintaining the redox homeostasis is essential for brain cell survival due to their high metabolic energy requirement to sustain electrochemical gradients, neurotransmitter release, and membrane lipid stability. Further, brain antioxidant levels are limited compared to other organs and less able to compensate for reactive oxygen and nitrogen species (ROS/RNS) generation which contribute oxidative/nitrative stress (OS/NS). Antioxidant treatments such as vitamin E, minocycline, and resveratrol mediate neuroprotection by prolonging the incidence of or reversing OS and NS conditions. Redox imbalance occurs when the antioxidant capacity is overwhelmed, consequently leading to activation of alternate pathways that remain quiescent under normal conditions. If OS/NS fails to lead to adaptation, tissue damage and injury ensue, resulting in cell death and/or disease. The progression of OS/NS-mediated neurodegeneration along with contributions from microglial activation, dopamine metabolism, and diabetes comprise a detailed interconnected pathway. This review proposes a significant role for OS/NS and more specifically, lipid peroxidation (LPO) and other lipid modifications, by triggering microglial activation to elicit a neuroinflammatory state potentiated by diabetes or abnormal dopamine metabolism. Subsequently, sustained stress in the neuroinflammatory state overwhelms cellular defenses and prompts neurotoxicity resulting in the onset or amplification of brain damage.
Collapse
Affiliation(s)
- Catherine A Cobb
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Marsha P Cole
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
65
|
Kiyofuji K, Kurauchi Y, Hisatsune A, Seki T, Mishima S, Katsuki H. A natural compound macelignan protects midbrain dopaminergic neurons from inflammatory degeneration via microglial arginase-1 expression. Eur J Pharmacol 2015; 760:129-35. [PMID: 25917324 DOI: 10.1016/j.ejphar.2015.04.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 04/05/2015] [Accepted: 04/08/2015] [Indexed: 11/16/2022]
Abstract
Inflammatory events involving activated microglia have been recognized to play an important role in pathogenesis of various neurodegenerative disorders including Parkinson disease. Compounds regulating activation profiles of microglia may provide therapeutic benefits for Parkinson disease characterized by degeneration of midbrain dopaminergic neurons. Here we examined the effect of macelignan, a compound derived from nutmeg, on inflammatory degeneration of midbrain dopaminergic neurons. Treatment of midbrain slice cultures with interferon (IFN)-γ and lipopolysaccharide (LPS) caused a substantial decrease in viable dopaminergic neurons and an increase in nitric oxide (NO) production indicated by extracellular nitrite accumulation. Application of macelignan (10 μM) concomitantly with LPS prevented the loss of dopaminergic neurons. Besides nitrite accumulation, up-regulation of inducible NO synthase protein expression in response to IFN-γ/LPS was confirmed by Western blotting, and immunohistochemical examination revealed expression of inducible NO synthase in a subpopulation of Iba-1-poitive microglia. However, macelignan did not affect any of these NO-related parameters. On the other hand, macelignan promoted expression of arginase-1 in midbrain slice cultures irrespective of the presence or the absence of IFN-γ/LPS treatment. Arginase-1 expression was mainly localized in a subpopulation of Iba-1-positive cells. Importantly, the neuroprotective effect of macelignan was antagonized by N(ω)-hydroxy-nor-L-arginine, a specific arginase inhibitor. The neuroprotective effect of macelignan was also prevented by GW9662, a peroxisome proliferator-activated receptor γ (PPARγ) antagonist. Overall, these results indicate that macelignan, a compound with PPARγ agonist activity, can provide neuroprotective effect on dopaminergic neurons in an arginase-dependent but NO-independent manner.
Collapse
Affiliation(s)
- Kana Kiyofuji
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuki Kurauchi
- Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto, Japan; Program for Leading Graduate Schools "HIGO (Health Life Science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, Kumamoto, Japan
| | - Akinori Hisatsune
- Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto, Japan; Program for Leading Graduate Schools "HIGO (Health Life Science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, Kumamoto, Japan
| | - Takahiro Seki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Satoshi Mishima
- Department of Food and Nutritional Sciences, Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | - Hiroshi Katsuki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
66
|
Kim BW, Koppula S, Park SY, Kim YS, Park PJ, Lim JH, Kim IS, Choi DK. Attenuation of neuroinflammatory responses and behavioral deficits by Ligusticum officinale (Makino) Kitag in stimulated microglia and MPTP-induced mouse model of Parkinson's disease. JOURNAL OF ETHNOPHARMACOLOGY 2015; 164:388-397. [PMID: 25449453 DOI: 10.1016/j.jep.2014.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/23/2014] [Accepted: 11/03/2014] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ligusticum officinale (Makino) Kitag (L. officinale) is one of the important traditional herbs used in traditional Oriental medicine for the treatment of various disorders including pain and inflammation. However, there is limited scientific basis for its activity and mechanism in brain inflammation. AIM OF THE STUDY This study aimed to evaluate the effects of L. officinale on microglia-mediated neuroinflammation and behavioral impairments using in vitro cellular and in vivo mouse model of PD, as well as investigate the molecular mechanisms involved including the finger printing analysis of its ethanol extract. MATERIALS AND METHODS Lipopolysaccharide (LPS) was used to stimulate BV-2 microglial cells. The changes in neuroinflammatory expressional levels were measured by Western blotting and immunofluorescence techniques. 1-methyl-4 phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-intoxicated mice model of PD was developed to evaluate the behavioral impairments and the brain tissues were used for immunohistochemical studies. High performance liquid chromatography (HPLC) technique was performed for finger printing analysis of L. officinale extract used in the study. RESULTS L. officinale significantly attenuated the LPS-stimulated increase in inflammatory mediators in BV-2 cells. L. officinale also inhibited the LPS-induced activation of nuclear factor-kappa beta by blocking the degradation of IκB-α and suppressing the increase in p38-mitogen-activated protein kinase phosphorylation in BV-2 cells. Furthermore, L. officinale exhibited significant antioxidant properties by inhibiting the 1-diphenyl-2-picrylhydrazyl radicals. An in vivo evaluation in MPTP (20mg/kg, four times, 1 day, i.p.) intoxicated mice resulted in brain microglial activation and significant behavioral deficits. Prophylactic treatment with L. officinale prevented microglial activation and attenuated PD-like behavioral changes as assessed by the pole test. HPLC finger printing analysis revealed that L. officinale extract contained ferulic acid (FA) as one of the major constituents compared with reference standard. FA also inhibited the LPS-stimulated excessive release of NO and suppressed the increased the expressional levels of proinflammatory mediators in BV-2 microglia. CONCLUSIONS The findings observed in this study indicated that L. officinale extract significantly attenuated the neuroinflammatory processes in stimulated microglia and restored the behavioral impairments in a mouse model of PD providing a scientific basis for its traditional claims.
