51
|
Šimják P, Cinkajzlová A, Anderlová K, Pařízek A, Mráz M, Kršek M, Haluzík M. The role of obesity and adipose tissue dysfunction in gestational diabetes mellitus. J Endocrinol 2018; 238:R63-R77. [PMID: 29743342 DOI: 10.1530/joe-18-0032] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 05/08/2018] [Indexed: 12/15/2022]
Abstract
Gestational diabetes mellitus is defined as diabetes diagnosed in the second or third trimester of pregnancy in patients with no history of diabetes prior to gestation. It is the most common complication of pregnancy. The underlying pathophysiology shares some common features with type 2 diabetes mellitus (T2DM) combining relatively insufficient insulin secretion with increased peripheral insulin resistance. While a certain degree of insulin resistance is the physiological characteristics of the second half of pregnancy, it is significantly more pronounced in patients with gestational diabetes. Adipose tissue dysfunction and subclinical inflammation in obesity are well-described causes of increased insulin resistance in non-pregnant subjects and are often observed in individuals with T2DM. Emerging evidence of altered adipokine expression and local inflammation in adipose tissue in patients with gestational diabetes suggests an important involvement of adipose tissue in its etiopathogenesis. This review aims to summarize current knowledge of adipose tissue dysfunction and its role in the development of gestational diabetes. We specifically focus on the significance of alterations of adipokines and immunocompetent cells number and phenotype in fat. Detailed understanding of the role of adipose tissue in gestational diabetes may provide new insights into its pathophysiology and open new possibilities of its prevention and treatment.
Collapse
Affiliation(s)
- Patrik Šimják
- Department of Gynaecology and Obstetrics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Anna Cinkajzlová
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Kateřina Anderlová
- Department of Gynaecology and Obstetrics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
- 3rd Department of Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Antonín Pařízek
- Department of Gynaecology and Obstetrics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Miloš Mráz
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Michal Kršek
- 3rd Department of Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
- 2nd Internal Department, 3rd Faculty of Medicine, Charles University and University Hospital Královské Vinohrady, Prague, Czech Republic
| | - Martin Haluzík
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| |
Collapse
|
52
|
Ramos Muniz MG, Palfreeman M, Setzu N, Sanchez MA, Saenz Portillo P, Garza KM, Gosselink KL, Spencer CT. Obesity Exacerbates the Cytokine Storm Elicited by Francisella tularensis Infection of Females and Is Associated with Increased Mortality. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3412732. [PMID: 30046592 PMCID: PMC6038682 DOI: 10.1155/2018/3412732] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/30/2018] [Accepted: 05/07/2018] [Indexed: 12/15/2022]
Abstract
Infection with Francisella tularensis, the causative agent of the human disease tularemia, results in the overproduction of inflammatory cytokines, termed the cytokine storm. Excess metabolic byproducts of obesity accumulate in obese individuals and activate the same inflammatory signaling pathways as F. tularensis infection. In addition, elevated levels of leptin in obese individuals also increase inflammation. Since leptin is produced by adipocytes, we hypothesized that increased fat of obese females may make them more susceptible to F. tularensis infection compared with lean individuals. Lean and obese female mice were infected with F. tularensis and the immunopathology and susceptibility monitored. Plasma and tissue cytokines were analyzed by multiplex ELISA and real-time RT-PCR, respectively. Obese mice were more sensitive to infection, developing a more intense cytokine storm, which was associated with increased death of obese mice compared with lean mice. This enhanced inflammatory response correlated with in vitro bacteria-infected macrophage cultures where addition of leptin led to increased production of inflammatory cytokines. We conclude that increased basal leptin expression in obese individuals causes a persistent low-level inflammatory response making them more susceptible to F. tularensis infection and heightening the generation of the immunopathological cytokine storm.
Collapse
Affiliation(s)
- Mireya G. Ramos Muniz
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, USA
| | - Matthew Palfreeman
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, USA
| | - Nicole Setzu
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, USA
| | - Michelle A. Sanchez
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, USA
| | - Pamela Saenz Portillo
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, USA
| | - Kristine M. Garza
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, USA
| | - Kristin L. Gosselink
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, USA
| | - Charles T. Spencer
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, USA
| |
Collapse
|
53
|
Suboptimal immune recovery during antiretroviral therapy with sustained HIV suppression in sub-Saharan Africa. AIDS 2018; 32:1043-1051. [PMID: 29547445 DOI: 10.1097/qad.0000000000001801] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To assess incidence, determinants and clinical consequences of suboptimal immune recovery in HIV-1 infected adults in sub-Saharan Africa with sustained viral suppression on antiretroviral therapy (ART). DESIGN Multicountry prospective cohort. METHODS Suboptimal immune recovery was defined as proportions of participants who failed to attain clinically relevant CD4+ cell count thresholds (>200, >350 and >500 cells/μl) despite sustained viral suppression on continuous first-line ART. Participants were censored at the earliest of death, loss to follow-up, last viral load less than 50 copies/ml, or database closure. Determinants of immune recovery were assessed using multivariable Cox regression. We estimated incidence rates of AIDS, pulmonary tuberculosis and all-cause mortality for CD4+ strata. RESULTS One thousand, five hundred and ninety-two participants were included; 60% were women, median age was 37 years (IQR 31-43) and median pre-ART CD4+ cell count was 147 cells/μl (IQR 76-215). After 6 years of ART, suboptimal immune recovery at CD4+ cell counts less than 200 cells/μl, less than 350 cells/μl, and less than 500 cells/μl occurred in 7, 27, and 57% of participants, respectively. Compared with participants with CD4+ cell count greater than 500 cells/μl, on-ART incidence rates were 12.5, 4.1, 0.9 times higher for AIDS and 16.9, 3.5, and 2.3 times higher for pulmonary tuberculosis in participants with CD4+ cell count less than 200, 200-349, and 350-499 cells/μl, respectively. All-cause mortality was highest in participants with CD4+ cell count less than 200 cells/μl, and comparable across the higher CD4+ strata. Older age, male sex, and lower pre-ART CD4+ cell count were strongly associated with suboptimal immune recovery. CONCLUSION These findings warrant close clinical and laboratory monitoring until adequate immune reconstitution is achieved and support early ART initiation before decline of CD4+ cell count.
Collapse
|
54
|
Alti D, Sambamurthy C, Kalangi SK. Emergence of Leptin in Infection and Immunity: Scope and Challenges in Vaccines Formulation. Front Cell Infect Microbiol 2018; 8:147. [PMID: 29868503 PMCID: PMC5954041 DOI: 10.3389/fcimb.2018.00147] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 04/20/2018] [Indexed: 01/01/2023] Open
Abstract
Deficiency of leptin (ob/ob) and/or desensitization of leptin signaling (db/db) and elevated expression of suppressor of cytokine signaling-3 (SOCS3) reported in obesity are also reported in a variety of pathologies including hypertriglyceridemia, insulin resistance, and malnutrition as the risk factors in host defense system. Viral infections cause the elevated SOCS3 expression, which inhibits leptin signaling. It results in immunosuppression by T-regulatory cells (Tregs). The host immunity becomes incompetent to manage pathogens' attack and invasion, which results in the accelerated infections and diminished vaccine-specific antibody response. Leptin was successfully used as mucosal vaccine adjuvant against Rhodococcus equi. Leptin induced the antibody response to Helicobacter pylori vaccination in mice. An integral leptin signaling in mucosal gut epithelial cells offered resistance against Clostridium difficile and Entameoba histolytica infections. We present in this review, the intervention of leptin in lethal diseases caused by microbial infections and propose the possible scope and challenges of leptin as an adjuvant tool in the development of effective vaccines.
Collapse
Affiliation(s)
- Dayakar Alti
- School of Life Sciences, University of Hyderabad, Hyderabad, India
| | | | - Suresh K Kalangi
- School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
55
|
Ostrand-Rosenberg S. Myeloid derived-suppressor cells: their role in cancer and obesity. Curr Opin Immunol 2018; 51:68-75. [PMID: 29544121 DOI: 10.1016/j.coi.2018.03.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/25/2018] [Accepted: 03/01/2018] [Indexed: 01/05/2023]
Abstract
Myeloid-derived suppressor cells (MDSC) are present in most individuals with cancer where they inhibit adaptive and innate antitumor immunity and are an obstacle to cancer immunotherapies. Chronic inflammation is characteristic of adipose tissue and is a risk factor for the onset and progression of cancer in obese individuals. Because MDSC accumulate in response to inflammation, it has been hypothesized that one of the mechanisms by which obesity promotes malignancy is through the induction of MDSC. This article reviews the data supporting this hypothesis, the role of leptin and fatty acid metabolism in the induction of MDSC, and the surprising finding that although MDSC promote tumor progression, they are protective against some of the metabolic dysfunction associated with obesity.
Collapse
Affiliation(s)
- Suzanne Ostrand-Rosenberg
- Department of Biological Sciences, University of Maryland Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250, United States; Department of Pathology and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, United States.
| |
Collapse
|
56
|
Immunometabolism, pregnancy, and nutrition. Semin Immunopathol 2017; 40:157-174. [PMID: 29071391 DOI: 10.1007/s00281-017-0660-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/18/2017] [Indexed: 12/16/2022]
Abstract
The emerging field of immunometabolism has substantially progressed over the last years and provided pivotal insights into distinct metabolic regulators and reprogramming pathways of immune cell populations in various immunological settings. However, insights into immunometabolic reprogramming in the context of reproduction are still enigmatic. During pregnancy, the maternal immune system needs to actively adapt to the presence of the fetal antigens, i.e., by functional modifications of distinct innate immune cell subsets, the generation of regulatory T cells, and the suppression of an anti-fetal effector T cell response. Considering that metabolic pathways have been shown to affect the functional role of such immune cells in a number of settings, we here review the potential role of immunometabolism with regard to the molecular and cellular mechanisms necessary for successful reproduction. Since immunometabolism holds the potential for a therapeutic approach to alter the course of immune diseases, we further highlight how a targeted metabolic reprogramming of immune cells may be triggered by maternal anthropometric or nutritional aspects.
