51
|
Abstract
Strategies to limit complement deposition on Streptococcus pneumoniae are established as virulence features for invasive disease, but their role in respiratory tract infection requires further analysis. We evaluated complement C3 protein deposition on discordant S. pneumoniae isolates of the same serotype (6A) and their capacity to cause nasopharyngeal (NP) colonization and experimental otitis media (EOM) in an animal model. We compared C3 binding to five 6A isolates from asymptomatic NP carriers with five 6A strains that caused invasive disease, and we observed less C3 ( approximately 10-fold less fluorescence) binding to invasive isolates. We selected two high-level C3-binding carriage and two low-level C3-binding invasive 6A isolates for further study. In the EOM model, 11/12 (92%) ears challenged with a low-level C3-binding 6A strain became infected. Only 2/8 (25%) ears challenged with the discordant high-level C3-binding 6A isolate developed disease (P = 0.005). Results with the second discordant 6A isolate pair were comparable. Cobra venom factor (CoVF) treatment, which depletes C3 and consumes complement, restored virulence of the high-level C3-binding strain; 8/8 (100%) ears in CoVF-treated animals developed EOM compared to only 25% of ears in naïve animals (P = 0.007). These studies demonstrate the critical role for complement evasion in pneumococcal EOM. Colonization with carriage isolates that bound high levels of C3 caused EOM in fewer animals compared to low-level C3-binding invasive strains. Thus, limiting C3 deposition on the surface of S. pneumoniae correlates with increased incidence of EOM following NP colonization and barotrauma in the animal model.
Collapse
|
52
|
Lu L, Ma Z, Jokiranta TS, Whitney AR, DeLeo FR, Zhang JR. Species-specific interaction of Streptococcus pneumoniae with human complement factor H. THE JOURNAL OF IMMUNOLOGY 2008; 181:7138-46. [PMID: 18981135 DOI: 10.4049/jimmunol.181.10.7138] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Streptococcus pneumoniae naturally colonizes the nasopharynx as a commensal organism and sometimes causes infections in remote tissue sites. This bacterium is highly capable of resisting host innate immunity during nasopharyngeal colonization and disseminating infections. The ability to recruit complement factor H (FH) by S. pneumoniae has been implicated as a bacterial immune evasion mechanism against complement-mediated bacterial clearance because FH is a complement alternative pathway inhibitor. S. pneumoniae recruits FH through a previously defined FH binding domain of choline-binding protein A (CbpA), a major surface protein of S. pneumoniae. In this study, we show that CbpA binds to human FH, but not to the FH proteins of mouse and other animal species tested to date. Accordingly, deleting the FH binding domain of CbpA in strain D39 did not result in obvious change in the levels of pneumococcal bacteremia or virulence in a bacteremia mouse model. Furthermore, this species-specific pneumococcal interaction with FH was shown to occur in multiple pneumococcal isolates from the blood and cerebrospinal fluid. Finally, our phagocytosis experiments with human and mouse phagocytes and complement systems provide additional evidence to support our hypothesis that CbpA acts as a bacterial determinant for pneumococcal resistance to complement-mediated host defense in humans.
Collapse
Affiliation(s)
- Ling Lu
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | | | | | | | | | | |
Collapse
|
53
|
Tearing Down the Wall: Peptidoglycan Metabolism and the WalK/WalR (YycG/YycF) Essential Two-Component System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 631:214-28. [DOI: 10.1007/978-0-387-78885-2_15] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
54
|
Dubrac S, Bisicchia P, Devine KM, Msadek T. A matter of life and death: cell wall homeostasis and the WalKR (YycGF) essential signal transduction pathway. Mol Microbiol 2008; 70:1307-22. [PMID: 19019149 DOI: 10.1111/j.1365-2958.2008.06483.x] [Citation(s) in RCA: 235] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The WalK/WalR (aka YycG/YycF) two-component system (TCS), originally identified in Bacillus subtilis, is very highly conserved and specific to low G+C Gram-positive bacteria, including a number of important pathogens. An unusual feature is that this system is essential for viability in most of these bacteria. Recent studies have revealed conserved functions for this system, defining this signal transduction pathway as a crucial regulatory system for cell wall metabolism, that we have accordingly renamed WalK/WalR. Here we review the cellular role of the WalK/WalR TCS in different bacterial species, focusing on the function of genes in its regulon, as well as variations in walRK operon structure and the composition of its regulon. We also discuss the nature of its essentiality and the potential type of signal being sensed. The WalK histidine kinase of B. subtilis has been shown to localize to the divisome and we suggest that the WalKR system acts as an information conduit between extracytoplasmic cellular structures and intracellular processes required for their synthesis, playing a vital role in effectively co-ordinating peptidoglycan plasticity with the cell division process.
Collapse
Affiliation(s)
- Sarah Dubrac
- Biology of Gram-Positive Pathogens, CNRS URA 2172, Department of Microbiology, Institut Pasteur, 25, Rue du Dr Roux, 75724 Paris Cedex 15, France
| | | | | | | |
Collapse
|
55
|
Development of antibodies to PspA families 1 and 2 in children after exposure to Streptococcus pneumoniae. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:1529-35. [PMID: 18753341 DOI: 10.1128/cvi.00181-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pneumococcal surface protein A (PspA) is an important virulence factor of Streptococcus pneumoniae. PspA exists as two major families, which include variable but serologically cross-reactive proteins. Previous studies with a family 1 PspA antigen suggested that children develop low concentrations of anti-PspA after pneumococcal carriage or infection. In this study, antibody to PspA families 1 and 2 was measured by an enzyme immunoassay of the serum and saliva of children with a history of culture-proven pneumococcal colonization and/or acute otitis media and in the serum and saliva of adults. The PspA families of the pneumococcal strains isolated from children were determined. The majority of the children had high serum and salivary anti-PspA concentrations to the PspA family they had encountered and low concentrations to the other, whereas adults had high antibody concentrations to both PspA families, both in serum and in saliva. The results suggest that children have a relatively family-specific antibody response to the PspA family they have been exposed to and that any PspA vaccine for children should contain members of both major PspA families.
