51
|
Xiong HH, Lin SY, Chen LL, Ouyang KH, Wang WJ. The Interaction between Flavonoids and Intestinal Microbes: A Review. Foods 2023; 12:foods12020320. [PMID: 36673411 PMCID: PMC9857828 DOI: 10.3390/foods12020320] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/27/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
In recent years, research on the interaction between flavonoids and intestinal microbes have prompted a rash of food science, nutriology and biomedicine, complying with future research trends. The gut microbiota plays an essential role in the maintenance of intestinal homeostasis and human health, but once the intestinal flora dysregulation occurs, it may contribute to various diseases. Flavonoids have shown a variety of physiological activities, and are metabolized or biotransformed by gut microbiota, thereby producing new metabolites that promote human health by modulating the composition and structure of intestinal flora. Herein, this review demonstrates the key notion of flavonoids as well as intestinal microbiota and dysbiosis, aiming to provide a comprehensive understanding about how flavonoids regulate the diseases by gut microbiota. Emphasis is placed on the microbiota-flavonoid bidirectional interaction that affects the metabolic fate of flavonoids and their metabolites, thereby influencing their metabolic mechanism, biotransformation, bioavailability and bioactivity. Potentially by focusing on the abundance and diversity of gut microbiota as well as their metabolites such as bile acids, we discuss the influence mechanism of flavonoids on intestinal microbiota by protecting the intestinal barrier function and immune system. Additionally, the microbiota-flavonoid bidirectional interaction plays a crucial role in regulating various diseases. We explain the underlying regulation mechanism of several typical diseases including gastrointestinal diseases, obesity, diabetes and cancer, aiming to provide a theoretical basis and guideline for the promotion of gastrointestinal health as well as the treatment of diseases.
Collapse
Affiliation(s)
- Hui-Hui Xiong
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Su-Yun Lin
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ling-Li Chen
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ke-Hui Ouyang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wen-Jun Wang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
- Correspondence: ; Tel.: +86-791-83813655
| |
Collapse
|
52
|
Pucker B, Iorizzo M. Apiaceae FNS I originated from F3H through tandem gene duplication. PLoS One 2023; 18:e0280155. [PMID: 36656808 PMCID: PMC9851555 DOI: 10.1371/journal.pone.0280155] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/21/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Flavonoids are specialized metabolites with numerous biological functions in stress response and reproduction of plants. Flavones are one subgroup that is produced by the flavone synthase (FNS). Two distinct enzyme families evolved that can catalyze the biosynthesis of flavones. While the membrane-bound FNS II is widely distributed in seed plants, one lineage of soluble FNS I appeared to be unique to Apiaceae species. RESULTS We show through phylogenetic and comparative genomic analyses that Apiaceae FNS I evolved through tandem gene duplication of flavanone 3-hydroxylase (F3H) followed by neofunctionalization. Currently available datasets suggest that this event happened within the Apiaceae in a common ancestor of Daucus carota and Apium graveolens. The results also support previous findings that FNS I in the Apiaceae evolved independent of FNS I in other plant species. CONCLUSION We validated a long standing hypothesis about the evolution of Apiaceae FNS I and predicted the phylogenetic position of this event. Our results explain how an Apiaceae-specific FNS I lineage evolved and confirm independence from other FNS I lineages reported in non-Apiaceae species.
Collapse
Affiliation(s)
- Boas Pucker
- Institute of Plant Biology, TU Braunschweig, Braunschweig, Germany
- BRICS, TU Braunschweig, Braunschweig, Germany
- * E-mail: (BP); (MI)
| | - Massimo Iorizzo
- Plants for Human Health Institute, NC State University, Kannapolis, North Carolina, United States of America
- Department of Horticultural Science, NC State University, Raleigh, North Carolina, United States of America
- * E-mail: (BP); (MI)
| |
Collapse
|
53
|
Ye Y, Zhou J. The protective activity of natural flavonoids against osteoarthritis by targeting NF-κB signaling pathway. Front Endocrinol (Lausanne) 2023; 14:1117489. [PMID: 36998478 PMCID: PMC10043491 DOI: 10.3389/fendo.2023.1117489] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
Osteoarthritis (OA) is a typical joint disease associated with chronic inflammation. The nuclear factor-kappaB (NF-κB) pathway plays an important role in inflammatory activity and inhibiting NF-κB-mediated inflammation can be a potential strategy for treating OA. Flavonoids are a class of naturally occurring polyphenols with anti-inflammatory properties. Structurally, natural flavonoids can be divided into several sub-groups, including flavonols, flavones, flavanols/catechins, flavanones, anthocyanins, and isoflavones. Increasing evidence demonstrates that natural flavonoids exhibit protective activity against the pathological changes of OA by inhibiting the NF-κB signaling pathway. Potentially, natural flavonoids may suppress NF-κB signaling-mediated inflammatory responses, ECM degradation, and chondrocyte apoptosis. The different biological actions of natural flavonoids against the NF-κB signaling pathway in OA chondrocytes might be associated with the differentially substituted groups on the structures. In this review, the efficacy and action mechanism of natural flavonoids against the development of OA are discussed by targeting the NF-κB signaling pathway. Potentially, flavonoids could become useful inhibitors of the NF-κB signaling pathway for the therapeutic management of OA.
Collapse
Affiliation(s)
- Yongjun Ye
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jianguo Zhou
- Department of Joint Surgery, Ganzhou People’s Hospital, Ganzhou, China
- *Correspondence: Jianguo Zhou,
| |
Collapse
|
54
|
Phenolic compounds classification and their distribution in winemaking by-products. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04163-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
55
|
Zhao M, Li J, Zhou S, Rao G, Xu D. Effects of tetracycline on the secondary metabolites and nutritional value of oilseed rape (Brassica napus L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:81222-81233. [PMID: 35731441 DOI: 10.1007/s11356-022-21267-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Secondary metabolism, which helps a plant cope with external stress, is sensitive to environmental changes and plays a prominent role in maintaining plant health. However, few studies of the effects of tetracycline on the relationships between secondary metabolism and plant stress responses have been performed. Here, secondary metabolism, nutritional value, and oxidative stress responses in oilseed rape (Brassica napus L.) exposed to tetracycline for 14 days were investigated. Tetracycline inhibited growth and biomass accumulation and decreased the chlorophyll content. The sinapine, phenol, and flavonoid contents were 118.46%, 99.67%, and 93.07% higher, respectively, but the carotenoid content was 76.47% lower in plants exposed to 8 mg/L tetracycline than the control plants. Tetracycline affected the nutritional value of oilseed rape. Tetracycline decreased the dietary fiber, soluble sugar contents, and microelement (Fe, Mn, and Zn) contents. The antioxidant system also responded strongly to tetracycline. The catalase and peroxidase activities were increased and the superoxide dismutase activity was decreased by tetracycline. Tetracycline caused oxidative damage and secondary metabolite disturbances and adversely affected oilseed rape growth and quality. The results provide a new perspective on the effects of tetracycline on plants in relation to secondary metabolites and improve our understanding involved in the toxicity of tetracycline.
Collapse
Affiliation(s)
- Mengting Zhao
- College of Environment and Resources, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Jun Li
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Shanshan Zhou
- College of Environment and Resources, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Guiwei Rao
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Dongmei Xu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China.
| |
Collapse
|
56
|
Gallego AM, Zambrano RA, Zuluaga M, Camargo Rodríguez AV, Candamil Cortés MS, Romero Vergel AP, Arboleda Valencia JW. Analysis of fruit ripening in Theobroma cacao pod husk based on untargeted metabolomics. PHYTOCHEMISTRY 2022; 203:113412. [PMID: 36055428 DOI: 10.1016/j.phytochem.2022.113412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/20/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
The pod husk of Theobroma cacao (CPH) plays an important agronomical role, as its appearance is used as indicator of ripening, guiding the farmers in the harvest process. Cacao harvesting is not a standardized practice because farmers harvest between six up to eight months from flowering, guided by pod's color and shape. The mixture of cacao beans from different ripening stages (RS), negatively affecting the quality and price of grain. A way to help the farmers in the harvest standardization could be through the use of chemical markers and visual indicators of CPH ripening. This study analyses CPH's metabolic distribution of two cacao clones, ICS95 and CCN51 at six, seven, and eight months of ripening. Untargeted metabolomics was done using HPLC-MS/MS for biomarker discovery and association to cacao ripening. The results indicated a strong metabolic differentiation of the sixth month with the rest of the months independent of the variety. Also, metabolic differences were found between cacao clones for the seventh and eighth month. We annotated five potential biochemical markers including 3-caffeoylpelargodinin 5-glucoside, indoleacetaldehyde, procyanidin A dimer, procyanidin C1, and kaempferol. We further looked for correlation between patterns of progression of our markers against quantitative indicators of CPH appearance and texture, at the same ripening stages. We also performed a functional analysis and three possible metabolic pathways: flavone and flavonol biosynthesis, flavonoid biosynthesis, and tryptophan metabolism were identified associated with stress sensing, plant development and defense respectively. We found significant and positive correlations between green color density and all metabolites. For texture, the correlations were significantly negative with all metabolites. Our results suggest that about the sixth month is appropriate for harvesting cacao in the region of Caldas, Colombia in order to avoid all the metabolic variations occurring at later stages of ripening which impact the cacao bean quality. Therefore, studying the cacao ripening process can help in the estimation of the best harvest time and contribute to the standardization of harvest practices.