Collapse
|
57
|
Central Modulation of Neuroinflammation by Neuropeptides and Energy-Sensing Hormones during Obesity. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7949582. [PMID: 28913358 PMCID: PMC5587954 DOI: 10.1155/2017/7949582] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/19/2017] [Accepted: 07/24/2017] [Indexed: 02/06/2023]
Abstract
Central nervous system (CNS) senses energy homeostasis by integrating both peripheral and autonomic signals and responding to them by neurotransmitters and neuropeptides release. Although it is previously considered an immunologically privileged organ, we now know that this is not so. Cells belonging to the immune system, such as B and T lymphocytes, can be recruited into the CNS to face damage or infection, in addition to possessing resident immunological cells, called microglia. In this way, positive energy balance during obesity promotes an inflammatory state in the CNS. Saturated fatty acids from the diet have been pointed out as powerful candidates to trigger immune response in peripheral system and in the CNS. However, how central immunity communicates to peripheral immune response remains to be clarified. Recently there has been a great interest in the neuropeptides, POMC derived peptides, ghrelin, and leptin, due to their capacity to suppress or induce inflammatory responses in the brain, respectively. These may be potential candidates to treat different pathologies associated with autoimmunity and inflammation. In this review, we will discuss the role of lipotoxicity associated with positive energy balance during obesity in proinflammatory response in microglia, B and T lymphocytes, and its modulation by neuropeptides.
Collapse
|
58
|
Excitability and Synaptic Transmission in the Enteric Nervous System: Does Diet Play a Role? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 891:201-11. [PMID: 27379647 DOI: 10.1007/978-3-319-27592-5_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Changes in diet are a challenge to the gastrointestinal tract which needs to alter its processing mechanisms to continue to process nutrients and maintain health. In particular, the enteric nervous system (ENS) needs to adapt its motor and secretory programs to deal with changes in nutrient type and load in order to optimise nutrient absorption.The nerve circuits in the gut are complex, and the numbers and types of neurons make recordings of specific cell types difficult, time-consuming, and prone to sampling errors. Nonetheless, traditional research methods like intracellular electrophysiological approaches have provided the basis for our understanding of the ENS circuitry. In particular, animal models of intestinal inflammation have shown us that we can document changes to neuronal excitability and synaptic transmission.Recent studies examining diet-induced changes to ENS programming have opted to use fast imaging techniques to reveal changes in neuron function. Advances in imaging techniques using voltage- or calcium-sensitive dyes to record neuronal activity promise to overcome many limitations inherent to electrophysiological approaches. Imaging techniques allow access to a wide range of ENS phenotypes and to the changes they undergo during dietary challenges. These sorts of studies have shown that dietary variation or obesity can change how the ENS processes information-in effect reprogramming the ENS. In this review, the data gathered from intracellular recordings will be compared with measurements made using imaging techniques in an effort to determine if the lessons learnt from inflammatory changes are relevant to the understanding of diet-induced reprogramming.
Collapse
|
59
|
Cinkajzlová A, Mráz M, Haluzík M. Lymphocytes and macrophages in adipose tissue in obesity: markers or makers of subclinical inflammation? PROTOPLASMA 2017; 254:1219-1232. [PMID: 28150048 DOI: 10.1007/s00709-017-1082-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/25/2017] [Indexed: 05/17/2023]
Abstract
Obesity is accompanied by the development of chronic low-grade inflammation in adipose tissue. The presence of chronic inflammatory response along with metabolically harmful factors released by adipose tissue into the circulation is associated with several metabolic complications of obesity such as type 2 diabetes mellitus or accelerated atherosclerosis. The present review is focused on macrophages and lymphocytes and their possible role in low-grade inflammation in fat. Both macrophages and lymphocytes respond to obesity-induced adipocyte hypertrophy by their migration into adipose tissue. After activation and differentiation, they contribute to the development of local inflammatory response and modulation of endocrine function of adipose tissue. Despite intensive research, the exact role of lymphocytes and macrophages within adipose tissue is only partially clarified and various data obtained by different approaches bring ambiguous information with respect to their polarization and cytokine production. Compared to immunocompetent cells, the role of adipocytes in the obesity-related adipose tissue inflammation is often underestimated despite their abundant production of factors with immunomodulatory actions such as cytokines or adipokines such as leptin, adiponektin, and others. In summary, conflicting evidence together with only partial correlation of in vitro findings with true in vivo situation due to great heterogeneity and molecular complexity of tissue environment calls for intensive research in this rapidly evolving and important area.
Collapse
Affiliation(s)
- Anna Cinkajzlová
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University in Prague and General University Hospital, Prague, Czech Republic
- Centre of Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Miloš Mráz
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University in Prague and General University Hospital, Prague, Czech Republic
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Martin Haluzík
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University in Prague and General University Hospital, Prague, Czech Republic.
- Centre of Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
- Diabetes Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
- Department of Obesitology, Institute of Endocrinology, Prague, Czech Republic.
| |
Collapse
|
60
|
Abstract
Obesity provokes an imbalance in the immune system, including an aberrant type I interferon response during some viral infections and after TLR stimulation. SOCS3 overexpression and altered systemic leptin levels could be responsible for the reduced type I interferon production in people with obesity and, eventually, significantly increase the risk of viral infection. The aim of this study was to determine whether SOCS3- and leptin-induced tolerance are responsible for the reduced type I interferon production in people with obesity. SOCS3 overexpression in PBMCs from people with obesity was inhibited with the small interfering RNA (siRNA) assay, and leptin-induced tolerance was evaluated in PBMCs from non-obese volunte\ers and U937 cells treated with TLR ligands. SOCS3, but not SOCS1, gene silencing via siRNA increased the type I interferon response in PBMCs obtained from people with obesity. On the other hand, leptin induced SOCS3 expression and inhibited type I interferons in PBMCs from healthy donors and in U937 monocytes stimulated with TLR ligands. Taken together, these results demonstrate that reduced type I interferon production in obesity is caused by SOCS3 overexpression as well as tolerance induced by leptin. Here, we demonstrate a key role of leptin and SOCS3 in inhibiting the type I interferon response during obesity.
Collapse
|
61
|
Adipokine Contribution to the Pathogenesis of Osteoarthritis. Mediators Inflamm 2017; 2017:5468023. [PMID: 28490838 PMCID: PMC5401756 DOI: 10.1155/2017/5468023] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/25/2017] [Accepted: 03/07/2017] [Indexed: 12/13/2022] Open
Abstract
Recent studies have shown that overweight and obesity play an important role in the development of osteoarthritis (OA). However, joint overload is not the only risk factor in this disease. For instance, the presence of OA in non-weight-bearing joints such as the hand suggests that metabolic factors may also contribute to its pathogenesis. Recently, white adipose tissue (WAT) has been recognized not only as an energy reservoir but also as an important secretory organ of adipokines. In this regard, adipokines have been closely associated with obesity and also play an important role in bone and cartilage homeostasis. Furthermore, drugs such as rosuvastatin or rosiglitazone have demonstrated chondroprotective and anti-inflammatory effects in cartilage explants from patients with OA. Thus, it seems that adipokines are important factors linking obesity, adiposity, and inflammation in OA. In this review, we are focused on establishing the physiological mechanisms of adipokines on cartilage homeostasis and evaluating their role in the pathophysiology of OA based on evidence derived from experimental research as well as from clinical-epidemiological studies.
Collapse
|
62
|
Fabersani E, Abeijon-Mukdsi MC, Ross R, Medina R, González S, Gauffin-Cano P. Specific Strains of Lactic Acid Bacteria Differentially Modulate the Profile of Adipokines In Vitro. Front Immunol 2017; 8:266. [PMID: 28348560 PMCID: PMC5346559 DOI: 10.3389/fimmu.2017.00266] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/23/2017] [Indexed: 12/12/2022] Open
Abstract
Obesity induces local/systemic inflammation accompanied by increases in macrophage infiltration into adipose tissue and production of inflammatory cytokines, chemokines, and hormones. Previous studies have shown that probiotics could improve the intestinal dysbiosis induced by metabolic diseases such as obesity, diabetes, and metabolic syndrome. Microorganisms could (directly or indirectly) affect adipokine levels due to their capacity to induce translocation of several intestinal microbial antigens into systemic circulation, which could lead to metabolic endotoxemia or produce immunomodulation in different organs. The aim of the present study was to select non-inflammatory lactic acid bacteria (LAB) strains with the capacity to modulate adipokine secretion by the adipose tissue. We wish to elucidate the role of potential probiotic strains in the regulation of the cross talking between immune cells such as macrophages and adipose cells. Mouse macrophage cell line RAW 264.7 was used for evaluating the ability of 14 LAB strains to induce cytokine production. The LAB strains were chosen based on their previously studied beneficial properties in health. Then, in murine adipocyte culture and macrophage–adipocyte coculture, we determined the ability of these strains to induce cytokines and leptin secretion. Tumor necrosis factor alpha, interleukin 6 (IL-6), IL-10, monocyte chemoattractant protein-1, and leptin levels were measured in cell supernatants. We also performed the detection and quantification of leptin receptor (Ob-Rb) expression in macrophage cell lines stimulated by these LAB strains. Differential secretion profile of cytokines in macrophage cells induced by LAB strains was observed. Also, the levels of Ob-Rb expression diverged among different LAB strains. In LAB-stimulated coculture cells (adipocytes and macrophages), we observed differential production of leptin and cytokines. Furthermore, we detected lower production levels in single culture than cocultured cells. The principal component analysis showed an association between the four clusters of strains established according to their inflammatory profiles and leptin adipocyte production and leptin receptor expression in macrophages. We conclude that coculture is the most appropriate system for selecting strains with the ability to modulate adipokine secretion. The use of microorganisms with low and medium inflammatory properties and ability to modulate leptin levels could be a strategy for the treatment of some metabolic diseases associated with dysregulation of immune response.