Collapse
Affiliation(s)
- Byung-Wook Kim
- Department of Biotechnology, Konkuk University, Chungju, Korea
| | | | - Shin-Young Park
- Department of Biotechnology, Konkuk University, Chungju, Korea
| | - Yon-Suk Kim
- Department of Biotechnology, Konkuk University, Chungju, Korea
| | - Pyo-Jam Park
- Department of Biotechnology, Konkuk University, Chungju, Korea
| | - Ji-Hong Lim
- Department of Biomedical chemistry, Konkuk University, Chungju, Korea
| | - In-Su Kim
- Department of Biotechnology, Konkuk University, Chungju, Korea
| | - Dong-Kug Choi
- Department of Biotechnology, Konkuk University, Chungju, Korea.
| |
Collapse
|
67
|
Yang SB, Lee SM, Park JH, Lee TH, Baek NI, Park HJ, Lee H, Kim J. Cynandione A from Cynanchum wilfordii attenuates the production of inflammatory mediators in LPS-induced BV-2 microglial cells via NF-κB inactivation. Biol Pharm Bull 2015; 37:1390-6. [PMID: 25087960 DOI: 10.1248/bpb.b13-00939] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cynanchum wilfordii is one of most widely used medicinal plants in Oriental medicine for the treatment of various conditions. In the present study, we isolated cynandione A (CA) from an extract of Cynanchum wilfordii roots (CWE) and investigated the effects of CA on the expression of inducible nitric oxide synthase (iNOS) and pro-inflammatory cytokines in lipopolysaccharide (LPS)-induced BV-2 microglial cells. CWE and CA significantly decreased LPS-induced nitric oxide production and the expression of iNOS in a concentration-dependent manner, while they (CWE up to 500 µg/mL and CA up to 80 µM) did not exhibit cytotoxic activity. Results from reverse transcription-polymerase chain reaction (RT-PCR) analysis and enzyme-linked immunosorbent assay (ELISA) showed that CA significantly attenuated the expression of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and IL-1β in LPS-stimulated BV-2 cells. Furthermore, CA inhibited the phosphorylation of inhibitor kappa B-alpha (IκB-α) and translocation of nuclear factor-kappa B (NF-κB) to the BV-2 cell nucleus, indicating that CWE and CA may have effective anti-inflammatory activities via NF-κB inactivation in stimulated microglial cells.
Collapse
Affiliation(s)
- Seung Bo Yang
- Acupuncture and Meridian Science Research Center (AMSRC) and College of Korean Medicine, Kyung Hee University
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Castro-Torres RD, Chaparro-Huerta V, Flores-Soto ME, Jave-Suárez L, Camins A, Armendáriz-Borunda J, Beas-Zárate C, Mena-Munguía S. Pirfenidone Attenuates Microglial Reactivity and Reduces Inducible Nitric Oxide Synthase mRNA Expression After Kainic Acid-Mediated Excitotoxicity in Pubescent Rat Hippocampus. J Mol Neurosci 2015; 56:245-54. [DOI: 10.1007/s12031-015-0509-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 02/01/2015] [Indexed: 12/20/2022]
|
69
|
Cianciulli A, Dragone T, Calvello R, Porro C, Trotta T, Lofrumento DD, Panaro MA. IL-10 plays a pivotal role in anti-inflammatory effects of resveratrol in activated microglia cells. Int Immunopharmacol 2015; 24:369-376. [DOI: 10.1016/j.intimp.2014.12.035] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/19/2014] [Accepted: 12/28/2014] [Indexed: 01/31/2023]
|
70
|
Cucurbitacin E has neuroprotective properties and autophagic modulating activities on dopaminergic neurons. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:425496. [PMID: 25574337 PMCID: PMC4276330 DOI: 10.1155/2014/425496] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 11/14/2014] [Accepted: 11/16/2014] [Indexed: 12/11/2022]
Abstract
Natural molecules are under intensive study for their potential as preventive and/or adjuvant therapies for neurodegenerative disorders such as Parkinson's disease (PD). We evaluated the neuroprotective potential of cucurbitacin E (CuE), a tetracyclic triterpenoid phytosterol extracted from the Ecballium elaterium (Cucurbitaceae), using a known cellular model of PD, NGF-differentiated PC12. In our postmitotic experimental paradigm, neuronal cells were treated with the parkinsonian toxin 1-methyl-4-phenylpyridinium (MPP+) to provoke significant cellular damage and apoptosis or with the potent N,N-diethyldithiocarbamate (DDC) to induce superoxide (O2•−) production, and CuE was administered prior to and during the neurotoxic treatment. We measured cellular death and reactive oxygen species to evaluate the antioxidant and antiapoptotic properties of CuE. In addition, we analyzed cellular macroautophagy, a bulk degradation process involving the lysosomal pathway. CuE showed neuroprotective effects on MPP+-induced cell death. However, CuE failed to rescue neuronal cells from oxidative stress induced by MPP+ or DDC. Microscopy and western blot data show an intriguing involvement of CuE in maintaining lysosomal distribution and decreasing autophagy flux. Altogether, these data indicate that CuE decreases neuronal death and autophagic flux in a postmitotic cellular model of PD.
Collapse
|
71
|
Evaluating the anti-neuroinflammatory capacity of raw and steamed garlic as well as five organosulfur compounds. Molecules 2014; 19:17697-714. [PMID: 25365295 PMCID: PMC6271092 DOI: 10.3390/molecules191117697] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/17/2014] [Accepted: 10/20/2014] [Indexed: 12/16/2022] Open
Abstract
The anti-neuroinflammatory capacities of raw and steamed garlic extracts as well as five organosulfur compounds (OSCs) were examined in lipopolysaccharide (LPS)-stimulated BV2 microglia. According to those results, steaming pretreatment blocked the formation of alliinase-catalyzed OSCs such as allicin and diallyl trisulfide (DATS) in crushed garlic. Raw garlic, but not steamed garlic, dose-dependently attenuated the production of LPS-induced nitric oxide (NO), interleukin-1β (IL-1β), tumor necrosis factor (TNF)-α, and monocyte chemoattractant protein-1 (MCP-1). DATS and diallyl disulfide at 200 and 400 μM, respectively, displayed significant anti-neuroinflammatory activity. Meanwhile, even at 1 mM, diallyl sulfide, S-allyl cysteine and alliin did not display such activity. Inhibition of nuclear factor-κB activation was the mechanism underlying this protective effect of raw garlic and DATS. Analysis results indicated that the anti-neuroinflammatory capacity of raw garlic is due to the alliin-derived OSCs. Importantly, DATS is a highly promising therapeutic candidate for treating inflammation-related neurodegenerative diseases.