Collapse
|
56
|
Gehre F, Leib SL, Grandgirard D, Kummer J, Bühlmann A, Simon F, Gäumann R, Kharat AS, Täuber MG, Tomasz A. Essential role of choline for pneumococcal virulence in an experimental model of meningitis. J Intern Med 2008; 264:143-54. [PMID: 18331292 DOI: 10.1111/j.1365-2796.2008.01930.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES The goal of the present study was to elucidate the contribution of the newly recognized virulence factor choline to the pathogenesis of Streptococcus pneumoniae in an animal model of meningitis. RESULTS The choline containing strain D39Cho(-) and its isogenic choline-free derivative D39Cho(-)licA64--each expressing the capsule polysaccharide 2--were introduced intracisternally at an inoculum size of 10(3) CFU into 11 days old Wistar rats. During the first 8 h post infection both strains multiplied and stimulated a similar immune response that involved expression of high levels of proinflammatory cytokines, the matrix metalloproteinase 9 (MMP-9), IL-10, and the influx of white blood cells into the CSF. Virtually identical immune response was also elicited by intracisternal inoculation of 10(7) CFU equivalents of either choline-containing or choline-free cell walls. At sampling times past 8 h strain D39Cho(-) continued to replicate accompanied by an intense inflammatory response and strong granulocytic pleiocytosis. Animals infected with D39Cho(-) died within 20 h and histopathology revealed brain damage in the cerebral cortex and hippocampus. In contrast, the initial immune response generated by the choline-free strain D39Cho(-)licA64 began to decline after the first 8 h accompanied by elimination of the bacteria from the CSF in parallel with a strong WBC response peaking at 8 h after infection. All animals survived and there was no evidence for brain damage. CONCLUSION Choline in the cell wall is essential for pneumococci to remain highly virulent and survive within the host and establish pneumococcal meningitis.
Collapse
Affiliation(s)
- F Gehre
- Laboratory of Microbiology, The Rockefeller University, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Csordas FC, Perciani CT, Darrieux M, Gonçalves VM, Cabrera-Crespo J, Takagi M, Sbrogio-Almeida ME, Leite LC, Tanizaki MM. Protection induced by pneumococcal surface protein A (PspA) is enhanced by conjugation to a Streptococcus pneumoniae capsular polysaccharide. Vaccine 2008; 26:2925-9. [DOI: 10.1016/j.vaccine.2008.03.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 03/18/2008] [Accepted: 03/19/2008] [Indexed: 11/17/2022]
|
58
|
Hsieh YC, Tsao PN, Chen CL, Lin TL, Lee WS, Shao PL, Lee CY, Hsueh PR, Huang LM, Wang JT. Establishment of a young mouse model and identification of an allelic variation of zmpB in complicated pneumonia caused by Streptococcus pneumoniae. Crit Care Med 2008; 36:1248-55. [PMID: 18379252 DOI: 10.1097/ccm.0b013e318169f0c3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Complicated pneumonia, including necrotizing pneumonia, lung abscess, and empyema, caused by Streptococcus pneumoniae in children has been increasing. We thus determined to investigate its virulence in an animal model and to identify virulence factors of S. pneumoniae. DESIGN Prospective, randomized, controlled animal study. SETTING University medical laboratory. SUBJECTS Male Balb/c-strain mice, 3 wks old. INTERVENTIONS We used a young mouse model to monitor bacterial virulence and a microarray to compare gene expression between S. pneumoniae from children with complicated and noncomplicated pneumonia. Deletion and complementation of a candidate gene were performed to study its role on the virulence of S. pneumoniae. MEASUREMENTS AND MAIN RESULTS A model of complicated pneumonia in young mice infected with strains of S. pneumoniae from children with complicated pneumonia was established. Using a microarray analysis, differences in zinc metalloprotease B (zmpB) RNA hybridization between two strains from children with complicated pneumonia (NTUH-p28 and NTUH-p15) and a strain (NTUH-p3) from a child with pneumococcal lobar pneumonia were found. Confirmatory assays revealed the signal differences were due to sequence variation in the zmpB gene. Infection with the zmpB deletion mutant of NTUH-p15 showed a significant decrease in the severity of pneumonia and no destructive lung injury. The zmpB complementation strain of NTUH-p15 significantly restored the level of inflammation and caused lung necrosis. For studying the effect of allelic variation of zmpB on the virulence of S. pneumoniae, we added zmpB of NTUH-p15 in the zmpB deletion mutant of NTUH-p3, which resulted in a higher bacterial burden than that in wild-type NTUH-p3. CONCLUSIONS A young mouse model is established for complicated pneumococcal pneumonia. This model proved that allelic variation of zmpB affects the virulence of S. pneumoniae.
Collapse
Affiliation(s)
- Yu-Chia Hsieh
- Section of Infection, Department of Medicine, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
The integrin Mac-1 (CR3) mediates internalization and directs Bacillus anthracis spores into professional phagocytes. Proc Natl Acad Sci U S A 2008; 105:1261-6. [PMID: 18216258 DOI: 10.1073/pnas.0709321105] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Anthrax, a disease caused by Bacillus anthracis, affects animals and humans. Because the inert spore is the infectious form of the organism that first contacts the potential host, the interaction between the host and spore exosporium is vital to the initiation of disease. Here, we demonstrate that the integrin Mac-1 is essential for the recognition of the major exosporium protein BclA by phagocytic cells. Expression of Mac-1, but not p150/95, in CHO cells markedly enhanced infection with Sterne strain of B. anthracis spores (WT spores). Conversely, CD11b(-/-) macrophages demonstrated a significant decrease in spore uptake when compared with macrophages from normal C57BL/6 mice. However, when CD11b(-/-) macrophages were infected with DeltabclA spores, spore ingestion was no different from their C57BL/6 counterparts. DeltabclA spores were also efficiently internalized by all CHO cell lines tested, independently of Mac-1 expression. Taken together, these results show that there is an alternative Mac-1-independent pathway involved in spore uptake that is unmasked only in the absence of BclA. Survival studies, using C57BL/6 and CD11b(-/-) mice, revealed that CD11b(-/-) mice are more resistant to infection with WT but not DeltabclA spores. Our experiments also show that DeltabclA spores are more virulent than WT spores in C57BL/6 and A/J mice. Overall, our data indicate that the Mac-1/BclA interaction may play a major role in B. anthracis pathogenesis by promoting spore uptake by professional phagocytes and subsequent access to a favorable niche for transport, germination, and outgrowth in lymphoid tissues.