Collapse
Affiliation(s)
- Emanuel Fabersani
- Centro de Referencia para Lactobacilos (CERELA) - CONICET , Tucumán , Argentina
| | - María Claudia Abeijon-Mukdsi
- Centro de Referencia para Lactobacilos (CERELA) - CONICET, Tucumán, Argentina; Facultad Ciencias de la Salud, Universidad del Norte Santo Tomás de Aquino (UNSTA), Tucumán, Argentina
| | - Romina Ross
- Facultad Ciencias de la Salud, Universidad del Norte Santo Tomás de Aquino (UNSTA), Tucumán, Argentina; Universidad Nacional de Tucumán (UNT), Tucumán, Argentina
| | - Roxana Medina
- Centro de Referencia para Lactobacilos (CERELA) - CONICET, Tucumán, Argentina; Universidad Nacional de Tucumán (UNT), Tucumán, Argentina
| | | | - Paola Gauffin-Cano
- Centro de Referencia para Lactobacilos (CERELA) - CONICET, Tucumán, Argentina; Facultad Ciencias de la Salud, Universidad del Norte Santo Tomás de Aquino (UNSTA), Tucumán, Argentina
| |
Collapse
|
63
|
Cohen S, Danzaki K, MacIver NJ. Nutritional effects on T-cell immunometabolism. Eur J Immunol 2017; 47:225-235. [PMID: 28054344 DOI: 10.1002/eji.201646423] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 11/23/2016] [Accepted: 01/02/2017] [Indexed: 12/14/2022]
Abstract
T cells are highly influenced by nutrient uptake from their environment, and changes in overall nutritional status, such as malnutrition or obesity, can result in altered T-cell metabolism and behavior. In states of severe malnutrition or starvation, T-cell survival, proliferation, and inflammatory cytokine production are all decreased, as is T-cell glucose uptake and metabolism. The altered T-cell function and metabolism seen in malnutrition is associated with altered adipokine levels, most particularly decreased leptin. Circulating leptin levels are low in malnutrition, and leptin has been shown to be a key link between nutrition and immunity. The current view is that leptin signaling is required to upregulate activated T-cell glucose metabolism and thereby fuel T-cell activation. In the setting of obesity, T cells have been found to have a key role in promoting the recruitment of inflammatory macrophages to adipose depots along with the production of inflammatory cytokines that promote the development of insulin resistance leading to diabetes. Deletion of T cells, key T-cell transcription factors, or pro-inflammatory T-cell cytokines prevents insulin resistance in obesity and underscores the importance of T cells in obesity-associated inflammation and metabolic disease. Altogether, T cells have a critical role in nutritional immunometabolism.
Collapse
Affiliation(s)
- Sivan Cohen
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Keiko Danzaki
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - Nancie J MacIver
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
64
|
Liu F, Guo Z, Dong C. Influences of obesity on the immunogenicity of Hepatitis B vaccine. Hum Vaccin Immunother 2017; 13:1014-1017. [PMID: 28059607 DOI: 10.1080/21645515.2016.1274475] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Hepatitis B vaccine is regarded as the most effective method for the prevention of hepatitis B virus (HBV) infection. However, several factors such as age, body mass index and immunocompetent state have been reported to be associated with reduced immunization responses. The present commentary was aimed to discuss the influences of obesity on the immunogenicity of hepatitis B vaccines. DATA SOURCES Available peer-reviewed literatures, practice guidelines, and statistics published on hepatitis B vaccine in obesity between 1973 and 2015. CONCLUSIONS Obesity was significantly associated with non-response to hepatitis B vaccine immunization. The risk of nonresponsiveness of hepatitis B vaccine among obese people increased with BMI. Moreover, the obesity might lead to an increased risk of HBV vaccine-escape mutations. The mechanism responsible for decreased immunization responses in obesity included leptin-induced systemic and B cell intrinsic inflammation, impaired T cell responses and lymphocyte division and proliferation. Therefore, more studies should be performed to analyze the influences of obesity on the immunogenicity of hepatitis B vaccines to improve the immunoprotecive effect of hepatitis B vaccines in future.
Collapse
Affiliation(s)
- Fang Liu
- a Suzhou Center for Disease Control and Prevention , Suzhou , China
| | - Zhirong Guo
- b Department of Epidemiology and Statistics , School of Public Health, Jiangsu Key Laboratory and Translational Medicine for Geriatric Disease, Medical College of Soochow University , Suzhou , Jiangsu , China
| | - Chen Dong
- b Department of Epidemiology and Statistics , School of Public Health, Jiangsu Key Laboratory and Translational Medicine for Geriatric Disease, Medical College of Soochow University , Suzhou , Jiangsu , China
| |
Collapse
|
65
|
Procaccini C, La Rocca C, Carbone F, De Rosa V, Galgani M, Matarese G. Leptin as immune mediator: Interaction between neuroendocrine and immune system. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 66:120-129. [PMID: 27288847 DOI: 10.1016/j.dci.2016.06.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 05/27/2016] [Accepted: 06/07/2016] [Indexed: 06/06/2023]
Abstract
Leptin is an adipocyte-derived hormone/cytokine that links nutritional status with neuroendocrine and immune functions. Initially described as an anti-obesity hormone, leptin has subsequently been shown to exert pleiotropic effects, being also able to influence haematopoiesis, thermogenesis, reproduction, angiogenesis, and more importantly immune homeostasis. As a cytokine, leptin can affect both innate and adaptive immunity, by inducing a pro-inflammatory response and thus playing a key role in the regulation of the pathogenesis of several autoimmune/inflammatory diseases. In this review, we discuss the most recent advances on the role of leptin as immune-modulator in mammals and we also provide an overview on its main functions in non-mammalian vertebrates.
Collapse
Affiliation(s)
- Claudio Procaccini
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131 Napoli, Italy
| | - Claudia La Rocca
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131 Napoli, Italy
| | - Fortunata Carbone
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131 Napoli, Italy
| | - Veronica De Rosa
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131 Napoli, Italy; Unità di NeuroImmunologia, Fondazione Santa Lucia, 00143 Roma, Italy
| | - Mario Galgani
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131 Napoli, Italy
| | - Giuseppe Matarese
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131 Napoli, Italy; Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131 Napoli, Italy.
| |
Collapse
|
66
|
Erbasan F, Alikanoğlu AS, Yazısız V, Karasu U, Balkarlı A, Sezer C, Terzioğlu ME. Leptin and leptin receptors in salivary glands of primary Sjögren’s syndrome. Pathol Res Pract 2016; 212:1010-1014. [DOI: 10.1016/j.prp.2016.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 08/17/2016] [Accepted: 08/29/2016] [Indexed: 02/07/2023]
|
67
|
Multiple Sclerosis and Obesity: Possible Roles of Adipokines. Mediators Inflamm 2016; 2016:4036232. [PMID: 27721574 PMCID: PMC5046034 DOI: 10.1155/2016/4036232] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/22/2016] [Accepted: 08/08/2016] [Indexed: 12/21/2022] Open
Abstract
Multiple Sclerosis (MS) is an autoimmune disorder of the Central Nervous System that has been associated with several environmental factors, such as diet and obesity. The possible link between MS and obesity has become more interesting in recent years since the discovery of the remarkable properties of adipose tissue. Once MS is initiated, obesity can contribute to increased disease severity by negatively influencing disease progress and treatment response, but, also, obesity in early life is highly relevant as a susceptibility factor and causally related risk for late MS development. The aim of this review was to discuss recent evidence about the link between obesity, as a chronic inflammatory state, and the pathogenesis of MS as a chronic autoimmune and inflammatory disease. First, we describe the main cells involved in MS pathogenesis, both from neural tissue and from the immune system, and including a new participant, the adipocyte, focusing on their roles in MS. Second, we concentrate on the role of several adipokines that are able to participate in the mediation of the immune response in MS and on the possible cross talk between the latter. Finally, we explore recent therapy that involves the transplantation of adipocyte precursor cells for the treatment of MS.
Collapse
|
68
|
MacIver NJ, Thomas SM, Green CL, Worley G. Increased leptin levels correlate with thyroid autoantibodies in nonobese males. Clin Endocrinol (Oxf) 2016; 85:116-21. [PMID: 26445359 DOI: 10.1111/cen.12963] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 07/28/2015] [Accepted: 10/01/2015] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Leptin is an adipokine that regulates body weight and appetite. It is also an inflammatory cytokine that influences immune reactivity and autoimmunity. Leptin levels are increased in obesity and are higher in women than in men. We aimed to determine whether leptin levels, independent of sex and body mass index (BMI), are associated with thyroid autoimmunity. DESIGN This study uses data from The Third National Health and Nutrition Examination Survey (NHANES III) to test the association of leptin and thyroid autoimmunity, independent of BMI. MEASUREMENTS Thyroid-stimulating hormone, thyroxine, antithyroid peroxidase (TPO) antibodies and leptin levels were measured in 2902 men and 3280 women within the NHANES III population. BMI was calculated from height and weight. RESULTS Women had significantly higher leptin levels and anti-TPO antibody titres than men. Correlation analyses demonstrated that leptin levels were associated with anti-TPO antibody levels in the total population, but when men and women were analysed separately, this association was lost. We then stratified men and women into obese (BMI > 30) or nonobese (BMI ≤ 30) subgroups and determined the association between leptin levels and anti-TPO antibody titres for each subgroup. Using regression analysis, we found that increased leptin levels correlated with thyroid autoantibodies in nonobese males, but not in obese males or in females. CONCLUSIONS Leptin levels correlated with thyroid autoantibody titres in nonobese males. This association was not found in females. Sex and body habitus should therefore be considered in studying the role of leptin in other autoimmune conditions.
Collapse
Affiliation(s)
- Nancie J MacIver
- Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Steven M Thomas
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
| | - Cynthia L Green
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
| | - Gordon Worley
- Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
69
|
Gerriets VA, Danzaki K, Kishton RJ, Eisner W, Nichols AG, Saucillo DC, Shinohara ML, MacIver NJ. Leptin directly promotes T-cell glycolytic metabolism to drive effector T-cell differentiation in a mouse model of autoimmunity. Eur J Immunol 2016; 46:1970-83. [PMID: 27222115 DOI: 10.1002/eji.201545861] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 04/18/2016] [Accepted: 05/20/2016] [Indexed: 12/14/2022]
Abstract
Upon activation, T cells require energy for growth, proliferation, and function. Effector T (Teff) cells, such as Th1 and Th17 cells, utilize high levels of glycolytic metabolism to fuel proliferation and function. In contrast, Treg cells require oxidative metabolism to fuel suppressive function. It remains unknown how Teff/Treg-cell metabolism is altered when nutrients are limited and leptin levels are low. We therefore examined the role of malnutrition and associated hypoleptinemia on Teff versus Treg cells. We found that both malnutrition-associated hypoleptinemia and T cell-specific leptin receptor knockout suppressed Teff-cell number, function, and glucose metabolism, but did not alter Treg-cell metabolism or suppressive function. Using the autoimmune mouse model EAE, we confirmed that fasting-induced hypoleptinemia altered Teff-cell, but not Treg-cell, glucose metabolism, and function in vivo, leading to decreased disease severity. To explore potential mechanisms, we examined HIF-1α, a key regulator of Th17 differentiation and Teff-cell glucose metabolism, and found HIF-1α expression was decreased in T cell-specific leptin receptor knockout Th17 cells, and in Teff cells from fasted EAE mice, but was unchanged in Treg cells. Altogether, these data demonstrate a selective, cell-intrinsic requirement for leptin to upregulate glucose metabolism and maintain function in Teff, but not Treg cells.