Collapse
|
72
|
Azam F, Amer AM, Abulifa AR, Elzwawi MM. Ginger components as new leads for the design and development of novel multi-targeted anti-Alzheimer's drugs: a computational investigation. Drug Des Devel Ther 2014; 8:2045-59. [PMID: 25364231 PMCID: PMC4211852 DOI: 10.2147/dddt.s67778] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Ginger (Zingiber officinale), despite being a common dietary adjunct that contributes to the taste and flavor of foods, is well known to contain a number of potentially bioactive phytochemicals having valuable medicinal properties. Although recent studies have emphasized their benefits in Alzheimer's disease, limited information is available on the possible mechanism by which it renders anti-Alzheimer activity. Therefore, the present study seeks to employ molecular docking studies to investigate the binding interactions between active ginger components and various anti-Alzheimer drug targets. Lamarckian genetic algorithm methodology was employed for docking of 12 ligands with 13 different target proteins using AutoDock 4.2 program. Docking protocol was validated by re-docking of all native co-crystallized ligands into their original binding cavities exhibiting a strong correlation coefficient value (r (2)=0.931) between experimentally reported and docking predicted activities. This value suggests that the approach could be a promising computational tool to aid optimization of lead compounds obtained from ginger. Analysis of binding energy, predicted inhibition constant, and hydrophobic/hydrophilic interactions of ligands with target receptors revealed acetylcholinesterase as most promising, while c-Jun N-terminal kinase was recognized as the least favorable anti-Alzheimer's drug target. Common structural requirements include hydrogen bond donor/acceptor area, hydrophobic domain, carbon spacer, and distal hydrophobic domain flanked by hydrogen bond donor/acceptor moieties. In addition, drug-likeness score and molecular properties responsible for a good pharmacokinetic profile were calculated by Osiris property explorer and Molinspiration online toolkit, respectively. None of the compounds violated Lipinski's rule of five, making them potentially promising drug candidates for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Faizul Azam
- Faculty of Pharmacy, Misurata University, Misurata, Libya
- Department of Pharmaceutical Chemistry, Nims Institute of Pharmacy, Nims University, Jaipur, Rajasthan, India
| | | | | | | |
Collapse
|
73
|
Xiao L, Saiki C, Ide R. Stem cell therapy for central nerve system injuries: glial cells hold the key. Neural Regen Res 2014; 9:1253-60. [PMID: 25221575 PMCID: PMC4160849 DOI: 10.4103/1673-5374.137570] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2014] [Indexed: 12/13/2022] Open
Abstract
Mammalian adult central nerve system (CNS) injuries are devastating because of the intrinsic difficulties for effective neuronal regeneration. The greatest problem to be overcome for CNS recovery is the poor regeneration of neurons and myelin-forming cells, oligodendrocytes. Endogenous neural progenitors and transplanted exogenous neuronal stem cells can be the source for neuronal regeneration. However, because of the harsh local microenvironment, they usually have very low efficacy for functional neural regeneration which cannot compensate for the loss of neurons and oligodendrocytes. Glial cells (including astrocytes, microglia, oligodendrocytes and NG2 glia) are the majority of cells in CNS that provide support and protection for neurons. Inside the local microenvironment, glial cells largely influence local and transplanted neural stem cells survival and fates. This review critically analyzes current finding of the roles of glial cells in CNS regeneration, and highlights strategies for regulating glial cells’ behavior to create a permissive microenvironment for neuronal stem cells.
Collapse
Affiliation(s)
- Li Xiao
- Pharmacology Department, The Nippon Dental University, School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Chikako Saiki
- Physiology Department, The Nippon Dental University, School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Ryoji Ide
- Physiology Department, The Nippon Dental University, School of Life Dentistry at Tokyo, Tokyo, Japan
| |
Collapse
|
74
|
Bioactive cembrane derivatives from the Indian Ocean soft coral, Sinularia kavarattiensis. Mar Drugs 2014; 12:4045-68. [PMID: 25056629 PMCID: PMC4113814 DOI: 10.3390/md12074045] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/05/2014] [Accepted: 06/17/2014] [Indexed: 12/21/2022] Open
Abstract
Marine organisms and their metabolites represent a unique source of potential pharmaceutical substances. In this study, we examined marine-derived substances for their bioactive properties in a cell-based Chikungunya virus (CHIKV) replicon model and for in vitro anti-inflammatory activity. In the screening of a marine sample library, crude extracts from the Indian soft coral, Sinularia kavarattiensis, showed promising activity against the CHIKV replicon. Bioassay-guided chemical fractionation of S. kavarattiensis resulted in the isolation of six known norcembranoids (1-6) and one new compound, named kavaranolide (7). The structures were elucidated on the basis of NMR and MS spectroscopic data. Compounds 1-3 and 5-7 were evaluated for their replicon-inhibiting potential in the CHIKV model by using a luminescence-based detection technique and live cell imaging. Compounds 1 and 2 showed moderate inhibition of the CHIKV replicon, but imaging studies also revealed cytotoxic properties. Moreover, the effects of the isolated compounds on primary microglial cells, an experimental model for neuroinflammation, were evaluated. Compound 2 was shown to modulate the immune response in microglial cells and to possess potential anti-inflammatory properties by dose-dependently reducing the release of pro- and anti-inflammatory cytokines.
Collapse
|
75
|
Rose KM, Parmar MS, Cavanaugh JE. Dietary supplementation with resveratrol protects against striatal dopaminergic deficits produced by in utero LPS exposure. Brain Res 2014; 1573:37-43. [DOI: 10.1016/j.brainres.2014.05.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 05/14/2014] [Accepted: 05/16/2014] [Indexed: 01/08/2023]
|
76
|
Hesperidin, nobiletin, and tangeretin are collectively responsible for the anti-neuroinflammatory capacity of tangerine peel (Citri reticulatae pericarpium). Food Chem Toxicol 2014; 71:176-82. [PMID: 24955543 DOI: 10.1016/j.fct.2014.06.014] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 06/09/2014] [Accepted: 06/12/2014] [Indexed: 12/22/2022]
Abstract
Inhibiting microglial activation-mediated neuroinflammation has become a convincing target for the development of functional foods to treat neurodegenerative diseases. Tangerine peel (Citri reticulatae pericarpium) has potent anti-inflammatory capacity; however, its anti-neuroinflammatory capacity and the corresponding active compounds remain unclear. To this end, the composition of a tangerine peel ethanolic extract was analysed by LC-MS, and the anti-neuroinflammatory ability was evaluated using a lipopolysaccharide (LPS)-activated BV2 microglia culture system. Hesperidin is the most predominant flavonoid in tangerine peel, followed by tangeretin and nobiletin. Among the eight tested flavanone glycosides and polymethoxy flavones, only nobiletin displayed a capacity of>50% to inhibit LPS-induced proinflammatory NO, TNF-α, IL-1β and IL-6 secretion at a concentration of 100 μM. At 2 mg/ml, tangerine peel extract attenuated LPS-induced NO, TNF-α, IL-1β and IL-6 secretion by 90.6%, 80.2%, 66.7%, and 86.8%, respectively. Hesperidin, nobiletin, and tangeretin individually (at concentrations of 135, 40, and 60 μM, respectively) in 2 mg/ml tangerine peel extract were only mildly inhibitory, whereas in combination, they significantly inhibited LPS-induced proinflammatory cytokine expression at levels equal to that of 2 mg/ml tangerine peel extract. Overall, tangerine peel possesses potent anti-neuroinflammatory capacity, which is attributed to the collective effect of hesperidin, nobiletin, and tangeretin.