Collapse
Affiliation(s)
- Adriana M Gallego
- Grupo de Biotecnología, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia; Centro de Bioinformática y Biología Computacional de Colombia-BIOS, Manizales, Colombia.
| | - Romer A Zambrano
- Facultad de Ingeniería y Arquitectura, Universidad Nacional, Sede Manizales, Colombia.
| | - Martha Zuluaga
- Grupo de Investigación GIEPRONAL, Universidad Nacional Abierta y a Distancia, Dosquebradas, Risaralda, Colombia.
| | | | - Mariana S Candamil Cortés
- Centro de Investigaciones en Medio Ambiente y Desarrollo-CIMAD, Universidad de Manizales, Cra. 9a # 19-03, Manizales, 170001, Colombia.
| | - Angela P Romero Vergel
- FITOBIOL Research Group, Instituto de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Cl. 67 # 53-108, Medellín, 050010, Colombia.
| | - Jorge W Arboleda Valencia
- Centro de Bioinformática y Biología Computacional de Colombia-BIOS, Manizales, Colombia; Centro de Investigaciones en Medio Ambiente y Desarrollo-CIMAD, Universidad de Manizales, Cra. 9a # 19-03, Manizales, 170001, Colombia; FITOBIOL Research Group, Instituto de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Cl. 67 # 53-108, Medellín, 050010, Colombia.
| |
Collapse
|
57
|
Izuegbuna OO. Polyphenols: Chemoprevention and therapeutic potentials in hematological malignancies. Front Nutr 2022; 9:1008893. [PMID: 36386899 PMCID: PMC9643866 DOI: 10.3389/fnut.2022.1008893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/02/2022] [Indexed: 01/25/2024] Open
Abstract
Polyphenols are one of the largest plant-derived natural product and they play an important role in plants' defense as well as in human health and disease. A number of them are pleiotropic molecules and have been shown to regulate signaling pathways, immune response and cell growth and proliferation which all play a role in cancer development. Hematological malignancies on the other hand, are cancers of the blood. While current therapies are efficacious, they are usually expensive and with unwanted side effects. Thus, the search for newer less toxic agents. Polyphenols have been reported to possess antineoplastic properties which include cell cycle arrest, and apoptosis via multiple mechanisms. They also have immunomodulatory activities where they enhance T cell activation and suppress regulatory T cells. They carry out these actions through such pathways as PI3K/Akt/mTOR and the kynurenine. They can also reverse cancer resistance to chemotherapy agents. In this review, i look at some of the molecular mechanism of action of polyphenols and their potential roles as therapeutic agents in hematological malignancies. Here i discuss their anti-proliferative and anti-neoplastic activities especially their abilities modulate signaling pathways as well as immune response in hematological malignancies. I also looked at clinical studies done mainly in the last 10-15 years on various polyphenol combination and how they enhance synergism. I recommend that further preclinical and clinical studies be carried out to ensure safety and efficacy before polyphenol therapies be officially moved to the clinics.
Collapse
Affiliation(s)
- Ogochukwu O. Izuegbuna
- Department of Haematology, Ladoke Akintola University of Technology (LAUTECH) Teaching Hospital, Ogbomoso, Nigeria
| |
Collapse
|
58
|
Polyphenols and Their Nanoformulations: Protective Effects against Human Diseases. Life (Basel) 2022; 12:life12101639. [PMID: 36295074 PMCID: PMC9604961 DOI: 10.3390/life12101639] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
Polyphenols are the secondary metabolites synthesized by the plants as a part of defense machinery. Owing to their antioxidant, anti-inflammatory, anticancerous, antineoplastic, and immunomodulatory effects, natural polyphenols have been used for a long time to prevent and treat a variety of diseases. As a result, these phytochemicals may be able to act as therapeutic agents in treating cancer and cardiovascular and neurological disorders. The limited bioavailability of polyphenolic molecules is one issue with their utilization. For the purpose of increasing the bioavailability of these chemicals, many formulation forms have been developed, with nanonization standing out among them. The present review outlines the biological potential of nanoformulated plant polyphenolic compounds. It also summarizes the employability of various polyphenols as nanoformulations for cancer and neurological and cardiovascular disease treatment. Nanoencapsulated polyphenols, singular or in combinations, effective both in vitro and in vivo, need more investigation.
Collapse
|
59
|
Zhang X, Li Y, Yan H, Cai K, Li H, Wu Z, Wu J, Yang X, Jiang H, Wang Q, Qu G, Zhao X. Integrated metabolomic and transcriptomic analyses reveal different metabolite biosynthesis profiles of Juglans mandshurica in shade. FRONTIERS IN PLANT SCIENCE 2022; 13:991874. [PMID: 36237500 PMCID: PMC9552962 DOI: 10.3389/fpls.2022.991874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Light is not only a very important source of energy for the normal growth and development of plants, but also a regulator of many development and metabolic processes. The mechanism of plant growth and development under low light conditions is an important scientific question. With the promulgation of the law to stop natural forest cutting, understory regeneration is an important method for artificial forest afforestation. Here, the growth and physiological indexes of Juglans mandshurica, an important hardwood species in Northeast China, were measured under different shade treatments. In addition, transcriptome and metabolome were compared to analyze the molecular mechanism of shade tolerance in J. mandshurica. The results showed that the seedling height of the shade treatment group was significantly higher than that of the control group, and the 50% light (L50) treatment was the highest. Compared with the control group, the contents of gibberellin, abscisic acid, brassinolide, chlorophyll a, and chlorophyll b in all shade treatments were significantly higher. However, the net photosynthetic rate and water use efficiency decreased with increasing shade. Furthermore, the transcriptome identified thousands of differentially expressed genes in three samples. Using enrichment analysis, we found that most of the differentially expressed genes were enriched in photosynthesis, plant hormone signal transduction and chlorophyll synthesis pathways, and the expression levels of many genes encoding transcription factors were also changed. In addition, analysis of differentially accumulated metabolites showed that a total of 470 differential metabolites were identified, and flavonoids were the major differential metabolites of J. mandshurica under light stress. These results improved our understanding of the molecular mechanism and metabolite accumulation under light stress in J. mandshurica.
Collapse
Affiliation(s)
- Xinxin Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| | - Yuxi Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Huiling Yan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Kewei Cai
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Hanxi Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Zhiwei Wu
- Scientific Research Center of Harbin Forestry and Grassland Bureau, Harbin, China
| | - Jianguo Wu
- Daquanzi Forest Station in Binxian County, Harbin, China
| | - Xiangdong Yang
- Daquanzi Forest Station in Binxian County, Harbin, China
| | - Haichen Jiang
- Daquanzi Forest Station in Binxian County, Harbin, China
| | - Qingcheng Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Guanzheng Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Xiyang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, China
| |
Collapse
|
60
|
Integrative Analysis of the Metabolome and Transcriptome Provides Insights into the Mechanisms of Flavonoid Biosynthesis in Quinoa Seeds at Different Developmental Stages. Metabolites 2022; 12:metabo12100887. [PMID: 36295789 PMCID: PMC9609036 DOI: 10.3390/metabo12100887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/25/2022] Open
Abstract
Quinoa (Chenopodium quinoa Willd.) is a crop with high nutritional and health benefits. Quinoa seeds are rich in flavonoid compounds; however, the mechanisms behind quinoa flavonoid biosynthesis remain unclear. We independently selected the high-generation quinoa strain ‘Dianli-3260′, and used its seeds at the filling, milk ripening, wax ripening, and mature stages for extensive targeted metabolome analysis combined with joint transcriptome analysis. The results showed that the molecular mechanism of flavonoid biosynthesis in quinoa seeds was mainly concentrated in two pathways: “flavonoid biosynthesis pathway” and “flavone and flavonol biosynthesis pathway”. Totally, 154 flavonoid-related metabolites, mainly flavones and flavonols, were detected in the four development stages. Moreover, 39,738 genes were annotated with KEGG functions, and most structural genes of flavonoid biosynthesis were differentially expressed during grain development. We analyzed the differential flavonoid metabolites and transcriptome changes between the four development stages of quinoa seeds and found that 11 differential flavonoid metabolites and 22 differential genes were the key factors for the difference in flavonoid biosynthesis. This study provides important information on the mechanisms underlying quinoa flavonoid biosynthesis, the screening of potential quinoa flavonoid biosynthesis regulation target genes, and the development of quinoa products.
Collapse
|
61
|
Flavonols and Flavones as Potential anti-Inflammatory, Antioxidant, and Antibacterial Compounds. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9966750. [PMID: 36111166 PMCID: PMC9470311 DOI: 10.1155/2022/9966750] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/04/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022]
Abstract
Plant preparations have been used to treat various diseases and discussed for centuries. Research has advanced to discover and identify the plant components with beneficial effects and reveal their underlying mechanisms. Flavonoids are phytoconstituents with anti-inflammatory, antimutagenic, anticarcinogenic, and antimicrobial properties. Herein, we listed and contextualized various aspects of the protective effects of the flavonols quercetin, isoquercetin, kaempferol, and myricetin and the flavones luteolin, apigenin, 3
,4
-dihydroxyflavone, baicalein, scutellarein, lucenin-2, vicenin-2, diosmetin, nobiletin, tangeretin, and 5-O-methyl-scutellarein. We presented their structural characteristics and subclasses, importance, occurrence, and food sources. The bioactive compounds present in our diet, such as fruits and vegetables, may affect the health and disease state. Therefore, we discussed the role of these compounds in inflammation, oxidative mechanisms, and bacterial metabolism; moreover, we discussed their synergism with antibiotics for better disease outcomes. Indiscriminate use of antibiotics allows the emergence of multidrug-resistant bacterial strains; thus, bioactive compounds may be used for adjuvant treatment of infectious diseases caused by resistant and opportunistic bacteria via direct and indirect mechanisms. We also focused on the reported mechanisms and intracellular targets of flavonols and flavones, which support their therapeutic role in inflammatory and infectious diseases.
Collapse
|
62
|
Hanioka N, Tanaka-Kagawa T, Mori Y, Ikushiro S, Jinno H, Ohkawara S, Isobe T. Regioselective Glucuronidation of Flavones at C5, C7, and C4′ Positions in Human Liver and Intestinal Microsomes: Comparison among Apigenin, Acacetin, and Genkwanin. Biol Pharm Bull 2022; 45:1116-1123. [DOI: 10.1248/bpb.b22-00160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | - Yoko Mori
- Faculty of Pharmacy, Meijo University
| | | | | | - Susumu Ohkawara
- Department of Health Pharmacy, Yokohama University of Pharmacy
| | - Takashi Isobe
- Department of Health Pharmacy, Yokohama University of Pharmacy
| |
Collapse
|
63
|
Rodriguez J, Gomez-Cano L, Grotewold E, de Leon N. Normalizing and Correcting Variable and Complex LC-MS Metabolomic Data with the R Package pseudoDrift. Metabolites 2022; 12:435. [PMID: 35629939 PMCID: PMC9144304 DOI: 10.3390/metabo12050435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 01/27/2023] Open
Abstract
In biological research domains, liquid chromatography-mass spectroscopy (LC-MS) has prevailed as the preferred technique for generating high quality metabolomic data. However, even with advanced instrumentation and established data acquisition protocols, technical errors are still routinely encountered and can pose a significant challenge to unveiling biologically relevant information. In large-scale studies, signal drift and batch effects are how technical errors are most commonly manifested. We developed pseudoDrift, an R package with capabilities for data simulation and outlier detection, and a new training and testing approach that is implemented to capture and to optionally correct for technical errors in LC-MS metabolomic data. Using data simulation, we demonstrate here that our approach performs equally as well as existing methods and offers increased flexibility to the researcher. As part of our study, we generated a targeted LC-MS dataset that profiled 33 phenolic compounds from seedling stem tissue in 602 genetically diverse non-transgenic maize inbred lines. This dataset provides a unique opportunity to investigate the dynamics of specialized metabolism in plants.