Collapse
Affiliation(s)
- Valerie A Gerriets
- Department of Pediatrics, Division of Pediatric Endocrinology, Duke University Medical Center, Durham, NC, USA
| | - Keiko Danzaki
- Department of Pediatrics, Division of Pediatric Endocrinology, Duke University Medical Center, Durham, NC, USA
| | - Rigel J Kishton
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - William Eisner
- Department of Pediatrics, Division of Pediatric Endocrinology, Duke University Medical Center, Durham, NC, USA
| | - Amanda G Nichols
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Donte C Saucillo
- Department of Pediatrics, Division of Pediatric Endocrinology, Duke University Medical Center, Durham, NC, USA
| | - Mari L Shinohara
- Department of Immunology, Duke University Medical Center, Durham, NC, USA.,Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Nancie J MacIver
- Department of Pediatrics, Division of Pediatric Endocrinology, Duke University Medical Center, Durham, NC, USA.,Department of Immunology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
70
|
Murphy S, Patrick K, Thoner T, Edwards RW, Gubbels Bupp MR. T cell up-regulation of CD127 is associated with reductions in the homeostatic set point of the peripheral T cell pool during malnourishment. Biochem Biophys Rep 2016; 7:164-172. [PMID: 28955903 PMCID: PMC5613352 DOI: 10.1016/j.bbrep.2016.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/02/2016] [Accepted: 06/06/2016] [Indexed: 11/18/2022] Open
Abstract
The following study was undertaken to better understand the mechanisms that relate the homeostatic set point of the peripheral T cell population to energy availability in mice. We report that the total number of peripheral naïve and memory CD4+ and CD8+T cells notably declined after one week of malnourishment, a time period too short to be entirely due to malnutrition-induced thymic involution. Peripheral malnourished T cells expressed higher levels of the IL-7 receptor component, CD127, and were less sensitive to death-by-neglect as compared to control T cells. Overall levels of IL-7 were similar in malnourished and control mice. Adoptive transfer studies revealed that CD127 expression did not correlate with increased survival in vivo and that all naïve CD8+T cells upregulated CD127, regardless of initial expression levels. Corticosterone levels were elevated in malnourished mice and this correlated in time with peripheral T cell up-regulation of CD127 and the diminishment of the peripheral T cell pool. Overall, these data suggest a model in which CD127 levels are up-regulated quickly during malnourishment, thereby increasing the scavenge rate of IL-7, and providing a mechanism to quickly adjust the total number of T cells during malnutrition. Malnourishment results in reduced numbers of peripheral CD8+T cells. The IL-7R alpha subunit, CD127 is up-regulated on CD8+T cells during malnourishment. Malnourished CD8+T cells are less sensitive to death-by-neglect. Levels of IL-7 are unchanged in malnourishment, while glucocorticoids are elevated.
Collapse
|
71
|
De Matteis G, Grandoni F, Scatà MC, Catizone A, Reale A, Crisà A, Moioli B. Evaluation of leptin receptor expression on buffalo leukocytes. Vet Immunol Immunopathol 2016; 177:16-23. [PMID: 27436440 DOI: 10.1016/j.vetimm.2016.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 04/07/2016] [Accepted: 05/19/2016] [Indexed: 12/31/2022]
Abstract
Experimental evidences support a direct role for leptin in immunity. Besides controlling food intake and energy expenditure, leptin was reported to be involved in the regulation of the immune system in ruminants. The aim of this work was to highlight the expression of leptin receptor (LEPR) on Bubalus bubalis immune cells using a multi-approach assessment: flow cytometry, confocal microscopy and gene expression analysis. Flow cytometric analysis of LEPR expression showed that peripheral blood monocytes were the predominant cells expressing LEPR. This result was corroborated by confocal microscopy and RT-PCR analysis. Moreover, among lymphocytes, LEPR was mainly expressed by B lymphocytes and Natural Killer cells. Evidence of LEPR expression on buffalo blood leukocytes showed to be a good indicator of the responsivity of these cells to leptin, so confirming the involvement of leptin in buffalo immune response.
Collapse
Affiliation(s)
- Giovanna De Matteis
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Animal Production Research Centre, Monterotondo, Italy.
| | - Francesco Grandoni
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Animal Production Research Centre, Monterotondo, Italy
| | - Maria Carmela Scatà
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Animal Production Research Centre, Monterotondo, Italy
| | - Angela Catizone
- Dipartimento di Scienze Anatomiche, Istologiche, Medico Legali e dell'Apparato Locomotore-Section of Histology and Medical Embryology, Sapienza University of Rome, Italy
| | - Anna Reale
- Dipartimento di Biotecnologie Cellulari ed Ematologia-Section of Clinical Biochemistry, Sapienza University of Rome, Italy
| | - Alessandra Crisà
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Animal Production Research Centre, Monterotondo, Italy
| | - Bianca Moioli
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Animal Production Research Centre, Monterotondo, Italy
| |
Collapse
|
72
|
Collin A, Noacco A, Talvas J, Caldefie-Chézet F, Vasson MP, Farges MC. Enhancement of Lytic Activity by Leptin Is Independent From Lipid Rafts in Murine Primary Splenocytes. J Cell Physiol 2016; 232:101-9. [PMID: 27028718 DOI: 10.1002/jcp.25394] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 03/25/2016] [Indexed: 12/13/2022]
Abstract
Leptin, a pleiotropic adipokine, is known as a regulator of food intake, but it is also involved in inflammation, immunity, cell proliferation, and survival. Leptin receptor is integrated inside cholesterol-rich microdomains called lipid rafts, which, if disrupted or destroyed, could lead to a perturbation of lytic mechanism. Previous studies also reported that leptin could induce membrane remodeling. In this context, we studied the effect of membrane remodeling in lytic activity modulation induced by leptin. Thus, primary mouse splenocytes were incubated with methyl-β-cyclodextrin (β-MCD), a lipid rafts disrupting agent, cholesterol, a major component of cell membranes, or ursodeoxycholic acid (UDCA), a membrane stabilizer agent for 1 h. These treatments were followed by splenocyte incubation with leptin (absence, 10 and 100 ng/ml). Unlike β-MCD or cholesterol, UDCA was able to block leptin lytic induction. This result suggests that leptin increased the lytic activity of primary spleen cells against syngenic EO771 mammary cancer cells independently from lipid rafts but may involve membrane fluidity. Furthermore, natural killer cells were shown to be involved in the splenocyte lytic activity. To our knowledge it is the first publication in primary culture that provides the link between leptin lytic modulation and membrane remodeling. J. Cell. Physiol. 232: 101-109, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Aurore Collin
- Clermont Université, Université d'Auvergne, UFR Pharmacie, UMR 1019, Unité de Nutrition Humaine, Equipe ECREIN, CLARA, Clermont-Ferrand, France. .,INRA, UMR 1019, Unité de Nutrition Humaine, CRNH Auvergne, Clermont-Ferrand, France.
| | - Audrey Noacco
- Clermont Université, Université d'Auvergne, UFR Pharmacie, UMR 1019, Unité de Nutrition Humaine, Equipe ECREIN, CLARA, Clermont-Ferrand, France.,INRA, UMR 1019, Unité de Nutrition Humaine, CRNH Auvergne, Clermont-Ferrand, France
| | - Jérémie Talvas
- Clermont Université, Université d'Auvergne, UFR Pharmacie, UMR 1019, Unité de Nutrition Humaine, Equipe ECREIN, CLARA, Clermont-Ferrand, France.,INRA, UMR 1019, Unité de Nutrition Humaine, CRNH Auvergne, Clermont-Ferrand, France
| | - Florence Caldefie-Chézet
- Clermont Université, Université d'Auvergne, UFR Pharmacie, UMR 1019, Unité de Nutrition Humaine, Equipe ECREIN, CLARA, Clermont-Ferrand, France.,INRA, UMR 1019, Unité de Nutrition Humaine, CRNH Auvergne, Clermont-Ferrand, France
| | - Marie-Paule Vasson
- Clermont Université, Université d'Auvergne, UFR Pharmacie, UMR 1019, Unité de Nutrition Humaine, Equipe ECREIN, CLARA, Clermont-Ferrand, France.,INRA, UMR 1019, Unité de Nutrition Humaine, CRNH Auvergne, Clermont-Ferrand, France.,Centre Jean-Perrin, CHU Gabriel-Montpied, Unité de Nutrition, Clermont-Ferrand, France
| | - Marie-Chantal Farges
- Clermont Université, Université d'Auvergne, UFR Pharmacie, UMR 1019, Unité de Nutrition Humaine, Equipe ECREIN, CLARA, Clermont-Ferrand, France.,INRA, UMR 1019, Unité de Nutrition Humaine, CRNH Auvergne, Clermont-Ferrand, France
| |
Collapse
|
73
|
Wei R, Hu Y, Dong F, Xu X, Hu A, Gao G. Hepatoma cell-derived leptin downregulates the immunosuppressive function of regulatory T-cells to enhance the anti-tumor activity of CD8+ T-cells. Immunol Cell Biol 2015; 94:388-99. [PMID: 26639061 DOI: 10.1038/icb.2015.110] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 02/08/2023]
Abstract
The adaptive immune response against hepatocellular carcinoma (HCC) could be a therapeutic target to restrain HCC initiation and growth. The interactions between hepatoma cells and immune cells modify the anti-tumor immunity to influence hepatoma cell survival. To explore the potential interplay between hepatoma cells and anti-HCC T-cells, we conducted a HCC induction mouse model to analyze the phenotypic and functional alterations of T-cell subsets. We found that both hepatoma tissues and hepatoma cell lines substantially produced higher leptin, which is an adipokine usually expressed in fat tissue, than normal liver tissue or hepatocytes. We also found that regulatory T-cells (Tregs), effector CD4(+) T-cells and CD8(+) T-cells upregulated expression of leptin receptor (LEPR) in spleens and livers after HCC induction. In vitro study showed that macrophages and dendritic cells isolated from HCC livers upregulated LEPR expression on T-cells. Leptin inhibited Treg activation and function in vitro, demonstrated by lower expression of TGF-β, IL-10, CTLA4 and GITR in Tregs, as wells weaker suppression of CD8(+) T-cell proliferation and production of cytotoxic mediators. In addition, silencing LEPR in Tregs favored tumor growth in a hepatoma cell line allograft model. Taken together, our study suggests that hepatoma cells could enhance anti-HCC immunity through secreting leptin to down-regulate Treg activity and subsequently promote CD8(+) T-cell response.