Collapse
|
60
|
Marriott HM, Jackson LE, Wilkinson TS, Simpson AJ, Mitchell TJ, Buttle DJ, Cross SS, Ince PG, Hellewell PG, Whyte MKB, Dockrell DH. Reactive oxygen species regulate neutrophil recruitment and survival in pneumococcal pneumonia. Am J Respir Crit Care Med 2008; 177:887-95. [PMID: 18202350 DOI: 10.1164/rccm.200707-990oc] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
RATIONALE The role of NADPH oxidase activation in pneumonia is complex because reactive oxygen species contribute to both microbial killing and regulation of the acute pulmonary infiltrate. The relative importance of each role remains poorly defined in community-acquired pneumonia. OBJECTIVES We evaluated the contribution of NADPH oxidase-derived reactive oxygen species to the pathogenesis of pneumococcal pneumonia, addressing both the contribution to microbial killing and regulation of the inflammatory response. METHODS Mice deficient in the gp91(phox) component of the phagocyte NADPH oxidase were studied after pneumococcal challenge. MEASUREMENTS AND MAIN RESULTS gp91(phox)(-/-) mice demonstrated no defect in microbial clearance as compared with wild-type C57BL/6 mice. A significant increase in bacterial clearance from the lungs of gp91(phox)(-/-) mice was associated with increased numbers of neutrophils in the lung, lower rates of neutrophil apoptosis, and enhanced activation. Marked alterations in pulmonary cytokine/chemokine expression were also noted in the lungs of gp91(phox)(-/-) mice, characterized by elevated levels of tumor necrosis factor-alpha, KC, macrophage inflammatory protein-2, monocyte chemotactic protein-1, and IL-6. The greater numbers of neutrophils in gp91(phox)(-/-) mice were not associated with increased lung injury. Levels of neutrophil elastase in bronchoalveolar lavage were not decreased in gp91(phox)(-/-) mice. CONCLUSIONS During pneumococcal pneumonia, NADPH oxidase-derived reactive oxygen species are redundant for host defense but limit neutrophil recruitment and survival. Decreased NADPH oxidase-dependent reactive oxygen species production is well tolerated and improves disease outcome during pneumococcal pneumonia by removing neutrophils from the tight constraints of reactive oxygen species-mediated regulation.
Collapse
Affiliation(s)
- Helen M Marriott
- Section of Infection and Inflammation, School of Medicine and Biomedical Sciences, University of Sheffield, LU107, Royal Hallamshire Hospital, Glossop Road, Sheffield, S10 2JF, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Katsurahara T, Hotomi M, Yamauchi K, Billal DS, Yamanaka N. Protection against systemic fatal pneumococcal infection by maternal intranasal immunization with pneumococcal surface protein A (PspA). J Infect Chemother 2008; 14:393-8. [DOI: 10.1007/s10156-008-0647-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 10/01/2008] [Indexed: 10/21/2022]
|
62
|
Streptococcus pneumoniae choline-binding protein E interaction with plasminogen/plasmin stimulates migration across the extracellular matrix. Infect Immun 2007; 76:466-76. [PMID: 18070889 DOI: 10.1128/iai.01261-07] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The virulence mechanisms leading Streptococcus pneumoniae to convert from nasopharyngeal colonization to a tissue-invasive phenotype are still largely unknown. Proliferation of infection requires penetration of the extracellular matrix, which occurs by recruitment of host proteases to the bacterial cell surface. We present evidence supporting the role of choline-binding protein E (CBPE) (a member of the surface-exposed choline-binding protein family) as an important receptor for human plasminogen, the precursor of plasmin. The results of ligand overlay blot analyses, solid-phase binding assays, and surface plasmon resonance experiments support the idea of an interaction between CBPE and plasminogen. We have shown that the phosphorylcholine esterase (Pce) domain of CBPE interacts with the plasminogen kringle domains. Analysis of the crystal structure of the Pce domain, followed by site-directed mutagenesis, allowed the identification of the plasminogen-binding region composed in part by lysine residues, some of which map in a linear fashion on the surface of the Pce domain. The biological relevance of the CBPE-plasminogen interaction is supported by the fact that, compared to the wild-type strain, a mutant of pneumococcus with the cbpE gene deleted (i) displays a reduced level of plasminogen binding and plasmin activation and (ii) shows reduced ability to cross the extracellular matrix in an in vitro model. These results support the idea of a physiological role for the CBPE-plasminogen interaction in pneumococcal dissemination into human tissue.
Collapse
|
63
|
Simell B, Melin M, Lahdenkari M, Briles DE, Hollingshead SK, Kilpi TM, Kayhty H. Antibodies to pneumococcal surface protein A families 1 and 2 in serum and saliva of children and the risk of pneumococcal acute otitis media. J Infect Dis 2007; 196:1528-36. [PMID: 18008233 DOI: 10.1086/522607] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Accepted: 05/30/2007] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Pneumococcal surface protein A (PspA) is a highly variable yet cross-reactive protein that exists as 2 major families. We assessed the development of human serum and salivary antibodies against the PspA families 1 (PspA1) and 2 (PspA2) in early childhood and their role in the prevention of pneumococcal acute otitis media (AOM). METHODS Serum levels of IgG and salivary levels of IgA antibodies to PspA1 and PspA2 were measured by use of enzyme immunoassay from the samples from the Finnish Otitis Media Cohort Study obtained at the ages of 12 months (287 and 160 samples, respectively) and 18 months (258 and 131 samples, respectively). The Cox proportional hazard model was used to evaluate the relative risk (RR) of pneumococcal AOM during the 6 months after sampling relative to concentration of serum or presence of salivary anti-PspA in the samples. RESULTS Anti-PspA1 and anti-PspA2 concentrations at 12 and 18 months were related to prior culture-confirmed pneumococcal exposure. The concentrations of serum anti-PspA were not significantly associated with the risk of pneumococcal AOM. At 18 months, the presence of salivary anti-PspA was significantly associated with a lower risk of pneumococcal AOM during the 6 months after sampling (RR, 0.27 [95% confidence interval, 0.11-0.69]). CONCLUSIONS The lowered risk of pneumococcal AOM associated with the presence of salivary anti-PspA at 18 months suggests that mucosal anti-PspA antibodies have a role in the prevention of pneumococcal AOM.