Collapse
Affiliation(s)
- Jonas Rodriguez
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Lina Gomez-Cano
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; (L.G.-C.); (E.G.)
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; (L.G.-C.); (E.G.)
| | - Natalia de Leon
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI 53706, USA;
| |
Collapse
|
64
|
Song JL, Wang ZY, Wang YH, Du J, Wang CY, Zhang XQ, Chen S, Huang XL, Xie XM, Zhong TX. Overexpression of Pennisetum purpureum CCoAOMT Contributes to Lignin Deposition and Drought Tolerance by Promoting the Accumulation of Flavonoids in Transgenic Tobacco. FRONTIERS IN PLANT SCIENCE 2022; 13:884456. [PMID: 35620690 PMCID: PMC9129916 DOI: 10.3389/fpls.2022.884456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/25/2022] [Indexed: 06/15/2023]
Abstract
Elephant grass (Pennisetum purpureum) is a fast-growing and low-nutrient demand plant that is widely used as a forage grass and potential energy crop in tropical and subtropical regions of Asia, Africa, and the United States. Transgenic tobacco with the PpCCoAOMT gene from Pennisetum purpureum produces high lignin content that is associated with drought tolerance in relation to lower accumulation of reactive oxygen species (ROS), along with higher antioxidant enzyme activities and osmotic adjustment. In this study, transgenic tobacco plants revealed no obvious cost to plant growth when expressing the PpCCoAOMT gene. Metabolomic studies demonstrated that tobacco plants tolerant to drought stress accumulated flavonoids under normal and drought conditions, which likely explains the observed tolerance phenotype in wild-type tobacco. Our results suggest that plants overexpressing PpCCoAOMT were better able to cope with water deficit than were wild-type controls; metabolic flux was redirected within primary and specialized metabolism to induce metabolites related to defense to drought stress. These results could help to develop drought-resistant plants for agriculture in the future.
Collapse
Affiliation(s)
- Jian-Ling Song
- Office of Academic Research, Xingyi Normal University for Nationalities, Xingyi, China
| | - Ze-Yu Wang
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, Guangzhou, China
| | - Yin-Hua Wang
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, Guangzhou, China
| | - Juan Du
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, United States
| | - Chen-Yu Wang
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xiang-Qian Zhang
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, Guangzhou, China
| | - Shu Chen
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, Guangzhou, China
| | - Xiao-Ling Huang
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xin-Ming Xie
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, Guangzhou, China
| | - Tian-Xiu Zhong
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, Guangzhou, China
| |
Collapse
|
65
|
Wang Y, Ni W, Jin X, Li J, Yu Y. Vitexin-2-O-rhamnoside improves immunosuppression, oxidative stress, and phosphorylation of PI3K/Akt signal pathway in cyclophosphamide treated mice. Eur J Pharmacol 2022; 925:174999. [PMID: 35525311 DOI: 10.1016/j.ejphar.2022.174999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/18/2022]
Abstract
Vitexin-2-O-rhamnoside (VR) is an important active substance in hawthorn, which is widely used as a food or functional food raw material; however, its immunomodulatory activities have not been extensively studied. In this study, BALB/c mice immunocompromised by cyclophosphamide (CY) were used as models to explore the effects of VR on the immunity and antioxidant capacity of mice. The results revealed that VR can restore weight to the immunosuppressed mice to varying degrees, improve spleen and thymus injury, and restore peripheral blood levels. Furthermore, it can effectively promote the proliferation of T and B lymphocytes, natural killer (NK) and cytotoxic T lymphocyte (CTL) cell activities, and the secretion and mRNA expression of cytokines IFN-γ, IL-2, IL-6, and IL-12 to 0.36, 0.34, 50.25%, 45.74%, 28.36 pg/mL or 0.68, 31.81 pg/mL or 0.74, 20.40 pg/mL or 0.75, and 19.81 pg/mL or 0.55, respectively. Moreover, it can upregulate the phosphorylation level of PI3K/Akt signaling pathway in mice immunosuppressed by CY, increase the activities of glutathione peroxidase (GSH-Px), chloramphenicol acetyltransferase (CAT), superoxide dismutase (SOD), and total antioxidant capacity (T-AOC), and decrease the level of malondialdehyde (MDA). This study provides a theoretical and experimental basis for the research and development of health products with targeted efficacy, and the development of diversified products in the hawthorn deep-processing industry.
Collapse
Affiliation(s)
- Yilun Wang
- College of Food Science and Engineering, Jinzhou Medical University, Jinzhou, 121000, Liaoning Province, China
| | - Wan Ni
- College of Food Science and Engineering, Jinzhou Medical College, Jinzhou, 121013, Liaoning Province, China
| | - Xin Jin
- College of Food Science and Engineering, Jinzhou Medical University, Jinzhou, 121000, Liaoning Province, China
| | - Jingshuang Li
- College of Veterinary, Jinzhou Medical University, Jinzhou, 121000, Liaoning Province, China
| | - Yang Yu
- College of Food Science and Engineering, Jinzhou Medical University, Jinzhou, 121000, Liaoning Province, China.
| |
Collapse
|
66
|
Wu Y, Zhang C, Huang Z, Lyu L, Li W, Wu W. Integrative analysis of the metabolome and transcriptome provides insights into the mechanisms of flavonoid biosynthesis in blackberry. Food Res Int 2022; 153:110948. [DOI: 10.1016/j.foodres.2022.110948] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 11/28/2022]
|
67
|
Wang Q, Liu X, Liu H, Fu Y, Cheng Y, Zhang L, Shi W, Zhang Y, Chen J. Transcriptomic and Metabolomic Analysis of Wheat Kernels in Response to the Feeding of Orange Wheat Blossom Midges ( Sitodiplosis mosellana) in the Field. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1477-1493. [PMID: 35090120 DOI: 10.1021/acs.jafc.1c06239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The orange wheat blossom midge (Sitodiplosis mosellana Géhin) is an insect pest that feeds on wheat (Triticum aestivum L.). The resistance mechanisms of wheat to S. mosellana infestation are largely unknown. In this study, the wheat varieties LX99 and 6218 were identified as highly resistant and susceptible, respectively, via field investigations conducted over two consecutive years. Morphological and microstructural observations of mature wheat kernels following S. mosellana infestation revealed that the degree of cell structure damage in resistant LX99 grains was less than that in susceptible 6218 grains. Transcriptomic and metabolomic analyses of seeds following S. mosellana feeding showed that the differentially expressed genes and differentially accumulated metabolites from LX99 were mostly enriched in several primary and secondary metabolic pathways, including phenylpropanoid biosynthesis, flavonoid biosynthesis, and phenylalanine biosynthesis. Additionally, phenylpropanoid- and flavonoid-related gene expression was significantly upregulated following S. mosellana infestation in LX99 relative to that in 6218. Some metabolites involved in phenylpropanoid/flavonoid pathways, such as cinnamic acid, coumarin, epigallocatechin, and naringenin, were only induced in infested LX99 kernels. These results suggest that phenylpropanoid/flavonoid pathways play important roles in wheat kernel resistance to S. mosellana attack and provide useful insights for the breeding and utilization of resistant varieties.
Collapse
Affiliation(s)
- Qian Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, P. R. China
| | - Xiaobei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Huan Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Yu Fu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Yumeng Cheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Lijiao Zhang
- Plant Protection and Epidemic Station of Luquan District, Hebei 050299, P. R. China
| | - Wangpeng Shi
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, P. R. China
| | - Yong Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Julian Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| |
Collapse
|
68
|
Förster C, Handrick V, Ding Y, Nakamura Y, Paetz C, Schneider B, Castro-Falcón G, Hughes CC, Luck K, Poosapati S, Kunert G, Huffaker A, Gershenzon J, Schmelz EA, Köllner TG. Biosynthesis and antifungal activity of fungus-induced O-methylated flavonoids in maize. PLANT PHYSIOLOGY 2022; 188:167-190. [PMID: 34718797 PMCID: PMC8774720 DOI: 10.1093/plphys/kiab496] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/30/2021] [Indexed: 05/05/2023]
Abstract
Fungal infection of grasses, including rice (Oryza sativa), sorghum (Sorghum bicolor), and barley (Hordeum vulgare), induces the formation and accumulation of flavonoid phytoalexins. In maize (Zea mays), however, investigators have emphasized benzoxazinoid and terpenoid phytoalexins, and comparatively little is known about flavonoid induction in response to pathogens. Here, we examined fungus-elicited flavonoid metabolism in maize and identified key biosynthetic enzymes involved in the formation of O-methylflavonoids. The predominant end products were identified as two tautomers of a 2-hydroxynaringenin-derived compound termed xilonenin, which significantly inhibited the growth of two maize pathogens, Fusarium graminearum and Fusarium verticillioides. Among the biosynthetic enzymes identified were two O-methyltransferases (OMTs), flavonoid OMT 2 (FOMT2), and FOMT4, which demonstrated distinct regiospecificity on a broad spectrum of flavonoid classes. In addition, a cytochrome P450 monooxygenase (CYP) in the CYP93G subfamily was found to serve as a flavanone 2-hydroxylase providing the substrate for FOMT2-catalyzed formation of xilonenin. In summary, maize produces a diverse blend of O-methylflavonoids with antifungal activity upon attack by a broad range of fungi.
Collapse
Affiliation(s)
- Christiane Förster
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena D-07745, Germany
| | - Vinzenz Handrick
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena D-07745, Germany
| | - Yezhang Ding
- Section of Cell and Developmental Biology, University of California, San Diego, California 92093-0380, USA
| | - Yoko Nakamura
- Research Group Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, Jena D-07745, Germany
| | - Christian Paetz
- Research Group Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, Jena D-07745, Germany
| | - Bernd Schneider
- Research Group Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, Jena D-07745, Germany
| | - Gabriel Castro-Falcón
- Scripps Institution of Oceanography, University of California, San Diego, California 92093, USA
| | - Chambers C Hughes
- Scripps Institution of Oceanography, University of California, San Diego, California 92093, USA
| | - Katrin Luck
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena D-07745, Germany
| | - Sowmya Poosapati
- Section of Cell and Developmental Biology, University of California, San Diego, California 92093-0380, USA
| | - Grit Kunert
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena D-07745, Germany
| | - Alisa Huffaker
- Section of Cell and Developmental Biology, University of California, San Diego, California 92093-0380, USA
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena D-07745, Germany
| | - Eric A Schmelz
- Section of Cell and Developmental Biology, University of California, San Diego, California 92093-0380, USA
| | - Tobias G Köllner
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena D-07745, Germany
- Author for communication:
| |
Collapse
|
69
|
Luo F, Yu Z, Zhou Q, Huang A. Multi-Omics-Based Discovery of Plant Signaling Molecules. Metabolites 2022; 12:metabo12010076. [PMID: 35050197 PMCID: PMC8777911 DOI: 10.3390/metabo12010076] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 02/01/2023] Open
Abstract
Plants produce numerous structurally and functionally diverse signaling metabolites, yet only relatively small fractions of which have been discovered. Multi-omics has greatly expedited the discovery as evidenced by increasing recent works reporting new plant signaling molecules and relevant functions via integrated multi-omics techniques. The effective application of multi-omics tools is the key to uncovering unknown plant signaling molecules. This review covers the features of multi-omics in the context of plant signaling metabolite discovery, highlighting how multi-omics addresses relevant aspects of the challenges as follows: (a) unknown functions of known metabolites; (b) unknown metabolites with known functions; (c) unknown metabolites and unknown functions. Based on the problem-oriented overview of the theoretical and application aspects of multi-omics, current limitations and future development of multi-omics in discovering plant signaling metabolites are also discussed.
