51
|
Hwang YJ, Myung H. Engineered Bacteriophage T7 as a Potent Anticancer Agent in vivo. Front Microbiol 2020; 11:491001. [PMID: 33072000 PMCID: PMC7541933 DOI: 10.3389/fmicb.2020.491001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 09/02/2020] [Indexed: 12/21/2022] Open
Abstract
Oncolytic viruses (OVs) induce antitumor effect by both direct lysis of target cells and eliciting immunogenic response to the virus and ultimately to the target cells. These viruses are usually natural human pathogens. Bacteriophages are natural pathogens of bacteria that do not infect human and have greater advantages in safety, manipulation, and production over human viruses. We constructed an engineered bacteriophage T7 displaying a peptide, which targets murine melanoma cells and harbors a mammalian expression cassette of the cytokine granulocyte macrophage-colony stimulating factor (GM-CSF) in viral genomic DNA. The engineered phage was successfully transduced to B16F10 melanoma cells both in vitro and in vivo. GM-CSF was expressed from the transduced phage DNA. All mice treated with the phage intravenously survived for 25 days until the end of experiment, while only 40% of those not treated survived. During the 16 days of phage treatment, phage T7 displaying homing peptide and expressing GM-CSF inhibited tumor growth by 72% compared to the untreated control. Serum cytokine levels of IL-1α, TNF-α, and GM-CSF were seen to increase during the treatment. Immunohistochemical analysis of tumor tissue revealed infiltration by macrophages, dendritic cells (DCs), and CD8+ T cells. Migration of murine macrophages to bacteriophages was also observed in in vitro transwell assays in both time- and dose-dependent manners. Taken together, the recombinant bacteriophage T7 efficiently inhibited tumor growth by changing the tumor microenvironment and recruiting anti-tumor immune cells.
Collapse
Affiliation(s)
- Yoon Jung Hwang
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Yong-In, South Korea.,Bacteriophage Bank of Korea, Hankuk University of Foreign Studies, Yong-In, South Korea
| | - Heejoon Myung
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Yong-In, South Korea.,Bacteriophage Bank of Korea, Hankuk University of Foreign Studies, Yong-In, South Korea.,LyseNTech, Yong-In, South Korea
| |
Collapse
|
52
|
Characterization of the Impact of Oncolytic Vesicular Stomatitis Virus on the Trafficking, Phenotype, and Antigen Presentation Potential of Neutrophils and Their Ability to Acquire a Non-Structural Viral Protein. Int J Mol Sci 2020; 21:ijms21176347. [PMID: 32882969 PMCID: PMC7570176 DOI: 10.3390/ijms21176347] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/22/2020] [Accepted: 08/28/2020] [Indexed: 01/06/2023] Open
Abstract
Neutrophils are innate leukocytes that mount a rapid response to invading pathogens and sites of inflammation. Although neutrophils were traditionally considered responders to bacterial infections, recent advances have demonstrated that they are interconnected with both viral infections and cancers. One promising treatment strategy for cancers is to administer an oncolytic virus to activate the immune system and directly lyse cancerous cells. A detailed characterization of how the innate immune system responds to a viral-based therapy is paramount in identifying its systemic effects. This study analyzed how administering the rhabdovirus vesicular stomatitis virus (VSV) intravenously at 1 × 109 PFU acutely influenced neutrophil populations. Bone marrow, blood, lungs, and spleen were acquired three- and 24-h after administration of VSV for analysis of neutrophils by flow cytometry. Infection with VSV caused neutrophils to rapidly egress from the bone marrow and accumulate in the lungs. A dramatic increase in immature neutrophils was observed in the lungs, as was an increase in the antigen presentation potential of these cells within the spleen. Furthermore, the potential for neutrophils to acquire viral transgene-encoded proteins was monitored using a variant of VSV that expressed enhanced green fluorescent protein (GFP). If an in vitro population of splenocytes were exposed to αCD3 and αCD28, a substantial proportion of the neutrophils would become GFP-positive. This suggested that the neutrophils could either acquire more virus-encoded antigens from infected splenocytes or were being directly infected. Five different dosing regimens were tested in mice, and it was determined that a single dose of VSV or two doses of VSV administered at a 24-h interval, resulted in a substantial proportion of neutrophils in the bone marrow becoming GFP-positive. This correlated with a decrease in the number of splenic neutrophils. Two doses administered at intervals longer than 24-h did not have these effects, suggesting that neutrophils became resistant to antigen uptake or direct infection with VSV beyond 24-h of activation. These findings implicated neutrophils as major contributors to oncolytic rhabdoviral therapies. They also provide several clear future directions for research and suggest that neutrophils should be carefully monitored during the development of all oncolytic virus-based treatment regimens.