Collapse
Affiliation(s)
- Birgit Simell
- Department of Vaccines, National Public Health Institute, Mannerheimintie 166, Helsinki, Finland.
| | | | | | | | | | | | | |
Collapse
|
64
|
PspA and PspC minimize immune adherence and transfer of pneumococci from erythrocytes to macrophages through their effects on complement activation. Infect Immun 2007; 75:5877-85. [PMID: 17923519 DOI: 10.1128/iai.00839-07] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Pneumococcal surface protein A (PspA) and PspC are important virulence factors. Their absence has been shown to allow improved clearance of pneumococci from the blood of mice and to decrease pneumococcal virulence. In the presence of antibody and complement, pneumococci attach to erythrocytes in a process called immune adherence (IA), which facilitates their delivery to, and eventual phagocytosis by, macrophages. It is not known, however, if PspA and PspC affect IA. Using PspA and/or PspC isogenic mutants and complement-deficient mouse sera, we demonstrated that absence of PspA allows greater deposition of C1q and thus increased classical-pathway-mediated C3 deposition. In the absence of both PspA and PspC, there is also a major increase in C1q-independent C3 deposition through the alternative pathway. The latter was observed even though absence of PspC alone did not have a major effect on alternative-pathway-dependent complement deposition. The enhanced complement C3 deposition realized in the absence of PspA alone and in the absence of PspA and PspC resulted in both greatly increased IA to human erythrocytes and improved transfer of pneumococci from erythrocytes to phagocytes. These data provide new insight into how PspA and PspC act in synergy to protect pneumococci from complement-dependent clearance during invasive infection.
Collapse
|
65
|
Abstract
Background Ear infection or otitis media (OM) accounts for most bacterial respiratory infections in children in both developed and developing nations. Streptococcus pneumoniae, nontypeable Haemophilus influenzae, and Moraxella catarrhalis are the major OM pathogens. However, little is known about the genetic basis of bacterial OM largely due to practical difficulties in conducting research in ear infection models and genetically manipulating clinical isolates. Here, we report the first genome-scale in vivo screen for bacterial genes required for ear infection in a chinchilla model by signature tagged mutagenesis (STM), a high throughput mutant screen technique. Methodology/Principal Findings STM strains were constructed with a multi-drug resistant OM isolate ST556 (serotype 19F) and screened in a chinchilla OM model. Out of 5,280 mutants tested, 248 mutants were substantially underrepresented in the mutant pools recovered from the middle ear fluids of the infected chinchillas, indicating the impaired ability to survive and replicate in the middle ears due to genetic disruptions in the chromosome of strain ST556. Further DNA sequencing analysis mapped the mutations to 169 pneumococcal genes. Surprisingly, only 52 of these genes were required for pneumococcal nasopharyngeal colonization in a murine model. This infection site-specific gene requirement was verified by targeted mutagenesis in the selected genes. Conclusions/Significance These findings suggest that there are a subset of pneumococcal genes required for ear infection and that these may be distinct from those required for nasal colonization. Our data thus provide comprehensive gene targets for mechanistic understanding of pneumococcal ear infection. Finally, this study has also developed a model for future genome-scale search for virulence determinants in other pathogens associated with ear infections.
Collapse
|
66
|
Bullard DC, Hu X, Adams JE, Schoeb TR, Barnum SR. p150/95 (CD11c/CD18) expression is required for the development of experimental autoimmune encephalomyelitis. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:2001-8. [PMID: 17525267 PMCID: PMC1899456 DOI: 10.2353/ajpath.2007.061016] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
p150/95 (CD11c/CD18, CR4) is a member of the beta(2)-integrin family of adhesion molecules and is considered an important phagocytic receptor. The role of p150/95 in the development of central nervous system demyelinating diseases, including multiple sclerosis, remains unexplored. To determine p150/95-mediated mechanisms in experimental autoimmune encephalomyelitis (EAE), we performed EAE using CD11c-deficient (CD11c(-/-)) mice. EAE in CD11c(-/-) mice was significantly attenuated and characterized by markedly reduced spinal cord T-cell infiltration and interferon-gamma production by these cells. Adoptive transfer of antigen-restimulated T cells from wild-type to CD11c(-/-) mice produced significantly attenuated EAE, whereas transfer of CD11c(-/-) antigen-restimulated T cells to control mice induced a very mild, monophasic EAE. T cells from MOG(35-55) peptide-primed CD11c(-/-) mice displayed an unusual cytokine phenotype with elevated levels of interleukin (IL)-2, IL-4, and IL-12 but reduced levels of interferon-gamma, tumor necrosis factor-alpha, IL-10, IL-17, and transforming growth factor-beta compared with control mice. Overall, CD11c(-/-) T cells from primed mice proliferated comparably to that of control T cells on MOG(35-55) restimulation. Our results indicate that expression of p150/95 is critical on both T cells as well as other leukocytes for the development of demyelinating disease and may represent a novel therapeutic target for multiple sclerosis.
Collapse
Affiliation(s)
- Daniel C Bullard
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street S., Birmingham, AL 35294, USA
| | | | | | | | | |
Collapse
|
67
|
Hammerschmidt S, Agarwal V, Kunert A, Haelbich S, Skerka C, Zipfel PF. The host immune regulator factor H interacts via two contact sites with the PspC protein of Streptococcus pneumoniae and mediates adhesion to host epithelial cells. THE JOURNAL OF IMMUNOLOGY 2007; 178:5848-58. [PMID: 17442969 DOI: 10.4049/jimmunol.178.9.5848] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Pneumococcal surface protein C (PspC) of Streptococcus pneumoniae is a key virulence factor that mediates adhesion to host cells and immune evasion of the host complement. PspC binds the host immune and complement regulator factor H, which is composed of 20 short consensus repeats (SCR). This interaction contributes to pneumococcal virulence. In this study, we identified within the factor H protein two separate PspC binding regions, which were localized to SCR8-11 and SCR19-20, by using recombinant factor H deletion constructs for Western blotting assays and surface plasmon resonance studies. A detailed analysis of binding epitopes in these SCR by peptide spot arrays identified several linear binding regions within the sequences of SCR8-11 and SCR19-20. In addition, the factor H binding site was mapped within the pneumococcal PspC protein to a 121-aa-long stretch positioned in the N terminus (residues 38-158). Factor H attached to the surface of pneumococci via PspC significantly enhanced pneumococcal adherence to host epithelial and endothelial cells. This adhesion was specific and was blocked with a truncated N-terminal factor H-binding fragment of PspC. In conclusion, the acquisition of factor H by pneumococci via PspC occurs via two contact sites located in SCR8-11 and SCR19-20, and factor H attached to the surface of the pneumococcus promotes adhesion to both host epithelial and endothelial cells.