Collapse
Affiliation(s)
- Renxiong Wei
- Department of Clinical Laboratory, Ningbo Municipal Hospital of Traditional Chinese Medicine, Ningbo City, China
| | - Yaoren Hu
- Liver Disease Branch, Ningbo No.2 Hospital, Ningbo City, China
| | - Feibo Dong
- Department of Clinical Laboratory, Ningbo No. 2 Hospital, Ningbo City, China
| | - Xiaozhen Xu
- Liver Disease Branch, Ningbo No.2 Hospital, Ningbo City, China
| | - Airong Hu
- Liver Disease Branch, Ningbo No.2 Hospital, Ningbo City, China
| | - Guosheng Gao
- Department of Clinical Laboratory, Ningbo No. 2 Hospital, Ningbo City, China
| |
Collapse
|
74
|
Effect of Diet and Exercise on the Peripheral Immune System in Young Balb/c Mice. BIOMED RESEARCH INTERNATIONAL 2015; 2015:458470. [PMID: 26634209 PMCID: PMC4655039 DOI: 10.1155/2015/458470] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/13/2015] [Accepted: 10/20/2015] [Indexed: 01/29/2023]
Abstract
Although diet and exercise clearly have an influence on immune function, studies are scarce on the effect caused by exercise and the consumption of a carbohydrate-rich or fat-rich diet on the peripheral immune system. The aim of the present study was to evaluate the effect of exercise and the two aforementioned unbalanced diets on young Balb/c mice, especially in relation to BMI, the level of glucose, and the percentage of lymphocyte subpopulations in peripheral blood. The changes found were then related to the synthesis of leptin and adiponectin as well as the production of oxidative stress. The increase in BMI found with the carbohydrate-rich and fat-rich diets showed correlation with the levels of leptin and adiponectin. An increase in leptin and a decrease in adiponectin directly correlated with an increase in total lymphocytes and CD4+ cells and with a decrease in B cells. The increase in leptin also correlated with an increase in CD8+ cells. Glycemia and oxidative stress increased with the two unbalanced diets, negatively affecting the proliferation of total lymphocytes and the percentage of B cells, apparently by causing alterations in proteins through carbonylation. These alterations caused by an unbalanced diet were not modified by moderate exercise.
Collapse
|
75
|
Molina N, Bolin A, Otton R. Green tea polyphenols change the profile of inflammatory cytokine release from lymphocytes of obese and lean rats and protect against oxidative damage. Int Immunopharmacol 2015; 28:985-96. [DOI: 10.1016/j.intimp.2015.08.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 08/03/2015] [Accepted: 08/06/2015] [Indexed: 01/03/2023]
|
76
|
Wensveen FM, Valentić S, Šestan M, Turk Wensveen T, Polić B. The “Big Bang” in obese fat: Events initiating obesity-induced adipose tissue inflammation. Eur J Immunol 2015. [DOI: 10.1002/eji.201545502] [Citation(s) in RCA: 213] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Felix M. Wensveen
- Department of Histology & Embryology; Faculty of Medicine; University of Rijeka; Rijeka Croatia
- Department of Experimental Immunology; Amsterdam Medical Centre; Amsterdam The Netherlands
| | - Sonja Valentić
- Department of Histology & Embryology; Faculty of Medicine; University of Rijeka; Rijeka Croatia
| | - Marko Šestan
- Department of Histology & Embryology; Faculty of Medicine; University of Rijeka; Rijeka Croatia
| | | | - Bojan Polić
- Department of Histology & Embryology; Faculty of Medicine; University of Rijeka; Rijeka Croatia
| |
Collapse
|
77
|
Sreenivasan J, Schlenner S, Franckaert D, Dooley J, Liston A. The thymoprotective function of leptin is indirectly mediated via suppression of obesity. Immunology 2015; 146:122-9. [PMID: 26059465 DOI: 10.1111/imm.12488] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/19/2015] [Accepted: 06/01/2015] [Indexed: 12/17/2022] Open
Abstract
Leptin is an adipokine that regulates metabolism and plays an important role as a neuroendocrine hormone. Leptin mediates these functions via the leptin receptor, and deficiency in either leptin or its receptor leads to obesity in humans and mice. Leptin has far reaching effects on the immune system, as observed in obese mice, which display decreased thymic function and increased inflammatory responses. With expression of the leptin receptor on T cells and supporting thymic epithelium, aberrant signalling through the leptin receptor has been thought to be the direct cause of thymic involution in obese mice. Here, we demonstrate that the absence of leptin receptor on either thymic epithelial cells or T cells does not lead to the loss of thymic function, demonstrating that the thymoprotective effect of leptin is mediated by obesity suppression rather than direct signalling to the cellular components of the thymus.
Collapse
Affiliation(s)
- Jayasree Sreenivasan
- VIB, Leuven, Belgium.,Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Susan Schlenner
- VIB, Leuven, Belgium.,Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Dean Franckaert
- VIB, Leuven, Belgium.,Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - James Dooley
- VIB, Leuven, Belgium.,Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Adrian Liston
- VIB, Leuven, Belgium.,Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| |
Collapse
|
78
|
Pliszka M, Oleszczak B, Szablewski L. Leptin at gender-specific concentrations does not affect glucose transport, expression of glucose transporters and leptin receptors in human lymphocytes. Endocrine 2015; 49:97-105. [PMID: 25306890 PMCID: PMC4412833 DOI: 10.1007/s12020-014-0435-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 09/19/2014] [Indexed: 01/18/2023]
Abstract
Leptin shows pleiotropic effects in organisms including an important role in the regulation of glucose homeostasis. Elevated serum leptin, particularly in obese individuals, is a warning sign of energy imbalance, hyperinsulinemia, insulin resistance and other metabolic risk factors that are strongly associated with type 2 diabetes. Obesity is also related to a higher rate of infections and immune function deterioration may in part ensue from decreased glucose uptake as the main energy source for lymphocytes. The aim of this study was to investigate the effect of physiologic and low pathophysiologic gender-specific leptin concentration found in lean and obese subjects on glucose transport, the expression of glucose transporters and leptin receptors in human peripheral blood lymphocytes. Isolated lymphocytes were incubated with human leptin at gender-specific concentrations observed in normal weight and obese subjects. Glucose uptake in lymphocytes was determined using nonmetabolizable radiolabeled deoxy-D-glucose. The expression of GLUT1, 3, 4 and leptin receptors was investigated using methods of immunocytochemistry and flow cytometry. Leptin at concentrations used in the study does not change glucose transport into lymphocytes and seems to have no influence on the expression of glucose transporters and leptin receptors. Further studies are necessary to address the relationship between leptin, glucose transport and the lymphocytes' function in obesity.
Collapse
Affiliation(s)
- Monika Pliszka
- Chair of General Biology and Parasitology, Center for Biostructure Research, Medical University of Warsaw, 5 Chalubinskiego Str., 02-004 Warsaw, Poland
| | - Bożenna Oleszczak
- Chair of General Biology and Parasitology, Center for Biostructure Research, Medical University of Warsaw, 5 Chalubinskiego Str., 02-004 Warsaw, Poland
| | - Leszek Szablewski
- Chair of General Biology and Parasitology, Center for Biostructure Research, Medical University of Warsaw, 5 Chalubinskiego Str., 02-004 Warsaw, Poland
| |
Collapse
|
79
|
Martín-González J, Carmona-Fernández A, Pérez-Pérez A, Sánchez-Jiménez F, Sánchez-Margalet V, Segura-Egea JJ. Expression and immunohistochemical localization of leptin in human periapical granulomas. Med Oral Patol Oral Cir Bucal 2015; 20:e334-9. [PMID: 25662559 PMCID: PMC4464921 DOI: 10.4317/medoral.20385] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 11/21/2014] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Leptin, initially described as an adipocyte-derived hormone to regulate weight control, is expressed in normal and inflamed human dental pulp, being up-regulated during pulp experimental inflammation. Leptin receptor (LER) has been identified in human periapical granulomas. The aim of this study was to analyze and characterize the expression of leptin in human periapical granulomas. MATERIAL AND METHODS Fifteen periapical inflammatory lesions were obtained from extracted human teeth and teeth which underwent periapical surgery. After their morphological categorization as periapical granulomas and gradation of the inflammatory infiltrate, they were examined by immunohistochemistry using human leptin policlonal antibodies. Leptin mRNA expression was also determined by quantitative real-time PCR (qRT-PCR) and the amount of leptin protein was analyzed by immunoblot. RESULTS All periapical lesions exhibited the characteristic of chronic granulomatous inflammatory process with inflammatory infiltrate grade III. Leptin+ cells were detected in 13 periapical granulomas (86.6%). The median number of Leptin+ cells in periapical granulomas was 1.70 (0.00-7.4). Amongst the inflammatory cells in the periapical granulomas, only macrophages were reactive to leptin antibodies. Western blot analysis revealed the presence in all samples of a protein with apparent molecular weight of approximately 16 kDa, corresponding to the estimated molecular weights of leptin. The expression of leptin mRNA was confirmed by qRT-PCR analysis and the size of the amplified fragment (296 bp for leptin and 194 bp for cyclophilin) was assessed by agarose gel electrophoresis. CONCLUSIONS For the first time, it has been demonstrated that human periapical granuloma expresses the adipokine leptin.
Collapse
|
80
|
Moon HS, Huh JY, Dincer F, Schneider BE, Hasselgren PO, Mantzoros CS. Identification and saturable nature of signaling pathways induced by metreleptin in humans: comparative evaluation of in vivo, ex vivo, and in vitro administration. Diabetes 2015; 64:828-39. [PMID: 25249580 PMCID: PMC4338590 DOI: 10.2337/db14-0625] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Signaling pathways activated by leptin in metabolically important organs have largely been studied only in animal and/or cell culture studies. In this study, we examined whether leptin has similar effects in human peripheral tissues in vivo, ex vivo, and in vitro and whether the response would be different in lean and obese humans. For in vivo leptin signaling, metreleptin was administered and muscle, adipose tissue, and peripheral blood mononuclear cells were taken for analysis of signal activation. Experiments were also done ex vivo and with primary cultured cells in vitro. The signal activation was compared between male versus female and obese versus lean humans. Acute in vivo, ex vivo, and/or in vitro metreleptin administration similarly activated STAT3, AMPK, ERK1/2, Akt, mTOR, NF-κB, and/or IKKα/β without any differences between male versus female and obese versus lean subjects. All signaling pathways were saturable at ∼30-50 ng/mL, consistent with the clinical evidence showing no additional effect(s) in obese subjects who already have high levels of leptin. Our data provide novel information on downstream effectors of metreleptin action in humans that may have therapeutic implications.