Collapse
Affiliation(s)
| | | | - Qian Zhou
- Correspondence: (Q.Z.); (A.H.); Tel.: +86-755-8801-8496 (Q.Z. & A.H.)
| | - Ancheng Huang
- Correspondence: (Q.Z.); (A.H.); Tel.: +86-755-8801-8496 (Q.Z. & A.H.)
| |
Collapse
|
70
|
Pierau L, Elian C, Akimoto J, Ito Y, Caillol S, Versace DL. Bio-sourced Monomers and Cationic Photopolymerization: The Green combination towards Eco-Friendly and Non-Toxic Materials. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101517] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
71
|
Tian S, Yang Y, Wu T, Luo C, Li X, Zhao X, Xi W, Liu X, Zeng M. Functional Characterization of a Flavone Synthase That Participates in a Kumquat Flavone Metabolon. FRONTIERS IN PLANT SCIENCE 2022; 13:826780. [PMID: 35310637 PMCID: PMC8924551 DOI: 10.3389/fpls.2022.826780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/07/2022] [Indexed: 05/17/2023]
Abstract
Flavones predominantly accumulate as O- and C-glycosides in kumquat plants. Two catalytic mechanisms of flavone synthase II (FNSII) support the biosynthesis of glycosyl flavones, one involving flavanone 2-hydroxylase (which generates 2-hydroxyflavanones for C-glycosylation) and another involving the direct catalysis of flavanones to flavones for O-glycosylation. However, FNSII has not yet been characterized in kumquats. In this study, we identified two kumquat FNSII genes (FcFNSII-1 and FcFNSII-2), based on transcriptome and bioinformatics analysis. Data from in vivo and in vitro assays showed that FcFNSII-2 directly synthesized apigenin and acacetin from naringenin and isosakuranetin, respectively, whereas FcFNSII-1 showed no detectable catalytic activities with flavanones. In agreement, transient overexpression of FcFNSII-2 in kumquat peels significantly enhanced the transcription of structural genes of the flavonoid-biosynthesis pathway and the accumulation of several O-glycosyl flavones. Moreover, studying the subcellular localizations of FcFNSII-1 and FcFNSII-2 demonstrated that N-terminal membrane-spanning domains were necessary to ensure endoplasmic reticulum localization and anchoring. Protein-protein interaction analyses, using the split-ubiquitin yeast two-hybrid system and bimolecular fluorescence-complementation assays, revealed that FcFNSII-2 interacted with chalcone synthase 1, chalcone synthase 2, and chalcone isomerase-like proteins. The results provide strong evidence that FcFNSII-2 serves as a nucleation site for an O-glycosyl flavone metabolon that channels flavanones for O-glycosyl flavone biosynthesis in kumquat fruits. They have implications for guiding genetic engineering efforts aimed at enhancing the composition of bioactive flavonoids in kumquat fruits.
Collapse
Affiliation(s)
- Shulin Tian
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing, China
| | - Yuyan Yang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing, China
| | - Tao Wu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Chuan Luo
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Xin Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Xijuan Zhao
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing, China
| | - Wanpeng Xi
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing, China
| | - Xiaogang Liu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing, China
- *Correspondence: Xiaogang Liu,
| | - Ming Zeng
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing, China
- Ming Zeng, ;
| |
Collapse
|
72
|
Xu J, Wang Y, Zheng T, Huo Y, Du W. Biflavones inhibit the fibrillation and cytotoxicity of human islet amyloid polypeptide. J Mater Chem B 2022; 10:4650-4661. [DOI: 10.1039/d2tb00230b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biflavones are a kind of natural compounds with a variety of biological activities, which have the effects of reversing diabetes and neurodegenerative diseases. Human islet amyloid polypeptide (hIAPP) is closely...
Collapse
|
73
|
Wang H, Liu S, Fan F, Yu Q, Zhang P. A Moss 2-Oxoglutarate/Fe(II)-Dependent Dioxygenases (2-ODD) Gene of Flavonoids Biosynthesis Positively Regulates Plants Abiotic Stress Tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:850062. [PMID: 35968129 PMCID: PMC9372559 DOI: 10.3389/fpls.2022.850062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 06/21/2022] [Indexed: 05/14/2023]
Abstract
Flavonoids, the largest group of polyphenolic secondary metabolites present in all land plants, play essential roles in many biological processes and defense against abiotic stresses. In the flavonoid biosynthesis pathway, flavones synthase I (FNSI), flavanone 3-hydroxylase (F3H), flavonol synthase (FLS), and anthocyanidin synthase (ANS) all belong to 2-oxoglutarate/Fe(II)-dependent dioxygenases (2-ODDs) family, which catalyzes the critical oxidative reactions to form different flavonoid subgroups. Here, a novel 2-ODD gene was cloned from Antarctic moss Pohlia nutans (Pn2-ODD1) and its functions were investigated both in two model plants, Physcomitrella patens and Arabidopsis thaliana. Heterologous expression of Pn2-ODD1 increased the accumulation of anthocyanins and flavonol in Arabidopsis. Meanwhile, the transgenic P. patens and Arabidopsis with expressing Pn2-ODD1 exhibited enhanced tolerance to salinity and drought stresses, with larger gametophyte sizes, better seed germination, and longer root growth. Heterologous expression of Pn2-ODD1 in Arabidopsis also conferred the tolerance to UV-B radiation and oxidative stress by increasing antioxidant capacity. Therefore, we showed that Pn2-ODD1 participated in the accumulation of anthocyanins and flavonol in transgenic plants, and regulated the tolerance to abiotic stresses in plants, contributing to the adaptation of P. nutans to the polar environment.
Collapse
Affiliation(s)
- Huijuan Wang
- National Glycoengineering Research Center and School of Life Science, Shandong University, Qingdao, China
| | - Shenghao Liu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Fenghua Fan
- National Glycoengineering Research Center and School of Life Science, Shandong University, Qingdao, China
| | - Qian Yu
- National Glycoengineering Research Center and School of Life Science, Shandong University, Qingdao, China
| | - Pengying Zhang
- National Glycoengineering Research Center and School of Life Science, Shandong University, Qingdao, China
- Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
- *Correspondence: Pengying Zhang
| |
Collapse
|
74
|
Zhou LJ, Geng Z, Wang Y, Wang Y, Liu S, Chen C, Song A, Jiang J, Chen S, Chen F. A novel transcription factor CmMYB012 inhibits flavone and anthocyanin biosynthesis in response to high temperatures in chrysanthemum. HORTICULTURE RESEARCH 2021; 8:248. [PMID: 34848687 PMCID: PMC8633327 DOI: 10.1038/s41438-021-00675-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/26/2021] [Accepted: 08/01/2021] [Indexed: 05/27/2023]
Abstract
Flavones are among the major colorless pigments synthesized through branches of the flavonoid pathway in plants. However, due to the absence of a gene encoding flavone synthase (FNS) in the model plant Arabidopsis thaliana species, the regulatory mechanism of FNS-catalyzed flavone biosynthesis has rarely been studied in plants. Here, it was found that flavones play a predominant role in the elimination of excess reactive oxygen species (ROS) at high temperatures in colorless plant organs. A novel atypical subgroup 7 (SG7) R2R3-MYB transcription factor, CmMYB012, was found to be induced in response to prolonged high temperatures and to inhibit flavone biosynthesis by directly regulating CmFNS. Moreover, CmMYB012 was also found to inhibit anthocyanin biosynthesis by suppressing the expression of CmCHS, CmDFR, CmANS, and CmUFGT. CmMYB012 overexpression exerted a negative influence on plant fitness and pink flower color formation, while CmMYB012 suppression had the opposite effect in response to high temperatures. Our findings provide new insights into the mechanisms by which high temperatures regulate the metabolism of flavones and anthocyanins to affect plant fitness and flower color formation.
Collapse
Affiliation(s)
- Li-Jie Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zhiqiang Geng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yuxi Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yiguang Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Shenhui Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Chuwen Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Aiping Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
75
|
Pires EDO, Di Gioia F, Rouphael Y, Ferreira ICFR, Caleja C, Barros L, Petropoulos SA. The Compositional Aspects of Edible Flowers as an Emerging Horticultural Product. Molecules 2021; 26:6940. [PMID: 34834031 PMCID: PMC8619536 DOI: 10.3390/molecules26226940] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 02/05/2023] Open
Abstract
Edible flowers are becoming very popular, as consumers are seeking healthier and more attractive food products that can improve their diet aesthetics and diversify their dietary sources of micronutrients. The great variety of flowers that can be eaten is also associated with high variability in chemical composition, especially in bioactive compounds content that may significantly contribute to human health. The advanced analytical techniques allowed us to reveal the chemical composition of edible flowers and identify new compounds and effects that were not known until recently. Considering the numerous species of edible flowers, the present review aims to categorize the various species depending on their chemical composition and also to present the main groups of compounds that are usually present in the species that are most commonly used for culinary purposes. Moreover, special attention is given to those species that contain potentially toxic or poisonous compounds as their integration in human diets should be carefully considered. In conclusion, the present review provides useful information regarding the chemical composition and the main groups of chemical compounds that are present in the flowers of the most common species.
Collapse
Affiliation(s)
- Eleomar de O. Pires
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.d.O.P.J.); (I.C.F.R.F.); (C.C.)
| | - Francesco Di Gioia
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Via Universita 100, 80055 Portici, Italy;
| | - Isabel C. F. R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.d.O.P.J.); (I.C.F.R.F.); (C.C.)
| | - Cristina Caleja
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.d.O.P.J.); (I.C.F.R.F.); (C.C.)