Collapse
Affiliation(s)
- Sven Hammerschmidt
- University of Wuerzburg, Research Center for Infectious Diseases, Wuerzburg, Germany.
| | | | | | | | | | | |
Collapse
|
68
|
Eagan R, Twigg HL, French N, Musaya J, Day RB, Zijlstra EE, Tolmie H, Wyler D, Molyneux ME, Gordon SB. Lung fluid immunoglobulin from HIV-infected subjects has impaired opsonic function against pneumococci. Clin Infect Dis 2007; 44:1632-8. [PMID: 17516409 DOI: 10.1086/518133] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 02/21/2007] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The incidence of pneumococcal pneumonia is greatly increased among human immunodeficiency virus (HIV)-infected subjects, compared with among non-HIV-infected subjects. Lung fluid levels of immunoglobulin G (IgG) specific for pneumococcal capsular polysaccharide are not reduced in HIV-infected subjects; therefore, we examined immunoglobulin subtypes and compared lung fluid IgG opsonic function in HIV-infected subjects with that in healthy subjects. METHODS Bronchoalveolar lavage (BAL) fluid and serum samples were collected from 23 HIV-infected and 26 uninfected subjects. None of the subjects were receiving highly active antiretroviral therapy, and none had received pneumococcal vaccination. Pneumococcal capsule-specific IgG levels in serum and BAL fluid were measured by enzyme-linked immunosorbent assay, and IgG was concentrated from 40 mL of BAL fluid. Opsonization and opsonophagocytosis of pneumococci with serum, BAL fluid, and BAL IgG were compared between HIV-infected subjects and healthy subjects. RESULTS The effect of type 1 pneumococcal capsular polysaccharide-specific IgG in opsonizing of pneumococci was significantly less using both serum and BAL IgG from HIV-infected subjects, compared with serum and BAL IgG from healthy subjects (mean level, 8.9 fluorescence units [95% confidence interval, 8.1-9.7 fluorescence units] vs. 12.1 fluorescence units [95% confidence interval, 9.7-15.2 fluorescence units]; P=.002 for lung BAL IgG). The opsonophagocytosis of pneumococci observed using BAL IgG from HIV-infected subjects was significantly less than that observed using BAL IgG from healthy subjects (37 fluorescence units per ng of IgG [95% confidence interval, 25-53 fluorescence units per ng of IgG] vs. 127 fluorescence units per ng of IgG [95% confidence interval, 109-145 fluorescence units per ng of IgG]; P<.001). CONCLUSION HIV infection is associated with decreased antipneumococcal opsonic function in BAL fluid and serum.
Collapse
Affiliation(s)
- Roger Eagan
- Division of Pulmonary, Allergy, Critical Care, and Occupational Medicine, Indiana University Medical Center, Indianapolis, IN, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Senkovich O, Cook WJ, Mirza S, Hollingshead SK, Protasevich II, Briles DE, Chattopadhyay D. Structure of a complex of human lactoferrin N-lobe with pneumococcal surface protein a provides insight into microbial defense mechanism. J Mol Biol 2007; 370:701-13. [PMID: 17543335 PMCID: PMC5356469 DOI: 10.1016/j.jmb.2007.04.075] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2007] [Revised: 04/23/2007] [Accepted: 04/30/2007] [Indexed: 11/24/2022]
Abstract
Human lactoferrin, a component of the innate immune system, kills a wide variety of microorganisms including the Gram positive bacteria Streptococcus pneumoniae. Pneumococcal surface protein A (PspA) efficiently inhibits this bactericidal action. The crystal structure of a complex of the lactoferrin-binding domain of PspA with the N-lobe of human lactoferrin reveals direct and specific interactions between the negatively charged surface of PspA helices and the highly cationic lactoferricin moiety of lactoferrin. Binding of PspA blocks surface accessibility of this bactericidal peptide preventing it from penetrating the bacterial membrane. Results of site-directed mutagenesis, in vitro protein binding assays and isothermal titration calorimetry measurements corroborate that the specific electrostatic interactions observed in the crystal structure represent major associations between PspA and lactoferrin. The structure provides a snapshot of the protective mechanism utilized by pathogens against the host's first line of defense. PspA represents a major virulence factor and a promising vaccine candidate. Insights from the structure of the complex have implications for designing therapeutic strategies for treatment and prevention of pneumococcal diseases that remain a major public health problem worldwide.
Collapse
MESH Headings
- Animals
- Antigens, Bacterial/chemistry
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Antigens, Bacterial/metabolism
- Antigens, Surface/chemistry
- Antigens, Surface/genetics
- Antigens, Surface/immunology
- Antigens, Surface/metabolism
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Bacterial Proteins/immunology
- Bacterial Proteins/metabolism
- Cattle
- Crystallography, X-Ray
- Humans
- Lactoferrin/chemistry
- Lactoferrin/genetics
- Lactoferrin/immunology
- Lactoferrin/metabolism
- Membrane Fusion
- Models, Molecular
- Mutation/genetics
- Nuclear Magnetic Resonance, Biomolecular
- Protein Binding
- Protein Structure, Quaternary
- Streptococcus pneumoniae/chemistry
- Streptococcus pneumoniae/genetics
- Streptococcus pneumoniae/immunology
- Streptococcus pneumoniae/metabolism
- Structural Homology, Protein
Collapse
Affiliation(s)
- Olga Senkovich
- Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, AL 35294, USA
| | - William J. Cook
- Department of Pathology, University of Alabama at Birmingham, AL 35294, USA
| | - Shaper Mirza
- Department of Microbiology, University of Alabama at Birmingham, AL 35294, USA
| | | | - Irina I. Protasevich
- Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, AL 35294, USA
| | - David E. Briles
- Department of Microbiology, University of Alabama at Birmingham, AL 35294, USA
| | - Debasish Chattopadhyay
- Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, AL 35294, USA
- Department of Medicine, University of Alabama at Birmingham, AL 35294, USA
- Corresponding author:
| |
Collapse
|
70
|
Plitas G, Chaudhry UI, Kingham TP, Raab JR, DeMatteo RP. NK dendritic cells are innate immune responders to Listeria monocytogenes infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 178:4411-6. [PMID: 17371998 DOI: 10.4049/jimmunol.178.7.4411] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
NK dendritic cells (NKDC) are recently described immunologic cells that possess both lytic and Ag-presenting function and produce prolific quantities of IFN-gamma. The role of NKDC in innate immunity to bacterial infection is unknown. Because IFN-gamma is important in the immune response to Listeria monocytogenes (LM), we hypothesized that NKDC play a critical role during LM infection in mice. We found that LM increased the frequency and activation state of NKDC in vivo. Using in vivo intracellular cytokine analysis, we demonstrated that NKDC are a major source of early IFN-gamma during infection with LM. Adoptive transfer of wild-type NKDC into IFN-gamma-deficient recipients that were subsequently infected with LM decreased bacterial burden in the liver and spleen and prolonged survival. In contrast, NK cells were depleted early during LM infection, produced less IFN-gamma, and conferred less protection upon adoptive transfer into IFN-gamma-deficient mice. In vitro, LM induction of IFN-gamma secretion by NKDC depended on TLR9, in addition to IL-18 and IL-12. Our study establishes NKDC as innate immune responders to bacterial infection by virtue of their ability to secrete IFN-gamma.