Collapse
|
53
|
Lee KJ, Lee SW, Woo HN, Cho HM, Yu DB, Jeong SY, Joo CH, Jeong GS, Lee H. Real-time monitoring of oncolytic VSV properties in a novel in vitro microphysiological system containing 3D multicellular tumor spheroids. PLoS One 2020; 15:e0235356. [PMID: 32628693 PMCID: PMC7337297 DOI: 10.1371/journal.pone.0235356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 06/14/2020] [Indexed: 12/28/2022] Open
Abstract
As a new class of cancer therapeutic agents, oncolytic viruses (OVs) have gained much attention not only due to their ability to selectively replicate in and lyse tumor cells, but also for their potential to stimulate antitumor immune responses. As a result, there is an increasing need for in vitro modeling systems capable of recapitulating the 3D physiological tumor microenvironment. Here, we investigated the potential of our recently developed microphysiological system (MPS), featuring a vessel-like channel to reflect the in vivo tumor microenvironment and serving as culture spaces for 3D multicellular tumor spheroids (MCTSs). The MCTSs consist of cancer A549 cells, stromal MRC5 cells, endothelial HUVECs, as well as the extracellular matrix. 3D MCTSs residing in the MPS were infected with oncolytic VSV expressing GFP (oVSV-GFP). Post-infection, GFP signal intensity increased only in A549 cells of the MPS. On the other hand, HUVECs were susceptible to virus infection under 2D culture and IFN-β secretion was quite delayed in HUVECs. These results thus demonstrate that OV antitumoral characteristics can be readily monitored in the MPS and that its behavior therein somewhat differs compared to its activity in 2D system. In conclusion, we present the first application of the MPS, an in vitro model that was developed to better reflect in vivo conditions. Its various advantages suggest the 3D MCTS-integrated MPS can serve as a first line monitoring system to validate oncolytic virus efficacy.
Collapse
Affiliation(s)
- Kyoung Jin Lee
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, Korea
- Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang Woo Lee
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
| | - Ha-Na Woo
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, Korea
- Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
| | - Hae Mi Cho
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, Korea
- Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
| | - Dae Bong Yu
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, Korea
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Soo Yeon Jeong
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
| | - Chul Hyun Joo
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, Korea
- Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
| | - Gi Seok Jeong
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, Korea
- * E-mail: (HL); (GSJ)
| | - Heuiran Lee
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, Korea
- Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
- * E-mail: (HL); (GSJ)
| |
Collapse
|
54
|
Zhang Y, Liu Z. Oncolytic Virotherapy for Malignant Tumor: Current Clinical Status. Curr Pharm Des 2020; 25:4251-4263. [PMID: 31682207 DOI: 10.2174/1381612825666191104090544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/29/2019] [Indexed: 12/12/2022]
Abstract
Oncolytic viruses, as novel biological anti-tumor agents, provide anti-tumor therapeutic effects by different mechanisms including directly selective tumor cell lysis and secondary systemic anti-tumor immune responses. Some wide-type and genetically engineered oncolytic viruses have been applied in clinical trials. Among them, T-Vec has a significant therapeutic effect on melanoma patients and received the approval of the US Food and Drug Administration (FDA) as the first oncolytic virus to treat cancer in the US. However, the mechanisms of virus interaction with tumor and immune systems have not been clearly elucidated and there are still no "gold standards" for instructions of virotherapy in clinical trials. This Review collected the recent clinical trials data from 2005 to summarize the basic oncolytic viruses biology, describe the application in recent clinical trials, and discuss the challenges in the application of oncolytic viruses in clinical trials.
Collapse
Affiliation(s)
- Yuhui Zhang
- Department of Spine Surgery, Renji Hospital, Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Zhuoming Liu
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, United States
| |
Collapse
|
55
|
Oncolytic Adenoviruses: Strategies for Improved Targeting and Specificity. Cancers (Basel) 2020; 12:cancers12061504. [PMID: 32526919 PMCID: PMC7352392 DOI: 10.3390/cancers12061504] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/29/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer is a major health problem. Most of the treatments exhibit systemic toxicity, as they are not targeted or specific to cancerous cells and tumors. Adenoviruses are very promising gene delivery vectors and have immense potential to deliver targeted therapy. Here, we review a wide range of strategies that have been tried, tested, and demonstrated to enhance the specificity of oncolytic viruses towards specific cancer cells. A combination of these strategies and other conventional therapies may be more effective than any of those strategies alone.