Collapse
|
77
|
Younger J, Parkitny L, McLain D. The use of low-dose naltrexone (LDN) as a novel anti-inflammatory treatment for chronic pain. Clin Rheumatol 2014; 33:451-9. [PMID: 24526250 PMCID: PMC3962576 DOI: 10.1007/s10067-014-2517-2] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 01/22/2014] [Accepted: 01/26/2014] [Indexed: 02/08/2023]
Abstract
Low-dose naltrexone (LDN) has been demonstrated to reduce symptom severity in conditions such as fibromyalgia, Crohn's disease, multiple sclerosis, and complex regional pain syndrome. We review the evidence that LDN may operate as a novel anti-inflammatory agent in the central nervous system, via action on microglial cells. These effects may be unique to low dosages of naltrexone and appear to be entirely independent from naltrexone's better-known activity on opioid receptors. As a daily oral therapy, LDN is inexpensive and well-tolerated. Despite initial promise of efficacy, the use of LDN for chronic disorders is still highly experimental. Published trials have low sample sizes, and few replications have been performed. We cover the typical usage of LDN in clinical trials, caveats to using the medication, and recommendations for future research and clinical work. LDN may represent one of the first glial cell modulators to be used for the management of chronic pain disorders.
Collapse
|
78
|
Qiu F, Liu TT, Qu ZW, Qiu CY, Yang Z, Hu WP. Gastrodin inhibits the activity of acid-sensing ion channels in rat primary sensory neurons. Eur J Pharmacol 2014; 731:50-7. [PMID: 24642360 DOI: 10.1016/j.ejphar.2014.02.044] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 01/23/2014] [Accepted: 02/23/2014] [Indexed: 01/24/2023]
Abstract
Acid-sensing ion channels (ASICs), a family of proton-gated cation channels, are believed to mediate pain caused by extracellular acidification. Gastrodin is a main bioactive constituent of the traditional herbal Gastrodia elata Blume, which has been widely used in Oriental countries for centuries. As an analgesic, gastrodin has been used clinically to treat pain such as migraine and headache. However, the mechanisms underlying analgesic action of gastrodin are still poorly understood. Here, we have found that gastrodin inhibited the activity of native ASICs in rat dorsal root ganglion (DRG) neurons. Gastrodin dose-dependently inhibited proton-gated currents mediated by ASICs. Gastrodin shifted the proton concentration-response curve downwards, with a decrease of 36.92 ± 6.23% in the maximum current response but with no significant change in the pH0.5 value. Moreover, gastrodin altered acid-evoked membrane excitability of rat DRG neurons and caused a significant decrease in the amplitude of the depolarization and the number of action potentials induced by acid stimuli. Finally, peripheral applied gastrodin relieved pain evoked by intraplantar injection of acetic acid in rats. Our results indicate that gastrodin can inhibit the activity of ASICs in the primary sensory neurons, which provided a novel mechanism underlying analgesic action of gastrodin.
Collapse
Affiliation(s)
- Fang Qiu
- Department of Pharmacology, Hubei University of Science and Technology, 88 Xianning Road, Xianning 437100, Hubei, PR China; College of Life Sciences, Hubei University, Wuhan 430062, Hubei, PR China
| | - Ting-Ting Liu
- Department of Pharmacology, Hubei University of Science and Technology, 88 Xianning Road, Xianning 437100, Hubei, PR China
| | - Zu-Wei Qu
- Department of Pharmacology, Hubei University of Science and Technology, 88 Xianning Road, Xianning 437100, Hubei, PR China
| | - Chun-Yu Qiu
- Department of Pharmacology, Hubei University of Science and Technology, 88 Xianning Road, Xianning 437100, Hubei, PR China
| | - Zhifan Yang
- College of Life Sciences, Hubei University, Wuhan 430062, Hubei, PR China
| | - Wang-Ping Hu
- Department of Pharmacology, Hubei University of Science and Technology, 88 Xianning Road, Xianning 437100, Hubei, PR China.
| |
Collapse
|
79
|
Pseudoginsenoside-F11 (PF11) exerts anti-neuroinflammatory effects on LPS-activated microglial cells by inhibiting TLR4-mediated TAK1/IKK/NF-κB, MAPKs and Akt signaling pathways. Neuropharmacology 2014; 79:642-56. [PMID: 24467851 DOI: 10.1016/j.neuropharm.2014.01.022] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 01/10/2014] [Accepted: 01/13/2014] [Indexed: 02/07/2023]
Abstract
Pseudoginsenoside-F11 (PF11), an ocotillol-type ginsenoside, has been shown to possess significant neuroprotective activity. Since microglia-mediated inflammation is critical for induction of neurodegeneration, this study was designed to investigate the effect of PF11 on activated microglia. PF11 significantly suppressed the release of ROS and proinflammatory mediators induced by LPS in a microglial cell line N9 including NO, PGE2, IL-1β, IL-6 and TNF-α. Moreover, PF11 inhibited interaction and expression of TLR4 and MyD88 in LPS-activated N9 cells, resulting in an inhibition of the TAK1/IKK/NF-κB signaling pathway. PF11 also inhibited the phosphorylation of Akt and MAPKs induced by LPS in N9 cells. Importantly, PF11 significantly alleviated the death of SH-SY5Y neuroblastoma cells and primary cortical neurons induced by the conditioned-medium from activated microglia. At last, the effect of PF11 on neuroinflammation was confirmed in vivo: PF11 mitigated the microglial activation and proinflammatory factors expression obviously in both cortex and hippocampus in mice injected intrahippocampally with LPS. These findings indicate that PF11 exerts anti-neuroinflammatory effects on LPS-activated microglial cells by inhibiting TLR4-mediated TAK1/IKK/NF-κB, MAPKs and Akt signaling pathways, suggesting its therapeutic implication for neurodegenerative disease associated with neuroinflammation.