Collapse
Affiliation(s)
- Hyun-Seuk Moon
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Joo Young Huh
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Fadime Dincer
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Benjamin E Schneider
- Division of Minimally Invasive Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Per-Olof Hasselgren
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA
| |
Collapse
|
81
|
Wang B, Sun J, Li L, Zheng J, Shi Y, Le G. Regulatory effects of resveratrol on glucose metabolism and T-lymphocyte subsets in the development of high-fat diet-induced obesity in C57BL/6 mice. Food Funct 2015; 5:1452-63. [PMID: 24812660 DOI: 10.1039/c3fo60714c] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
High-fat diet (HFD)-induced obesity is often associated with immune dysfunction. Resveratrol (trans-3,5,4'-trihydroxystilbene), which has well-founded immunity-related beneficial properties, was used to elucidate the regulatory effect on glucose metabolism and T-lymphocyte subsets in the development of HFD-induced obesity. Resveratrol, being associated with decreases of plasma leptin and plasma lipids and the release of oxidative stress, significantly decreased the body weight and fat masses in HF mice after 26 weeks of feeding. Furthermore, resveratrol decreased the fasting blood glucose and fasting plasma insulin and increased the CD3(+)CD4(+)/CD3(+)CD8(+) subsets percentages and the regulatory T cells (Tregs) production after 13 and 26 weeks of feeding. The results indicate that resveratrol, as an effective supplement for HFD, maintained glucose homeostasis by activating the PI3K and SIRT1 signaling pathways. Moreover, resveratrol activated the Nrf2 signaling pathway-mediated antioxidant enzyme expression to alleviate inflammation by protecting against oxidative damage and T-lymphocyte subset-related chronic inflammatory response in the development of HFD-induced obesity.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | | | | | | | | | | |
Collapse
|
82
|
Interrelationship between lymphocytes and leptin in fat depots of obese mice revealed by changes in nutritional status. J Physiol Biochem 2015; 71:497-507. [PMID: 25670497 DOI: 10.1007/s13105-015-0388-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/28/2015] [Indexed: 01/17/2023]
Abstract
The mechanisms underlying the relationships between nutritional status and immunity remain to be fully characterized. The present study was undertaken to analyze by flow cytometry, in the context of diet-induced obesity, the status of immune cells in subcutaneous, and epididymal fat depots in wild-type and immunodeficient Rag2-/- mice submitted to nutritional challenge, i.e., 48-h fasting and 1-week refeeding. In parallel, the responsiveness of mature adipocytes and immune cells in bone marrow, lymph node, and liver were also analyzed. The results show that fasting in obese wild-type mice induces a prominent lipolysis in epididymal AT and immunosuppression restricted to both subcutaneous and epididymal AT, characterized by reduced number of CD4+ T and B lymphocytes and M1/M2 macrophages associated with reduced leptin and increased FGF21 expression in mature adipocytes. One-week refeeding was sufficient to reverse the fasting-induced effects. Obese immunodeficient mice under nutritional challenge exhibited no changes in adipocyte leptin expression and no marked trafficking of AT macrophages or NK cells, while the fasted-induced upregulation of FGF21 expression was maintained as well as the lipolytic responses. The present results demonstrate that, in a context of diet-induced obesity, fasting-induced immunosuppression is restricted to fat depots in immunocompetent mice. Lack of adipocyte leptin regulation and fasting-induced immunosuppression in obese immunodeficient mice strongly suggests that lymphocytes are involved in the modulation of adipocyte leptin expression on one hand and on the other that leptin is involved in the immune changes in AT according to nutritional status.
Collapse
|
83
|
La leptine : un modulateur de l’activité des cellules Natural Killer ? NUTR CLIN METAB 2015. [DOI: 10.1016/j.nupar.2014.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
84
|
Dietary restriction protects against experimental cerebral malaria via leptin modulation and T-cell mTORC1 suppression. Nat Commun 2015; 6:6050. [PMID: 25636003 PMCID: PMC4313624 DOI: 10.1038/ncomms7050] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 12/06/2014] [Indexed: 02/06/2023] Open
Abstract
Host nutrition can affect the outcome of parasitic diseases through metabolic effects on host immunity and/or the parasite. Here we show that modulation of mouse immunometabolism through brief restriction of food intake (dietary restriction, DR) prevents neuropathology in experimental cerebral malaria (ECM). While no effects are detected on parasite growth, DR reduces parasite accumulation in peripheral tissues including brain, and increases clearance in the spleen. Leptin, a host-derived adipokine linking appetite, energy balance and immune function, is required for ECM pathology and its levels are reduced upon DR. Recombinant leptin abrogates DR benefits, while pharmacological or genetic inhibition of leptin signaling protects against ECM. DR reduces mTORC1 activity in T cells, and this effect is abrogated upon leptin administration. Furthermore, mTORC1 inhibition with rapamycin prevents ECM pathology. Our results suggest that leptin and mTORC1 provide a novel mechanistic link between nutrition, immunometabolism and ECM pathology, with potential therapeutic implications for cerebral malaria.
Collapse
|
85
|
Establishment and characterization of DB-1: a leptin receptor-deficient murine macrophage cell line. Cytotechnology 2015; 68:921-33. [PMID: 25599862 DOI: 10.1007/s10616-015-9843-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 12/31/2014] [Indexed: 12/14/2022] Open
Abstract
Metabolic and immune mediators activate many of the same signal transduction pathways. Therefore, molecules that regulate metabolism often affect immune responses. Leptin is an adipokine that exemplifies this interplay. Leptin is the body's major nutritional status sensor, but it also plays a key role in immune system regulation. To provide an in vitro tool to investigate the link between leptin and innate immunity, we immortalized and characterized a leptin receptor-deficient macrophage cell line, DB-1. The cell line was created using bone marrow cells from leptin receptor-deficient mice. Bone marrow cells were differentiated into macrophages by culturing them with recombinant mouse macrophage colony stimulating factor, and passaged when confluent for 6 months. The cells spontaneously immortalized at approximately passage 20. Cells were cloned twice by limiting dilution cloning prior to characterization. The macrophage cell line is diploid and grows at a linear rate for 4-5 days before reaching the growth plateau. The cells are MAC-2 and F4/80 positive and have phagocytic activity similar to primary macrophages from wild-type and leptin receptor-deficient mice. DB-1 cells were responsive to stimulation with interferon-γ as measured by increase in Nos2 transcript levels. In addition, DB-1 macrophages are not responsive to the chemotactic signaling of adipocyte conditioned media nor leptin when compared to primary WT macrophages. We believe that DB-1 cells provide a dependable tool to study the role of leptin or the leptin receptor in obesity-associated inflammation and immune system dysregulation.
Collapse
|
86
|
Shattuck EC, Muehlenbein MP. Human sickness behavior: Ultimate and proximate explanations. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2015; 157:1-18. [DOI: 10.1002/ajpa.22698] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/27/2014] [Accepted: 12/28/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Eric C. Shattuck
- Evolutionary Physiology and Ecology Laboratory; Department of Anthropology; Indiana University; Bloomington IN
| | - Michael P. Muehlenbein
- Evolutionary Physiology and Ecology Laboratory; Department of Anthropology; Indiana University; Bloomington IN
| |
Collapse
|
87
|
Procaccini C, Pucino V, Mantzoros CS, Matarese G. Leptin in autoimmune diseases. Metabolism 2015; 64:92-104. [PMID: 25467840 DOI: 10.1016/j.metabol.2014.10.014] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 10/20/2014] [Indexed: 12/22/2022]
Abstract
The past twenty years of research on leptin has provided crucial information on the link between metabolic state and immune system function. Adipocytes influence not only the endocrine system but also the immune response, through several cytokine-like mediators known as adipokines, which include leptin. Initially described as an antiobesity hormone, leptin has subsequently been shown also to influence hematopoiesis, thermogenesis, reproduction, angiogenesis, and more importantly immune homeostasis. As a cytokine, leptin can affect thymic homeostasis and the secretion of acute-phase reactants such as interleukin-1 (IL-1) and tumor-necrosis factor-alpha (TNF-α). Leptin links nutritional status and proinflammatory T helper 1 (Th1) immune responses and the decrease in leptin plasma concentration during food deprivation leads to impaired immune function. Conversely, elevated circulating leptin levels in obesity appear to contribute to the low-grade inflammatory background which makes obese individuals more susceptible to increased risk of developing cardiovascular diseases, diabetes, or degenerative disease including autoimmunity and cancer. In this review, we provide an overview of recent advances on the role of leptin in the pathogenesis of several autoimmune disorders that may be of particular relevance in the modulation of the autoimmune attack through metabolic-based therapeutic approaches.
Collapse
Affiliation(s)
- Claudio Procaccini
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR) c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131 Napoli, Italy
| | - Valentina Pucino
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli "Federico II", 80131 Napoli, Italy
| | - Christos S Mantzoros
- Section of Endocrinology, Boston VA Healthcare System, Jamaica Plain, MA; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine, Boston Medical Center, Boston University, 72 Evans Street, Boston, MA 02217, USA
| | - Giuseppe Matarese
- Dipartimento di Medicina e Chirurgia, Facoltà di Medicina e Chirurgia, Università di Salerno, Baronissi Campus, 84081 Baronissi, Salerno, Italy; IRCCS-MultiMedica, 20138 Milano, Italy.
| |
Collapse
|
88
|
Kucharska AM, Pyrżak B, Demkow U. Regulatory T Cells in Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 866:35-40. [PMID: 26022902 DOI: 10.1007/5584_2015_147] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The current concept of the pathogenesis of obesity relates to the inflammation caused by excess of adipose tissue. Regulatory T cells accumulated in visceral adipose tissue (VAT-resident Tregs) are also involved in this pathogenesis. In the present paper the mechanisms responsible for alterations in the number and function of VAT-resident Tregs T in obesity are described. The role of Tregs in inflammation, insulin resistance, atherogenesis, and also the influence on VAT-resident Tregs of adipocytokines and insulin are reviewed.