Collapse
Affiliation(s)
- George Plitas
- Hepatobiliary Service, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
71
|
Rupprecht TA, Angele B, Klein M, Heesemann J, Pfister HW, Botto M, Koedel U. Complement C1q and C3 are critical for the innate immune response to Streptococcus pneumoniae in the central nervous system. THE JOURNAL OF IMMUNOLOGY 2007; 178:1861-9. [PMID: 17237437 DOI: 10.4049/jimmunol.178.3.1861] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Previous studies suggest that the complement system can contribute to limiting pneumococcal outgrowth within the CNS. In this study, we evaluated the role of the complement system in the activation of the innate immune response and the development of the prognosis-relevant intracranial complications in a murine model of pneumococcal meningitis. Thereby, we used mice deficient in C1q, lacking only the classical pathway, and C3, lacking all three complement activation pathways. At 24 h after intracisternal infection, bacterial titers in the CNS were almost 12- and 20-fold higher in C1q- and C3-deficient-mice, respectively, than in wild-type mice. Mean CSF leukocyte counts were reduced by 47 and 73% in C1q- and C3-deficient-mice, respectively. Intrathecal reconstitution with wild-type serum in C3-deficient mice restored both the ability of mice to combat pneumococcal infection of the CSF and the ability of leukocytes to egress into the CSF. The altered recruitment of leukocytes into the CSF of C3-deficient mice was paralleled by a strong reduction of the brain expression of cytokines and chemokines. The dampened immune response in C3-deficient mice was accompanied by a reduction of meningitis-induced intracranial complications, but, surprisingly, also with a worsening of short-term outcome. The latter seems to be due to more severe bacteremia (12- and 120-fold higher in C1q- and C3-deficient-mice, respectively) and, consecutively, more severe systemic complications. Thus, our study demonstrated for the first time that the complement system plays an integral role in mounting the intense host immune response to Streptococcus pneumoniae infection of the CNS.
Collapse
Affiliation(s)
- Tobias A Rupprecht
- Department of Neurology, Klinikum Grosshadern, Ludwig Maximilians-University, Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
72
|
Park SY, Kim KM, Lee JH, Seo SJ, Lee IH. Extracellular gelatinase of Enterococcus faecalis destroys a defense system in insect hemolymph and human serum. Infect Immun 2007; 75:1861-9. [PMID: 17261598 PMCID: PMC1865674 DOI: 10.1128/iai.01473-06] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We isolated Enterococcus faecalis from the body fluids of dead larvae of the greater wax moth, Galleria mellonella. Extracellular gelatinase (GelE) and serine protease (SprE), both of which are considered putative virulence factors of E. faecalis, were purified from the culture supernatant of E. faecalis. In an attempt to elucidate their virulence mechanisms, purified GelE and SprE were injected into hemolymph of G. mellonella and evaluated with regard to their effects on the immune system of insect hemolymph. As a result, it was determined that E. faecalis GelE degraded an inducible antimicrobial peptide (Gm cecropin) which is known to perform a critical role in host defense during the early phase of microbial infection. The results obtained from the G. mellonella-E. faecalis infection model compelled us to assess the virulence activity of GelE against the complement system in human serum. E. faecalis GelE hydrolyzed C3a and also mediated the degradation of the alpha chain of C3b, thereby inhibiting opsonization and the formation of the membrane attack complex resultant from the activation of the complement cascade triggered by C3 activation. In contrast, E. faecalis SprE exhibited no virulence effect against the immune system of insect hemolymph or human serum tested in this study.
Collapse
Affiliation(s)
- Shin Yong Park
- Department of Biotechnology, Hoseo University, 165 Sechuli, Baebangmyun, Asan City, Chungnam 336-795, South Korea
| | | | | | | | | |
Collapse
|
73
|
Quin LR, Moore QC, McDaniel LS. Pneumolysin, PspA, and PspC contribute to pneumococcal evasion of early innate immune responses during bacteremia in mice. Infect Immun 2007; 75:2067-70. [PMID: 17220305 PMCID: PMC1865685 DOI: 10.1128/iai.01727-06] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pneumococcal virulence factors include capsule, PspA, PspC, and Ply. Cytometric analysis demonstrated that the greatest levels of C3 deposition were on a Deltaply PspA(-) PspC(-) mutant. Also, Ply, PspA, and PspC expression resulted in C3 degradation in vitro and in vivo. Finally, blood clearance assays demonstrated that there was enhanced clearance of Deltaply PspA(-) PspC(-) pneumococci compared to the clearance of nonencapsulated pneumococci.
Collapse
Affiliation(s)
- Lisa R Quin
- Department of Microbiology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | | | | |
Collapse
|
74
|
Yuste J, Ali S, Sriskandan S, Hyams C, Botto M, Brown JS. Roles of the alternative complement pathway and C1q during innate immunity to Streptococcus pyogenes. THE JOURNAL OF IMMUNOLOGY 2006; 176:6112-20. [PMID: 16670320 DOI: 10.4049/jimmunol.176.10.6112] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Complement is important for innate immunity to the common bacterial pathogen Streptococcus pyogenes, but the relative importance of the alternative and classical pathways has not been investigated. Using mice and human serum deficient in either C1q, the first component of the classical pathway, or factor B, an important component of the alternative pathway, we have investigated the role of both pathways for innate immunity to S. pyogenes. C3b deposition on four different strains of S. pyogenes was mainly dependent on factor B. As a consequence opsonophagocytosis of S. pyogenes was reduced in serum from factor B-deficient mice, and these mice were very susceptible to S. pyogenes infection. In contrast, C3b deposition was not dependent on C1q for two of the strains investigated, H372 and H305, yet opsonophagocytosis of all four S. pyogenes strains was impaired in serum deficient in C1q. Furthermore, infection in C1q-deficient mice with strain H372 resulted in a rapidly progressive disease associated with large numbers of bacteria in target organs. These results demonstrate the important role of the alternative pathway and C1q for innate immunity to S. pyogenes and suggest that C1q-mediated innate immunity to at least some strains of S. pyogenes may involve mechanisms that are independent of C3b on the bacteria.