Collapse
|
80
|
Abstract
Resveratrol is a polyphenol with various properties. Oncological studies have shown an excellent anti-carcinogenic effect. Due to many overlaps between tumor-mediating signaling pathways and those which mediate neovascularization and proliferation in retinal diseases, this review intends to focus on studies about the application of resveratrol in diseases of the eye fundus in vitro and in vivo. Resveratrol has been well investigated in cell culture studies and animal models. Ophthalmological in vitro and in vivo investigations have shown a large variety of possible effects without toxic side effects and antiproliferative and immune modulatory effects in particular were observed. There is general consensus that the target protein of resveratrol is NF-κB. Clinical studies are needed to confirm these effects observed in cell culture and animal models. The exact mechanism of resveratrol remains unknown and seems to vary between cell types, tissues and the pathophysiological environment.
Collapse
|
81
|
Kaengkan P, Baek SE, Kim JY, Kam KY, Do BR, Lee ES, Kang SG. Administration of mesenchymal stem cells and ziprasidone enhanced amelioration of ischemic brain damage in rats. Mol Cells 2013; 36:534-41. [PMID: 24292945 PMCID: PMC3887965 DOI: 10.1007/s10059-013-0235-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 10/25/2013] [Accepted: 11/04/2013] [Indexed: 10/26/2022] Open
Abstract
Ziprasidone is a benzisothiazolyl piperazine derivative that was developed from the chemically related antipsychotic drug tiospirone, and it improves neurological functions of the ischemic brain and is effective in treatment of schizophrenia. Mesenchymal stem cells (MSCs) are considered as a leading candidate for neurological regenerative therapy because of their neural differentiation properties in damaged brain. We investigated whether the transplantation of neural progenitor cells (NPCs) derived from adipose mesenchymal stem cells combined with ziprasidone enhances neuroprotective effects in an animal model of focal cerebral ischemia. In combination therapy groups, significant reduction of infarct volume and improvement of neurological functions were observed at 3 days after middle cerebral artery occlusion (MCAO) compared with monotherapy. Co-administration of ziprasidone and NPCs enhanced the anti-apoptotic effect and reduced the number of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive apoptotic cells compared with the NPCs alone group at 7 days after MCAO. Ziprasidone or the combination of ziprasidone and NPCs induced the expression of endogenous neurotrophic factor gene brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), and glial cell-derived neurotrophic factor (GDNF). The immunohistochemical investigation revealed that the ziprasidone and NPCs attenuated the increased intensity of microglial marker (Iba-1) in the infarcted cortical area. Moreover, the number of transplanted NPCs on day 7 with combination therapy was significantly higher than with NPCs alone. These effects might be responsible for improved functional behavior and increased survival of NPCs. Our finding indicates that combination therapy of ziprasidone and NPCs enhances neuroprotection against ischemic brain injury.
Collapse
Affiliation(s)
| | | | | | - Kyung-Yoon Kam
- Department of Occupational Therapy and UHRC, Inje University, Gimhae 621-749,
Korea
| | - Byung-Rok Do
- Bioengineering Institute, Hurim Biocell Inc., Seoul 153-803,
Korea
| | - Eun Shin Lee
- Department of Rehabilitation Medicine Gyeongsang National University, Jinju 660-751,
Korea
| | | |
Collapse
|
82
|
Ho SC, Chang KS, Lin CC. Anti-neuroinflammatory capacity of fresh ginger is attributed mainly to 10-gingerol. Food Chem 2013; 141:3183-91. [PMID: 23871076 DOI: 10.1016/j.foodchem.2013.06.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 04/22/2013] [Accepted: 06/03/2013] [Indexed: 12/13/2022]
Abstract
Despite the anti-neuroinflammatory capacity of ginger, the corresponding active constituents are unclear. This study analyzed the composition of fresh ginger ethanolic extract by using LC-MS. Inhibitory activities of fresh ginger extract and seven gingerol-related compounds on the neuro-inflammation were also evaluated by using a lipopolysaccharide (LPS)-activated BV2 microglia culture model. Except for zingerone and 6-gingerol, other gingerols and shogaols at a concentration of 20 μM inhibited the production of nitric oxide, IL-1β, IL-6 and TNF-α as well as their mRNA levels in LPS-activated BV2 microglia. Blocking NF-κB activation was the underlying mechanism responsible for inhibiting the proinflammatory gene expression. Increasing the alkyl chain length enhanced the anti-neuroinflammatory capacity of gingerols yet, conversely, attenuated those of shogaols. 6-Gingerol was the most abundant compound in the fresh ginger extract, followed by 10-gingerol. Furthermore, fresh ginger extract exhibited a significant anti-neuroinflammatory capacity, which was largely owing to 10-gingerol, but not 6-gingerol.
Collapse
Affiliation(s)
- Su-Chen Ho
- Department of Food Science, Yuanpei University, Hsinchu, Taiwan.
| | | | | |
Collapse
|
83
|
Thomas AG, O'Driscoll CM, Bressler J, Kaufmann W, Rojas CJ, Slusher BS. Small molecule glutaminase inhibitors block glutamate release from stimulated microglia. Biochem Biophys Res Commun 2013; 443:32-6. [PMID: 24269238 DOI: 10.1016/j.bbrc.2013.11.043] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 11/09/2013] [Indexed: 10/26/2022]
Abstract
Glutaminase plays a critical role in the generation of glutamate, a key excitatory neurotransmitter in the CNS. Excess glutamate release from activated macrophages and microglia correlates with upregulated glutaminase suggesting a pathogenic role for glutaminase. Both glutaminase siRNA and small molecule inhibitors have been shown to decrease excess glutamate and provide neuroprotection in multiple models of disease, including HIV-associated dementia (HAD), multiple sclerosis and ischemia. Consequently, inhibition of glutaminase could be of interest for treatment of these diseases. Bis-2-(5-phenylacetimido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES) and 6-diazo-5-oxo-l-norleucine (DON), two most commonly used glutaminase inhibitors, are either poorly soluble or non-specific. Recently, several new BPTES analogs with improved physicochemical properties were reported. To evaluate these new inhibitors, we established a cell-based microglial activation assay measuring glutamate release. Microglia-mediated glutamate levels were significantly augmented by tumor necrosis factor (TNF)-α, phorbol 12-myristate 13-acetate (PMA) and Toll-like receptor (TLR) ligands coincident with increased glutaminase activity. While several potent glutaminase inhibitors abrogated the increase in glutamate, a structurally related analog devoid of glutaminase activity was unable to block the increase. In the absence of glutamine, glutamate levels were significantly attenuated. These data suggest that the in vitro microglia assay may be a useful tool in developing glutaminase inhibitors of therapeutic interest.