Collapse
Affiliation(s)
- Anna M Kucharska
- Department of Pediatrics and Endocrinology, Medical University of Warsaw, 24 Marszalkowska St., 00-576, Warsaw, Poland,
| | | | | |
Collapse
|
89
|
Leptin receptor mutation results in defective neutrophil recruitment to the colon during Entamoeba histolytica infection. mBio 2014; 5:mBio.02046-14. [PMID: 25516614 PMCID: PMC4271549 DOI: 10.1128/mbio.02046-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Amebiasis is an enteric infection caused by Entamoeba histolytica, with symptoms ranging in severity from asymptomatic colonization to dysentery. Humans with the Q223R leptin receptor mutation have increased susceptibility to amebiasis, but the mechanism has been unclear. Using a mouse model expressing the mutation, we tested the impact of the Q223R mutation on the innate immune response to E. histolytica infection. The 223R mutation resulted in delayed clearance of amebae from the cecum, as had been previously observed. We found that neutrophil influx to the site of the infection was reduced 12 h after infection in 223R mice. Depletion of neutrophils with anti-Ly6G monoclonal antibody increased susceptibility of wild-type mice to infection, supporting the importance of neutrophils in innate defense. Leptin expression was increased in the cecum by E. histolytica infection, suggesting that leptin could serve as a homing signal for neutrophils to the gut. Interestingly, neutrophils from mice with the 223R mutation had diminished chemotaxis toward leptin. This impaired chemotaxis likely explained the reduced gut infiltration of neutrophils. The newly recognized effect of the leptin receptor Q223R mutation on neutrophil chemotaxis and the impact of this mutation on multiple infectious diseases suggest a broader impact of this mutation on susceptibility to disease. The Q223R leptin receptor mutation results in increased susceptibility of children and adults to E. histolytica, one of the leading causes of diarrhea morbidity and mortality in children of the developing world. Here we show that the mutation results in reduced neutrophil infiltration to the site of infection. This decreased infiltration is likely due to the mutation’s impact on neutrophil chemotaxis toward leptin, an inflammatory agent upregulated in the cecum after infection. The significance of this work thus extends beyond understanding E. histolytica susceptibility by also providing insight into the potential impact of leptin on neutrophil function in other states of altered leptin signaling, which include both malnutrition and obesity.
Collapse
|
90
|
Youssef DM, Elbehidy RM, Shokry DM, Elbehidy EM. The influence of leptin on Th1/Th2 balance in obese children with asthma. J Bras Pneumol 2014; 39:562-8. [PMID: 24310629 PMCID: PMC4075880 DOI: 10.1590/s1806-37132013000500006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 09/05/2013] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE: In individuals with asthma, obesity induces the production of leptin and is
associated with disease severity. Our objective was to evaluate the levels of
serum leptin and their effect on Th1/Th2 balance in obese and non-obese children
with asthma, as well as to investigate the association between serum leptin levels
and clinical outcomes. METHODS: We evaluated 50 atopic children with physician-diagnosed moderate-to-severe
persistent asthma and 20 controls. The children with asthma were divided into two
groups, by body mass index percentile: obese (n = 25) and non-obese (n = 25). From
all subjects, we collected peripheral blood samples in order to determine the
levels of leptin, IFN-γ, and IL-4. Asthma severity was assessed by an asthma
symptom score, and the results were correlated with the parameters studied. RESULTS: Serum leptin levels were significantly higher in the obese asthma group than in
the non-obese asthma group, as well as being significantly higher in the children
with asthma than in the controls, whereas IFN-γ levels were significantly higher
and IL-4 levels were significantly lower in the obese asthma group than in the
non-obese asthma group. In addition, the obese asthma group showed higher asthma
symptom scores and significantly lower FEV1 (% of predicted) than did
the non-obese asthma group. There was a significant positive correlation between
leptin and IFN-γ levels only in the obese asthma group. CONCLUSIONS: Although leptin is involved in the pathogenesis of asthma in obese and non-obese
children, its effect is more pronounced in the former. In the presence of high
leptin levels, only obese children with asthma exhibited Th1 polarization, with
higher IFN-γ levels and greater asthma severity.
Collapse
|
91
|
Martín-González J, Carmona-Fernández A, Pérez-Pérez A, Sánchez-Jiménez F, Sánchez-Margalet V, Segura-Egea JJ. Expression and immunohistochemical localization of leptin receptor in human periapical granuloma. Int Endod J 2014; 48:611-8. [DOI: 10.1111/iej.12356] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 07/29/2014] [Indexed: 01/03/2023]
Affiliation(s)
- J. Martín-González
- Department of Stomatology (Endodontics Section); School of Dentistry; Virgen Macarena University Hospital; University of Sevilla; Sevilla Spain
| | - A. Carmona-Fernández
- Department of Medical Biochemistry and Molecular Biology; Virgen Macarena University Hospital; University of Sevilla; Sevilla Spain
| | - A. Pérez-Pérez
- Department of Medical Biochemistry and Molecular Biology; Virgen Macarena University Hospital; University of Sevilla; Sevilla Spain
| | - F. Sánchez-Jiménez
- Department of Medical Biochemistry and Molecular Biology; Virgen Macarena University Hospital; University of Sevilla; Sevilla Spain
| | - V. Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology; Virgen Macarena University Hospital; University of Sevilla; Sevilla Spain
| | - J. J. Segura-Egea
- Department of Stomatology (Endodontics Section); School of Dentistry; Virgen Macarena University Hospital; University of Sevilla; Sevilla Spain
| |
Collapse
|
92
|
Conde J, Scotece M, Abella V, López V, Pino J, Gómez-Reino JJ, Gualillo O. An update on leptin as immunomodulator. Expert Rev Clin Immunol 2014; 10:1165-70. [DOI: 10.1586/1744666x.2014.942289] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
93
|
Londraville RL, Macotela Y, Duff RJ, Easterling MR, Liu Q, Crespi EJ. Comparative endocrinology of leptin: assessing function in a phylogenetic context. Gen Comp Endocrinol 2014; 203:146-57. [PMID: 24525452 PMCID: PMC4128956 DOI: 10.1016/j.ygcen.2014.02.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 01/31/2014] [Accepted: 02/03/2014] [Indexed: 12/11/2022]
Abstract
As we approach the end of two decades of leptin research, the comparative biology of leptin is just beginning. We now have several leptin orthologs described from nearly every major clade among vertebrates, and are moving beyond gene descriptions to functional studies. Even at this early stage, it is clear that non-mammals display clear functional similarities and differences with their better-studied mammalian counterparts. This review assesses what we know about leptin function in mammals and non-mammals, and gives examples of how these data can inform leptin biology in humans.
Collapse
Affiliation(s)
- Richard L Londraville
- Department of Biology and Program in Integrated Biosciences, University of Akron, Akron, OH, USA.
| | - Yazmin Macotela
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Robert J Duff
- Department of Biology and Program in Integrated Biosciences, University of Akron, Akron, OH, USA
| | - Marietta R Easterling
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| | - Qin Liu
- Department of Biology and Program in Integrated Biosciences, University of Akron, Akron, OH, USA
| | - Erica J Crespi
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
94
|
Ramirez O, Garza KM. Leptin deficiency in vivo enhances the ability of splenic dendritic cells to activate T cells. Int Immunol 2014; 26:627-36. [PMID: 24966213 DOI: 10.1093/intimm/dxu067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Leptin is a pleiotropic adipokine that is critical for regulating food intake and energy expenditure and also participates in functions of the immune system, including those of antigen-presenting cells. Here, we assess the effect of leptin deficiency on the function splenic dendritic cells (sDC). sDC from leptin-deficient mice (Lep(ob)) were evaluated ex vivo for phenotype, ability to respond to inflammatory stimuli, to acquire and process antigens and to activate T cells. The data show that Lep(ob) sDC express activation markers similar to controls and respond similarly to LPS activation or anti-CD40 cross-linking. In addition, antigen acquisition and processing by Lep(ob) sDC was similar to controls. However, Lep(ob) sDC elicited higher production of IFN-γ in mixed lymphocyte reactions and increased production of IL-2 by antigen-specific T-cell hybridoma relative to controls. To assess Lep(ob) sDC activation of T cells in vivo, Lep(ob) and control mice were infected systemically with Mycobacterium avium. Lep(ob) mice were significantly better at neutralizing the infection as measured by splenic bacterial load over time. This was mirrored with an increased percentage of activated T cells in M. avium-infected Lep(ob) mice. Thus, although no changes were detected in sDC phenotype, activation, antigen processing or presentation, these DC surprisingly presented an enhanced ability to activate T cells ex vivo and in vivo. These data demonstrate that leptin can modulate DC function and suggest that leptin may dampen T-cell responsiveness in the physiological setting.
Collapse
Affiliation(s)
- Oscar Ramirez
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968-0519, USA
| | - Kristine M Garza
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968-0519, USA
| |
Collapse
|
95
|
The role of growth factor Sadat-Habdan mesenchymal stimulating peptide in healing of burn wounds. J Craniofac Surg 2014; 25:639-44. [PMID: 24621713 DOI: 10.1097/scs.0b013e3182a2440b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Burns occur in everyday life and cause morbidity and mortality due to delayed healing. Many agents were tried to accelerate healing of burns. The aim of this study was to assess for the first time Sadat-Habdan mesenchymal stimulating peptide (SHMSP) known angiogenesis factor in healing of experimentally created burns in rats. METHODS Forty male rats weighing (200-250 g) were randomly divided into 2 groups of 20 each. Under general anesthesia, reproducible, deep, partial-thickness, thermal burn injury was created by 1-cm aluminum template on the dorsal aspect of the body of each animal by heating the template at 80 °C for 10 seconds. Alternate rats were assigned to 1 of the 2 groups to minimize the difference of timing of the burn. Sadat-Habdan mesenchymal stimulating peptide 10 mg was applied on daily burn area, covered with a nonabsorbent dressing. All animals were kept in similar standard laboratory conditions. Its application continued 14 days as described by the inventors, and burned areas were photographed. On day 15, blood was collected from the animals for serum albumin levels, and the animals were killed, then the entire burn areas were excised for biopsy for general morphology and histopathology. RESULTS There were no deaths among groups. The majority of the animals showed good to excellent healing compared with the control group. Clinical pictures revealed better healing in the SHMSP-treated group. Quantitative and qualitative analyses of images revealed significant contraction of burned areas. Image analysis showed that improved healing in the form of exaggerated fibroplasia in 19 of 20 in the study group and 11 of 20 in the control group. Regeneration of the panniculous muscle layer was observed in 19 of 20 of the study group and 5 of 20 of the control group. The mean vessel index in the study group was 53.18 ± 4.74 mm(2) and in the control group 23.7 ± 6.37 mm(2) (P < 0.001; confidence interval, 25.88-33.04), whereas the mean of vessel area density was 24.76 ± 7.35 versus 8.68 ± 4.04 mm(2) (P < 0.001; confidence interval, 12.28-19.88) in the control group. Histopathologic analysis by hematoxylin-eosin stain, CD31, and factor VIII stains showed significant angiogenesis in the quantity and quality of the new blood vessels in the study group compared with the control group. CONCLUSIONS Sadat-Habdan mesenchymal stimulating peptide has potential of early healing of experimentally produced burns in rats. Healing was effective and better in the study group compared with the control group, in qualitative and quantitative measures.