Collapse
Affiliation(s)
- Jose Yuste
- Centre for Respiratory Research, Department of Medicine, Royal Free and University College Medical School, Rayne Institute, 5 University Street, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
75
|
Bergmann S, Hammerschmidt S. Versatility of pneumococcal surface proteins. MICROBIOLOGY-SGM 2006; 152:295-303. [PMID: 16436417 DOI: 10.1099/mic.0.28610-0] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Surface-exposed proteins are key players during the infectious process of pathogenic bacteria. The cell surface of the Gram-positive human pathogen Streptococcus pneumoniae is decorated not only by typical Gram-positive surface proteins, but also by a family of proteins that recognizes the phosphorylcholine of the lipoteichoic and teichoic acids, namely the choline-binding proteins, and by non-classical surface proteins that lack a leader peptide and membrane-anchor motif. A comprehensive understanding of how microbial proteins subvert host immunity or host protein functions is a prerequisite for the development of novel therapeutic strategies to combat pneumococcal infections. This article reviews recent progress in the investigation of the versatility and sophistication of the virulence functions of surface-exposed pneumococcal proteins.
Collapse
Affiliation(s)
- Simone Bergmann
- Research Center for Infectious Diseases, University of Würzburg, Röntgenring 11, D-97070 Würzburg, Germany
| | - Sven Hammerschmidt
- Research Center for Infectious Diseases, University of Würzburg, Röntgenring 11, D-97070 Würzburg, Germany
| |
Collapse
|
76
|
Suresh MV, Singh SK, Ferguson DA, Agrawal A. Role of the property of C-reactive protein to activate the classical pathway of complement in protecting mice from pneumococcal infection. THE JOURNAL OF IMMUNOLOGY 2006; 176:4369-74. [PMID: 16547275 PMCID: PMC3818093 DOI: 10.4049/jimmunol.176.7.4369] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
C-reactive protein (CRP) is not an acute-phase protein in mice, and therefore, mice are widely used to investigate the functions of human CRP. It has been shown that CRP protects mice from pneumococcal infection, and an active complement system is required for full protection. In this study, we assessed the contribution of CRP's ability of activating the classical pathway of complement in the protection of mice from lethal infection with virulent Streptococcus pneumoniae type 3. We used two CRP mutants, Y175A and K114A. The Y175A CRP does not bind C1q and does not activate complement in human serum. The K114A CRP binds C1q and activates complement more efficiently than wild-type CRP. Passively administered, both CRP mutants and the wild-type CRP protected mice from infection equally. Infected mice injected with wild-type or mutant CRP had reduced bacteremia, resulting in lower mortality and increased longevity compared with mice that did not receive CRP. Thus, the protection of mice was independent of CRP-mediated activation of the classical pathway of complement. To confirm that human CRP does not differentiate between human and mouse complement, we analyzed the binding of human CRP to mouse C1q. Surprisingly, CRP did not react with mouse C1q, although both mutant and wild-type CRP activated mouse C3, indicating species specificity of CRP-C1q interaction. We conclude that the mouse is an unfit animal for exploring CRP-mediated activation of the classical complement pathway, and that the characteristic of CRP to activate the classical complement pathway has no role in protecting mice from infection.
Collapse
Affiliation(s)
- Madathilparambil V. Suresh
- Department of Pharmacology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614
| | - Sanjay K. Singh
- Department of Pharmacology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614
| | - Donald A. Ferguson
- Department of Microbiology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614
| | - Alok Agrawal
- Department of Pharmacology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614
- Address correspondence and reprint requests to Dr. Alok Agrawal, Department of Pharmacology, P.O. Box 70577, East Tennessee State University, Johnson City, TN 37614.
| |
Collapse
|
77
|
Mehlhop E, Diamond MS. Protective immune responses against West Nile virus are primed by distinct complement activation pathways. ACTA ACUST UNITED AC 2006; 203:1371-81. [PMID: 16651386 PMCID: PMC2121216 DOI: 10.1084/jem.20052388] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
West Nile virus (WNV) causes a severe infection of the central nervous system in several vertebrate animals including humans. Prior studies have shown that complement plays a critical role in controlling WNV infection in complement (C) 3(-/-) and complement receptor 1/2(-/-) mice. Here, we dissect the contributions of the individual complement activation pathways to the protection from WNV disease. Genetic deficiencies in C1q, C4, factor B, or factor D all resulted in increased mortality in mice, suggesting that all activation pathways function together to limit WNV spread. In the absence of alternative pathway complement activation, WNV disseminated into the central nervous system at earlier times and was associated with reduced CD8+ T cell responses yet near normal anti-WNV antibody profiles. Animals lacking the classical and lectin pathways had deficits in both B and T cell responses to WNV. Finally, and somewhat surprisingly, C1q was required for productive infection in the spleen but not for development of adaptive immune responses after WNV infection. Our results suggest that individual pathways of complement activation control WNV infection by priming adaptive immune responses through distinct mechanisms.
Collapse
Affiliation(s)
- Erin Mehlhop
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
78
|
Jedrzejas MJ. Unveiling molecular mechanisms of pneumococcal surface protein A interactions with antibodies and lactoferrin. Clin Chim Acta 2006; 367:1-10. [PMID: 16513101 DOI: 10.1016/j.cca.2005.09.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Revised: 09/27/2005] [Accepted: 09/29/2005] [Indexed: 11/16/2022]
Abstract
BACKGROUND Streptococcus pneumoniae is a Gram-positive bacterium and a major human pathogen. The organism displays on its surface a variety of molecules that are involved in many essential processes including interactions with the tissues and molecules of its human host. A number of such surface molecules are essential virulence factors in disease processes and pathogenesis during all stages of bacterial life. FOCUS Here we introduce one such surface protein, pneumococcal surface protein A (PspA), and show its molecular and structural aspects, and underlying mechanism of function at the atomic level as currently understood. The basis of its anti-complementary properties and functional interactions with its ligand, lactoferrin, is discussed. The PspA antigen binding to lactoferrin prevents the bactericidal effect of this human molecule of many functions. This review is focused on new function characterization studies performed during this century (year 2001 and later). Earlier studies on PspA were reviewed by this author in 2001 and 2004 [Jedrzejas MJ. Pneumococcal virulence factors: structure and function. Microbiol Mol Biol Rev, 2001;65:187-207; Jedrzejas MJ. Extracellular virulence factors of Streptococcus pneumoniae. Front Biosci 2004;9:891-914]. CONCLUSIONS The discovery and understanding of the molecular mechanisms of individual virulence factors, including PspA, are essential to the appreciation of S. pneumoniae function and mechanisms responsible for colonization and invasion of human tissues by this organism. The utilization of a microscopic view at the atomic level provided by structural biology is essential to this process of discovery. The development of new and better cures for the disease might follow as a result of such awareness.