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (E.d.O.P.J.); (I.C.F.R.F.); (C.C.)
| | - Spyridon A. Petropoulos
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Fytokou Street, N. Ionia, 38446 Volos, Greece
| |
Collapse
|
76
|
Si W, Zhang Y, Li X, Du Y, Xu Q. Understanding the Functional Activity of Polyphenols Using Omics-Based Approaches. Nutrients 2021; 13:nu13113953. [PMID: 34836207 PMCID: PMC8625961 DOI: 10.3390/nu13113953] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 02/07/2023] Open
Abstract
Plant polyphenols are the main category of natural active substances, and are distributed widely in vegetables, fruits, and plant-based processed foods. Polyphenols have a beneficial performance in preventing diseases and maintaining body health. However, its action mechanism has not been well understood. Foodomics is a novel method to sequence and widely used in nutrition, combining genomics, proteomics, transcriptomics, microbiome, and metabolomics. Based on multi-omics technologies, foodomics provides abundant data to study functional activities of polyphenols. In this paper, physiological functions of various polyphenols based on foodomics and microbiome was discussed, especially the anti-inflammatory and anti-tumor activities and gut microbe regulation. In conclusion, omics (including microbiomics) is a useful approach to explore the bioactive activities of polyphenols in the nutrition and health of human and animals.
Collapse
Affiliation(s)
- Wenjin Si
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China; (W.S.); (X.L.); (Y.D.)
- Shennongjia Science & Technology Innovation Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Yangdong Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Xiang Li
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China; (W.S.); (X.L.); (Y.D.)
- Shennongjia Science & Technology Innovation Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Yufeng Du
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China; (W.S.); (X.L.); (Y.D.)
- Shennongjia Science & Technology Innovation Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingbiao Xu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China; (W.S.); (X.L.); (Y.D.)
- Shennongjia Science & Technology Innovation Center, Huazhong Agricultural University, Wuhan 430070, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
- Correspondence:
| |
Collapse
|
77
|
Ferreyra MLF, Serra P, Casati P. Recent advances on the roles of flavonoids as plant protective molecules after UV and high light exposure. PHYSIOLOGIA PLANTARUM 2021; 173:736-749. [PMID: 34453749 DOI: 10.1111/ppl.13543] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/16/2021] [Accepted: 08/25/2021] [Indexed: 05/25/2023]
Abstract
Flavonoids are plant specialized metabolites that consist of one oxygenated and two aromatic rings. Different flavonoids are grouped according to the oxidation degree of the carbon rings; they can later be modified by glycosylations, hydroxylations, acylations, methylations, or prenylations. These modifications generate a wide collection of different molecules which have various functions in plants. All flavonoids absorb in the UV wavelengths, they mostly accumulate in the epidermis of plant cells and their biosynthesis is generally activated after UV exposure. Therefore, they have been assumed to protect plants against exposure to radiation in this range. Some flavonoids also absorb in other wavelengths, for example anthocyanins, which absorb light in the visible part of the solar spectrum. Besides, some flavonoids show antioxidant properties, that is, they act as scavengers of reactive oxygen species that could be produced after high fluence UV exposure. However, to date most reports were based on in vitro studies, and there is very little in vivo evidence of how their roles are carried out. In this review we first summarize the biosynthetic pathway of flavonoids and their characteristics, and we describe recent advances on the investigation of the role of three of the most abundant flavonoids: flavonols, flavones, and anthocyanins, protecting plants against UV exposure and high light exposure. We also present examples of how using UV-B supplementation to increase flavonoid content, is possible to improve plant nutritional and pharmaceutical values.
Collapse
Affiliation(s)
- María Lorena Falcone Ferreyra
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Paloma Serra
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Paula Casati
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
78
|
Zheng Y, Xiao J, Zheng K, Ma J, He M, Li J, Li M. Transcriptome Profiling Reveals the Effects of Nitric Oxide on the Growth and Physiological Characteristics of Watermelon under Aluminum Stress. Genes (Basel) 2021; 12:genes12111735. [PMID: 34828340 PMCID: PMC8622656 DOI: 10.3390/genes12111735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
Excessive aluminum ions (Al3+) in acidic soil can have a toxic effect on watermelons, restricting plant growth and reducing yield and quality. In this study, we found that exogenous application of nitric oxide (NO) could increase the photochemical efficiency of watermelon leaves under aluminum stress by promoting closure of leaf stomata, reducing malondialdehyde and superoxide anion in leaves, and increasing POD and CAT activity. These findings showed that the exogenous application of NO improved the ability of watermelon to withstand aluminum stress. To further reveal the mitigation mechanism of NO on watermelons under aluminum stress, the differences following different types of treatments—normal growth, Al, and Al + NO—were shown using de novo sequencing of transcriptomes. In total, 511 differentially expressed genes (DEGs) were identified between the Al + NO and Al treatment groups. Significantly enriched biological processes included nitrogen metabolism, phenylpropane metabolism, and photosynthesis. We selected 23 genes related to antioxidant enzymes and phenylpropane metabolism for qRT-PCR validation. The results showed that after exogenous application of NO, the expression of genes encoding POD and CAT increased, consistent with the results of the physiological indicators. The expression patterns of genes involved in phenylpropanoid metabolism were consistent with the transcriptome expression abundance. These results indicate that aluminum stress was involved in the inhibition of the photosynthetic pathway, and NO could activate the antioxidant enzyme defense system and phenylpropane metabolism to protect cells and scavenge reactive oxygen species. This study improves our current understanding by comprehensively analyzing the molecular mechanisms underlying NO-induced aluminum stress alleviation in watermelons.
Collapse
|
79
|
Zou Y, Li S, Li X, Sun Y, Ma M, Tian H, Wang N, Yuan J, Xiao C. Isosinensetin alleviates the injury of human bronchial epithelial cells induced by PM 2.5. Exp Ther Med 2021; 22:1435. [PMID: 34707716 DOI: 10.3892/etm.2021.10870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 08/25/2021] [Indexed: 01/07/2023] Open
Abstract
Flavonoids which are extracted from citrus peel and pulp have been reported to have multiple beneficial effects on human health. Isosinensetin (ISO) is a type of flavonoid compound, which has several protective effects including anticancer, antioxidant, antiviral, anti-inflammatory and bacteriostatic. However, the molecular mechanism of its antioxidant and anti-inflammatory effects remain unclear. The present study aimed to investigate the intervention effect and possible mechanism of ISO on human bronchial epithelial cells injured by fine particular matter ≤2.5 µm in diameter (PM2.5). In the present study, the cell viability was detected by Cell Counting Kit-8 method. The levels of pro-inflammatory cytokines were analyzed by ELISA. The level of reactive oxygen species (ROS) was detected by fluorescence probe. The expression levels of proliferating cell nuclear antigen (PCNA), nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor кΒ (NF-кB) proteins were detected by western blotting. The results revealed that ISO evidently increased the viability of 16-HBE cells and sharply decreased the levels of pro-inflammatory factors in cell culture supernatant. ISO significantly inhibited ROS release caused by PM2.5. Moreover, the expression levels of PCNA, Nrf2 and NF-кB proteins were downregulated after ISO incubation. These results indicated that ISO alleviated 16-HBE-cell injury by PM2.5 through the ROS-Nrf2/NF-кB signaling pathway.
Collapse
Affiliation(s)
- Yang Zou
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, Shenyang, Liaoning 110034, P.R. China
| | - Shuzhen Li
- Department of Immunology, Shenyang Medical College, Shenyang, Liaoning 110034, P.R. China
| | - Xinming Li
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, Shenyang, Liaoning 110034, P.R. China
| | - Ye Sun
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, Shenyang, Liaoning 110034, P.R. China
| | - Mingyue Ma
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, Shenyang, Liaoning 110034, P.R. China
| | - Han Tian
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, Shenyang, Liaoning 110034, P.R. China
| | - Nan Wang
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, Shenyang, Liaoning 110034, P.R. China
| | - Jianhui Yuan
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, Shenyang, Liaoning 110034, P.R. China
| | - Chunling Xiao
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, Shenyang, Liaoning 110034, P.R. China
| |
Collapse
|
80
|
Rezaee N, Fernando WB, Hone E, Sohrabi HR, Johnson SK, Gunzburg S, Martins RN. Potential of Sorghum Polyphenols to Prevent and Treat Alzheimer's Disease: A Review Article. Front Aging Neurosci 2021; 13:729949. [PMID: 34690742 PMCID: PMC8527926 DOI: 10.3389/fnagi.2021.729949] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/24/2021] [Indexed: 12/06/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by the excessive deposition of extracellular amyloid-beta peptide (Aβ) and the build-up of intracellular neurofibrillary tangles containing hyperphosphorylated tau proteins. This leads to neuronal damage, cell death and consequently results in memory and learning impairments leading to dementia. Although the exact cause of AD is not yet clear, numerous studies indicate that oxidative stress, inflammation, and mitochondrial dysfunction significantly contribute to its onset and progression. There is no effective therapeutic approach to stop the progression of AD and its associated symptoms. Thus, early intervention, preferably, pre-clinically when the brain is not significantly affected, is a better option for effective treatment. Natural polyphenols (PP) target multiple AD-related pathways such as protecting the brain from Aβ and tau neurotoxicity, ameliorating oxidative damage and mitochondrial dysfunction. Among natural products, the cereal crop sorghum has some unique features. It is one of the major global grain crops but in the developed world, it is primarily used as feed for farm animals. A broad range of PP, including phenolic acids, flavonoids, and condensed tannins are present in sorghum grain including some classes such as proanthocyanidins that are rarely found in others plants. Pigmented varieties of sorghum have the highest polyphenolic content and antioxidant activity which potentially makes their consumption beneficial for human health through different pathways such as oxidative stress reduction and thus the prevention and treatment of neurodegenerative diseases. This review summarizes the potential of sorghum PP to beneficially affect the neuropathology of AD.