Collapse
|
56
|
Scholz I, Montoya C, Vela E. Examination of vesicular stomatitis virus-induced morphology changes in individual Vero cells by QMod microscopy. Biotechniques 2020; 68:305-310. [PMID: 32202142 DOI: 10.2144/btn-2019-0137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Viral infection of cultured cells induces changes in the biophysical characteristics of the affected cells. Advanced microscopic cameras such as Ovizio's QMod, coupled with the appropriate software, can measure a variety of characteristics on a per-cell basis. We have employed this system to monitor the progression of vesicular stomatitis virus infection in Vero cells and to describe the cellular changes associated with advancing vesicular stomatitis virus infection. The measurements of cellular characteristics are operator-independent, and the goal is to establish a robust method to mathematically determine viral infection levels in a given sample. This will provide a means to measure viral titer in a faster and less subjective way than manual reading of plaque assays or tissue culture infectious dose 50 assays.
Collapse
Affiliation(s)
- Isabel Scholz
- Process Development, Ology Bioservices, Alachua, FL 32615, USA
| | | | - Eric Vela
- Process Development, Ology Bioservices, Alachua, FL 32615, USA
| |
Collapse
|
57
|
Li R, Qiao S, Chen XX, Xing G, Li X, Zhang G. Vesicular stomatitis virus glycoprotein suppresses nuclear factor kappa-B- and mitogen-activated protein kinase-mediated pro-inflammatory responses dependent on sialic acids. Int J Biol Macromol 2020; 152:828-833. [PMID: 32126199 DOI: 10.1016/j.ijbiomac.2020.02.322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 01/12/2023]
Abstract
Vesicular stomatitis (VS), characterized by vesicular lesions, produces significant economic losses in livestock industry. Infection by its causative agent, VS virus (VSV), has been previously shown to be mediated by the glycoprotein (G) during attachment, endocytosis and membrane fusion. In the current study, we revealed a novel role of VSV G protein in negative regulation of host cell pro-inflammatory responses. We determined that VSV G protein inhibited lipopolysaccharide (LPS)-induced pro-inflammatory responses as naïve VSV virions in murine peritoneal macrophage-like cell line RAW 264.7. Furthermore, we identified that VSV G protein suppressed nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK)-mediated pro-inflammatory pathways in a dose-dependent manner. Moreover, we demonstrated that α2-3-linked sialic acids on VSV G protein were involved in antagonizing NF-κB- and MAPK-mediated pro-inflammatory responses. All these results expand the knowledge of VSV pathogenesis and strengthen the importance of VSV G protein in host innate immunity, which support implications for the development of VSV-based vaccination and oncolysis.
Collapse
Affiliation(s)
- Rui Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
| | - Songlin Qiao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
| | - Xin-Xin Chen
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
| | - Guangxu Xing
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
| | - Xuewu Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China
| | - Gaiping Zhang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China; Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| |
Collapse
|
58
|
The Propagation and Quantification of Two Emerging Oncolytic Viruses: Vesicular Stomatitis (VSV) and Zika (ZIKV). Methods Mol Biol 2019. [PMID: 31776931 DOI: 10.1007/978-1-0716-0203-4_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Developments in genetic engineering have allowed researchers and clinicians to begin harnessing viruses to target and kill cancer cells, either through direct lysis or through recruitment of antiviral immune responses. Two powerful viruses in the fight against cancer are the single-stranded RNA viruses vesicular stomatitis virus and Zika virus. Here, we describe methods to propagate and titer these two viruses. We also describe a simple cell-killing assay to begin testing modified viruses for increased potential killing of glioblastoma cells.