Collapse
Affiliation(s)
- Mark J Jedrzejas
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King, Jr. Way, Oakland, CA 94609, USA.
| |
Collapse
|
79
|
Kraiczy P, Würzner R. Complement escape of human pathogenic bacteria by acquisition of complement regulators. Mol Immunol 2006; 43:31-44. [PMID: 16011850 DOI: 10.1016/j.molimm.2005.06.016] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Pathogenic micro-organisms employ a broad range of strategies to survive in and to persistently infect the human host. Far from being completely understood by which highly sophisticated means invading pathogens overcome the host's destructive immune defence, there is a growing body of evidence on particular mechanisms which play a pivotal role for immune evasion. This review focuses on evasion of medically and scientifically important bacteria by acquisition of host derived fluid-phase complement regulatory proteins, in particular factor H, FHL-1, and C4b binding protein. Expression of microbial surface molecules binding to human complement regulators and thus fixing them in a functionally active state allows pathogens to inhibit and finely regulate complement activation directly on their surface. Further studies on the utilization of host complement regulatory proteins will likely have a marked impact on a more efficient and specific clinical treatment.
Collapse
Affiliation(s)
- Peter Kraiczy
- Institute of Medical Microbiology, University Hospital of Frankfurt, Paul-Ehrlich-Str. 40, D-60596 Frankfurt, Germany.
| | | |
Collapse
|
80
|
Hammerschmidt S. Adherence molecules of pathogenic pneumococci. Curr Opin Microbiol 2005; 9:12-20. [PMID: 16338163 DOI: 10.1016/j.mib.2005.11.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Accepted: 11/25/2005] [Indexed: 10/25/2022]
Abstract
Adherence molecules are key players in pathogen-host interactions. These are usually surface-exposed structures that facilitate adherence to host cells, or target host serum proteins of the extracellular matrix. Our knowledge of the function of pneumococcal cell-surface structures, and the basic mechanisms underlying their interaction with host receptor molecules has dramatically increased, through molecular and structural analysis of adherence molecules. In particular, choline-binding proteins have received considerable attention because of their versatility, and their sophisticated role in the interaction with host proteins. Interestingly, subversion of host-protein functions to facilitate host invasion and immune evasion has also been attributed to intracellular or surface-exposed proteins of the pathogen. Many of these molecules do not possess the classic features of bacterial surface proteins.
Collapse
Affiliation(s)
- Sven Hammerschmidt
- Research Center for Infectious Diseases, University of Würzburg, Röntgenring 11, D-97070 Würzburg, Germany.
| |
Collapse
|
81
|
Guerau-de-Arellano M, Alroy J, Bullard D, Huber BT. Aggravated Lyme carditis in CD11a-/- and CD11c-/- mice. Infect Immun 2005; 73:7637-43. [PMID: 16239568 PMCID: PMC1273870 DOI: 10.1128/iai.73.11.7637-7643.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CD18 hypomorph mice expressing reduced levels of the common beta2 integrin chain develop aggravated Lyme carditis, compared to that developed by wild-type (WT) mice, upon infection with the spirochete Borrelia burgdorferi. The enhancement of Lyme carditis in these mice is characterized by increased macrophage infiltration, correlating with augmented expression of the monocyte/macrophage chemoattractant protein 1 (MCP-1). The lack of CD18 results in the deficiency of all beta2 integrins, i.e., CD11a/CD18 (LFA-1), CD11b/CD18 (Mac-1/CR3), CD11c/CD18 (p150,95/CR4), and CD11d/CD18. To determine the roles of the various beta2 integrins in controlling the development of aggravated Lyme carditis, disease induction was analyzed in CD11a-/-, CD11b-/-, and CD11c-/- mice. CD11a-/- and CD11c-/- mice, but not CD11b-/- mice, developed aggravated Lyme carditis after exposure to B. burgdorferi. Similarly to CD18 hypomorph mice, CD11c-/- mice expressed higher levels of MCP-1, compared to both WT and CD11a-/- mice, as determined by in vitro analysis of MCP-1 secretion by bone marrow-derived dendritic cells and in vivo analysis of MCP-1 mRNA expression in B. burgdorferi-infected hearts. On the other hand, CD11a deficiency was associated with heightened heart B. burgdorferi burden relative to that of WT mice. Overall, our results suggest that the increased severity of Lyme carditis in CD18 hypomorph mice is caused by deficiency in CD11a or CD11c, possibly via different mechanisms.
Collapse
Affiliation(s)
- Mireia Guerau-de-Arellano
- Department of Pathology, Tufts University School of Medicine, Jaharis 512, 150 Harrison Ave., Boston, MA 02111, USA
| | | | | | | |
Collapse
|
82
|
Yuste J, Botto M, Paton JC, Holden DW, Brown JS. Additive inhibition of complement deposition by pneumolysin and PspA facilitates Streptococcus pneumoniae septicemia. THE JOURNAL OF IMMUNOLOGY 2005; 175:1813-9. [PMID: 16034123 DOI: 10.4049/jimmunol.175.3.1813] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Streptococcus pneumoniae is a common cause of septicemia in the immunocompetent host. To establish infection, S. pneumoniae has to overcome host innate immune responses, one component of which is the complement system. Using isogenic bacterial mutant strains and complement-deficient immune naive mice, we show that the S. pneumoniae virulence factor pneumolysin prevents complement deposition on S. pneumoniae, mainly through effects on the classical pathway. In addition, using a double pspA-/ply- mutant strain we demonstrate that pneumolysin and the S. pneumoniae surface protein PspA act in concert to affect both classical and alternative complement pathway activity. As a result, the virulence of the pspA-/ply- strain in models of both systemic and pulmonary infection is greatly attenuated in wild-type mice but not complement deficient mice. The sensitivity of the pspA-/ply- strain to complement was exploited to demonstrate that although early innate immunity to S. pneumoniae during pulmonary infection is partially complement-dependent, the main effect of complement is to prevent spread of S. pneumoniae from the lungs to the blood. These data suggest that inhibition of complement deposition on S. pneumoniae by pneumolysin and PspA is essential for S. pneumoniae to successfully cause septicemia. Targeting mechanisms of complement inhibition could be an effective therapeutic strategy for patients with septicemia due to S. pneumoniae or other bacterial pathogens.
Collapse
Affiliation(s)
- Jose Yuste
- Centre for Respiratory Research, Department of Medicine, Royal Free and University College Medical School, Rayne Institute, London, United Kingdom
| | | | | | | | | |
Collapse
|