Collapse
Affiliation(s)
- Ajit G Thomas
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Cliona M O'Driscoll
- Kennedy Krieger Institute, Johns Hopkins Medical Institutions, Baltimore, MD 21205, United States
| | - Joseph Bressler
- Kennedy Krieger Institute, Johns Hopkins Medical Institutions, Baltimore, MD 21205, United States
| | - Walter Kaufmann
- Kennedy Krieger Institute, Johns Hopkins Medical Institutions, Baltimore, MD 21205, United States; Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Camilo J Rojas
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Barbara S Slusher
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States; Department of Neurology and Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States.
| |
Collapse
|
84
|
Peng L, Xu L, Ouyang W. Role of peripheral inflammatory markers in postoperative cognitive dysfunction (POCD): a meta-analysis. PLoS One 2013; 8:e79624. [PMID: 24236147 PMCID: PMC3827367 DOI: 10.1371/journal.pone.0079624] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 10/03/2013] [Indexed: 12/23/2022] Open
Abstract
Background Postoperative cognitive dysfunction (POCD) is common following cardiac and non-cardiac surgery, but the pathogenic mechanisms remain unknown. Many studies suggest that an inflammatory response is a key contributor to POCD. The current meta-analysis shows that the levels of peripheral inflammatory markers are associated with POCD. Methods An online search was performed to identify peer-reviewed studies without language restriction that measured peripheral inflammatory markers of patients with and without POCD, using PubMed, ScienceDirect, SinoMed and the National Knowledge Infrastructure database. Extracted data were analyzed with STATA (version 12).The standardized mean difference (SMD) and the 95% confidence interval (95%CI) were calculated for each outcome using a random effect model. Tests of heterogeneity assessment of bias, and meta-regression were performed in the meta-analysis. Results A total of 13 studies that measured the concentrations of peripheral inflammatory markers were included. The current meta-analysis found significantly higher concentrations of S-100β(SMD[95%CI]) (1.377 [0.423, 2.331], p-value < 0.001, N [POCD/non-POCD] =178/391, 7 studies), and interleukin(IL)-6 (SMD[95%CI]) (1.614 [0.603,2.624], p-value < 0.001, N[POCD/non-POCD] = 91/99, 5 studies), but not of neuron specific enolase, interleukin-1β, or tumor necrosis factor-α , in POCD compared with patients without POCD. In meta-regression analyses, a significant positive association was found between the SMD and the preoperative interleukin-6 peripheral blood concentration in patients with POCD (Coef.= 0.0587, p-value=0.038, 5 studies). Conclusions This study shows that POCD is indeed correlated with the concentrations of peripheral inflammatory markers, particularly interleukin-6 and S-100β.
Collapse
Affiliation(s)
- Linying Peng
- Department of Anesthesiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Liwei Xu
- Department of Gastrointestinal Surgery, The First Xiangya Hospital of Central South University, Changsha, China
| | - Wen Ouyang
- Department of Anesthesiology, The Third Xiangya Hospital of Central South University, Changsha, China
- * E-mail:
| |
Collapse
|
85
|
Inhibition of mitochondrial fission attenuates Aβ-induced microglia apoptosis. Neuroscience 2013; 256:36-42. [PMID: 24144623 DOI: 10.1016/j.neuroscience.2013.10.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/15/2013] [Accepted: 10/03/2013] [Indexed: 01/08/2023]
Abstract
Mitochondrial division inhibitor 1 (mdivi-1), a selective inhibitor of mitochondrial fission protein dynamin-related protein 1 (Drp1), has been reported to display neuroprotective properties in different animal models. In the present study, we investigated the protective effect of mdivi-1 on β-amyloid protein (Aβ)-induced cytotoxicity and its potential mechanisms in BV-2 and primary microglial cells. We found that mitochondrial fission was increased in Aβ treatment and inhibition of mitochondrial fission by mdivi-1 significantly reduced Aβ-induced expression of CD11b (a marker of microglial activation), viability loss and apoptotic rate increase in BV-2 and primary microglial cells. Moreover, we also found that mdivi-1 treatment markedly reversed mitochondrial membrane potential loss, cytochrome c (CytC) release and caspase-3 activation. Altogether, our data suggested that mdivi-1 exerts neuroprotective effects against Aβ-induced microglial apoptosis, and the underlying mechanism may be through inhibiting mitochondrial membrane potential loss, CytC release and suppression of the mitochondrial apoptosis pathway.
Collapse
|
86
|
Figuera-Losada M, Rojas C, Slusher BS. Inhibition of microglia activation as a phenotypic assay in early drug discovery. ACTA ACUST UNITED AC 2013; 19:17-31. [PMID: 23945875 DOI: 10.1177/1087057113499406] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Complex biological processes such as inflammation, cell death, migration, proliferation, and the release of biologically active molecules can be used as outcomes in phenotypic assays during early stages of drug discovery. Although target-based approaches have been widely used over the past decades, a disproportionate number of first-in-class drugs have been identified using phenotypic screening. This review details phenotypic assays based on inhibition of microglial activation and their utility in primary and secondary screening, target validation, and pathway elucidation. The role of microglia, both in normal as well as in pathological conditions such as chronic neurodegenerative diseases, is reviewed. Methodologies to assess microglia activation in vitro are discussed in detail, and classes of therapeutic drugs known to decrease the proinflammatory and cytotoxic responses of activated microglia are appraised, including inhibitors of glutaminase, cystine/glutamate antiporter, nuclear factor κB, and mitogen-activated protein kinases.