Collapse
|
59
|
Abstract
Vesicular stomatitis Indiana virus (VSIV) is a veterinary pathogen that is also used as a backbone for many oncolytic and vaccine strategies. In natural and therapeutic settings, viral infections like VSIV are sensed by the host, and as a result the host cells make proteins that can protect them from viruses. In the case of VSIV, these antiviral proteins constrain viral replication and protect most healthy tissues from virus infection. In order to understand how VSIV causes disease and how healthy tissues are protected from VSIV-based therapies, it is crucial that we identify the proteins that inhibit VSIV. Here, we show that TRIM69 is an antiviral defense that can potently and specifically block VSIV infection. Vesicular stomatitis Indiana virus (VSIV), formerly known as vesicular stomatitis virus (VSV) Indiana (VSVIND), is a model virus that is exceptionally sensitive to the inhibitory action of interferons (IFNs). Interferons induce an antiviral state by stimulating the expression of hundreds of interferon-stimulated genes (ISGs). These ISGs can constrain viral replication, limit tissue tropism, reduce pathogenicity, and inhibit viral transmission. Since VSIV is used as a backbone for multiple oncolytic and vaccine strategies, understanding how ISGs restrict VSIV not only helps in understanding VSIV-induced pathogenesis but also helps us evaluate and understand the safety and efficacy of VSIV-based therapies. Thus, there is a need to identify and characterize the ISGs that possess anti-VSIV activity. Using arrayed ISG expression screening, we identified TRIM69 as an ISG that potently inhibits VSIV. This inhibition was highly specific as multiple viruses, including influenza A virus, HIV-1, Rift Valley fever virus, and dengue virus, were unaffected by TRIM69. Indeed, just one amino acid substitution in VSIV can govern sensitivity/resistance to TRIM69. Furthermore, TRIM69 is highly divergent in human populations and exhibits signatures of positive selection that are consistent with this gene playing a key role in antiviral immunity. We propose that TRIM69 is an IFN-induced inhibitor of VSIV and speculate that TRIM69 could be important in limiting VSIV pathogenesis and might influence the specificity and/or efficacy of vesiculovirus-based therapies. IMPORTANCE Vesicular stomatitis Indiana virus (VSIV) is a veterinary pathogen that is also used as a backbone for many oncolytic and vaccine strategies. In natural and therapeutic settings, viral infections like VSIV are sensed by the host, and as a result the host cells make proteins that can protect them from viruses. In the case of VSIV, these antiviral proteins constrain viral replication and protect most healthy tissues from virus infection. In order to understand how VSIV causes disease and how healthy tissues are protected from VSIV-based therapies, it is crucial that we identify the proteins that inhibit VSIV. Here, we show that TRIM69 is an antiviral defense that can potently and specifically block VSIV infection.
Collapse
|
60
|
Tamoxifen Protects from Vesicular Stomatitis Virus Infection. Pharmaceuticals (Basel) 2019; 12:ph12040142. [PMID: 31547012 PMCID: PMC6958322 DOI: 10.3390/ph12040142] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 08/30/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Tamoxifen (TAM) is an estrogen-receptor antagonist, widely used in the adjuvant treatment of early stage estrogen-sensitive breast cancer. Several studies have revealed new biological targets of TAM that mediate the estrogen receptor independent activities of the drug. Recently, the antiviral activity of TAM on replication of human immunodeficiency virus (HIV), hepatitis C virus (HCV) and Herpes simplex virus (HSV-1) in vitro was described. In the current study, we aimed to investigate the effect of TAM on infection with vesicular stomatitis virus (VSV). METHODS Vero cells were treated with different concentrations of TAM for 24 h and then infected with VSV. Additionally, C57BL/6 mice were pretreated with 4 mg TAM, one day and three days before infection with VSV. Results: Treatment of Vero cells with TAM suppressed the viral replication of VSV in vitro and in vivo. The inhibitory effect of TAM on VSV replication correlated with an enhanced interferon-I response and stimulation of macrophages. Conclusions: TAM was identified as being capable to protect from VSV infection in vitro and in vivo. Consequently, this antiviral function (as an advantageous side-effect of TAM) might give rise to new clinical applications, such as treatment of resistant virus infections, or serve as an add-on to standard antiviral therapy.
Collapse
|
61
|
The lytic activity of VSV-GP treatment dominates the therapeutic effects in a syngeneic model of lung cancer. Br J Cancer 2019; 121:647-658. [PMID: 31530903 PMCID: PMC6889376 DOI: 10.1038/s41416-019-0574-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/30/2019] [Accepted: 08/19/2019] [Indexed: 12/16/2022] Open
Abstract
Background Oncolytic virotherapy is thought to result in direct virus-induced lytic tumour killing and simultaneous activation of innate and tumour-specific adaptive immune responses. Using a chimeric vesicular stomatitis virus variant VSV-GP, we addressed the direct oncolytic effects and the role of anti-tumour immune induction in the syngeneic mouse lung cancer model LLC1. Methods To study a tumour system with limited antiviral effects, we generated interferon receptor-deficient cells (LLC1-IFNAR1−/−). Therapeutic efficacy of VSV-GP was assessed in vivo in syngeneic C57BL/6 and athymic nude mice bearing subcutaneous tumours. VSV-GP treatment effects were analysed using bioluminescent imaging (BLI), immunohistochemistry, ELISpot, flow cytometry, multiplex ELISA and Nanostring® assays. Results Interferon insensitivity correlated with VSV-GP replication and therapeutic outcome. BLI revealed tumour-to-tumour spread of viral progeny in bilateral tumours. Histological and gene expression analysis confirmed widespread and rapid infection and cell killing within the tumour with activation of innate and adaptive immune-response markers. However, treatment outcome was increased in the absence of CD8+ T cells and surviving mice showed little protection from tumour re-challenge, indicating limited therapeutic contribution by the activated immune system. Conclusion These studies present a case for a predominantly lytic treatment effect of VSV-GP in a syngeneic mouse lung cancer model.