Collapse
|
96
|
Maciolek JA, Pasternak JA, Wilson HL. Metabolism of activated T lymphocytes. Curr Opin Immunol 2014; 27:60-74. [PMID: 24556090 DOI: 10.1016/j.coi.2014.01.006] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/20/2013] [Accepted: 01/14/2014] [Indexed: 01/04/2023]
Abstract
Activated T cells undergo metabolic reprogramming which promotes glycolytic flux and lactate production as well as elevated production of lipids, proteins, nucleic acids and other carbohydrates (i.e. induction of biomass) even in the presence of oxygen. Activated T cells show induced expression of, among other things, Glucose Transporter 1 and several glycolytic enzymes, including ADP-Dependent Glucokinase and the low affinity isoform Pyruvate Kinase-M2 (which promote glycolytic flux), as well Glutamine Transporters and Glycerol-3-phosphate Dehydrogenase 2 which make available glutamate and glycerol-3-phosphate as mitochondrial energy sources. Intracellular leucine concentrations critically regulate mammalian target of rapamycin (mTOR) signaling to promote Th1, Th2, and Th17 CD4(+) T effector cell differentiation. In contrast, T regulatory (Treg) cells are generated when AMP-Activating Protein Kinase signaling is activated and mTOR activation is suppressed. Unlike effector CD4(+) and CD8(+) T cells, Tregs and memory T cells oxidize fatty acids for fuel. Effector and memory T cells perform different functions and thus show distinct metabolic profiles which are exquisitely controlled by cellular signaling. Upon activation, T cells express the insulin and leptin receptors on their surface and become sensitive to insulin signaling and nutrient availability and show changes in differentiation. Thus, metabolism and nutrient availability influence T cell activation and function.
Collapse
Affiliation(s)
- Jason A Maciolek
- Vaccine and Infectious Disease Organization (VIDO)-Home of the International Vaccine Centre (InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, S7N 5E3, Canada
| | - J Alex Pasternak
- Vaccine and Infectious Disease Organization (VIDO)-Home of the International Vaccine Centre (InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, S7N 5E3, Canada
| | - Heather L Wilson
- Vaccine and Infectious Disease Organization (VIDO)-Home of the International Vaccine Centre (InterVac), University of Saskatchewan, 120 Veterinary Road, Saskatoon, S7N 5E3, Canada.
| |
Collapse
|
97
|
Moraes-Vieira PMM, Larocca RA, Bassi EJ, Peron JPS, Andrade-Oliveira V, Wasinski F, Araujo R, Thornley T, Quintana FJ, Basso AS, Strom TB, Câmara NOS. Leptin deficiency impairs maturation of dendritic cells and enhances induction of regulatory T and Th17 cells. Eur J Immunol 2014; 44:794-806. [PMID: 24271843 DOI: 10.1002/eji.201343592] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 11/08/2013] [Accepted: 11/20/2013] [Indexed: 01/09/2023]
Abstract
Leptin is an adipose-secreted hormone that plays an important role in both metabolism and immunity. Leptin has been shown to induce Th1-cell polarization and inhibit Th2-cell responses. Additionally, leptin induces Th17-cell responses, inhibits regulatory T (Treg) cells and modulates autoimmune diseases. Here, we investigated whether leptin mediates its activity on T cells by influencing dendritic cells (DCs) to promote Th17 and Treg-cell immune responses in mice. We observed that leptin deficiency (i) reduced the expression of DC maturation markers, (ii) decreased DC production of IL-12, TNF-α, and IL-6, (iii) increased DC production of TGF-β, and (iv) limited the capacity of DCs to induce syngeneic CD4(+) T-cell proliferation. As a consequence of this unique phenotype, DCs generated under leptin-free conditions induced Treg or TH 17 cells more efficiently than DCs generated in the presence of leptin. These data indicate important roles for leptin in DC homeostasis and the initiation and maintenance of inflammatory and regulatory immune responses by DCs.
Collapse
Affiliation(s)
- Pedro M M Moraes-Vieira
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil; Department of Medicine, Harvard Medical School, Beth Israel Medical Deaconess Center, Transplant Institute, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Dib LH, Ortega MT, Fleming SD, Chapes SK, Melgarejo T. Bone marrow leptin signaling mediates obesity-associated adipose tissue inflammation in male mice. Endocrinology 2014; 155:40-6. [PMID: 24169547 PMCID: PMC3868799 DOI: 10.1210/en.2013-1607] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Obesity is characterized by an increased recruitment of proinflammatory macrophages to the adipose tissue (AT), leading to systemic inflammation and metabolic disease. The pathogenesis of this AT inflammation, however, remains to be elucidated. The circulating adipokine leptin is increased in obesity and is involved in immune cell function and activation. In the present study, we investigated the role of leptin in the induction of obesity-associated inflammation. We generated radiation chimeric C57BL/6J mice reconstituted with either leptin receptor-deficient (db/db) or wild-type (WT) bone marrow and challenged them with a high-fat diet (HFD) for 16 weeks. Mice reconstituted with db/db bone marrow (WT/db), had significantly lower body weight and adiposity compared with mice with WT bone marrow (WT/WT). Gonadal AT in WT/db mice displayed a 2-fold lower expression of the inflammatory genes Tnfa, Il6, and Ccl2. In addition, gonadal fat of WT/db mice contained significantly fewer crown-like structures compared with WT/WT mice, and most of their AT macrophages expressed macrophage galactose-type C type lectin 1 (MGL1) and were C-C chemokine receptor type 2 (CCR2)-negative, indicative of an anti-inflammatory phenotype. Moreover, WT/db mice exhibited greater insulin sensitivity compared with WT/WT mice. These data show that disrupted leptin signaling in bone marrow-derived cells attenuates the proinflammatory conditions that mediate many of the metabolic complications that characterize obesity. Our findings establish a novel mechanism involved in the regulation of obesity-associated systemic inflammation and support the hypothesis that leptin is a proinflammatory cytokine.
Collapse
|
99
|
Cho W, Nam JH. Is Obesity One of Physiological Factors which Exert Influenza Virus-induced Pathology and Vaccine Efficacy? ACTA ACUST UNITED AC 2014. [DOI: 10.4167/jbv.2014.44.3.226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Whajung Cho
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Korea
| | - Jae-Hwan Nam
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Korea
| |
Collapse
|
100
|
Venken K, Seeuws S, Zabeau L, Jacques P, Decruy T, Coudenys J, Verheugen E, Windels F, Catteeuw D, Drennan M, Van Calenbergh S, Lambrecht BN, Yoshimura A, Tavernier J, Elewaut D. A bidirectional crosstalk between iNKT cells and adipocytes mediated by leptin modulates susceptibility for T cell mediated hepatitis. J Hepatol 2014; 60:175-82. [PMID: 23973929 DOI: 10.1016/j.jhep.2013.08.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/26/2013] [Accepted: 08/05/2013] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS Immunometabolism is an emerging field of clinical investigation due to the obesity epidemic worldwide. A reciprocal involvement of immune mediators in the body energy metabolism has been recognized for years, but is only partially understood. We hypothesized that the adipokine leptin could provide an important modulator of iNKT cells. METHODS The expression of leptin receptor (LR) on resting and activated iNKT cells was measured by flow cytometry. FACS-sorted hepatic iNKT cells were stimulated with anti-CD3/CD28Ab coated beads in the absence or presence of a neutralizing anti-leptin Ab. Furthermore, we evaluated the outcome of LR blocking nanobody treatment in ConA induced hepatitis and towards metabolic parameters in WT and iNKT cell deficient mice. RESULTS The LR is expressed on iNKT cells and leptin suppresses iNKT cell proliferation and cytokine production in vitro. LR deficient iNKT cells are hyper-responsive further enforcing the role of leptin as an important inhibitor of iNKT cell function. Consistently, in vivo blockade of LR signaling exacerbated ConA hepatitis in wild-type but not in iNKT cell deficient mice, through both Janus kinase (JAK)2 and mitogen-activated protein kinase (MAPK) dependent mechanisms. Moreover, LR inhibition altered fat pad features and was accompanied by insulin resistance, only in wild-type mice. Curiously, this interaction was strictly dependent on MAPK mediated LR signaling in iNKT cells and uncoupled from the more central effects of leptin. CONCLUSIONS Our data support a new concept of immune regulation by which leptin protects towards T cell mediated hepatitis via modulation of iNKT cells.
Collapse
Affiliation(s)
- Koen Venken
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Sylvie Seeuws
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Lennart Zabeau
- Flanders Institute for Biotechnology, Department of Medical Protein Research, Faculty of Medicine and Health Sciences, Ghent University, A. Baertsoenkaai 3, 9000 Ghent, Belgium
| | - Peggy Jacques
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Tine Decruy
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Julie Coudenys
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Eveline Verheugen
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Fien Windels
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Dominiek Catteeuw
- Flanders Institute for Biotechnology, Department of Medical Protein Research, Faculty of Medicine and Health Sciences, Ghent University, A. Baertsoenkaai 3, 9000 Ghent, Belgium
| | - Michael Drennan
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry, Faculty of Pharmaceutical Sciences (FFW), Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, Department of Molecular Biomedical Research, VIB and Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo 160-8582, Japan; Japan Science and Technology Agency, CREST, Tokyo 102-0075, Japan
| | - Jan Tavernier
- Flanders Institute for Biotechnology, Department of Medical Protein Research, Faculty of Medicine and Health Sciences, Ghent University, A. Baertsoenkaai 3, 9000 Ghent, Belgium
| | - Dirk Elewaut
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium.
| |
Collapse
|