Collapse
Affiliation(s)
- Mariana Figuera-Losada
- 1Brain Science Institute NeuroTranslational Drug Discovery Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | |
Collapse
|
87
|
Joo J, Lee D, Wu Z, Shin JH, Lee HS, Kwon BM, Huh TL, Kim YW, Lee SJ, Kim TW, Lee T, Liu KH. In vitrometabolism of obovatol and its effect on cytochrome P450 enzyme activities in human liver microsomes. Biopharm Drug Dispos 2013; 34:195-202. [DOI: 10.1002/bdd.1837] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/27/2013] [Accepted: 02/07/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Jeongmin Joo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences; Kyungpook National University; Daegu; Korea
| | - Doohyun Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences; Kyungpook National University; Daegu; Korea
| | - Zhexue Wu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences; Kyungpook National University; Daegu; Korea
| | - Jung-Hoon Shin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences; Kyungpook National University; Daegu; Korea
| | - Hye Suk Lee
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences; The Catholic University of Korea; Bucheon; Korea
| | - Byoung-Mog Kwon
- Division of Biomedical Convergent; Korea Research Institute of Bioscience and Biotechnology; Daejeon; Korea
| | - Tae-Lin Huh
- School of Life Sciences and Biotechnology; Kyungpook National University; Daegu; Korea
| | | | - Su-Jun Lee
- Inje University College of Medicine; Busan; Korea
| | - Tae Wan Kim
- College of Veterinary Medicine; Kyungpook National University; Daegu; Korea
| | - Taeho Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences; Kyungpook National University; Daegu; Korea
| | - Kwang-Hyeon Liu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences; Kyungpook National University; Daegu; Korea
| |
Collapse
|
88
|
Chemokine fractalkine attenuates overactivation and apoptosis of BV-2 microglial cells induced by extracellular ATP. Neurochem Res 2013; 38:1002-12. [PMID: 23456675 DOI: 10.1007/s11064-013-1010-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 02/16/2013] [Accepted: 02/20/2013] [Indexed: 12/31/2022]
Abstract
Microglia, the resident macrophages of the central nervous system (CNS), are activated by a myriad of signaling molecules including ATP, an excitatory neurotransmitter and neuron-glial signal with both neuroprotective and neurotoxic effects. The "microglial dysfunction hypothesis" of neurodegeneration posits that overactivated microglia have a reduced neuroprotective capacity and instead promote neurotoxicity. The chemokine fractalkine (FKN), one of only two chemokines constitutively expressed in the CNS, is neuroprotective in several in vivo and in vitro models of CNS pathology. It is possible, but not yet demonstrated, that high ATP concentrations induce microglial overactivation and apoptosis while FKN reduces ATP-mediated microglial overactivation and cytotoxicity. In the current study, we examined the effects of FKN on ATP-induced microglial apoptosis and the underlying mechanisms in the BV-2 microglial cell line. Exposure to ATP induced a dose-dependent reduction in BV-2 cell viability. Prolonged exposure to a high ATP concentration (3 mM for 2 h) transformed ramified (quiescent) BV-2 cells to the amoebic state, induced apoptosis, and reduced Akt phosphorylation. Pretreatment with FKN significantly inhibited ATP-induced microglial apoptosis and transformed amoebic microglia to ramified quiescent cells. These protective effects were blocked by chemical inhibition of PI3 K, strongly implicating the PI3 K/Akt signaling pathway in FKN-mediated protection of BV-2 cells from cytotoxic ATP concentrations. Prevention of ATP-induced microglial overactivation and apoptosis may enhance the neuroprotective capacity of these cells against both acute insults and chronic CNS diseases.
Collapse
|
89
|
Ho SC, Chang KS, Chang PW. Inhibition of neuroinflammation by cinnamon and its main components. Food Chem 2012; 138:2275-82. [PMID: 23497886 DOI: 10.1016/j.foodchem.2012.12.020] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 12/02/2012] [Accepted: 12/03/2012] [Indexed: 11/30/2022]
Abstract
Uncontrolled activation of microglia contributes to neuroinflammation, which is highly involved in the development of neurodegenerative diseases. Although cinnamon has neuro-protective properties, its capacity to inhibit neuroinflammation has not been investigated and its active compounds remain unclear. Therefore, the composition of cinnamon extract was analysed by LC-MS and the ability of cinnamon and its main constituents to inhibit neuroinflammation was evaluated using a lipopolysaccharide (LPS)-activated BV2 microglia culture system. In total, 50 μg/mL cinnamon extract decreased significantly the production and expression of nitric oxide (NO), interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α in LPS-activated BV2 microglia. Blocking of nuclear factor-κB (NF-κB) activation was the most likely mechanism responsible for inhibition by cinnamon of neuroinflammation. Among the eight tested compounds, cinnamaldehyde had the greatest anti-neuroinflammatory capacity. Experimental results suggest that cinnamon may have a potential therapeutic effect against neurodegenerative diseases and its potent anti-neuroinflammatory capacity was primarily attributed to cinnamaldehyde.
Collapse
Affiliation(s)
- Su-Chen Ho
- Department of Food Science, Yuanpei University, Hsinchu, Taiwan, ROC.
| | | | | |
Collapse
|
90
|
Kam KY, Jalin AMA, Choi YW, Kaengkan P, Park SW, Kim YH, Kang SG. Ziprasidone attenuates brain injury after focal cerebral ischemia induced by middle cerebral artery occlusion in rats. Prog Neuropsychopharmacol Biol Psychiatry 2012; 39:69-74. [PMID: 22627197 DOI: 10.1016/j.pnpbp.2012.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 04/29/2012] [Accepted: 05/14/2012] [Indexed: 11/29/2022]
Abstract
Ziprasidone is an atypical antipsychotic drug used for the treatment of schizophrenia. Recent studies have reported that atypical antipsychotics have neuroprotective effects against brain injury. In the present study, the effect of ziprasidone on ischemic brain injury was investigated. Focal cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) in rats. All the animals experienced ischemia for 1h and then underwent reperfusion. The infarct size induced by MCAO was significantly reduced in the animals that received acute treatment with 5mg/kg ziprasidone and subchronic treatment with 2.5mg/kg ziprasidone for 7 days compared with that in the vehicle-treated animals. The acute treatment with ziprasidone significantly improved neurological functions, as measured by the modified neurological severity score, in a dose-dependent manner. The subchronic treatment produced more rapid recovery from functional deficits than the vehicle treatment. The immunohistochemical investigation revealed that the subchronic treatment prevented severe loss of neuronal marker intensity and attenuated the increased in microglial marker intensity in the infarcted cortical area. These results suggest that ziprasidone has neuroprotective effects in a rat model of ischemic stroke and provide new insight for its clinical applications.
Collapse
Affiliation(s)
- Kyung-Yoon Kam
- Department of Occupational Therapy, Inje University, Gimhae 621-749, South Korea
| | | | | | | | | | | | | |
Collapse
|
91
|
More SV, Koppula S, Kim BW, Choi DK. The role of bioactive compounds on the promotion of neurite outgrowth. Molecules 2012; 17:6728-53. [PMID: 22664464 PMCID: PMC6268652 DOI: 10.3390/molecules17066728] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/01/2012] [Accepted: 05/28/2012] [Indexed: 12/18/2022] Open
Abstract
Neurite loss is one of the cardinal features of neuronal injury. Apart from neuroprotection, reorganization of the lost neuronal network in the injured brain is necessary for the restoration of normal physiological functions. Neuritogenic activity of endogenous molecules in the brain such as nerve growth factor is well documented and supported by scientific studies which show innumerable compounds having neurite outgrowth activity from natural sources. Since the damaged brain lacks the reconstructive capacity, more efforts in research are focused on the identification of compounds that promote the reformation of neuronal networks. An abundancy of natural resources along with the corresponding activity profiles have shown promising results in the field of neuroscience. Recently, importance has also been placed on understanding neurite formation by natural products in relation to neuronal injury. Arrays of natural herbal products having plentiful active constituents have been found to enhance neurite outgrowth. They act synergistically with neurotrophic factors to promote neuritogenesis in the diseased brain. Therefore use of natural products for neuroregeneration provides new insights in drug development for treating neuronal injury. In this study, various compounds from natural sources with potential neurite outgrowth activity are reviewed in experimental models.