Collapse
Affiliation(s)
- Nasim Rezaee
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - W.M.A.D. Binosha Fernando
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Eugene Hone
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Hamid R. Sohrabi
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
- Centre for Healthy Ageing, Health Future Institute, Murdoch University, Murdoch, WA, Australia
| | - Stuart K. Johnson
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Perth, WA, Australia
- Ingredients by Design Pty Ltd., Lesmurdie, WA, Australia
| | | | - Ralph N. Martins
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
81
|
Poursalavati A, Rashidi-Monfared S, Ebrahimi A. Toward understanding of the methoxylated flavonoid biosynthesis pathway in Dracocephalum kotschyi Boiss. Sci Rep 2021; 11:19549. [PMID: 34599246 PMCID: PMC8486745 DOI: 10.1038/s41598-021-99066-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 09/05/2021] [Indexed: 01/26/2023] Open
Abstract
Nowadays, with the development and advancement of next-generation sequencing technologies, a new path has been provided for transcriptomic studies. In this study, the transcriptome of Dracocephalum kotschyi Boiss., as an endemic and endangered plant which is contained a large amount of valuable secondary metabolites with antioxidant and anticancer properties, was sequenced. Then functional annotation and gene ontology analysis for 165,597 assembled transcripts were performed, most were associated with the metabolic pathways. This might be because there are various active biochemical pathways in this plant. Furthermore, after comprehensive transcript annotation, the putative genes involved in the main metabolic pathways of D. kotschyi were identified. Then, the biosynthetic pathway of its valuable methoxylated flavones was proposed. Finally, the accumulations of important methoxylated-flavone metabolites in three different tissues were quantified by HPLC. The relative expression of the genes involved in the proposed pathway was investigated by qRT-PCR, which indicated high expression levels in the bud tissue. The present results may lead to the design strategies to preserve the genetic diversity of endangered D. kotschyi plants and apply the new methods for engineering its valuable methoxylated-flavones pathway.
Collapse
Affiliation(s)
- Abdonaser Poursalavati
- Agricultural Biotechnology Department, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.,Saint-Jean-Sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, St-Jean-sur-Richelieu, QC, Canada.,Department of Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sajad Rashidi-Monfared
- Agricultural Biotechnology Department, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| | - Amin Ebrahimi
- Agronomy and Plant Breeding Department, Faculty of Agriculture, Shahrood University of Technology, Semnan, Iran
| |
Collapse
|
82
|
Varshney M, Kumar B, Rana VS, Sethiya NK. An overview on therapeutic and medicinal potential of poly-hydroxy flavone viz. Heptamethoxyflavone, Kaempferitrin, Vitexin and Amentoflavone for management of Alzheimer's and Parkinson's diseases: a critical analysis on mechanistic insight. Crit Rev Food Sci Nutr 2021; 63:2749-2772. [PMID: 34590507 DOI: 10.1080/10408398.2021.1980761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Neurodegenerative disorders occur when nerve cells in the brain or peripheral nervous system partial or complete fail in their functions and sometimes even die due to some injuries or aging. Neurodegenerative disorders such as Alzheimer's Disease (AD) and Parkinson's Disease (PD), have been majorly resulted due to degeneration of neurons and neuroinflammation progressively. There are many similarities that correlates both AD and PD on a cellular and sub-cellular level. Therefore, a hope for therapeutic advancement for simultaneous upgradation in both the diseases are directly depending on the discovery of common mechanism at molecular and cellular level. Recent and past evidences from scientific literature supporting the efficacy of plants flavonoids in treatment and protection of both AD and PD. Further, dietary flavones, specially Heptamethoxyflavone, Kaempferitrin, Vitexin and Amentoflavone gains recently much more attention for producing many health beneficiary effects including neuroprotection. Despite of these evidence a detailed updated overview of neuroprotective effects against both AD and PD by Heptamethoxyflavone, Kaempferitrin, Vitexin and Amentoflavone are still missing. In this context several published studies were assessed by using various online electronic search engines/databases to meet the objective from 1981 to 2021 (Approx. 224). Therefore, present review was designed to deliver the detailed description on these flavones including therapeutic benefits in AD, PD and other CNS complications with critical analysis on underlying mechanisms.
Collapse
Affiliation(s)
| | - Bhavna Kumar
- Faculty of Pharmacy, DIT University, Dehradun, India
| | | | | |
Collapse
|
83
|
Extraction Processes Affect the Composition and Bioavailability of Flavones from Lamiaceae Plants: A Comprehensive Review. Processes (Basel) 2021. [DOI: 10.3390/pr9091675] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lamiaceae plants are a widespread family of herbaceous plants with around 245 plant genera and nearly 22,576 species distributed in the world. Some of the most representative and widely studied Lamiaceae plants belong to the Ocimum, Origanum, Salvia, and Thymus genera. These plants are a rich source of bioactive molecules such as terpenes, flavonoids, and phenolic acids. In this sense, there is a subgroup of flavonoids classified as flavones. Flavones have antioxidant, anti-inflammatory, anti-cancer, and anti-diabetic potential; thus, efficient extraction techniques from their original plant matrixes have been developed. Currently, conventional extraction methods involving organic solvents are no longer recommended due to their environmental consequences, and new environmentally friendly techniques have been developed. Moreover, once extracted, the bioactivity of flavones is highly linked to their bioavailability, which is often neglected. This review aims to comprehensively gather recent information (2011–2021) regarding extraction techniques and their important relationship with the bioavailability of flavones from Lamiaceae plants including Salvia, Ocimum, Thymus, and Origanum.
Collapse
|
84
|
Lam PY, Lui ACW, Wang L, Liu H, Umezawa T, Tobimatsu Y, Lo C. Tricin Biosynthesis and Bioengineering. FRONTIERS IN PLANT SCIENCE 2021; 12:733198. [PMID: 34512707 PMCID: PMC8426635 DOI: 10.3389/fpls.2021.733198] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/28/2021] [Indexed: 05/23/2023]
Abstract
Tricin (3',5'-dimethoxyflavone) is a specialized metabolite which not only confers stress tolerance and involves in defense responses in plants but also represents a promising nutraceutical. Tricin-type metabolites are widely present as soluble tricin O-glycosides and tricin-oligolignols in all grass species examined, but only show patchy occurrences in unrelated lineages in dicots. More strikingly, tricin is a lignin monomer in grasses and several other angiosperm species, representing one of the "non-monolignol" lignin monomers identified in nature. The unique biological functions of tricin especially as a lignin monomer have driven the identification and characterization of tricin biosynthetic enzymes in the past decade. This review summarizes the current understanding of tricin biosynthetic pathway in grasses and tricin-accumulating dicots. The characterized and potential enzymes involved in tricin biosynthesis are highlighted along with discussion on the debatable and uncharacterized steps. Finally, current developments of bioengineering on manipulating tricin biosynthesis toward the generation of functional food as well as modifications of lignin for improving biorefinery applications are summarized.
Collapse
Affiliation(s)
- Pui Ying Lam
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - Andy C. W. Lui
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Lanxiang Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hongjia Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - Yuki Tobimatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - Clive Lo
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
85
|
Busche M, Acatay C, Martens S, Weisshaar B, Stracke R. Functional Characterisation of Banana ( Musa spp.) 2-Oxoglutarate-Dependent Dioxygenases Involved in Flavonoid Biosynthesis. FRONTIERS IN PLANT SCIENCE 2021; 12:701780. [PMID: 34484266 PMCID: PMC8415913 DOI: 10.3389/fpls.2021.701780] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/20/2021] [Indexed: 05/27/2023]
Abstract
Bananas (Musa) are non-grass, monocotyledonous, perennial plants that are well known for their edible fruits. Their cultivation provides food security and employment opportunities in many countries. Banana fruits contain high levels of minerals and phytochemicals, including flavonoids, which are beneficial for human nutrition. To broaden the knowledge on flavonoid biosynthesis in this major crop plant, we aimed to identify and functionally characterise selected structural genes encoding 2-oxoglutarate-dependent dioxygenases, involved in the formation of the flavonoid aglycon. Musa candidates genes predicted to encode flavanone 3-hydroxylase (F3H), flavonol synthase (FLS) and anthocyanidin synthase (ANS) were assayed. Enzymatic functionalities of the recombinant proteins were confirmed in vivo using bioconversion assays. Moreover, transgenic analyses in corresponding Arabidopsis thaliana mutants showed that MusaF3H, MusaFLS and MusaANS were able to complement the respective loss-of-function phenotypes, thus verifying functionality of the enzymes in planta. Knowledge gained from this work provides a new aspect for further research towards genetic engineering of flavonoid biosynthesis in banana fruits to increase their antioxidant activity and nutritional value.
Collapse
Affiliation(s)
- Mareike Busche
- Genetics and Genomics of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Christopher Acatay
- Genetics and Genomics of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Stefan Martens
- Fondazione Edmund Mach, Research and Innovation Centre, San Michele All’ Adige, Italy
| | - Bernd Weisshaar
- Genetics and Genomics of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Ralf Stracke
- Genetics and Genomics of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
86
|
Gok I. Functional Potential of Several Turkish Fermented Traditional Foods: Biotic Properties, Bioactive Compounds, and Health Benefits. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1962340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ilkay Gok
- Faculty of Applied Sciences, Gastronomy Department, Istanbul Okan University, Tuzla, Istanbul, Turkey
| |
Collapse
|
87
|
Song M, Liu Y, Li T, Liu X, Hao Z, Ding S, Panichayupakaranant P, Zhu K, Shen J. Plant Natural Flavonoids Against Multidrug Resistant Pathogens. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100749. [PMID: 34041861 PMCID: PMC8336499 DOI: 10.1002/advs.202100749] [Citation(s) in RCA: 165] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/10/2021] [Indexed: 02/05/2023]
Abstract
The increasing emergence and dissemination of multidrug resistant (MDR) bacterial pathogens accelerate the desires for new antibiotics. Natural products dominate the preferred chemical scaffolds for the discovery of antibacterial agents. Here, the potential of natural flavonoids from plants against MDR bacteria, is demonstrated. Structure-activity relationship analysis shows the prenylation modulates the activity of flavonoids and obtains two compounds, α-mangostin (AMG) and isobavachalcone (IBC). AMG and IBC not only display rapid bactericidal activity against Gram-positive bacteria, but also restore the susceptibility of colistin against Gram-negative pathogens. Mechanistic studies generally show such compounds bind to the phospholipids of bacterial membrane, and result in the dissipation of proton motive force and metabolic perturbations, through distinctive modes of action. The efficacy of AMG and IBC in four models associated with infection or contamination, is demonstrated. These results suggest that natural products of plants may be a promising and underappreciated reservoir to circumvent the existing antibiotic resistance.