Collapse
|
62
|
Douzandegan Y, Tahamtan A, Gray Z, Nikoo HR, Tabarraei A, Moradi A. Cell Death Mechanisms in Esophageal Squamous Cell Carcinoma Induced by Vesicular Stomatitis Virus Matrix Protein. Osong Public Health Res Perspect 2019; 10:246-252. [PMID: 31497497 PMCID: PMC6711713 DOI: 10.24171/j.phrp.2019.10.4.08] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Objectives Vesicular stomatitis virus (VSV) is under development as an oncolytic virus due to its preferential replication in cancer cells and oncolytic activity, however the viral components responsible have not yet been determined. In this study the effects of VSV wild-type (wt) and M51R-mutant matrix proteins (M51R-mMP) on apoptosis, pyroptosis, necroptosis, and autophagy pathways, in an esophagus cancer cell line (KYSE-30) were investigated. Methods The KYSE-30 cells were transfected with pcDNA3.1 plasmids encoding wt or M51R-mMP, and apoptosis, pyroptosis, necroptosis, and autophagy were evaluated 48 and 72 hours after transfection. Results KYSE-30 cells transfected with VSV wt and M51R-mMPs significantly reduced cell viability to < 50% at 72 hours post-transfection. M51R-MP significantly increased the concentration of caspase-8 and caspase-9 at 48 and 72 hours post-transfection, respectively ( p < 0.05). In contrast, no significant changes were detected following transfection with the VSV wt plasmid. Moreover, VSV wt and M51R-mMP transfected cells did not change the expression of caspase-3. VSV wt and M51R-mMPs did not mMP change caspase-1 expression (a marker of pyroptosis) at 48 and 72 hours post-transfection. However, M51R-mMP and VSV wt transfected cells significantly increased RIP-1 (a marker of necroptosis) expression at 72 hours post-infection ( p < 0.05). Beclin-1, a biomarker of autophagy, was also induced by transfection with VSV wt or M51R-mMPs at 48 hours post-transfection. Conclusion The results in this study indicated that VSV exerts oncolytic activity in KYSE-30 tumor cells through different cell death pathways, suggesting that M51R-mMP may potentially be used to enhance oncolysis.
Collapse
Affiliation(s)
- Yousef Douzandegan
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Alireza Tahamtan
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran.,Infectious Diseases Research Centre, Golestan University of Medical Sciences, Gorgan, Iran
| | - Zahra Gray
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Hadi Razavi Nikoo
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Alijan Tabarraei
- Infectious Diseases Research Centre, Golestan University of Medical Sciences, Gorgan, Iran
| | - Abdolvahab Moradi
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
63
|
Ajina A, Maher J. Synergistic combination of oncolytic virotherapy with CAR T-cell therapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 164:217-292. [PMID: 31383406 DOI: 10.1016/bs.pmbts.2019.06.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
For patients with advanced hematological malignancies the therapeutic landscape has been transformed by the emergence of adoptive cell transfer utilizing autologous chimeric antigen receptor (CAR)-redirected T-cells. However, solid tumors have proved far more resistant to this approach. Here, we summarize the numerous challenges faced by CAR T-cells designed to target solid tumors, highlighting, in particular, issues related to impaired trafficking, expansion, and persistence. In parallel, we draw attention to exciting developments in the burgeoning field of oncolytic virotherapy and posit strategies for the synergistic combination of oncolytic viruses with CAR T-cells to improve outcomes for patients with advanced solid tumors.
Collapse
Affiliation(s)
- Adam Ajina
- King's College London, Division of Cancer Studies, Guy's Hospital, London, United Kingdom.
| | - John Maher
- King's College London, Division of Cancer Studies, Guy's Hospital, London, United Kingdom; Department of Clinical Immunology and Allergy, King's College Hospital NHS Foundation Trust, London, United Kingdom; Department of Immunology, Eastbourne Hospital, East Sussex, United Kingdom
| |
Collapse
|
64
|
Moskovskich A, Goldmann U, Kartnig F, Lindinger S, Konecka J, Fiume G, Girardi E, Superti-Furga G. The transporters SLC35A1 and SLC30A1 play opposite roles in cell survival upon VSV virus infection. Sci Rep 2019; 9:10471. [PMID: 31320712 PMCID: PMC6639343 DOI: 10.1038/s41598-019-46952-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 07/04/2019] [Indexed: 12/19/2022] Open
Abstract
Host factor requirements for different classes of viruses have not been fully unraveled. Replication of the viral genome and synthesis of viral proteins within the human host cell are associated with an increased demand for nutrients and specific metabolites. With more than 400 acknowledged members to date in humans, solute carriers (SLCs) represent the largest family of transmembrane proteins dedicated to the transport of ions and small molecules such as amino acids, sugars and nucleotides. Consistent with their impact on cellular metabolism, several SLCs have been implicated as host factors affecting the viral life cycle and the cellular response to infection. In this study, we aimed at characterizing the role of host SLCs in cell survival upon viral infection by performing unbiased genetic screens using a focused CRISPR knockout library. Genetic screens with the cytolytic vesicular stomatitis virus (VSV) showed that the loss of two SLCs genes, encoding the sialic acid transporter SLC35A1/CST and the zinc transporter SLC30A1/ZnT1, affected cell survival upon infection. Further characterization of these genes suggests a role for both of these transporters in the apoptotic response induced by VSV, offering new insights into the cellular response to oncolytic virus infections.