Collapse
Affiliation(s)
| | | | | | - Dong-Kug Choi
- Department of Biotechnology, Research Institute for Biomedical and Health Science, Konkuk University, Chungju 380-701, Korea
| |
Collapse
|
92
|
Nam Y, Choi M, Hwang H, Lee MG, Kwon BM, Lee WH, Suk K. Natural Flavone Jaceosidin is a Neuroinflammation Inhibitor. Phytother Res 2012; 27:404-11. [DOI: 10.1002/ptr.4737] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 04/23/2012] [Accepted: 04/23/2012] [Indexed: 01/06/2023]
Affiliation(s)
- Youngpyo Nam
- Department of Pharmacology, Brain Science and Engineering Institute, CMRI; Kyungpook National University School of Medicine; Daegu Korea
| | - Mijung Choi
- Department of Pharmacology, Brain Science and Engineering Institute, CMRI; Kyungpook National University School of Medicine; Daegu Korea
| | - Heehong Hwang
- Department of Pharmacology, Brain Science and Engineering Institute, CMRI; Kyungpook National University School of Medicine; Daegu Korea
| | - Maan-Gee Lee
- Department of Pharmacology, Brain Science and Engineering Institute, CMRI; Kyungpook National University School of Medicine; Daegu Korea
| | - Byoung-Mog Kwon
- Laboratory of Chemical Biology and Genomics, Korea Research Institute of Bioscience and Biotechnology; University of Science and Technology; Daejeon Korea
| | - Won-Ha Lee
- Department of Genetic Engineering, School of Life Sciences and Biotechnology; Kyungpook National University; Daegu Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, CMRI; Kyungpook National University School of Medicine; Daegu Korea
| |
Collapse
|
93
|
Veličković D, Dimitrijević A, Bihelović F, Bezbradica D, Knežević-Jugović Z, Milosavić N. Novel glycoside of vanillyl alcohol, 4-hydroxy-3-methoxybenzyl-α-d-glucopyranoside: study of enzymatic synthesis, in vitro digestion and antioxidant activity. Bioprocess Biosyst Eng 2012; 35:1107-15. [DOI: 10.1007/s00449-012-0695-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 01/22/2012] [Indexed: 10/14/2022]
|
94
|
Tamaddonfard E, Erfanparast A, Hamzeh-Gooshchi N, Yousofizadeh S. Effect of curcumin, the active constituent of turmeric, on penicillin-induced epileptiform activity in rats. AVICENNA JOURNAL OF PHYTOMEDICINE 2012; 2:196-205. [PMID: 25050250 PMCID: PMC4075677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Accepted: 07/14/2012] [Indexed: 10/31/2022]
Abstract
OBJECTIVE Curcumin is a major constituent of turmeric and has many biological functions such as anticancer and anti-inflammatory effects. The present study was conducted to investigate the effects of curcumin and diazepam in separate and combined treatments on penicillin-induced seizures in rats. MATERIALS AND METHODS In urethane-anesthetized rats, epileptiform activity was induced by intracortical (i.c.) administration of penicillin (200 IU, 1 µl), and frequency and amplitude of spike waves were analyzed using electrocorticographic recordings. RESULTS Intraperitoneal (i.p.) injections of curcumin at doses of 100 and 200 mg/kg, and intracerebroventricular (i.c.v.) injection of diazepam at a dose of 5 µg significantly (p<0.05) reduced both frequency and amplitude of spike waves. Co-administrations of curcumin (50 mg/kg, i.p.) with diazepam (5 µg, i.c.v) enhanced the antiepileptic effect of diazepam (5 µg, i.c.v). CONCLUSION The results suggested that both curcumin and diazepam suppressed penicillin-induced epileptiform activity. A potentiation effect was observed between curcumin and diazepam in reducing penicillin-induced seizures.
Collapse
Affiliation(s)
- Esmaeal Tamaddonfard
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia 57153-1177, I.R. Iran,Corresponding author: Tel: +984412770508; Fax: +984412771926 ;E-mail:
| | - Amir Erfanparast
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia 57153-1177, I.R. Iran
| | - Nasrin Hamzeh-Gooshchi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia 57153-1177, I.R. Iran
| | - Shahnaz Yousofizadeh
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia 57153-1177, I.R. Iran
| |
Collapse
|
95
|
Shoeb M, Ramana KV. Anti-inflammatory effects of benfotiamine are mediated through the regulation of the arachidonic acid pathway in macrophages. Free Radic Biol Med 2012; 52:182-90. [PMID: 22067901 PMCID: PMC3249497 DOI: 10.1016/j.freeradbiomed.2011.10.444] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 10/11/2011] [Accepted: 10/16/2011] [Indexed: 11/23/2022]
Abstract
Benfotiamine, a lipid-soluble analogue of vitamin B1, is a potent antioxidant that is used as a food supplement for the treatment of diabetic complications. Our recent study (U.C. Yadav et al., Free Radic. Biol. Med. 48:1423-1434, 2010) indicates a novel role for benfotiamine in the prevention of bacterial endotoxin, lipopolysaccharide (LPS)-induced cytotoxicity and inflammatory response in murine macrophages. Nevertheless, it remains unclear how benfotiamine mediates anti-inflammatory effects. In this study, we investigated the anti-inflammatory role of benfotiamine in regulating arachidonic acid (AA) pathway-generated inflammatory lipid mediators in RAW264.7 macrophages. Benfotiamine prevented the LPS-induced activation of cPLA2 and release of AA metabolites such as leukotrienes, prostaglandin E2, thromboxane 2 (TXB2), and prostacyclin (PGI2) in macrophages. Further, LPS-induced expression of AA-metabolizing enzymes such as COX-2, LOX-5, TXB synthase, and PGI2 synthase was significantly blocked by benfotiamine. Furthermore, benfotiamine prevented the LPS-induced phosphorylation of ERK1/2 and expression of transcription factors NF-κB and Egr-1. Benfotiamine also prevented the LPS-induced oxidative stress and protein-HNE adduct formation. Most importantly, compared to specific COX-2 and LOX-5 inhibitors, benfotiamine significantly prevented LPS-induced macrophage death and monocyte adhesion to endothelial cells. Thus, our studies indicate that the dual regulation of the COX and LOX pathways in AA metabolism could be a novel mechanism by which benfotiamine exhibits its potential anti-inflammatory response.
Collapse
Affiliation(s)
| | - Kota V Ramana
- Correspondence: Kota V Ramana, PhD, , Telephone (409)-772-2202, Fax: 409-772-9679 and mailing address: #6.614D BSB, Department of Biochemistry and Molecular biology, University of Texas Medical Branch, Galveston, Texas -77555, USA
| |
Collapse
|