Collapse
Affiliation(s)
- Meirong Song
- National Center for Veterinary Drug Safety EvaluationCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Ying Liu
- National Center for Veterinary Drug Safety EvaluationCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Tingting Li
- National Center for Veterinary Drug Safety EvaluationCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Xiaojia Liu
- National Center for Veterinary Drug Safety EvaluationCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Zhihui Hao
- Center of Research and Innovation of Chinese Traditional Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Shuangyang Ding
- Beijing Key Laboratory of Detection Technology for Animal‐Derived Food Safety and Beijing Laboratory for Food Quality and SafetyChina Agricultural UniversityBeijing100193China
| | - Pharkphoom Panichayupakaranant
- Department of Pharmacognosy and Pharmaceutical BotanyFaculty of Pharmaceutical SciencesPrince of Songkla UniversityHat‐Yai90112Thailand
| | - Kui Zhu
- National Center for Veterinary Drug Safety EvaluationCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
- Center of Research and Innovation of Chinese Traditional Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Jianzhong Shen
- National Center for Veterinary Drug Safety EvaluationCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
- Beijing Key Laboratory of Detection Technology for Animal‐Derived Food Safety and Beijing Laboratory for Food Quality and SafetyChina Agricultural UniversityBeijing100193China
| |
Collapse
|
88
|
Suksathan R, Rachkeeree A, Puangpradab R, Kantadoung K, Sommano SR. Phytochemical and nutritional compositions and antioxidants properties of wild edible flowers as sources of new tea formulations. NFS JOURNAL 2021. [DOI: 10.1016/j.nfs.2021.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
89
|
Xue J, Lu D, Wang S, Lu Z, Liu W, Wang X, Fang Z, He X. Integrated transcriptomic and metabolomic analysis provides insight into the regulation of leaf senescence in rice. Sci Rep 2021; 11:14083. [PMID: 34238989 PMCID: PMC8266841 DOI: 10.1038/s41598-021-93532-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/18/2021] [Indexed: 11/21/2022] Open
Abstract
Leaf senescence is one of the most precisely modulated developmental process and affects various agronomic traits of rice. Anti-senescence rice varieties are important for breeding application. However, little is known about the mechanisms underlying the metabolic regulatory process of leaf senescence in rice. In this study, we performed transcriptomic and metabolomic analyses of the flag leaves in Yuenong Simiao (YN) and YB, two indica rice cultivars that differ in terms of their leaf senescence. We found 8524 genes/204 metabolites were differentially expressed/accumulated in YN at 30 days after flowering (DAF) compared to 0 DAF, and 8799 genes/205 metabolites were differentially expressed in YB at 30 DAF compared to 0 DAF. Integrative analyses showed that a set of genes and metabolites involved in flavonoid pathway were significantly enriched. We identified that relative accumulation of PHENYLALANINE AMMONIA-LYASE (PAL), CINNAMATE 4-HYDROXYLASE (C4H), 4-COUMAROYL-COA LIGASE (4CL), CHALCONE SYNTHASE (CHS) and CHALCONE ISOMERASE (CHI) in YN30/0 was higher than that in YB30/0. Three flavonoid derivatives, including phloretin, luteolin and eriodictyol, showed lower abundances in YB than in YN at 30 DAF. We further revealed a MYB transcription factor, which is encoded by OsR498G0101613100 gene, could suppress the expression of CHI and CHS. Our results suggested a comprehensive analysis of leaf senescence in a view of transcriptome and metabolome and would contribute to exploring the molecular mechanism of leaf senescence in rice.
Collapse
Affiliation(s)
- Jiao Xue
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China
| | - Dongbai Lu
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China
| | - Shiguang Wang
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China
| | - Zhanhua Lu
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China
| | - Wei Liu
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China
| | - Xiaofei Wang
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China
| | - Zhiqiang Fang
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China
| | - Xiuying He
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China.
| |
Collapse
|
90
|
Shadrina AAN, Herdiyati Y, Wiani I, Satari MH, Kurnia D. Prediction Mechanism of Nevadensin as Antibacterial Agent against S. sanguinis: In vitro and In silico Studies. Comb Chem High Throughput Screen 2021; 25:1488-1497. [PMID: 34238151 DOI: 10.2174/1386207324666210707104440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/16/2021] [Accepted: 05/21/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Streptococcus sanguinis can contribute to tooth demineralization, which can lead to dental caries. Antibiotics used indefinitely to treat dental caries can lead to bacterial resistance. Discovering new antibacterial agents from natural products like Ocimum basilicum will help combat antibiotic resistance. In silico analysis (molecular docking) can help determine the lead compound by studying the molecular interaction between the drug and the target receptor (MurA enzyme and DNA gyrase). It is a potential candidate for antibacterial drug development. OBJECTIVE The research objective is to isolate the secondary metabolite of O. basilicum extract that has activity against S. sanguinis through in vitro and in silico analysis. METHODS n-Hexane extract of O. basilicum was purified by combining column chromatography with bioactivity-guided. The in vitro antibacterial activity against S. sanguinis was determined using the disc diffusion and microdilution method, while molecular docking simulation of nevadensin (1) with MurA enzyme and DNA gyrase was performed used PyRx 0.8 program. RESULTS Nevadensin from O. basilicum was successfully isolated and characterized by spectroscopic methods. This compound showed antibacterial activity against S. sanguinis with MIC and MBC values of 3750 and 15000 μg/mL, respectively. In silico analysis showed that the binding affinity to MurA was -8.5 Kcal/mol, and the binding affinity to DNA gyrase was -6.7 Kcal/mol. The binding of nevadensin-MurA is greater than fosfomycin-MurA. Otherwise, Nevadensin-DNA gyrase has a weaker binding affinity than fluoroquinolone-DNA gyrase and chlorhexidine-DNA gyrase. CONCLUSION Nevadensin showed potential as a new natural antibacterial agent by inhibiting the MurA enzyme rather than DNA gyrase.
Collapse
Affiliation(s)
- Aldina Amalia Nur Shadrina
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang. Indonesia
| | - Yetty Herdiyati
- Department of Pediatric Dentistry, Faculty of Dentistry, Universitas Padjadjaran , Bandung. Indonesia
| | - Ika Wiani
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang. Indonesia
| | - Mieke Hemiawati Satari
- Department of Oral Biology, Faculty of Dentistry, Universitas Padjadjaran, Bandung. Indonesia
| | - Dikdik Kurnia
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang. Indonesia
| |
Collapse
|
91
|
Bourdon M, Gaynord J, Müller KH, Evans G, Wallis S, Aston P, Spring DR, Wightman R. Microscopy and chemical analyses reveal flavone-based woolly fibres extrude from micron-sized holes in glandular trichomes of Dionysia tapetodes. BMC PLANT BIOLOGY 2021; 21:258. [PMID: 34134628 PMCID: PMC8210372 DOI: 10.1186/s12870-021-03010-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 05/05/2021] [Indexed: 05/14/2023]
Abstract
BACKGROUND Dionysia tapetodes, a small cushion-forming mountainous evergreen in the Primulaceae, possesses a vast surface-covering of long silky fibres forming the characteristic "woolly" farina. This contrasts with some related Primula which instead form a fine powder. Farina is formed by specialized cellular factories, a type of glandular trichome, but the precise composition of the fibres and how it exits the cell is poorly understood. Here, using a combination of cell biology (electron and light microscopy) and analytical chemical techniques, we present the principal chemical components of the wool and its mechanism of exit from the glandular trichome. RESULTS We show the woolly farina consists of micron-diameter fibres formed from a mixture of flavone and substituted flavone derivatives. This contrasts with the powdery farina, consisting almost entirely of flavone. The woolly farina in D. tapetodes is extruded through specific sites at the surface of the trichome's glandular head cell, characterised by a small complete gap in the plasma membrane, cell wall and cuticle and forming a tight seal between the fibre and hole. The data is consistent with formation and thread elongation occurring from within the cell. CONCLUSIONS Our results suggest the composition of the D. tapetodes farina dictates its formation as wool rather than powder, consistent with a model of thread integrity relying on intermolecular H-bonding. Glandular trichomes produce multiple wool fibres by concentrating and maintaining their extrusion at specific sites at the cell cortex of the head cell. As the wool is extensive across the plant, there may be associated selection pressures attributed to living at high altitudes.
Collapse
Affiliation(s)
- Matthieu Bourdon
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, CB2 1LR, UK
| | - Josephine Gaynord
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Karin H Müller
- Cambridge Advanced Imaging Centre, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge, CB2 3DY, UK
| | - Gareth Evans
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, CB2 1LR, UK
| | - Simon Wallis
- Cambridge University Botanic Garden, 1 Brookside, Cambridge, CB2 1JE, UK
| | - Paul Aston
- Cambridge University Botanic Garden, 1 Brookside, Cambridge, CB2 1JE, UK
| | - David R Spring
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Raymond Wightman
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, CB2 1LR, UK.
| |
Collapse
|
92
|
|
93
|
Carotenoid and phenolic compound profiles of cooked pulps of orange and yellow peach palm fruits (Bactris gasipaes) from the Brazilian Amazonia. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103873] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
94
|
Jubaidi FF, Zainalabidin S, Taib IS, Hamid ZA, Budin SB. The Potential Role of Flavonoids in Ameliorating Diabetic Cardiomyopathy via Alleviation of Cardiac Oxidative Stress, Inflammation and Apoptosis. Int J Mol Sci 2021; 22:ijms22105094. [PMID: 34065781 PMCID: PMC8151300 DOI: 10.3390/ijms22105094] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/20/2021] [Accepted: 04/30/2021] [Indexed: 12/15/2022] Open
Abstract
Diabetic cardiomyopathy is one of the major mortality risk factors among diabetic patients worldwide. It has been established that most of the cardiac structural and functional alterations in the diabetic cardiomyopathy condition resulted from the hyperglycemia-induced persistent oxidative stress in the heart, resulting in the maladaptive responses of inflammation and apoptosis. Flavonoids, the most abundant phytochemical in plants, have been reported to exhibit diverse therapeutic potential in medicine and other biological activities. Flavonoids have been widely studied for their effects in protecting the heart against diabetes-induced cardiomyopathy. The potential of flavonoids in alleviating diabetic cardiomyopathy is mainly related with their remedial actions as anti-hyperglycemic, antioxidant, anti-inflammatory, and anti-apoptotic agents. In this review, we summarize the latest findings of flavonoid treatments on diabetic cardiomyopathy as well as elucidating the mechanisms involved.
Collapse
Affiliation(s)
- Fatin Farhana Jubaidi
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (F.F.J.); (I.S.T.); (Z.A.H.)
| | - Satirah Zainalabidin
- Center for Toxicology and Health Risk Research, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
| | - Izatus Shima Taib
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (F.F.J.); (I.S.T.); (Z.A.H.)
| | - Zariyantey Abd Hamid
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (F.F.J.); (I.S.T.); (Z.A.H.)
| | - Siti Balkis Budin
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (F.F.J.); (I.S.T.); (Z.A.H.)