Collapse
Affiliation(s)
- Anna Moskovskich
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Ulrich Goldmann
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Felix Kartnig
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Sabrina Lindinger
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Justyna Konecka
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Giuseppe Fiume
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Enrico Girardi
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria.
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria.
- Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria.
| |
Collapse
|
65
|
Davola ME, Vito A, Wei J, El-Sayes N, Workenhe S, Mossman KL. Genetic modification of oncolytic viruses to enhance antitumor immunity. Methods Enzymol 2019; 635:231-250. [PMID: 32122548 DOI: 10.1016/bs.mie.2019.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Among the many immunotherapies being developed and tested both preclinically and clinically, oncolytic viruses (OVs) are gaining traction as a forerunner in the search for potent new therapeutic agents, with a genetically engineered herpes simplex virus type 1 (HSV-1) recently approved by the FDA for the treatment of melanoma. The great potential of OVs to fight cancer is driving different approaches to improve OV-based therapy, with genetic modification of OVs to enhance host antitumor immunity being one of the most promising approaches. In this chapter we describe possible modifications in the OV genome that could increase its antitumor activity and immunostimulatory capacity, together with different methods to achieve these goals. Finally, we present different analyses to verify the desired genetic modification and evaluate its impact on host antitumor immunity in preliminary stages.
Collapse
Affiliation(s)
- Maria Eugenia Davola
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Alyssa Vito
- Department of Biochemistry and Biomedical Science, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Jiarun Wei
- Department of Biochemistry and Biomedical Science, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Nader El-Sayes
- Department of Biochemistry and Biomedical Science, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Samuel Workenhe
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Karen Louise Mossman
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
66
|
Munis AM, Mattiuzzo G, Bentley EM, Collins MK, Eyles JE, Takeuchi Y. Use of Heterologous Vesiculovirus G Proteins Circumvents the Humoral Anti-envelope Immunity in Lentivector-Based In Vivo Gene Delivery. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 17:126-137. [PMID: 31254925 PMCID: PMC6599914 DOI: 10.1016/j.omtn.2019.05.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/16/2019] [Accepted: 05/15/2019] [Indexed: 01/12/2023]
Abstract
Vesicular stomatitis virus Indiana strain glycoprotein (VSVind.G) mediates broad tissue tropism and efficient cellular uptake. Lentiviral vectors (LVs) are particularly promising, as they can efficiently transduce non-dividing cells and facilitate stable genomic transgene integration; therefore, LVs have an enormous untapped potential for gene therapy applications, but the development of humoral and cell-mediated anti-vector responses may restrict their efficacy. We hypothesized that G proteins from different members of the vesiculovirus genus might allow the generation of a panel of serotypically distinct LV pseudotypes with potential for repeated in vivo administration. We found that mice hyperimmunized with VSVind.G were not transduced to any significant degree following intravenous injection of LVs with VSVind.G envelopes, consistent with the thesis that multiple LV administrations would likely be blunted by an adaptive immune response. Excitingly, bioluminescence imaging studies demonstrated that the VSVind-neutralizing response could be evaded by LV pseudotyped with Piry and, to a lesser extent, Cocal virus glycoproteins. Heterologous dosing regimens using viral vectors and oncolytic viruses with Piry and Cocal envelopes could represent a novel strategy to achieve repeated vector-based interventions, unfettered by pre-existing anti-envelope antibodies.