- Correspondence: ; Tel.: +603-9289-7645
| |
Collapse
|
95
|
Antidementia Effects of Alternanthera philoxeroides in Ovariectomized Mice Supported by NMR-Based Metabolomic Analysis. Molecules 2021; 26:molecules26092789. [PMID: 34065080 PMCID: PMC8125874 DOI: 10.3390/molecules26092789] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/01/2021] [Accepted: 05/06/2021] [Indexed: 11/17/2022] Open
Abstract
The crude ethanol extract of the whole plant of Alternanthera philoxeroides (Mart.) Griseb was investigated for its potential as antidementia, induced by estrogen deprivation, based on in vitro antioxidant activity, β-amyloid aggregation inhibition and cholinesterase inhibitory activity, as well as in vivo Morris water maze task (MWMT), novel object recognition task (NORT), and Y-maze task. To better understand the effect of the extract, oxidative stress-induced brain membrane damage through lipid peroxidation in the whole brain was also investigated. Additionally, expressions of neuroinflammatory cytokines (IL-1β, IL-6 and TNF-α) and estrogen receptor-mediated facilitation genes such as PI3K and AKT mRNA in the hippocampus and frontal cortex were also evaluated. These effects were confirmed by the determination of its serum metabolites by NMR metabolomic analysis. Both the crude extract of A. philoxeroides and its flavone constituents were found to inhibit β-amyloid (Aβ) aggregation.
Collapse
|
96
|
Xu J, Zheng T, Huang X, Wang Y, Yin G, Du W. Procyanidine resists the fibril formation of human islet amyloid polypeptide. Int J Biol Macromol 2021; 183:1067-1078. [PMID: 33965498 DOI: 10.1016/j.ijbiomac.2021.05.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/19/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022]
Abstract
Human islet amyloid polypeptide (hIAPP) is widely studied due to its close correlation with the pathogenic mechanism of type II diabetes mellitus (T2DM). Bioflavonoids have been used in the neurodegeneration and diabetes studies. However, the structure-activity relationship remains unclear in many of these compounds. In this work, we performed diverse biophysical and biochemical methods to explore the inhibition of procyanidine on hIAPP and compared with that on amyloid-β (Aβ) protein which is linked to Alzheimer's disease (AD). The procyanidine effectively inhibited the aggregation of hIAPP and Aβ through hydrophobic and hydrogen bonding interactions, it dissolved the aged fibrils into nanoscale particles. The compound also ameliorated the cytotoxicity and the membrane leakage by reducing the peptide oligomerization. The procyanidine showed better binding affinity and inhibitory effects on peptide aggregation and upregulated the cell viability to hIAPP than to Aβ, which could be a prospective inhibitor against hIAPP. This work also offered a possible strategy for T2DM and AD treatments.
Collapse
Affiliation(s)
- Jufei Xu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Ting Zheng
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Xiangyi Huang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Yanan Wang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Guowei Yin
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Weihong Du
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| |
Collapse
|
97
|
Ahmed OM, AbouZid SF, Ahmed NA, Zaky MY, Liu H. An Up-to-Date Review on Citrus Flavonoids: Chemistry and Benefits in Health and Diseases. Curr Pharm Des 2021; 27:513-530. [PMID: 33245267 DOI: 10.2174/1381612826666201127122313] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 08/09/2020] [Indexed: 11/22/2022]
Abstract
Flavonoids, the main class of polyphenols, are characterized by the presence of 2-phenyl-benzo-pyrane nucleus. They are found in rich quantities in citrus fruits. Citrus flavonoids are classified into flavanones, flavones, flavonols, polymethoxyflavones and anthocyanins (found only in blood oranges). Flavanones are the most abundant flavonoids in citrus fruits. In many situations, there are structure-function relationships. Due to their especial structures and presence of many hydroxyls, polymethoxies and glycoside moiety, the flavonoids have an array of multiple biological and pharmacological activities. This article provides an updated overview of the differences in chemical structures of the classes and members of citrus flavonoids and their benefits in health and diseases. The review article also sheds light on the mechanisms of actions of citrus flavonoids in the treatment of different diseases, including arthritis, diabetes mellitus, cancer and neurodegenerative disorders as well as liver, kidney and heart diseases. The accumulated and updated knowledge in this review may provide useful information and ideas in the discovery of new strategies for the use of citrus flavonoids in the protection, prevention and therapy of diseases.
Collapse
Affiliation(s)
- Osama M Ahmed
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Egypt
| | - Sameh F AbouZid
- Pharmacognosy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Noha A Ahmed
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Egypt
| | - Mohamed Y Zaky
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Egypt
| | - Han Liu
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| |
Collapse
|
98
|
Lombrea A, Scurtu AD, Avram S, Pavel IZ, Turks M, Lugiņina J, Peipiņš U, Dehelean CA, Soica C, Danciu C. Anticancer Potential of Betulonic Acid Derivatives. Int J Mol Sci 2021; 22:3676. [PMID: 33916089 PMCID: PMC8037575 DOI: 10.3390/ijms22073676] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 12/13/2022] Open
Abstract
Clinical trials have evidenced that several natural compounds, belonging to the phytochemical classes of alkaloids, terpenes, phenols and flavonoids, are effective for the management of various types of cancer. Latest research has proven that natural products and their semisynthetic variants may serve as a starting point for new drug candidates with a diversity of biological and pharmacological activities, designed to improve bioavailability, overcome cellular resistance, and enhance therapeutic efficacy. This review was designed to bring an update regarding the anticancer potential of betulonic acid and its semisynthetic derivatives. Chemical derivative structures of betulonic acid including amide, thiol, and piperidine groups, exert an amplification of the in vitro anticancer potential of betulonic acid. With the need for more mechanistic and in vivo data, some derivatives of betulonic acids may represent promising anticancer agents.
Collapse
Affiliation(s)
- Adelina Lombrea
- Department of Pharmacognosy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.L.); (S.A.); (I.Z.P.); (C.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (C.A.D.); (C.S.)
| | - Alexandra Denisa Scurtu
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (C.A.D.); (C.S.)
- Department of Toxicology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Stefana Avram
- Department of Pharmacognosy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.L.); (S.A.); (I.Z.P.); (C.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (C.A.D.); (C.S.)
| | - Ioana Zinuca Pavel
- Department of Pharmacognosy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.L.); (S.A.); (I.Z.P.); (C.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (C.A.D.); (C.S.)
| | - Māris Turks
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, LV-1048 Riga, Latvia; (M.T.); (J.L.)
| | - Jevgeņija Lugiņina
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, LV-1048 Riga, Latvia; (M.T.); (J.L.)
| | - Uldis Peipiņš
- Nature Science Technologies Ltd., Saules Str. 19, LV-3601 Ventspils, Latvia;
| | - Cristina Adriana Dehelean
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (C.A.D.); (C.S.)
- Department of Toxicology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Codruta Soica
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (C.A.D.); (C.S.)
- Department of Pharmaceutical Chemistry, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Corina Danciu
- Department of Pharmacognosy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (A.L.); (S.A.); (I.Z.P.); (C.D.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (C.A.D.); (C.S.)
| |
Collapse
|
99
|
Alhamad DW, Elgendy SM, Al-Tel TH, Omar HA. Tangeretin as an adjuvant and chemotherapeutic sensitizer against various types of cancers: a comparative overview. J Pharm Pharmacol 2021; 73:601-610. [PMID: 33772294 DOI: 10.1093/jpp/rgab013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/18/2021] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Cancer is a leading cause of disabling morbidities and death worldwide. Although there are various strategies for the management of cancer, the severe adverse effects negatively impact the patient's quality of life. In addition, the development of resistance limits the efficacy of many chemotherapeutics. Many natural agents are capable of reducing the adverse effects associated with chemotherapy and improving the therapeutic outcome. Tangeretin, a polymethoxy flavone, is one of the promising natural anticancer agents. KEY FINDINGS Tangeretin not only targets various malignancies but also synergizes chemotherapeutic agents and reverses cancer resistance. Hence, the application of tangeretin as an adjuvant in cancer chemotherapy would be a promising strategy. SUMMARY This work critically highlighted the proposed anticancer activity of tangeretin and discussed its potential combination with various chemotherapeutic agents. Additionally, it shed light on tangeretin chemical derivatives with improved pharmacokinetic and pharmacodynamic activity. Finally, this review described flavonoid biosynthetic pathways and how bioengineering can be employed to enhance the production yield of tangeretin. Thus, this work paves the way for the rational clinical utilization of tangeretin as a safe and effective adjuvant in chemotherapeutic protocols.
Collapse
Affiliation(s)
- Dima W Alhamad
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Sara M Elgendy
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Taleb H Al-Tel
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Hany A Omar
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
100
|
Cayetano-Salazar L, Olea-Flores M, Zuñiga-Eulogio MD, Weinstein-Oppenheimer C, Fernández-Tilapa G, Mendoza-Catalán MA, Zacapala-Gómez AE, Ortiz-Ortiz J, Ortuño-Pineda C, Navarro-Tito N. Natural isoflavonoids in invasive cancer therapy: From bench to bedside. Phytother Res 2021; 35:4092-4110. [PMID: 33720455 DOI: 10.1002/ptr.7072] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 02/08/2021] [Accepted: 02/23/2021] [Indexed: 01/23/2023]
Abstract
Cancer is a public health problem worldwide, and one of the crucial steps within tumor progression is the invasion and metastasis of cancer cells, which are directly related to cancer-associated deaths in patients. Recognizing the molecular markers involved in invasion and metastasis is essential to find targeted therapies in cancer. Interestingly, about 50% of the discovered drugs used in chemotherapy have been obtained from natural sources such as plants, including isoflavonoids. Until now, most drugs are used in chemotherapy targeting proliferation and apoptosis-related molecules. Here, we review recent studies about the effect of isoflavonoids on molecular targets and signaling pathways related to invasion and metastasis in cancer cell cultures, in vivo assays, and clinical trials. This review also reports that glycitein, daidzein, and genistein are the isoflavonoids most studied in preclinical and clinical trials and displayed the most anticancer activity targeting invasion-related proteins such as MMP-2 and MMP-9 and also EMT-associated proteins. Therefore, the diversity of isoflavonoids is promising molecules to be used as chemotherapeutic in invasive cancer. In the future, more clinical trials are needed to validate the effectiveness of the various natural isoflavonoids in the treatment of invasive cancer.
Collapse
Affiliation(s)
- Lorena Cayetano-Salazar
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Monserrat Olea-Flores
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Miriam D Zuñiga-Eulogio
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | | | - Gloria Fernández-Tilapa
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Miguel A Mendoza-Catalán
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Ana E Zacapala-Gómez
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Julio Ortiz-Ortiz
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Carlos Ortuño-Pineda
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| |
Collapse
|