Collapse
Affiliation(s)
- Altar M Munis
- Division of Advanced Therapies, National Institute for Biological Standards and Control, South Mimms EN6 3QG, UK; Division of Infection and Immunity, University College London, London WC1E 6BT, UK.
| | - Giada Mattiuzzo
- Division of Virology, National Institute for Biological Standards and Control, South Mimms EN6 3QG, UK
| | - Emma M Bentley
- Division of Virology, National Institute for Biological Standards and Control, South Mimms EN6 3QG, UK
| | - Mary K Collins
- Division of Advanced Therapies, National Institute for Biological Standards and Control, South Mimms EN6 3QG, UK; Okinawa Institute of Science and Technology, Okinawa 904-0412, Japan
| | - James E Eyles
- Division of Advanced Therapies, National Institute for Biological Standards and Control, South Mimms EN6 3QG, UK
| | - Yasuhiro Takeuchi
- Division of Advanced Therapies, National Institute for Biological Standards and Control, South Mimms EN6 3QG, UK; Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| |
Collapse
|
67
|
Talebi S, Saeedinia A, Zeinoddini M, Ahmadpour F, Sadeghizadeh M. Evaluation of a single amino acid substitution at position 79 of human IFN-α2b in interferon-receptor assembly and activity. Prep Biochem Biotechnol 2019; 49:735-743. [PMID: 31135267 DOI: 10.1080/10826068.2019.1566143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Type I interferons (IFNs) are homologous cytokines that bind to a cell surface receptor and establish signaling pathways that motivate immune responses. The purpose of the current study is to assess the activity of a novel-engineered IFN-α2b. The crystallographic structure of IFN-α2b and its receptors was acquired from Protein Data Bank. Various amino acid substitutions were designed based on structural properties and other biological characteristics of residues to find the most effective amino acid on IFN affinity to advanced activities. The IFN-α2b mutants and receptors have been modeled and the interactions between two proteins have been studied as in silico by protein-protein docking for both mutants and native forms. The proper nucleic acid sequence IFN-α2 (T79Q) has been prepared based on the selected mutant. The modified IFN gene was cloned in pcDNA 3.1(-) and introduced to Chinese Hamster Ovary (CHO) cell line. Antiviral and antiproliferative assays of native and IFN-α2 (T79Q) proteins were performed in vitro. The results showed two-fold increasing in IFN-α2 (T79Q) activity (antiviral and antiproliferative activity) in comparison to native IFN-α2b. This engineered IFN-α2b may have significant novel therapeutic applications and in silico studies can be an influential method for practical research function and structure of these molecules.
Collapse
Affiliation(s)
- Samira Talebi
- a Malek Ashtar University of Technology , Tehran , Iran.,b Trauma Research Centre, Baqiyatallah University of Medical Sciences , Tehran , Iran
| | | | | | - Fathollah Ahmadpour
- b Trauma Research Centre, Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Majid Sadeghizadeh
- c Department of Genetics, School of Biological Sciences, Tarbiat Modares University , Tehran , Iran
| |
Collapse
|
68
|
Gray Z, Tabarraei A, Moradi A, Kalani MR. M51R and Delta-M51 matrix protein of the vesicular stomatitis virus induce apoptosis in colorectal cancer cells. Mol Biol Rep 2019; 46:3371-3379. [PMID: 31006094 DOI: 10.1007/s11033-019-04799-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 04/05/2019] [Indexed: 12/17/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer in both men and women. Oncolytic viral-based therapy methods seem to be promising for CRC treatment. Vesicular stomatitis virus (VSV) is considered as a potent candidate in viral therapy for several tumors. VSV particles with mutated matrix (M) protein are capable of initiating cell death cascades while not being harmful to the immune system. In the current study, the effects of the VSV M-protein was investigated on the apoptosis of the colorectal cancer SW480 cell. Wild-type, M51R, and ΔM51 mutants VSV M-protein genes were cloned into the PCDNA3.1 vector and transfected into the SW480 cells. The results of the MTT assay, Western blotting, and Caspase 3, 8, and 9 measurement, illustrated that both wild and M51R mutant M-proteins can destroy the SW480 colorectal cancer cells. DAPI/TUNEL double-staining reconfirmed the apoptotic effects of the M-protein expression. The ΔM51 mutant M-protein is effective likewise M51R, somehow it can be considered as a safer substitution.
Collapse
Affiliation(s)
- Zahra Gray
- Department of Microbiology, College of Medicine, Golestan University of Medical Science, 1 Shastcola Ave, 5 km Sari Rd, Gorgan, Iran
| | - Alijan Tabarraei
- Department of Microbiology, College of Medicine, Golestan University of Medical Science, 1 Shastcola Ave, 5 km Sari Rd, Gorgan, Iran
| | - Abdolvahab Moradi
- Department of Microbiology, College of Medicine, Golestan University of Medical Science, 1 Shastcola Ave, 5 km Sari Rd, Gorgan, Iran.
| | - Mohamad R Kalani
- Cell and Molecular Research center, Golestan University of Medical Science, 1 Shastcola Ave, 5 km Sari Rd, Gorgan, Iran. .,Molecular and Cell Biology, RAL, University of Illinois at Urbana-Champaign, 600 S Goodwin Ave #325, Urbana, IL, 61801, USA.
| |
Collapse
|
69
|
Reale A, Vitiello A, Conciatori V, Parolin C, Calistri A, Palù G. Perspectives on immunotherapy via oncolytic viruses. Infect Agent Cancer 2019; 14:5. [PMID: 30792754 PMCID: PMC6371415 DOI: 10.1186/s13027-018-0218-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/20/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND With few exceptions, current chemotherapy and radiotherapy protocols only obtain a slightly prolonged survival with severe adverse effects in patients with advanced solid tumors. In particular, most solid malignancies not amenable to radical surgery still carry a dismal prognosis, which unfortunately is also the case for relapsing disease after surgery. Even though targeted therapies obtained good results, clinical experience showed that tumors eventually develop resistance. On the other hand, earlier attempts of cancer immunotherapy failed to show consistent efficacy. More recently, a deeper knowledge of immunosuppression in the tumor microenvironment (TME) allowed the development of effective drugs: in particular, monoclonal antibodies targeting the so-called immune checkpoint molecules yielded striking and lasting effects in some tumors. Unfortunately, these monoclonal antibodies are not effective in a majority of patients and are ineffective in several solid malignancies. Furthermore, due to their mechanism of action, checkpoint inhibitors often elicit autoimmune-like disease. MAIN BODY The use of viruses as oncolytic agents (OVs) was considered in the past, while only recently OVs revealed a connection with immunotherapy. However, their antitumoral potential has remained largely unexplored, due to safety concerns and some limitations in the techniques to manipulate viruses. OV research was recently revived by a better knowledge of viral/cancer biology and advances in the methodologies to delete virulence/immune-escape related genes from even complex viral genomes or "to arm" OVs with appropriate transgenes. Recently, the first oncolytic virus, the HSV-1 based Talimogene Laherparepvec (T-VEC), was approved for the treatment of non-resectable melanoma in USA and Europe. CONCLUSION OVs have the potential to become powerful agents of cancer immune and gene therapy. Indeed, in addition to their selective killing activity, they can act as versatile gene expression platforms for the delivery of therapeutic genes. This is particularly true for viruses with a large DNA genome, that can be manipulated to address the multiple immunosuppressive features of the TME. This review will focus on the open issues, on the most promising lines of research in the OV field and, more in general, on how OVs could be improved to achieve real clinical breakthroughs in cancers that are usually difficult to treat by immunotherapy.
Collapse
Affiliation(s)
- Alberto Reale
- Department of Molecular Medicine, University of Padua, Via A. Gabelli, 63, 35121 Padua, Italy
| | - Adriana Vitiello
- Department of Molecular Medicine, University of Padua, Via A. Gabelli, 63, 35121 Padua, Italy
| | - Valeria Conciatori
- Department of Molecular Medicine, University of Padua, Via A. Gabelli, 63, 35121 Padua, Italy
| | - Cristina Parolin
- Department of Molecular Medicine, University of Padua, Via A. Gabelli, 63, 35121 Padua, Italy
| | - Arianna Calistri
- Department of Molecular Medicine, University of Padua, Via A. Gabelli, 63, 35121 Padua, Italy
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padua, Via A. Gabelli, 63, 35121 Padua, Italy
| |
Collapse
|
70
|
Abstract
Rhabdoviruses are enveloped viruses with a negative-sense single strand RNA genome and are widespread among a great variety of organisms. In their membrane, they have a single glycoprotein (G) that mediates both virus attachment to cellular receptors and fusion between viral and endosomal membranes allowing viral genome release in the cytoplasm. We present structural and cellular aspects of Rhabdovirus entry into their host cell with a focus on vesicular stomatitis virus (VSV) and rabies virus (RABV) for which the early events of the viral cycle have been extensively studied. Recent data have shown that the only VSV receptors are the members of the LDL-R family. This is in contrast with RABV for which multiple receptors belonging to unrelated families have been identified. Despite having different receptors, after attachment, rhabdovirus internalization occurs through clathrin-mediated endocytosis (CME) in an actin-dependent manner. There are still debates about the exact endocytic pathway of VSV in the cell and on RABV transport in the neuronal axon. In any case, fusion is triggered in the endosomal vesicle via a low-pH induced structural rearrangement of G from its pre- to its postfusion conformation. Vesiculovirus G is one of the best characterized fusion glycoproteins as the previously reported crystal structures of the pre- and postfusion states have been recently completed by those of intermediates during the structural transition. Understanding the entry pathway of rhabdoviruses may have strong impact in biotechnologies as, for example, VSV G is used for pseudotyping lentiviruses to promote efficient transduction, and VSV is a promising oncolytic virus.
Collapse
|